42.44 Problem number 131

\[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx \]

Optimal antiderivative \[ \frac {2 \left (g \cos \left (f x +e \right )\right )^{\frac {5}{2}}}{f g \left (c -c \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a +a \sin \left (f x +e \right )}}-\frac {2 g \sqrt {\frac {\cos \left (f x +e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sin \left (\frac {f x}{2}+\frac {e}{2}\right ), \sqrt {2}\right ) \left (\sqrt {\cos }\left (f x +e \right )\right ) \sqrt {g \cos \left (f x +e \right )}}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right ) c f \sqrt {a +a \sin \left (f x +e \right )}\, \sqrt {c -c \sin \left (f x +e \right )}} \]

command

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g - \sqrt {a c g} {\left (i \, \sqrt {2} g \sin \left (f x + e\right ) - i \, \sqrt {2} g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - \sqrt {a c g} {\left (-i \, \sqrt {2} g \sin \left (f x + e\right ) + i \, \sqrt {2} g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{a c^{2} f \sin \left (f x + e\right ) - a c^{2} f} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (-\frac {\sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g}{a c^{2} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - a c^{2} \cos \left (f x + e\right )}, x\right ) \]