42.10 Problem number 3440

\[ \int \frac {e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \left (-24+8 x-4 \log \left (\frac {e^{2 x}}{x^6}\right )+\log ^2\left (\frac {e^{2 x}}{x^6}\right )\right )}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx \]

Optimal antiderivative \[ 4+{\mathrm e}^{25}+{\mathrm e}^{x -\frac {4 x}{\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )}} \]

command

int((ln(exp(x)^2/x^6)^2-4*ln(exp(x)^2/x^6)+8*x-24)*exp((x*ln(exp(x)^2/x^6)-4*x)/ln(exp(x)^2/x^6))/ln(exp(x)^2/x^6)^2,x)

Maple 2022.1 output

\[\frac {\left (-2 x +\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )+6 \ln \left (x \right )\right ) {\mathrm e}^{\frac {x \ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )-4 x}{\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )}}+2 x \,{\mathrm e}^{\frac {x \ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )-4 x}{\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )}}-6 \ln \left (x \right ) {\mathrm e}^{\frac {x \ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )-4 x}{\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )}}}{\ln \left (\frac {{\mathrm e}^{2 x}}{x^{6}}\right )}\]

Maple 2021.1 output

hanged__________________________________________________________________________________