16.52 Problem number 189

\[ \int \frac {x^4 \sqrt {d^2-e^2 x^2}}{(d+e x)^4} \, dx \]

Optimal antiderivative \[ -\frac {d^{3} \left (-e x +d \right )^{4}}{5 e^{5} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {19 d^{2} \left (-e x +d \right )^{3}}{15 e^{5} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {19 d^{2} \arctan \left (\frac {e x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{5}}-\frac {6 d \left (-e x +d \right )^{2}}{e^{5} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\left (-e x +20 d \right ) \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{5}} \]

command

integrate(x^4*(-e^2*x^2+d^2)^(1/2)/(e*x+d)^4,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ -\frac {19}{2} \, d^{2} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-5\right )} \mathrm {sgn}\left (d\right ) + \frac {1}{2} \, \sqrt {-x^{2} e^{2} + d^{2}} {\left (x e^{\left (-4\right )} - 8 \, d e^{\left (-5\right )}\right )} + \frac {2 \, {\left (\frac {685 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d^{2} e^{\left (-2\right )}}{x} + \frac {1025 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d^{2} e^{\left (-4\right )}}{x^{2}} + \frac {615 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{3} d^{2} e^{\left (-6\right )}}{x^{3}} + \frac {135 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{4} d^{2} e^{\left (-8\right )}}{x^{4}} + 164 \, d^{2}\right )} e^{\left (-5\right )}}{15 \, {\left (\frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} e^{\left (-2\right )}}{x} + 1\right )}^{5}} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {Exception raised: NotImplementedError} \]________________________________________________________________________________________