14.271 Problem number 2061

\[ \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \]

Optimal antiderivative \[ \frac {2 \arctan \left (\frac {\sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{\sqrt {-a \,e^{2}+c \,d^{2}}\, \sqrt {e x +d}}\right )}{\sqrt {e}\, \sqrt {-a \,e^{2}+c \,d^{2}}} \]

command

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {2 \, \arctan \left (\frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \frac {2 \, \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \int \frac {1}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}\,{d x} \]________________________________________________________________________________________