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Internal problem ID [12555]
Internal file name [OUTPUT/11207_Wednesday_October_18_2023_10_01_12_PM_64086885/index . tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (i).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y'(t) =

1.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 1 =5 z(t)
y'(8) 1 -1 | y(@)

For the above matrix A, the matrix exponential can be found to be

sin(2 5sin(2:
% + cos (2t) —%

sin(2 sin(2
—é t cos (2t) — —é t

At __



Therefore the homogeneous solution is

@) 4 cos (2t)

2
in (2t in (2t
= é ) cos (2t) — ¥+ g ) Co

__ 5sin(2t)
2

(siné?t) + cos (2t)> el — 53in(22t)02
—Sin(gt)cl -+ (cos (2t) — —Siném) o

(a1=5e)sin@) 4 ) cos (2t)

(certen)sin@) 4 o, cos (2t)

Since no forcing function is given, then the final solution is Z(t) above.

1.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) 1 -5 z(t)
y'(8) 1 -1 | y(®)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

1 -5 10

det - A =0

1 -1 01

Therefore
1-X =5
det =0
1 —=1-=2A



Which gives the characteristic equation
N4+4=0
The roots of the above are the eigenvalues.

AL =21
Ao =—2%

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

21 1 complex eigenvalue

-2 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = —2i

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -5 10 v 0
— (—2i) o

1 -1 01 vy 0

1+2 -5 o 0

1 142 | | v 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

14+2: -5 0
1 —1+2|0
1 2 142 =5|0
m=ms (0 2)g
5 9 0 00
Therefore the system in Echelon form is
1+2¢ -5 vy | |0
0 0 Vg 0



The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = (1 — 2i) ¢}

Hence the solution is
(1-21)¢ (1—2i)t

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(1-21)¢ 1—2:¢
t 1
Let t = 1 the eigenvector becomes
(1-21)¢ 1—2¢
t 1

Considering the eigenvalue Ay = 27

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

1 -5
1 -1

— ()

1—-2¢
1

Now forward elimination is applied to solve for the eigenvector ¥. The augmented

matrix is
1—23
1
1 2
Ry =R —_ — =
2 2+( 55

Therefore the system in Echelon form is

1—2¢

)
0 0

1
01

-9
-1—-2

)

-1-24

(%1

(%

>R1=>

0
0

(%1

V2

(%]

%

1—-2¢
0




The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = (1 + 2i) t}

Hence the solution is
(1+21)¢ (14 2i)t
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(+2D)t | _ | 1+2i

t 1
Let t = 1 the eigenvector becomes
(1+20D)t 142
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors
1+2
21 1 1 No
1
1—2
—2i 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

ﬂ_'fh(t) = lel(t) + Cgfg(t)



Which is written as

Which becomes

x(t)
y(t)

(1 4 2i) et
2it

(1—2i)e 2

(S

+ co 0;
e —2it

(1 + 27) c1e?® + (1 — 2i) cye™2%

0182“ + 026_2“

The following is the phase plot of the system.
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Figure 1: Phase plot

1.1.3 Maple step by step solution

Let’s solve

[2'(t) =

° Define vector

z(t) — 5y(t) ' (t)

= z(t) — y(?)]




Convert system into a vector equation

1 -5 N 0
-z
1 -1 0

Z(t) =

System to solve

1 _5 —
- T
1 -1

7 ()=

Define the coefficient matrix

A=
1 -1

Rewrite the system as
Z(t)=A 2
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1-—2I 1+ 21
—21, o | T
1 1

Consider complex eigenpair, complex conjugate eigenvalue can be ignored

1-21
1

—21,

Solution from eigenpair
1-21I
1

o2t

Use Euler identity to write solution in terms of sin and cos
1-21
1

(cos (2t) — Isin (2t)) -

Simplify expression



[ (1 21) (cos (2t) — Tsin (2t))
cos (2t) — Isin (2¢)

° Both real and imaginary parts are solutions to the homogeneous system
o cos (2t) — 2sin (2t) | —2cos (2t) — sin (2t)
IIIl(t): ax2(t)=

cos (2t) — sin (2t)
° General solution to the system of ODEs

T =c121(t) + caza(t)
° Substitute solutions into the general solution
- ca(—2cos (2t) — sin (2t)) + c1(cos (2t) — 2sin (2t))
v [ c1 cos (2t) — co sin (2t) ]
° Substitute in vector of dependent variables
z(t) | | (c1 —2cp)cos(2t) — 2sin (2t) (% + 1)
[ y(t) ] - [ c1 cos (2t) — co sin (2t)
° Solution to the system of ODEs
{z(t) = (c1 — 2¢2) cos (2t) — 2sin (2t) (2 + 1) , y(t) = c1 cos (2t) — o sin (2t) }

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 50

-

Ldsolve( [diff (x(t),t)=x(t)-b*y(t),diff(y(t),t)=x(t)-y(t)],singsol=all)

~—

z(t) = ¢ sin (2t) + ¢ cos (2t)
y(t) = — 2¢; cc;s (2t) N 2¢) Si;l (2t) LG sir; (2t) Lo co; (2t)

v/ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 48

e

LDSolve [{x' [t]==x[t]-5*y[t],y' [t]==x[t]-y[t]1},{x[t],y[t]},t, IncludeSingularSol}ltions -> True]

x(t) — ¢1c0s(2t) + (¢1 — beg) sin(t) cos(t)
y(t) = co2 cos(2t) + (c1 — c2) sin(t) cos(t)

10



1.2 problem 2.1 (ii)

1.2.1 Solution using Matrix exponential method . . . . . . .. .. .. 11
1.2.2  Solution using explicit Eigenvalue and Eigenvector method . . . [12]
1.2.3 Maple step by step solution . . . . . ... .. ... ... 17

Internal problem ID [12556]
Internal file name [OUTPUT/11208_Wednesday_October_18_2023_10_01_15_PM_22296256/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (ii).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

1.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 1 1 z(t)
y'(8) 1 =2 | y(@)

For the above matrix A, the matrix exponential can be found to be

(crvio): (14vrs)e . (—1+2\/ﬁ)t o (1+x2/ﬁ)t /i3
(3\/ﬁ+13)e 2 N (—3\/ﬁ+13)e_ p
cAt — 26 26 13
(—1+2\/ﬁ)t ~ (1+\;ﬁ)t . (crrvis): (14vrs)e
e e <—3\/ﬁ+13>e P N e 2 (3\/E+13)
13 26 26

11



Therefore the homogeneous solution is

fh (t) = eAtE'

[ ( F) ( f) (—H—x/ﬁ)t (1+\/ﬁ)t
—14+v13)¢ 14+v13)e B B -
(3vI3+13)e 2 (-3vTs+13)e 2 e te 3 VT3
= 26 + 26 - 3
BT (o (i)
- - 13 —14+v13)t 1++4/13)¢
e p) +e 2 V13 (—3\/ﬁ+13)e 2 e~ 3 (3m+13>
- - '3 26 + 26
_ (-1+v13)t (14v13)t T
—1+13)t 14+/13)¢ _ _ .
(3\/ﬁ+13)e¥ (_3\/ﬁ+13)e—( 4 ) ( e T 4e 2 Vi3e
26 + 26 C1 — 3
= (-14v13)t (1+v13)¢ - )
- B 13 —1+413)t 14+v13)t
e 2 +e 2 V13c1 (_3\/ﬁ+13>e 2 e~ ) (3\/ﬁ+13)
B 13 + 26 + 26 Co
[ —14+V13)t (1+v13)t
((3c1+202)\/ﬁ+13c1)e*27 3e— T ((C1+2%>\/ﬁ—13%>
= 26 o 26
—1+V13)t 1+/13)t
((201 —3c2)\/ﬁ+13cg>e 2 ) e~ ( ) ) ((Cl—%)m—l?’%>

Since no forcing function is given, then the final solution is Z(t) above.

1.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

x'(t) 1 1 z(t)
y () 1 =2 | | y()

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—AI)=0

12

&1

C2



Expanding gives

1 1 10
det - =0
1 -2 01
Therefore
1—-A 1
det =0
1 —2—=A

Which gives the characteristic equation
M4+A-3=0

The roots of the above are the eigenvalues.

2
|
|
+

SRR
w w

A2 =

N~ N~

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1_ /13 :
—5—% |1 real eigenvalue
1, V13 :
—5+%* |1 real eigenvalue
Now the eigenvector for each eigenvalue are found.
. . _ _1_ 13
Considering the eigenvalue A\; = —5 — Y5>
We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
1 1 1 \/ U1 _ 0
1 -2 2 2 vy 0
% £ vo| 0
3, Vi3 N
1 -3 + 5 1L V2 ] i 0 ]

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is



3, V13
s+ Y8

R22R2_3Li/ﬁ=> 2 2
5+ 0 0

Therefore the system in Echelon form is
3 4 V13
% 1

0 0 V2 0

o

U1

The free variables are {vs} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

. . . _ 2t
variables gives equation {vl =3 \/ﬁ}
Hence the solution is
2 2t
Vs | _ | TV
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
VI3 | _y 3+13

t 1

Let t = 1 the eigenvector becomes

i 2t ] [ 2 ]
3+V13 | _ 3+V13

L t . L 1 .

Which is normalized to ; _ -
3+2\t/ﬁ _ | 3+f/ﬁ

L t . L 1 .

Considering the eigenvalue Ay = —3 + ‘/7173

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

1 1 1+m 10 v | |0
1 -2 2 2 01 Vo 0
3V 1 v | |0

1 —g—@_ EIRLE

14



Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

\/7
5-%° 1 0
1 —3-YBlo
_ Ry 5—%2 110
o=t m = 0 0]0
2 2

Therefore the system in Echelon form is

\/ﬁl V1 0

3 _ V13
2 2

0 0 (%] 0

The free variables are {v2} and the leading variables are {v;}. Let vy = ¢t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free
. . : _ 2t

variables gives equation {vl = \/ﬁ}

Hence the solution is

2t 2t
—3+v/13 | _ | —-3+v13
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
—3+v13 | _ " —3+/13

t 1
Let t = 1 the eigenvector becomes
2t 2
-3+V13 | _ | -3+V13
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

15



multiplicity

eigenvalue | algebraic m | geometric k£ | defective? | eigenvectors
S
_3, V13
—14 V18 1 1 No 2+
1
S
_3_413
4| Lo N
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue —% + @ is real and distinct then the
corresponding eigenvector solution is

Since eigenvalue —% — @ is real and distinct then the corresponding eigenvector

solution is

fg(t) = U26<_%_@>t
| TF |

Therefore the final solution is
fh(t) = lel(t) + Cgfg(t)

Which is written as

, L3 F): (3F):
O _o| THE | 4| TF
VL || )



Which becomes

L(t) ] ST i e s AR
— 2 - 2
t —14+v13)t 1++/13)t
y(t) qe( ;*)_F@e_( V)

The following is the phase plot of the system.
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Figure 2: Phase plot

1.2.3 Maple step by step solution

Let’s solve
[#'(t) = =(t) +y(t) ¥/ (t) = =(t) — 2y(t)]
° Define vector
20 [ (1) ]
y(t)
° Convert system into a vector equation

17



—/ ]. 1
1 -2 0

System to solve

Z(t) = b CZ()
1 -2

Define the coefficient matrix

1 1
A=
1 -2

Rewrite the system as
Z(t)=A 2@
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

V13 -5

2 )

[y
[y

| -

—1_
2 )

N =
Nl

—_ T+
%

w

Consider eigenpair

1
_ V13
2

ﬁ
w

|
nlw

2

1

Solution to homogeneous system from eigenpair

1
_3_
2

1

2y =l

N‘ﬁ
w

1= e<_%

Consider eigenpair

1

ﬁ

e | T
1
Solution to homogeneous system from eigenpair

— <—%+@)t ) _%i 13
1

&

o =¢€ 2

18



° General solution to the system of ODEs

— — —
T =CT1+CaZ2

. Substitute solutions into the general solution
1 1
T = cle<_%_¢Tﬁ)t S + 026(_%+@)t 2
1 1
° Substitute in vector of dependent variables
—1+v13)t 1+v13)t
.T(t) c2 (3—}-\/@)6(*27) e_(‘Qi)cl (—3+\/ﬁ>
= 2 B 2
y(t) (1+vI3)t (-1+v13)t
cie 2 + coe 2

° Solution to the system of ODEs

62(3+\/ﬁ)e(_1+2\/ﬁ>t - (1+\2/ﬁ)t01 (—3—}—\/@) (1+\/ﬁ)t (—1+\/ﬁ)t
z(t) = 5 - 5 Yty =ce 2 +ce z

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 86

Ldsolve( [diff (x(t),t)=x(t)+y(t),diff (y(t),t)=x(t)-2*y(t)],singsol=all) J
—14+v13)t 1+V13)¢
x(t)zcle( 2 ) -l-cze_( 2 :
—1+V13)t 1+v13)¢ —1+V13)t 1+V13)t
cle¥m 02e_¥\/ﬁ 3cle# 3626_( +2 )
ylt) = 2 N 2 N 2 N 2

v/ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 149

-

LDSolve[{x'[t]==x[t]+y[t],y'[t]==x[t]—2*y[t]},{x[t],y[t]},t,IncludeSingularSo%}tions -> True]

o L i(1rvm)e <01(<13 n 3\/E> eV 4 13 3\/5) +2v/13¢, (e*@ — 1))
y(t) — ie_%(H‘/B)t (2\/301 (e\/ﬁt - 1) - 02<(3\/ﬁ - 13) eVI3t _ 13 3\/ﬁ>>

19



1.3 problem 2.1 (iii)

1.3.1 Solution using Matrix exponential method . . . . . . .. .. .. 201
1.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . [21
1.3.3 Maple step by step solution . . . . . . ... ... ... . ..., 201

Internal problem ID [12557]
Internal file name [OUTPUT/11209_Wednesday_October_18_2023_10_01_15_PM_78487314/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (iii).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

Z'(t) = —4z(t) + 2y(t)
y'(t) = 3z(t) — 2y(t)

1.3.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

z'(t) —4 2 z(t)
y'(®) 3 -2 | y@)

For the above matrix A, the matrix exponential can be found to be

(\ﬁ+7)e_(3+‘ﬁ)t e(—3+\ﬁ)t(ﬁ_7) (_e(—3+ﬁ)t+e—(3+ﬁ)t>ﬁ
At — 14 - 14 - 7
3<_e(73+ﬁ)t+e*(3+ﬁ)t>ﬁ (_ﬁ_'_?)ef(sﬁuﬁ)t 6(73+\ﬁ)t<ﬁ+7)
o 14 14 + 14

20



Therefore the homogeneous solution is

fh (t) = €At€

<\f7+7)e_(3+‘ﬁ)t e(—3+ﬁ)t(ﬁ_7) (_e(—3+«ﬁ)t+e—(3+ﬁ)t)ﬁ
= 14 - 14 - 7 c1
3(—6(_3+ﬁ)t+e_(3+ﬁ>t)ﬁ <_ﬁ+7>e—(3+ﬁ)t e(—3+\ﬁ)t<ﬁ+7> Cs
L 14 14 + 14
<ﬁ+7>e_(3+‘ﬁ)t e(—3+ﬁ)t<ﬁ_7) (_e(—3+\ﬁ)t+e—(3+ﬁ)t)ﬁ02
14 - 14 C — 7

14

_3(—e(73+ﬁ)t+e7(3+ﬁ)t)\ﬁ61 . ((_\ﬁ-i-?)e_ (3+v7)t N e(_3+ﬁ)t(\ﬁ+7>> &

((cl —2c2)\ﬁ+7c1)e_ (3+ﬁ) ¢ e (_3+ﬁ)t ((cl —262)\/7—7c1>

14 14

((_301_02)ﬁ+7c2)e—(3+ﬁ)t 3e(—3+xf7)t((cl+%2)ﬁ+7%)
14 + 14

Since no forcing function is given, then the final solution is Z,(t) above.

1.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) —4 2 z(t)
y'(t) 3 -2 | y(®)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—AI)=0
Expanding gives
-4 2 10
det - A =0
3 -2 01

21



Therefore

Which gives the characteristic equation
N +6X1+2=0
The roots of the above are the eigenvalues.

M =-3+V7
Ay =—-3-7

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

—3-7 |1 real eigenvalue
—34+V7 |1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = —3 — /7

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

—4 2 10 v 0
(8- |-

3 -2 0 1 Vg 0

—1+7 2 v | |0

3 147 Vg 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

—14+7 2 0
3 1++4/71]0
—1++7 210
R2=R2_3—R1=> \/_
147 0 0/0

22



Therefore the system in Echelon form is
—14++7 2 vy 0
0 0 Vg 0

The free variables are {vy} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = _—13-t ﬁ}

Hence the solution is

2t __ 2t
—14+V7 | _ —14+V7

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
—14V7 | ¢ —1+V7
t 1

Let t = 1 the eigenvector becomes

[ ] [ 2 ]
-14+v7 | —1+V7
t 1
Which is normalized to i} _ -
- —1itﬁ _ | —142r\ﬁ
I t | I 1 |

Considering the eigenvalue Ay = —3 + /7

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
—4 2 V1 . 0
3 -2 Vg 0
-1- V1 . 0
3 1- ﬁ vy 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

—1 -7 2 0
3 1—/710

23



3R; —1—+7 210

Ry— Ry— — >
S 0o o0lo

Therefore the system in Echelon form is

—1—7 2 v 0
0 0 Vg 0

The free variables are {vy} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = 1ffﬁ}

Hence the solution is

2t 2t
V7 | _ 1+V7
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
VT | VT
t 1
Let t = 1 the eigenvector becomes
[ ot ] [ 2 ]
VT | | VT
t 1
Which is normalized to ; ) )
2t 2
VT | | 1T
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue | algebraic m | geometric k£ | defective? | eigenvectors
-,
—3 4T 1 1 No VT
- 1 -
-,
—3—7 1 1 No oV
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue —3 + /7 is real and distinct then the
corresponding eigenvector solution is

() = Ule(—3+ﬁ)t

%ﬁ 6(—3+ﬁ)t
1

Since eigenvalue —3—+/7 is real and distinct then the corresponding eigenvector solution
is

52 (t) = 1726<_3_ﬁ>t

17 e(—3—ﬁ)t
1

Therefore the final solution is
fh(t) = lel(t) + Cz.’fz(t)

Which is written as

2e<_3+ﬁ)t 2e(_3_ﬁ)t
z(t) —c 17 1-V7
=C + co
y(t) o(—3HVT)e o(—8-VT)i

Which becomes

ez (14v7)e” (ervr)e o (3rvr)e, (-1+v7)
3 + 3
—3+7)t —(3+v7)t

cle( + coe
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The following is the phase plot of the system.

1.3.3

IR RN

SOOI
NI

RN N RN RRRRRR SO
DN NN RN

RN RN RR RN RN
AR NG RRRR RN
SRR N NN
AR NN R REARR LR RRNNNN

-4 -3 -2 -1

Figure 3: Phase plot

Maple step by step solution

Let’s solve

[2'(t) = —4a(t) +2y(t) , ¥’ (t)

Define vector

Z(t)

|

(t)
y(t)

|

3z (t) — 2y(¢)]

Convert system into a vector equation

—4
3

2

-2

System to solve

—4
3

2

-2

0

CZ () + [
0

|

L Z(t)
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Define the coefficient matrix

-4 2
3 -2

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

2 2

-3 — ﬁa 1=v7 3 -3 + \/77 LT
1 1

Consider eigenpair

2
-3 - \/7) 1-v7
1

Solution to homogeneous system from eigenpair

(-3-v7)t . %ﬁ
1

_)
r1=¢€

Consider eigenpair

2

—3+ VT, | T
1

Solution to homogeneous system from eigenpair
2

2= e(—3+\f7)t | v
1

General solution to the system of ODEs

— — —

T =CZT1+CaZ2

Substitute solutions into the general solution

(-3-v7)t . &ﬁ _|_c2e(—3+ﬁ)t_ %ﬁ
1 1

H.
T =ce

Substitute in vector of dependent variables
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— 3 3

|: x(t) ] o <l+ﬁ>e_(3+ﬁ)t N 028(—3+\ﬁ)t<_1+ﬁ>

y(t) —(3+V7)t + c2e(—3+ﬁ)t

cie
° Solution to the system of ODEs

{x I e ST P CZe(_sm)t}

3 3

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 83

Ldsolve( [diff (x(t),t)=-4*x (t)+2%y(t) ,diff (y(t),t)=3*x(t)-2%y(t)],singsol=all) J

z(t) = cle<_3+ﬁ>t + coe (v7+3)t
(=3+v7)t —(V7+3)t (—3+v7)t —(V7+3)t
y(t) _ c1€ 5 \/7 _ [6)15] 5 \/7 4 c1€ 5 + Co€ 5

v Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 143

LDSolve [{x' [t]==-4xx[t]+2*y[t],y' [t]==3*x[t]-2*y[t]},{x[t],y[t]},t, IncludeSingjllarSolutions -

(t) = —

ﬂe_((?""ﬁ)t) <C1 <— (ﬁ - 7) VT LTy ﬁ) +2vTcy (ez‘ﬁt - 1))

y(t) — 1—146_<<3+ﬁ>t> (3\/%1 (eQ‘ﬁt — 1) + ¢ ((7 + \ﬁ) VTt L7 \ﬁ))
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1.4 problem 2.1 (iv)

1.4.1 Solution using Matrix exponential method . . . . . . .. .. .. 29]
1.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . [30
1.4.3 Maple step by step solution . . . . . ... .. ... ... ...

Internal problem ID [12558]
Internal file name [OUTPUT/11210_Wednesday_October_18_2023_10_01_16_PM_79597876/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (iv).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

z'(t) = =(t) + 2y(?)
y'(t) = 22(t) + 2y(t)

1.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

7(t) = AZ(t)
Or
2@ | |1 2] |20
v | |2 2] |y

For the above matrix A, the matrix exponential can be found to be

savTr): savTr): (3+v17)t (—3+v17)t
R ., TR 7. P 2<_e AL )m
At _ 34 34 17
e =
2 —e(3+\21ﬁ)t+e (_3+2m)t V17 (3+vIT) (3+vI7)t
(—\/ﬁ+17)e_ 2 n e 2 (\/ﬁ+17)
i 17 34 34
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Therefore the homogeneous solution is

—3+m)t

(3+\/ﬁ) t

(VIT+17)e”

2

e 2

(vir-1)

34

34

(VIT+17)e

—3+\/ﬁ)t

2

(—3+\/ﬁ)t

2 )\/ﬁ

—3+\/ﬁ)t

(3+m) t

(—\/ﬁ+17)e‘ 2

e 2

(VIT+17)

&1

C2

34

34

—3+\/ﬁ)t

(—\/ﬁ—i-l?)e_ 2 e

((01 —402)\/ﬁ+1701>e_

(—3+m)t

(3+ﬁ) t

2

e 2

34

<(61 —4Cz)\/ﬁ—l7cl>

34

((—4c1 —cz)\/ﬁ+17c2> e

(—3+ﬁ)t

(3+v17)¢

34

2

2e 2

((er+3)vIT+52)

34

+

17

C2

Since no forcing function is given, then the final solution is Z(t) above.

1.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) = AZ(t)
Or
z'(t) _ 1 2 z(t)
y'(t) 2 2 | y@)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—AI)=0

30



Expanding gives

1 2 10
det - =0
2 2 01
Therefore
11— 2
det =0
2 2—)

Which gives the characteristic equation
N —-3x-2=0

The roots of the above are the eigenvalues.
A==+

Ao =

CYRICI IRt
~ ~

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

% — @ 1 real eigenvalue
% + @ 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
V17
2

Considering the eigenvalue \; = 2

We need to solve A’ = Av or (A — M)V = 0 which becomes

1 2 3 \/ U1 _ 0
2 2 2 vy 0
%+£ V1 . 0

2 %-i—g V2 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented

matrix is
1, V1T
s T3 2
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V17
2R, -3+ %7 20
Be=R—-—7m =
s+ % 0 0]0

Therefore the system in Echelon form is
Ly vIT o | | oy 0

0 0 ()] 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = _%ﬁ}
Hence the solution is
_ 4t _ 4t
—1+V17 | _ —1+/17
i t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

4 4
—IHVIT |y —1+V17

t 1

Let t = 1 the eigenvector becomes

. a __ 4
—14+V17 | _ —14+/17
t 1
Which is normalized to
[ a4 ] [ 4 1
—14+V17 | _ —14+/17
t 1

Considering the eigenvalue Ay = 2 5+ ‘ﬁ
We need to solve A7 = A\t or (A — \I)¥ = 0 which becomes

1 2 3 \/]__7 V1 . 0
2 2 2 2 Vo 0
—5— @ vp | |0

2 %-@__w_ 0|
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Now forward elimination is applied to solve for the eigenvector #. The augmented

matrix is

1 _ V17

—2— % 2 |0
1 _ /17
2 22 |0
2R —-1-47 2/0
R2=R2—1—1\/ﬁ=> 2 2

-5~ "3 0 00

Therefore the system in Echelon form is

1 _ V17
27 % 2| |wn 0

0 0 ()] 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = ﬁﬁ}

Hence the solution is
4t

4t
1+V/17 | _ | 1+V17
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

4t 4
V17 | _ ¢ 1+v17
t 1
Let t = 1 the eigenvector becomes
[ 4 ] [ 4 ]
V1T | | 14+V1T
t 1
Which is normalized to ) ) )
4t 4
V17T | _ | 1417
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity £ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
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of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors
SN
1, V17
Y 1 1 No 2%
1
SN
3 _ VT §-4
2 "o 1 1 No 2 2
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue 3 + @ is real and distinct then the
corresponding eigenvector solution is

Nivd

f1(t) = 1716<% 2 >t

Since eigenvalue % — @ is real and distinct then the corresponding eigenvector solution

18

fQ(t) = ’(72€<%_g>t

Therefore the final solution is
fh(t) = lel(t) + CQfQ(t)

Which is written as

(1) ol T w0
= RN + ¢y P
v () ()



Which becomes

—3+V17 V17
x(t) . (1+\/ﬁ>e— ( 3-1—2 17)7: . (3+ 217)7: . <_1+\/ﬁ>
= | = 4 + 4
y(t) (3+vI7)t (—3+v17)t
c1€ 2 + coe” 2

The following is the phase plot of the system.
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Figure 4: Phase plot

1.4.3 Maple step by step solution

Let’s solve
[2'(t) = 2(t) + 2y(t) , ¥ (¢) = 22(t) + 2y(?)]

° Define vector

= z(t)
z(t) =
K [ y(t) ]

° Convert system into a vector equation
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1 2
Z(t) = 2 +
2 2
° System to solve
1 2
Z(t) = L2 (t)
2 2
° Define the coefficient matrix
1 2
A=
2 2
[ ]

Rewrite the system as

Z(t)=A 2@

° To solve the system, find the eigenvalues and eigenvectors of A
° Eigenpairs of A
i 2 T 2
3 _ VI | 3T 3y VIT | 35T
2 2 v |2 2
i 1 ] 1
[ ]

9 -

Solution to homogeneous system from eigenpair

31 = e(%_@)t .

[\V]

(SIS
[y
5
5

° Consider eigenpair

2

1
i+

1

3 4 VT
2 T2

5

Solution to homogeneous system from eigenpair

To = e<%+g)t .

N

(SIS
+
[y
#
5
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° General solution to the system of ODEs

— — —
T =CT1+CaZ2

. Substitute solutions into the general solution
2 2
T = cle@_@)t o + cze(%Jr@)t | et
1 1
° Substitute in vector of dependent variables
—3+V17)t 3+V17)t
.’E(t) c1 <1+\/ﬁ>e_ ( 2 ) e( 2 ) c2 (—1+\/ﬁ>
= 4 + 4
y(t) (—3+v17)t (3+v17)1
cie” 2 + coe 2

° Solution to the system of ODEs

o (1+\/ﬁ)e_ (_3+£/ﬁ)t . (3+\21ﬁ)t o (—H—x/ﬁ) (—3+v17)t (3+v17)t
+ 1 ,Y(t) = cre” 2 + e 2

z(t) = —

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 86

Ldsolve( [diff (x(t),t)=x(t)+2*y(t) ,diff (y(t),t)=2*x(t)+2xy(t)],singsol=all) J

(3+\/ﬁ)t (—3+ﬁ)t
z(t)=ce 2 +ce 2
3+V1T7)t —3+V17)t 3+VIT7)t —3+V17)t
() = cle( 2 ) V17 _ cze_(z)\/1_7+ cle( 2 ) N cze_( 2 )
= 4 4 4 4

v/ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 143

-

LDSolve [{x' [t]1==x[t]+2xy[t],y' [t]==2xx[t]+2*y[t]1},{x[t],y[t]},t, IncludeSingula\ Solutions -> T

— —e‘§<m‘3)t<c1 (— (x/ﬁ - 17) eV 417 + \/1_7> +4V/17¢y (emt - 1))
y(t) — —e_%(\/ﬁ_3>t (4\/1_701 (e\/ﬁt — 1) + 02((17 + \/1_7) eVt 4+ 17 — \/1_7>)
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1.5 problem 2.1 (v)

1.5.1 Solution using Matrix exponential method . . . . . . .. .. .. 38
1.5.2  Solution using explicit Eigenvalue and Eigenvector method . . . [39
1.5.3 Maple step by step solution . . . . . ... ... .. ... ..., 44

Internal problem ID [12559]
Internal file name [OUTPUT/11211_Wednesday_October_18_2023_10_01_16_PM_97786729/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (v).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

z'(t) = 4z(t) — 2y(t)
Y (t) = 3z(t) — y(t)

1.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 4 -2 z(t)
y'(8) 3 -1 | y(®)

For the above matrix A, the matrix exponential can be found to be

—2et +3e% —2e% 4+ 2¢t

3e? — 3¢t 3et —2e%

At
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Therefore the homogeneous solution is

fh (t) = eAtE'

—2¢et +3e? —2e% 4+ 2¢t c1

3e? —3e! 3t —2e* Co

(—2e' +3e¥)c; + (—2e* +2€') ¢y
(3e?* —3e')c; + (3e* —2e*) ¢y

2t t
L — _ _

(3c1 — 2¢9) e — 2€'(—ca+ 1)

(3cy — 2¢5) €2 — 3et(—cy + 1)

Since no forcing function is given, then the final solution is Z(t) above.

1.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) 4 -2 z(t)
y'(8) 3 -1 | y@)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives
4 -2 10
det - =0
3 —1 01
Therefore
4—-X =2
det =0
3 —1-2A
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Which gives the characteristic equation

A —3\+2=0

The roots of the above are the eigenvalues.

AL =2
=1

This table summarises the above result

eigenvalue

algebraic multiplicity

type of eigenvalue

1

1

real eigenvalue

2

1

real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue A\; =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

Now forward elimination is applied to solve for the eigenvector ¥. The augmented

matrix is

—2 10
-1
-1 0 1
3 -2
3 -2

Therefore the system in Echelon form is

40

U1

V2

U1

(%

3 =210
3 =210
3 =2
Ry=Ry,— R —
0 O
3 -2 U1 _ 0
0 O (2 0

0
0




The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = %}

Hence the solution is

2 2
3 . 3
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
3 | 4| 3
t 1
Let t = 1 the eigenvector becomes
] T
3 | _ |3
t 1
Which is normalized to L L
z 2
3 =
t 3

Considering the eigenvalue Ay = 2

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

4 -2 10 V1 0
- (2 =

3 -1 01 Vg 0

2 =2 (%1 . 0

3 -3 Uy 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

2 —210
3 —-3/0
3R 2 —210
R2=R2——1:>
2 0 010
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Therefore the system in Echelon form is

2 =2 V1 0
0 O ) 0
The free variables are {vs} and the leading variables are {v;}. Let vo = t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = t}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
=1
t 1
Let t = 1 the eigenvector becomes
t 1
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors
1
2 1 1 No
1
Th
1 1 1 No ’
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

Therefore the final solution is
fh(t) = lel (t) + Cz.fz(t)

Which is written as

x(t et 2¢!
® | _ . to| 3
y(t) eZt et
Which becomes
z(t) | _ cre?t + 22¢
y(2) c1e?t + cyet

The following is the phase plot of the system.
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Figure 5: Phase plot

1.5.3 Maple step by step solution

Let’s solve

[2'(t) = 42(t) — 2y(2) , y/'(£) = 3x(t) — y(¢)]

° Define vector

° Convert system into a vector equation

7 ()=

° System to solve

Z(t) =

4 -2 -Rw+[O]
_3 _1_

4 -2
3 —1

0

-z (1)

° Define the coefficient matrix
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A=
3 -1

Rewrite the system as
Tt =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

- wIiN

Consider eigenpair

Solution to homogeneous system from eigenpair

1
o~
— i

Consider eigenpair

1
1

2,

Solution to homogeneous system from eigenpair

1
1

—
.'E2:e2t'

General solution to the system of ODEs
— — —
T =CT1+CaTo

Substitute solutions into the general solution

; 1

- ot
T = ci€e’ - + coe”’ -

= wiN

Substitute in vector of dependent variables
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z(t) | chlet + cpe®
y(t) cret + coe?
° Solution to the system of ODEs

{x(t) = 2a¢ 4 cre?, y(t) = ciet + CQezt}

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

Ldsolve( [diff (x(t),t)=4%x(t)-2*y(t),diff (y(t),t)=3*x(t)-y(t)],singsol=all) J

z(t) = c1e’ + cpe®

3c et
y(t) = —

2t
e
2 + Cy

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56

kDSolve [{x' [t]==4*x[t]-2*y[t],y' [t]==3*x[t]-y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> T

z(t) = €'(c1(3e" — 2) — 2c2(e — 1))
y(t) = € (3ci(eh = 1) + 2 (3 — 2¢%))
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1.6 problem 2.1 (vi)

1.6.1 Solution using Matrix exponential method . . . . . . .. .. .. 47
1.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . (4§
1.6.3 Maple step by step solution . . . . . . ... ... ... . ..., H3l

Internal problem ID [12560)]
Internal file name [OUTPUT/11212_Wednesday_October_18_2023_10_01_17_PM_76338301/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.1 (vi).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

z'(t) = 2z(t) + y(t)
y'(t) = —z(t) +y(?)

1.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as
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For the above matrix A, the matrix exponential can be found to be

At __

3t 3t
\/3e7 sin V3t 2\/3e7 sin V3t
ezcos(‘[t>+—3(2) - 3(2)
2v3e¥ sin(¥5t) 3t /3
-3 €2 COS 5 3

t) \/ge% sin(@)
V3t

e% (\/3 Sin(@>+3cos<@>> 2\/§e% sin( 23f>
3 —s
it F) (e E) ()
— _ 2

Therefore the homogeneous solution is

¥ (\/5 Sin<fT3;>+3cos<@>> 23eF Zm(%) .
widtw() _A(s(8)sex(2) | | e

3 3

e%ﬁ (x/?:sin( 23t)+300s(\/2§t)>c1 n 2\/§e% sin(@)w
3
t

3
2\/§e7 sm(T3> c1 e%t (\/5 sin(%)—3cos(%))c2

3 3

e37 (\f(c1+2cz)sm( )+3cos( §t> )
3

V3t

(\[( +cl)s1n<‘f> SCOS(;T)Q)e%

3

Since no forcing function is given, then the final solution is Z(t) above.

1.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—AI)=0
Expanding gives
2 1 10
det - A =0
-1 1 01
Therefore
2—A 1
det =0
-1 1-=X

Which gives the characteristic equation
N —3X1+3=0

The roots of the above are the eigenvalues.

3 i3
A =4 22
1=51 7
y, =3 V3
279 9

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

% + %5 1 complex eigenvalue
3_ i3 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

i i i _ 3 V3
Considering the eigenvalue A\; = § — *5*

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

2 1 (3 2\/§> 10 " 0

-1 1 01 Vs 0
%‘F%ﬁ 1 V1 . 0
-1 -lyas Vs 0
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Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

1 V3
1403 1 0

1 V3
-1 —1+%10

R
Ry=Ry+ 1z =
1y 0 00

Therefore the system in Echelon form is
% + %:7, 1 U1 0
0 0 V2 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl =— th\/ﬁ}
Hence the solution is
2t 2t
+1v3 | _ 1+iv/3
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t __ 2
HIV3 |y 1+iv/3
1
Let t = 1 the eigenvector becomes
[ ot ] [ 2 ]
+1V3 | _ 1+iV/3
t 1
Which is normalized to ) ) )
2t 2
CHIVE | | 143
t 1

i i i _ 3 i3
Considering the eigenvalue Ay = 5+
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We need to solve A7 = A or (A — AI)¥ = 0 which becomes

2 1 (3 u/ﬁ) 10 0 0

-1 1 2 2 01 Vo 0
1-p 1 vy | |0
—1 —%—%ﬁ V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

iv3
- o
Rk
R L5 100
Ry=Rp+ 7= |* °?
3 9 0 00
Therefore the system in Echelon form is
iv/3
% — 73 1 V1 _ 0
0 0 V2 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = \/2;_ 1}

Hence the solution is

[\~
~

2t
iv/3—1

t

—
= 2
—_

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
1v/3-1 — iv3—1
t 1
Let t = 1 the eigenvector becomes
2t 2
Iv/3-1 _ | w31
t 1
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Which is normalized to

2t 2
Iv3-1 _ iv/3—1
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors
SR
. _1,iV38
3 4 iy3 1 1 No 2+
1
SR
3 _ i3 —1-ig
2Ty 1 1 No o
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

fh(t) = lel(t) + 023_3"2(?5)

Which is written as

)]s
t —_— -
x( ) =C _%""2\2/5 + Co _%_Z\'f
y(t) (3+5P)1 (35
Which becomes
(i\/§—3)t (i\/§+3)t
’L(\/g-l-Z) coe” 2 ie 2 c1 (z—\/g)
z(?) = 2 + 2
y(t) (i\/§+3)t (iﬁ—s)t

cie 2 +coe T 2

The following is the phase plot of the system.
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Figure 6: Phase plot

1.6.3 Maple step by step solution

Let’s solve
['(t) = 2z(t) + y(t) ,¥'(t) = —z(t) + y ()]

Define vector
x(t
2() = (t)
y(t)
Convert system into a vector equation

—/ 2 ]. —
T

z (t) =
__1 1_

System to solve

o= % .20
__11_

Define the coefficient matrix
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2 1
-1 1

A=

Rewrite the system as
) =A-2()
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1

1

1

H
B
W

V3
2

3 _ 3 -3+
2
1

Consider complex eigenpair, complex conjugate eigenvalue can be ignored

;
_1_1v3
2772

V3
2

[\

1

Solution from eigenpair

()

1

_1_Iv8
272

1

Use Euler identity to write solution in terms of sin and cos

ot (n (49) -1an(£9)) | T

Simplify expression

cos( Y3t) _Isin( Y3t
( ) ( 2 )
-3

cos <‘[t) —Isin (@)

Both real and imaginary parts are solutions to the homogeneous system

_cos(@) + ﬁsin(@) cos(@)ﬁ + sm(
Z1(t) =e? - 2 2  To(t) =e7 - 2

s 42)

General solution to the system of ODEs
Z = Clzl(t) + CQEQ(t)
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° Substitute solutions into the general solution

cos(‘[t) \/gsin(@) cos(@)\/g sin(%)
= 3t T2 + 2 3t 2 + 2
r =cCcez2 - +coe2 -
cos <‘[t> —sin (%)
° Substitute in vector of dependent variables

c2v/3—cq ) cos V3t sin ‘ft c1+co eSt
][ () o))
y(t) e’ (c cos <‘[t> — ¢y sin (‘ft>>

° Solution to the system of ODEs

Lot = UenVome) LRI CENL ) 2 % (o con (49¢) - casim (491)) )

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 82

Ldsolve( [diff (x(t),t)=2%x(t)+y(t),diff (y(t),t)=—x(t)+y(t)],singsol=all) J

z(t) = e? (sin (@) c1 + cos (g) cz>

e%(ﬁ sin <@> — /3 cos (ft> ¢ +sin (f >cl+cos<f ) )
2

y(t) = —

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 111

LDSolve [{x' [t]==2%x[t]+y[t],y' [t]==-x[t]+y[t]1},{x[t],y[t]1},¢, IncludeSingularSojl.utions -> True

z(t) — %6315/2 (301 cos <\/2§t> +V3(c1 + 2¢5) sin (\/515))
y(t) — %6&/2 (3(;2 cos (g) — \/3(2(:1 + ) sin (g))
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1.7 problem 2.2 (i)

1.7.1 Solution using Matrix exponential method . . . . . . .. .. .. 50l
1.7.2  Solution using explicit Eigenvalue and Eigenvector method . . . [BT
1.7.3 Maple step by step solution . . . . . ... ... ... .. .. .. 621

Internal problem ID [12561]
Internal file name [OUTPUT/11213_Wednesday_October_18_2023_10_01_17_PM_26773818/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (i).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

()

z’ 3x(t) — y(t)
y'(t)

(t) +y(t)

1.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 3 -1 z(t)
y'(8) 11 y()

For the above matrix A, the matrix exponential can be found to be

eAt e?t(l + t) —€2tt
et  e*(1—1t)
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Therefore the homogeneous solution is

fh (t) = eAtE'

e?(1+t) —e?t c1

et  e¥(1-1t) C2

e?(1 +t) c; — etey
e?tc; + e (1 —t) ¢y

e?(tc; — ot + ¢1)

e?(tc; — cot + ¢3)

Since no forcing function is given, then the final solution is Z(t) above.

1.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) 3 —1 z(t)
y'(8) 11 y(?)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

3 —1 10

det - =0

1 1 01

Therefore
3—x -1
det =0
1 1-=A
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Which gives the characteristic equation
M —4x+4=0
The roots of the above are the eigenvalues.
AL =2

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = 2

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

3 —1 10 V1 0
- @) -

1 1 01 Vg 0

1 -1 V1 . 0

1 -1 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

1 =10
1 =10
—-11]0
R2 = R2 — Rl -
010
Therefore the system in Echelon form is
1 -1 V1 . 0
0 O () 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = t}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
=t
t 1
Let t = 1 the eigenvector becomes
t 1
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

1
1

2 2 1 Yes

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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vector vector

The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector
eigenvectors
v v | complete eigenvalue.
Multiplicity 2 defect is zero
U1 V2
case 2 normal generalized
eigenvector eigenvector
eigenvectors
D —— ? | defective eigenvalue.
Multiplicity 2 defect is 1.
V1 V2
A—-)I A—-)NI
/_\‘/\.
V2 v1 Zero vector
rank 2 rank 1

A

] =€ t’Ul

— o = C/\t'l)g
The solution is

T = 1T + C2X2

A

] = e t’Ul

Xy = M (v1t + vy)

Solve for the generalized eigenvector vq
from

(A=) vy =vy
Then the solution is

T =C1T] + coxo

Figure 7: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ¥, by solving

(A= X%, =0,

Where 7 is the normal (rank 1) eigenvector found above.

Solving for v gives

N2

1
0

1
1

60

0
1
-1
-1

Hence we need to solve

U1 1
V2 1
1 1
Va2 1




We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

fl (t) = 1716)‘t

1
= e
1

2t

e2t

And

Therefore the final solution is
fh(t) = lel(t) + Cgfg(t)

Which is written as

z(t) et e*(t + 2)
=cC + co
y(t) e’ e’ (1+1)
Which becomes
z(t) | | (E+2)ca+cr)e”
y(t) eZ(cot + c1 + o)

The following is the phase plot of the system.
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Figure 8: Phase plot

step solution

[2'(t) = 3z(t) — y(8) ,y'(¢) = =(¢) + y(2)]

° Define vector
z(t
2() = (t)
y(t)
) Convert system into a vector equation
3 —1 0
Z(t) = L2+
1 1 0
° System to solve
3 —1
Z(t) = Z(t)
1 1
° Define the coefficient matrix

62




3 -1
1 1

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 0

Y Y

1 0

2

Consider eigenpair, with eigenvalue of algebraic multiplicity 2

1
1

2,

First solution from eigenvalue 2

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 2 is the eigenvalue, and
To(t) = e (t?} + B)

Note that the ¢t multiplying ¥ makes this solution linearly independent to the 1st solution obtai
Substitute Z(¢) into the homogeneous system

AeM (t?} + B) +eMy = (eMA) - (t?} - Z)

Use the fact that v is an eigenvector of A

AeM (t? n B) + MY = oM (At? +A. B)

Simplify equation

\p+v=Ap

Make use of the identity matrix I
AD)-p+v=A-p

Condition p must meet for zz(t) to be a solution to the homogeneous system
ﬁ.

(A=X-1I)-p="
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° Choose ; to use in the second solution to the homogeneous system from eigenvalue 2

3 -1 10 5 1
J— . . p =
1 1 01 1
° Choice of ;
H. 1
p =
0
° Second solution from eigenvalue 2
1 1
Zo(t) = [¢- +
1 0

. General solution to the system of ODEs

5) = Clzl(t) + szz(t)

° Substitute solutions into the general solution
Z=cpe- +@&-t-1 + 1
1 0
° Substitute in vector of dependent variables
z(t) | | (et +cite)
y(t) B e (cot + ¢1)

° Solution to the system of ODEs
{z(t) = e*(cat + c1 + ¢2) ,y(t) = €*(cat + 1)}

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

Ldsolve([diff(x(t),t)=3*x(t)—y(t),diff(y(t),t)=x(t)+y(t)],singsol=a11) J

z(t) = e*(cot + c1)
y(t) = e*(cat +¢; — ¢3)
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v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 44

-

kDSolve [{x' [t]==3*x[t]-y[t],y' [t]==x[t]+y[t]1},{x[t],y[t]1},t, IncludeSingularSol}.ltions -> True]

z(t) = e (ci(t+ 1) — cot)
y(t) = e*((c1 — co)t + c3)
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1.8 problem 2.2 (ii)

1.8.1 Solution using Matrix exponential method . . . . . . .. .. .. 66!
1.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . [67
1.8.3 Maple step by step solution . . . . . ... ... ... .. .. .. 721

Internal problem ID [12562]
Internal file name [OUTPUT/11214_Wednesday_October_18_2023_10_01_17_PM_4787677/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (ii).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

z'(t) = z(t) —y(?)
y'(t) = 22(t) — 2y(t)

1.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 1 -1 z(t)
y'(8) 2 =2 | | y(®)

For the above matrix A, the matrix exponential can be found to be

—et+2 et-1
2—2et 2et—1

At
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Therefore the homogeneous solution is

—et4+2 et-—-1 c1

2—2et 2et—1 Co

(—et+2)cr+ (et —1) ¢y
(2—2e e+ (267t —1) ey

(2 —c1)et +2¢; — ¢y

(—2¢1 + 2¢3) €7 +2¢1 — ¢

Since no forcing function is given, then the final solution is Z(t) above.

1.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) 1 -1 z(t)
y'(8) 2 -2 | y(@®)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives
1 -1 10
det — =
2 -2 01
Therefore
1-Xx -1
det =0
2 =2-)
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Which gives the characteristic equation
N4+A=0
The roots of the above are the eigenvalues.

A= -1
Aa=0

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue
-1 1 real eigenvalue
0 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue \; = —1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -1 10
- (=1
2 -2 01
2 -1
2 -1

Now forward elimination is applied to solve for the eigenvector ¥. The augmented

matrix is
2 =110
2 =110
2
Ry=Ry,— R —
0

Therefore the system in Echelon form is

2 -1
0 O

(%1

V2
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V1 . 0
Va2 0
U1 . 0
Va2 0

0
0
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The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = %}

Hence the solution is

o~ N |-
(S S VTN

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2 1

2 | 4| 2

t 1
Let t = 1 the eigenvector becomes

e o

2 — 2

t 1
Which is normalized to L -

t

s | _ |1

t 2

Considering the eigenvalue A\, = 0

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -1 10 V1 0
- (0) -

2 -2 01 Vg 0

1 -1 V1 . 0

2 =2 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

1 —-11(0
2 =210
1 -1/0
Ry =Ry — 2R, —
0 010
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Therefore the system in Echelon form is

1 -1 V1 0
0 O ) 0
The free variables are {vs} and the leading variables are {v;}. Let vo = t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = t}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
=1
t 1
Let t = 1 the eigenvector becomes
t 1
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

R

~1 1 1 No 2
1
1

0 1 1 No
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue —1 is real and distinct then the
corresponding eigenvector solution is

Therefore the final solution is
fh(t) = lel (t) + Cz.fz(t)

Which is written as

z(t) & 1
=C + co
y(t) et 1
Which becomes
z(t) | _ | 25 +e
y(t) cre”t + ¢y

The following is the phase plot of the system.
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Maple step by step solution

1.8.3

Let’s solve

z(t) —y(t),y'(t) = 22(t) — 2y(t)]

Define vector

[2'(t)

Convert system into a vector equation

—
Z

| (t)+[

0
0

(

—
T

1 -1

2 =2

1 -1
2 =2

()

—/
Z

System to solve

Z(t) =

Define the coefficient matrix
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A=
2 =2

Rewrite the system as
Tt =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

i o
) 2 ) 0’
1 1

Consider eigenpair

Solution to homogeneous system from eigenpair

— _
x1=¢et.

= N

Consider eigenpair

1
1

0,

Solution to homogeneous system from eigenpair

N 1
Tro =
1

General solution to the system of ODEs
— — —
T =CT1+CaTo

Substitute solutions into the general solution

—t . C2

_)
T = cie +

= N

C2

Substitute in vector of dependent variables
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z(t) | | % +e
y(t) cie”t + e
° Solution to the system of ODEs

{a(t) = 95" + o y(t) = i+ |

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

Ldsolve( [diff (x(t),t)=x(t)-y(t),diff (y(t),t)=2%x(t)-2*y(t)],singsol=all) J

z(t) =c; + coe™?
y(t) = 2coe ™" + ¢

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 59

LDSolve [{x' [t]1==x[t]-y[t],y' [t]==2xx[t]-2*%y[t]},{x[t],y[t]},¢t, IncludeSingularSﬁalutions -> Tru

z(t) = e (1 (26" — 1) — o (e’ — 1))
y(t) = e (2ci (e = 1) — (e — 2))
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1.9 problem 2.2 (iii)

1.9.1 Solution using Matrix exponential method . . . . . . .. .. .. 751
1.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . [76]
1.9.3 Maple step by step solution . . . . . ... ... ... .. ... . 811

Internal problem ID [12563]
Internal file name [OUTPUT/11215_Wednesday_October_18_2023_10_01_18_PM_39063778/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (iii).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

z'(t) = z(t)
Y (t) = 2(t) — 3y(t)

1.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Z'(t) 1 0 z(t)
y'(t) 2 -3 y(t)

For the above matrix A, the matrix exponential can be found to be
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Therefore the homogeneous solution is

fh(t) = €At€
[ et 0 C1
G
[ etcl

(e4t_1)673t01

) + e~3t¢,

etcl

(e4tc1 —c1 +202)e*3t
2

Since no forcing function is given, then the final solution is Z(t) above.

1.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) 1 0 z(t)
y'(t) 2 -3 y(t)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—A)=0

Expanding gives

1 0 10

det - A =0

2 -3 01

Therefore
1-A 0
det =0
2 -3—-A
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Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

1=A)(=3-X)=0

The roots of the above are the eigenvalues.

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1 1 real eigenvalue

-3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue \; = —3

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 0 10 U1 0
- (-3) -
2 -3 01 Uy 0
4 0 V1 _ 0
20 Vo 0
Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is
4 0]0
2 0]0
R 4 00
Ry = Ry — =1 -
2 000
Therefore the system in Echelon form is
4 0 V1 . 0
00 Uy 0
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The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 0}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0 0
=t
t 1
Let t = 1 the eigenvector becomes
0f |0
t 1

Considering the eigenvalue A\s = 1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 0 10 V1 0
- () =

2 -3 01 Vg 0

0 0 |[|w]| |0

2 —4 Va2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

0 O
2 -4

0
0

Since the current pivot A(1,1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

2 4
0 O

0
0

78



Therefore the system in Echelon form is

2 —4 V1 0
0 O ) 0
The free variables are {vs} and the leading variables are {v;}. Let vo = t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 2t}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
=t
t 1
Let t = 1 the eigenvector becomes
2t 2
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

2

1 1 1 No
1
0

-3 1 1 No
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

Since eigenvalue —3 is real and distinct then the corresponding eigenvector solution is
fg(t) = 626_3t
0

== e

1

-3t

Therefore the final solution is
fh(t) = lel (t) + Cz.fz(t)

Which is written as

z(t) 2¢ 0
=C + co
y(t) et e—3t
Which becomes
z(t) 2¢; €t
y(t) (cre® + cp) e3¢

The following is the phase plot of the system.
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22(t) — 3y(t)]
81

CZ(E) + [

-4 -3 -2 -1 0

1 0
2 -3
1 0
2 -3

z(t) ,y'(t)

Define vector

)

Convert system into a vector equation
t

Define the coefficient matrix

Let’s solve
System to solve

[2'(t)
(

—/
Z

1.9.3 Maple step by step solution
[



1 0
2 -3

A=

Rewrite the system as
Tt =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

0 2
_37 ) 17
1 1

Consider eigenpair

Consider eigenpair

2
1

L,

Solution to homogeneous system from eigenpair

— . | 2
Tr9g =¢€ -
1
General solution to the system of ODEs

— — —
T =CT1+CaTo

Substitute solutions into the general solution

0 2

—3tey - + o€t -
1

N
r =e

Substitute in vector of dependent variables
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z(t) | 2co€’
y(t) (coe* + ¢p) €73
° Solution to the system of ODEs

{z(t) = 2c0e, y(t) = (coe™ + ;) e73}

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

Ldsolve( [diff(x(t),t)=x(t),diff (y(t),t)=2%x(t)-3*y(t)],singsol=all) J

z(t) = cpe’
¢
co€

y(t) = 27 + e

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 38

LDSolve [{x' [t]==x[t],y' [t]==2*x[t]-3*y[t]1},{x[t],y[t]1},t, IncludeSingularSolutiﬂons -> True]

z(t) — cr€’
y(t) — %e_?’t (cr(e® = 1) + 2¢7)
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1.10 problem 2.2 (iv)

1.10.1 Solution using Matrix exponential method . . . . . . .. .. .. 84
1.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . [83l
1.10.3 Maple step by step solution . . . . . ... .. ... ... ... 901

Internal problem ID [12564]
Internal file name [OUTPUT/11216_Wednesday_October_18_2023_10_01_18_PM_75237406/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (iv).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

1.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

At
e3t
2

3t

NN
D



Therefore the homogeneous solution is

fh (t) = €At€

et 0 C1
= 3t t
e _& 3t
| 2 3 € Co
etcl

- 3t t
(% — %) a1+ €¥ey

elc

(c1+2c2)e3t  etey
2 2

Since no forcing function is given, then the final solution is Z(t) above.

1.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives

10 0

det - =0

1 3 01

Therefore
1—X 0
det =0
1 3—A
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Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

1-=NB=N)=0

The roots of the above are the eigenvalues.

A =
Ay =3

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue A\; =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
10 10 U1 0
- -
13 01 Vg 0
00 vi | |0
1 2 V2 0
Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is
0 0[O0
1 2(0

Since the current pivot A(1,1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 2(0
0 0]0
Therefore the system in Echelon form is
1 2 (%] . 0
00 Uy 0

86



The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —2t}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

—2t -2
=t
t 1
Let t = 1 the eigenvector becomes
—2t -2
t 1
Considering the eigenvalue Ay = 3
We need to solve A¥' = Av or (A — AI)¥ = 0 which becomes
U1 _ 0
() 0
-2 0 U1 . 0
1 0 Va2 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

-2 0|0
1 00
R -2 0|0
Ry =Ry + —1
2 0 00
Therefore the system in Echelon form is
-2 0 V1 . 0
0 0 Vg 0
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The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 0}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0 0
=t
t 1
Let t = 1 the eigenvector becomes
0f |0
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

-2

1 1 1 No
1
0

3 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
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corresponding eigenvector solution is

.’L‘l(t) = 1716

|
®

Therefore the final solution is
fh(t) = lel(t) + CQfQ(t)

Which is written as

z(t) —2¢ 0
=C + co
y(t) et e3t
Which becomes
z(t) | —2¢€*
y(t) cret + coe®

The following is the phase plot of the system.
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1.10.3 Maple step by step solution
Let’s solve

[2'(¢) = 2(t) , ¥/ (t) = =(£) + 3y(t)]

Define vector

Convert system into a vector equation

o
|_|
~ —~
+~ -~
N—r N—r
8 T8
e 1

=) 5 o o
—

o)

Lo n — —
Qo 1
+~

Il m 1
= § =
T8 n T8

Define the coefficient matrix
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0
13

A=

Rewrite the system as
Tt =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

—2 0
Y ) 37
1 1

Consider eigenpair

—2
1

L,

Solution to homogeneous system from eigenpair

Consider eigenpair

0
1

3,

Solution to homogeneous system from eigenpair

0
1

—
w2:e3t-

General solution to the system of ODEs
— — —
T =CT1+CaTo

Substitute solutions into the general solution

-2 0
Z = cet - + et
1

Substitute in vector of dependent variables
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z(t) | —2¢;€*
y(t) ciet + cpe’t
° Solution to the system of ODEs

{z(t) = —2c1€t,y(t) = c1e® + o'}

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 24

Ldsolve( [diff(x(t),t)=x(t),diff (y(t),t)=x(t)+3*y(t)],singsol=all) J
z(t) = cye’
t
y(t) = —% + ¢’

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 39

LDSolve [{x' [t]==x[t],y' [t]==x[t]+3*y[t]1},{x[t],y[t]},t, IncludeSingularSolution% -> True]

z(t) — cr€’
¢
C1 3t Cc1€
y( ) ) +c)e B
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1.11 problem 2.2 (v)

1.11.1 Solution using Matrix exponential method . . . . . . .. .. .. 93]
1.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . [04
1.11.3 Maple step by step solution . . . . . ... .. ... .. ... .. 99|

Internal problem ID [12565]
Internal file name [OUTPUT/11217_Wednesday_October_18_2023_10_01_18_PM_19494184/index.tex|

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (v).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

z'(t) = —y(t)
y'(t) = 22(t) — 4y(t)

1.11.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

Z'(t) 0 -1 z(t)
y'(8) 2 -4 | |y

For the above matrix A, the matrix exponential can be found to be

(—\/§+1)e_(2+‘/§)t o(V2-2)t (1+v2) (—e(ﬂ_z)t+e_(2+‘/§)t> V2
GAt 2 + 2 1
(—eV# e (7)) v (1rv2)e ()0 (22 (g )
o 2 2 - 2
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Therefore the homogeneous solution is

fh (t) = €At5

(_ﬁ+1)e—(2+\/§)t e(ﬁ_z)t(l—i-\/i) (_e(\/i—Q)i+e—(2+\/§)t>\/§
— 2 + 2 4 C1
(—e(ﬁ_2)t+e_(2+\/§)t>\/§ (1+\/§>e_(2+\/§)t e(ﬁ_2)t<\/§_1) Cs
— - 2 _ .

2 2 2

B (_e(ﬁ72)t+e—(2+ﬁ)t)\/§cl N ((1+\/§>e_(2+«/§)t ~ e(\/§—2)t<\/§_1)> .

[ ((—261 +cz)\/§+261>e_ (2+v2)e ((01 -%) \/§+01>e(ﬁ_2) ¢
4 + 2

((02_01)ﬁ+c2) e (42)c + (\/5 (—c2+cr )+cz) e(ﬁ_Q)t
2 2

Since no forcing function is given, then the final solution is Z,(t) above.

1.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) 0 -1 z(t)
y'(®) 2 4| | y(®)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—AI)=0
Expanding gives
0 —1 10
det - A =0
2 —4 01
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Therefore
det =0

Which gives the characteristic equation
NM+4r+2=0

The roots of the above are the eigenvalues.

M =v2-2
A =—-2-12

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

V2 -2 1 real eigenvalue

—2—-v2 |1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = —2 — /2

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

0 —1 10 0
(2 " |-

2 —4 01 Vs 0

2442 -1 v | |0

2 V2 -2 Vs 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

2442 -1 |0

2 V2-210
2R 2442 —-11/0

R2=R2— ! —— \/_
2+4/2 0 010
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Therefore the system in Echelon form is
2+2 -1 vy 0
0 0 Vg 0

The free variables are {vy} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = ﬁi

Hence the solution is

t t
2+v2 | _ | 2+v2
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2-+v2 —¢ 2+v2

t 1
Let t = 1 the eigenvector becomes
S S
24v2 | _ | 2+V2
t 1
Which is normalized to ) 3 )
t 1
24v2 | _ | 2+V2
t 1

Considering the eigenvalue Ay = v/2 — 2
We need to solve AU = At/ or (A — \I)¥ = 0 which becomes

0 -1 v | 0
2 —4 V2 0
1 . 0

2 —2—\/5 Vs 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

2-+2 -1 0
2 —2-4210

96



2R1 2_\/§ -11]0

R2=R2— =4
2—1/2 0 010

Therefore the system in Echelon form is

2—-v2 -1 v 0
0 0 Vg 0

The free variables are {vy} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl = —ﬁ}
Hence the solution is
t ¢
Va2 | _ | T V22
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

1 1
22 | _y 2-2
t 1
Let t = 1 the eigenvector becomes
—_t 1
v2-2 | _ 2—2
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity £ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.
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multiplicity
eigenvalue | algebraic m | geometric k£ | defective? | eigenvectors

_ 1

V2 -2 1 1 No Ve
1

N S

—2—2 1 1 No 2V
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue v/2 — 2 is real and distinct then the
corresponding eigenvector solution is

.’fl (t) = 616<ﬁ_2)t
_| e | ()
1

Since eigenvalue —2—+/2 is real and distinct then the corresponding eigenvector solution
is

fg (t) = ’1726(_2_\/§>t

Therefore the final solution is
fh(t) = lel(t) + Cz.’fz(t)

Which is written as

e(\/i—z)t e(—2—\/§)t

z(t) P R I T T2
=G Ca

y(t) e(ﬁ—2)t e(—z—\/i)t

Which becomes

x(t) . — - + e(x/§—2)t021<2+\/§)

cpe” (2—%-\/5)1&
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The following is the phase plot of the system.
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Figure 12: Phase plot

Maple step by step solution

1.11.3

Let’s solve

= 2z(t) — 4y(2)]

[2(t) = —y(t), ¥ (t)

Define vector

0 -1

2 -4

0 -1

2 -4

Convert system into a vector equation

System to solve
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Define the coefficient matrix

0 -1
2 —4

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 1

-2 - \/ia 2 -

S

V2-2,| Vv*?
1 1

Consider eigenpair

-1
—2— \/§) V2
1

Solution to homogeneous system from eigenpair

2= e(—z—fz)t | T

Consider eigenpair

1
\/ﬁ -9 V2-2
1
Solution to homogeneous system from eigenpair

(ﬁ—2)t |~ \/51—2

1

_)
Tro =€

General solution to the system of ODEs
— — —
T =CZT1+CaZ2
Substitute solutions into the general solution
1 1

(-2-v2)t | T2-v2 _|_02€(ﬁ—2)t. V22

1 1

H.
T =ce

Substitute in vector of dependent variables
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— 2 2

{ 1) ] a(22)e )l )

y(®) cre (2+v2)t + 62e<\/§_2)t

° Solution to the system of ODEs

{x(t) B ) L AT A e O 02e<“§_2>t}

2 2

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 64

Ldsolve( [diff (x(t),t)=-y(t),diff (y(t),t)=2%x(t)-4*y(t)],singsol=all) J

z(t) = cle(_2+‘/§>t + coe” (2+v2)e

y(t) = <2 + \/5) c2e‘(2+\/§>t n (2 _ \/é) Cle<_2+ﬁ)t

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 143

LDSolve [{x' [t]==-y[t],y' [t]==2*x[t]-4*y[t]},{x[t],y[t]},t, IncludeSingularSolutjions -> Truel

z(t) — le_(<2+\/§)t> (261 ((1 + \/§> eV 41— \/§> — V2 (62\@ - 1))
y(t) — %E«Hﬁ)t) (\/ﬁcl <62‘/§t - 1) + ¢ (— (\/ﬁ - 1> eV 41+ \@))
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1.12 problem 2.2 (vi)

1.12.1 Solution using Matrix exponential method . . . . . . .. .. .. 102
1.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . [103]
1.12.3 Maple step by step solution . . . . . .. ... ... ... .... 07

Internal problem ID [12566]
Internal file name [OUTPUT/11218_Wednesday_October_18_2023_10_01_18_PM_3236521/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (vi).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

1.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

For the above matrix A, the matrix exponential can be found to be

et 0
0 et
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Therefore the homogeneous solution is

fh (t) = eAté'

B | et 0 ¢
B 0 et Co
B | elc;
B eley

Since no forcing function is given, then the final solution is Z,(t) above.

1.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) 10 z(t)
y'(t) 0 1] | 9@

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives

10 0

det - =0

01 01

Therefore
1-X 0
det =0
0 1—A

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

1—=X)(1—=))=0
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The roots of the above are the eigenvalues.

)\1=1

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue A\; =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
10 10 (1 0
- -
01 01 Vg 0
00 v | |0
00 Vg 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

Therefore the system in Echelon form is

00 U1 0
00 Vg 0
The free variables are {v1, v2} and there are no leading variables. Let v; = ¢. Let vy = s.

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t t 0
= +
S 0 s
1 0
=t +s
0 1
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By letting t = 1 and s = 1 then the above becomes

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

01
10

1 2 2 No

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector
. At
elgenvectors T =€ v
v v | complete eigenvalue. ot
FEA . — o = e
Multiplicity 2 defect is zero 2 2
The solution is
U1 V2
T = 1T + C2X2
case 2 normal generalized N
eigenvector eigenvector T =€ v
. At
eigenvectors zo = e (vit + v2)
AN—— |/ ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector vy
from
U1 V2

(A=) vy =vy

./_\‘ /\ Then the solution is
L]

V2 v1 zero vector T = C1x1 + 22
rank 2 rank 1
vector vector

Figure 13: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

Therefore the final solution is

fh(t) = Clj’l (t) + Cz.’fg(t)
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Which is written as

Which becomes

NN 1777777
NN | § 77077777
NN R 1 e

s> >N\ [ L

y 0 -——=—=== S
== sﬁi\iilii:
AN

PP INN % MRRARRRRRN
INPI PPN VAN
NN
~ L7701V Y NNNNNN
-4 -3 =2 -1 0 1 2 3 4

Figure 14: Phase plot

1.12.3 Maple step by step solution

Let’s solve

[2'(t) = =(8) ,y/'(t) = y(?)]

° Define vector
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z(t)
y(t)

Convert system into a vector equation

z(t) =

) 10 0
7z (t) = LT +
01 0

System to solve

Z(t) = Lo 40
01

Define the coefficient matrix

0
01

A—

Rewrite the system as
) =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

0 1

Y Y

1 0

1

Consider eigenpair, with eigenvalue of algebraic multiplicity 2

0
1

L,

First solution from eigenvalue 1

0
Z1(t) = ¢t -
1

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 1 is the eigenvalue, and
Zo(t) = & (t? + B)
Note that the ¢t multiplying ¥ makes this solution linearly independent to the 1st solution obtai

Substitute Z5(¢) into the homogeneous system
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A&%ﬁ+§>+&@={&%y(ﬁ+§>
Use the fact that v is an eigenvector of A
A@%ﬁ+§)+&8=@%MZ+AQﬁ
Simplify equation

Ap+v=A-p

Make use of the identity matrix I

A-I)-p+v=A-p

Condition p must meet for &(t) to be a solution to the homogeneous system
(A=X-I)-p=7v

Choose Z to use in the second solution to the homogeneous system from eigenvalue 1

10 10 = 0
_1. p:

01 01 1
Choice of ;))

0
0

_)
p:

Second solution from eigenvalue 1

0 0
Zo(t) =et- | t- +
1 0

General solution to the system of ODEs
Z = c121(t) + c2az2(t)
Substitute solutions into the general solution
Z = cet - 0 +coet- | - 0 + 0
1 1 0

Substitute in vector of dependent variables

z(t) 0

y(t) e‘(cot + ¢1)
Solution to the system of ODEs
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{z(t) = 0,y(t) = €' (cat + 1)}

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

Ldsolve( [diff (x(t),t)=x(t),diff(y(t),t)=y(t)],singsol=all) J
z(t) = coe’
y(t) = cre’

v Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 57

LDSolve [{x'[t]==x[t],y' [t]==y[t]1},{x[t],y[t]},t,IncludeSingularSolutions -> Trj.\e]

z(t) = c€t
y(t) = czet
t) = cie’

(
(
(
(t)—0
(
(
(
(

< 8

t) >0
y(t) — co€t
z(t) =0
y(t) —0

8
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1.13 problem 2.2 (vii)

1.13.1 Solution using Matrix exponential method . . . . . . . ... .. 111
1.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . [1I2]
1.13.3 Maple step by step solution . . . . .. ... ... ... ..... 117

Internal problem ID [12567]
Internal file name [OUTPUT/11219_Wednesday_October_18_2023_10_01_19_PM_79343540/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.2 (vii).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

Z(t)=0
y'(t) = z(t)

1.13.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

For the above matrix A, the matrix exponential can be found to be

10
t 1

At
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Therefore the homogeneous solution is

fh (t) = eAté'

10 C1
t 1 Co
tcy 4+ co

Since no forcing function is given, then the final solution is Z,(t) above.

1.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) 00 z(t)
y'(t) 10| |y

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives

00 10

det - =0

10 01

Therefore
-2 0
det =0
1 =X

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(=2(=2) =0
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The roots of the above are the eigenvalues.

)\1=0

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

0 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue A\; =0

We need to solve A7 = A or (A — AI)¥ = 0 which becomes
0 0 10 U1 0
-0) -
10 01 Vg 0
00| lw| |0
10 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

00
10

0
0

Since the current pivot A(1,1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 0/(0
0 0(0
Therefore the system in Echelon form is
10 1 . 0
00 Uy 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 0}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0 0
=t
t 1
Let t = 1 the eigenvector becomes
0 |0
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

0
1

0 2 1 Yes

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector

. At
elgenvectors x] =€ v

v v | complete eigenvalue. A

t
AR E— =e
Multiplicity 2 defect is zero Ta=ev

The solution is

U1 V2
T = 1T + C2X2
case 2 normal generalized N
eigenvector eigenvector T =€ v
. At
eigenvectors zo = e (vit + v2)
D — ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector vs
from
U1 V2

(A=) vy =vy

./_\‘ /\ Then the solution is
L]

V2 v1 zero vector T = C1x1 + 22
rank 2 rank 1
vector vector

Figure 15: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ¥, by solving

(A= X%, =0,

Where #; is the normal (rank 1) eigenvector found above. Hence we need to solve

0 0 10 v 0
- (0) =

10 0 1 vy 1

00| |wm| |0

10| w 1

Solving for v gives

St
I
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We have found two generalized eigenvectors for eigenvalue 0. Therefore the two basis
solution associated with this eigenvalue are

.’Z"l (t) = 1716)‘t

0

= 1
1

10
1

And
fg(t) = (Ult + 172) e>‘t
0 1
= t+ 1
1 1
1
141t

Therefore the final solution is
fh(t) = lel(t) + Cgfg(t)

Which is written as

z(t) 0 1
= +c2
y(t) 1 1+t
Which becomes
z(t) | C2
y(t) cat +c¢1 + ¢

The following is the phase plot of the system.
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4 23 —2 -1 0 1

Figure 16: Phase plot

1.13.3 Maple step by step solution

Let’s solve
['(¢) = 0,y'(t) = =(¢)]
° Define vector
N z(t)
(t) =
y(t)
° Convert system into a vector equation
00 0
Z(t) = 2+
10 0
° System to solve
00
4(t) = Z(t)
10
° Define the coefficient matrix
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A=
10

Rewrite the system as
Tt =A 2

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

0 0
O’ Y O’
1 0

Consider eigenpair

0
1

0,

Solution to homogeneous system from eigenpair

0
1

%
r1 =

Consider eigenpair

0
0

0,

Solution to homogeneous system from eigenpair

5 0
Tog =
0
General solution to the system of ODEs
— — —
T =CT1+CaTo
Substitute solutions into the general solution

0

_
Tr =
C1

Substitute in vector of dependent variables
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zt) | | O
y(2) C1
° Solution to the system of ODEs

{z(t) = 0,y(t) = c1}

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve( [diff(x(t),t)=0,diff (y(t),t)=x(t)],singsol=all) J

z(t) = co
y(t) =cot + 1

v/ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 17

LDSolve [{x'[t]==0,y' [t]==x[t1},{x[t],y[t]},t,IncludeSingularSolutions -> True]J

z(t) = ¢
y(t) = it + ¢
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1.14 problem 2.4 (i)

1.14.1 Solving as second order ode can be made integrable ode . . . . [120
1.14.2 Solving as second order ode missing xode . . . .. ... .. .. 1221

Internal problem ID [12568]
Internal file name [OUTPUT/11220_Wednesday_October_18_2023_10_01_19_PM_60338816/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (i).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order__ode_ can__be__made__integrable"
Maple gives the following as the ode type

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible,
_mu_x_y1]]

2 +r—22=0

1.14.1 Solving as second order ode can be made integrable ode
Multiplying the ode by z’ gives
gr" +(1—-2%) 7'z =0

Integrating the above w.r.t ¢ gives

/ (m'x” + (1 - x2) x’x) dt=0

12 212
1-—
@ A=) _

2 4

Which is now solved for z. Solving the given ode for z’ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

2 + 2zt — 412
ac':\/ + 2z 2 z2 + 8¢, )

242z — 422+ 8
o= VIEE e (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

2 dx—/dt
V25t — 422 + 8¢, +2

@ 2
d a=t+c
/ V2 A —4 @2 +8c+2 2

Solving equation (2)

Integrating both sides gives

/— 2 dm—/dt
V22 — 422 + 8¢, +2

@ 2
— d a=t+c
/ V2 & —4 a2 +8c+2 ’

Summary
The solution(s) found are the following

z 2
d a=t+c
/ V2 at*—4 a®+8c;+2 ?

z 2
— d a=t+c
/ V2 a*—4 a®>+8c;+2 3

Verification of solutions

@ 9
d a=t+ec
/ V2 &4 +8+2 2

Verified OK.

z 2
— d a=t+c
/ V2 at*—4 a®+8c;+2 s

Verified OK.
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1.14.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

Then

Hence the ode becomes
p(x) ip(ar:) +(-2*+1)z=0
dz
Which is now solved as first order ode for p(z). In canonical form the ODE is

p' = F(z,p)
= f(z)g(p)
_ (z2-1)z
p

Where f(z) = (z2 — 1)z and g(p) = %. Integrating both sides gives

1
Td = (m2—1)zdm
P
1 2
Tdp= (J; — 1) xdx
P
2 2 —1)°
The solution is
p(z)’ (2?2 - 1)
_ —c =

2 4
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For solution (1) found earlier, since p = 2’ then we now have a new first order ode to
solve which is

2 (z2—1)° o =0

2 4 L
Solving the given ode for x’ results in 2 differential equations to solve. Each one of
these will generate a solution. The equations generated are

2+2x%* — 422+ 8
x,:\/+x2x+cl 1)

2 + 2x% — 422
x’=—\/ + 2z . 2 + 8¢; @)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ 2 dx—/dt
V2z* — 4x2 + 8c; + 2 N

@ 9
d a=t+c
/ V2 & —4 a2+8c,+2 ?

Solving equation (2)

Integrating both sides gives

2
— de = [ dt
V2t — 422 + 8¢; + 2 /

€ 2
- d a=t+c
/ V2 a*—4 a®>+8c;+2 3

Summary
The solution(s) found are the following

z 2
d a=t+c 1
/ V2 _a*—4 &®+8+2 2 (1)

@ 2
- d a=t+c 2
/ V2 & —4 a2+8c+2 s )
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Verification of solutions

z 2
d a=t+c
/ V2 &4 +8+2 2
Verified OK.

z 2
— d a=t+c
/ V2 at*—4 a®+8c;+2 s
Verified OK.
Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---
trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

<- 2nd_order JacobiSN successful-

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 43

tdsolve(diff(x(t),t$2)+x(t)-x(t)‘3=0,x(t), singsol=all)

z(t) = V2 211 JacobiSN 5

124

y C2




v/ Solution by Mathematica
Time used: 60.266 (sec). Leaf size: 171

kDSolve [x'' [t]+x[t]-x[t]~3==0,x[t],t,IncludeSingularSolutions -> True]

. < \/(\/ﬁ+1 (t+c2)? | 1—\/@)

VI-2c1+1
z(t) - — -
—14++/1-2¢c1
. \/(\/ﬁ+1 ) (t+e2)? | Vi—2e
sn |\/1—201+1
z(t) — -
—14+v/1-2c1
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1.15 problem 2.4 (ii)

1.15.1 Solving as second order ode can be made integrable ode . . . . [126l
1.15.2 Solving as second order ode missing xode . . . .. ... .. .. 128]

Internal problem ID [12569]
Internal file name [OUTPUT/11221_Wednesday_October_18_2023_10_01_20_PM_50415031/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (ii).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order__ode_ can__be__made__integrable"
Maple gives the following as the ode type

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible,
_mu_x_y1]]

2 +r+22=0

1.15.1 Solving as second order ode can be made integrable ode
Multiplying the ode by z’ gives
"+ (1+2°) 2z =0
Integrating the above w.r.t ¢ gives
/ (2" + (14 2%) 2'z)dt =0

z'? 1+ 22)

2 4

Which is now solved for z. Solving the given ode for z’ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are
s V=2 — 2:1:42— 422 + 8¢, 1)
V=2 —2z* — 422 + 8¢;

' = 5 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

2 dx—/dt
V=22 — 45+ 8¢; — 2

z 2
d a=t+c
/ V=2 a*—4 a>+8c; —2 ?

Solving equation (2)

Integrating both sides gives

2
_ de = [ dt
/ V—2z% — 422 + 8¢c; — 2 o /

r 2
- d a=t+c
/ V=2 a*—4 a®?+8c;—2 3

Summary
The solution(s) found are the following

@ 9
d a=t+c
/ V=2 *—4 @* 18, -2 2

r 2
— d a=t+ec
/ V=2 a*—4 a>+8c; —2 3

Verification of solutions

/m 2 d a=t+
a = C
V=2 a"—4 +8; -2 ?

Verified OK.

z 9
— d a=t+c
/ V=2 *—4 @* 18, -2 3

Verified OK.
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1.15.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

Then

Hence the ode becomes
p(z) ip(:r:) +z(z?+1) =0
dz
Which is now solved as first order ode for p(z). In canonical form the ODE is

p = F(z,p)

= f(z)9(p)
_z(a®+1)

p

Where f(z) = —z(z? + 1) and g(p) = 11). Integrating both sides gives

1
Tdp = —x(m2+1) dx
P
1 2
Tdp= —x(x +1) dx
p
2 2 +1)°
The solution is
2 2 2
T i+ 1
LR SV
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For solution (1) found earlier, since p = 2’ then we now have a new first order ode to

solve which is

z'? 1+ 22)?

Solving the given ode for x’ results in 2 differential equations to solve. Each one of

these will generate a solution. The equations generated are

s V=2 —2x* — 422 + 8¢,
B 2
;o V=2 —22% — 42?4 8¢y
T 2

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

2
dr = [ dt
/\/—2x4—4x2+8c1—2 v /

z 2
d a=t+c
/ V=2 a*—4 a>+8c;—2 2

Solving equation (2)

Integrating both sides gives

9
_ dz = [ dt
07—z 1 8¢ 2 " /

2 9
— d a=t+c
/ V=2 *—4 > +8¢, -2 3

Summary
The solution(s) found are the following

z 2
d a=t+c
/ V=2 a*—4 a>+8c; —2 2

r 2
- d_a=t+c
/ V=2 a*—4 a>+8c;—2 8
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Verification of solutions

/m 2 d a—t+
a = C
V=2 a"—4 @+8; -2 ?

Verified OK.

z 9
— d a=t+c
/ V=2 &*—4 @* 18, -2 3

Verified OK.
Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---
trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

<- 2nd_order JacobiSN successful-

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 56

tdsolve(diff(x(t),t$2)+x(t)+x(t)‘3=0,x(t), singsol=all)

(V3V2t+2c1) V2

z(t) = co JacobiSN 5

J— 1 .
%Ti%,zcbﬁ V3. 21
3 c;—3

v/ Solution by Mathematica
Time used: 60.261 (sec). Leaf size: 169

LDSolve[x"[t]+x[t]+x[t]“3==0,x[t],t,IncludeSingularSolutions -> True]

£(t) = —iy/1+ VI 2an V- (V2 F1-1) (t+ ) )Imﬂ

V2 1—v2c+1
' \/— (V2c1 +1-1) (t+¢2)?) VIa FI+1
z(t) = i1/ 14+ 1+ 2¢isn 7 |1 ~ e T
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1.16 problem 2.4 (iii)

1.16.1 Solving as second order ode missing xode . . . .. .. ... .. 131

Internal problem ID [12570]
Internal file name [OUTPUT/11222_Wednesday_October_18_2023_10_01_21_PM_93984434/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (iii).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Unable to solve or complete the solution.

2+ +zx—23=0

1.16.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

Then

Hence the ode becomes

131



Which is now solved as first order ode for p(z). Unable to determine ODE type.

Unable to solve. Terminating
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Maple trace

-

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
) 3
» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE", (diff(_b(_a), _a))*_b(_a)+_b(_a)+_a-_a"3 =
Methods for first order ODEs:
--- Trying classification methods ---

,» —> Computing symmetries using: way

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

Looking for potential symmetries

Looking for potential symmetries

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

--- Trying Lie symmetry methods, 1st order ---

*, ~=> Computing symmetries using: way = 3
*, ~=> Computing symmetries using: way = 4
*, “—> Computing symmetries using: way = 2

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of thf3§orm [F(x),G(x)]

-> trying a symmetry pattern of the form [F(y),G(y)]

-> trying a symmetry pattern of the form [F(x)+G(y), 0]

. T T T Y . L. T . T = Y ™7/ N\ .7 N\

0, _b(_a)"
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X Solution by Maple

Ldsolve(diff(x(t) ,t$2) +diff (x(t) ,t)+x(t)-x(t) ~3=0,x(t), singsol=all) J

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [x''[t]+x' [t]+x[t]-x[t]~3==0,x[t],t,IncludeSingularSolutions -> Truel J

Not solved

134



1.17 problem 2.4 (iv)

1.17.1 Solving as second order ode missing xode . . . .. ... .. .. 135]

Internal problem ID [12571]
Internal file name [OUTPUT/11223_Wednesday_October_18_2023_10_01_21_PM_54312799/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (iv).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Unable to solve or complete the solution.

' +1'+zx+2°=0

1.17.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

Then

Hence the ode becomes

p(z) (%P(w)) +p(z) +z(z? +1) =0
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Which is now solved as first order ode for p(z). Unable to determine ODE type.

Unable to solve. Terminating
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Maple trace

-

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, "> Computing symmetries using: way = 3
*, *=> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE™, _a~3+(diff(_b(_a), _a))*_b(_a)+_b(_a)+_a
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---

*, ~=> Computing symmetries using: way = 3
*, ~=> Computing symmetries using: way = 4
*, “—> Computing symmetries using: way = 2

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of thf3§orm [F(x),G(x)]

-> trying a symmetry pattern of the form [F(y),G(y)]

-> trying a symmetry pattern of the form [F(x)+G(y), O]

. T T T Y . L. T . T = Y ™7/ N\ .7 N\

0, _b(_a)"
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X Solution by Maple

Ldsolve(diff(x(t) ,t$2) +diff (x(t) ,t)+x(t)+x(t) ~3=0,x(t), singsol=all) J

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [x''[t]+x' [t]+x[t]+x[t]~3==0,x[t],t,IncludeSingularSolutions -> Truel J

Not solved
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1.18 problem 2.4 (v)

1.18.1 Solving as second order ode can be made integrable ode . . . . [139
1.18.2 Solving as second order ode missing xode . . . . ... ... .. 141

Internal problem ID [12572]
Internal file name [OUTPUT/11224_Wednesday_October_18_2023_10_01_22_PM_50942243/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.4 (v).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order__ode_ can__be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

z" — (2cos(z) — 1)sin(z) =0

1.18.1 Solving as second order ode can be made integrable ode
Multiplying the ode by z’ gives
z'z" — 2'(sin (2z) — sin (z)) =0

Integrating the above w.r.t t gives

/ (z'z" — 2’ (sin (2z) — sin (z))) dt =0

12
2
_x2 —cos (z) + cosé z)

Which is now solved for z. Solving the given ode for z’ results in 2 differential equations

:C2

to solve. Each one of these will generate a solution. The equations generated are

= \/1 — 2cos ()% 4 2cos (z) + 2¢; (1)

T = —\/1—2005 (z)* + 2 cos (z) + 2¢; (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ ! dxz/dt
\/1 — 2cos (z)* + 2 cos () + 2¢;

x 1
/ d a=t+cy
\/1 —2cos (_a)® +2cos (_a) +2¢;

Solving equation (2)

Integrating both sides gives

/_ = dac=/dt
\/1—2cos (z)* + 2 cos () + 2¢1

1
/ d a=t+cs
\/1—2003 )* +2cos (_a) + 2¢;

Summary
The solution(s) found are the following

v 1
/ d a=t+cy
\/1 —2cos (_a)® +2cos (_a) +2¢

/ 1
— d a=t+cs
\/1 —2cos (_a)® +2cos (_a) + 2¢;

Verification of solutions

1
/ d a=t+cy
\/1—2003 )* +2cos (_a) + 2¢;

Verified OK.

1
/ d_a=t+c3
\/1—2cos )2+ 2cos (_a) + 2¢;

Verified OK.
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1.18.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

Then

Hence the ode becomes
d . .
p(z) (—p(x)) = sin (2z) — sin (z)
dz
Which is now solved as first order ode for p(z). In canonical form the ODE is

p' = F(z,p)
= f(z)9(p)
_ sin (2x) — sin (z)
b

Where f(z) = sin (2z) — sin (z) and g(p) = %. Integrating both sides gives

% dp = sin (2x) — sin (z) dz
P
1 . .
/I dp = /sm (2x) — sin (z) dz
p
? cos (2z
%:cos(x)— ; ) ¢
The solution is
p(z)” cos(2z)
5 (x) ) =0

141



For solution (1) found earlier, since p = 2’ then we now have a new first order ode to
solve which is

' cos (2z)
5~ cos (z) + 5

—01:0

Solving the given ode for x’ results in 2 differential equations to solve. Each one of
these will generate a solution. The equations generated are

x = \/1 — 2cos ()% 4 2cos (z) + 2¢; (1)

T = —\/1 — 2cos (z)* 4 2cos (z) + 2¢; (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ = dx=/dt
\/1 — 2cos (z)* + 2cos (z) + 2¢,

/ 1
d a=t+cy
\/1—2003 )? + 2cos (_a) + 2¢;

Solving equation (2)

Integrating both sides gives

/- ! da = [
\/1 —2cos (z)® + 2cos (z) + 2¢,
1

/ - \/1 —2cos (_a)® 4 2cos (_a) + 2¢;

d a=t+cs

Summary
The solution(s) found are the following

/w \/1_ ( 21 d_a=t+c (1)

_a)"+2cos(_a) +2¢;

/ — ! d_a=t+cs (2)
\/1 —2cos (_a)® +2cos (_a) +2¢;
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Verification of solutions

/ -
d a=t+ecy
\/1 —2cos (_a)® + 2cos (_a) + 2¢;

Verified OK.

1
/ d a=t+cs3
\/1 —2cos (_a)® +2cos (_a) + 2¢;

Verified OK.
Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

» —> Computing symmetries using: way = 3

» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)-sin(2*_a)+sin(_a)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful’
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 59

Ldsolve(diff(x(t),t$2)=(2*cos(x(t))—1)*sin(x(t)),x(t), singsol=all)

/a:(t) 1
\/2 sin (_a)® 4 2cos (_a) + ¢

z(t) 1
— / d_a —t—cp=0
\/2 sin (_a)® +2cos(_a)+ ¢

d_a,—t—62=0
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v/ Solution by Mathematica
Time used: 61.831 (sec). Leaf size: 437

kDSolve [x''[t]==(2%Cos [x[t]]-1)*Sin[x[t]],x[t],t,IncludeSingularSolutions -> T#ue]

z(t) — —2arccos <—% 3— \/m>

z(t) — 2arccos (—% 3— m>

z(t) — —2arccos <% 3— m>

z(t) — 2arccos (% 3— M)

z(t) — —2arccos <—% 3+ m>

z(t) — 2arccos (—% 3+ M)

z(t) — —2arccos <% 3+ M)

z(t) — 2arccos (% 3+ M)

sn(3y/ (o1 + 2026 73— 3) (¢ + )| 2L

—3+c1
3+4c1+2v/3+2c1

n(3y/ (e +2v20 73 -3) (t+ Pl 225050

—3+c1
3+c1+2v/3+2c1

z(t) — —2iarctanh

z(t) — 2iarctanh
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1.19 problem 2.5

1.19.1 Solution using Matrix exponential method . . . . . . .. .. .. 146
1.19.2 Solution using explicit Eigenvalue and Eigenvector method . . . [147
1.19.3 Maple step by step solution . . . . . . ... ... ... . .... 1511

Internal problem ID [12573]
Internal file name [OUTPUT/11225_Wednesday_October_18_2023_10_03_50_PM_88559711/index.tex]

Book: Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition
1999. Oxford Univ. Press. NY

Section: Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number: 2.5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

z' =1z — 5y(t)
y(®) =z -yt

1.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

For the above matrix A, the matrix exponential can be found to be

sin(2 5sin(2:
% + cos (2t) —%

sin(2 sin(2
—é t cos (2t) — —é t

At
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Therefore the homogeneous solution is

@) 4 cos (2t)

2
in (2t in (2t
= é ) cos (2t) — ¥+ g ) Co

__ 5sin(2t)
2

(siné?t) + cos (2t)> el — 53in(22t)02
—Sin(gt)cl -+ (cos (2t) — —Siném) o

(e1=5e)sin@) 4 ) cos (2t)

w + ¢ cos (2t)

Since no forcing function is given, then the final solution is Z(t) above.

1.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z 1 -5 T

y'(8) 1 -1 y(t)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

1 -5 10

det - A =0

1 -1 01

Therefore
1-X =5
det =0
1 —=1-=2A
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Which gives the characteristic equation
N4+4=0
The roots of the above are the eigenvalues.

AL =21
Ao =—2%

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

21 1 complex eigenvalue

-2 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = —2i

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -5 10 v 0
— (—2i) o

1 -1 01 vy 0

1+2 -5 o 0

1 142 | | v 0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

14+2: -5 0
1 —1+2|0
1 2 142 =5|0
m=ms (0 2)g
5 9 0 00
Therefore the system in Echelon form is
1+2¢ -5 vy | |0
0 0 Vg 0
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The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = (1 — 2i) ¢}

Hence the solution is
(1-21)¢ (1—2i)t

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(1-21)¢ 1—2:¢
t 1
Let t = 1 the eigenvector becomes
(1-21)¢ 1—2¢
t 1

Considering the eigenvalue Ay = 27

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

1 -5
1 -1

— ()

1—-2¢
1

Now forward elimination is applied to solve for the eigenvector ¥. The augmented

matrix is
1—23
1
1 2
Ry =R —_ — =
2 2+( 55

Therefore the system in Echelon form is

1—2¢

)
0 0

1
01

-9
-1—-2

)

-1-24

(%1

(%
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The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = (1 + 2i) t}

Hence the solution is
(1+21)¢ (14 2i)t
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(+2D)t | _ | 1+2i

t 1
Let t = 1 the eigenvector becomes
(1+20D)t 142
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors
1+2
21 1 1 No
1
1—2
—2i 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

ﬂ_'fh(t) = lel(t) + Cgfg(t)
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Which is written as

T (14 27) e (1—23)e 2%
=C ) + ¢ .
y(t) eta e—2zt
Which becomes
T (1 + 27) c1e?® + (1 — 2i) cpe™%
y() €2t 4 cpe2it

The following is the phase plot of the system.

e e — =— === <=<<—<—<—
e e e e =

M e e e e =<
e e e e e =<
e e ===

==

\\‘\\

//////////«e\\\>> }
0_ LSS s

y < \—x /////////
N~ 777777

-1 \\\ > ===z~ 7 77777
AN === === ===~
—o>= === === =777 77~
—_ ===z =z 7 7 77 7=

== === === 77 7>
— 3 —,—es s e > > = = = = = > > > > > > >
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4 23 —2 -1 0 1 2 3 4
X

Figure 17: Phase plot

1.19.3 Maple step by step solution

Let’s solve

[z' =z —5y(t),y'(t) = = — y(t)]

° Define vector
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Convert system into a vector equation

1 -5
1 -1 0

System to solve

—/ ]. _5
1 -1

Define the coefficient matrix

A=
1 -1

Rewrite the system as
Z(t)=A 2
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1-—2I 1+21I
—21, o | M7
1 1

Consider complex eigenpair, complex conjugate eigenvalue can be ignored

1-21
1

—21,

Solution from eigenpair
1-21I
1

o2t

Use Euler identity to write solution in terms of sin and cos
1-21
1

(cos (2t) — Isin (2t)) -

Simplify expression
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(1 —21) (cos (2t) — Isin (2t))
cos (2t) — Isin (2¢)

° Both real and imaginary parts are solutions to the homogeneous system
= cos (2t) — 2sin (2t) | - —2cos (2t) — sin (2t)
.’I)l(t)= 7x2(t):

cos (2t) — sin (2t)

° General solution to the system of ODEs
T =c121(t) + caza(t)
° Substitute solutions into the general solution
= ca(—2cos (2t) — sin (2t)) + c1(cos (2t) — 2sin (2t))
" [ ¢y cos (2t) — cosin (2t) ]
° Substitute in vector of dependent variables
z | | (c1—2cp)cos(2t) —2sin (2t) (% +c1)
[ y(t) ] - { ¢1 cos (2t) — cosin (2t) ]
° Solution to the system of ODEs
{z = (c1 — 2¢2) cos (2t) — 2sin (2t) (2 + ¢1) , y(t) = c1 cos (2t) — co sin (2t) }

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 50

-

Ldsolve( [diff (x(t),t)=x(t)-b*y(t),diff(y(t),t)=x(t)-y(t)],singsol=all)

~—

z(t) = ¢ sin (2t) + ¢ cos (2t)
y(t) = — 2¢; cc;s (2t) N 2¢) Si;l (2t) LG sir; (2t) Lo co; (2t)

v/ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 48

e

LDSolve [{x' [t]==x[t]-5*y[t],y' [t]==x[t]-y[t]1},{x[t],y[t]},t, IncludeSingularSol}ltions -> True]

x(t) — ¢1c0s(2t) + (¢1 — beg) sin(t) cos(t)
y(t) = co2 cos(2t) + (c1 — c2) sin(t) cos(t)
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