2.2.37 Problems 3601 to 3700

Table 2.87: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3601

\begin{align*} y^{\prime }&=\frac {x^{2} y-32}{-x^{2}+16}+2 \\ \end{align*}

[_separable]

1.679

3602

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }-y+c&=0 \\ \end{align*}

[_separable]

2.789

3603

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.137

3604

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=a x \\ y \left (0\right ) &= 2 a \\ \end{align*}

[_separable]

1.466

3605

\begin{align*} y^{\prime }&=1-\frac {\sin \left (x +y\right )}{\cos \left (x \right ) \sin \left (y\right )} \\ y \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\ \end{align*}

[_separable]

3.147

3606

\begin{align*} y^{\prime }&=y^{3} \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.617

3607

\begin{align*} y^{\prime }&=\frac {2 \sqrt {y-1}}{3} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_quadrature]

0.546

3608

\begin{align*} m v^{\prime }&=m g -k v^{2} \\ v \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.316

3609

\begin{align*} y^{\prime }+y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_linear, ‘class A‘]]

0.086

3610

\begin{align*} y^{\prime }+\frac {2 y}{x}&=5 x^{2} \\ \end{align*}

[_linear]

0.065

3611

\begin{align*} x^{2} y^{\prime }-4 y x&=x^{7} \sin \left (x \right ) \\ \end{align*}

[_linear]

0.083

3612

\begin{align*} y^{\prime }+2 y x&=2 x^{3} \\ \end{align*}

[_linear]

0.072

3613

\begin{align*} y^{\prime }+\frac {2 x y}{-x^{2}+1}&=4 x \\ \end{align*}

[_linear]

0.075

3614

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {4}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

0.085

3615

\begin{align*} 2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right )&=4 \cos \left (x \right )^{4} \\ \end{align*}

[_linear]

0.089

3616

\begin{align*} y^{\prime }+\frac {y}{x \ln \left (x \right )}&=9 x^{2} \\ \end{align*}

[_linear]

0.076

3617

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=8 \sin \left (x \right )^{3} \\ \end{align*}

[_linear]

0.092

3618

\begin{align*} t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\ \end{align*}

[_linear]

0.082

3619

\begin{align*} y^{\prime }&=\sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \\ \end{align*}

[_linear]

1.774

3620

\begin{align*} 1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

0.075

3621

\begin{align*} y^{\prime }-\frac {y}{x}&=2 \ln \left (x \right ) x^{2} \\ \end{align*}

[_linear]

0.073

3622

\begin{align*} y^{\prime }+\alpha y&={\mathrm e}^{\beta x} \\ \end{align*}

[[_linear, ‘class A‘]]

0.089

3623

\begin{align*} y^{\prime }+\frac {m y}{x}&=\ln \left (x \right ) \\ \end{align*}

[_linear]

0.109

3624

\begin{align*} y^{\prime }+\frac {2 y}{x}&=4 x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_linear]

0.122

3625

\begin{align*} \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\sin \left (2 x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[_linear]

2.485

3626

\begin{align*} x^{\prime }+\frac {2 x}{-t +4}&=5 \\ x \left (0\right ) &= 4 \\ \end{align*}

[_linear]

1.798

3627

\begin{align*} y-{\mathrm e}^{x}+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.907

3628

\begin{align*} y^{\prime }-2 y&=\left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_linear, ‘class A‘]]

0.394

3629

\begin{align*} y^{\prime }-2 y&=\left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.350

3630

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=9 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.470

3631

\begin{align*} y^{\prime }+\frac {y}{x}&=\cos \left (x \right ) \\ \end{align*}

[_linear]

1.315

3632

\begin{align*} y^{\prime }+y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_linear, ‘class A‘]]

0.773

3633

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 \cos \left (x \right ) \\ \end{align*}

[_linear]

1.566

3634

\begin{align*} -y+y^{\prime } x&=\ln \left (x \right ) x^{2} \\ \end{align*}

[_linear]

1.382

3635

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.288

3636

\begin{align*} \left (3 x -y\right ) y^{\prime }&=3 y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.508

3637

\begin{align*} y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.228

3638

\begin{align*} \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )&=x \cos \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.918

3639

\begin{align*} y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13.434

3640

\begin{align*} -y+y^{\prime } x&=\sqrt {9 x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.567

3641

\begin{align*} y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

0.099

3642

\begin{align*} y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.977

3643

\begin{align*} y^{\prime }&=\frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.678

3644

\begin{align*} 2 x y^{\prime } y-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘]]

2.434

3645

\begin{align*} x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.181

3646

\begin{align*} y^{\prime } y&=\sqrt {y^{2}+x^{2}}-x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.652

3647

\begin{align*} 2 x \left (2 x +y\right ) y^{\prime }&=y \left (4 x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.840

3648

\begin{align*} y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x +y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.093

3649

\begin{align*} y^{\prime }&=\frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

9.539

3650

\begin{align*} y^{\prime }&=\frac {-2 x +4 y}{x +y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.323

3651

\begin{align*} y^{\prime }&=\frac {2 x -y}{x +4 y} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.577

3652

\begin{align*} y^{\prime }&=\frac {y-\sqrt {y^{2}+x^{2}}}{x} \\ y \left (3\right ) &= 4 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.479

3653

\begin{align*} -y+y^{\prime } x&=\sqrt {4 x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15.155

3654

\begin{align*} y^{\prime }&=\frac {x +a y}{a x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.136

3655

\begin{align*} y^{\prime }&=\frac {x +\frac {y}{2}}{\frac {x}{2}-y} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.549

3656

\begin{align*} y^{\prime }-\frac {y}{x}&=\frac {4 x^{2} \cos \left (x \right )}{y} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Bernoulli]

3.526

3657

\begin{align*} y^{\prime }+\frac {\tan \left (x \right ) y}{2}&=2 y^{3} \sin \left (x \right ) \\ \end{align*}

[_Bernoulli]

9.891

3658

\begin{align*} y^{\prime }-\frac {3 y}{2 x}&=6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \\ \end{align*}

[_Bernoulli]

2.608

3659

\begin{align*} y^{\prime }+\frac {2 y}{x}&=6 \sqrt {x^{2}+1}\, \sqrt {y} \\ \end{align*}

[_Bernoulli]

2.645

3660

\begin{align*} y^{\prime }+\frac {2 y}{x}&=6 x^{4} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.513

3661

\begin{align*} 2 x \left (y^{\prime }+x^{2} y^{3}\right )+y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.182

3662

\begin{align*} \left (x -a \right ) \left (-b +x \right ) \left (y^{\prime }-\sqrt {y}\right )&=2 \left (b -a \right ) y \\ \end{align*}

[_rational, _Bernoulli]

3.529

3663

\begin{align*} y^{\prime }+\frac {6 y}{x}&=\frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \\ \end{align*}

[_Bernoulli]

3.575

3664

\begin{align*} y^{\prime }+4 y x&=4 x^{3} \sqrt {y} \\ \end{align*}

[_Bernoulli]

1.832

3665

\begin{align*} y^{\prime }-\frac {y}{2 x \ln \left (x \right )}&=2 x y^{3} \\ \end{align*}

[_Bernoulli]

2.179

3666

\begin{align*} y^{\prime }-\frac {y}{\left (-1+\pi \right ) x}&=\frac {3 x y^{\pi }}{1-\pi } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.460

3667

\begin{align*} 2 y^{\prime }+\cot \left (x \right ) y&=\frac {8 \cos \left (x \right )^{3}}{y} \\ \end{align*}

[_Bernoulli]

31.095

3668

\begin{align*} \left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right )&=y^{\sqrt {3}} \sec \left (x \right ) \\ \end{align*}

[_separable]

6.295

3669

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_rational, _Bernoulli]

1.752

3670

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=y^{3} \sin \left (x \right )^{3} \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_Bernoulli]

3.581

3671

\begin{align*} y^{\prime }&=\left (9 x -y\right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

2.495

3672

\begin{align*} y^{\prime }&=\left (4 x +y+2\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.997

3673

\begin{align*} y^{\prime }&=\sin \left (3 x -3 y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.764

3674

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y x \right )-1\right )}{x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.072

3675

\begin{align*} y^{\prime }&=2 x \left (x +y\right )^{2}-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

2.375

3676

\begin{align*} y^{\prime }&=\frac {x +2 y-1}{2 x -y+3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.253

3677

\begin{align*} y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2}&=r \left (x \right ) \\ \end{align*}

[_Riccati]

8.796

3678

\begin{align*} y^{\prime }+\frac {2 y}{x}-y^{2}&=-\frac {2}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.939

3679

\begin{align*} y^{\prime }+\frac {7 y}{x}-3 y^{2}&=\frac {3}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.066

3680

\begin{align*} \frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right )&=q \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.895

3681

\begin{align*} \frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x}&=\frac {1-2 \ln \left (x \right )}{x} \\ y \left (1\right ) &= {\mathrm e} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.280

3682

\begin{align*} \sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}}&=\frac {1}{2 \sqrt {x +1}} \\ \end{align*}

[_separable]

26.218

3683

\begin{align*} y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

1.509

3684

\begin{align*} \cos \left (y x \right )-x y \sin \left (y x \right )-x^{2} \sin \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact]

0.157

3685

\begin{align*} y+3 x^{2}+y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.108

3686

\begin{align*} 2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.155

3687

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\ \end{align*}

[_separable]

0.095

3688

\begin{align*} y^{2}-2 x +2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

0.233

3689

\begin{align*} 4 \,{\mathrm e}^{2 x}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

0.155

3690

\begin{align*} \frac {1}{x}-\frac {y}{y^{2}+x^{2}}+\frac {x y^{\prime }}{y^{2}+x^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

0.167

3691

\begin{align*} y \cos \left (y x \right )-\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.131

3692

\begin{align*} 2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\ \end{align*}

[_exact, _Bernoulli]

0.263

3693

\begin{align*} y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

0.142

3694

\begin{align*} \sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

0.150

3695

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.153

3696

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.155

3697

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.026

3698

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.642

3699

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.040

3700

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.043