6.70 Problems 6901 to 7000

Table 6.139: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6901

\[ {} 2 x y^{\prime }-y = 2 x \cos \left (x \right ) \]

6902

\[ {} x^{2} y^{\prime }+x y = 10 \sin \left (x \right ) \]

6903

\[ {} y^{\prime }+2 x y = 1 \]

6904

\[ {} x y^{\prime }-2 y = 0 \]

6905

\[ {} y^{\prime } = -\frac {x}{y} \]

6906

\[ {} y^{\prime }+2 y = 0 \]

6907

\[ {} 5 y^{\prime } = 2 y \]

6908

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6909

\[ {} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

6910

\[ {} x y^{\prime \prime }+2 y^{\prime } = 0 \]

6911

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

6912

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6913

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

6914

\[ {} 3 x y^{\prime }+5 y = 10 \]

6915

\[ {} y^{\prime } = y^{2}+2 y-3 \]

6916

\[ {} \left (-1+y\right ) y^{\prime } = 1 \]

6917

\[ {} y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

6918

\[ {} {y^{\prime }}^{2} = 4 y \]

6919

\[ {} {y^{\prime }}^{2} = 9-y^{2} \]

6920

\[ {} y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

6921

\[ {} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

6922

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right )] \]

6923

\[ {} [x^{\prime \prime }\left (t \right ) = 4 y \left (t \right )+{\mathrm e}^{t}, y^{\prime \prime }\left (t \right ) = 4 x \left (t \right )-{\mathrm e}^{t}] \]

6924

\[ {} y^{\prime } = \sqrt {1-y^{2}} \]

6925

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

6926

\[ {} y^{\prime } = f \left (x \right ) \]

6927

\[ {} y^{\prime \prime } = f \left (x \right ) \]

6928

\[ {} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

6929

\[ {} y^{\prime } = 5-y \]

6930

\[ {} y^{\prime } = y^{2}+4 \]

6931

\[ {} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0 \]

6932

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 x y^{\prime }-78 y = 0 \]

6933

\[ {} y^{\prime } = y-y^{2} \]

6934

\[ {} y^{\prime } = y-y^{2} \]

6935

\[ {} y^{\prime }+2 x y^{2} = 0 \]

6936

\[ {} y^{\prime }+2 x y^{2} = 0 \]

6937

\[ {} y^{\prime }+2 x y^{2} = 0 \]

6938

\[ {} y^{\prime }+2 x y^{2} = 0 \]

6939

\[ {} x^{\prime \prime }+x = 0 \]

6940

\[ {} x^{\prime \prime }+x = 0 \]

6941

\[ {} x^{\prime \prime }+x = 0 \]

6942

\[ {} x^{\prime \prime }+x = 0 \]

6943

\[ {} y^{\prime \prime }-y = 0 \]

6944

\[ {} y^{\prime \prime }-y = 0 \]

6945

\[ {} y^{\prime \prime }-y = 0 \]

6946

\[ {} y^{\prime \prime }-y = 0 \]

6947

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

6948

\[ {} x y^{\prime } = 2 y \]

6949

\[ {} y^{\prime } = y^{{2}/{3}} \]

6950

\[ {} y^{\prime } = \sqrt {x y} \]

6951

\[ {} x y^{\prime } = y \]

6952

\[ {} y^{\prime }-y = x \]

6953

\[ {} \left (4-y^{2}\right ) y^{\prime } = x^{2} \]

6954

\[ {} \left (y^{3}+1\right ) y^{\prime } = x^{2} \]

6955

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

6956

\[ {} \left (y-x \right ) y^{\prime } = x +y \]

6957

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

6958

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

6959

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

6960

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

6961

\[ {} x y^{\prime } = y \]

6962

\[ {} y^{\prime } = 1+y^{2} \]

6963

\[ {} y^{\prime } = y^{2} \]

6964

\[ {} y^{\prime } = y^{2} \]

6965

\[ {} y^{\prime } = y^{2} \]

6966

\[ {} y^{\prime } = y^{2} \]

6967

\[ {} y^{\prime } = y^{2} \]

6968

\[ {} y y^{\prime } = 3 x \]

6969

\[ {} y y^{\prime } = 3 x \]

6970

\[ {} y y^{\prime } = 3 x \]

6971

\[ {} y^{\prime \prime }+4 y = 0 \]

6972

\[ {} y^{\prime \prime }+4 y = 0 \]

6973

\[ {} y^{\prime \prime }+4 y = 0 \]

6974

\[ {} y^{\prime \prime }+4 y = 0 \]

6975

\[ {} y^{\prime \prime }+4 y = 0 \]

6976

\[ {} y^{\prime \prime }+4 y = 0 \]

6977

\[ {} y^{\prime } = x -2 y \]

6978

\[ {} y^{\prime } = x^{2}+y^{2} \]

6979

\[ {} 2 y^{\prime \prime }-3 y^{2} = 0 \]

6980

\[ {} y^{\prime }+2 y = 3 x -6 \]

6981

\[ {} y^{\prime } = x \sqrt {y} \]

6982

\[ {} x y^{\prime } = 2 x \]

6983

\[ {} y^{\prime } = 2 \]

6984

\[ {} y^{\prime } = 2 y-4 \]

6985

\[ {} x y^{\prime } = y \]

6986

\[ {} y^{\prime \prime }+9 y = 18 \]

6987

\[ {} x y^{\prime \prime }-y^{\prime } = 0 \]

6988

\[ {} y^{\prime \prime } = y^{\prime } \]

6989

\[ {} y^{\prime } = y \left (-3+y\right ) \]

6990

\[ {} 3 x y^{\prime }-2 y = 0 \]

6991

\[ {} \left (2 y-2\right ) y^{\prime } = 2 x -1 \]

6992

\[ {} x y^{\prime }+y = 2 x \]

6993

\[ {} y^{\prime } = x^{2}+y^{2} \]

6994

\[ {} {y^{\prime }}^{2} = 4 x^{2} \]

6995

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

6996

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

6997

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

6998

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6999

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

7000

\[ {} y^{\prime }+\sin \left (x \right ) y = x \]