51.13 Problem number 158

\[ \int \frac {(a+a \cos (c+d x))^2}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \]

Optimal antiderivative \[ -\frac {4 a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {8 a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 a^{2} \sin \left (d x +c \right )}{3 d \cos \left (d x +c \right )^{\frac {3}{2}}}+\frac {4 a^{2} \sin \left (d x +c \right )}{d \sqrt {\cos \left (d x +c \right )}} \]

command

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(5/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, {\left (2 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 2 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (6 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )^{2}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]