14.240 Problem number 2030

\[ \int \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx \]

Optimal antiderivative \[ \frac {4 \left (-a \,e^{2}+c \,d^{2}\right ) \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{15 c^{2} d^{2} \left (e x +d \right )^{\frac {3}{2}}}+\frac {2 \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{5 c d \sqrt {e x +d}} \]

command

integrate((e*x+d)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \frac {2}{15} \, {\left (5 \, d {\left (\frac {{\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} e^{\left (-1\right )}}{c d} + \frac {\sqrt {-c d^{2} e + a e^{3}} c d^{2} - \sqrt {-c d^{2} e + a e^{3}} a e^{2}}{c d}\right )} e^{\left (-1\right )} - {\left (\frac {{\left (5 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a e^{3} - 3 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}}\right )} e^{\left (-2\right )}}{c^{2} d^{2}} + \frac {3 \, \sqrt {-c d^{2} e + a e^{3}} c^{2} d^{4} - \sqrt {-c d^{2} e + a e^{3}} a c d^{2} e^{2} - 2 \, \sqrt {-c d^{2} e + a e^{3}} a^{2} e^{4}}{c^{2} d^{2}}\right )} e^{\left (-1\right )}\right )} e^{\left (-1\right )} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \int \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\,{d x} \]________________________________________________________________________________________