6.136 Problems 13501 to 13600

Table 6.271: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13501

\[ {} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

13502

\[ {} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

13503

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

13504

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0 \]

13505

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

13506

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

13507

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

13508

\[ {} 2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13509

\[ {} 3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0 \]

13510

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

13511

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13512

\[ {} x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

13513

\[ {} x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

13514

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

13515

\[ {} \left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

13516

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0 \]

13517

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

13518

\[ {} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

13519

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+8 \left (x^{2}-1\right ) y = 0 \]

13520

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

13521

\[ {} x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13522

\[ {} 2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

13523

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13524

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-3\right ) y = 0 \]

13525

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-2 x \left (t \right )-4 y \left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = {\mathrm e}^{4 t}] \]

13526

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = -2 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-y \left (t \right ) = t^{2}] \]

13527

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = {\mathrm e}^{3 t}] \]

13528

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = 2 \,{\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-4 y \left (t \right ) = {\mathrm e}^{2 t}] \]

13529

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = {\mathrm e}^{-t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}] \]

13530

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-y \left (t \right ) = t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-4 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{t}] \]

13531

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-6 y \left (t \right ) = {\mathrm e}^{3 t}, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )-6 y \left (t \right ) = t] \]

13532

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = 3 t, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )-3 y \left (t \right ) = 1] \]

13533

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 0] \]

13534

\[ {} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right )-2 x \left (t \right )+4 y \left (t \right ) = t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 1] \]

13535

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+5 y \left (t \right ) = 4 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = 2] \]

13536

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )+5 y \left (t \right ) = t^{2}, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )+4 y \left (t \right ) = 1+2 t] \]

13537

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right ) = t^{2}+4 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = 2 t^{2}-2 t] \]

13538

\[ {} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = t -1, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = t +2] \]

13539

\[ {} [2 x^{\prime }\left (t \right )+4 y^{\prime }\left (t \right )+x \left (t \right )-y \left (t \right ) = 3 \,{\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{t}] \]

13540

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = -2 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )-y \left (t \right ) = t^{2}] \]

13541

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 1, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = t] \]

13542

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13543

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

13544

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )+5 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right )+17 t] \]

13545

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

13546

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

13547

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+7 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

13548

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+4 y \left (t \right )] \]

13563

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )-4 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-4 z \left (t \right )] \]

13564

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )-6 y \left (t \right )+6 z \left (t \right )] \]

13565

\[ {} y^{\prime }-y = {\mathrm e}^{3 t} \]

13566

\[ {} y^{\prime }+y = 2 \sin \left (t \right ) \]

13567

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13568

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

13569

\[ {} y^{\prime \prime }+4 y = 8 \]

13570

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13571

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]

13572

\[ {} y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]

13573

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 4 t \,{\mathrm e}^{-3 t} \]

13574

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]

13575

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

13576

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

13577

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]

13578

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]

13579

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

13580

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

13581

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 \pi -4 t & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]

13582

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]

13583

\[ {} t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

13584

\[ {} t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

13585

\[ {} \left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

13586

\[ {} t^{3} x^{\prime \prime \prime }-\left (t +3\right ) t^{2} x^{\prime \prime }+2 t \left (t +3\right ) x^{\prime }-2 \left (t +3\right ) x = 0 \]

13587

\[ {} t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

13588

\[ {} \left (1+2 t \right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

13589

\[ {} t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

13590

\[ {} t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

13591

\[ {} t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

13592

\[ {} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

13593

\[ {} \frac {\left (t +1\right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

13594

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

13595

\[ {} \left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

13596

\[ {} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

13597

\[ {} f \left (t \right ) x^{\prime \prime }+g \left (t \right ) x = 0 \]

13598

\[ {} x^{\prime \prime }+\left (t +1\right ) x = 0 \]

13599

\[ {} y^{\prime \prime }+\lambda y = 0 \]

13600

\[ {} y^{\prime \prime }+\lambda y = 0 \]