| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 9201 |
\begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| 9202 |
\begin{align*}
\left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9203 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9204 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-6 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9205 |
\begin{align*}
x_{1}^{\prime }&=7 x_{1}-2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=4 x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{1}+x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9206 |
\begin{align*}
2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.465 |
|
| 9207 |
\begin{align*}
-y+y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9208 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.465 |
|
| 9209 |
\begin{align*}
y^{\prime \prime } x +\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.465 |
|
| 9210 |
\begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime }&=\left (25-6 x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.465 |
|
| 9211 |
\begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9212 |
\begin{align*}
y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9213 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.465 |
|
| 9214 |
\begin{align*}
2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9215 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9216 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9217 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9218 | \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.465 |
|
| 9219 |
\begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9220 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| 9221 |
\begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=x_{1}+5 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+6 x_{2}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9222 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9223 |
\begin{align*}
y^{\prime \prime }-2 i y^{\prime }-y&={\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9224 |
\begin{align*}
y x -y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9225 |
\begin{align*}
x^{\prime }&=-2 x+3 y \\
y^{\prime }&=-2 x+5 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9226 |
\begin{align*}
x^{\prime }&=\sec \left (t \right )^{2} \\
x \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9227 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{{3}/{2}} {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9228 |
\begin{align*}
x^{\prime }&=-2 x-2 y \\
y^{\prime }&=-2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9229 |
\begin{align*}
y^{\prime \prime }+9 y&=10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9230 |
\begin{align*}
\left (3 x +2\right ) y^{\prime \prime }+3 y^{\prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9231 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+y&=a \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9232 |
\begin{align*}
y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9233 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9234 |
\begin{align*}
y^{\prime \prime }+\frac {t y^{\prime }}{-t^{2}+1}+\frac {y}{t +1}&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| 9235 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9236 |
\begin{align*}
x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9237 | \begin{align*}
y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(t=0\). | ✓ | ✓ | ✓ | ✗ | 0.467 |
|
| 9238 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )+2 x^{2}+5 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9239 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-10 x_{2} \\
x_{2}^{\prime }&=5 x_{1}+11 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9240 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9241 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9242 |
\begin{align*}
2 \left (x +5\right ) y-x \left (7+2 x \right ) y^{\prime }+2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.467 |
|
| 9243 |
\begin{align*}
2 y&={y^{\prime }}^{2}+4 y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.467 |
|
| 9244 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.467 |
|
| 9245 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&={\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9246 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9247 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9248 |
\begin{align*}
\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.467 |
|
| 9249 |
\begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9250 |
\begin{align*}
x^{\prime }&=2 x+3 y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9251 |
\begin{align*}
y^{\prime \prime }+4 y&=t -\frac {1}{20} t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9252 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \\
y \left (\frac {2}{\pi }\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9253 |
\begin{align*}
y^{\prime \prime }-y&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9254 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9255 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| 9256 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\
\end{align*} Series expansion around \(x=4\). | ✓ | ✓ | ✓ | ✓ | 0.468 |
|
| 9257 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9258 |
\begin{align*}
\left (7+x \right ) y^{\prime \prime }+\left (8+2 x \right ) y^{\prime }+\left (x +5\right ) y&=0 \\
y \left (-4\right ) &= 1 \\
y^{\prime }\left (-4\right ) &= 2 \\
\end{align*} Series expansion around \(x=-4\). |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9259 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9260 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9261 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9262 |
\begin{align*}
y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9263 |
\begin{align*}
\sqrt {a^{2}+x^{2}}\, \left (b {y^{\prime }}^{2}+y y^{\prime \prime }\right )&=y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.468 |
|
| 9264 |
\begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.468 |
|
| 9265 |
\begin{align*}
\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.468 |
|
| 9266 |
\begin{align*}
\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.468 |
|
| 9267 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9268 |
\begin{align*}
4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9269 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9270 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=2 x^{3}+5 x^{2}-7 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9271 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9272 |
\begin{align*}
x^{\prime }&=y+z \\
y^{\prime }&=x+z \\
z^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9273 |
\begin{align*}
x^{\prime }&=4 x+3 y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| 9274 |
\begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9275 | \begin{align*}
-3 y+3 y^{\prime } x +\left (2 x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.469 |
|
| 9276 |
\begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.469 |
|
| 9277 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+x&=\frac {{\mathrm e}^{t}}{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9278 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9279 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9280 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9281 |
\begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| 9282 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9283 |
\begin{align*}
\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (-x +2\right ) y&=0 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| 9284 |
\begin{align*}
x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (-3 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9285 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9286 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=9 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9287 |
\begin{align*}
y^{\prime \prime }+y&=4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9288 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2}-2 x_{3} \\
x_{2}^{\prime }&=x_{1}+6 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}+6 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9289 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9290 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| 9291 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9292 |
\begin{align*}
-8 y+2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9293 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9294 | \begin{align*}
x^{\prime }&=a y \\
y^{\prime }&=b x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.470 |
|
| 9295 |
\begin{align*}
4 y+y^{\prime \prime }&=x^{2}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9296 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9297 |
\begin{align*}
x^{\prime }-3 x+2 y&=0 \\
y^{\prime }-x+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9298 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9299 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| 9300 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.470 |
|