36.46 Problem number 138

\[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {-1-x^3}} \, dx \]

Optimal antiderivative \[ -\frac {\arctanh \left (\frac {\left (1+x \right ) \sqrt {3+2 \sqrt {3}}}{\sqrt {-x^{3}-1}}\right ) \sqrt {2}\, 3^{\frac {1}{4}}}{3}+\frac {2 \left (1+x \right ) \EllipticF \left (\frac {1+x +\sqrt {3}}{1+x -\sqrt {3}}, 2 i-i \sqrt {3}\right ) \left (\frac {\sqrt {6}}{3}-\frac {\sqrt {2}}{2}\right ) \sqrt {\frac {x^{2}-x +1}{\left (1+x -\sqrt {3}\right )^{2}}}\, 3^{\frac {3}{4}}}{3 \sqrt {-x^{3}-1}\, \sqrt {\frac {-1-x}{\left (1+x -\sqrt {3}\right )^{2}}}} \]

command

integrate(x/(1+x+3^(1/2))/(-x^3-1)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {1}{12} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (\frac {x^{8} - 16 \, x^{7} + 112 \, x^{6} - 16 \, x^{5} + 112 \, x^{4} + 224 \, x^{3} + 2 \cdot 3^{\frac {1}{4}} \sqrt {2} {\left (x^{6} - 18 \, x^{5} + 12 \, x^{4} - 40 \, x^{3} - 36 \, x^{2} + \sqrt {3} {\left (x^{6} - 6 \, x^{5} + 24 \, x^{4} + 8 \, x^{3} + 12 \, x^{2} + 24 \, x + 16\right )} - 24 \, x - 32\right )} \sqrt {-x^{3} - 1} + 64 \, x^{2} - 16 \, \sqrt {3} {\left (x^{7} - 2 \, x^{6} + 6 \, x^{5} + 5 \, x^{4} + 2 \, x^{3} + 6 \, x^{2} + 4 \, x + 4\right )} + 128 \, x + 112}{x^{8} + 8 \, x^{7} + 16 \, x^{6} - 16 \, x^{5} - 56 \, x^{4} + 32 \, x^{3} + 64 \, x^{2} - 64 \, x + 16}\right ) \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (-\frac {\sqrt {-x^{3} - 1} {\left (x^{2} - \sqrt {3} x + x\right )}}{x^{5} + 2 \, x^{4} - 2 \, x^{3} + x^{2} + 2 \, x - 2}, x\right ) \]