61.19 Problem number 361

\[ \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx \]

Optimal antiderivative \[ -\frac {\left (i A +B \right ) \arctanh \left (\frac {\sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {-i b +a}}\right )}{\left (-i b +a \right )^{\frac {5}{2}} d}+\frac {\left (i A -B \right ) \arctanh \left (\frac {\sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {i b +a}}\right )}{\left (i b +a \right )^{\frac {5}{2}} d}-\frac {2 \left (2 A a b -B \,a^{2}+b^{2} B \right )}{\left (a^{2}+b^{2}\right )^{2} d \sqrt {a +b \tan \left (d x +c \right )}}-\frac {2 \left (A b -B a \right )}{3 \left (a^{2}+b^{2}\right ) d \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}} \]

command

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \text {output too large to display} \]

Fricas 1.3.7 via sagemath 9.3 output \[ \text {Timed out} \]