16.72 Problem number 439

\[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx \]

Optimal antiderivative \[ \frac {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{2 c d e \left (e x +d \right )}+\frac {\left (-a \,e^{2}+c \,d^{2}\right ) \left (a \,e^{2}+3 c \,d^{2}\right ) \arctanh \left (\frac {2 c d e x +a \,e^{2}+c \,d^{2}}{2 \sqrt {c}\, \sqrt {d}\, \sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{8 c^{\frac {3}{2}} d^{\frac {3}{2}} e^{\frac {5}{2}}}-\frac {\left (\frac {a}{c d}+\frac {3 d}{e^{2}}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{4} \]

command

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {1}{4} \, \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e} {\left (2 \, x e^{\left (-1\right )} - \frac {{\left (3 \, c d^{2} - a e^{2}\right )} e^{\left (-2\right )}}{c d}\right )} - \frac {{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} e^{\left (-\frac {5}{2}\right )} \log \left ({\left | -c d^{2} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} \sqrt {c d} e^{\frac {1}{2}} - a e^{2} \right |}\right )}{8 \, \sqrt {c d} c d} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Exception raised: TypeError} \]________________________________________________________________________________________