22.69 Problem number 681

\[ \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \EllipticF \left (\frac {\sqrt {1-\frac {x \sqrt {c}}{\sqrt {-a}}}\, \sqrt {2}}{2}, \sqrt {-\frac {2 a e}{-a e +d \sqrt {-a}\, \sqrt {c}}}\right ) \sqrt {-a}\, \sqrt {1+\frac {c \,x^{2}}{a}}\, \sqrt {\frac {\left (e x +d \right ) \sqrt {c}}{e \sqrt {-a}+d \sqrt {c}}}}{\sqrt {c}\, \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}} \]

command

integrate(1/(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {2 \, e^{\left (-\frac {1}{2}\right )} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right )}{\sqrt {c}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {\sqrt {c x^{2} + a} \sqrt {e x + d}}{c e x^{3} + c d x^{2} + a e x + a d}, x\right ) \]