8.11 Problem number 47

\[ \int \frac {\sqrt {2-3 x} \sqrt {1+4 x}}{\sqrt {-5+2 x}} \, dx \]

Optimal antiderivative \[ -\frac {11 \EllipticF \left (\frac {\sqrt {33}\, \sqrt {1+4 x}}{11}, \frac {\sqrt {3}}{3}\right ) \sqrt {66}\, \sqrt {5-2 x}}{9 \sqrt {-5+2 x}}+\frac {55 \EllipticE \left (\frac {2 \sqrt {2-3 x}\, \sqrt {11}}{11}, \frac {i \sqrt {2}}{2}\right ) \sqrt {11}\, \sqrt {-5+2 x}}{18 \sqrt {5-2 x}}+\frac {\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}}{3} \]

command

integrate((2-3*x)^(1/2)*(1+4*x)^(1/2)/(-5+2*x)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {1}{3} \, \sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {\sqrt {4 \, x + 1} \sqrt {-3 \, x + 2}}{\sqrt {2 \, x - 5}}, x\right ) \]