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Internal problem ID [12555]
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Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t)− 5y(t)
y′(t) = x(t)− y(t)

1.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 −5
1 −1

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 sin(2t)
2 + cos (2t) −5 sin(2t)

2
sin(2t)

2 cos (2t)− sin(2t)
2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 sin(2t)
2 + cos (2t) −5 sin(2t)

2
sin(2t)

2 cos (2t)− sin(2t)
2

 c1

c2


=


(

sin(2t)
2 + cos (2t)

)
c1 − 5 sin(2t)c2

2

sin(2t)c1
2 +

(
cos (2t)− sin(2t)

2

)
c2


=

 (c1−5c2) sin(2t)
2 + c1 cos (2t)

(−c2+c1) sin(2t)
2 + c2 cos (2t)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 −5
1 −1

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −5
1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −5
1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 + 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2i
λ2 = −2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2i 1 complex eigenvalue

−2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −5
1 −1

− (−2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1 + 2i −5

1 −1 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 + 2i −5 0

1 −1 + 2i 0



R2 = R2 +
(
−1
5 + 2i

5

)
R1 =⇒

1 + 2i −5 0
0 0 0


Therefore the system in Echelon form is 1 + 2i −5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1− 2i) t}

Hence the solution is  (1− 2 I) t
t

 =

 (1− 2i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1− 2 I) t

t

 = t

 1− 2i
1


Let t = 1 the eigenvector becomes (1− 2 I) t

t

 =

 1− 2i
1


Considering the eigenvalue λ2 = 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −5
1 −1

− (2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1− 2i −5

1 −1− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1− 2i −5 0

1 −1− 2i 0



R2 = R2 +
(
−1
5 − 2i

5

)
R1 =⇒

1− 2i −5 0
0 0 0


Therefore the system in Echelon form is 1− 2i −5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1 + 2i) t}

Hence the solution is  (1 + 2 I) t
t

 =

 (1 + 2i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1 + 2 I) t

t

 = t

 1 + 2i
1


Let t = 1 the eigenvector becomes (1 + 2 I) t

t

 =

 1 + 2i
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2i 1 1 No

 1 + 2i
1



−2i 1 1 No

 1− 2i
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

7



Which is written as x(t)
y(t)

 = c1

 (1 + 2i) e2it

e2it

+ c2

 (1− 2i) e−2it

e−2it


Which becomes  x(t)

y(t)

 =

 (1 + 2i) c1e2it + (1− 2i) c2e−2it

c1e2it + c2e−2it


The following is the phase plot of the system.

Figure 1: Phase plot

1.1.3 Maple step by step solution

Let’s solve
[x′(t) = x(t)− 5y(t) , y′(t) = x(t)− y(t)]

• Define vector
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→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 −5
1 −1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 −5
1 −1

 · →x(t)

• Define the coefficient matrix

A =

 1 −5
1 −1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2 I,

 1− 2 I
1

 ,

2 I,
 1 + 2 I

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,

 1− 2 I
1


• Solution from eigenpair

e−2 It ·

 1− 2 I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (2t)− I sin (2t)) ·

 1− 2 I
1


• Simplify expression
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 (1− 2 I) (cos (2t)− I sin (2t))
cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system→

x1(t) =

 cos (2t)− 2 sin (2t)
cos (2t)

 ,
→
x2(t) =

 −2 cos (2t)− sin (2t)
− sin (2t)


• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t)

• Substitute solutions into the general solution

→
x =

 c2(−2 cos (2t)− sin (2t)) + c1(cos (2t)− 2 sin (2t))
c1 cos (2t)− c2 sin (2t)


• Substitute in vector of dependent variables x(t)

y(t)

 =

 (c1 − 2c2) cos (2t)− 2 sin (2t)
(
c2
2 + c1

)
c1 cos (2t)− c2 sin (2t)


• Solution to the system of ODEs{

x(t) = (c1 − 2c2) cos (2t)− 2 sin (2t)
(
c2
2 + c1

)
, y(t) = c1 cos (2t)− c2 sin (2t)

}
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 50� �
dsolve([diff(x(t),t)=x(t)-5*y(t),diff(y(t),t)=x(t)-y(t)],singsol=all)� �

x(t) = c1 sin (2t) + c2 cos (2t)

y(t) = −2c1 cos (2t)
5 + 2c2 sin (2t)

5 + c1 sin (2t)
5 + c2 cos (2t)

5

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 48� �
DSolve[{x'[t]==x[t]-5*y[t],y'[t]==x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1 cos(2t) + (c1 − 5c2) sin(t) cos(t)
y(t) → c2 cos(2t) + (c1 − c2) sin(t) cos(t)
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Internal problem ID [12556]
Internal file name [OUTPUT/11208_Wednesday_October_18_2023_10_01_15_PM_22296256/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (ii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t) + y(t)
y′(t) = x(t)− 2y(t)

1.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 1
1 −2

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(
3
√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
(
−3

√
13+13

)
e−

(
1+

√
13

)
t

2

26 −

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13

13

−

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13

13

(
−3

√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
e−

(
1+

√
13

)
t

2
(
3
√
13+13

)
26
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
3
√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
(
−3

√
13+13

)
e−

(
1+

√
13

)
t

2

26 −

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13

13

−

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13

13

(
−3

√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
e−

(
1+

√
13

)
t

2
(
3
√
13+13

)
26


 c1

c2



=



(
3
√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
(
−3

√
13+13

)
e−

(
1+

√
13

)
t

2

26

 c1 −

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13 c2

13

−

−e

(
−1+

√
13

)
t

2 +e−
(
1+

√
13

)
t

2

√
13 c1

13 +

(
−3

√
13+13

)
e

(
−1+

√
13

)
t

2

26 +
e−

(
1+

√
13

)
t

2
(
3
√
13+13

)
26

 c2



=


(
(3c1+2c2)

√
13+13c1

)
e

(
−1+

√
13

)
t

2

26 −
3 e−

(
1+

√
13

)
t

2
((

c1+ 2c2
3

)√
13− 13c1

3

)
26(

(2c1−3c2)
√
13+13c2

)
e

(
−1+

√
13

)
t

2

26 −
e−

(
1+

√
13

)
t

2
((

c1− 3c2
2

)√
13− 13c2

2

)
13


Since no forcing function is given, then the final solution is ~xh(t) above.

1.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 1
1 −2

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det

 1 1
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 1
1 −2− λ

 = 0

Which gives the characteristic equation

λ2 + λ− 3 = 0

The roots of the above are the eigenvalues.

λ1 = −1
2 +

√
13
2

λ2 = −1
2 −

√
13
2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1
2 −

√
13
2 1 real eigenvalue

−1
2 +

√
13
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1
2 −

√
13
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 −2

−

(
−1
2 −

√
13
2

) 1 0
0 1

 v1

v2

 =

 0
0


 3

2 +
√
13
2 1

1 −3
2 +

√
13
2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3

2 +
√
13
2 1 0

1 −3
2 +

√
13
2 0
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R2 = R2 −
R1

3
2 +

√
13
2

=⇒

3
2 +

√
13
2 1 0

0 0 0


Therefore the system in Echelon form is 3

2 +
√
13
2 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 2t

3+
√
13

}
Hence the solution is  − 2t

3+
√
13

t

 =

 − 2t
3+

√
13

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − 2t

3+
√
13

t

 = t

 − 2
3+

√
13

1


Let t = 1 the eigenvector becomes − 2t

3+
√
13

t

 =

 − 2
3+

√
13

1


Which is normalized to  − 2t

3+
√
13

t

 =

 − 2
3+

√
13

1


Considering the eigenvalue λ2 = −1

2 +
√
13
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 −2

−

(
−1
2 +

√
13
2

) 1 0
0 1

 v1

v2

 =

 0
0


 3

2 −
√
13
2 1

1 −3
2 −

√
13
2

 v1

v2

 =

 0
0



14



Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3

2 −
√
13
2 1 0

1 −3
2 −

√
13
2 0



R2 = R2 −
R1

3
2 −

√
13
2

=⇒

3
2 −

√
13
2 1 0

0 0 0


Therefore the system in Echelon form is 3

2 −
√
13
2 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

−3+
√
13

}
Hence the solution is  2t

−3+
√
13

t

 =

 2t
−3+

√
13

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

−3+
√
13

t

 = t

 2
−3+

√
13

1


Let t = 1 the eigenvector becomes 2t

−3+
√
13

t

 =

 2
−3+

√
13

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1
2 +

√
13
2 1 1 No

 1
− 3

2+
√
13
2

1



−1
2 −

√
13
2 1 1 No

 1
− 3

2−
√
13
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue −1

2 +
√
13
2 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(
− 1

2+
√
13
2

)
t

=

 1
− 3

2+
√
13
2

1

 e

(
− 1

2+
√
13
2

)
t

Since eigenvalue −1
2 −

√
13
2 is real and distinct then the corresponding eigenvector

solution is

~x2(t) = ~v2e

(
− 1

2−
√
13
2

)
t

=

 1
− 3

2−
√
13
2

1

 e

(
− 1

2−
√
13
2

)
t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x(t)
y(t)

 = c1

 e

(
− 1

2+
√
13
2

)
t

− 3
2+

√
13
2

e
(
− 1

2+
√
13
2

)
t

+ c2

 e

(
− 1

2−
√
13
2

)
t

− 3
2−

√
13
2

e
(
− 1

2−
√
13
2

)
t
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Which becomes

 x(t)
y(t)

 =

 c1
(
3+

√
13

)
e

(
−1+

√
13

)
t

2

2 −
e−

(
1+

√
13

)
t

2 c2
(
−3+

√
13

)
2

c1e
(
−1+

√
13

)
t

2 + c2e−
(
1+

√
13

)
t

2


The following is the phase plot of the system.

Figure 2: Phase plot

1.2.3 Maple step by step solution

Let’s solve
[x′(t) = x(t) + y(t) , y′(t) = x(t)− 2y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

17



→
x
′
(t) =

 1 1
1 −2

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 1
1 −2

 · →x(t)

• Define the coefficient matrix

A =

 1 1
1 −2


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1

2 −
√
13
2 ,

 1
− 3

2−
√
13
2

1

 ,

−1
2 +

√
13
2 ,

 1
− 3

2+
√
13
2

1


• Consider eigenpair−1

2 −
√
13
2 ,

 1
− 3

2−
√
13
2

1


• Solution to homogeneous system from eigenpair

→
x1 = e

(
− 1

2−
√

13
2

)
t ·

 1
− 3

2−
√
13
2

1


• Consider eigenpair−1

2 +
√
13
2 ,

 1
− 3

2+
√
13
2

1


• Solution to homogeneous system from eigenpair

→
x2 = e

(
− 1

2+
√
13
2

)
t ·

 1
− 3

2+
√
13
2

1
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• General solution to the system of ODEs
→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1e

(
− 1

2−
√
13
2

)
t ·

 1
− 3

2−
√

13
2

1

+ c2e
(
− 1

2+
√
13
2

)
t ·

 1
− 3

2+
√
13
2

1


• Substitute in vector of dependent variables x(t)

y(t)

 =

 c2
(
3+

√
13

)
e

(
−1+

√
13

)
t

2

2 −
e−

(
1+

√
13

)
t

2 c1
(
−3+

√
13

)
2

c1e−
(
1+

√
13

)
t

2 + c2e
(
−1+

√
13

)
t

2


• Solution to the system of ODEsx(t) =

c2
(
3+

√
13

)
e

(
−1+

√
13

)
t

2

2 −
e−

(
1+

√
13

)
t

2 c1
(
−3+

√
13

)
2 , y(t) = c1e−

(
1+

√
13

)
t

2 + c2e
(
−1+

√
13

)
t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 86� �
dsolve([diff(x(t),t)=x(t)+y(t),diff(y(t),t)=x(t)-2*y(t)],singsol=all)� �

x(t) = c1e
(
−1+

√
13

)
t

2 + c2e−
(
1+

√
13

)
t

2

y(t) = c1e
(
−1+

√
13

)
t

2
√
13

2 − c2e−
(
1+

√
13

)
t

2
√
13

2 − 3c1e
(
−1+

√
13

)
t

2

2 − 3c2e−
(
1+

√
13

)
t

2

2

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 149� �
DSolve[{x'[t]==x[t]+y[t],y'[t]==x[t]-2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �
x(t) → 1

26e
− 1

2

(
1+

√
13

)
t
(
c1
((

13 + 3
√
13
)
e
√
13t + 13− 3

√
13
)
+ 2

√
13c2

(
e
√
13t − 1

))
y(t) → 1

26e
− 1

2

(
1+

√
13

)
t
(
2
√
13c1

(
e
√
13t − 1

)
− c2

((
3
√
13− 13

)
e
√
13t − 13− 3

√
13
))
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1.3 problem 2.1 (iii)
1.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 20
1.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 21
1.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 26

Internal problem ID [12557]
Internal file name [OUTPUT/11209_Wednesday_October_18_2023_10_01_15_PM_78487314/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (iii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = −4x(t) + 2y(t)
y′(t) = 3x(t)− 2y(t)

1.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −4 2
3 −2

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(√

7+7
)
e−

(
3+

√
7
)
t

14 −
e
(
−3+

√
7
)
t
(√

7−7
)

14 −

(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7

7

−
3
(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7

14

(
−
√
7+7

)
e−

(
3+

√
7
)
t

14 +
e
(
−3+

√
7
)
t
(√

7+7
)

14
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(√

7+7
)
e−

(
3+

√
7
)
t

14 −
e
(
−3+

√
7
)
t
(√

7−7
)

14 −

(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7

7

−
3
(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7

14

(
−
√
7+7

)
e−

(
3+

√
7
)
t

14 +
e
(
−3+

√
7
)
t
(√

7+7
)

14


 c1

c2



=



((√
7+7

)
e−

(
3+

√
7
)
t

14 −
e
(
−3+

√
7
)
t
(√

7−7
)

14

)
c1 −

(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7 c2

7

−
3
(
−e

(
−3+

√
7
)
t+e−

(
3+

√
7
)
t
)√

7 c1

14 +
((

−
√
7+7

)
e−

(
3+

√
7
)
t

14 +
e
(
−3+

√
7
)
t
(√

7+7
)

14

)
c2



=


(
(c1−2c2)

√
7+7c1

)
e−

(
3+

√
7
)
t

14 −
e
(
−3+

√
7
)
t
(
(c1−2c2)

√
7−7c1

)
14(

(−3c1−c2)
√
7+7c2

)
e−

(
3+

√
7
)
t

14 +
3 e

(
−3+

√
7
)
t
((

c1+ c2
3
)√

7+ 7c2
3

)
14


Since no forcing function is given, then the final solution is ~xh(t) above.

1.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −4 2
3 −2

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −4 2
3 −2

− λ

 1 0
0 1

 = 0
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Therefore

det

 −4− λ 2
3 −2− λ

 = 0

Which gives the characteristic equation

λ2 + 6λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = −3 +
√
7

λ2 = −3−
√
7

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3−
√
7 1 real eigenvalue

−3 +
√
7 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3−
√
7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −4 2
3 −2

−
(
−3−

√
7
) 1 0

0 1

 v1

v2

 =

 0
0


 −1 +

√
7 2

3 1 +
√
7

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 +

√
7 2 0

3 1 +
√
7 0



R2 = R2 −
3R1

−1 +
√
7
=⇒

−1 +
√
7 2 0

0 0 0
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Therefore the system in Echelon form is −1 +
√
7 2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 2t

−1+
√
7

}
Hence the solution is  − 2t

−1+
√
7

t

 =

 − 2t
−1+

√
7

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − 2t

−1+
√
7

t

 = t

 − 2
−1+

√
7

1


Let t = 1 the eigenvector becomes − 2t

−1+
√
7

t

 =

 − 2
−1+

√
7

1


Which is normalized to  − 2t

−1+
√
7

t

 =

 − 2
−1+

√
7

1


Considering the eigenvalue λ2 = −3 +

√
7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −4 2
3 −2

−
(
−3 +

√
7
) 1 0

0 1

 v1

v2

 =

 0
0


 −1−

√
7 2

3 1−
√
7

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1−

√
7 2 0

3 1−
√
7 0
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R2 = R2 −
3R1

−1−
√
7
=⇒

−1−
√
7 2 0

0 0 0


Therefore the system in Echelon form is −1−

√
7 2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

1+
√
7

}
Hence the solution is  2t

1+
√
7

t

 =

 2t
1+

√
7

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

1+
√
7

t

 = t

 2
1+

√
7

1


Let t = 1 the eigenvector becomes 2t

1+
√
7

t

 =

 2
1+

√
7

1


Which is normalized to  2t

1+
√
7

t

 =

 2
1+

√
7

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 +
√
7 1 1 No

 2
1+

√
7

1



−3−
√
7 1 1 No

 2
1−

√
7

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue −3 +

√
7 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(
−3+

√
7
)
t

=

 2
1+

√
7

1

 e

(
−3+

√
7
)
t

Since eigenvalue −3−
√
7 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e

(
−3−

√
7
)
t

=

 2
1−

√
7

1

 e

(
−3−

√
7
)
t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x(t)
y(t)

 = c1

 2 e
(
−3+

√
7
)
t

1+
√
7

e
(
−3+

√
7
)
t

+ c2

 2 e
(
−3−

√
7
)
t

1−
√
7

e
(
−3−

√
7
)
t


Which becomes x(t)

y(t)

 =

 −
c2
(
1+

√
7
)
e−

(
3+

√
7
)
t

3 +
e
(
−3+

√
7
)
t
c1
(
−1+

√
7
)

3

c1e
(
−3+

√
7
)
t + c2e−

(
3+

√
7
)
t
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The following is the phase plot of the system.

Figure 3: Phase plot

1.3.3 Maple step by step solution

Let’s solve
[x′(t) = −4x(t) + 2y(t) , y′(t) = 3x(t)− 2y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 −4 2
3 −2

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 −4 2
3 −2

 · →x(t)
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• Define the coefficient matrix

A =

 −4 2
3 −2


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−3−

√
7,

 2
1−

√
7

1

 ,

−3 +
√
7,

 2
1+

√
7

1


• Consider eigenpair−3−

√
7,

 2
1−

√
7

1


• Solution to homogeneous system from eigenpair

→
x1 = e

(
−3−

√
7
)
t ·

 2
1−

√
7

1


• Consider eigenpair−3 +

√
7,

 2
1+

√
7

1


• Solution to homogeneous system from eigenpair

→
x2 = e

(
−3+

√
7
)
t ·

 2
1+

√
7

1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1e

(
−3−

√
7
)
t ·

 2
1−

√
7

1

+ c2e
(
−3+

√
7
)
t ·

 2
1+

√
7

1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 −
c1
(
1+

√
7
)
e−

(
3+

√
7
)
t

3 +
c2e

(
−3+

√
7
)
t
(
−1+

√
7
)

3

c1e−
(
3+

√
7
)
t + c2e

(
−3+

√
7
)
t


• Solution to the system of ODEs{

x(t) = −
c1
(
1+

√
7
)
e−

(
3+

√
7
)
t

3 +
c2e

(
−3+

√
7
)
t
(
−1+

√
7
)

3 , y(t) = c1e−
(
3+

√
7
)
t + c2e

(
−3+

√
7
)
t

}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 83� �
dsolve([diff(x(t),t)=-4*x(t)+2*y(t),diff(y(t),t)=3*x(t)-2*y(t)],singsol=all)� �

x(t) = c1e
(
−3+

√
7
)
t + c2e−

(√
7+3

)
t

y(t) = c1e
(
−3+

√
7
)
t√7

2 − c2e−
(√

7+3
)
t√7

2 + c1e
(
−3+

√
7
)
t

2 + c2e−
(√

7+3
)
t

2

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 143� �
DSolve[{x'[t]==-4*x[t]+2*y[t],y'[t]==3*x[t]-2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → 1
14e

−
((

3+
√
7
)
t
)(

c1
(
−
(√

7− 7
)
e2

√
7t + 7 +

√
7
)
+ 2

√
7c2
(
e2

√
7t − 1

))
y(t) → 1

14e
−
((

3+
√
7
)
t
)(

3
√
7c1
(
e2

√
7t − 1

)
+ c2

((
7 +

√
7
)
e2

√
7t + 7−

√
7
))
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1.4 problem 2.1 (iv)
1.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 29
1.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 30
1.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 35

Internal problem ID [12558]
Internal file name [OUTPUT/11210_Wednesday_October_18_2023_10_01_16_PM_79597876/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (iv).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t) + 2y(t)
y′(t) = 2x(t) + 2y(t)

1.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 2
2 2

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(√

17+17
)
e−

(
−3+

√
17

)
t

2

34 −
e

(
3+

√
17

)
t

2
(√

17−17
)

34 −
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17

17

−
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17

17

(
−
√
17+17

)
e−

(
−3+

√
17

)
t

2

34 +
e

(
3+

√
17

)
t

2
(√

17+17
)

34
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(√

17+17
)
e−

(
−3+

√
17

)
t

2

34 −
e

(
3+

√
17

)
t

2
(√

17−17
)

34 −
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17

17

−
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17

17

(
−
√
17+17

)
e−

(
−3+

√
17

)
t

2

34 +
e

(
3+

√
17

)
t

2
(√

17+17
)

34


 c1

c2



=



(√
17+17

)
e−

(
−3+

√
17

)
t

2

34 −
e

(
3+

√
17

)
t

2
(√

17−17
)

34

 c1 −
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17 c2

17

−
2

−e

(
3+

√
17

)
t

2 +e−
(
−3+

√
17

)
t

2

√
17 c1

17 +

(
−
√
17+17

)
e−

(
−3+

√
17

)
t

2

34 +
e

(
3+

√
17

)
t

2
(√

17+17
)

34

 c2



=


(
(c1−4c2)

√
17+17c1

)
e−

(
−3+

√
17

)
t

2

34 −
e

(
3+

√
17

)
t

2
(
(c1−4c2)

√
17−17c1

)
34(

(−4c1−c2)
√
17+17c2

)
e−

(
−3+

√
17

)
t

2

34 +
2 e

(
3+

√
17

)
t

2
((

c1+ c2
4
)√

17+ 17c2
4

)
17


Since no forcing function is given, then the final solution is ~xh(t) above.

1.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 2
2 2

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det

 1 2
2 2

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 2
2 2− λ

 = 0

Which gives the characteristic equation

λ2 − 3λ− 2 = 0

The roots of the above are the eigenvalues.

λ1 =
3
2 +

√
17
2

λ2 =
3
2 −

√
17
2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue
3
2 −

√
17
2 1 real eigenvalue

3
2 +

√
17
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3
2 −

√
17
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
2 2

−

(
3
2 −

√
17
2

) 1 0
0 1

 v1

v2

 =

 0
0


 −1

2 +
√
17
2 2

2 1
2 +

√
17
2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1

2 +
√
17
2 2 0

2 1
2 +

√
17
2 0
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R2 = R2 −
2R1

−1
2 +

√
17
2

=⇒

−1
2 +

√
17
2 2 0

0 0 0


Therefore the system in Echelon form is −1

2 +
√
17
2 2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 4t

−1+
√
17

}
Hence the solution is  − 4t

−1+
√
17

t

 =

 − 4t
−1+

√
17

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − 4t

−1+
√
17

t

 = t

 − 4
−1+

√
17

1


Let t = 1 the eigenvector becomes − 4t

−1+
√
17

t

 =

 − 4
−1+

√
17

1


Which is normalized to  − 4t

−1+
√
17

t

 =

 − 4
−1+

√
17

1


Considering the eigenvalue λ2 = 3

2 +
√
17
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
2 2

−

(
3
2 +

√
17
2

) 1 0
0 1

 v1

v2

 =

 0
0


 −1

2 −
√
17
2 2

2 1
2 −

√
17
2

 v1

v2

 =

 0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1

2 −
√
17
2 2 0

2 1
2 −

√
17
2 0



R2 = R2 −
2R1

−1
2 −

√
17
2

=⇒

−1
2 −

√
17
2 2 0

0 0 0


Therefore the system in Echelon form is −1

2 −
√
17
2 2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

1+
√
17

}
Hence the solution is  4t

1+
√
17

t

 =

 4t
1+

√
17

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

1+
√
17

t

 = t

 4
1+

√
17

1


Let t = 1 the eigenvector becomes 4t

1+
√
17

t

 =

 4
1+

√
17

1


Which is normalized to  4t

1+
√
17

t

 =

 4
1+

√
17

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
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of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3
2 +

√
17
2 1 1 No

 2
1
2+

√
17
2

1


3
2 −

√
17
2 1 1 No

 2
1
2−

√
17
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue 3

2 +
√
17
2 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(
3
2+

√
17
2

)
t

=

 2
1
2+

√
17
2

1

 e

(
3
2+

√
17
2

)
t

Since eigenvalue 3
2 −

√
17
2 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e

(
3
2−

√
17
2

)
t

=

 2
1
2−

√
17
2

1

 e

(
3
2−

√
17
2

)
t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x(t)
y(t)

 = c1

 2 e

(
3
2+

√
17
2

)
t

1
2+

√
17
2

e
(

3
2+

√
17
2

)
t

+ c2

 2 e

(
3
2−

√
17
2

)
t

1
2−

√
17
2

e
(

3
2−

√
17
2

)
t
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Which becomes

 x(t)
y(t)

 =

 −
c2
(
1+

√
17

)
e−

(
−3+

√
17

)
t

2

4 +
e

(
3+

√
17

)
t

2 c1
(
−1+

√
17

)
4

c1e
(
3+

√
17

)
t

2 + c2e−
(
−3+

√
17

)
t

2


The following is the phase plot of the system.

Figure 4: Phase plot

1.4.3 Maple step by step solution

Let’s solve
[x′(t) = x(t) + 2y(t) , y′(t) = 2x(t) + 2y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation
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→
x
′
(t) =

 1 2
2 2

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 2
2 2

 · →x(t)

• Define the coefficient matrix

A =

 1 2
2 2


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A3

2 −
√
17
2 ,

 2
1
2−

√
17
2

1

 ,

3
2 +

√
17
2 ,

 2
1
2+

√
17
2

1


• Consider eigenpair3

2 −
√
17
2 ,

 2
1
2−

√
17
2

1


• Solution to homogeneous system from eigenpair

→
x1 = e

(
3
2−

√
17
2

)
t ·

 2
1
2−

√
17
2

1


• Consider eigenpair3

2 +
√
17
2 ,

 2
1
2+

√
17
2

1


• Solution to homogeneous system from eigenpair

→
x2 = e

(
3
2+

√
17
2

)
t ·

 2
1
2+

√
17
2

1
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• General solution to the system of ODEs
→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1e

(
3
2−

√
17
2

)
t ·

 2
1
2−

√
17
2

1

+ c2e
(

3
2+

√
17
2

)
t ·

 2
1
2+

√
17
2

1


• Substitute in vector of dependent variables x(t)

y(t)

 =

 −
c1
(
1+

√
17

)
e−

(
−3+

√
17

)
t

2

4 +
e

(
3+

√
17

)
t

2 c2
(
−1+

√
17

)
4

c1e−
(
−3+

√
17

)
t

2 + c2e
(
3+

√
17

)
t

2


• Solution to the system of ODEsx(t) = −

c1
(
1+

√
17

)
e−

(
−3+

√
17

)
t

2

4 +
e

(
3+

√
17

)
t

2 c2
(
−1+

√
17

)
4 , y(t) = c1e−

(
−3+

√
17

)
t

2 + c2e
(
3+

√
17

)
t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 86� �
dsolve([diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)=2*x(t)+2*y(t)],singsol=all)� �

x(t) = c1e
(
3+

√
17

)
t

2 + c2e−
(
−3+

√
17

)
t

2

y(t) = c1e
(
3+

√
17

)
t

2
√
17

4 − c2e−
(
−3+

√
17

)
t

2
√
17

4 + c1e
(
3+

√
17

)
t

2

4 + c2e−
(
−3+

√
17

)
t

2

4

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 143� �
DSolve[{x'[t]==x[t]+2*y[t],y'[t]==2*x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �
x(t) → 1

34e
− 1

2

(√
17−3

)
t
(
c1
(
−
(√

17− 17
)
e
√
17t + 17 +

√
17
)
+ 4

√
17c2

(
e
√
17t − 1

))
y(t) → 1

34e
− 1

2

(√
17−3

)
t
(
4
√
17c1

(
e
√
17t − 1

)
+ c2

((
17 +

√
17
)
e
√
17t + 17−

√
17
))
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1.5 problem 2.1 (v)
1.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 38
1.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 39
1.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [12559]
Internal file name [OUTPUT/11211_Wednesday_October_18_2023_10_01_16_PM_97786729/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (v).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 4x(t)− 2y(t)
y′(t) = 3x(t)− y(t)

1.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 4 −2
3 −1

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 −2 et + 3 e2t −2 e2t + 2 et

3 e2t − 3 et 3 et − 2 e2t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 −2 et + 3 e2t −2 e2t + 2 et

3 e2t − 3 et 3 et − 2 e2t

 c1

c2


=

 (−2 et + 3 e2t) c1 + (−2 e2t + 2 et) c2
(3 e2t − 3 et) c1 + (3 et − 2 e2t) c2


=

 (3c1 − 2c2) e2t − 2 et(−c2 + c1)
(3c1 − 2c2) e2t − 3 et(−c2 + c1)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 4 −2
3 −1

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 4 −2
3 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 4− λ −2
3 −1− λ

 = 0

39



Which gives the characteristic equation

λ2 − 3λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −2
3 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 3 −2

3 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 −2 0

3 −2 0



R2 = R2 −R1 =⇒

3 −2 0
0 0 0


Therefore the system in Echelon form is 3 −2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

3

}
Hence the solution is  2t

3

t

 =

 2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

3

t

 = t

 2
3

1


Let t = 1 the eigenvector becomes  2t

3

t

 =

 2
3

1


Which is normalized to  2t

3

t

 =

 2
3


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −2
3 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −2

3 −3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −2 0

3 −3 0



R2 = R2 −
3R1

2 =⇒

2 −2 0
0 0 0
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Therefore the system in Echelon form is 2 −2
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No

 1
1



1 1 1 No

 2
3

1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=

 1
1

 e2t

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=

 2
3

1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 e2t

e2t

+ c2

 2 et
3

et


Which becomes  x(t)

y(t)

 =

 c1e2t + 2c2et
3

c1e2t + c2et


The following is the phase plot of the system.
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Figure 5: Phase plot

1.5.3 Maple step by step solution

Let’s solve
[x′(t) = 4x(t)− 2y(t) , y′(t) = 3x(t)− y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 4 −2
3 −1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 4 −2
3 −1

 · →x(t)

• Define the coefficient matrix
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A =

 4 −2
3 −1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A1,

 2
3

1

 ,

2,
 1

1


• Consider eigenpair1,

 2
3

1


• Solution to homogeneous system from eigenpair

→
x1 = et ·

 2
3

1


• Consider eigenpair2,

 1
1


• Solution to homogeneous system from eigenpair

→
x2 = e2t ·

 1
1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1et ·

 2
3

1

+ c2e2t ·

 1
1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 2c1et
3 + c2e2t

c1et + c2e2t


• Solution to the system of ODEs{

x(t) = 2c1et
3 + c2e2t, y(t) = c1et + c2e2t

}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve([diff(x(t),t)=4*x(t)-2*y(t),diff(y(t),t)=3*x(t)-y(t)],singsol=all)� �

x(t) = c1et + c2e2t

y(t) = 3c1et
2 + c2e2t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56� �
DSolve[{x'[t]==4*x[t]-2*y[t],y'[t]==3*x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → et
(
c1
(
3et − 2

)
− 2c2

(
et − 1

))
y(t) → et

(
3c1
(
et − 1

)
+ c2

(
3− 2et

))
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1.6 problem 2.1 (vi)
1.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 47
1.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 48
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 53

Internal problem ID [12560]
Internal file name [OUTPUT/11212_Wednesday_October_18_2023_10_01_17_PM_76338301/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (vi).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 2x(t) + y(t)
y′(t) = −x(t) + y(t)

1.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 2 1
−1 1

  x(t)
y(t)



47



For the above matrix A, the matrix exponential can be found to be

eAt =

 e 3t
2 cos

(√
3 t
2

)
+

√
3 e

3t
2 sin

(√
3 t
2

)
3

2
√
3 e

3t
2 sin

(√
3 t
2

)
3

−
2
√
3 e

3t
2 sin

(√
3 t
2

)
3 e 3t

2 cos
(√

3 t
2

)
−

√
3 e

3t
2 sin

(√
3 t
2

)
3



=


e
3t
2
(√

3 sin
(√

3 t
2

)
+3 cos

(√
3 t
2

))
3

2
√
3 e

3t
2 sin

(√
3 t
2

)
3

−
2
√
3 e

3t
2 sin

(√
3 t
2

)
3 −

e
3t
2
(√

3 sin
(√

3 t
2

)
−3 cos

(√
3 t
2

))
3


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e
3t
2
(√

3 sin
(√

3 t
2

)
+3 cos

(√
3 t
2

))
3

2
√
3 e

3t
2 sin

(√
3 t
2

)
3

−
2
√
3 e

3t
2 sin

(√
3 t
2

)
3 −

e
3t
2
(√

3 sin
(√

3 t
2

)
−3 cos

(√
3 t
2

))
3


 c1

c2



=


e
3t
2
(√

3 sin
(√

3 t
2

)
+3 cos

(√
3 t
2

))
c1

3 +
2
√
3 e

3t
2 sin

(√
3 t
2

)
c2

3

−
2
√
3 e

3t
2 sin

(√
3 t
2

)
c1

3 −
e
3t
2
(√

3 sin
(√

3 t
2

)
−3 cos

(√
3 t
2

))
c2

3



=


e
3t
2
(√

3 (c1+2c2) sin
(√

3 t
2

)
+3 cos

(√
3 t
2

)
c1
)

3

−
2

√
3
( c2

2 +c1
)
sin

(√
3 t
2

)
−

3 cos
(√

3 t
2

)
c2

2

e
3t
2

3


Since no forcing function is given, then the final solution is ~xh(t) above.

1.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 2 1
−1 1

  x(t)
y(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 2 1
−1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 2− λ 1
−1 1− λ

 = 0

Which gives the characteristic equation

λ2 − 3λ+ 3 = 0

The roots of the above are the eigenvalues.

λ1 =
3
2 + i

√
3

2

λ2 =
3
2 − i

√
3

2
This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue
3
2 +

i
√
3

2 1 complex eigenvalue
3
2 −

i
√
3

2 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3
2 −

i
√
3

2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 1
−1 1

−

(
3
2 − i

√
3

2

) 1 0
0 1

 v1

v2

 =

 0
0


 1

2 +
i
√
3

2 1

−1 −1
2 +

i
√
3

2

 v1

v2

 =

 0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1

2 +
i
√
3

2 1 0

−1 −1
2 +

i
√
3

2 0



R2 = R2 +
R1

1
2 +

i
√
3

2

=⇒

1
2 +

i
√
3

2 1 0

0 0 0


Therefore the system in Echelon form is 1

2 +
i
√
3

2 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 2t

1+i
√
3

}
Hence the solution is  − 2t

1+I
√
3

t

 =

 − 2t
1+i

√
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − 2t

1+I
√
3

t

 = t

 − 2
1+i

√
3

1


Let t = 1 the eigenvector becomes − 2t

1+I
√
3

t

 =

 − 2
1+i

√
3

1


Which is normalized to  − 2t

1+I
√
3

t

 =

 − 2
1+i

√
3

1


Considering the eigenvalue λ2 = 3

2 +
i
√
3

2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 1
−1 1

−

(
3
2 + i

√
3

2

) 1 0
0 1

 v1

v2

 =

 0
0


 1

2 −
i
√
3

2 1

−1 −1
2 −

i
√
3

2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1

2 −
i
√
3

2 1 0

−1 −1
2 −

i
√
3

2 0



R2 = R2 +
R1

1
2 −

i
√
3

2

=⇒

1
2 −

i
√
3

2 1 0

0 0 0


Therefore the system in Echelon form is 1

2 −
i
√
3

2 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

i
√
3−1

}
Hence the solution is  2t

I
√
3−1

t

 =

 2t
i
√
3−1

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

I
√
3−1

t

 = t

 2
i
√
3−1

1


Let t = 1 the eigenvector becomes 2t

I
√
3−1

t

 =

 2
i
√
3−1

1
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Which is normalized to  2t
I
√
3−1

t

 =

 2
i
√
3−1

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3
2 +

i
√
3

2 1 1 No

 1
− 1

2+
i
√
3

2

1


3
2 −

i
√
3

2 1 1 No

 1
− 1

2−
i
√
3

2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x(t)
y(t)

 = c1

 e

(
3
2+ i

√
3

2

)
t

− 1
2+

i
√
3

2

e
(

3
2+

i
√
3

2

)
t

+ c2

 e

(
3
2− i

√
3

2

)
t

− 1
2−

i
√
3

2

e
(

3
2−

i
√
3

2

)
t


Which becomes

 x(t)
y(t)

 =

 i
(√

3+i
)
c2e−

(
i
√
3−3

)
t

2

2 +
ie

(
i
√
3+3

)
t

2 c1
(
i−

√
3
)

2

c1e
(
i
√
3+3

)
t

2 + c2e−
(
i
√
3−3

)
t

2


The following is the phase plot of the system.
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Figure 6: Phase plot

1.6.3 Maple step by step solution

Let’s solve
[x′(t) = 2x(t) + y(t) , y′(t) = −x(t) + y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 2 1
−1 1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 2 1
−1 1

 · →x(t)

• Define the coefficient matrix
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A =

 2 1
−1 1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A3

2 −
I
√
3

2 ,

 1
− 1

2−
I
√
3

2

1

 ,

3
2 +

I
√
3

2 ,

 1
− 1

2+
I
√
3

2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored3

2 −
I
√
3

2 ,

 1
− 1

2−
I
√
3

2

1


• Solution from eigenpair

e
(

3
2−

I
√
3

2

)
t ·

 1
− 1

2−
I
√
3

2

1


• Use Euler identity to write solution in terms of sin and cos

e 3t
2 ·
(
cos
(√

3 t
2

)
− I sin

(√
3 t
2

))
·

 1
− 1

2−
I
√
3

2

1


• Simplify expression

e 3t
2 ·


cos

(√
3 t
2

)
−I sin

(√
3 t
2

)
− 1

2−
I
√
3

2

cos
(√

3 t
2

)
− I sin

(√
3 t
2

)


• Both real and imaginary parts are solutions to the homogeneous system→
x1(t) = e 3t

2 ·

 −
cos

(√
3 t
2

)
2 +

√
3 sin

(√
3 t
2

)
2

cos
(√

3 t
2

)
 ,

→
x2(t) = e 3t

2 ·


cos

(√
3 t
2

)√
3

2 +
sin

(√
3 t
2

)
2

− sin
(√

3 t
2

)



• General solution to the system of ODEs
→
x = c1

→
x1(t) + c2

→
x2(t)
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• Substitute solutions into the general solution

→
x = c1e

3t
2 ·

 −
cos

(√
3 t
2

)
2 +

√
3 sin

(√
3 t
2

)
2

cos
(√

3 t
2

)
+ c2e

3t
2 ·


cos

(√
3 t
2

)√
3

2 +
sin

(√
3 t
2

)
2

− sin
(√

3 t
2

)


• Substitute in vector of dependent variables x(t)
y(t)

 =


((

c2
√
3−c1

)
cos

(√
3 t
2

)
+sin

(√
3 t
2

)(√
3 c1+c2

))
e
3t
2

2

e 3t
2

(
c1 cos

(√
3 t
2

)
− c2 sin

(√
3 t
2

))


• Solution to the system of ODEs{
x(t) =

((
c2
√
3−c1

)
cos

(√
3 t
2

)
+sin

(√
3 t
2

)(√
3 c1+c2

))
e
3t
2

2 , y(t) = e 3t
2

(
c1 cos

(√
3 t
2

)
− c2 sin

(√
3 t
2

))}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 82� �
dsolve([diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=-x(t)+y(t)],singsol=all)� �

x(t) = e 3t
2

(
sin
(√

3 t
2

)
c1 + cos

(√
3 t
2

)
c2

)

y(t) = −
e 3t

2

(√
3 sin

(√
3 t
2

)
c2 −

√
3 cos

(√
3 t
2

)
c1 + sin

(√
3 t
2

)
c1 + cos

(√
3 t
2

)
c2
)

2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 111� �
DSolve[{x'[t]==2*x[t]+y[t],y'[t]==-x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → 1
3e

3t/2

(
3c1 cos

(√
3t
2

)
+
√
3(c1 + 2c2) sin

(√
3t
2

))

y(t) → 1
3e

3t/2

(
3c2 cos

(√
3t
2

)
−
√
3(2c1 + c2) sin

(√
3t
2

))
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1.7 problem 2.2 (i)
1.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 56
1.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 57
1.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 62

Internal problem ID [12561]
Internal file name [OUTPUT/11213_Wednesday_October_18_2023_10_01_17_PM_26773818/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 3x(t)− y(t)
y′(t) = x(t) + y(t)

1.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 3 −1
1 1

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t(1 + t) −e2tt
e2tt e2t(1− t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(1 + t) −e2tt
e2tt e2t(1− t)

 c1

c2


=

 e2t(1 + t) c1 − e2ttc2
e2ttc1 + e2t(1− t) c2


=

 e2t(tc1 − c2t+ c1)
e2t(tc1 − c2t+ c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 3 −1
1 1

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −1
1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −1
1 1− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −1
1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 −1 0

1 −1 0



R2 = R2 −R1 =⇒

1 −1 0
0 0 0


Therefore the system in Echelon form is 1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 7: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −1
1 1

− (2)

 1 0
0 1

 v1

v2

 =

 1
1


 1 −1

1 −1

 v1

v2

 =

 1
1


Solving for ~v2 gives

~v2 =

 2
1
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We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
1

 e2t

=

 e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
1

 t+

 2
1

 e2t

=

 e2t(t+ 2)
e2t(1 + t)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 e2t

e2t

+ c2

 e2t(t+ 2)
e2t(1 + t)


Which becomes  x(t)

y(t)

 =

 ((t+ 2) c2 + c1) e2t

e2t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 8: Phase plot

1.7.3 Maple step by step solution

Let’s solve
[x′(t) = 3x(t)− y(t) , y′(t) = x(t) + y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 3 −1
1 1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 3 −1
1 1

 · →x(t)

• Define the coefficient matrix
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A =

 3 −1
1 1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2,

 1
1

 ,

2,
 0

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,

 1
1


• First solution from eigenvalue 2

→
x1(t) = e2t ·

 1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector

→
x2(t) = eλt

(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →
x2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

x2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2 3 −1

1 1

− 2 ·

 1 0
0 1

 · →p =

 1
1


• Choice of →

p

→
p =

 1
0


• Second solution from eigenvalue 2

→
x2(t) = e2t ·

t ·

 1
1

+

 1
0


• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t)

• Substitute solutions into the general solution

→
x = c1e2t ·

 1
1

+ c2e2t ·

t ·

 1
1

+

 1
0


• Substitute in vector of dependent variables x(t)

y(t)

 =

 e2t(c2t+ c1 + c2)
e2t(c2t+ c1)


• Solution to the system of ODEs

{x(t) = e2t(c2t+ c1 + c2) , y(t) = e2t(c2t+ c1)}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
dsolve([diff(x(t),t)=3*x(t)-y(t),diff(y(t),t)=x(t)+y(t)],singsol=all)� �

x(t) = e2t(c2t+ c1)
y(t) = e2t(c2t+ c1 − c2)
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 44� �
DSolve[{x'[t]==3*x[t]-y[t],y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → e2t(c1(t+ 1)− c2t)
y(t) → e2t((c1 − c2)t+ c2)
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1.8 problem 2.2 (ii)
1.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 66
1.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 67
1.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 72

Internal problem ID [12562]
Internal file name [OUTPUT/11214_Wednesday_October_18_2023_10_01_17_PM_4787677/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (ii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t)− y(t)
y′(t) = 2x(t)− 2y(t)

1.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 −1
2 −2

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 −e−t + 2 e−t − 1
2− 2 e−t 2 e−t − 1
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 −e−t + 2 e−t − 1
2− 2 e−t 2 e−t − 1

 c1

c2


=

 (−e−t + 2) c1 + (e−t − 1) c2
(2− 2 e−t) c1 + (2 e−t − 1) c2


=

 (c2 − c1) e−t + 2c1 − c2

(−2c1 + 2c2) e−t + 2c1 − c2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 −1
2 −2

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −1
2 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −1
2 −2− λ

 = 0
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Which gives the characteristic equation

λ2 + λ = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 0

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

0 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −1
2 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −1

2 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −1 0

2 −1 0



R2 = R2 −R1 =⇒

2 −1 0
0 0 0


Therefore the system in Echelon form is 2 −1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

2

}
Hence the solution is  t

2

t

 =

 t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

2

t

 = t

 1
2

1


Let t = 1 the eigenvector becomes  t

2

t

 =

 1
2

1


Which is normalized to  t

2

t

 =

 1
2


Considering the eigenvalue λ2 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −1
2 −2

− (0)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −1

2 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 −1 0

2 −2 0



R2 = R2 − 2R1 =⇒

1 −1 0
0 0 0
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Therefore the system in Echelon form is 1 −1
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 1
2

1



0 1 1 No

 1
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 1
2

1

 e−t

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
0

=

 1
1

 e0

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 e−t

2

e−t

+ c2

 1
1


Which becomes  x(t)

y(t)

 =

 c1e−t

2 + c2

c1e−t + c2


The following is the phase plot of the system.
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Figure 9: Phase plot

1.8.3 Maple step by step solution

Let’s solve
[x′(t) = x(t)− y(t) , y′(t) = 2x(t)− 2y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 −1
2 −2

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 −1
2 −2

 · →x(t)

• Define the coefficient matrix
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A =

 1 −1
2 −2


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 1
2

1

 ,

0,
 1

1


• Consider eigenpair−1,

 1
2

1


• Solution to homogeneous system from eigenpair

→
x1 = e−t ·

 1
2

1


• Consider eigenpair0,

 1
1


• Solution to homogeneous system from eigenpair

→
x2 =

 1
1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1e−t ·

 1
2

1

+

 c2

c2


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 c1e−t

2 + c2

c1e−t + c2


• Solution to the system of ODEs{

x(t) = c1e−t

2 + c2, y(t) = c1e−t + c2
}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve([diff(x(t),t)=x(t)-y(t),diff(y(t),t)=2*x(t)-2*y(t)],singsol=all)� �

x(t) = c1 + c2e−t

y(t) = 2c2e−t + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 59� �
DSolve[{x'[t]==x[t]-y[t],y'[t]==2*x[t]-2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → e−t
(
c1
(
2et − 1

)
− c2

(
et − 1

))
y(t) → e−t

(
2c1
(
et − 1

)
− c2

(
et − 2

))
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1.9 problem 2.2 (iii)
1.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 75
1.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 76
1.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 81

Internal problem ID [12563]
Internal file name [OUTPUT/11215_Wednesday_October_18_2023_10_01_18_PM_39063778/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (iii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t)
y′(t) = 2x(t)− 3y(t)

1.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
2 −3

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 et 0(
e4t−1

)
e−3t

2 e−3t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 et 0(
e4t−1

)
e−3t

2 e−3t

 c1

c2


=

 etc1(
e4t−1

)
e−3tc1

2 + e−3tc2


=

 etc1(
e4tc1−c1+2c2

)
e−3t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
2 −3

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 0
2 −3

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 0
2 −3− λ

 = 0
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Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(1− λ)(−3− λ) = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 0
2 −3

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 4 0

2 0

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 4 0 0

2 0 0



R2 = R2 −
R1

2 =⇒

4 0 0
0 0 0


Therefore the system in Echelon form is 4 0

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 0}

Hence the solution is  0
t

 =

 0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 0

t

 = t

 0
1


Let t = 1 the eigenvector becomes  0

t

 =

 0
1


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 0
2 −3

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 0 0

2 −4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 0 0 0

2 −4 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives2 −4 0

0 0 0
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Therefore the system in Echelon form is 2 −4
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No

 2
1



−3 1 1 No

 0
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=

 2
1

 et

Since eigenvalue −3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−3t

=

 0
1

 e−3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 2 et

et

+ c2

 0
e−3t


Which becomes  x(t)

y(t)

 =

 2c1et

(c1e4t + c2) e−3t


The following is the phase plot of the system.
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Figure 10: Phase plot

1.9.3 Maple step by step solution

Let’s solve
[x′(t) = x(t) , y′(t) = 2x(t)− 3y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 0
2 −3

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 0
2 −3

 · →x(t)

• Define the coefficient matrix
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A =

 1 0
2 −3


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−3,

 0
1

 ,

1,
 2

1


• Consider eigenpair−3,

 0
1


• Solution to homogeneous system from eigenpair

→
x1 = e−3t ·

 0
1


• Consider eigenpair1,

 2
1


• Solution to homogeneous system from eigenpair

→
x2 = et ·

 2
1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = e−3tc1 ·

 0
1

+ c2et ·

 2
1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 2c2et

(c2e4t + c1) e−3t


• Solution to the system of ODEs

{x(t) = 2c2et, y(t) = (c2e4t + c1) e−3t}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve([diff(x(t),t)=x(t),diff(y(t),t)=2*x(t)-3*y(t)],singsol=all)� �

x(t) = c2et

y(t) = c2et
2 + c1e−3t

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 38� �
DSolve[{x'[t]==x[t],y'[t]==2*x[t]-3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1e
t

y(t) → 1
2e

−3t(c1(e4t − 1
)
+ 2c2

)
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1.10 problem 2.2 (iv)
1.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 84
1.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 85
1.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 90

Internal problem ID [12564]
Internal file name [OUTPUT/11216_Wednesday_October_18_2023_10_01_18_PM_75237406/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (iv).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t)
y′(t) = x(t) + 3y(t)

1.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
1 3

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 et 0
e3t
2 − et

2 e3t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 et 0
e3t
2 − et

2 e3t

 c1

c2


=

 etc1(
e3t
2 − et

2

)
c1 + e3tc2


=

 etc1
(c1+2c2)e3t

2 − etc1
2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
1 3

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 0
1 3

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 0
1 3− λ

 = 0
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Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(1− λ)(3− λ) = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 0
1 3

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 0 0

1 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 0 0 0

1 2 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives1 2 0

0 0 0


Therefore the system in Echelon form is 1 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −2t}

Hence the solution is  −2t
t

 =

 −2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −2t

t

 = t

 −2
1


Let t = 1 the eigenvector becomes −2t

t

 =

 −2
1


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 0
1 3

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 0

1 0

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 0 0

1 0 0



R2 = R2 +
R1

2 =⇒

−2 0 0
0 0 0


Therefore the system in Echelon form is −2 0

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 0}

Hence the solution is  0
t

 =

 0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 0

t

 = t

 0
1


Let t = 1 the eigenvector becomes  0

t

 =

 0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No

 −2
1



3 1 1 No

 0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
t

=

 −2
1

 et

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
3t

=

 0
1

 e3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 −2 et

et

+ c2

 0
e3t


Which becomes  x(t)

y(t)

 =

 −2c1et

c1et + c2e3t


The following is the phase plot of the system.
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Figure 11: Phase plot

1.10.3 Maple step by step solution

Let’s solve
[x′(t) = x(t) , y′(t) = x(t) + 3y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 0
1 3

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 0
1 3

 · →x(t)

• Define the coefficient matrix
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A =

 1 0
1 3


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A1,

 −2
1

 ,

3,
 0

1


• Consider eigenpair1,

 −2
1


• Solution to homogeneous system from eigenpair

→
x1 = et ·

 −2
1


• Consider eigenpair3,

 0
1


• Solution to homogeneous system from eigenpair

→
x2 = e3t ·

 0
1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1et ·

 −2
1

+ c2e3t ·

 0
1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 −2c1et

c1et + c2e3t


• Solution to the system of ODEs

{x(t) = −2c1et, y(t) = c1et + c2e3t}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve([diff(x(t),t)=x(t),diff(y(t),t)=x(t)+3*y(t)],singsol=all)� �

x(t) = c2et

y(t) = −c2et
2 + c1e3t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 39� �
DSolve[{x'[t]==x[t],y'[t]==x[t]+3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1e
t

y(t) →
(c1
2 + c2

)
e3t − c1e

t

2
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1.11 problem 2.2 (v)
1.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 93
1.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 94
1.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [12565]
Internal file name [OUTPUT/11217_Wednesday_October_18_2023_10_01_18_PM_19494184/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (v).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = −y(t)
y′(t) = 2x(t)− 4y(t)

1.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 0 −1
2 −4

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(
−
√
2+1

)
e−

(
2+

√
2
)
t

2 +
e
(√

2−2
)
t
(
1+

√
2
)

2

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2

4

−

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2

2

(
1+

√
2
)
e−

(
2+

√
2
)
t

2 −
e
(√

2−2
)
t
(√

2−1
)

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
−
√
2+1

)
e−

(
2+

√
2
)
t

2 +
e
(√

2−2
)
t
(
1+

√
2
)

2

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2

4

−

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2

2

(
1+

√
2
)
e−

(
2+

√
2
)
t

2 −
e
(√

2−2
)
t
(√

2−1
)

2


 c1

c2



=



((
−
√
2+1

)
e−

(
2+

√
2
)
t

2 +
e
(√

2−2
)
t
(
1+

√
2
)

2

)
c1 +

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2 c2

4

−

(
−e

(√
2−2

)
t+e−

(
2+

√
2
)
t
)√

2 c1

2 +
((

1+
√
2
)
e−

(
2+

√
2
)
t

2 −
e
(√

2−2
)
t
(√

2−1
)

2

)
c2



=


(
(−2c1+c2)

√
2+2c1

)
e−

(
2+

√
2
)
t

4 +
((

c1− c2
2
)√

2+c1
)
e
(√

2−2
)
t

2(
(c2−c1)

√
2+c2

)
e−

(
2+

√
2
)
t

2 +
(√

2 (−c2+c1)+c2
)
e
(√

2−2
)
t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 0 −1
2 −4

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 0 −1
2 −4

− λ

 1 0
0 1

 = 0
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Therefore

det

 −λ −1
2 −4− λ

 = 0

Which gives the characteristic equation

λ2 + 4λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 =
√
2− 2

λ2 = −2−
√
2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue
√
2− 2 1 real eigenvalue

−2−
√
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2−
√
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 −1
2 −4

−
(
−2−

√
2
) 1 0

0 1

 v1

v2

 =

 0
0


 2 +

√
2 −1

2
√
2− 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 +√

2 −1 0
2

√
2− 2 0



R2 = R2 −
2R1

2 +
√
2
=⇒

2 +√
2 −1 0

0 0 0
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Therefore the system in Echelon form is 2 +
√
2 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

2+
√
2

}
Hence the solution is  t

2+
√
2

t

 =

 t
2+

√
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

2+
√
2

t

 = t

 1
2+

√
2

1


Let t = 1 the eigenvector becomes t

2+
√
2

t

 =

 1
2+

√
2

1


Which is normalized to  t

2+
√
2

t

 =

 1
2+

√
2

1


Considering the eigenvalue λ2 =

√
2− 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 −1
2 −4

−
(√

2− 2
) 1 0

0 1

 v1

v2

 =

 0
0


 2−

√
2 −1

2 −2−
√
2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2−√

2 −1 0
2 −2−

√
2 0
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R2 = R2 −
2R1

2−
√
2
=⇒

2−√
2 −1 0

0 0 0


Therefore the system in Echelon form is 2−

√
2 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − t√

2−2

}
Hence the solution is  − t√

2−2

t

 =

 − t√
2−2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − t√

2−2

t

 = t

 − 1√
2−2

1


Let t = 1 the eigenvector becomes − t√

2−2

t

 =

 − 1√
2−2

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

√
2− 2 1 1 No

 − 1√
2−2

1



−2−
√
2 1 1 No

 − 1
−2−

√
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue

√
2 − 2 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(√
2−2

)
t

=

 − 1√
2−2

1

 e

(√
2−2

)
t

Since eigenvalue −2−
√
2 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e

(
−2−

√
2
)
t

=

 − 1
−2−

√
2

1

 e

(
−2−

√
2
)
t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x(t)
y(t)

 = c1

 − e
(√

2−2
)
t

√
2−2

e
(√

2−2
)
t

+ c2

 − e
(
−2−

√
2
)
t

−2−
√
2

e
(
−2−

√
2
)
t


Which becomes  x(t)

y(t)

 =

 −
c2
(√

2−2
)
e−

(
2+

√
2
)
t

2 +
e
(√

2−2
)
t
c1
(
2+

√
2
)

2

c1e
(√

2−2
)
t + c2e−

(
2+

√
2
)
t
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The following is the phase plot of the system.

Figure 12: Phase plot

1.11.3 Maple step by step solution

Let’s solve
[x′(t) = −y(t) , y′(t) = 2x(t)− 4y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 0 −1
2 −4

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 0 −1
2 −4

 · →x(t)
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• Define the coefficient matrix

A =

 0 −1
2 −4


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2−

√
2,

 − 1
−2−

√
2

1

 ,

√2− 2,

 − 1√
2−2

1


• Consider eigenpair−2−

√
2,

 − 1
−2−

√
2

1


• Solution to homogeneous system from eigenpair

→
x1 = e

(
−2−

√
2
)
t ·

 − 1
−2−

√
2

1


• Consider eigenpair√2− 2,

 − 1√
2−2

1


• Solution to homogeneous system from eigenpair

→
x2 = e

(√
2−2

)
t ·

 − 1√
2−2

1


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x = c1e

(
−2−

√
2
)
t ·

 − 1
−2−

√
2

1

+ c2e
(√

2−2
)
t ·

 − 1√
2−2

1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 −
c1
(√

2−2
)
e−

(
2+

√
2
)
t

2 +
c2e

(√
2−2

)
t
(
2+

√
2
)

2

c1e−
(
2+

√
2
)
t + c2e

(√
2−2

)
t


• Solution to the system of ODEs{

x(t) = −
c1
(√

2−2
)
e−

(
2+

√
2
)
t

2 +
c2e

(√
2−2

)
t
(
2+

√
2
)

2 , y(t) = c1e−
(
2+

√
2
)
t + c2e

(√
2−2

)
t

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 64� �
dsolve([diff(x(t),t)=-y(t),diff(y(t),t)=2*x(t)-4*y(t)],singsol=all)� �

x(t) = c1e
(
−2+

√
2
)
t + c2e−

(
2+

√
2
)
t

y(t) =
(
2 +

√
2
)
c2e−

(
2+

√
2
)
t +
(
2−

√
2
)
c1e

(
−2+

√
2
)
t

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 143� �
DSolve[{x'[t]==-y[t],y'[t]==2*x[t]-4*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → 1
4e

−
((

2+
√
2
)
t
)(

2c1
((

1 +
√
2
)
e2

√
2t + 1−

√
2
)
−
√
2c2
(
e2

√
2t − 1

))
y(t) → 1

2e
−
((

2+
√
2
)
t
)(√

2c1
(
e2

√
2t − 1

)
+ c2

(
−
(√

2− 1
)
e2

√
2t + 1 +

√
2
))
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1.12 problem 2.2 (vi)
1.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 102
1.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 103
1.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 107

Internal problem ID [12566]
Internal file name [OUTPUT/11218_Wednesday_October_18_2023_10_01_18_PM_3236521/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (vi).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = x(t)
y′(t) = y(t)

1.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
0 1

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 et 0
0 et
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 et 0
0 et

 c1

c2


=

 etc1
etc2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 1 0
0 1

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 0
0 1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 0
0 1− λ

 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(1− λ)(1− λ) = 0
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The roots of the above are the eigenvalues.

λ1 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 0
0 1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 0 0

0 0

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 0 0 0

0 0 0


Therefore the system in Echelon form is 0 0

0 0

 v1

v2

 =

 0
0


The free variables are {v1, v2} and there are no leading variables. Let v1 = t. Let v2 = s.
Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as t

s

 =

 t

0

+

 0
s


= t

 1
0

+ s

 0
1
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By letting t = 1 and s = 1 then the above becomes t

s

 =

 1
0

+

 0
1


Hence the two eigenvectors associated with this eigenvalue are 1

0

 ,

 0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 2 2 No

 0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 13: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x1(t) = ~v1e
t

=

 0
1

 et

~x2(t) = ~v2e
t

=

 1
0

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)
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Which is written as  x(t)
y(t)

 = c1

 0
et

+ c2

 et

0


Which becomes  x(t)

y(t)

 =

 c2et

c1et


The following is the phase plot of the system.

Figure 14: Phase plot

1.12.3 Maple step by step solution

Let’s solve
[x′(t) = x(t) , y′(t) = y(t)]

• Define vector
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→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 0
0 1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 0
0 1

 · →x(t)

• Define the coefficient matrix

A =

 1 0
0 1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A1,

 0
1

 ,

1,
 1

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,

 0
1


• First solution from eigenvalue 1

→
x1(t) = et ·

 0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
x2(t) = eλt

(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
x2(t) into the homogeneous system
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λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

x2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1 1 0

0 1

− 1 ·

 1 0
0 1

 · →p =

 0
1


• Choice of →

p

→
p =

 0
0


• Second solution from eigenvalue 1

→
x2(t) = et ·

t ·

 0
1

+

 0
0


• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t)

• Substitute solutions into the general solution

→
x = c1et ·

 0
1

+ c2et ·

t ·

 0
1

+

 0
0


• Substitute in vector of dependent variables x(t)

y(t)

 =

 0
et(c2t+ c1)


• Solution to the system of ODEs
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{x(t) = 0, y(t) = et(c2t+ c1)}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([diff(x(t),t)=x(t),diff(y(t),t)=y(t)],singsol=all)� �

x(t) = c2et
y(t) = c1et

3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 57� �
DSolve[{x'[t]==x[t],y'[t]==y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1e
t

y(t) → c2e
t

x(t) → c1e
t

y(t) → 0
x(t) → 0
y(t) → c2e

t

x(t) → 0
y(t) → 0
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1.13 problem 2.2 (vii)
1.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 111
1.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 112
1.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 117

Internal problem ID [12567]
Internal file name [OUTPUT/11219_Wednesday_October_18_2023_10_01_19_PM_79343540/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (vii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 0
y′(t) = x(t)

1.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 0 0
1 0

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 1 0
t 1
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 1 0
t 1

 c1

c2


=

 c1

tc1 + c2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 0 0
1 0

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 0 0
1 0

− λ

 1 0
0 1

 = 0

Therefore

det

 −λ 0
1 −λ

 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(−λ)(−λ) = 0
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The roots of the above are the eigenvalues.

λ1 = 0

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 0
1 0

− (0)

 1 0
0 1

 v1

v2

 =

 0
0


 0 0

1 0

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 0 0 0

1 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives1 0 0

0 0 0


Therefore the system in Echelon form is 1 0

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 0}
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Hence the solution is  0
t

 =

 0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 0

t

 = t

 0
1


Let t = 1 the eigenvector becomes  0

t

 =

 0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 2 1 Yes

 0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 15: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 0 0
1 0

− (0)

 1 0
0 1

 v1

v2

 =

 0
1


 0 0

1 0

 v1

v2

 =

 0
1


Solving for ~v2 gives

~v2 =

 1
1
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We have found two generalized eigenvectors for eigenvalue 0. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 0
1

 1

=

 0
1


And

~x2(t) = (~v1t+ ~v2) eλt

=

 0
1

 t+

 1
1

 1

=

 1
1 + t


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 0
1

+ c2

 1
1 + t


Which becomes  x(t)

y(t)

 =

 c2

c2t+ c1 + c2


The following is the phase plot of the system.
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Figure 16: Phase plot

1.13.3 Maple step by step solution

Let’s solve
[x′(t) = 0, y′(t) = x(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 0 0
1 0

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 0 0
1 0

 · →x(t)

• Define the coefficient matrix
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A =

 0 0
1 0


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A0,

 0
1

 ,

0,
 0

0


• Consider eigenpair0,

 0
1


• Solution to homogeneous system from eigenpair

→
x1 =

 0
1


• Consider eigenpair0,

 0
0


• Solution to homogeneous system from eigenpair

→
x2 =

 0
0


• General solution to the system of ODEs

→
x = c1

→
x1 + c2

→
x2

• Substitute solutions into the general solution

→
x =

 0
c1


• Substitute in vector of dependent variables
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 x(t)
y(t)

 =

 0
c1


• Solution to the system of ODEs

{x(t) = 0, y(t) = c1}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(x(t),t)=0,diff(y(t),t)=x(t)],singsol=all)� �

x(t) = c2
y(t) = c2t+ c1

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 17� �
DSolve[{x'[t]==0,y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1
y(t) → c1t+ c2
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1.14 problem 2.4 (i)
1.14.1 Solving as second order ode can be made integrable ode . . . . 120
1.14.2 Solving as second order ode missing x ode . . . . . . . . . . . . 122

Internal problem ID [12568]
Internal file name [OUTPUT/11220_Wednesday_October_18_2023_10_01_19_PM_60338816/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (i).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Duffing , [_2nd_order , _reducible ,

_mu_x_y1 ]]

x′′ + x− x3 = 0

1.14.1 Solving as second order ode can be made integrable ode

Multiplying the ode by x′ gives

x′x′′ +
(
1− x2)x′x = 0

Integrating the above w.r.t t gives∫ (
x′x′′ +

(
1− x2)x′x

)
dt = 0

x′2

2 − (1− x2)2

4 = c2

Which is now solved for x. Solving the given ode for x′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

x′ =
√
2 + 2x4 − 4x2 + 8c1

2 (1)

x′ = −
√
2 + 2x4 − 4x2 + 8c1

2 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 2√
2x4 − 4x2 + 8c1 + 2

dx =
∫

dt∫ x 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 2√

2x4 − 4x2 + 8c1 + 2
dx =

∫
dt∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 2√

2_a4 − 4_a2 + 8c1 + 2
d_a = t+ c2

(2)
∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3

Verification of solutions∫ x 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c2

Verified OK. ∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3

Verified OK.
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1.14.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx

Hence the ode becomes

p(x)
(

d

dx
p(x)

)
+
(
−x2 + 1

)
x = 0

Which is now solved as first order ode for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= (x2 − 1)x
p

Where f(x) = (x2 − 1)x and g(p) = 1
p
. Integrating both sides gives

1
1
p

dp =
(
x2 − 1

)
x dx

∫ 1
1
p

dp =
∫ (

x2 − 1
)
x dx

p2

2 = (x2 − 1)2

4 + c1

The solution is
p(x)2

2 − (x2 − 1)2

4 − c1 = 0
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For solution (1) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′2

2 − (x2 − 1)2

4 − c1 = 0

Solving the given ode for x′ results in 2 differential equations to solve. Each one of
these will generate a solution. The equations generated are

x′ =
√
2 + 2x4 − 4x2 + 8c1

2 (1)

x′ = −
√
2 + 2x4 − 4x2 + 8c1

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 2√
2x4 − 4x2 + 8c1 + 2

dx =
∫

dt∫ x 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 2√

2x4 − 4x2 + 8c1 + 2
dx =

∫
dt∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 2√

2_a4 − 4_a2 + 8c1 + 2
d_a = t+ c2

(2)
∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3
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Verification of solutions∫ x 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c2

Verified OK. ∫ x

− 2√
2_a4 − 4_a2 + 8c1 + 2

d_a = t+ c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
<- 2nd_order JacobiSN successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 43� �
dsolve(diff(x(t),t$2)+x(t)-x(t)^3=0,x(t), singsol=all)� �

x(t) = c2
√
2
√

1
c22 + 1 JacobiSN

(√2 t+ 2c1
)√

2
√

1
c22+1

2 , c2
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3 Solution by Mathematica
Time used: 60.266 (sec). Leaf size: 171� �
DSolve[x''[t]+x[t]-x[t]^3==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → −
isn
(√(√

1−2c1+1
)
(t+c2)2

√
2 |1−

√
1−2c1√

1−2c1+1

)
√

1
−1+

√
1−2c1

x(t) →
isn
(√(√

1−2c1+1
)
(t+c2)2

√
2 |1−

√
1−2c1√

1−2c1+1

)
√

1
−1+

√
1−2c1
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1.15 problem 2.4 (ii)
1.15.1 Solving as second order ode can be made integrable ode . . . . 126
1.15.2 Solving as second order ode missing x ode . . . . . . . . . . . . 128

Internal problem ID [12569]
Internal file name [OUTPUT/11221_Wednesday_October_18_2023_10_01_20_PM_50415031/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (ii).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Duffing , [_2nd_order , _reducible ,

_mu_x_y1 ]]

x′′ + x+ x3 = 0

1.15.1 Solving as second order ode can be made integrable ode

Multiplying the ode by x′ gives

x′x′′ +
(
1 + x2)x′x = 0

Integrating the above w.r.t t gives∫ (
x′x′′ +

(
1 + x2)x′x

)
dt = 0

x′2

2 + (1 + x2)2

4 = c2

Which is now solved for x. Solving the given ode for x′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

x′ =
√
−2− 2x4 − 4x2 + 8c1

2 (1)

x′ = −
√
−2− 2x4 − 4x2 + 8c1

2 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 2√
−2x4 − 4x2 + 8c1 − 2

dx =
∫

dt∫ x 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 2√

−2x4 − 4x2 + 8c1 − 2
dx =

∫
dt∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 2√

−2_a4 − 4_a2 + 8c1 − 2
d_a = t+ c2

(2)
∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3

Verification of solutions∫ x 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c2

Verified OK. ∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3

Verified OK.
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1.15.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx

Hence the ode becomes

p(x)
(

d

dx
p(x)

)
+ x
(
x2 + 1

)
= 0

Which is now solved as first order ode for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −x(x2 + 1)
p

Where f(x) = −x(x2 + 1) and g(p) = 1
p
. Integrating both sides gives

1
1
p

dp = −x
(
x2 + 1

)
dx

∫ 1
1
p

dp =
∫

−x
(
x2 + 1

)
dx

p2

2 = −(x2 + 1)2

4 + c1

The solution is
p(x)2

2 + (x2 + 1)2

4 − c1 = 0
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For solution (1) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′2

2 + (1 + x2)2

4 − c1 = 0

Solving the given ode for x′ results in 2 differential equations to solve. Each one of
these will generate a solution. The equations generated are

x′ =
√
−2− 2x4 − 4x2 + 8c1

2 (1)

x′ = −
√
−2− 2x4 − 4x2 + 8c1

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 2√
−2x4 − 4x2 + 8c1 − 2

dx =
∫

dt∫ x 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 2√

−2x4 − 4x2 + 8c1 − 2
dx =

∫
dt∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 2√

−2_a4 − 4_a2 + 8c1 − 2
d_a = t+ c2

(2)
∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3
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Verification of solutions∫ x 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c2

Verified OK. ∫ x

− 2√
−2_a4 − 4_a2 + 8c1 − 2

d_a = t+ c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
<- 2nd_order JacobiSN successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 56� �
dsolve(diff(x(t),t$2)+x(t)+x(t)^3=0,x(t), singsol=all)� �

x(t) = c2 JacobiSN

(√3
√
2 t+ 2c1

)√
2
√

− 1
c22−3

2 ,
ic2

√
3

3

√
2
√

− 1
c22 − 3

3 Solution by Mathematica
Time used: 60.261 (sec). Leaf size: 169� �
DSolve[x''[t]+x[t]+x[t]^3==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → −i

√
1 +

√
1 + 2c1sn


√

−
((√

2c1 + 1− 1
)
(t+ c2)2

)
√
2

|
√
2c1 + 1 + 1

1−
√
2c1 + 1


x(t) → i

√
1 +

√
1 + 2c1sn


√

−
((√

2c1 + 1− 1
)
(t+ c2)2

)
√
2

|
√
2c1 + 1 + 1

1−
√
2c1 + 1
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1.16 problem 2.4 (iii)
1.16.1 Solving as second order ode missing x ode . . . . . . . . . . . . 131

Internal problem ID [12570]
Internal file name [OUTPUT/11222_Wednesday_October_18_2023_10_01_21_PM_93984434/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (iii).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

Unable to solve or complete the solution.

x′′ + x′ + x− x3 = 0

1.16.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx

Hence the ode becomes

p(x)
(

d

dx
p(x)

)
+ p(x) +

(
−x2 + 1

)
x = 0
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Which is now solved as first order ode for p(x). Unable to determine ODE type.

Unable to solve. Terminating
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)+_a-_a^3 = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)

trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(x,y)
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
`, `-> Computing symmetries using: way = formal

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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7 Solution by Maple� �
dsolve(diff(x(t),t$2)+diff(x(t),t)+x(t)-x(t)^3=0,x(t), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x''[t]+x'[t]+x[t]-x[t]^3==0,x[t],t,IncludeSingularSolutions -> True]� �
Not solved
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1.17 problem 2.4 (iv)
1.17.1 Solving as second order ode missing x ode . . . . . . . . . . . . 135

Internal problem ID [12571]
Internal file name [OUTPUT/11223_Wednesday_October_18_2023_10_01_21_PM_54312799/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (iv).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

Unable to solve or complete the solution.

x′′ + x′ + x+ x3 = 0

1.17.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx

Hence the ode becomes

p(x)
(

d

dx
p(x)

)
+ p(x) + x

(
x2 + 1

)
= 0
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Which is now solved as first order ode for p(x). Unable to determine ODE type.

Unable to solve. Terminating
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, _a^3+(diff(_b(_a), _a))*_b(_a)+_b(_a)+_a = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)

trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(x,y)
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, No Point Symmetries Class V

trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
`, `-> Computing symmetries using: way = formal

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �

137



7 Solution by Maple� �
dsolve(diff(x(t),t$2)+diff(x(t),t)+x(t)+x(t)^3=0,x(t), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x''[t]+x'[t]+x[t]+x[t]^3==0,x[t],t,IncludeSingularSolutions -> True]� �
Not solved
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1.18 problem 2.4 (v)
1.18.1 Solving as second order ode can be made integrable ode . . . . 139
1.18.2 Solving as second order ode missing x ode . . . . . . . . . . . . 141

Internal problem ID [12572]
Internal file name [OUTPUT/11224_Wednesday_October_18_2023_10_01_22_PM_50942243/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (v).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

x′′ − (2 cos (x)− 1) sin (x) = 0

1.18.1 Solving as second order ode can be made integrable ode

Multiplying the ode by x′ gives

x′x′′ − x′(sin (2x)− sin (x)) = 0

Integrating the above w.r.t t gives∫
(x′x′′ − x′(sin (2x)− sin (x))) dt = 0

x′2

2 − cos (x) + cos (2x)
2 = c2

Which is now solved for x. Solving the given ode for x′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

x′ =
√

1− 2 cos (x)2 + 2 cos (x) + 2c1 (1)

x′ = −
√

1− 2 cos (x)2 + 2 cos (x) + 2c1 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1√
1− 2 cos (x)2 + 2 cos (x) + 2c1

dx =
∫

dt

∫ x 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 1√

1− 2 cos (x)2 + 2 cos (x) + 2c1
dx =

∫
dt

∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 1√

1− 2 cos (_a)2 + 2 cos (_a) + 2c1
d_a = t+ c2

(2)
∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3

Verification of solutions∫ x 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c2

Verified OK. ∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3

Verified OK.
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1.18.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx

Hence the ode becomes

p(x)
(

d

dx
p(x)

)
= sin (2x)− sin (x)

Which is now solved as first order ode for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= sin (2x)− sin (x)
p

Where f(x) = sin (2x)− sin (x) and g(p) = 1
p
. Integrating both sides gives

1
1
p

dp = sin (2x)− sin (x) dx

∫ 1
1
p

dp =
∫

sin (2x)− sin (x) dx

p2

2 = cos (x)− cos (2x)
2 + c1

The solution is
p(x)2

2 − cos (x) + cos (2x)
2 − c1 = 0
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For solution (1) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′2

2 − cos (x) + cos (2x)
2 − c1 = 0

Solving the given ode for x′ results in 2 differential equations to solve. Each one of
these will generate a solution. The equations generated are

x′ =
√

1− 2 cos (x)2 + 2 cos (x) + 2c1 (1)

x′ = −
√

1− 2 cos (x)2 + 2 cos (x) + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1√
1− 2 cos (x)2 + 2 cos (x) + 2c1

dx =
∫

dt

∫ x 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c2

Solving equation (2)

Integrating both sides gives∫
− 1√

1− 2 cos (x)2 + 2 cos (x) + 2c1
dx =

∫
dt

∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3

Summary
The solution(s) found are the following

(1)
∫ x 1√

1− 2 cos (_a)2 + 2 cos (_a) + 2c1
d_a = t+ c2

(2)
∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3
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Verification of solutions∫ x 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c2

Verified OK. ∫ x

− 1√
1− 2 cos (_a)2 + 2 cos (_a) + 2c1

d_a = t+ c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-sin(2*_a)+sin(_a) = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 59� �
dsolve(diff(x(t),t$2)=(2*cos(x(t))-1)*sin(x(t)),x(t), singsol=all)� �∫ x(t) 1√

2 sin (_a)2 + 2 cos (_a) + c1

d_a− t− c2 = 0

−

∫ x(t) 1√
2 sin (_a)2 + 2 cos (_a) + c1

d_a

− t− c2 = 0
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3 Solution by Mathematica
Time used: 61.831 (sec). Leaf size: 437� �
DSolve[x''[t]==(2*Cos[x[t]]-1)*Sin[x[t]],x[t],t,IncludeSingularSolutions -> True]� �

x(t) → −2 arccos
(
−1
2

√
3−

√
3 + 2c1

)
x(t) → 2 arccos

(
−1
2

√
3−

√
3 + 2c1

)
x(t) → −2 arccos

(
1
2

√
3−

√
3 + 2c1

)
x(t) → 2 arccos

(
1
2

√
3−

√
3 + 2c1

)
x(t) → −2 arccos

(
−1
2

√
3 +

√
3 + 2c1

)
x(t) → 2 arccos

(
−1
2

√
3 +

√
3 + 2c1

)
x(t) → −2 arccos

(
1
2

√
3 +

√
3 + 2c1

)
x(t) → 2 arccos

(
1
2

√
3 +

√
3 + 2c1

)

x(t) → −2iarctanh

sn
(

1
2

√(
−c1 + 2

√
2c1 + 3− 3

)
(t+ c2)2| c1+2

√
2c1+3+3

c1−2
√
2c1+3+3

)
√

−3+c1
3+c1+2

√
3+2c1


x(t) → 2iarctanh

sn
(

1
2

√(
−c1 + 2

√
2c1 + 3− 3

)
(t+ c2)2| c1+2

√
2c1+3+3

c1−2
√
2c1+3+3

)
√

−3+c1
3+c1+2

√
3+2c1
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1.19 problem 2.5
1.19.1 Solution using Matrix exponential method . . . . . . . . . . . . 146
1.19.2 Solution using explicit Eigenvalue and Eigenvector method . . . 147
1.19.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [12573]
Internal file name [OUTPUT/11225_Wednesday_October_18_2023_10_03_50_PM_88559711/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY
Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′ = x− 5y(t)
y′(t) = x− y(t)

1.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′

y′(t)

 =

 1 −5
1 −1

  x

y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 sin(2t)
2 + cos (2t) −5 sin(2t)

2
sin(2t)

2 cos (2t)− sin(2t)
2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 sin(2t)
2 + cos (2t) −5 sin(2t)

2
sin(2t)

2 cos (2t)− sin(2t)
2

 c1

c2


=


(

sin(2t)
2 + cos (2t)

)
c1 − 5 sin(2t)c2

2

sin(2t)c1
2 +

(
cos (2t)− sin(2t)

2

)
c2


=

 (c1−5c2) sin(2t)
2 + c1 cos (2t)

(c1−c2) sin(2t)
2 + c2 cos (2t)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′

y′(t)

 =

 1 −5
1 −1

  x

y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −5
1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −5
1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 + 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2i
λ2 = −2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2i 1 complex eigenvalue

−2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −5
1 −1

− (−2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1 + 2i −5

1 −1 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 + 2i −5 0

1 −1 + 2i 0



R2 = R2 +
(
−1
5 + 2i

5

)
R1 =⇒

1 + 2i −5 0
0 0 0


Therefore the system in Echelon form is 1 + 2i −5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1− 2i) t}

Hence the solution is  (1− 2 I) t
t

 =

 (1− 2i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1− 2 I) t

t

 = t

 1− 2i
1


Let t = 1 the eigenvector becomes (1− 2 I) t

t

 =

 1− 2i
1


Considering the eigenvalue λ2 = 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −5
1 −1

− (2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1− 2i −5

1 −1− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1− 2i −5 0

1 −1− 2i 0



R2 = R2 +
(
−1
5 − 2i

5

)
R1 =⇒

1− 2i −5 0
0 0 0


Therefore the system in Echelon form is 1− 2i −5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1 + 2i) t}

Hence the solution is  (1 + 2 I) t
t

 =

 (1 + 2i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1 + 2 I) t

t

 = t

 1 + 2i
1


Let t = 1 the eigenvector becomes (1 + 2 I) t

t

 =

 1 + 2i
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2i 1 1 No

 1 + 2i
1



−2i 1 1 No

 1− 2i
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)
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Which is written as x

y(t)

 = c1

 (1 + 2i) e2it

e2it

+ c2

 (1− 2i) e−2it

e−2it


Which becomes  x

y(t)

 =

 (1 + 2i) c1e2it + (1− 2i) c2e−2it

c1e2it + c2e−2it


The following is the phase plot of the system.

Figure 17: Phase plot

1.19.3 Maple step by step solution

Let’s solve
[x′ = x− 5y(t) , y′(t) = x− y(t)]

• Define vector
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→
x(t) =

 x

y(t)


• Convert system into a vector equation

→
x
′
(t) =

 1 −5
1 −1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 1 −5
1 −1

 · →x(t)

• Define the coefficient matrix

A =

 1 −5
1 −1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2 I,

 1− 2 I
1

 ,

2 I,
 1 + 2 I

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,

 1− 2 I
1


• Solution from eigenpair

e−2 It ·

 1− 2 I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (2t)− I sin (2t)) ·

 1− 2 I
1


• Simplify expression
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 (1− 2 I) (cos (2t)− I sin (2t))
cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system→

x1(t) =

 cos (2t)− 2 sin (2t)
cos (2t)

 ,
→
x2(t) =

 −2 cos (2t)− sin (2t)
− sin (2t)


• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t)

• Substitute solutions into the general solution

→
x =

 c2(−2 cos (2t)− sin (2t)) + c1(cos (2t)− 2 sin (2t))
c1 cos (2t)− c2 sin (2t)


• Substitute in vector of dependent variables x

y(t)

 =

 (c1 − 2c2) cos (2t)− 2 sin (2t)
(
c2
2 + c1

)
c1 cos (2t)− c2 sin (2t)


• Solution to the system of ODEs{

x = (c1 − 2c2) cos (2t)− 2 sin (2t)
(
c2
2 + c1

)
, y(t) = c1 cos (2t)− c2 sin (2t)

}
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 50� �
dsolve([diff(x(t),t)=x(t)-5*y(t),diff(y(t),t)=x(t)-y(t)],singsol=all)� �

x(t) = c1 sin (2t) + c2 cos (2t)

y(t) = −2c1 cos (2t)
5 + 2c2 sin (2t)

5 + c1 sin (2t)
5 + c2 cos (2t)

5

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 48� �
DSolve[{x'[t]==x[t]-5*y[t],y'[t]==x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → c1 cos(2t) + (c1 − 5c2) sin(t) cos(t)
y(t) → c2 cos(2t) + (c1 − c2) sin(t) cos(t)
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