| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2101 |
\begin{align*}
y^{\prime \prime }&=-\frac {y}{4 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2102 |
\begin{align*}
y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2103 |
\begin{align*}
y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2104 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2105 |
\begin{align*}
y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y&={\mathrm e}^{3 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2106 |
\begin{align*}
4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2107 |
\begin{align*}
\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2108 |
\begin{align*}
2 x^{\prime }+6 x&=t \,{\mathrm e}^{-3 t} \\
x \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2109 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2110 |
\begin{align*}
y^{\prime \prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2111 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2112 |
\begin{align*}
b^{\left (7\right )}&=3 p \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2113 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2114 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2115 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.128 |
|
| 2116 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime }&={\mathrm e}^{x}+2 x^{2}-5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2117 |
\begin{align*}
2 y^{\prime } x&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.129 |
|
| 2118 | \begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime }&={\mathrm e}^{3 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.129 |
|
| 2119 |
\begin{align*}
x +\left (2-x +2 y\right ) y^{\prime }&=x y \left (y^{\prime }-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2120 |
\begin{align*}
y^{\left (5\right )}+4 y^{\prime \prime \prime }&=7+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2121 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2122 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=10+42 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2123 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2124 |
\begin{align*}
a y+12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.129 |
|
| 2125 |
\begin{align*}
y y^{\prime \prime }-a \,x^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.129 |
|
| 2126 |
\begin{align*}
x^{\prime \prime }+t x^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.129 |
|
| 2127 |
\begin{align*}
x^{\prime \prime }-x^{\prime }-6 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2128 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2129 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2130 |
\begin{align*}
x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2131 |
\begin{align*}
y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2132 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2133 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2134 |
\begin{align*}
{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2135 |
\begin{align*}
i^{\prime \prime \prime \prime }+9 i^{\prime \prime }&=20 \,{\mathrm e}^{-t} \\
i \left (0\right ) &= 0 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2136 |
\begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2137 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=3 \,{\mathrm e}^{-2 t}-6 \,{\mathrm e}^{-5 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| 2138 | \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
y \left (1\right ) &= 6 \\
y^{\prime }\left (1\right ) &= 14 \\
y^{\prime \prime }\left (1\right ) &= 22 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.130 |
|
| 2139 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=t +{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2140 |
\begin{align*}
y^{\prime \prime }-y&=12 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2141 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.130 |
|
| 2142 |
\begin{align*}
\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.130 |
|
| 2143 |
\begin{align*}
2 t +2 y+\left (2 t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2144 |
\begin{align*}
y^{\prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2145 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2146 |
\begin{align*}
y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.130 |
|
| 2147 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2148 |
\begin{align*}
y^{\prime \prime \prime }&=3 \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| 2149 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2150 |
\begin{align*}
4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -3 \\
y^{\prime \prime }\left (0\right ) &= -{\frac {7}{2}} \\
y^{\prime \prime \prime }\left (0\right ) &= {\frac {31}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2151 |
\begin{align*}
y \cos \left (y x \right )-\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.131 |
|
| 2152 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2153 |
\begin{align*}
2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x}&=\sqrt {x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.131 |
|
| 2154 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2155 |
\begin{align*}
y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= -28 \\
y^{\prime \prime }\left (0\right ) &= -102 \\
y^{\prime \prime \prime }\left (0\right ) &= 622 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2156 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2157 | \begin{align*}
y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.131 |
|
| 2158 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2159 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2160 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2161 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2162 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y&=2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2163 |
\begin{align*}
y^{\prime \prime }-y&=2 t^{2}+2 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2164 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| 2165 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-12 y^{\prime }&=x -2 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2166 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=x +{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2167 |
\begin{align*}
x^{\prime \prime }+4 x&=\delta \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2168 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&={\mathrm e}^{2 x} \left (10+3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2169 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2170 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=10 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2171 |
\begin{align*}
y^{\prime \prime \prime \prime }+16 y&=64 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2172 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2173 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=t^{3} {\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2174 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.132 |
|
| 2175 |
\begin{align*}
4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y&=3 x^{3}-8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2176 | \begin{align*}
3 y^{\prime \prime }+5 y^{\prime }-2 y&=7 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.132 |
|
| 2177 |
\begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2178 |
\begin{align*}
-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2179 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2180 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2181 |
\begin{align*}
u^{\prime }&=u^{3} \\
u \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2182 |
\begin{align*}
y^{\prime }&=-\frac {y}{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| 2183 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 5 \\
y^{\prime \prime }\left (1\right ) &= -11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2184 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime }&=x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= -1 \\
y^{\prime \prime \prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2185 |
\begin{align*}
2 y+y^{\prime }&=2 \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2186 |
\begin{align*}
\left (A x y+B \,x^{2}+k x \right ) y^{\prime }&=A y^{2}+B y x +\left (A b +k \right ) y+B b x +b k \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2187 |
\begin{align*}
y^{\left (5\right )}-n^{2} y^{\prime \prime \prime }&={\mathrm e}^{a x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2188 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2189 |
\begin{align*}
y^{\prime }-z&=0 \\
y-z^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2190 |
\begin{align*}
y^{\prime }+a y&={\mathrm e}^{-a t} \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| 2191 |
\begin{align*}
2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.134 |
|
| 2192 |
\begin{align*}
2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2193 |
\begin{align*}
t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2194 |
\begin{align*}
x^{\prime \prime }+\left (t +1\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2195 | \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.134 |
|
| 2196 |
\begin{align*}
y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2197 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2198 |
\begin{align*}
y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.134 |
|
| 2199 |
\begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\cos \left (t \right ) \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| 2200 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=15 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.135 |
|