24.404 Problem number 2195

\[ \int \frac {-1+x^8}{\sqrt [4]{x^2+x^6} \left (1+x^8\right )} \, dx \]

Optimal antiderivative \[ -\frac {\arctan \left (\frac {2^{\frac {1}{8}} x}{\left (x^{6}+x^{2}\right )^{\frac {1}{4}}}\right ) 2^{\frac {7}{8}}}{4}+\frac {\arctan \left (\frac {2^{\frac {5}{8}} x \left (x^{6}+x^{2}\right )^{\frac {1}{4}}}{x^{2} 2^{\frac {1}{4}}-\sqrt {x^{6}+x^{2}}}\right ) 2^{\frac {3}{8}}}{4}-\frac {\arctanh \left (\frac {2^{\frac {1}{8}} x}{\left (x^{6}+x^{2}\right )^{\frac {1}{4}}}\right ) 2^{\frac {7}{8}}}{4}-\frac {\arctanh \left (\frac {\frac {x^{2} 2^{\frac {5}{8}}}{2}+\frac {\sqrt {x^{6}+x^{2}}\, 2^{\frac {3}{8}}}{2}}{x \left (x^{6}+x^{2}\right )^{\frac {1}{4}}}\right ) 2^{\frac {3}{8}}}{4} \]

command

Integrate[(-1 + x^8)/((x^2 + x^6)^(1/4)*(1 + x^8)),x]

Mathematica 13.1 output

\[ -\frac {\sqrt {x} \sqrt [4]{1+x^4} \left (\sqrt {2} \text {ArcTan}\left (\frac {\sqrt [8]{2} \sqrt {x}}{\sqrt [4]{1+x^4}}\right )-\text {ArcTan}\left (\frac {2^{5/8} \sqrt {x} \sqrt [4]{1+x^4}}{\sqrt [4]{2} x-\sqrt {1+x^4}}\right )+\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt [8]{2} \sqrt {x}}{\sqrt [4]{1+x^4}}\right )+\tanh ^{-1}\left (\frac {2\ 2^{3/8} \sqrt {x} \sqrt [4]{1+x^4}}{2 x+2^{3/4} \sqrt {1+x^4}}\right )\right )}{2\ 2^{5/8} \sqrt [4]{x^2+x^6}} \]

Mathematica 12.3 output

\[ \int \frac {-1+x^8}{\sqrt [4]{x^2+x^6} \left (1+x^8\right )} \, dx \]________________________________________________________________________________________