A Solution Manual For

Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition

Nasser M. Abbasi

Contents

1 Chapter 1, First-Order differential equations 4
2 Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions

3 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions

4 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions

5 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine

6 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.

7 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions

8 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
9 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine

10 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.

11 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.

12 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.

13 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.

14 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.

15 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.

1222
16 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.

1263
17 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-4. Equations containing arccotangent.

18 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.

1311
19 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).

20 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.

1499
21 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations

22 Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions610

23 Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form $y y^{\prime}=f(x) y+1$

1804
24 Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2. Equations of the form $y y^{\prime}=f_{1}(x) y+f_{0}(x)$

1841
25 Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2. Equations of the form $\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+$ $f_{0}(x)$

26 Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213

27 Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form $y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$

28 Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Equation of form $(a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
29 Chapter 2, Second-Order Differential Equations. section 2.1.2-4
Equation of form $x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
30 Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Equation of form $\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
31 Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
32 Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=03336$
33 Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.

3568
34 Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions

3678
1 Chapter 1, First-Order differential equations
1.1 problem 1.1.1 5
1.2 problem 1.1.2 7
1.3 problem 1.1.3 10
1.4 problem 1.1.4 18
1.5 problem 1.1.5 29
1.6 problem 1.1.6 35

1.1 problem 1.1.1

1.1.1 Solving as quadrature ode . 5
1.1.2 Maple step by step solution . 6

Internal problem ID [10325]
Internal file name [OUTPUT/9272_Monday_June_06_2022_01_45_19_PM_35985161/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=f(x)
$$

1.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int f(x) \mathrm{d} x \\
& =\int f(x) d x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int f(x) d x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int f(x) d x+c_{1}
$$

Verified OK.

1.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}=f(x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int f(x) d x+c_{1}
$$

- Evaluate integral

$$
y=\int f(x) d x+c_{1}
$$

- \quad Solve for y

$$
y=\int f(x) d x+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)=f(x),y(x), singsol=all)
```

$$
y(x)=\int f(x) d x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18

```
DSolve[y'[x]==f[x],y[x],x, IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \int_{1}^{x} f(K[1]) d K[1]+c_{1}
$$

1.2 problem 1.1.2

1.2.1 Solving as quadrature ode . 7
1.2.2 Maple step by step solution . 8

Internal problem ID [10326]
Internal file name [OUTPUT/9273_Monday_June_06_2022_01_45_19_PM_3498373/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-f(y)=0
$$

1.2.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{f(y)} d y & =\int d x \\
\int^{y} \frac{1}{f\left(_a\right)} d _a & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{f\left(_a\right)} d _a=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{f\left(_a\right)} d _a=x+c_{1}
$$

Verified OK.

1.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}-f(y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{f(y)}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{f(y)} d x=\int 1 d x+c_{1}
$$

- Cannot compute integral
$\int \frac{y^{\prime}}{f(y)} d x=x+c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x)=f(y(x)), y(x)$, singsol=all)

$$
x-\left(\int^{y(x)} \frac{1}{f\left(_a\right)} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.442 (sec). Leaf size: 33
DSolve[y' $[x]==f[y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{f(K[1])} d K[1] \&\right]\left[x+c_{1}\right] \\
& y(x) \rightarrow f^{(-1)}(0)
\end{aligned}
$$

1.3 problem 1.1.3

1.3.1 Solving as separable ode . 10
1.3.2 Solving as first order ode lie symmetry lookup ode 11
1.3.3 Solving as exact ode . 13
1.3.4 Maple step by step solution . 16

Internal problem ID [10327]
Internal file name [OUTPUT/9274_Monday_June_06_2022_01_45_19_PM_45060263/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-f(x) g(y)=0
$$

1.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =f(x) g(y)
\end{aligned}
$$

Where $f(x)=f(x)$ and $g(y)=g(y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{g(y)} d y & =f(x) d x \\
\int \frac{1}{g(y)} d y & =\int f(x) d x \\
\int^{y} \frac{1}{g\left(_a\right)} d _a & =\int f(x) d x+c_{1}
\end{aligned}
$$

Which results in

$$
\int^{y} \frac{1}{g\left(_a\right)} d _a=\int f(x) d x+c_{1}
$$

The solution is

$$
\int^{y} \frac{1}{g\left(_a\right)} d _a-\left(\int f(x) d x\right)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{g\left(_a\right)} d _a-\left(\int f(x) d x\right)-c_{1}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{g\left(_a\right)} d _a-\left(\int f(x) d x\right)-c_{1}=0
$$

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =f(x) g(y) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 3: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{f(x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{f(x)}} d x
\end{aligned}
$$

Which results in

$$
S=\int f(x) d x
$$

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{g(y)}\right) \mathrm{d} y & =(f(x)) \mathrm{d} x \\
(-f(x)) \mathrm{d} x+\left(\frac{1}{g(y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-f(x) \\
N(x, y) & =\frac{1}{g(y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-f(x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{g(y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-f(x) \mathrm{d} x \\
\phi & =\int^{x}-f\left(_a\right) d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{g(y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{g(y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{g(y)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{g(y)}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{1}{g\left(_a\right)} d _a+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}-f\left(_a\right) d _a+\int_{0}^{y} \frac{1}{g\left(_a\right)} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}-f\left(_a\right) d _a+\int_{0}^{y} \frac{1}{g\left(_a\right)} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-f\left(_a\right) d _a+\int_{0}^{y} \frac{1}{g\left(_a\right)} d _a=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{x}-f\left(_a\right) d _a+\int_{0}^{y} \frac{1}{g\left(_a\right)} d _a=c_{1}
$$

Verified OK.

1.3.4 Maple step by step solution

Let's solve
$y^{\prime}-f(x) g(y)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{g(y)}=f(x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{g(y)} d x=\int f(x) d x+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{g(y)} d x=\int f(x) d x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x)=f(x)*g(y(x)),y(x), singsol=all)
```

$$
\int f(x) d x-\left(\int^{y(x)} \frac{1}{g\left(_a\right)} d _a\right)+c_{1}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.452 (sec). Leaf size: 42
DSolve[y'[x]==f[x]*g[y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{g(K[1])} d K[1] \&\right]\left[\int_{1}^{x} f(K[2]) d K[2]+c_{1}\right] \\
& y(x) \rightarrow g^{(-1)}(0)
\end{aligned}
$$

1.4 problem 1.1.4

1.4.1 Solving as linear ode 18
1.4.2 Solving as first order ode lie symmetry lookup ode 20
1.4.3 Solving as exact ode 21
1.4.4 Maple step by step solution 26

Internal problem ID [10328]
Internal file name [OUTPUT/9275_Monday_June_06_2022_01_45_20_PM_51267741/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
g(x) y^{\prime}-f_{1}(x) y=f_{0}(x)
$$

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{f_{1}(x)}{g(x)} \\
& q(x)=\frac{f_{0}(x)}{g(x)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{f_{1}(x) y}{g(x)}=\frac{f_{0}(x)}{g(x)}
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{f_{0}(x)}{g(x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x} y\right) & =\left(\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}\right)\left(\frac{f_{0}(x)}{g(x)}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x} y\right) & =\left(\frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x} y=\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} \mathrm{d} x \\
& \mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x} y=\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}$ results in

$$
y=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)+c_{1} \mathrm{e}^{\frac{f_{1}(x)}{g(x)} d x}
$$

which simplifies to

$$
y=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}\right)
$$

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{f_{1}(x) y+f_{0}(x)}{g(x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 6: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}} d y
\end{aligned}
$$

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(g(x)) \mathrm{d} y & =\left(f_{1}(x) y+f_{0}(x)\right) \mathrm{d} x \\
\left(-f_{1}(x) y-f_{0}(x)\right) \mathrm{d} x+(g(x)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-f_{1}(x) y-f_{0}(x) \\
N(x, y) & =g(x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-f_{1}(x) y-f_{0}(x)\right) \\
& =-f_{1}(x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(g(x)) \\
& =g^{\prime}(x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{g(x)}\left(\left(-f_{1}(x)\right)-\left(g^{\prime}(x)\right)\right) \\
& =\frac{-f_{1}(x)-g^{\prime}(x)}{g(x)}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{-f_{1}(x)-g^{\prime}(x)}{g(x)} \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\int \frac{-f_{1}(x)-g^{\prime}(x)}{g(x)} d x} \\
& =\mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}\left(-f_{1}(x) y-f_{0}(x)\right) \\
& =-\left(f_{1}(x) y+f_{0}(x)\right) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}(g(x)) \\
& =g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\left(f_{1}(x) y+f_{0}(x)\right) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}\right)+\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\left(f_{1}(x) y+f_{0}(x)\right) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)} \mathrm{d} x \\
\phi & =\int^{x}-\left(f_{1}\left(_a\right) y+f_{0}\left(_a\right)\right) \mathrm{e}^{-\left(\int \frac{f_{1}(\square a)+\frac{d}{d a} g\lceil a)}{g(\square a)} d _a\right)} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\left(\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d-a} g\left(_a\right)}{g(-a)} d _a\right)} d _a\right)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}=-\left(\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d a} g\left(_a\right)}{g(\llcorner a)} d _a\right)} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\llcorner a)+\frac{d}{d-a} g\llcorner a)}{g(\llcorner a)} d _a\right)} d _a
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y=\int\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\llcorner a)+\frac{d}{d} a(\llcorner a)}{g(\bar{a})} d _a\right)} d _a\right) \mathrm{d} y \\
& \begin{array}{l}
f(y)=\int_{0}^{y}\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d-a} g\left(_a\right)}{g(\llcorner a)} d _a\right)} d _a\right) d _a \\
\quad+c_{1}
\end{array}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int^{x}-\left(f_{1}\left(_a\right) y+f_{0}\left(_a\right)\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(\llcorner a)+\frac{d}{d a} a\left(_a\right)\right.}{g(-\bar{a})} d _a\right)} d _a \\
& +\int_{0}^{y}\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}(\square a)+\frac{d}{d} \bar{a} g\left(_a\right)}{g(a)} d _a\right)} d _a\right) d _a+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{x}-\left(f_{1}\left(_a\right) y+f_{0}\left(_a\right)\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d-a} g\left(_a\right)}{g(-a)} d _a\right)} d _a \\
& +\int_{0}^{y}\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}(\square a)+\frac{d}{a} g\left(_a\right)}{g(-a)} d _a\right)} d _a\right) d _a
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \int^{x}-\left(f_{1}\left(_a\right) y+f_{0}\left(_a\right)\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d-a} g\left(_a\right)}{g\left(_a\right)} d _a\right)} d _a \\
& +\int_{0}^{y}\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}\right. \tag{1}\\
& \left.+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d-a} g(\square a)}{g(\llcorner a}\right)} d _a\right) \\
& \left.\square _a\right) d _a=c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \int^{x}-\left(f_{1}\left(_a\right) y+f_{0}\left(_a\right)\right) \mathrm{e}^{-\left(\int \frac{f_{1}\left(_a\right)+\frac{d}{d a} g\left(_a\right)}{\left.g _a\right)} d _a\right)} d _a \\
& +\int_{0}^{y}\left(g(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)+g^{\prime}(x)}{g(x)} d x\right)}+\int^{x} f_{1}\left(_a\right) \mathrm{e}^{-\left(\int \frac{f_{1}\llcorner a)+\frac{d}{d-a} g\left(_a\right)}{g(\square a)} d _a\right)} d _a\right) d _a=c_{1}
\end{aligned}
$$

Verified OK.

1.4.4 Maple step by step solution

Let's solve

$$
g(x) y^{\prime}-f_{1}(x) y=f_{0}(x)
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{f_{1}(x) y}{g(x)}+\frac{f_{0}(x)}{g(x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{f_{1}(x) y}{g(x)}=\frac{f_{0}(x)}{g(x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{f_{1}(x) y}{g(x)}\right)=\frac{\mu(x) f_{0}(x)}{g(x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{f_{1}(x) y}{g(x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x) f_{1}(x)}{g(x)}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) f_{0}(x)}{g(x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) f_{0}(x)}{g(x)} d x+c_{1}$
- \quad Solve for y

$$
y=\frac{\int \frac{\mu(x) f_{0}(x)}{g(x)} d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}$

$$
y=\frac{\int \frac{f_{0}(x) \mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}}{g(x)} d x+c_{1}}{\mathrm{e}^{\int-\frac{f_{1}(x)}{g(x)} d x}}
$$

- Simplify

$$
y=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(g(x)*diff (y(x),x)=f__1(x)*y(x)+f__0(x),y(x), singsol=all)
```

$$
y(x)=\left(\int \frac{f_{0}(x) \mathrm{e}^{-\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}\right) \mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}
$$

\checkmark Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 64
DSolve $\left[g[x] * y{ }^{\prime}[x]==f 1[x] * y[x]+f 0[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$
$y(x) \rightarrow \exp \left(\int_{1}^{x} \frac{\mathrm{f} 1(K[1])}{g(K[1])} d K[1]\right)\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]} \frac{\mathrm{f} 1(K[1])}{g(K[1])} d K[1]\right) \mathrm{f} 0(K[2])}{g(K[2])} d K[2]\right.$

$$
\left.+c_{1}\right)
$$

1.5 problem 1.1.5

1.5.1 Solving as first order ode lie symmetry lookup ode 29
1.5.2 Solving as bernoulli ode . 31

Internal problem ID [10329]
Internal file name [OUTPUT/9276_Monday_June_06_2022_01_45_20_PM_6215492/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
g(x) y^{\prime}-f_{1}(x) y-f_{n}(x) y^{n}=0
$$

1.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{f_{1}(x) y+f_{n}(x) y^{n}}{g(x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 9: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{n} \mathrm{e}^{(n-1)\left(\int-\frac{f_{1}(x)}{g(x)} d x\right)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{n} \mathrm{e}^{(n-1)\left(\int-\frac{f_{1}(x)}{g(x)} d x\right)}} d y
\end{aligned}
$$

1.5.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{f_{1}(x) y+f_{n}(x) y^{n}}{g(x)}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{f_{1}(x)}{g(x)} y+\frac{f_{n}(x)}{g(x)} y^{n} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{f_{1}(x)}{g(x)} \\
f_{1}(x) & =\frac{f_{n}(x)}{g(x)} \\
n & =n
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{n}$ gives

$$
\begin{equation*}
y^{\prime} y^{-n}=\frac{f_{1}(x) y^{1-n}}{g(x)}+\frac{f_{n}(x)}{g(x)} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{1-n} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=(1-n) y^{-n} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{1-n} & =\frac{f_{1}(x) w(x)}{g(x)}+\frac{f_{n}(x)}{g(x)} \\
w^{\prime} & =\frac{(1-n) f_{1}(x) w}{g(x)}+\frac{(1-n) f_{n}(x)}{g(x)} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{(n-1) f_{1}(x)}{g(x)} \\
& q(x)=-\frac{(n-1) f_{n}(x)}{g(x)}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{(n-1) f_{1}(x) w(x)}{g(x)}=-\frac{(n-1) f_{n}(x)}{g(x)}
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int \frac{(n-1)\left(f_{1}(x)\right.}{g(x)} d x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{(n-1) f_{n}(x)}{g(x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x} w\right) & =\left(\mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x}\right)\left(-\frac{(n-1) f_{n}(x)}{g(x)}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x} w\right) & =\left(-\frac{(n-1) f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x} w=\int-\frac{(n-1) f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} \mathrm{d} x \\
& \mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x} w=\int-\frac{(n-1) f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int \frac{(n-1) f_{1}(x)}{g(x)} d x}$ results in

$$
w(x)=\mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}\left(\int-\frac{(n-1) f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)+c_{1} \mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}
$$

which simplifies to

$$
w(x)=-\mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}\left((n-1)\left(\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)-c_{1}\right)
$$

Replacing w in the above by y^{1-n} using equation (5) gives the final solution.

$$
y^{1-n}=-\mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}\left((n-1)\left(\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{1-n}=-\mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}\left((n-1)\left(\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)-c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{1-n}=-\mathrm{e}^{-(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}\left((n-1)\left(\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)-c_{1}\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 74

```
dsolve(g(x)*diff(y(x),x)=f__1(x)*y(x)+f__n(x)*y(x)^n,y(x), singsol=all)
```

$y(x)$
$=\mathrm{e}^{\int \frac{f_{1}(x)}{g(x)} d x}\left(-n\left(\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)+c_{1}+\int \frac{f_{n}(x) \mathrm{e}^{(n-1)\left(\int \frac{f_{1}(x)}{g(x)} d x\right)}}{g(x)} d x\right)^{-\frac{1}{n-1}}$
$\sqrt{ }$ Solution by Mathematica
Time used: 14.019 (sec). Leaf size: 84

```
DSolve[g[x]*y'[x]==f1[x]*y[x]+fn[x]*y[x]^n,y[x],x,IncludeSingularSolutions -> True]
```

$$
\left.\begin{array}{r}
y(x) \\
\rightarrow\left(\operatorname { e x p } (- ((n - 1) \int _ { 1 } ^ { x } \frac { \mathrm { f } 1 (K [1]) } { g (K [1]) } d K [1])) \left(-(n-1) \int_{1}^{x} \frac{\exp \left((n-1) \int_{1}^{K[2]} \frac{\mathrm{f} 1(K[1])}{g(K[1])} d K[1]\right) \mathrm{fn}(K[2])}{g(K[2])} d K[\right.\right. \\
\left.+c_{1}\right)
\end{array}\right) \frac{1}{1-n} .
$$

1.6 problem 1.1.6

$$
\text { 1.6.1 Solving as homogeneousTypeD2 ode } 35
$$

1.6.2 Solving as first order ode lie symmetry calculated ode 37

Internal problem ID [10330]
Internal file name [OUTPUT/9277_Monday_June_06_2022_01_45_23_PM_73837130/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime}-f\left(\frac{y}{x}\right)=0
$$

1.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-f(u(x))=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-u+f(u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-u+f(u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-u+f(u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{-u+f(u)} d u & =\int \frac{1}{x} d x \\
\int^{u} \frac{1}{-_a+f\left(_a\right)} d _a & =c_{2}+\ln (x)
\end{aligned}
$$

Which results in

$$
\int^{u} \frac{1}{-_a+f\left(_a\right)} d _a=c_{2}+\ln (x)
$$

The solution is

$$
\int^{u(x)} \frac{1}{-_a+f\left(_a\right)} d _a-c_{2}-\ln (x)=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \int^{\frac{y}{x}} \frac{1}{-_a+f\left(_a\right)} d _a-c_{2}-\ln (x)=0 \\
& \int^{\frac{y}{x}} \frac{1}{-_a+f\left(_a\right)} d _a-c_{2}-\ln (x)=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{\frac{y}{x}} \frac{1}{-_a+f\left(_a\right)} d _a-c_{2}-\ln (x)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{\frac{y}{x}} \frac{1}{-_a+f\left(_a\right)} d _a-c_{2}-\ln (x)=0
$$

Verified OK.

1.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =f\left(\frac{y}{x}\right) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+f\left(\frac{y}{x}\right)\left(b_{3}-a_{2}\right)-f\left(\frac{y}{x}\right)^{2} a_{3}+\frac{D(f)\left(\frac{y}{x}\right) y\left(x a_{2}+y a_{3}+a_{1}\right)}{x^{2}} \tag{5E}\\
& -\frac{D(f)\left(\frac{y}{x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{f\left(\frac{y}{x}\right)^{2} a_{3} x^{2}+D(f)\left(\frac{y}{x}\right) x^{2} b_{2}-D(f)\left(\frac{y}{x}\right) x y a_{2}+D(f)\left(\frac{y}{x}\right) x y b_{3}-D(f)\left(\frac{y}{x}\right) y^{2} a_{3}+x^{2} f\left(\frac{y}{x}\right) a_{2}-x^{2} f\left(\frac{y}{x}\right) b}{x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -f\left(\frac{y}{x}\right)^{2} a_{3} x^{2}-D(f)\left(\frac{y}{x}\right) x^{2} b_{2}+D(f)\left(\frac{y}{x}\right) x y a_{2} \\
& -D(f)\left(\frac{y}{x}\right) x y b_{3}+D(f)\left(\frac{y}{x}\right) y^{2} a_{3}-x^{2} f\left(\frac{y}{x}\right) a_{2} \tag{6E}\\
& +x^{2} f\left(\frac{y}{x}\right) b_{3}-D(f)\left(\frac{y}{x}\right) x b_{1}+D(f)\left(\frac{y}{x}\right) y a_{1}+b_{2} x^{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, f\left(\frac{y}{x}\right), D(f)\left(\frac{y}{x}\right)\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, f\left(\frac{y}{x}\right)=v_{3}, D(f)\left(\frac{y}{x}\right)=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3}^{2} a_{3} v_{1}^{2}-v_{1}^{2} v_{3} a_{2}+v_{4} v_{1} v_{2} a_{2}+v_{4} v_{2}^{2} a_{3}-v_{4} v_{1}^{2} b_{2} \tag{7E}\\
& \quad+v_{1}^{2} v_{3} b_{3}-v_{4} v_{1} v_{2} b_{3}+v_{4} v_{2} a_{1}-v_{4} v_{1} b_{1}+b_{2} v_{1}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3}^{2} a_{3} v_{1}^{2}+\left(b_{3}-a_{2}\right) v_{1}^{2} v_{3}-v_{4} v_{1}^{2} b_{2}+b_{2} v_{1}^{2} \tag{8E}\\
& \quad+\left(-b_{3}+a_{2}\right) v_{1} v_{2} v_{4}-v_{4} v_{1} b_{1}+v_{4} v_{2}^{2} a_{3}+v_{4} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{3} & =0 \\
b_{2} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-b_{3}+a_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=f\left(\frac{y}{x}\right)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x}{x f\left(\frac{y}{x}\right)-y} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{f(R)-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{1}{f(R)-R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\int^{\frac{y}{x}} \frac{1}{f\left(_a\right)-_a} d _a+c_{1}
$$

Which simplifies to

$$
\ln (x)=\int^{\frac{y}{x}} \frac{1}{f\left(_a\right)-_a} d _a+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=\int^{\frac{y}{x}} \frac{1}{f\left(_a\right)-_a} d _a+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\ln (x)=\int^{\frac{y}{x}} \frac{1}{f\left(_a\right)-_a} d _a+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff $(y(x), x)=f(y(x) / x), y(x)$, singsol=all)

$$
y(x)=\operatorname{RootOf}\left(-\left(\int^{-^{Z}}-\frac{1}{-f\left(_a\right)+_a} d _a\right)+\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 33
DSolve[y' $[x]==f[y[x] / x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{1}{K[1]-f(K[1])} d K[1]=-\log (x)+c_{1}, y(x)\right]
$$

2 Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
2.1 problem 1 46
2.2 problem 2 50
2.3 problem 3 54
2.4 problem 4 59
2.5 problem 5 63
2.6 problem 6 68
2.7 problem 7 73
2.8 problem 8 82
2.9 problem 9 87
2.10 problem 10 92
2.11 problem 11 98
2.12 problem 12 103
2.13 problem 13 108
2.14 problem 14 121
2.15 problem 15 126
2.16 problem 16 131
2.17 problem 17 136
2.18 problem 18 141
2.19 problem 19 150
2.20 problem 20 155
2.21 problem 21 167
2.22 problem 22 172
2.23 problem 23 177
2.24 problem 24 181
2.25 problem 25 185
2.26 problem 26 189
2.27 problem 27 194
2.28 problem 28 199
2.29 problem 29 204
2.30 problem 30 209
2.31 problem 31 214
2.32 problem 32 219
2.33 problem 33 224
2.34 problem 34 229
2.35 problem 35 233
2.36 problem 36 238
2.37 problem 37 242
2.38 problem 38 247
2.39 problem 39 251
2.40 problem 40 260
2.41 problem 41 264
2.42 problem 42 268
2.43 problem 43 273
2.44 problem 44 277
2.45 problem 45 281
2.46 problem 46 286
2.47 problem 47 296
2.48 problem 48 300
2.49 problem 49 304
2.50 problem 50 318
2.51 problem 51 323
2.52 problem 52 328
2.53 problem 53 333
2.54 problem 54 338
2.55 problem 55 343
2.56 problem 56 347
2.57 problem 57 351
2.58 problem 58 355
2.59 problem 59 367
2.60 problem 60 378
2.61 problem 61 383
2.62 problem 62 388
2.63 problem 63 393
2.64 problem 64 403
2.65 problem 65 408
2.66 problem 66 413
2.67 problem 67 418
2.68 problem 68 423
2.69 problem 69 428
2.70 problem 70 433
2.71 problem 71 438
2.72 problem 72 443
2.73 problem 73 448
2.74 problem 74 452
2.75 problem 75 457
2.76 problem 76 462
2.77 problem 77 467
2.78 problem 78 471

2.1 problem 1

2.1.1 Solving as riccati ode

Internal problem ID [10331]
Internal file name [OUTPUT/9278_Monday_June_06_2022_01_45_23_PM_48991554/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a y^{2}=b x+c
$$

2.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b x+c
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+b x+c
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x+c, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2}(b x+c)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+a^{2}(b x+c) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)+c_{2} \operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(-\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{2}-\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{1}\right)(a b)^{\frac{1}{3}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{2}-\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{1}\right)(a b)^{\frac{1}{3}}}{a\left(c_{1} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)+c_{2} \operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{Airy} \operatorname{Ai}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b x+c)}{b}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the OF1 0-parameter (Airy type) class
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 85
dsolve(diff $(y(x), x)=a * y(x) \wedge 2+b * x+c, y(x)$, singsol=all)

$$
y(x)=\frac{\left(\frac{b}{\sqrt{a}}\right)^{\frac{1}{3}}\left(\operatorname{AiryAi}\left(1,-\frac{b x+c}{\left(\frac{b}{\sqrt{a}}\right)^{\frac{2}{3}}}\right) c_{1}+\operatorname{AiryBi}\left(1,-\frac{b x+c}{\left(\frac{b}{\sqrt{a}}\right)}\right)\right)}{\sqrt{a}\left(c_{1} \operatorname{AiryAi}\left(-\frac{b x+c}{\left(\frac{b}{\sqrt{a}}\right)^{\frac{2}{3}}}\right)+\operatorname{AiryBi}\left(-\frac{b x+c}{\left(\frac{b}{\sqrt{a}}\right)^{\frac{2}{3}}}\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.325 (sec). Leaf size: 143
DSolve[y' $[\mathrm{x}]==\mathrm{a} * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \mathrm{x}+\mathrm{c}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{b\left(\operatorname{AiryBiPrime}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)+c_{1} \operatorname{AiryAiPrime}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)\right)}{(-a b)^{2 / 3}\left(\operatorname{AiryBi}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)+c_{1} \operatorname{AiryAi}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)\right)} \\
& y(x) \rightarrow \frac{b \operatorname{AiryAiPrime}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)}{(-a b)^{2 / 3} \operatorname{AiryAi}\left(-\frac{a(c+b x)}{(-a b)^{2 / 3}}\right)}
\end{aligned}
$$

2.2 problem 2

2.2.1 Solving as riccati ode 50

Internal problem ID [10332]
Internal file name [OUTPUT/9279_Monday_June_06_2022_01_45_24_PM_3663866/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-a^{2} x^{2}+3 a
$$

2.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} x^{2}+y^{2}+3 a
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} x^{2}+y^{2}+3 a
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2} x^{2}+3 a, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} x^{2}+3 a
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-a^{2} x^{2}+3 a\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(\sqrt{\pi} \operatorname{erf}(x \sqrt{-a}) \sqrt{-a} c_{2}+c_{1}\right) \mathrm{e}^{-\frac{a x^{2}}{2}}+c_{2} \mathrm{e}^{\frac{a x^{2}}{2}}
$$

The above shows that

$$
u^{\prime}(x)=\left(c_{2} \sqrt{\pi}\left(x^{2}(-a)^{\frac{3}{2}}+\sqrt{-a}\right) \operatorname{erf}(x \sqrt{-a})-c_{1} a x^{2}+c_{1}\right) \mathrm{e}^{-\frac{a x^{2}}{2}}-c_{2} x a \mathrm{e}^{\frac{a x^{2}}{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{2} \sqrt{\pi}\left(x^{2}(-a)^{\frac{3}{2}}+\sqrt{-a}\right) \operatorname{erf}(x \sqrt{-a})-c_{1} a x^{2}+c_{1}\right) \mathrm{e}^{-\frac{a x^{2}}{2}}-c_{2} x a \mathrm{e}^{\frac{a x^{2}}{2}}}{x\left(\sqrt{\pi} \operatorname{erf}(x \sqrt{-a}) \sqrt{-a} c_{2}+c_{1}\right) \mathrm{e}^{-\frac{a x^{2}}{2}}+c_{2} \mathrm{e}^{\frac{a x^{2}}{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x a \mathrm{e}^{a x^{2}}-\sqrt{\pi}\left(x^{2}(-a)^{\frac{3}{2}}+\sqrt{-a}\right) \operatorname{erf}(x \sqrt{-a})+c_{3}\left(a x^{2}-1\right)}{\sqrt{\pi} \sqrt{-a} \operatorname{erf}(x \sqrt{-a}) x+\mathrm{e}^{a x^{2}}+c_{3} x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x a \mathrm{e}^{a x^{2}}-\sqrt{\pi}\left(x^{2}(-a)^{\frac{3}{2}}+\sqrt{-a}\right) \operatorname{erf}(x \sqrt{-a})+c_{3}\left(a x^{2}-1\right)}{\sqrt{\pi} \sqrt{-a} \operatorname{erf}(x \sqrt{-a}) x+\mathrm{e}^{a x^{2}}+c_{3} x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x a \mathrm{e}^{a x^{2}}-\sqrt{\pi}\left(x^{2}(-a)^{\frac{3}{2}}+\sqrt{-a}\right) \operatorname{erf}(x \sqrt{-a})+c_{3}\left(a x^{2}-1\right)}{\sqrt{\pi} \sqrt{-a} \operatorname{erf}(x \sqrt{-a}) x+\mathrm{e}^{a x^{2}}+c_{3} x}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2*x^2-3*a)*y(x), y(x)`
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
        <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 82
dsolve(diff $(y(x), x)=y(x) \wedge 2-a^{\wedge} 2 * x^{\wedge} 2+3 * a, y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{a x^{2}} c_{1} a x-c_{1} \sqrt{\pi}\left((-a)^{\frac{3}{2}} x^{2}+\sqrt{-a}\right) \operatorname{erf}(\sqrt{-a} x)+a x^{2}-1}{\sqrt{\pi} \sqrt{-a} \operatorname{erf}(\sqrt{-a} x) c_{1} x+\mathrm{e}^{a x^{2}} c_{1}+x}
$$

\checkmark Solution by Mathematica
Time used: 0.79 (sec). Leaf size: 192
DSolve[y'[x]==y[x]^2-a^2*x^2+3*a,y[x],x,IncludeSingularSolutions -> True]
$y(x)$
$\rightarrow \frac{a x \text { ParabolicCylinderD }(-2, i \sqrt{2} \sqrt{a} x)+i \sqrt{2} \sqrt{a} \text { ParabolicCylinderD }(-1, i \sqrt{2} \sqrt{a} x)-a c_{1} x \text { Parabolic }}{\text { ParabolicCylinderD }(-2, i \sqrt{2} \sqrt{a} x)+c_{1} \text { ParabolicCyl }}$
$y(x) \rightarrow \frac{\sqrt{2} \sqrt{a} \text { ParabolicCylinderD }(2, \sqrt{2} \sqrt{a} x)}{\text { ParabolicCylinderD }(1, \sqrt{2} \sqrt{a} x)}-a x$

2.3 problem 3

$$
\text { 2.3.1 Solving as riccati ode . } 54
$$

Internal problem ID [10333]
Internal file name [OUTPUT/9280_Monday_June_06_2022_01_45_25_PM_48071204/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a^{2} x^{2}+b x+c
$$

2.3.1 Solving as riccati ode

In canonical form the $O D E$ is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a^{2} x^{2}+b x+y^{2}+c
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a^{2} x^{2}+b x+y^{2}+c
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a^{2} x^{2}+b x+c, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2} x^{2}+b x+c
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(a^{2} x^{2}+b x+c\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\mathrm{e}^{-\frac{i x\left(a^{2} x+b\right)}{2 a}\left(2 x a^{2} c_{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+12 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{3}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)\right.} \begin{aligned}
& +b c_{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+12 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{3}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right) \\
+ & \text { hypergeom } \left.\left(\left[\frac{4 i a^{2} c+4 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{1}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right) c_{1}\right)
\end{aligned}
\end{array}
$$

The above shows that
$u^{\prime}(x)$
$=2\left(\left(a^{2} x+\frac{b}{2}\right)^{2}\left(i a^{3}-\frac{1}{3} a^{2} c+\frac{1}{12} b^{2}\right) c_{2}\right.$ hypergeom $\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+\frac{c_{1}\left(-a^{2} c+\frac{1}{4} b^{2}+i a^{3}\right)\left(a^{2} x\right.}{}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{2\left(\left(a^{2} x+\frac{b}{2}\right)^{2}\left(i a^{3}-\frac{1}{3} a^{2} c+\frac{1}{12} b^{2}\right) c_{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+\frac{c_{1}\left(-a^{2} c+\frac{1}{4} b^{2}+i a^{3}\right)(}{a^{4}\left(2 x a ^ { 2 } c _ { 2 } \text { hypergeom } \left(\left[\frac{4 i a^{2} c+12 a^{3}-i b^{2}}{16 a^{3}}\right]\right.\right.}\right.}{}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{4\left(-i a^{3}+\frac{1}{3} a^{2} c-\frac{1}{12} b^{2}\right)\left(a^{2} x+\frac{b}{2}\right)^{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+\left(4 i a^{7} x^{2}+4 i a^{5} b x-4\right)}{4 a^{4}\left(\left(a^{2}\right)\right.}$

Summary

The solution(s) found are the following
y
$=\frac{4\left(-i a^{3}+\frac{1}{3} a^{2} c-\frac{1}{12} b^{2}\right)\left(a^{2} x+\frac{b}{2}\right)^{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+\left(4 i a^{7} x^{2}+4 i a^{5} b x-4\right.}{4 a^{4}\left(\left(a^{2}\right)\right.}$

Verification of solutions

y
$=\frac{4\left(-i a^{3}+\frac{1}{3} a^{2} c-\frac{1}{12} b^{2}\right)\left(a^{2} x+\frac{b}{2}\right)^{2} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+\left(4 i a^{7} x^{2}+4 i a^{5} b x-4\right.}{4 a^{4}\left(\left(a^{2}\right)\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-a^2*x^2-b*x-c)*y(x), y(x)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is
        <- hypergeometric successful
    <- special function solution successful
    <- Riccati to 2nd Order successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 393

```
dsolve(diff(y(x),x)=y(x)^2+a^2*x^2+b*x+c,y(x), singsol=all)
```

$y(x)$
$=\frac{-48\left(i a^{3}-\frac{1}{3} a^{2} c+\frac{1}{12} b^{2}\right)\left(a^{2} x+\frac{b}{2}\right)^{2} c_{1} \text { hypergeom }\left(\left[\frac{4 i a^{2} c+28 a^{3}-i b^{2}}{16 a^{3}}\right],\left[\frac{5}{2}\right], \frac{i\left(2 a^{2} x+b\right)^{2}}{4 a^{3}}\right)+48 c_{1} a^{3}\left(i a^{4} x^{2}+i a\right.}{48((c)}$
\checkmark Solution by Mathematica
Time used: 1.582 (sec). Leaf size: 664

$$
\begin{aligned}
& \text { DSolve }\left[\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \wedge^{\wedge} 2+\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& y(x) \\
& \rightarrow \xrightarrow{2 i \sqrt{2} a^{2} x \text { ParabolicCylinderD }\left(\frac{1}{8}\left(-\frac{i b^{2}}{a^{3}}+\frac{4 i c}{a}-4\right),-\frac{\left(\frac{1}{2}-\frac{i}{2}\right)\left(2 x a^{2}+b\right)}{a^{3 / 2}}\right)+4(-1)^{3 / 4} a^{3 / 2} \text { ParabolicCylinderI }}
\end{aligned}
$$

$y(x) \rightarrow \frac{(1+i) \sqrt{a} \text { ParabolicCylinderD }\left(\frac{1}{8}\left(\frac{i b^{2}}{a^{3}}-\frac{4 i c}{a}+4\right), \frac{\left(\frac{1}{2}+\frac{i}{2}\right)\left(2 x a^{2}+b\right)}{a^{3 / 2}}\right)}{\text { ParabolicCylinderD }\left(\frac{1}{8}\left(\frac{i b^{2}}{a^{3}}-\frac{4 i c}{a}-4\right), \frac{\left(\frac{1}{2}+\frac{i}{2}\right)\left(2 x a^{2}+b\right)}{a^{3 / 2}}\right)}-\frac{i\left(2 a^{2} x+b\right)}{2 a}$
$y(x) \rightarrow \frac{(1+i) \sqrt{a} \text { ParabolicCylinderD }\left(\frac{1}{8}\left(\frac{i b^{2}}{a^{3}}-\frac{4 i c}{a}+4\right), \frac{\left(\frac{1}{2}+\frac{i}{2}\right)\left(2 x a^{2}+b\right)}{a^{3 / 2}}\right)}{\text { ParabolicCylinderD }\left(\frac{1}{8}\left(\frac{i b^{2}}{a^{3}}-\frac{4 i c}{a}-4\right), \frac{\left(\frac{1}{2}+\frac{i}{2}\right)\left(2 x a^{2}+b\right)}{a^{3 / 2}}\right)}-\frac{i\left(2 a^{2} x+b\right)}{2 a}$

2.4 problem 4

2.4.1 Solving as riccati ode . 59

Internal problem ID [10334]
Internal file name [OUTPUT/9281_Monday_June_06_2022_01_45_26_PM_40145015/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_Riccati, _special]]

$$
y^{\prime}-a y^{2}=b x^{n}
$$

2.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b x^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+b x^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x^{n}, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =b x^{n} a^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+b x^{n} a^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{2}\right) \sqrt{x}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) \sqrt{a b} x^{1+\frac{n}{2}} c_{1}-\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) \sqrt{a b} x^{1+\frac{n}{2}} c_{2}+\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+}}{2+n}\right.}{\sqrt{x}}$
Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{-\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) \sqrt{a b} x^{1+\frac{n}{2}} c_{1}-\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) \sqrt{a b} x^{1+\frac{n}{2}} c_{2}+\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x}{2+}\right.}{x a\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{1}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{2}\right)} \\
& \text { Dividing both numerator and denominator by } c_{1} \text { gives, after renaming the constant } \\
& \frac{c_{2}}{c_{1}}=c_{3} \text { the following solution } \\
& y \\
& =\frac{\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right) \sqrt{a b} x^{1+\frac{n}{2}}-\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}-\operatorname{Be}}{x a\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right)}
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right) \sqrt{a b} x^{1+\frac{n}{2}}-\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}-\operatorname{Be}}{x a\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right)}$
Verification of solutions
$=\frac{\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right) \sqrt{a b} x^{1+\frac{n}{2}}-\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}-\operatorname{Be}}{x a\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a b} x^{1+\frac{n}{2}}}{2+n}\right)\right)}$
Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 207
dsolve(diff $(y(x), x)=a * y(x)^{\wedge} 2+b * x^{\wedge} n, y(x)$, singsol=all)
$y(x)$
$=\frac{\operatorname{BesselJ}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+1}}{n+2}\right) \sqrt{a b} x^{\frac{n}{2}+1} c_{1}+\operatorname{BesselY}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+1}}{n+2}\right) \sqrt{a b} x^{\frac{n}{2}+1}-c_{1} \operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+1}}{n+2}\right.}{x a\left(c_{1} \operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+1}}{n+2}\right)+\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+1}}{n+2}\right)\right)}$
\checkmark Solution by Mathematica
Time used: 0.696 (sec). Leaf size: 605

```
DSolve[y'[x]==a*y[x]^2+b*x^n,y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow$

$$
-\sqrt{a} \sqrt{b} x^{\frac{n}{2}+1} \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \operatorname{BesselJ}\left(\frac{1}{n+2}-1, \frac{2 \sqrt{a} \sqrt{b} x^{\frac{n}{2}+1}}{n+2}\right)-\sqrt{a} \sqrt{b} x^{\frac{n}{2}+1} \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \text { Bessel. }
$$

$y(x) \rightarrow \frac{\frac{\sqrt{a} \sqrt{b} x^{n / 2}\left(\operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} x}{n+2}\right)-\frac{n}{2}+1\right.}{\operatorname{BessesselJ}\left(-\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} x}{n+2}\right)}}{2 a}$

2.5 problem 5

$$
\text { 2.5.1 Solving as riccati ode . } 63
$$

Internal problem ID [10335]
Internal file name [OUTPUT/9282_Monday_June_06_2022_01_45_27_PM_95068594/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a n x^{n-1}-a^{2} x^{2 n}
$$

2.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a n x^{n-1}-a^{2} x^{2 n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{a n x^{n}}{x}-a^{2} x^{2 n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a n x^{n-1}-a^{2} x^{2 n}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a n x^{n-1}-a^{2} x^{2 n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(a n x^{n-1}-a^{2} x^{2 n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=-\frac{c_{2} x^{-1-\frac{3 n}{2}}(2+n)^{2} \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n+1} a}{n+1}\right)}{2}+c_{2}\left(\left(-\frac{n}{2}-1\right) x^{-1-\frac{3 n}{2}}\right. \\
\left.\quad+a x^{-\frac{n}{2}}\right)(n+1) \text { WhittakerM }\left(-\frac{n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n+1} a}{n+1}\right)+c_{1} \mathrm{e}^{-\frac{x^{n+1} a}{n+1}}
\end{array}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{\left(-\frac{3 c_{2}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{n}{2}}+a x x^{\frac{n}{2}}\left(n+\frac{4}{3}\right)\right)(2+n) \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+c_{2}\left(\left(-\frac{1}{2} n^{2}-\frac{3}{2} n-1\right) x^{-\frac{n}{2}}+a x((-\right.\right.}{}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\left(-\frac{3 c_{2}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{n}{2}}+a x x^{\frac{n}{2}}\left(n+\frac{4}{3}\right)\right)(2+n) \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+c_{2}\left(\left(-\frac{1}{2} n^{2}-\frac{3}{2} n-1\right) x^{-\frac{n}{2}}+a x\left(\left(-\frac{n}{2}\right.\right.\right.\right.}{x^{2}\left(-\frac{c_{2} x^{-1-\frac{3 n}{2}}(2+n)^{2} \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2},-\frac{2 x^{n+1 a}}{n+1}\right)}{2}+c_{2}(()\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{\left(-\frac{3 \mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{n}{2}}+a x x^{\frac{n}{2}}\left(n+\frac{4}{3}\right)\right)(2+n) \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+\mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(-\frac{1}{2} n^{2}-\frac{3}{2} n-1\right) x^{-\frac{n}{2}}+a\right.\right.}{x\left(-\frac{x^{-\frac{3 n}{2}} \mathrm{e}^{\frac{x^{n} x a}{n+1}}(2+n)^{2} \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+\epsilon\right.}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(-\frac{3 \mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{n}{2}}+a x x^{\frac{n}{2}}\left(n+\frac{4}{3}\right)\right)(2+n) \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+\mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(-\frac{1}{2} n^{2}-\frac{3}{2} n-1\right) x^{-\frac{n}{2}}+a\right.\right.}{x\left(-\frac{x^{-\frac{3 n}{2}} \mathrm{e}^{\frac{x_{n} n x a}{n+1}}(2+n)^{2} \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+c\right.}$

Verification of solutions

y
$=\frac{\left(-\frac{3 \mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{n}{2}}+a x x^{\frac{n}{2}}\left(n+\frac{4}{3}\right)\right)(2+n) \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+\mathrm{e}^{\frac{x^{n} x a}{n+1}}\left(\left(-\frac{1}{2} n^{2}-\frac{3}{2} n-1\right) x^{-\frac{n}{2}}+a\right.\right.}{x\left(-\frac{x^{-\frac{3 n}{2}} \mathrm{e}^{\frac{x^{n} x a}{n+1}}(2+n)^{2} \text { WhittakerM }\left(\frac{2+n}{2+2 n}, \frac{3+2 n}{2+2 n},-\frac{2 x^{n} x a}{n+1}\right)}{2}+\right.}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-a*n*x^(n-1)+a`2*x^(2*n))*y(x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
                A Liouvillian solution exists
                Reducible group (found an exponential solution)
                Group is reducible, not completely reducible
        <- Kovacics algorithm successful
        <- Equivalence, under non-integer power transformations successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 388
dsolve(diff $(y(x), x)=y(x)^{\wedge} 2+a * n * x^{\wedge}(n-1)-a^{\wedge} 2 * x^{\wedge}(2 * n), y(x)$, singsol=all)
$y(x)$
$=\frac{-3(n+2) c_{1}\left(\left(\frac{1}{3} n^{2}+n+\frac{2}{3}\right) x^{-\frac{3 n}{2}}+a x x^{-\frac{n}{2}}\left(n+\frac{4}{3}\right)\right) \mathrm{e}^{\frac{a x x^{n}}{n+1}} \text { WhittakerM }\left(\frac{n+2}{2 n+2}, \frac{2 n+3}{2 n+2},-\frac{2 a x x^{n}}{n+1}\right)+2 c_{1} \mathrm{e}^{\frac{a x x}{n+}}}{2\left(-\frac{\mathrm{e}^{\frac{a x x^{n}}{n+1} x^{-\frac{3 n}{2}} c_{1}(n+2)^{2} \text { WhittakerM }\left(\frac{n+2}{2 n+2}, \frac{2 n+3}{2 n+2}\right.},}{2}\right.}$
$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 1.61 (sec). Leaf size: 227
DSolve[y'[x]==y[x]^2+a*n*x^(n-1)-a^2*x^(2*n),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2^{\frac{1}{n+1}}(n+1)\left(-\frac{a x^{n+1}}{n+1}\right)^{\frac{1}{n+1}}\left(a x^{n}-c_{1} e^{\frac{2 a x^{n+1}}{n+1}}\right)-a c_{1} x^{n+1} \Gamma\left(\frac{1}{n+1},-\frac{2 a x^{n+1}}{n+1}\right)}{2^{\frac{1}{n+1}}(n+1)\left(-\frac{a x^{n+1}}{n+1}\right)^{\frac{1}{n+1}}-c_{1} x \Gamma\left(\frac{1}{n+1},-\frac{2 a x^{n+1}}{n+1}\right)} \\
& y(x) \rightarrow \frac{2^{\frac{1}{n+1}}(n+1) e^{\frac{2 a x^{n+1}}{n+1}}\left(-\frac{a x^{n+1}}{n+1}\right)^{\frac{1}{n+1}}}{x \Gamma\left(\frac{1}{n+1},-\frac{2 a x^{n+1}}{n+1}\right)}+a x^{n}
\end{aligned}
$$

2.6 problem 6

$$
\text { 2.6.1 Solving as riccati ode . } 68
$$

Internal problem ID [10336]
Internal file name [OUTPUT/9283_Monday_June_06_2022_01_46_32_PM_97394906/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a y^{2}=b x^{2 n}+c x^{n-1}
$$

2.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b x^{2 n}+c x^{n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+b x^{2 n}+\frac{c x^{n}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x^{2 n}+c x^{n-1}, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2}\left(b x^{2 n}+c x^{n-1}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+a^{2}\left(b x^{2 n}+c x^{n-1}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=x^{-\frac{n}{2}}\left(c_{1} \text { WhittakerM }\left(-\frac{i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)\right. \\
\left.\quad+c_{2} \text { WhittakerW }\left(-\frac{i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\underline{\left(-(i \sqrt{a} \sqrt{b} c-b(2+n)) c_{1} \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)-2 c_{2} b(n+1) \text { Whittaker }\right.}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{-(i \sqrt{a} \sqrt{b} c-b(2+n)) c_{1} \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)-2 c_{2} b(n+1) \text { Whittake }}{2 b x a\left(c_{1}\right. \text { Whitt }}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$=\frac{(i \sqrt{a} \sqrt{b} c-b(2+n)) c_{3} \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)+2 b(n+1) \text { WhittakerW }(-}{2 b x a\left(c_{3} \text { Whittaker] }\right.}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{(i \sqrt{a} \sqrt{b} c-b(2+n)) c_{3} \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)+2 b(n+1) \text { WhittakerW }(-}{2 b x a\left(c_{3} \text { Whittaker }\right.}$
Verification of solutions
$=\frac{(i \sqrt{a} \sqrt{b} c-b(2+n)) c_{3} \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i \sqrt{a} c}{\sqrt{b}(2+2 n)}, \frac{1}{2+2 n}, \frac{2 i \sqrt{a} \sqrt{b} x^{n} x}{n+1}\right)+2 b(n+1) \text { WhittakerW }(-}{2 b x a\left(c_{3} \text { Whittakerl }\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*(b*x^(2*n)+c*x^(n-1))*y(x),
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
            <- Whittaker successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 357

```
dsolve(diff(y(x),x)=a*y(x)^2+b*x^(2*n)+c**^(n-1),y(x), singsol=all)
```

$y(x)=$

$$
-\frac{\left(\left(\frac{n}{2}+1\right) \sqrt{b}-\frac{i c \sqrt{a}}{2}\right) \text { WhittakerM }\left(-\frac{(-2 n-2) \sqrt{b}+i c \sqrt{a}}{\sqrt{b}(2 n+2)}, \frac{1}{2 n+2}, \frac{2 i \sqrt{a} \sqrt{b} x x^{n}}{n+1}\right)-\sqrt{b} c_{1}(n+1) \text { WhittakerW }(}{\sqrt{b}(\text { WhittakerW }(-)}
$$

Solution by Mathematica
Time used: 1.818 (sec). Leaf size: 982

```
DSolve[y'[x]==a*y[x]^2+b*x^(2*n)+c*x^(n-1),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{x^{n}\left(\sqrt{b} c_{1}(n+1) \sqrt{-(n+1)^{2}} \operatorname{HypergeometricU}\left(\frac{1}{2}\left(\frac{\sqrt{a} c}{\sqrt{b} \sqrt{-(n+1)^{2}}}+\frac{n}{n+1}\right), \frac{n}{n+1}, \frac{2 \sqrt{a} \sqrt{b} x^{n+1}}{\sqrt{-(n+1)^{2}}}\right)+c_{1}(\sqrt{a} c(r\right.}{\sqrt{a}(n+1)^{2}}
\end{aligned}
$$

$y(x)$

$$
\begin{aligned}
& \rightarrow \frac{x^{n}\left(-\frac{\left(\sqrt{a} c(n+1)+\sqrt{b} \sqrt{-(n+1)^{2}} n\right) \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a} c}{\sqrt{b} \sqrt{-(n+1)^{2}}}+\frac{n}{n+1}+2\right), \frac{n}{n+1}+1, \frac{2 \sqrt{a} \sqrt{b} x^{n+1}}{\sqrt{-(n+1)^{2}}}\right)}{\text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a} c}{\sqrt{b} \sqrt{-(n+1)^{2}}}+\frac{n}{n+1}\right), \frac{n}{n+1}, \frac{2 \sqrt{a} \sqrt{b} x+1}{\sqrt{-(n+1)^{2}}}\right)}-\sqrt{b} \sqrt{-(n+1)^{2}}(n)\right.}{\sqrt{a}(n+1)^{2}} \\
& y(x) \\
& \rightarrow \frac{x^{n}\left(-\frac{\left(\sqrt{a} c(n+1)+\sqrt{b} \sqrt{-(n+1)^{2}} n\right) \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a} c}{\sqrt{b} \sqrt{-(n+1)^{2}}}+\frac{n}{n+1}+2\right), \frac{n}{n+1}+1, \frac{2 \sqrt{a} \sqrt{b} x^{n+1}}{\sqrt{-(n+1)^{2}}}\right)}{\text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a} c}{\sqrt{b} \sqrt{-(n+1)^{2}}}+\frac{n}{n+1}\right), \frac{n}{n+1}, \frac{2 \sqrt{a} \sqrt{b} x^{n+1}}{\sqrt{-(n+1)^{2}}}\right)}-\sqrt{b} \sqrt{-(n+1)^{2}}(n)\right.}{\sqrt{a}(n+1)^{2}}
\end{aligned}
$$

2.7 problem 7

2.7.1 Solving as first order ode lie symmetry calculated ode 73
2.7.2 Solving as riccati ode . 78

Internal problem ID [10337]
Internal file name [OUTPUT/9284_Monday_June_06_2022_01_46_37_PM_54916221/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _Riccati]

$$
y^{\prime}-a x^{n} y^{2}=b x^{-n-2}
$$

2.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =a x^{n} y^{2}+b x^{-n-2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(a x^{n} y^{2}+b x^{-n-2}\right)\left(b_{3}-a_{2}\right)-\left(a x^{n} y^{2}+b x^{-n-2}\right)^{2} a_{3} \tag{5E}\\
& \quad-\left(\frac{a x^{n} n y^{2}}{x}+\frac{b x^{-n-2}(-n-2)}{x}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-2 a x^{n} y\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2 n} a^{2} x y^{4} a_{3}+2 x^{n} x^{-n-2} a b x y^{2} a_{3}+x^{n} a n x y^{2} a_{2}+x^{n} a n y^{3} a_{3}+x^{n} a n y^{2} a_{1}+2 x^{n} a x^{2} y b_{2}+x^{n} a x y^{2} a_{2}+x^{n}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2 n} a^{2} x y^{4} a_{3}-2 x^{n} x^{-n-2} a b x y^{2} a_{3}-x^{n} a n x y^{2} a_{2}-x^{n} a n y^{3} a_{3} \\
& \quad-x^{n} a n y^{2} a_{1}-2 x^{n} a x^{2} y b_{2}-x^{n} a x y^{2} a_{2}-x^{n} a x y^{2} b_{3}-x^{-4-2 n} b^{2} x a_{3} \tag{6E}\\
& \quad-2 x^{n} a x y b_{1}+x^{-n-2} b n x a_{2}+x^{-n-2} b n y a_{3}+x^{-n-2} b n a_{1} \\
& +x^{-n-2} b x a_{2}+x^{-n-2} b x b_{3}+2 x^{-n-2} b y a_{3}+2 x^{-n-2} b a_{1}+x b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{aligned}
& -\frac{\left(x^{4 n} a^{2} x^{4} y^{4} a_{3}+x^{3 n} a n x^{4} y^{2} a_{2}+x^{3 n} a n y^{3} a_{3} x^{3}+x^{3 n} a n y^{2} a_{1} x^{3}+2 x^{3 n} a x^{5} y b_{2}+x^{3 n} a x^{4} y^{2} a_{2}+x^{3 n} a x^{4} y^{2} b\right.}{=0}
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, x^{n}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, x^{n}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
-\frac{v_{3}^{4} a^{2} v_{1}^{4} v_{2}^{4} a_{3}+v_{3}^{3} a n v_{1}^{4} v_{2}^{2} a_{2}+v_{3}^{3} a n v_{2}^{3} a_{3} v_{1}^{3}+v_{3}^{3} a n v_{2}^{2} a_{1} v_{1}^{3}+v_{3}^{3} a v_{1}^{4} v_{2}^{2} a_{2}+2 v_{3}^{3} a v_{1}^{5} v_{2} b_{2}+\left(7 v_{4}^{3} a v_{1}^{4} v_{2}^{2} b_{3}+2 v_{3}^{3} a v_{1}^{4} v\right.}{\left({ }^{4}\right)}
$$

$$
=0
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 a b_{2} v_{2} v_{3} v_{1}^{2}-a^{2} a_{3} v_{3}^{2} v_{1} v_{2}^{4}+\left(-a n a_{2}-a a_{2}-a b_{3}\right) v_{1} v_{2}^{2} v_{3} \\
& \quad-2 a b_{1} v_{3} v_{1} v_{2}+b_{2} v_{1}-a n a_{3} v_{3} v_{2}^{3}-a n a_{1} v_{3} v_{2}^{2}-\frac{2 a b a_{3} v_{2}^{2}}{v_{1}} \tag{8E}\\
& +\frac{b n a_{2}+b a_{2}+b b_{3}}{v_{1} v_{3}}+\frac{\left(b n a_{3}+2 b a_{3}\right) v_{2}}{v_{1}^{2} v_{3}}+\frac{b n a_{1}+2 b a_{1}}{v_{1}^{2} v_{3}}-\frac{b^{2} a_{3}}{v_{3}^{2} v_{1}^{3}}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-2 a b_{1} & =0 \\
-2 a b_{2} & =0 \\
-a^{2} a_{3} & =0 \\
-b^{2} a_{3} & =0 \\
-2 a b a_{3} & =0 \\
-a n a_{1} & =0 \\
-a n a_{3} & =0 \\
b n a_{1}+2 b a_{1} & =0 \\
b n a_{3}+2 b a_{3} & =0 \\
-a n a_{2}-a a_{2}-a b_{3} & =0 \\
b n a_{2}+b a_{2}+b b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=-(n+1) a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-y(n+1)
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-y(n+1)-\left(a x^{n} y^{2}+b x^{-n-2}\right)(x) \\
& =-x^{n} a x y^{2}-\frac{b x^{-n}}{x}-n y-y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x^{n} a x y^{2}-\frac{b x^{-n}}{x}-n y-y} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 x^{n} x \arctan \left(\frac{2 a x^{2+2 n} y+x^{n+1} n+x^{n+1}}{\sqrt{-x^{2+2 n} n^{2}+4 a x^{2+2 n} b-2 x^{2+2 n} n-x^{2+2 n}}}\right)}{\sqrt{-x^{2+2 n} n^{2}+4 a x^{2+2 n} b-2 x^{2+2 n} n-x^{2+2 n}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=a x^{n} y^{2}+b x^{-n-2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{y x^{n}(n+1)}{a x^{2+2 n} y^{2}+y(n+1) x^{n+1}+b} \\
& S_{y}=-\frac{x^{n+1}}{a x^{2+2 n} y^{2}+y(n+1) x^{n+1}+b}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \arctan \left(\frac{2 a x^{n+1} y+n+1}{\sqrt{4 a b-n^{2}-2 n-1}}\right)}{\sqrt{4 a b-n^{2}-2 n-1}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{2 \arctan \left(\frac{2 a x^{n+1} y+n+1}{\sqrt{4 a b-n^{2}-2 n-1}}\right)}{\sqrt{4 a b-n^{2}-2 n-1}}=-\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 a b-n^{2}-2 n-1}}{2}+\frac{c_{1} \sqrt{4 a b-n^{2}-2 n-1}}{2}\right) \sqrt{4 a b-n^{2}-2 n-1}+n+1\right) x^{-n-1}}{2 a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 a b-n^{2}-2 n-1}}{2}+\frac{c_{1} \sqrt{4 a b-n^{2}-2 n-1}}{2}\right) \sqrt{4 a b-n^{2}-2 n-1}+n+1\right) x^{-n-1}}{2 a} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 a b-n^{2}-2 n-1}}{2}+\frac{c_{1} \sqrt{4 a b-n^{2}-2 n-1}}{2}\right) \sqrt{4 a b-n^{2}-2 n-1}+n+1\right) x^{-n-1}}{2 a}$

Verified OK.

2.7.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+b x^{-n-2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}+\frac{b x^{-n}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x^{-n-2}, f_{1}(x)=0$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2} b x^{-n-2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\frac{a n x^{n} u^{\prime}(x)}{x}+x^{2 n} a^{2} b x^{-n-2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{\frac{n}{2}} \sqrt{x}\left(x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{1}+x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{2}\right)
$$

The above shows that

$$
=\frac{\left(c_{2}\left(n+1-\sqrt{-4 a b+n^{2}+2 n+1}\right) x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}+x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{1}\left(n+1+\sqrt{-4 a b+n^{2}+2 n+1}\right)\right.}{2 \sqrt{x}}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(c_{2}\left(n+1-\sqrt{-4 a b+n^{2}+2 n+1}\right) x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}+x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{1}\left(n+1+\sqrt{-4 a b+n^{2}+2 n+}\right.\right.}{2 x a\left(x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{1}+x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{2}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{\left(\left(-n-1+\sqrt{-4 a b+n^{2}+2 n+1}\right) x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}-x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{3}\left(n+1+\sqrt{-4 a b+n^{2}+2 n+1}\right)\right.}{2 x a\left(x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{3}+x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}\right)}
$$

Summary

The solution(s) found are the following
y
(1)

$$
=\frac{\left(\left(-n-1+\sqrt{-4 a b+n^{2}+2 n+1}\right) x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}-x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{3}\left(n+1+\sqrt{-4 a b+n^{2}+2 n+1}\right)\right.}{2 x a\left(x^{\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}} c_{3}+x^{-\frac{\sqrt{-4 a b+n^{2}+2 n+1}}{2}}\right)}
$$

Verification of solutions

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 62

```
dsolve(diff(y(x),x)=a*x^n*y(x)^2+b*x^(-n-2),y(x), singsol=all)
```

$$
y(x)=-\frac{x^{-n-1}\left(n+1-\tan \left(\frac{\sqrt{4 a b-n^{2}-2 n-1}\left(\ln (x)-c_{1}\right)}{2}\right) \sqrt{4 a b-n^{2}-2 n-1}\right)}{2 a}
$$

\checkmark Solution by Mathematica
Time used: 0.778 (sec). Leaf size: 135

```
DSolve[y'[x]==a*x^n*y[x]^2+b*x^(-n-2),y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$
$\rightarrow \frac{x^{-n-1}\left(-\left(\sqrt{(n+1)^{2}-4 a b}+n+1\right) x^{\sqrt{(n+1)^{2}-4 a b}}+c_{1}\left(\sqrt{(n+1)^{2}-4 a b}-n-1\right)\right)}{2 a\left(x^{\sqrt{(n+1)^{2}-4 a b}}+c_{1}\right)}$
$y(x) \rightarrow \frac{x^{-n-1}\left(\sqrt{(n+1)^{2}-4 a b}-n-1\right)}{2 a}$

2.8 problem 8

$$
\text { 2.8.1 Solving as riccati ode . } 82
$$

Internal problem ID [10338]
Internal file name [OUTPUT/9285_Monday_June_06_2022_01_46_38_PM_37397424/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 8 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}=b x^{m}
$$

2.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+b x^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}+b x^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x^{m}, f_{1}(x)=0$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =b x^{m} a^{2} x^{2 n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\frac{a n x^{n} u^{\prime}(x)}{x}+b x^{m} a^{2} x^{2 n} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\left(\operatorname { B e s s e l Y } \left(\frac{-n-1}{m+n+2},\right.\right. & \left.\frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{2} \\
& \left.\quad+\operatorname{BesselJ}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{1}\right) x^{\frac{n}{2}+\frac{1}{2}}
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=x^{\frac{1}{2}+n+\frac{m}{2}} \sqrt{a b}(-\operatorname{Bessel} Y & \left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{2} \\
& \left.- \text { BesselJ }\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{1}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{x^{\frac{1}{2}+n+\frac{m}{2}} \sqrt{a b}\left(-\operatorname{Bessel} Y\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{2}-\operatorname{BesselJ}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{1}\right) x^{-n} x^{-\frac{n}{2}-\frac{1}{2}}}{a\left(\operatorname{BesselY}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{2}+\operatorname{BesselJ}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{1}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}+\operatorname{BesselY}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)\right)}{a\left(\operatorname{BesselY}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)+\operatorname{BesselJ}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}+\operatorname{BesselY}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)\right)}{a\left(\operatorname{BesselY}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)+\operatorname{BesselJ}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}+\operatorname{BesselY}\left(\frac{m+1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)\right)}{a\left(\operatorname{BesselY}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right)+\operatorname{BesselJ}\left(\frac{-n-1}{m+n+2}, \frac{2 \sqrt{a b} x^{\frac{m}{2}+\frac{n}{2}+1}}{m+n+2}\right) c_{3}\right)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*(diff(y(x), x))/x-a*x^n*b*x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 170

```
dsolve(diff(y(x),x)=a*x^n*y(x)^2+b*x^m,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x) \\
& =\frac{x^{-\frac{n}{2}+\frac{m}{2}} \sqrt{a b}\left(\operatorname{BesselY}\left(\frac{1+m}{n+m+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+\frac{m}{2}+1}}{n+m+2}\right) c_{1}+\operatorname{BesselJ}\left(\frac{1+m}{n+m+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+\frac{m}{2}+1}}{n+m+2}\right)\right)}{a\left(\operatorname{BesselY}\left(\frac{-n-1}{n+m+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+\frac{m}{2}+1}}{n+m+2}\right) c_{1}+\operatorname{BesselJ}\left(\frac{-n-1}{n+m+2}, \frac{2 \sqrt{a b} x^{\frac{n}{2}+\frac{m}{2}+1}}{n+m+2}\right)\right)}
\end{aligned}
$$

Solution by Mathematica
Time used: 2.978 (sec). Leaf size: 1805

```
DSolve[y'[x]==a*x^n*y[x]^2+b*x^m,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow
$$

$$
-a^{-\frac{2 m+3 n+5}{2(m+n+2)}} b^{-\frac{n+1}{2(m+n+2)}}(m+n+1)^{\frac{n+1}{m+n+2}}\left((m+n+1)^{2}\right)^{\frac{n+1}{m+n+2}-\frac{1}{2}} x^{-n-1}\left(x^{m+n+1}\right)^{-\frac{n+1}{2(m+n+1)}}\left(a^{\frac{n+1}{2(m+n+2)}} b^{\frac{2(}{2(}}\right.
$$

$y(x)$
$y(x)$

2.9 problem 9

$$
\text { 2.9.1 Solving as riccati ode . } 87
$$

Internal problem ID [10339]
Internal file name [OUTPUT/9286_Monday_June_06_2022_01_46_40_PM_23997105/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=k(x a+b)^{n}(c x+d)^{-n-4}
$$

2.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+k(x a+b)^{n}(c x+d)^{-n-4}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{k(x a+b)^{n}(c x+d)^{-n}}{(c x+d)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=k(x a+b)^{n}(c x+d)^{-n-4}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =k(x a+b)^{n}(c x+d)^{-n-4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4} _Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4} _Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+k(x a+b)^{n}(c x+d)^{-n-4}-Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -k*(a*x+b)^n*(c*x+d)^(-n-4)*y(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE of Bessel type
-> Trying a change of variables to goduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-((c^4*x^4/(c*x+d)^4+4*c^3*d*x^3/(c*x+d)^4
    Methods for first order ODEs:
```

X Solution by Maple
dsolve(diff $(y(x), x)=y(x) \wedge 2+k *(a * x+b) \wedge n *(c * x+d) \wedge(-n-4), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} *(\mathrm{a} * \mathrm{x}+\mathrm{b})^{\wedge} \cap *(\mathrm{c} * \mathrm{x}+\mathrm{d})^{\wedge}(-\mathrm{n}-4), \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

Not solved

2.10 problem 10

$$
\text { 2.10.1 Solving as riccati ode . } 92
$$

Internal problem ID [10340]
Internal file name [OUTPUT/9287_Monday_June_06_2022_01_46_51_PM_95752007/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}=b m x^{m-1}-a b^{2} x^{n+2 m}
$$

2.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+b m x^{m-1}-a b^{2} x^{n+2 m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}+\frac{b x^{m} m}{x}-a b^{2} x^{n} x^{2 m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}-a b^{2} x^{n+2 m}, f_{1}(x)=0$ and $f_{2}(x)=x^{n}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2}\left(b m x^{m-1}-a b^{2} x^{n+2 m}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\frac{a n x^{n} u^{\prime}(x)}{x}+x^{2 n} a^{2}\left(b m x^{m-1}-a b^{2} x^{n+2 m}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & -\frac{x^{-\frac{3 m}{2}-1-n} c_{2}(m+2 n+2)^{2} \text { WhittakerM }\left(\frac{m+2 n+2}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+m+n}}{1+m+n}\right)}{2} \\
+ & (1+m+n) c_{2}\left(\left(-\frac{m}{2}-n-1\right) x^{-\frac{3 m}{2}-1-n}\right. \\
& \left.\quad+x^{-\frac{m}{2}} a b\right) \text { WhittakerM }\left(-\frac{m}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+m+n}}{1+m+n}\right) \\
& +c_{1} \mathrm{e}^{-\frac{a b x^{1+m+n}}{1+m+n}}
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \begin{array}{c}
-x^{-m-2-n}\left(-\frac{3(m+2 n+2)\left(a b\left(m+\frac{4 n}{3}+\frac{4}{3}\right) x^{n+1+\frac{m}{2}}+\frac{x^{-\frac{m}{2}}(m+2 n+2)(1+m+n)}{3}\right) c_{2} \text { WhittakerM }\left(\frac{m+2 n}{2+2 m+}\right.}{2}+(1+m+n)\left(a^{2} x^{\frac{3 m}{2}+2 n+2} b^{2}\right.\right.
\end{array} \\
& \left.-\frac{\left(a b x^{n+1+\frac{m}{2}}+x^{-\frac{m}{2}}(1+m+n)\right)(m+2 n+2)}{2}\right) c_{2} \text { WhittakerM }\left(-\frac{m}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},\right. \\
& \left.-\frac{2 a b x^{1+m+n}}{1+m+n}\right) \\
& +\left(m+\frac{3 n}{2}+\frac{3}{2}\right)(m+2 n+2)^{2} x^{-\frac{m}{2}} c_{2} \mathrm{e}^{\frac{a b x^{1+m+n}}{1+m+n}}\left(-\frac{2 a b x^{1+m+n}}{1+m+n}\right)^{\frac{3 m+4 n+4}{2+2 m+2 n}} \\
& \left.+a b c_{1} x^{2+2 m+2 n} \mathrm{e}^{-\frac{a b x^{1+m+n}}{1+m+n}}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
y
$x^{-m-2-n}\left(-\frac{3(m+2 n+2)\left(a b\left(m+\frac{4 n}{3}+\frac{4}{3}\right) x^{n+1+\frac{m}{2}}+\frac{x^{-\frac{m}{2}}(m+2 n+2)(1+m+n)}{3}\right) c_{2} \text { WhittakerM }\left(\frac{m+2 n+2}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+m+n}}{1+m+n}\right)}{2}+\right.$
$a\left(-\frac{x^{-\frac{3 m}{2}-1-n} c_{2}(m+2 n+2)^{2} \text { WhittakerM }}{2}\right.$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{x^{-1-m-n}\left(-\frac{3 \mathrm{e}^{\frac{a b x^{1+m+n}}{1+m+n}}(m+2 n+2)\left(a b\left(m+\frac{4 n}{3}+\frac{4}{3}\right) x^{n+1+\frac{m}{2}}+\frac{x^{-\frac{m}{2}(m+2 n+2)(1+m+n)}}{3}\right) \text { WhittakerM }\left(\frac{m+2 n+2}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+}}{1+m}\right.}{2}\right.}{\left(-\frac{x^{-\frac{3 m}{2} e^{\frac{a b x^{1+m+n}}{1+m+n}}(m+2 n+2)^{2} \text { Whittak }}}{}\right.}$

Summary

The solution(s) found are the following
y
$=\frac{x^{-1-m-n}\left(-\frac{3 \mathrm{e}^{\frac{a b x^{1+m+n}}{1+m+n}}(m+2 n+2)\left(a b\left(m+\frac{4 n}{3}+\frac{4}{3}\right) x^{n+1+\frac{m}{2}}+\frac{x^{-\frac{m}{2}(m+2 n+2)(1+m+n)}}{3}\right) \text { WhittakerM }\left(\frac{m+2 n+2}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+}}{1+m}\right.}{2}\right.}{\left(-\frac{x^{-\frac{3 m}{2} e^{\frac{a b x^{1+m+n}}{1+m+n}}}(m+2 n+2)^{2} \text { Whittak }}{}\right.}$

Verification of solutions

y
$=\frac{x^{-1-m-n}\left(-\frac{3 \mathrm{e}^{\frac{a b x^{1+m+n}}{1+m+n}}(m+2 n+2)\left(a b\left(m+\frac{4 n}{3}+\frac{4}{3}\right) x^{n+1+\frac{m}{2}}+\frac{x^{-\frac{m}{2}(m+2 n+2)(1+m+n)}}{3}\right) \text { WhittakerM }\left(\frac{m+2 n+2}{2+2 m+2 n}, \frac{2 m+3 n+3}{2+2 m+2 n},-\frac{2 a b x^{1+}}{1+m}\right.}{2}\right.}{\left(-\frac{x^{-\frac{3 m}{2}} \mathrm{e}^{\frac{a b x^{1+m+n}}{1+m+n}}(m+2 n+2)^{2} \text { Whittak }}{}\right.}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*(diff(y(x), x))/x-a*x^n*b*(-
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            <- Kovacics algorithm successful
        <- Equivalence, under non-integer power transformations successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 522

```
dsolve(diff(y(x), x)=a*x^n*y(x)^2+b*m*x^(m-1)-a*b^2*x^(n+2*m),y(x), singsol=all)
```

$y(x)$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.322 (sec). Leaf size: 306
DSolve [y' $[x]==a * x^{\wedge} n * y[x] \wedge 2+b * m * x^{\wedge}(m-1)-a * b^{\wedge} 2 * x^{\wedge}(n+2 * m), y[x], x$, IncludeSingularSolutions $\rightarrow T r$

$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{2^{\frac{n+1}{m+n+1}}(m+n+1)\left(-\frac{a b x^{m+n+1}}{m+n+1}\right)^{\frac{n+1}{m+n+1}}\left(a b x^{m}-c_{1} e^{\frac{2 a b x^{m+n+1}}{m+n+1}}\right)-a b c_{1} x^{m+n+1} \Gamma\left(\frac{n+1}{m+n+1},-\frac{2 a b x^{m+n+1}}{m+n+1}\right)}{a\left(2^{\frac{n+1}{m+n+1}}(m+n+1)\left(-\frac{a b x^{m+n+1}}{m+n+1}\right)^{\frac{n+1}{m+n+1}}-c_{1} x^{n+1} \Gamma\left(\frac{n+1}{m+n+1},-\frac{2 a b x^{m+n+1}}{m+n+1}\right)\right)} \\
& y(x) \rightarrow b x^{m}-\frac{b 2^{\frac{n+1}{m+n+1}} x^{m} e^{\frac{2 a b x^{m+n+1}}{m+n+1}}\left(-\frac{a b x^{m+n+1}}{m+n+1}\right)^{-\frac{m}{m+n+1}}}{\Gamma\left(\frac{n+1}{m+n+1},-\frac{2 a b x^{m+n+1}}{m+n+1}\right)}
\end{aligned}
$$

2.11 problem 11

2.11.1 Solving as riccati ode . 98

Internal problem ID [10341]
Internal file name [OUTPUT/9288_Monday_June_06_2022_01_48_19_PM_41829524/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\left(a x^{2 n}+b x^{n-1}\right) y^{2}=c
$$

2.11.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} a y^{2}+x^{n-1} b y^{2}+c
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2 n} a y^{2}+\frac{x^{n} b y^{2}}{x}+c
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=c, f_{1}(x)=0$ and $f_{2}(x)=a x^{2 n}+b x^{n-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(a x^{2 n}+b x^{n-1}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 a x^{2 n} n}{x}+\frac{b x^{n-1}(n-1)}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(a x^{2 n}+b x^{n-1}\right)^{2} c
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(a x^{2 n}+b x^{n-1}\right) u^{\prime \prime}(x)-\left(\frac{2 a x^{2 n} n}{x}+\frac{b x^{n-1}(n-1)}{x}\right) u^{\prime}(x)+\left(a x^{2 n}+b x^{n-1}\right)^{2} c u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\xlongequal{-\mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} x^{n+1}}{n+1}}(2+n) c_{1}\left(\left(2 i a^{\frac{3}{2}} b n-2 a \sqrt{c} b^{2}\right) x^{1+2 n}+\left(-a^{2} \sqrt{c} b+i a^{\frac{5}{2}} n\right) x^{2+3 n}+x^{n}(-\sqrt{c} b+i \sqrt{a} n) b^{2}\right.}$

The above shows that
$u^{\prime}(x)$
$=\mathrm{e}^{\frac{i\left(-4 \sqrt{c} \sqrt{a} x^{n+1}+\pi(2+n)\right)}{4 n+4}} c c_{2}\left(x^{5+5 n} a^{4}+4 a^{3} b x^{4 n+4}+6 a^{2} x^{3 n+3} b^{2}+4 x^{2+2 n} a b^{3}+x^{n+1} b^{4}\right)$ hypergeom $\left(\left[\frac{(2+n) \sqrt{c}}{\sqrt{a}(2-}\right.\right.$

Using the above in (1) gives the solution
$y=$

$$
x\left(a x^{n+1}+b\right)\left(a x^{2 n}+b x^{n-1}\right)\left(-\mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} x^{n+1}}{n+1}}(2+n) c_{1}\left(\left(2 i a^{\frac{3}{2}} b n-2 a \sqrt{c} b^{2}\right) x^{1+2 n}+\left(-a^{2} \sqrt{c} b+i\right.\right.\right.
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\overline{\left(\left(2\left(i a^{\frac{3}{2}} b n-a \sqrt{c} b^{2}\right) x^{1+2 n}+\left(-a^{2} \sqrt{c} b+i a^{\frac{5}{2}} n\right) x^{2+3 n}+x^{n}(-\sqrt{c} b+i \sqrt{a} n) b^{2}\right)(2+n) \mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} x^{n+1}}{n+1}}\right.}
$$

Summary
The solution(s) found are the following
y
$=\overline{\left(\left(2\left(i a^{\frac{3}{2}} b n-a \sqrt{c} b^{2}\right) x^{1+2 n}+\left(-a^{2} \sqrt{c} b+i a^{\frac{5}{2}} n\right) x^{2+3 n}+x^{n}(-\sqrt{c} b+i \sqrt{a} n) b^{2}\right)(2+n) \mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} x^{n+1}}{n+1}}\right.}$
Verification of solutions
y

$$
=\frac{\left(\left(2\left(i a^{\frac{3}{2}} b n-a \sqrt{c} b^{2}\right) x^{1+2 n}+\left(-a^{2} \sqrt{c} b+i a^{\frac{5}{2}} n\right) x^{2+3 n}+x^{n}(-\sqrt{c} b+i \sqrt{a} n) b^{2}\right)(2+n) \mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} x^{n+1}}{n+1}}\right.}{\left(\frac{1}{}\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b*x^(n-1)*n+2*x^(2*n)*n*a-b*x
        Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 1237

```
dsolve(diff (y(x),x)=(a*x^(2*n)+b*x^(n-1))*y(x)^2+c,y(x), singsol=all)
```

Expression too large to display
\checkmark Solution by Mathematica
Time used: 2.128 (sec). Leaf size: 1384

2.12 problem 12

2.12.1 Solving as riccati ode

103
Internal problem ID [10342]
Internal file name [OUTPUT/9289_Monday_June_06_2022_01_49_06_PM_3413175/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a_{2} x+b_{2}\right)\left(y^{\prime}+\lambda y^{2}\right)=-a_{0} x-b_{0}
$$

2.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a_{2} \lambda x+y^{2} b_{2} \lambda+a_{0} x+b_{0}}{a_{2} x+b_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} a_{2} \lambda x}{a_{2} x+b_{2}}-\frac{y^{2} b_{2} \lambda}{a_{2} x+b_{2}}-\frac{a_{0} x}{a_{2} x+b_{2}}-\frac{b_{0}}{a_{2} x+b_{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a_{0} x+b_{0}}{a_{2} x+b_{2}}, f_{1}(x)=0$ and $f_{2}(x)=-\frac{\lambda a_{2} x+\lambda b_{2}}{a_{2} x+b_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) u}{a_{2} x+b_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\lambda a_{2}}{a_{2} x+b_{2}}+\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) a_{2}}{\left(a_{2} x+b_{2}\right)^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right)^{2}\left(a_{0} x+b_{0}\right)}{\left(a_{2} x+b_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) u^{\prime \prime}(x)}{a_{2} x+b_{2}}-\left(-\frac{\lambda a_{2}}{a_{2} x+b_{2}}+\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) a_{2}}{\left(a_{2} x+b_{2}\right)^{2}}\right) u^{\prime}(x)-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right)^{2}\left(a_{0} x+b_{0}\right) u(x)}{\left(a_{2} x+b_{2}\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & c_{1} \text { WhittakerM }\left(\frac{i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}}, \frac{1}{2}, \frac{2 i \sqrt{a_{0}} \sqrt{\lambda}\left(a_{2} x+b_{2}\right)}{a_{2}^{\frac{3}{2}}}\right) \\
& +c_{2} \text { WhittakerW }\left(\frac{i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}}, \frac{1}{2}, \frac{2 i \sqrt{a_{0}} \sqrt{\lambda}\left(a_{2} x+b_{2}\right)}{a_{2}^{\frac{3}{2}}}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\frac{\left(2 a_{2}^{\frac{3}{2}} a_{0}^{\frac{3}{2}}+i\left(a_{0} b_{2}-a_{2} b_{0}\right) a_{0} \sqrt{\lambda}\right) c_{1} \text { WhittakerM }\left(\frac{i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}}+1, \frac{1}{2}, \frac{2 i \sqrt{a_{0}} \sqrt{\lambda}\left(a_{2} x+b_{2}\right)}{a_{2}^{\frac{3}{2}}}\right)}{2}-a_{2}^{\frac{3}{2}} a_{0}^{\frac{3}{2}} \text { WhittakerW }\left(\frac{i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}}\right.}{}$

Using the above in (1) gives the solution
y

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{\left.\frac{c_{3}\left(2 a_{2}^{\frac{3}{3}} \sqrt{a_{0}}+i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)\right) \text { WhittakerM }\left(\frac{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}+i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 \frac{1}{2}, \frac{2 i \sqrt{a_{0}}}{} \sqrt{\sqrt{3}\left(a_{2} x+b_{2}\right)}} a_{2}^{\frac{3}{2}}\right.}{a_{2}}\right)}{2 \sqrt{a_{0}}}-a_{2}^{\frac{3}{2}} \text { WhittakerW }\left(\frac{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}+i \sqrt{\lambda}}{2 a_{2}^{\frac{3}{3}}}\right.
$$

Summary

The solution(s) found are the following
y
(1)

Verification of solutions
y
$=\frac{\frac{c_{3}\left(2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}+i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)\right) \text { WhittakerM }\left(\frac{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}+i \sqrt{\lambda}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}}, \frac{2 i \sqrt{a_{0}} \sqrt{\lambda}\left(a_{2} x+b_{2}\right)}{a_{2}^{\frac{3}{2}}}\right)}{2}-a_{2}^{\frac{3}{2}} \text { WhittakerW }\left(\frac{2 a_{2}^{\frac{3}{2}} \sqrt{a_{0}}+i \sqrt{\lambda}}{2 a_{2}^{\frac{3}{2}}}\right.}{\sqrt{a_{0}} \sqrt{a_{2}} \lambda\left(a_{2} x+b_{2}\right)\left(c_{3} \mathrm{Whi}\right.}$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 461

```
dsolve((a__2*x+b__2)*(diff (y(x),x)+lambda*y (x) ~2)+a___ 0*x+b___ 0=0,y(x), singsol=all)
```

$$
y(x)=
$$

$$
-\frac{\left(\frac{c_{1} \lambda\left(a_{0} b_{2}-a_{2} b_{0}\right) \operatorname{KummerU}\left(-\frac{\sqrt{-a_{2} \lambda a_{0}} a_{0} b_{2}-\sqrt{-a_{2} \lambda a_{0}} a_{2} b_{0}-2 a_{0} a_{2}^{2}}{2 a_{0} a_{2}^{2}}, 1, \frac{2\left(a_{2} x+b_{2}\right) \sqrt{-a_{2} \lambda a_{0}}}{a_{2}^{2}}\right)}{2}+\sqrt{-a_{2} \lambda a_{0}} a_{2}\left(c_{1} \text { KummerU }(,\right.\right.}{\left(\frac{c_{1} \sqrt{-a_{2} \lambda a_{0}}\left(a_{0} b_{2}-a_{2} b_{0}\right) \operatorname{KummerU}\left(-\frac{\sqrt{-a_{2} \lambda a_{0}} a_{0} b_{2}-\sqrt{-a_{2} \lambda a_{0}} a_{2} b_{0}-2 a_{0} a_{2}^{2}}{2 a_{0} a_{2}^{2}}, 1, \frac{2\left(a_{2} x+b_{2}\right) \sqrt{-a_{2} \lambda a_{0}}}{a_{2}^{2}}\right)}{2}+a_{0} a_{2}^{2}(\mathrm{KummerM}(-\right.}
$$

Solution by Mathematica

Time used: 1.895 (sec). Leaf size: 690

```
DSolve[(a2*x+b2)*(y'[x]+\[Lambda]*y[x] 2)+a0*x+b0==0,y[x],x,IncludeSingularSolutions -> True
```

$$
y(x)
$$

$$
\rightarrow \frac{c_{1} \sqrt{\lambda}(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2) \text { HypergeometricU }\left(\frac{i \sqrt{\lambda}(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2)}{\left.2 \sqrt{\mathrm{a} 0 \mathrm{a} 2^{3 / 2}}+1,1, \frac{2 i \sqrt{\mathrm{a} 0}(\mathrm{~b} 2+\mathrm{a} 2 x) \sqrt{\lambda}}{\mathrm{a} 2^{3 / 2}}\right)-i \sqrt{\mathrm{a} 0} \mathrm{a} 2^{3 / 2}\left(c_{1} \mathrm{Hy}\right.}\right.}{\mathrm{a} 2^{2} \sqrt{\lambda}\left(c_{1}\right. \text { HypergeometricU }}
$$

$$
y(x) \rightarrow \frac{(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2) \text { Hypergeometric } \mathrm{U}\left(\frac{i \sqrt{\lambda}(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2)}{2 \sqrt{\mathrm{a} 0} 2^{3 / 2}}+1,1, \frac{2 i \sqrt{\mathrm{a} 0}(\mathrm{~b} 2+\mathrm{a} 2 x) \sqrt{\lambda}}{\mathrm{a} 2^{3 / 2}}\right)}{\mathrm{a} 2^{2} \text { HypergeometricU }\left(\frac{i(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2) \sqrt{\lambda}}{2 \sqrt{\mathrm{a} 0 \mathrm{a} 2^{3 / 2}}}, 0, \frac{2 i \sqrt{\mathrm{a} 0}(\mathrm{~b} 2+\mathrm{a} 2 x) \sqrt{\lambda}}{\mathrm{a} 2^{3 / 2}}\right)}
$$

$$
-\frac{i \sqrt{\mathrm{a} 0}}{\sqrt{\mathrm{a} 2} \sqrt{\lambda}}
$$

$$
y(x) \rightarrow \frac{(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2) \text { HypergeometricU }\left(\frac{i \sqrt{\lambda}(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2)}{\left.2 \sqrt{\mathrm{a} 0 \mathrm{a} 2^{3 / 2}}+1,1, \frac{2 i \sqrt{\mathrm{a} 0}(\mathrm{~b} 2+\mathrm{a} 2 x) \sqrt{\lambda}}{\mathrm{a} 2^{3 / 2}}\right)}\right.}{\mathrm{a} 2^{2} \text { HypergeometricU }\left(\frac{i(\mathrm{a} 2 \mathrm{~b} 0-\mathrm{a} 0 \mathrm{~b} 2) \sqrt{\lambda}}{2 \sqrt{\mathrm{a} 0 \mathrm{a} 2^{3 / 2}}}, 0, \frac{2 i \sqrt{\mathrm{a} 0}(\mathrm{~b} 2+\mathrm{a} 2 x) \sqrt{\lambda}}{\mathrm{a} 2^{3 / 2}}\right)}
$$

$$
-\frac{i \sqrt{\mathrm{a} 0}}{\sqrt{\mathrm{a} 2} \sqrt{\lambda}}
$$

2.13 problem 13

2.13.1 Solving as first order ode lie symmetry calculated ode 108
2.13.2 Solving as exact ode . 113
2.13.3 Solving as riccati ode . 118

Internal problem ID [10343]
Internal file name [OUTPUT/9290_Monday_June_06_2022_01_49_09_PM_96814483/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Riccati, _special]]
```

$$
x^{2} y^{\prime}-a x^{2} y^{2}=b
$$

2.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{a x^{2} y^{2}+b}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{\left(a x^{2} y^{2}+b\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(a x^{2} y^{2}+b\right)^{2} a_{3}}{x^{4}} \tag{5E}\\
& \quad-\left(\frac{2 a y^{2}}{x}-\frac{2\left(a x^{2} y^{2}+b\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-2 y a\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{a^{2} x^{4} y^{4} a_{3}+2 a x^{5} y b_{2}+a x^{4} y^{2} a_{2}+a x^{4} y^{2} b_{3}+2 a b x^{2} y^{2} a_{3}+2 a x^{4} y b_{1}-b_{2} x^{4}-b x^{2} a_{2}-b x^{2} b_{3}-2 b x y a_{3}+}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -a^{2} x^{4} y^{4} a_{3}-2 a x^{5} y b_{2}-a x^{4} y^{2} a_{2}-a x^{4} y^{2} b_{3}-2 a b x^{2} y^{2} a_{3} \tag{6E}\\
& \quad-2 a x^{4} y b_{1}+b_{2} x^{4}+b x^{2} a_{2}+b x^{2} b_{3}+2 b x y a_{3}-b^{2} a_{3}+2 b x a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{2} a_{3} v_{1}^{4} v_{2}^{4}-a a_{2} v_{1}^{4} v_{2}^{2}-2 a b_{2} v_{1}^{5} v_{2}-a b_{3} v_{1}^{4} v_{2}^{2}-2 a b a_{3} v_{1}^{2} v_{2}^{2}-2 a b_{1} v_{1}^{4} v_{2} \tag{7E}\\
& +b_{2} v_{1}^{4}+b a_{2} v_{1}^{2}+2 b a_{3} v_{1} v_{2}+b b_{3} v_{1}^{2}-b^{2} a_{3}+2 b a_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 a b_{2} v_{1}^{5} v_{2}-a^{2} a_{3} v_{1}^{4} v_{2}^{4}+\left(-a a_{2}-a b_{3}\right) v_{1}^{4} v_{2}^{2}-2 a b_{1} v_{1}^{4} v_{2}+b_{2} v_{1}^{4} \tag{8E}\\
& -2 a b a_{3} v_{1}^{2} v_{2}^{2}+\left(b a_{2}+b b_{3}\right) v_{1}^{2}+2 b a_{3} v_{1} v_{2}+2 b a_{1} v_{1}-b^{2} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
b_{2}=0 \\
-2 a b_{1}=0 \\
-2 a b_{2}=0 \\
-a^{2} a_{3}=0 \\
2 b a_{1}=0 \\
2 b a_{3}=0 \\
-b^{2} a_{3}=0 \\
-2 a b a_{3}=0 \\
-a a_{2}-a b_{3}=0 \\
b a_{2}+b b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{a x^{2} y^{2}+b}{x^{2}}\right)(-x) \\
& =\frac{a x^{2} y^{2}+y x+b}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a x^{2} y^{2}+y x+b}{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 x \arctan \left(\frac{2 a x^{2} y+x}{\sqrt{4 a b x^{2}-x^{2}}}\right)}{\sqrt{4 a b x^{2}-x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{a x^{2} y^{2}+b}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{a x^{2} y^{2}+y x+b} \\
S_{y} & =\frac{x}{a x^{2} y^{2}+y x+b}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \arctan \left(\frac{2 y a x+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{2 \arctan \left(\frac{2 y a x+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 a b-1}}{2}+\frac{c_{1} \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}-1}{2 x a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 a b-1}}{2}+\frac{c_{1} \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}-1}{2 x a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 a b-1}}{2}+\frac{c_{1} \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}-1}{2 x a}
$$

Verified OK.

2.13.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(a x^{2} y^{2}+b\right) \mathrm{d} x \\
\left(-a x^{2} y^{2}-b\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-a x^{2} y^{2}-b \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-a x^{2} y^{2}-b\right) \\
& =-2 a x^{2} y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}}\left(\left(-2 a x^{2} y\right)-(2 x)\right) \\
& =\frac{-2 a x y-2}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{a x^{2} y^{2}+b}\left((2 x)-\left(-2 a x^{2} y\right)\right) \\
& =-\frac{2 x(a x y+1)}{a x^{2} y^{2}+b}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(2 x)-\left(-2 a x^{2} y\right)}{x\left(-a x^{2} y^{2}-b\right)-y\left(x^{2}\right)} \\
& =\frac{-2 a x y-2}{a x^{2} y^{2}+y x+b}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-2 a t-2}{a t^{2}+b+t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-2 a t-2}{a t^{2}+b+t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln \left(a t^{2}+b+t\right)-\frac{2 \arctan \left(\frac{2 a t+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}} \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a t+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a t^{2}+b+t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1})}\right.}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}\left(-a x^{2} y^{2}-b\right) \\
& =\frac{\left(-a x^{2} y^{2}-b\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}\left(x^{2}\right) \\
& =\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{\left.\left(-a x^{2} y^{2}-b\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}\right)+\left(\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1})}\right.}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0}{}=0\right.
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\left(-a x^{2} y^{2}-b\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x a+1}{\sqrt{4 a b-1})}\right.}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1})}\right.}{\sqrt{4 a b-1}}} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{4 x^{2} a \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1})}\right.}{\sqrt{4 a b-1}}}}{(4 a b-1)\left(\frac{(2 a x y+1)^{2}}{4 a b-1}+1\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

$$
=\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}+f^{\prime}(y)
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}=\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}}}{a x^{2} y^{2}+y x+b}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}} x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+1}{\sqrt{4 a b-1}}\right)}{\sqrt{4 a b-1}}} x
$$

The solution becomes

$$
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}+1}{2 x a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}+1}{2 x a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 a b-1}}{2}\right) \sqrt{4 a b-1}+1}{2 x a}
$$

Verified OK.

2.13.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y^{2}+b}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a^{2} b}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+\frac{a^{2} b u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sqrt{x}\left(c_{1} x^{\frac{\sqrt{-4 a b+1}}{2}}+c_{2} x^{-\frac{\sqrt{-4 a b+1}}{2}}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{-c_{2}(-1+\sqrt{-4 a b+1}) x^{-\frac{\sqrt{-4 a b+1}}{2}}+c_{1} x^{\frac{\sqrt{-4 a b+1}}{2}}(1+\sqrt{-4 a b+1})}{2 \sqrt{x}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{-c_{2}(-1+\sqrt{-4 a b+1}) x^{-\frac{\sqrt{-4 a b+1}}{2}}+c_{1} x^{\frac{\sqrt{-4 a b+1}}{2}}(1+\sqrt{-4 a b+1})}{2 x a\left(c_{1} x^{\frac{\sqrt{-4 a b+1}}{2}}+c_{2} x^{-\frac{\sqrt{-4 a b+1}}{2}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{(-1+\sqrt{-4 a b+1}) x^{-\frac{\sqrt{-4 a b+1}}{2}}-c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}(1+\sqrt{-4 a b+1})}{2 x a\left(c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}+x^{-\frac{\sqrt{-4 a b+1}}{2}}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-1+\sqrt{-4 a b+1}) x^{-\frac{\sqrt{-4 a b+1}}{2}}-c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}(1+\sqrt{-4 a b+1})}{2 x a\left(c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}+x^{-\frac{\sqrt{-4 a b+1}}{2}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(-1+\sqrt{-4 a b+1}) x^{-\frac{\sqrt{-4 a b+1}}{2}}-c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}(1+\sqrt{-4 a b+1})}{2 x a\left(c_{3} x^{\frac{\sqrt{-4 a b+1}}{2}}+x^{-\frac{\sqrt{-4 a b+1}}{2}}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 40
dsolve($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=a * x^{\wedge} 2 * y(x) \wedge 2+b, y(x)$, singsol=all)

$$
y(x)=\frac{-1+\tan \left(\frac{\sqrt{4 a b-1}\left(\ln (x)-c_{1}\right)}{2}\right) \sqrt{4 a b-1}}{2 a x}
$$

Solution by Mathematica
Time used: 0.292 (sec). Leaf size: 77
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]==a * x^{\wedge} 2 * y[x] \sim 2+b, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-1+\sqrt{1-4 a b}\left(-1+\frac{2 c_{1}}{x^{\sqrt{1-4 a b}}+c_{1}}\right)}{2 a x} \\
& y(x) \rightarrow \frac{\sqrt{1-4 a b}-1}{2 a x}
\end{aligned}
$$

2.14 problem 14

2.14.1 Solving as riccati ode

Internal problem ID [10344]
Internal file name [OUTPUT/9291_Monday_June_06_2022_01_49_10_PM_88481665/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-x^{2} y^{2}=-a^{2} x^{4}+a(1-2 b) x^{2}-b(b+1)
$$

2.14.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-a^{2} x^{4}-2 a b x^{2}+x^{2} y^{2}+a x^{2}-b^{2}-b}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} x^{2}-2 a b+y^{2}+a-\frac{b^{2}}{x^{2}}-\frac{b}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-a^{2} x^{4}-2 a b x^{2}+a x^{2}-b^{2}-b}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{-a^{2} x^{4}-2 a b x^{2}+a x^{2}-b^{2}-b}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(-a^{2} x^{4}-2 a b x^{2}+a x^{2}-b^{2}-b\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{-b} \mathrm{e}^{-\frac{a x^{2}}{2}}\left(c_{2} \Gamma\left(b+\frac{1}{2}\right)-c_{2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)+c_{1}\right)
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=-2\left(-\frac{\left(-c_{2} \Gamma\left(b+\frac{1}{2}\right)+c_{2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{1}\right)\left(a x^{2}+b\right) \mathrm{e}^{-\frac{a x^{2}}{2}}}{2}\right. \\
\left.+\mathrm{e}^{\frac{a x^{2}}{2}}\left(-a x^{2}\right)^{b-\frac{1}{2}} c_{2} a x^{2}\right) x^{-1-b}
\end{array}
$$

Using the above in (1) gives the solution
$y=\frac{2\left(-\frac{\left(-c_{2} \Gamma\left(b+\frac{1}{2}\right)+c_{2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{1}\right)\left(a x^{2}+b\right) \mathrm{e}^{-\frac{a x^{2}}{2}}}{2}+\mathrm{e}^{\frac{a x^{2}}{2}}\left(-a x^{2}\right)^{b-\frac{1}{2}} c_{2} a x^{2}\right) x^{-1-b} x^{b} \mathrm{e}^{\frac{a x^{2}}{2}}}{c_{2} \Gamma\left(b+\frac{1}{2}\right)-c_{2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)+c_{1}}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-2 x^{2} a\left(-a x^{2}\right)^{b-\frac{1}{2}} \mathrm{e}^{a x^{2}}+\left(a x^{2}+b\right)\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)}{x\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 x^{2} a\left(-a x^{2}\right)^{b-\frac{1}{2}} \mathrm{e}^{a x^{2}}+\left(a x^{2}+b\right)\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)}{x\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-2 x^{2} a\left(-a x^{2}\right)^{b-\frac{1}{2}} \mathrm{e}^{a x^{2}}+\left(a x^{2}+b\right)\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)}{x\left(-\Gamma\left(b+\frac{1}{2}\right)+\Gamma\left(b+\frac{1}{2},-a x^{2}\right)-c_{3}\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff (y (x), x), x) = (a^2*x^4+2*a*b*x^2-a*x^2+b^2+b
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 84

```
dsolve(x^2*diff(y(x),x)=x^2*y(x)^2-a^2*x^4+a*(1-2*b)*x^2-b*(b+1),y(x), singsol=all)
```

$$
y(x)=\frac{-2\left(-a x^{2}\right)^{b-\frac{1}{2}} \mathrm{e}^{a x^{2}} c_{1} a x^{2}+\left(-c_{1} \Gamma\left(b+\frac{1}{2}\right)+c_{1} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-1\right)\left(a x^{2}+b\right)}{x\left(-c_{1} \Gamma\left(b+\frac{1}{2}\right)+c_{1} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-1\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.225 (sec). Leaf size: 128
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]==x^{\wedge} 2 * y[x] \sim 2-a^{\wedge} 2 * x^{\wedge} 4+a *(1-2 * b) * x^{\wedge} 2-b *(b+1), y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \frac{x^{2 b+1}\left(a x^{2}+b\right) \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-2\left(-a x^{2}\right)^{b+\frac{1}{2}}\left(-e^{a x^{2}} x^{2 b+1}+c_{1}\left(a x^{2}+b\right)\right)}{x^{2 b+2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)-2 c_{1} x\left(-a x^{2}\right)^{b+\frac{1}{2}}} \\
& y(x) \rightarrow a x+\frac{b}{x}
\end{aligned}
$$

2.15 problem 15

> 2.15.1 Solving as riccati ode

Internal problem ID [10345]
Internal file name [OUTPUT/9292_Monday_June_06_2022_01_49_11_PM_80921583/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-a x^{2} y^{2}=b x^{n}+c
$$

2.15.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y^{2}+b x^{n}+c}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b x^{n}}{x^{2}}+\frac{c}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b x^{n}+c}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a^{2}\left(b x^{n}+c\right)}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+\frac{a^{2}\left(b x^{n}+c\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =\left(\operatorname{Bessel} Y\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{2}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{1}\right) \sqrt{x}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-2 \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}+n}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{\sqrt{-4 c a+1}+n}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{2}\right) x^{\frac{n}{2}}+\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n},\right.\right.}{2 \sqrt{x}}$
Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{-2 \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}+n}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}+n}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{2}\right) x^{\frac{n}{2}}+\left(\operatorname { B e s s e l Y } \left(\frac{\sqrt{-4 c a-}}{n}\right.\right.}{2 x a\left(\operatorname{Bessel} Y\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{2}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 c}}{n}\right.\right.} \\
& \text { Dividing both numerator and denominator by } c_{1} \text { gives, after renaming the constant } \\
& \frac{c_{2}}{c_{1}}=c_{3} \text { the following solution } \\
& y \\
& =\frac{2 \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-\left(\operatorname { B e s s e l Y } \left(\frac{\sqrt{-4 c a+1}}{n},\right.\right.}{2 x a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)+\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2}{2}\right.\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{2 \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n},\right.\right.}{2 x a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)+\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2}{2}\right.\right.}$
Verification of solutions
$=\frac{2 \sqrt{a b}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n},\right.\right.}{2 x a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)+\operatorname{BesselJ}\left(\frac{\sqrt{-4 c a+1}}{n}, \frac{2}{n}\right.\right.}$
Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*(x^(n-2)*b*x`2+c)*y(x)/x^2,
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 220
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=a * x^{\wedge} 2 * y(x)^{\wedge} 2+b * x^{\wedge} n+c, y(x)$, singsol=all)
$y(x)$
$=\frac{2 \sqrt{a b}\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a c+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a c+1}}{n}+1, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-(\sqrt{-4 a c+1}+1)(\mathrm{P}}{2 x a\left(\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a c+1}}{n}, \frac{2 \sqrt{a b} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a c+1}}{n}\right.\right.}$
\checkmark Solution by Mathematica
Time used: 1.898 (sec). Leaf size: 1779

```
DSolve[x^2*y'[x]==a*x^2*y[x]^2+b*x^n+c,y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$
$\rightarrow \xrightarrow{-a^{\frac{i \sqrt{4 a c-1}}{n}+\frac{1}{2}} n^{\frac{2 \sqrt{(1-4 a c) n^{2}}}{n^{2}}}+1}\left(x^{n}\right)^{\frac{i \sqrt{4 a c-1}}{n}+1} \operatorname{BesselJ}\left(\frac{\sqrt{(1-4 a c) n^{2}}}{n^{2}}-1, \frac{2 \sqrt{a} \sqrt{b} \sqrt{x^{n}}}{n}\right)$ Gamma $\left(\frac{n+\sqrt{1-4 a c}}{n}\right) b^{\frac{i \sqrt{4 a c-1}}{n}}$
$y(x)$
$\rightarrow \frac{\frac{\sqrt{a} \sqrt{b} \sqrt{x^{n}}\left(\operatorname{BesselJ}\left(1-\frac{\sqrt{(1-4 a c) n^{2}}}{n^{2}}, \frac{2 \sqrt{a} \sqrt{b} \sqrt{x^{n}}}{n}\right)-\operatorname{BesselJ}\left(-\frac{\sqrt{(1-4 a c) n^{2}}}{n^{2}}-1, \frac{2 \sqrt{a} \sqrt{b} \sqrt{x^{n}}}{n}\right)\right)}{\operatorname{BesselJ}\left(-\frac{\sqrt{(1-4 a c) n^{2}}}{n^{2}}, \frac{2 \sqrt{a} \sqrt{b} \sqrt{x^{n}}}{n}\right)}-\frac{\sqrt{n^{2}(1-4 a c)}}{n}+i \sqrt{4 a c-1}-1}{2 a x}$

2.16 problem 16

2.16.1 Solving as riccati ode

Internal problem ID [10346]
Internal file name [OUTPUT/9293_Monday_June_06_2022_01_49_12_PM_46893412/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-x^{2} y^{2}=a x^{2 m}\left(b x^{m}+c\right)^{n}-\frac{n^{2}}{4}+\frac{1}{4}
$$

2.16.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{4 x^{2} y^{2}+4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1}{4 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{a x^{2 m}\left(b x^{m}+c\right)^{n}}{x^{2}}-\frac{n^{2}}{4 x^{2}}+\frac{1}{4 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1}{4 x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1}{4 x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1\right) u(x)}{4 x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1\right) _Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1\right) _Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1\right) _Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a x^{2 m}\left(b x^{m}+c\right)^{n}-n^{2}+1\right) _Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4 x^{2 m}\left(b x^{m}+c\right)^{n}-Y(x) a+4-Y^{\prime \prime}(x) x^{2}-_Y(x) n^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{4 x^{2 m}\left(b x^{m}+c\right)^{n}-Y(x) a+4-Y^{\prime \prime}(x) x^{2}-_Y(x) n^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4 x^{2 m}\left(b x^{m}+c\right)^{n} _Y(x) a+4 _Y^{\prime \prime}(x) x^{2}-_Y(x) n^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{4 x^{2 m}\left(b x^{m}+c\right)^{n} _Y(x) a+4-Y^{\prime \prime}(x) x^{2}-_Y(x) n^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(1/4)*(4*x^(2*m-2)*(b*x^m+c)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE 係4 Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(x^(2*m-2)*a*(b*x^m+c)^n
```

X Solution by Maple
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=x^{\wedge} 2 * y(x)^{\wedge} 2+a * x^{\wedge}(2 * m) *\left(b * x^{\wedge} m+c\right)^{\wedge} n+1 / 4 *\left(1-n^{\wedge} 2\right), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==x^{\wedge} 2 * y[x] \wedge 2+a * x^{\wedge}(2 * m) *\left(b * x^{\wedge} m+c\right)^{\wedge} n+1 / 4 *\left(1-n^{\wedge} 2\right), y[x], x\right.$, IncludeSingularSolutio

Not solved

2.17 problem 17

2.17.1 Solving as riccati ode

Internal problem ID [10347]
Internal file name [OUTPUT/9294_Monday_June_06_2022_01_49_17_PM_87108479/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(c_{2} x^{2}+b_{2} x+a_{2}\right)\left(y^{\prime}+\lambda y^{2}\right)=-a_{0}
$$

2.17.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{c_{2} \lambda x^{2} y^{2}+y^{2} b_{2} \lambda x+y^{2} a_{2} \lambda+a_{0}}{c_{2} x^{2}+b_{2} x+a_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} c_{2} \lambda x^{2}}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y^{2} b_{2} \lambda x}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y^{2} a_{2} \lambda}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{a_{0}}{c_{2} x^{2}+b_{2} x+a_{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a_{0}}{c_{2} x^{2}+b_{2} x+a_{2}}, f_{1}(x)=0$ and $f_{2}(x)=-\frac{c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}\right) u}{c_{2} x^{2}+b_{2} x+a_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 c_{2} \lambda x+\lambda b_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}+\frac{\left(c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}\right)\left(2 c_{2} x+b_{2}\right)}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{\left(c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}\right)^{2} a_{0}}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}\right) u^{\prime \prime}(x)}{c_{2} x^{2}+b_{2} x+a_{2}}-\left(-\frac{2 c_{2} \lambda x+\lambda b_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}+\frac{\left(c_{2} \lambda x^{2}+\lambda b_{2} x+\lambda a_{2}\right)\left(2 c_{2} x+b_{2}\right)}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{2}}\right) u^{\prime}(x)-\frac{\left(c_{2} \lambda x\right.}{}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=-2\left(c_{2} x-\frac{\sqrt{-4 a_{2} c_{2}+b_{2}^{2}}}{2}+\frac{b_{2}}{2}\right)\left(c _ { 3 } \left(2 c_{2} x+b_{2}\right.\right. \\
& \left.+\sqrt{-4 a_{2} c_{2}+b_{2}^{2}}\right)^{\frac{-\sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}}} \text { hypergeom }\left(\left[-\frac{-\sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}},-\frac{-3 \sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}}\right],\right. \\
& +c_{4}\left(2 c_{2} x+b_{2}\right. \\
& \left.+\sqrt{-4 a_{2} c_{2}+b_{2}^{2}}\right)^{-\frac{\sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}}} \text { hypergeom }\left(\left[\frac{\sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}}, \frac{3 \sqrt{c_{2}}+\sqrt{-4 a_{0} \lambda+c_{2}}}{2 \sqrt{c_{2}}}\right],\left[\frac{\sqrt{c_{2}}+}{}\right.\right.
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad 4 \sqrt{c_{2}}\left((2 c _ { 2 } x + b _ { 2 } + \sqrt { - 4 a _ { 2 } c _ { 2 } + b _ { 2 } ^ { 2 } }) ^ { \frac { - \sqrt { c _ { 2 } } + \sqrt { - 4 a _ { 0 } \lambda + c _ { 2 } } } { 2 \sqrt { c _ { 2 } } } } \left(\left(\left(c_{2} x+\frac{b_{2}}{2}\right) \sqrt{-4 a_{0} \lambda+c_{2}}+c_{2}^{\frac{3}{2}} x+\frac{\sqrt{c_{2}} b_{2}}{2}\right) \sqrt{-4}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{4\left(\text { hypergeom } ([\frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 } , \frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 }] , [1 + \sqrt { - 4 a _ { 0 } \lambda + 1 }] , \frac { 2 \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } } { 2 x + b _ { 2 } + \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } }) c _ { 4 } \left(-1+\sqrt{-4 a_{0} \lambda}\right.\right.}{\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)^{2}\left(-\sqrt{b_{2}^{2}-4 a_{2}}+2 x+b_{2}\right) \lambda\left(c_{3}\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)\right.}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{4\left(\text { hypergeom } ([\frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 } , \frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 }] , [1 + \sqrt { - 4 a _ { 0 } \lambda + 1 }] , \frac { 2 \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } } { 2 x + b _ { 2 } + \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } }) c _ { 4 } \left(-1+\sqrt{\left.-4 a_{0}\right\rangle}\right.\right.}{\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)^{2}\left(-\sqrt{b_{2}^{2}-4 a_{2}}+2 x+b_{2}\right) \lambda\left(c_{3}\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{4\left(\text { hypergeom } ([\frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 } , \frac { 1 } { 2 } + \frac { \sqrt { - 4 a _ { 0 } \lambda + 1 } } { 2 }] , [1 + \sqrt { - 4 a _ { 0 } \lambda + 1 }] , \frac { 2 \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } } { 2 x + b _ { 2 } + \sqrt { b _ { 2 } ^ { 2 } - 4 a _ { 2 } } }) c _ { 4 } \left(-1+\sqrt{\left.-4 a_{0}\right\rangle}\right.\right.}{\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)^{2}\left(-\sqrt{b_{2}^{2}-4 a_{2}}+2 x+b_{2}\right) \lambda\left(c_{3}\left(2 x+b_{2}+\sqrt{b_{2}^{2}-4 a_{2}}\right)\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a__0*lambda*y(x)/(c__2*x^2+b_
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 1127
dsolve ($\left(c_{-} 2 * x^{\wedge} 2+b_{_-} 2 * x+a_{-} 2\right) *\left(\operatorname{diff}(y(x), x)+\operatorname{lambda} * y(x)^{\wedge} 2\right)+a_{-} 0=0, y(x)$, singsol=all)

> Expression too large to display
\checkmark Solution by Mathematica
Time used: 5.964 (sec). Leaf size: 1046

```
DSolve[(c2*x^2+b2*x+a2)*(y'[x] +\[Lambda]*y[x] 2 2)+a0==0,y[x],x,IncludeSingularSolutions -> Tr
```

$y(x)$
$\left.\rightarrow \xrightarrow{(\mathrm{b} 2+2 \mathrm{c} 2 x)\left(8 \mathrm{c} 2\left(\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2\right) G_{2,2}^{2,0}\left(-\left.\frac{4 \mathrm{c} 2(\mathrm{a} 2+x(\mathrm{~b} 2+\mathrm{c} 2 x))}{\mathrm{b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}\right|^{\frac{1}{4}-\frac{\sqrt{\mathrm{c} 2-4 \mathrm{a} 0 \lambda}}{4 \sqrt{\mathrm{c} 2}},}, \frac{1}{4}\left(\frac{\sqrt{\mathrm{c} 2-4 \mathrm{a} 0 \lambda}}{\sqrt{\mathrm{c} 2}}+1\right)\right.\right.} \begin{array}{c}0,0\end{array}\right)+c_{1}($
$y(x)$

$$
\rightarrow \frac{(\mathrm{b} 2+2 \mathrm{c} 2 x)\left(2 (\mathrm { b } 2 ^ { 2 } - 4 \mathrm { a } 2 \mathrm { c } 2) \text { Hypergeometric2F1 } \left(\frac{3 \mathrm{c} 2+\sqrt{\mathrm{c} 2(\mathrm{c} 2-4 \mathrm{a} 0 \lambda)}}{4 \mathrm{c} 2}, \frac{1}{4}\left(3-\frac{\sqrt{\mathrm{c} 2(\mathrm{c} 2-4 \mathrm{a} 0 \lambda)}}{\mathrm{c} 2}\right), 2,-\frac{4 \mathrm{c} 2}{}\right.\right.}{2 \lambda\left(\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2\right)(\mathrm{a} 2+x(\mathrm{~b} 2+\mathrm{c} 2 x)) \text { Hyper }}
$$

$y(x)$
$\rightarrow \frac{(\mathrm{b} 2+2 \mathrm{c} 2 x)\left(2\left(\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2\right) \text { Hypergeometric2F1 }\left(\frac{3 \mathrm{c} 2+\sqrt{\mathrm{c} 2(\mathrm{c} 2-4 \mathrm{a} 0 \lambda)}}{4 \mathrm{c} 2}, \frac{1}{4}\left(3-\frac{\sqrt{\mathrm{c} 2(\mathrm{c} 2-4 \mathrm{a} 0 \lambda)}}{\mathrm{c} 2}\right), 2,-\frac{4 \mathrm{c} 2}{}\right.\right.}{2 \lambda\left(\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2\right)(\mathrm{a} 2+x(\mathrm{~b} 2+\mathrm{c} 2 x)) \text { Hyper }}$

2.18 problem 18

2.18.1 Solving as first order ode lie symmetry calculated ode 141
2.18.2 Solving as riccati ode . 147

Internal problem ID [10348]
Internal file name [OUTPUT/9295_Monday_June_06_2022_01_49_21_PM_53621118/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational, [_Riccati, _special]]

$$
x^{4} y^{\prime}+x^{4} y^{2}=-a^{2}
$$

2.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x^{4} y^{2}+a^{2}}{x^{4}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2}-\frac{\left(x^{4} y^{2}+a^{2}\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{x^{4}} \\
& \quad-\frac{\left(x^{4} y^{2}+a^{2}\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{x^{8}} \tag{5E}\\
& \quad-\left(-\frac{4 y^{2}}{x}+\frac{4 x^{4} y^{2}+4 a^{2}}{x^{5}}\right)\left(x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& \quad+2 y\left(x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{9} y^{4} a_{5}+2 x^{8} y^{5} a_{6}+x^{8} y^{4} a_{3}-2 x^{10} y b_{4}-2 x^{9} y^{2} a_{4}-x^{9} y^{2} b_{5}-x^{8} y^{3} a_{5}-2 x^{9} y b_{2}-x^{8} y^{2} a_{2}-x^{8} y^{2} b_{3}+2 a^{2} x}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{9} y^{4} a_{5}-2 x^{8} y^{5} a_{6}-x^{8} y^{4} a_{3}+2 x^{10} y b_{4}+2 x^{9} y^{2} a_{4}+x^{9} y^{2} b_{5}+x^{8} y^{3} a_{5}+2 x^{9} y b_{2} \\
& +x^{8} y^{2} a_{2}+x^{8} y^{2} b_{3}-2 a^{2} x^{5} y^{2} a_{5}-4 a^{2} x^{4} y^{3} a_{6}+2 x^{9} b_{4}+2 x^{8} y b_{1}+y b_{5} x^{8} \tag{6E}\\
& -2 a^{2} x^{4} y^{2} a_{3}+b_{2} x^{8}-2 a^{2} x^{5} a_{4}-a^{2} x^{5} b_{5}-3 a^{2} x^{4} y a_{5}-2 a^{2} x^{4} y b_{6}-4 a^{2} x^{3} y^{2} a_{6} \\
& -3 a^{2} x^{4} a_{2}-a^{2} x^{4} b_{3}-4 a^{2} x^{3} y a_{3}-a^{4} x a_{5}-2 a^{4} y a_{6}-4 a^{2} x^{3} a_{1}-a^{4} a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{5} v_{1}^{9} v_{2}^{4}-2 a_{6} v_{1}^{8} v_{2}^{5}-a_{3} v_{1}^{8} v_{2}^{4}+2 a_{4} v_{1}^{9} v_{2}^{2}+a_{5} v_{1}^{8} v_{2}^{3}+2 b_{4} v_{1}^{10} v_{2}+b_{5} v_{1}^{9} v_{2}^{2}+a_{2} v_{1}^{8} v_{2}^{2} \\
& +2 b_{2} v_{1}^{9} v_{2}+b_{3} v_{1}^{8} v_{2}^{2}-2 a^{2} a_{5} v_{1}^{5} v_{2}^{2}-4 a^{2} a_{6} v_{1}^{4} v_{2}^{3}+2 b_{1} v_{1}^{8} v_{2}+2 b_{4} v_{1}^{9}+b_{5} v_{1}^{8} v_{2} \tag{7E}\\
& -2 a^{2} a_{3} v_{1}^{4} v_{2}^{2}+b_{2} v_{1}^{8}-2 a^{2} a_{4} v_{1}^{5}-3 a^{2} a_{5} v_{1}^{4} v_{2}-4 a^{2} a_{6} v_{1}^{3} v_{2}^{2}-a^{2} b_{5} v_{1}^{5}-2 a^{2} b_{6} v_{1}^{4} v_{2} \\
& -3 a^{2} a_{2} v_{1}^{4}-4 a^{2} a_{3} v_{1}^{3} v_{2}-a^{2} b_{3} v_{1}^{4}-a^{4} a_{5} v_{1}-2 a^{4} a_{6} v_{2}-4 a^{2} a_{1} v_{1}^{3}-a^{4} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{4} v_{1}^{10} v_{2}-a_{5} v_{1}^{9} v_{2}^{4}+\left(2 a_{4}+b_{5}\right) v_{1}^{9} v_{2}^{2}+2 b_{2} v_{1}^{9} v_{2}+2 b_{4} v_{1}^{9}-2 a_{6} v_{1}^{8} v_{2}^{5} \\
& \quad-a_{3} v_{1}^{8} v_{2}^{4}+a_{5} v_{1}^{8} v_{2}^{3}+\left(a_{2}+b_{3}\right) v_{1}^{8} v_{2}^{2}+\left(2 b_{1}+b_{5}\right) v_{1}^{8} v_{2}+b_{2} v_{1}^{8} \\
& -2 a^{2} a_{5} v_{1}^{5} v_{2}^{2}+\left(-2 a^{2} a_{4}-a^{2} b_{5}\right) v_{1}^{5}-4 a^{2} a_{6} v_{1}^{4} v_{2}^{3}-2 a^{2} a_{3} v_{1}^{4} v_{2}^{2} \tag{8E}\\
& +\left(-3 a^{2} a_{5}-2 a^{2} b_{6}\right) v_{1}^{4} v_{2}+\left(-3 a^{2} a_{2}-a^{2} b_{3}\right) v_{1}^{4}-4 a^{2} a_{6} v_{1}^{3} v_{2}^{2} \\
& -4 a^{2} a_{3} v_{1}^{3} v_{2}-4 a^{2} a_{1} v_{1}^{3}-a^{4} a_{5} v_{1}-2 a^{4} a_{6} v_{2}-a^{4} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{5} & =0 \\
b_{2} & =0 \\
-a_{3} & =0 \\
-a_{5} & =0 \\
-2 a_{6} & =0 \\
2 b_{2} & =0 \\
2 b_{4} & =0 \\
-4 a^{2} a_{1} & =0 \\
-4 a^{2} a_{3} & =0 \\
-2 a^{2} a_{3} & =0 \\
-2 a^{2} a_{5} & =0 \\
-4 a^{2} a_{6} & =0 \\
-a^{4} a_{3} & =0 \\
-a^{4} a_{5} & =0 \\
-2 a^{4} a_{6} & =0 \\
a_{2}+b_{3} & =0 \\
2 a_{4}+b_{5} & =0 \\
2 b_{1}+b_{5} & =0 \\
-3 a^{2} a_{2}-a^{2} b_{3} & =0 \\
-2 a^{2} a_{4}-a^{2} b_{5} & =0 \\
-3 a^{2} a_{5}-2 a^{2} b_{6} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=0 \\
& a_{4}=b_{1} \\
& a_{5}=0 \\
& a_{6}=0 \\
& b_{1}=b_{1} \\
& b_{2}=0 \\
& b_{3}=0 \\
& b_{4}=0 \\
& b_{5}=-2 b_{1} \\
& b_{6}=0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x^{2} \\
& \eta=-2 y x+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y x+1-\left(-\frac{x^{4} y^{2}+a^{2}}{x^{4}}\right)\left(x^{2}\right) \\
& =\frac{x^{4} y^{2}-2 y x^{3}+a^{2}+x^{2}}{x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{4} y^{2}-2 y x^{3}+a^{2}+x^{2}}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\arctan \left(\frac{2 x^{4} y-2 x^{3}}{2 a x^{2}}\right)}{a}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x^{4} y^{2}+a^{2}}{x^{4}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 y x-1}{x^{4} y^{2}-2 y x^{3}+a^{2}+x^{2}} \\
S_{y} & =\frac{x^{2}}{x^{4} y^{2}-2 y x^{3}+a^{2}+x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\arctan \left(\frac{x(x y-1)}{a}\right)}{a}=\frac{1}{x}+c_{1}
$$

Which simplifies to

$$
\frac{\arctan \left(\frac{x(x y-1)}{a}\right)}{a}=\frac{1}{x}+c_{1}
$$

Which gives

$$
y=\frac{\tan \left(\frac{a\left(c_{1} x+1\right)}{x}\right) a+x}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\tan \left(\frac{a\left(c_{1} x+1\right)}{x}\right) a+x}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\tan \left(\frac{a\left(c_{1} x+1\right)}{x}\right) a+x}{x^{2}}
$$

Verified OK.

2.18.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x^{4} y^{2}+a^{2}}{x^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-y^{2}-\frac{a^{2}}{x^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a^{2}}{x^{4}}, f_{1}(x)=0$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a^{2}}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)-\frac{a^{2} u(x)}{x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(c_{1} \sin \left(\frac{a}{x}\right)+c_{2} \cos \left(\frac{a}{x}\right)\right)
$$

The above shows that

$$
u^{\prime}(x)=c_{1} \sin \left(\frac{a}{x}\right)+c_{2} \cos \left(\frac{a}{x}\right)+\frac{a\left(-c_{1} \cos \left(\frac{a}{x}\right)+c_{2} \sin \left(\frac{a}{x}\right)\right)}{x}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} \sin \left(\frac{a}{x}\right)+c_{2} \cos \left(\frac{a}{x}\right)+\frac{a\left(-c_{1} \cos \left(\frac{a}{x}\right)+c_{2} \sin \left(\frac{a}{x}\right)\right)}{x}}{x\left(c_{1} \sin \left(\frac{a}{x}\right)+c_{2} \cos \left(\frac{a}{x}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-a c_{3}+x\right) \cos \left(\frac{a}{x}\right)+\sin \left(\frac{a}{x}\right)\left(c_{3} x+a\right)}{x^{2}\left(c_{3} \sin \left(\frac{a}{x}\right)+\cos \left(\frac{a}{x}\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-a c_{3}+x\right) \cos \left(\frac{a}{x}\right)+\sin \left(\frac{a}{x}\right)\left(c_{3} x+a\right)}{x^{2}\left(c_{3} \sin \left(\frac{a}{x}\right)+\cos \left(\frac{a}{x}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-a c_{3}+x\right) \cos \left(\frac{a}{x}\right)+\sin \left(\frac{a}{x}\right)\left(c_{3} x+a\right)}{x^{2}\left(c_{3} \sin \left(\frac{a}{x}\right)+\cos \left(\frac{a}{x}\right)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x^4*diff(y(x),x)=-x^4*y(x)^2-a^2,y(x), singsol=all)
```

$$
y(x)=\frac{-a \tan \left(\frac{a\left(c_{1} x-1\right)}{x}\right)+x}{x^{2}}
$$

Solution by Mathematica
Time used: 1.107 (sec). Leaf size: 87
DSolve $\left[x \wedge 4 * y\right.$ ' $[x]==-x^{\wedge} 4 * y[x] \wedge 2-a^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-2 i a^{2} c_{1} e^{\frac{2 i a}{x}}+2 a c_{1} x e^{\frac{2 i a}{x}}+a-i x}{x^{2}\left(2 a c_{1} e^{\frac{2 i a}{x}}-i\right)} \\
& y(x) \rightarrow \frac{x-i a}{x^{2}}
\end{aligned}
$$

2.19 problem 19

2.19.1 Solving as riccati ode . 150

Internal problem ID [10349]
Internal file name [OUTPUT/9296_Monday_June_06_2022_01_49_22_PM_49385801/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
a x^{2}(x-1)^{2}\left(y^{\prime}+\lambda y^{2}\right)=-b x^{2}-c x-s
$$

2.19.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a \lambda x^{4}-2 y^{2} a \lambda x^{3}+y^{2} a \lambda x^{2}+b x^{2}+c x+s}{a x^{2}(x-1)^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{2} y^{2} \lambda}{(x-1)^{2}}+\frac{2 x y^{2} \lambda}{(x-1)^{2}}-\frac{y^{2} \lambda}{(x-1)^{2}}-\frac{b}{a(x-1)^{2}}-\frac{c}{a x(x-1)^{2}}-\frac{s}{a x^{2}(x-1)^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{b x^{2}+c x+s}{a x^{2}(x-1)^{2}}, f_{1}(x)=0$ and $f_{2}(x)=-\frac{\lambda a x^{4}-2 \lambda a x^{3}+\lambda a x^{2}}{a x^{2}(x-1)^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda a x^{4}-2 \lambda a x^{3}+\lambda a x^{2}\right) u}{a x^{2}(x-1)^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{4 \lambda a x^{3}-6 \lambda a x^{2}+2 a \lambda x}{a x^{2}(x-1)^{2}}+\frac{2 \lambda a x^{4}-4 \lambda a x^{3}+2 \lambda a x^{2}}{a x^{3}(x-1)^{2}}+\frac{2 \lambda a x^{4}-4 \lambda a x^{3}+2 \lambda a x^{2}}{a x^{2}(x-1)^{3}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda a x^{4}-2 \lambda a x^{3}+\lambda a x^{2}\right)^{2}\left(b x^{2}+c x+s\right)}{a^{3} x^{6}(x-1)^{6}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda a x^{4}-2 \lambda a x^{3}+\lambda a x^{2}\right) u^{\prime \prime}(x)}{a x^{2}(x-1)^{2}}-\left(-\frac{4 \lambda a x^{3}-6 \lambda a x^{2}+2 a \lambda x}{a x^{2}(x-1)^{2}}+\frac{2 \lambda a x^{4}-4 \lambda a x^{3}+2 \lambda a x^{2}}{a x^{3}(x-1)^{2}}+\frac{2 \lambda a x^{4}-}{a x^{2}}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=(x \\
& -1)^{\frac{\sqrt{a}-\sqrt{(-4 b-4 c-4 s) \lambda+a}}{2 \sqrt{a}}}\left(c _ { 2 } x ^ { - \frac { - \sqrt { a } + \sqrt { - 4 \lambda s + a } } { 2 \sqrt { a } } } \text { hypergeom } \left(\left[-\frac{\sqrt{(-4 b-4 c-4 s) \lambda+a}-\sqrt{a}+\sqrt{-4 \lambda s+a}}{2 \sqrt{a}}\right.\right.\right. \\
& +c_{1} x^{\frac{\sqrt{-4 \lambda s+a}+\sqrt{a}}{2 \sqrt{a}}} \text { hypergeom }\left(\left[\frac{-\sqrt{(-4 b-4 c-4 s) \lambda+a}+\sqrt{a}+\sqrt{-4 \lambda s+a}-\sqrt{-4 b \lambda+a}}{2 \sqrt{a}}, \frac{\sqrt{(-4 l}}{}\right.\right.
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad x^{\frac{\sqrt{-4 \lambda s+a}+\sqrt{a}}{2 \sqrt{a}}}(x-1)^{\frac{\sqrt{a}-\sqrt{(-4 b-4 c-4 s) \lambda+a}}{2 \sqrt{a}}}(2 s \sqrt{(-4 b-4 c-4 s) \lambda+a}+(-c-2 s) \sqrt{-4 \lambda s+a}+\sqrt{a} c) c_{1}
\end{aligned}
$$

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*x^2+c*x+s)*lambda*y(x)/(a*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1087
dsolve (a*x^2*(x-1)^2*(diff(y(x),x)+lambda*y(x)^2)+b*x^2+c*x+s=0,y(x), singsol=all)

Expression too large to display

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[a * x^{\wedge} 2 *(x-1)^{\wedge} 2 *\left(y^{\prime}[x]+\backslash[\right.\right.$ Lambda $\left.] * y[x] \wedge 2\right)+b * x^{\wedge} 2+c * x+s==0, y[x], x$, IncludeSingularSolutions

Timed out

2.20 problem 20

2.20.1 Solving as first order ode lie symmetry calculated ode 155
2.20.2 Solving as riccati ode . 162

Internal problem ID [10350]
Internal file name [OUTPUT/9297_Monday_June_06_2022_01_49_28_PM_64106840/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a x^{2}+b x+c\right)^{2}\left(y^{\prime}+y^{2}\right)=-A
$$

2.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A}{\left(a x^{2}+b x+c\right)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2} \tag{5E}\\
& -\frac{\left(y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& -\frac{\left(y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{\left(a x^{2}+b x+c\right)^{4}} \\
& -\left(-\frac{4 a^{2} x^{3} y^{2}+6 a b x^{2} y^{2}+4 a c x y^{2}+2 b^{2} x y^{2}+2 b c y^{2}}{\left(a x^{2}+b x+c\right)^{2}}\right)\left(x^{2} a_{4}\right. \\
& +\frac{2\left(y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A\right)(2 x a+b)}{\left(a x^{2}+b x+c\right)^{3}} \\
& \left.+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{\left(2 a^{2} x^{4} y+4 a b x^{3} y+4 a c x^{2} y+2 b^{2} x^{2} y+4 b c x y+2 c^{2} y\right)\left(x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =0
\end{align*}
$$

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
-4 a^{3} c a_{3}-6 a^{2} b^{2} a_{3}-12
$$

$$
4 a^{3} c b_{2}+6 a^{2} b^{2} b_{2}+24
$$

$$
4 a c^{3} a_{5}+6 b^{2} c^{2} a_{5}-8
$$

$$
6 a^{2} c^{2} a_{5}+12 a b^{2} c a_{5}+
$$

$$
a^{4} a_{2}+a^{4} b_{3}+
$$

$$
c^{4} a_{2}+c^{4} b_{3}-2
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-\frac{c b_{3}}{b} \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
a_{4} & =-\frac{a b_{3}}{b} \\
a_{5} & =0 \\
a_{6} & =0 \\
b_{1} & =-\frac{a b_{3}}{b} \\
b_{2} & =0 \\
b_{3} & =b_{3} \\
b_{4} & =0 \\
b_{5} & =\frac{2 a b_{3}}{b} \\
b_{6} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-\frac{a x^{2}+b x+c}{b} \\
& \eta=\frac{2 a x y+b y-a}{b}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{2 a x y+b y-a}{b}-\left(-\frac{y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A}{\left(a x^{2}+b x+c\right)^{2}}\right)\left(-\frac{a x^{2}+b x+c}{b}\right. \\
& =\frac{-y^{2} a^{2} x^{4}-2 y^{2} a b x^{3}+2 a^{2} x^{3} y-2 a x^{2} y^{2} c-y^{2} b^{2} x^{2}+3 a b x^{2} y-2 y^{2} b c x-a^{2} x^{2}+2 a c x y+b^{2} x y-c^{2} y^{2}}{a b x^{2}+b^{2} x+b c} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-y^{2} a^{2} x^{4}-2 y^{2} a b x^{3}+2 a^{2} x^{3} y-2 a x^{2} y^{2} c-y^{2} b^{2} x^{2}+3 a b x^{2} y-2 y^{2} b c x-a^{2} x^{2}+2 a c x y+b^{2} x y-c^{2} y^{2}-a b x+y b c-c a-A}{a b x^{2}+b^{2} x+b c} d y}
\end{aligned}
$$

Which results in
$S=-\frac{2\left(a b x^{2}+b^{2} x+b c\right) \arctan \left(\frac{2 y\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}\right)-}{\sqrt{4 a^{3} c x^{4}-a^{2} b^{2} x^{4}+4 A a^{2} x^{4}+8 a^{2} b c x^{3}-2 a b^{3} x^{3}+8 A a b x^{3}+8 a^{2} c^{2} x^{2}+2 a b^{2} c x^{2}-b}}\right.}{\sqrt{4 a^{3} c x^{4}-a^{2} b^{2} x^{4}+4 A a^{2} x^{4}+8 a^{2} b c x^{3}-2 a b^{3} x^{3}+8 A a b x^{3}+8 a^{2} c^{2} x^{2}+2 a b^{2} c x^{2}-b^{4} x^{2}+8 A a c}}$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A}{\left(a x^{2}+b x+c\right)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2(4 a x y+2 b y-2 a) b}{\left(4 c a-b^{2}+4 A\right)\left(\frac{\left(2 a x^{2} y+2 b x y-2 x a+2 y c-b\right)^{2}}{4 c a-b^{2}+4 A}+1\right)} \\
& S_{y}=-\frac{2\left(2 a x^{2}+2 b x+2 c\right) b}{\left(4 c a-b^{2}+4 A\right)\left(\frac{\left(2 a x^{2} y+2 b x y-2 x a+2 y c-b\right)^{2}}{4 c a-b^{2}+4 A}+1\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{b}{a x^{2}+b x+c} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{b}{R^{2} a+R b+c}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 b \arctan \left(\frac{2 R a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \arctan \left(\frac{2 a x^{2} y+2 y b x-2 x a+2 y c-b}{\sqrt{4 c a-b^{2}+4 A}}\right) b}{\sqrt{4 c a-b^{2}+4 A}}=\frac{2 b \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1}
$$

Which simplifies to

$$
-\frac{2 \arctan \left(\frac{2 a x^{2} y+2 y b x-2 x a+2 y c-b}{\sqrt{4 c a-b^{2}+4 A}}\right) b}{\sqrt{4 c a-b^{2}+4 A}}=\frac{2 b \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1}
$$

Which gives

$$
y=-\frac{\tan \left(\frac{\sqrt{4 c a-b^{2}+4 A}\left(\sqrt{4 c a-b^{2}} c_{1}+2 b \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}} b}\right) \sqrt{4 c a-b^{2}+4 A}-2 x a-b}{2\left(a x^{2}+b x+c\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\tan \left(\frac{\sqrt{4 c a-b^{2}+4 A}\left(\sqrt{4 c a-b^{2}} c_{1}+2 b \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}} b}\right) \sqrt{4 c a-b^{2}+4 A}-2 x a-b}{2\left(a x^{2}+b x+c\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\tan \left(\frac{\sqrt{4 c a-b^{2}+4 A}\left(\sqrt{4 c a-b^{2}} c_{1}+2 b \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}} b}\right) \sqrt{4 c a-b^{2}+4 A}-2 x a-b}{2\left(a x^{2}+b x+c\right)}
$$

Verified OK.

2.20.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a^{2} x^{4}+2 y^{2} a b x^{3}+2 a x^{2} y^{2} c+y^{2} b^{2} x^{2}+2 y^{2} b c x+c^{2} y^{2}+A}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} a^{2} x^{4}}{\left(a x^{2}+b x+c\right)^{2}}-\frac{2 y^{2} a b x^{3}}{\left(a x^{2}+b x+c\right)^{2}}-\frac{2 a x^{2} y^{2} c}{\left(a x^{2}+b x+c\right)^{2}}-\frac{y^{2} b^{2} x^{2}}{\left(a x^{2}+b x+c\right)^{2}}-\frac{2 y^{2} b c x}{\left(a x^{2}+b x+c\right)^{2}}-\frac{c^{2}}{\left(a x^{2}+\right.}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{A}{\left(a x^{2}+b x+c\right)^{2}}, f_{1}(x)=0$ and $f_{2}(x)=-\frac{a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}}{\left(a x^{2}+b x+c\right)^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}\right) u}{\left(a x^{2}+b x+c\right)^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
f_{2}^{\prime}=-\frac{4 a^{2} x^{3}+6 a b x^{2}+4 a c x+2 b^{2} x+2 b c}{\left(a x^{2}+b x+c\right)^{2}}+\frac{2\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}\right)(2 x a+b)}{\left(a x^{2}+b x+c\right)^{3}}
$$

$f_{1} f_{2}=0$
$f_{2}^{2} f_{0}=-\frac{\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}\right)^{2} A}{\left(a x^{2}+b x+c\right)^{6}}$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2} x^{2}+2 b x c+c^{2}\right) u^{\prime \prime}(x)}{\left(a x^{2}+b x+c\right)^{2}}-\left(-\frac{4 a^{2} x^{3}+6 a b x^{2}+4 a c x+2 b^{2} x+2 b c}{\left(a x^{2}+b x+c\right)^{2}}+\frac{2\left(a^{2} x^{4}-\right.}{}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=(& \left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}} c_{1} \\
& \quad+\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}} c_{2} \\
&
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{2\left(c _ { 2 } (i \sqrt { 4 c a - b ^ { 2 } } \sqrt { \frac { - 4 c a + b ^ { 2 } - 4 A } { a ^ { 2 } } } a - 2 \sqrt { - 4 c a + b ^ { 2 } } (x a + \frac { b } { 2 })) \left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{\left.b+i \sqrt{4 c a-b^{2}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}}-(i \sqrt{4 c a}}\right.\right.}{\sqrt{-4 c a+b^{2}}\left(-b+i \sqrt{4 c a-b^{2}}-\right.}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y \\
& =\frac{2\left(c_{2}\left(i \sqrt{4 c a-b^{2}} \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}} a-2 \sqrt{-4 c a+b^{2}}\left(x a+\frac{b}{2}\right)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}}-(i \sqrt{4 c c}\right.}{\sqrt{-4 c a+b^{2}}\left(-b+i \sqrt{4 c a-b^{2}}-2 x a\right)\left(b+i \sqrt{4 c a-b^{2}}+2 x a\right)\left(a^{2} x^{4}+2 b x^{3} a+2 a c x^{2}+b^{2}\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{2\left(\left(i \sqrt{4 c a-b^{2}} \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}} a-2 \sqrt{-4 c a+b^{2}}\left(x a+\frac{b}{2}\right)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}}-(i \sqrt{4 c a-}\right.}{\sqrt{-4 c a+b^{2}}\left(\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a}}}{2 \sqrt{-4 c a+b^{2}}}} c_{3}+\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{-\frac{-4 c a+b}{a^{2}}}}{2 \sqrt{-4 c a}}}\right.}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{2\left(\left(i \sqrt{4 c a-b^{2}} \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}} a-2 \sqrt{-4 c a+b^{2}}\left(x a+\frac{b}{2}\right)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}}-(i \sqrt{4 c a-}\right.}{\sqrt{-4 c a+b^{2}}\left(\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{\frac{a \sqrt{-4 c a+b^{2}-4 A}}{2 \sqrt{-4 c a+b^{2}}}}\right.} c_{3}+\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{-4 c a+b}}{2 \sqrt{a^{2}}}} 2$

Verification of solutions

y
$=\frac{2\left(\left(i \sqrt{4 c a-b^{2}} \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}} a-2 \sqrt{-4 c a+b^{2}}\left(x a+\frac{b}{2}\right)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 c a+b^{2}}}}-(i \sqrt{4 c a-}\right.}{\sqrt{-4 c a+b^{2}}\left(\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{\frac{a \sqrt{\frac{-4 c a+b^{2}-4 A}{a}}}{2 \sqrt{-4 c a+b^{2}}}} c_{3}+\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{-\frac{a \sqrt{\frac{-4 c a+b}{a^{2}}}}{2 \sqrt{-4 c a-}}}\right.}$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -A*y(x)/(a^2*x^4+2*a*b*x^3+2*a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Group is reducible or imprimitive
        <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 493

```
dsolve((a*x^2+b*x+c)~ 2*(diff(y(x),x)+y(x)^2)+A=0,y(x), singsol=all)
```

$y(x)$
$=\frac{2\left(c_{1}\left(i \sqrt{\frac{-4 a c+b^{2}-4 A}{a^{2}}} a \sqrt{4 a c-b^{2}}-2 \sqrt{-4 a c+b^{2}}\left(\frac{b}{2}+a x\right)\right)\left(\frac{-b+i \sqrt{4 a c-b^{2}}-2 a x}{i \sqrt{4 a c-b^{2}}+2 a x+b}\right)^{-\frac{a \sqrt{\frac{-4 a c+b^{2}-4 A}{a}}}{2 \sqrt{-4 a c+b^{2}}}}-\left(i \sqrt{\frac{-4 c}{}}\right.\right.}{\sqrt{-4 a c+b^{2}}\left(i \sqrt{4 a c-b^{2}}+2 a x+b\right)\left(-b+i \sqrt{4 a c-b^{2}}-2 a x\right)\left(c_{1}\left(\frac{-b+i \sqrt{4 a c}}{i \sqrt{4 a c-b^{2}}+}\right.\right.}$
Solution by Mathematica
Time used: 5.579 (sec). Leaf size: 743
DSolve[(a*x^2+b*x+c)^2*(y'[x]+y[x]^2)+A==0,y[x],x, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \xrightarrow{b^{2} c_{1}\left(-\exp \left(\frac{2 \sqrt{4 a c-b^{2}} \sqrt{1-\frac{4 A}{b^{2}-4 a c}} \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{b^{2}-4 a c}}\right)\right)+b c_{1} \sqrt{b^{2}-4 a c} \sqrt{1-\frac{4 A}{b^{2}-4 a c}} \exp \left(\frac{2 \sqrt{4 a c-b^{2}} \sqrt{1-\frac{4 A}{b^{2}-4 a c}} a}{\sqrt{b^{2}-4 a}}\right.}$
$y(x) \rightarrow \frac{2 a x \sqrt{b^{2}-4 a c} \sqrt{1-\frac{4 A}{b^{2}-4 a c}}+b \sqrt{b^{2}-4 a c} \sqrt{1-\frac{4 A}{b^{2}-4 a c}}+4 a c+4 A-b^{2}}{2 \sqrt{b^{2}-4 a c} \sqrt{1-\frac{4 A}{b^{2}-4 a c}}(x(a x+b)+c)}$

2.21 problem 21

2.21.1 Solving as riccati ode . 167

Internal problem ID [10351]
Internal file name [OUTPUT/9298_Monday_June_06_2022_01_49_29_PM_68667329/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{n+1} y^{\prime}-x^{2 n} y^{2} a=c x^{m}+d
$$

2.21.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\left(x^{2 n} a y^{2}+c x^{m}+d\right) x^{-n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} a y^{2}}{x}+\frac{x^{-n} c x^{m}}{x}+\frac{x^{-n} d}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\left(c x^{m}+d\right) x^{-n-1}, f_{1}(x)=0$ and $f_{2}(x)=x^{2 n} a x^{-n-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2 n} a x^{-n-1} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n a x^{-n-1}}{x}-\frac{x^{2 n} a x^{-n-1}(n+1)}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{4 n} a^{2} x^{-3 n-3}\left(c x^{m}+d\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$x^{2 n} a x^{-n-1} u^{\prime \prime}(x)-\left(\frac{2 x^{2 n} n a x^{-n-1}}{x}-\frac{x^{2 n} a x^{-n-1}(n+1)}{x}\right) u^{\prime}(x)+x^{4 n} a^{2} x^{-3 n-3}\left(c x^{m}+d\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=x^{\frac{n}{2}}\left(\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2}\right. \\
& \left.+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{x^{-1+\frac{n}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2}\right) \sqrt{c a} x^{\frac{m}{2}}+(\operatorname{Bes}\right.}{2}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{x^{-1+\frac{n}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2}\right) \sqrt{c a} x^{\frac{m}{2}}+(\mathrm{B}\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2}\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)\right) \sqrt{c a} x^{\frac{m}{2}}+(\operatorname{BesselY}(\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)+\operatorname{BesselJ}\right.}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{m}}{m}\right)\right) \sqrt{c a} x^{\frac{m}{2}}+(\operatorname{BesselY}(\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)+\operatorname{BesselJ}\right.} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=$

$$
-\frac{\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)\right) \sqrt{c a} x^{\frac{m}{2}}+(\operatorname{BesselY}(\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)+\operatorname{BesselJ}\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (n-1)*(diff(y(x), x))/x-x^(n-1
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 235

```
dsolve( }\mp@subsup{x}{}{\wedge}(n+1)*\operatorname{diff}(y(x),x)=a*\mp@subsup{x}{}{\wedge}(2*n)*y(x)^2+c*\mp@subsup{x}{}{\wedge}m+d,y(x), singsol=all
```

$$
\begin{aligned}
& y(x)= \\
& -\frac{x^{-n}\left(-2 \sqrt{a c}\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{a c} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}+1, \frac{2 \sqrt{a c} x^{\frac{m}{2}}}{m}\right)\right) x^{\frac{m}{2}}+(\operatorname{Bessel}\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+n^{2}}}{m}, \frac{2 \sqrt{a c} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{Bessel}\right.} .
\end{aligned}
$$

Solution by Mathematica
Time used: 2.124 (sec). Leaf size: 1890

```
DSolve[x^(n+1)*y'[x]==a*x^(2*n)*y[x]^2+c*x^m+d,y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$

$$
\rightarrow \longrightarrow x^{-n}\left(a ^ { \frac { \sqrt { n ^ { 2 } - 4 a d } } { m } } m ^ { \frac { 2 \sqrt { m ^ { 2 } (n ^ { 2 } - 4 a d) } } { m ^ { 2 } } } (\sqrt { m ^ { 2 } (n ^ { 2 } - 4 a d) } - m (n + \sqrt { n ^ { 2 } - 4 a d })) (x ^ { m }) ^ { \frac { \sqrt { n ^ { 2 } - 4 a d } } { m } } + \frac { 1 } { 2 } \text { BesselJ } \left(\frac{\sqrt{m^{2}\left(n^{2}-\right.}}{m^{2}}\right.\right.
$$

$y(x)$
$\rightarrow \frac{x^{-n}\left(\frac{\sqrt{a} \sqrt{c} \sqrt{x^{m}}\left(\operatorname{BesselJ}\left(1-\frac{\sqrt{m^{2}\left(n^{2}-4 a d\right)}}{m^{2}}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m}}}{m}\right)-\operatorname{BesselJ}\left(-\frac{\sqrt{m^{2}\left(n^{2}-4 a d\right)}}{m^{2}}-1, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m}}}{m}\right)\right)}{\operatorname{BesselJ}\left(-\frac{\sqrt{m^{2}\left(n^{2}-4 a d\right)}}{m^{2}}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m}}}{m}\right)}-\frac{\sqrt{m^{2}\left(n^{2}-4 a d\right)}}{m}+\sqrt{n^{2}}\right.}{2 a}$

2.22 problem 22

2.22.1 Solving as riccati ode . 172

Internal problem ID [10352]
Internal file name [OUTPUT/9299_Monday_June_06_2022_01_49_31_PM_23841973/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(x^{n} a+b\right) y^{\prime}-b y^{2}=a x^{-2+n}
$$

2.22.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} b+a x^{-2+n}}{x^{n} a+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2} b}{x^{n} a+b}+\frac{a x^{n}}{\left(x^{n} a+b\right) x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a x^{-2+n}}{x^{n} a+b}, f_{1}(x)=0$ and $f_{2}(x)=\frac{b}{x^{n} a+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{b u}{x^{n} a+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{b a n x^{n}}{\left(x^{n} a+b\right)^{2} x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{b^{2} a x^{-2+n}}{\left(x^{n} a+b\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{b u^{\prime \prime}(x)}{x^{n} a+b}+\frac{b a n x^{n} u^{\prime}(x)}{\left(x^{n} a+b\right)^{2} x}+\frac{b^{2} a x^{-2+n} u(x)}{\left(x^{n} a+b\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} c_{1} x+\text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1-\frac{1}{n}\right],-\frac{a x^{n}}{b}\right) c_{2}\right)\left(x^{n} a+b\right)^{\frac{1}{n}}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\left(-\frac{2\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} a x^{n} c_{1}}{x^{n} a+b}+\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} c_{1}\right. \\
&\left.\quad-\frac{a n c_{2} x^{n-1} \operatorname{hypergeom}\left(\left[2,1+\frac{1}{n}\right],\left[2-\frac{1}{n}\right],-\frac{a x^{n}}{b}\right)}{b(n-1)}\right)\left(x^{n} a+b\right)^{\frac{1}{n}}+a\left(x^{n} a\right. \\
&+b)^{-\frac{n-1}{n}} x^{n}\left(\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} c_{1}+\frac{\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[1-\frac{1}{n}\right],-\frac{a x^{n}}{b}\right) c_{2}}{x}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\left(-\frac{2\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} a x^{n} c_{1}}{x^{n} a+b}+\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} c_{1}-\frac{a n c_{2} x^{n-1} \operatorname{hypergeom}\left(\left[2,1+\frac{1}{n}\right],\left[2-\frac{1}{n}\right],-\frac{a x^{n}}{b}\right)}{b(n-1)}\right)\left(x^{n} a+b\right)^{\frac{1}{n}}+a\left(x^{n} a+b\right.\right.}{b\left(\left(\frac{x^{n} a+b}{b}\right)^{-\frac{2}{n}} c_{1} x+\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}} n\left(a^{2} x^{3 n}+2 a b x^{2 n}+x^{n} b^{2}\right) \text { hypergeom }\left(\left[2, \frac{n+1}{n}\right],\left[\frac{2 n-1}{n}\right],-\frac{a x^{n}}{b}\right)-b\left(a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}}\left(a x^{2 n}+b x^{n}\right)\right.}{b^{2}(n-1) x\left(c_{3} x+\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[\frac{n-1}{n}\right],-\frac{a x^{n}}{b}\right)\left(\frac{x^{n}}{}\right.\right.}$

Summary

The solution(s) found are the following
y
$=\frac{a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}} n\left(a^{2} x^{3 n}+2 a b x^{2 n}+x^{n} b^{2}\right) \text { hypergeom }\left(\left[2, \frac{n+1}{n}\right],\left[\frac{2 n-1}{n}\right],-\frac{a x^{n}}{b}\right)-b\left(a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}}\left(a x^{2 n}+b x^{n}\right)\right.}{b^{2}(n-1) x\left(c_{3} x+\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[\frac{n-1}{n}\right],-\frac{a x^{n}}{b}\right)\left(\frac{x^{n}}{}\right.\right.}$
Verification of solutions
$=\frac{a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}} n\left(a^{2} x^{3 n}+2 a b x^{2 n}+x^{n} b^{2}\right) \text { hypergeom }\left(\left[2, \frac{n+1}{n}\right],\left[\frac{2 n-1}{n}\right],-\frac{a x^{n}}{b}\right)-b\left(a\left(\frac{x^{n} a+b}{b}\right)^{\frac{2}{n}}\left(a x^{2 n}+b x^{n}\right)\right.}{b^{2}(n-1) x\left(c_{3} x+\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[\frac{n-1}{n}\right],-\frac{a x^{n}}{b}\right)\left(\frac{x^{n}}{}\right.\right.}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*n*x^n*(diff(y(x), x))/((x^n
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
                            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                -> heuristic approach
                    <- heuristic approach successful
                    <- hypergeometric successful
            <- special function solution successful
                    -> Trying to convert hypergeometric functions to elementary form...
                    <- elementary form could result into a too large expression - returning speci
        <- Kovacics algorithm successful
        <- Equivalence, under non-integef power transformations successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 224

```
dsolve((a*x^n+b)*diff(y(x),x)=b*y(x)^2+a*x^(n-2),y(x), singsol=all)
```

$y(x)$
$=\frac{\left(\frac{a x^{n}+b}{b}\right)^{\frac{2}{n}}\left(a n c_{1}\left(a^{2} x^{3 n}+2 a b x^{2 n}+b^{2} x^{n}\right) \text { hypergeom }\left(\left[2, \frac{n+1}{n}\right],\left[\frac{2 n-1}{n}\right],-\frac{a x^{n}}{b}\right)-(n-1) b\left(a c_{1}\left(a x^{2 n}+l\right.\right.\right.}{b^{2}(n-1) x\left(a x^{n}+b\right)\left(x+\operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[\frac{n-1}{n}\right],\right.\right.}$
Solution by Mathematica
Time used: 1.899 (sec). Leaf size: 289
DSolve[(a*x^n+b)*y'[x]==b*y[x]~2+a*x^(n-2),y[x],x,IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \frac{-b^{2}(-1)^{\frac{1}{n}}(n-1)\left(-\frac{a x^{n}}{b}\right)^{\frac{1}{n}}-a b c_{1}(n-1) x^{n}\left(\frac{a x^{n}}{b}+1\right)^{2 / n} \text { Hypergeometric2F1 }\left(1, \frac{1}{n}, \frac{n-1}{n},-\frac{a x^{n}}{b}\right)+a c_{1} n x}{b^{2}(n-1) x\left((-1)^{\frac{1}{n}}\left(-\frac{a x^{n}}{b}\right)^{\frac{1}{n}}+c_{1}\left(\frac{a x^{n}}{b}+1\right)^{2 / n} \text { Hypergeomet }\right.}$
$y(x) \rightarrow \frac{a x^{n-1}\left(\frac{n\left(a x^{n}+b\right) \operatorname{Hypergeometric} 2 \mathrm{~F} 1\left(2,1+\frac{1}{n}, 2-\frac{1}{n},-\frac{a x^{n}}{b}\right)}{\operatorname{Hypergeometric2F1}\left(1, \frac{1}{n}, \frac{n-1}{n},-\frac{a x^{n}}{b}\right)}+b(-n)+b\right)}{b^{2}(n-1)}$

2.23 problem 23

$$
\text { 2.23.1 Solving as riccati ode . } 177
$$

Internal problem ID [10353]
Internal file name [OUTPUT/9300_Monday_June_06_2022_01_49_33_PM_14490210/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(x^{n} a+b x^{m}+c\right)\left(y^{\prime}-y^{2}\right)=-a n(n-1) x^{-2+n}-b m(m-1) x^{m-2}
$$

2.23.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{n} y^{2}+x^{m} y^{2} b-a n^{2} x^{-2+n}-b m^{2} x^{m-2}+c y^{2}+a n x^{-2+n}+b m x^{m-2}}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=\frac{a x^{n} y^{2}}{x^{n} a+b x^{m}+c}+\frac{x^{m} y^{2} b}{x^{n} a+b x^{m}+c}-\frac{a n^{2} x^{n}}{\left(x^{n} a+b x^{m}+c\right) x^{2}}-\frac{b m^{2} x^{m}}{\left(x^{n} a+b x^{m}+c\right) x^{2}}+\frac{c y^{2}}{x^{n} a+b x^{m}+c}+\frac{}{\left(x^{n} a\right.}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-a n^{2} x^{-2+n}-b m^{2} x^{m-2}+a n x^{-2+n}+b m x^{m-2}}{x^{n} a+b x^{m}+c}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{-a n^{2} x^{-2+n}-b m^{2} x^{m-2}+a n x^{-2+n}+b m x^{m-2}}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(-a n^{2} x^{-2+n}-b m^{2} x^{m-2}+a n x^{-2+n}+b m x^{m-2}\right) u(x)}{x^{n} a+b x^{m}+c}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(x^{n} a+b x^{m}+c\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{1}}{x^{n} a+b x^{m}+c}+\frac{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(x^{n} n a+b x^{m} m\right)}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{c_{1}}{x^{n} a+b x^{m}+c}+\frac{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(x^{n} n a+b x^{m} m\right)}{x}}{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(x^{n} a+b x^{m}+c\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\frac{c_{3}}{x^{n} a+b x^{m}+c}-\frac{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} n a+b x^{m} m\right)}{x}}{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} a+b x^{m}+c\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\frac{c_{3}}{x^{n} a+b x^{m}+c}-\frac{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} n a+b x^{m} m\right)}{x}}{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} a+b x^{m}+c\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\frac{c_{3}}{x^{n} a+b x^{m}+c}-\frac{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} n a+b x^{m} m\right)}{x}}{\left(\left(\int \frac{1}{\left(x^{n} a+b x^{m}+c\right)^{2}} d x\right) c_{3}+1\right)\left(x^{n} a+b x^{m}+c\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b*m^2*x^(-2+m)+a*n^2*x^(n-2)-
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 141
dsolve $\left(\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) *\left(\operatorname{diff}(y(x), x)-y(x)^{\wedge} 2\right)+a * n *(n-1) * x^{\wedge}(n-2)+b * m *(m-1) * x^{\wedge}(m-2)=0, y(x), \quad\right.$ sin
$y(x)$
$=\frac{-\left(a n x^{n}+b m x^{m}\right)\left(a x^{n}+b x^{m}+c\right)\left(\int \frac{1}{\left(a x^{n}+b x^{m}+c\right)^{2}} d x\right)-x^{2 m} c_{1} b^{2} m-b\left(a(n+m) x^{n}+c m\right) c_{1} x^{m}-x^{2}}{\left(a x^{n}+b x^{m}+c\right)^{2} x\left(c_{1}+\int \frac{1}{\left(a x^{n}+b x^{m}+c\right)^{2}} d x\right)}$
\checkmark Solution by Mathematica
Time used: 35.099 (sec). Leaf size: 201
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) *\left(y^{\prime}[x]-y[x] \wedge 2\right)+a * n *(n-1) * x^{\wedge}(n-2)+b * m *(m-1) * x^{\wedge}(m-2)==0, y[x], x\right.$, IncludeS

$$
\begin{aligned}
& y(x) \rightarrow-\frac{c_{1}\left(\frac{\left(a n x^{n}+b m x^{m}\right) \int_{1}^{x} \frac{1}{\left(b K[1]^{m}+a K[1]^{n}+c\right)^{2}} d K[1]}{x}+\frac{1}{a x^{n}+b x^{m}+c}\right)+a n x^{n-1}+b m x^{m-1}}{\left(a x^{n}+b x^{m}+c\right)\left(1+c_{1} \int_{1}^{x} \frac{1}{\left(b K[1]^{m}+a K[1]^{n}+c\right)^{2}} d K[1]\right)} \\
& y(x) \rightarrow-\frac{\frac{1}{\int_{1}^{x} \frac{1}{\left(b K[1]^{m}+a K[1]^{n}+c\right)^{2}} d K[1]}+\frac{\left(a n x^{n}+b m x^{m}\right)\left(a x^{n}+b x^{m}+c\right)}{x}}{\left(a x^{n}+b x^{m}+c\right)^{2}}
\end{aligned}
$$

2.24 problem 24

2.24.1 Solving as riccati ode . 181

Internal problem ID [10354]
Internal file name [OUTPUT/9301_Monday_June_06_2022_01_49_47_PM_70081015/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a y^{2}-y b=c x+k
$$

2.24.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b y+c x+k
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+b y+c x+k
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=c x+k, f_{1}(x)=b$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a b \\
f_{2}^{2} f_{0} & =a^{2}(c x+k)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-a b u^{\prime}(x)+a^{2}(c x+k) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{e}^{\frac{b x}{2}}\left(\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{1}\right. \\
&\left.\quad+\operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{2}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\mathrm{e}^{\frac{b x}{2}}\left(-2(c a)^{\frac{1}{3}} \operatorname{AiryAi}\left(1,-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{1}-2(c a)^{\frac{1}{3}} \operatorname{AiryBi}\left(1,-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{2}+b(\operatorname{AiryA}\right.}{2}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{-2(c a)^{\frac{1}{3}} \operatorname{AiryAi}\left(1,-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{1}-2(c a)^{\frac{1}{3}} \operatorname{AiryBi}\left(1,-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{2}+b(\operatorname{AiryAi}(}{2 a\left(\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{1}+\operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}((c a}{}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{-\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3} b-b \operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right)+2(c a)^{\frac{1}{3}}\left(\operatorname { A i r y A i } \left(1,-\frac{(c a)^{\frac{1}{3}}((c x+k}{a c}\right.\right.}{2 a\left(\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3}+\operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{1}{2}\right.}{a c}\right.\right.}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{-\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3} b-b \operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right)+2(c a)^{\frac{1}{3}}\left(\operatorname{AiryAi}\left(1,-\frac{(c a)^{\frac{1}{3}}((c x+k}{a c}\right.\right.}{2 a\left(\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3}+\operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{1}{2}\right.}{a c}\right.\right.}$
Verification of solutions
y
$=\frac{-\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3} b-b \operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right)+2(c a)^{\frac{1}{3}}\left(\operatorname{AiryAi}\left(1,-\frac{(c a)^{\frac{1}{3}}((c x+k}{a c}\right.\right.}{2 a\left(\operatorname{AiryAi}\left(-\frac{(c a)^{\frac{1}{3}}\left((c x+k) a-\frac{b^{2}}{4}\right)}{a c}\right) c_{3}+\operatorname{AiryBi}\left(-\frac{(c a)^{\frac{1}{3}}((c x+k) a-}{a c}\right.\right.}$
Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the OF1 0-parameter (Airy type) class`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 194

```
dsolve(diff(y(x),x)=a*y(x)^2+b*y(x)+c*x+k,y(x), singsol=all)
```

$y(x)$

$$
=\frac{2 \sqrt{a}\left(\frac{c}{\sqrt{a}}\right)^{\frac{1}{3}}\left(\operatorname{AiryAi}\left(1,-\frac{a(c x+k)-\frac{b^{2}}{4}}{\left(\frac{c}{\sqrt{a}}\right)^{\frac{2}{3}} a}\right) c_{1}+\operatorname{AiryBi}\left(1,-\frac{a(c x+k)-\frac{b^{2}}{4}}{\left(\frac{c}{\sqrt{a}}\right)^{\frac{2}{3}} a}\right)\right)-b\left(c_{1} \operatorname{AiryAi}\left(-\frac{a(c x+k)-\frac{b^{2}}{4}}{\left(\frac{c}{\sqrt{a}}\right)^{\frac{2}{3}} a}\right)\right.}{2 a\left(c_{1} \operatorname{AiryAi}\left(-\frac{a(c x+k)-\frac{b^{2}}{4}}{\left(\frac{c}{\sqrt{a}}\right)^{\frac{2}{3}} a}\right)+\operatorname{AiryBi}\left(-\frac{a(c x+k)-\frac{b^{2}}{4}}{\left(\frac{c}{\sqrt{a}}\right)^{\frac{2}{3}} a}\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.51 (sec). Leaf size: 359

```
DSolve[y'[x]==a*y[x]^2+b*y[x]+c*x+k,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{c\left(-b(-a c)^{2 / 3} \operatorname{AiryBi}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)+2 a c \operatorname{AiryBiPrime}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)+c_{1}\left(2 a c \operatorname { A i r y A i P r i m e } \left(\frac{b^{2}-4 a(k+}{4(-a c)^{2}}\right.\right.\right.}{2(-a c)^{5 / 3}\left(\operatorname{AiryBi}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)+c_{1} \operatorname{AiryAi}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)\right)} \\
& y(x) \rightarrow-\frac{\frac{2 \sqrt[3]{-a c} \operatorname{AiryAiPrime}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)}{\operatorname{AiryAi}\left(\frac{b^{2}-4 a(k+c x)}{\left.4(-a c)^{2 / 3}\right)}+b\right.}}{2 a} \\
& y(x) \rightarrow-\frac{\frac{2 \sqrt[3]{-a c} \operatorname{AiryAiPrime}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)}{\operatorname{AiryAi}\left(\frac{b^{2}-4 a(k+c x)}{4(-a c)^{2 / 3}}\right)}+b}{2 a}
\end{aligned}
$$

2.25 problem 25

2.25.1 Solving as riccati ode . 185

Internal problem ID [10355]
Internal file name [OUTPUT/9302_Monday_June_06_2022_01_49_48_PM_63309599/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a x^{n} y=a x^{n-1}
$$

2.25.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x^{n} y+a x^{n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a x^{n} y+\frac{a x^{n}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a x^{n-1}, f_{1}(x)=x^{n} a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x^{n} a \\
f_{2}^{2} f_{0} & =a x^{n-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-x^{n} a u^{\prime}(x)+a x^{n-1} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & c_{2} \mathrm{e}^{\frac{a x^{n+1}}{2+2 n}}(n+1)\left(a x^{-\frac{n}{2}}-n x^{-1-\frac{3 n}{2}}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n+1} a}{n+1}\right) \\
& -x^{-1-\frac{3 n}{2}} \mathrm{e}^{\frac{a x^{n+1}}{2+2 n}} \text { WhittakerM }\left(\frac{n}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n+1} a}{n+1}\right) c_{2} n^{2}+c_{1} x
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}} c_{2}(n+1)\left(a x x^{\frac{n}{2}}+x^{-\frac{n}{2}} n^{2}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)+c_{2} n\left(x^{-\frac{n}{2}} n^{2}+a x x^{\frac{n}{2}}(n+1)\right) \mathrm{e}^{\frac{x^{n} a x}{2+2 n}}\right.}{x^{2}}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}} c_{2}(n+1)\left(a x x^{\frac{n}{2}}+x^{-\frac{n}{2}} n^{2}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)+c_{2} n\left(x^{-\frac{n}{2}} n^{2}+a x x^{\frac{n}{2}}(n+1)\right) \mathrm{e}^{\frac{x}{2}}\right.}{x^{2}\left(c _ { 2 } \mathrm { e } ^ { \frac { a x ^ { n + 1 } } { 2 + 2 n } } (n + 1) (a x ^ { - \frac { n } { 2 } } - n x ^ { - 1 - \frac { 3 n } { 2 } }) \text { WhittakerM } \left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n+1} a}{n+1}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}}(n+1)\left(a x x^{\frac{n}{2}}+x^{-\frac{n}{2}} n^{2}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)+n\left(x^{-\frac{n}{2}} n^{2}+a x x^{\frac{n}{2}}(n+1)\right) \mathrm{e}^{\frac{x^{n} a x}{2+2 n}}\right)}{x\left(\mathrm{e}^{\mathrm{x}^{n}{ }^{2}+2 n}\right.}(n+1)\left(x^{-\frac{n}{2}} a x-n x^{-\frac{3 n}{2}}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)-
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}}(n+1)\left(a x x^{\frac{n}{2}}+x^{-\frac{n}{2}} n^{2}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)+n\left(x^{-\frac{n}{2}} n^{2}+a x x^{\frac{n}{2}}(n+1)\right) \mathrm{e}^{\frac{x^{n} a x}{2+2 n}}\right.}{x\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}}(n+1)\left(x^{-\frac{n}{2}} a x-n x^{-\frac{3 n}{2}}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)-\right.} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=$

$$
-\frac{\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}}(n+1)\left(a x x^{\frac{n}{2}}+x^{-\frac{n}{2}} n^{2}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)+n\left(x^{-\frac{n}{2}} n^{2}+a x x^{\frac{n}{2}}(n+1)\right) \mathrm{e}^{\frac{x^{n} a x}{2+2 n}}\right)}{x\left(\mathrm{e}^{\frac{x^{n} a x}{2+2 n}}(n+1)\left(x^{-\frac{n}{2}} a x-n x^{-\frac{3 n}{2}}\right) \text { WhittakerM }\left(\frac{-n-2}{2+2 n}, \frac{1+2 n}{2+2 n},-\frac{x^{n} x a}{n+1}\right)-\right.}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 400
dsolve(diff $(y(x), x)=y(x)^{\wedge} 2+a * x^{\wedge} n * y(x)+a * x^{\wedge}(n-1), y(x)$, singsol=all)
$y(x)$
$=\frac{-\mathrm{e}^{\frac{x^{n} a x}{2 n+2}}\left(-\frac{a x x^{n}}{n+1}\right)^{-\frac{n}{2 n+2}}(n+1)^{2}\left(x^{n} a x-n\right) \text { WhittakerM }\left(\frac{-n-2}{2 n+2}, \frac{2 n+1}{2 n+2},-\frac{a x x^{n}}{n+1}\right)-2 n\left(-\frac{(n+1) n \mathrm{e}^{\frac{x^{n} a x}{2 n+2}}\left(-\frac{a x x^{n}}{n+1}\right)}{x\left(\mathrm{e}^{\frac{x^{n} a x}{2 n+2}}\left(-\frac{a x x^{n}}{n+1}\right)^{-\frac{n}{2 n+2}}(n+1)^{2}\left(x^{n} a x-n\right) \text { WhittakerM }\left(\frac{-n-2}{2 n+2}, \frac{2 n+1}{2 n+2},-\frac{a x x^{n}}{n+1}\right)+2 n\left(-\frac{(n+1) n \mathrm{e}^{\frac{x^{n} a x}{2 n+2}}(}{}\right.\right.}\right) . \frac{}{}}{}$
\checkmark Solution by Mathematica
Time used: 2.82 (sec). Leaf size: 136
DSolve[y'[x]==y[x]^2+a*x^n*y[x]+a*x^(n-1),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(-\frac{a x^{n+1}}{n+1}\right)^{\frac{1}{n+1}} \Gamma\left(-\frac{1}{n+1},-\frac{a x^{n+1}}{n+1}\right)-(n+1)\left(e^{\frac{a x^{n+1}}{n+1}}+c_{1} x\right)}{x\left(-\left(-\frac{a x^{n+1}}{n+1}\right)^{\frac{1}{n+1}} \Gamma\left(-\frac{1}{n+1},-\frac{a x^{n+1}}{n+1}\right)+c_{1}(n+1) x\right)} \\
& y(x) \rightarrow-\frac{1}{x}
\end{aligned}
$$

2.26 problem 26

2.26.1 Solving as riccati ode

Internal problem ID [10356]
Internal file name [OUTPUT/9303_Monday_June_06_2022_01_50_21_PM_5228272/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a x^{n} y=b x^{n-1}
$$

2.26.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x^{n} y+b x^{n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a x^{n} y+\frac{b x^{n}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b x^{n-1}, f_{1}(x)=x^{n} a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x^{n} a \\
f_{2}^{2} f_{0} & =b x^{n-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-x^{n} a u^{\prime}(x)+b x^{n-1} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=x(\operatorname{KummerM}(& \left.\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right) c_{1} \\
& \left.\quad+\operatorname{KummerU}\left(\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right) c_{2}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{a c_{1}(n+1)(a-b) \operatorname{KummerM}\left(-\frac{a n+b}{a(n+1)}+2, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right)-b\left(c_{2}(a-b) \operatorname{KummerU}\left(\frac{(2+n) a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right)\right.}{a^{2}(n+1)}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{a c_{1}(n+1)(a-b) \operatorname{KummerM}\left(-\frac{a n+b}{a(n+1)}+2, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right)-b\left(c _ { 2 } (a - b) \operatorname { K u m m e r U } \left(\frac{(2+n) a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n+1}}{n+1}\right.\right.}{a^{2}(n+1) x\left(\operatorname{KummerM}\left(\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n+1} a}{n+1}\right) c_{1}-\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{-a c_{3}(n+1)(a-b) \operatorname{KummerM}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)+b\left((a-b) \operatorname{KummerU}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)-a(\mathrm{Ku}\right.}{a^{2}(n+1) x\left(\operatorname{KummerM}\left(\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right) c_{3}+\operatorname{Kumm}\right.}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{-a c_{3}(n+1)(a-b) \operatorname{KummerM}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)+b\left((a-b) \operatorname{KummerU}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)-a(\mathrm{Ku}\right.}{a^{2}(n+1) x\left(\operatorname{KummerM}\left(\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right) c_{3}+\operatorname{Kumn}\right.}$
Verification of solutions
y
$=\frac{-a c_{3}(n+1)(a-b) \operatorname{KummerM}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)+b\left((a-b) \operatorname{KummerU}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right)-a(\operatorname{Ku}\right.}{a^{2}(n+1) x\left(\operatorname{KummerM}\left(\frac{a-b}{a(n+1)}, \frac{2+n}{n+1}, \frac{x^{n} x a}{n+1}\right) c_{3}+\operatorname{Kumm}\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*x^n*a-b*x^(n-1
        Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 267

```
dsolve(diff(y(x),x)=y(x)^2+a*x^n*y(x)+b*x^(n-1),y(x), singsol=all)
```

$y(x)$
$=\frac{-a(n+1)(a-b) \operatorname{KummerM}\left(\frac{a(n+2)-b}{a(n+1)}, \frac{n+2}{n+1}, \frac{a x x^{n}}{n+1}\right)+\left((a-b) c_{1} \operatorname{KummerU}\left(\frac{2+n-\frac{b}{a}}{n+1}, \frac{n+2}{n+1}, \frac{a x x^{n}}{n+1}\right)-a(\mathrm{~K}\right.}{a^{2}(n+1) x\left(\operatorname{KummerU}\left(\frac{a-b}{a(n+1)}, \frac{n+2}{n+1}, \frac{a x x^{n}}{n+1}\right) c_{1}+\mathrm{Kum}\right.}$
Solution by Mathematica
Time used: 0.956 (sec). Leaf size: 453

```
DSolve[y'[x]==y[x]^2+a*x^n*y[x]+b*x^(n-1),y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$
$\rightarrow \frac{\left(x^{n}\right)^{\frac{1}{n}}\left(-(-1)^{\frac{1}{n+1}} n(n+2) a^{\frac{1}{n+1}} \text { Hypergeometric1F1 }\left(\frac{a-b}{n a+a}, \frac{n+2}{n+1}, \frac{a\left(x^{n}\right)^{1+\frac{1}{n}}}{n+1}\right)+x^{n}\left(-(-1)^{\frac{1}{n+1}} n(a-b) a^{\frac{\bar{n}}{n}}\right.\right.}{n(n+2) x\left((-1)^{\frac{1}{n+1}} a^{\frac{1}{n+1}}\left(x^{n}\right)^{\frac{1}{n}} \text { Hypergeometric1F1 }\left(\frac{a}{n d}\right.\right.}$
$y(x) \rightarrow \frac{b x^{n-1}\left(x^{n}\right)^{\frac{1}{n}} \text { Hypergeometric1F1 }\left(\frac{n a+a-b}{n a+a}, \frac{2 n+1}{n+1}, \frac{a\left(x^{n}\right)^{1+\frac{1}{n}}}{n+1}\right)}{n \text { Hypergeometric1F1 }\left(-\frac{b}{n a+a}, \frac{n}{n+1}, \frac{a\left(x^{n}\right)^{1+1}}{n+1}\right)}$

2.27 problem 27

2.27.1 Solving as riccati ode . 194

Internal problem ID [10357]
Internal file name [OUTPUT/9304_Monday_June_06_2022_01_50_23_PM_9360412/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-(\alpha x+\beta) y=a x^{2}+b x+c
$$

2.27.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{2}+\alpha x y+b x+\beta y+y^{2}+c
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{2}+\alpha x y+b x+\beta y+y^{2}+c
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a x^{2}+b x+c, f_{1}(x)=\alpha x+\beta$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\alpha x+\beta \\
f_{2}^{2} f_{0} & =a x^{2}+b x+c
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-(\alpha x+\beta) u^{\prime}(x)+\left(a x^{2}+b x+c\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=4\left(c _ { 2 } \left(-\frac{1}{4} \alpha^{2} x+x a-\frac{1}{4} \alpha \beta\right.\right. \\
& \left.\quad+\frac{1}{2} b\right) \text { hypergeom }\left(\left[\frac{\left(-\alpha^{3}-2 \alpha^{2} c+(2 \beta b+4 a) \alpha+\left(-2 \beta^{2}+8 c\right) a-2 b^{2}\right) \sqrt{\alpha^{2}-4 a}+48\left(-\frac{\alpha^{2}}{4}+a\right)^{2}}{4\left(-\alpha^{2}+4 a\right)^{2}}\right.\right. \\
& \left.\quad+\frac{\text { hypergeom } \left.\left(\left[\frac{\left(-\alpha^{3}-2 \alpha^{2} c+(2 \beta b+4 a) \alpha+\left(-2 \beta^{2}+8 c\right) a-2 b^{2}\right) \sqrt{\alpha^{2}-4 a}+16\left(-\frac{\alpha^{2}}{4}+a\right)^{2}}{4\left(-\alpha^{2}+4 a\right)^{2}}\right],\left[\frac{1}{2}\right], \frac{\left(-\alpha^{2} x+4 x a-\alpha \beta+2 b\right)^{2}}{2\left(\alpha^{2}-4 a\right)^{\frac{3}{2}}}\right) c_{1}\right)}{4}\right) \mathrm{e}
\end{aligned}
$$

The above shows that Expression too large to display

Using the above in (1) gives the solution

Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (alpha*x+beta)*(diff(y(x), x))
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is r
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 974

```
dsolve(diff(y(x),x)=y(x)^2+(alpha*x+beta)*y(x)+a*x^2+b*x+c,y(x), singsol=all)
```

> Expression too large to display
\checkmark Solution by Mathematica
Time used: 4.264 (sec). Leaf size: 1291
DSolve $\left[y^{\prime}[x]==y[x] \sim 2+(\backslash[\right.$ Alpha $] * x+\backslash[$ Beta $]) * y[x]+a * x^{\wedge} 2+b * x+c, y[x], x$, IncludeSingularSolutions
$y(x) \rightarrow$

$$
2\left(2 b+4 a x+\left(\sqrt{\alpha^{2}-4 a}-\alpha\right)(x \alpha+\beta)\right) \text { Hypergeometric1F1 }\left(-\frac{2 b^{2}-2 \alpha \beta b+\alpha^{2}\left(2 c+\alpha-\sqrt{\alpha^{2}-4 a}\right)+2 a\left(\beta^{2}-4 c-\right.}{4\left(\alpha^{2}-4 a\right)^{3 / 2}}\right.
$$

$y(x)$
$\rightarrow \frac{\left(4 a-\alpha^{2}\right)\left(\left(\sqrt{\alpha^{2}-4 a}-\alpha\right)(\beta+\alpha x)+4 a x+2 b\right)-\frac{\sqrt{2} \sqrt[4]{\alpha^{2}-4 a}\left(2 a\left(2 \sqrt{\alpha^{2}-4 a}-2 \alpha+\beta^{2}-4 c\right)+\alpha^{2}\left(-\sqrt{\alpha^{2}-4 a}+\alpha+\right.\right.}{\text { HermiteH }\left(-\frac{-2 b^{2}+2 \alpha \beta b+c}{}\right.}}{2\left(\alpha^{2}-4 a\right)^{3 / 2}}$

2.28 problem 28

> 2.28.1 Solving as riccati ode

Internal problem ID [10358]
Internal file name [OUTPUT/9305_Monday_June_06_2022_01_50_51_PM_42556060/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a x^{n} y=-a x^{n} b-b^{2}
$$

2.28.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x^{n} y-a x^{n} b-b^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a x^{n} y-a x^{n} b-b^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a x^{n} b-b^{2}, f_{1}(x)=x^{n} a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x^{n} a \\
f_{2}^{2} f_{0} & =-a x^{n} b-b^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-x^{n} a u^{\prime}(x)+\left(-a x^{n} b-b^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& -\frac{c_{2}\left(-\left(\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x\right) b+c_{1} b+\mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}}\right) \mathrm{e}^{\int \frac{-\left(\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x\right) b+c_{1} b+\mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x-c_{1}} d x}}{-\left(\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x\right)+c_{1}}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\int \mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}} d x-c_{3}\right) b-\mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x-c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\int \mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}} d x-c_{3}\right) b-\mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x-c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\int \mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}} d x-c_{3}\right) b-\mathrm{e}^{\frac{a x^{n+1}+2 b x(n+1)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a+2 b(n+1)\right)}{n+1}} d x-c_{3}}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*x^n*a+(b*x^n*a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in {
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 74
dsolve(diff $(y(x), x)=y(x)^{\wedge} 2+a * x^{\wedge} n * y(x)-a * b * x^{\wedge} n-b^{\wedge} 2, y(x)$, singsol=all)

$$
\frac{(b-y(x))\left(\int^{x} \mathrm{e}^{\frac{\left(-a^{n} a+2 b(n+1)\right) _a}{n+1}} d _a\right)+c_{1} b-c_{1} y(x)-\mathrm{e}^{\frac{\left(a x^{n}+2 b(n+1)\right) x}{n+1}}}{b-y(x)}=0
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 1.948 (sec). Leaf size: 195
DSolve[y'[x]==y[x]^2+a*x^n*y[x]-a*b*x^n-b^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\int _ { 1 } ^ { y (x) } \left(\frac{e^{\frac{a x^{n+1}}{n+1}+2 b x}}{a n(K[2]-b)^{2}}\right.\right. \\
& \left.-\int_{1}^{x}\left(\frac{e^{\frac{a K[1]^{n+1}}{n+1}+2 b K[1]}\left(a K[1]^{n}+b+K[2]\right)}{a n(b-K[2])^{2}}+\frac{e^{\frac{a K\left[11^{n+1}\right.}{n+1}+2 b K[1]}}{a n(b-K[2])}\right) d K[1]\right) d K[2] \\
& \left.+\int_{1}^{x} \frac{e^{\frac{a K[1]^{n+1}}{n+1}+2 b K[1]}\left(a K[1]^{n}+b+y(x)\right)}{a n(b-y(x))} d K[1]=c_{1}, y(x)\right]
\end{aligned}
$$

2.29 problem 29

2.29.1 Solving as riccati ode . 204

Internal problem ID [10359]
Internal file name [OUTPUT/9306_Monday_June_06_2022_01_50_54_PM_18768528/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(n+1) x^{n} y^{2}=a x^{1+m+n}-a x^{m}
$$

2.29.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{n} n y^{2}-x^{n} y^{2}+a x^{1+m+n}-a x^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-x^{n} n y^{2}-x^{n} y^{2}+a x x^{m} x^{n}-a x^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a x^{1+m+n}-a x^{m}, f_{1}(x)=0$ and $f_{2}(x)=-n x^{n}-x^{n}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-n x^{n}-x^{n}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(-n x^{n}-x^{n}\right)^{2}\left(a x^{1+m+n}-a x^{m}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-n x^{n}-x^{n}\right) u^{\prime \prime}(x)-\left(-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x}\right) u^{\prime}(x)+\left(-n x^{n}-x^{n}\right)^{2}\left(a x^{1+m+n}-a x^{m}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =\mathrm{DESol}\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a _Y(x)(n+1) x^{1+m+n}-n _Y^{\prime}(x)+_Y^{\prime \prime}(x) x}{x}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \text { DESol }\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a _Y(x)(n+1) x^{1+m+n}-n _Y^{\prime}(x)+_{-} Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right.
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
\begin{aligned}
& \frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a _Y(x)(n+1) x^{1+m+n}-n _Y^{\prime}(x)+_Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right) \\
& \left(-n x^{n}-x^{n}\right) \mathrm{DESol}\left(\left\{\frac{\left.\left.-a _Y(x)(n+1) x^{m+2 n+2}+a _\frac{Y(x)(n+1) x^{1+m+n-n _} Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right), ~(x)}{}\right.\right.
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-a _Y_{(x)(n+1) x^{m+2 n+2}+a _} Y_{(x)(n+1) x^{1+m+n}-n _}^{x} Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{(n+1) \operatorname{DESol}\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a __}{} Y_{(x)(n+1) x^{1+m+n-n} Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) x}^{x}\right\},\{-Y(x)\}\right)}$

Summary

The solution(s) found are the following
y

Verification of solutions
y
$=\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a _-}{} \frac{Y(x)(n+1) x^{1+m+n}-n _Y^{\prime}(x)+_Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{(n+1) \operatorname{DESol}\left(\left\{\frac{-a _Y(x)(n+1) x^{m+2 n+2}+a _\sum(x)(n+1) x^{1+m+n}-n _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) x}{x}\right\},\{-Y(x)\}\right)}$
Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*(diff(y(x), x))/x+x^n*(n+1)*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

X Solution by Maple
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{n}+1) * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}+\mathrm{m}+1)-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y^{\prime}[x]==-(n+1) * x^{\wedge} n * y[x] \wedge 2+a * x^{\wedge}(n+m+1)-a * x^{\wedge} m, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved

2.30 problem 30

> 2.30.1 Solving as riccati ode

Internal problem ID [10360]
Internal file name [OUTPUT/9307_Monday_June_06_2022_01_50_57_PM_28947109/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}-b x^{m} y=b c x^{m}-a c^{2} x^{n}
$$

2.30.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+x^{m} b y+b c x^{m}-a c^{2} x^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}+x^{m} b y+b c x^{m}-a c^{2} x^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b c x^{m}-a c^{2} x^{n}, f_{1}(x)=b x^{m}$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =b x^{m} x^{n} a \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2}\left(b c x^{m}-a c^{2} x^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\left(\frac{a n x^{n}}{x}+b x^{m} x^{n} a\right) u^{\prime}(x)+x^{2 n} a^{2}\left(b c x^{m}-a c^{2} x^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)--Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)+a _Y(x)\left(b c x^{m+n}-a c^{2} x^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)\right.\right. \\
& \left.\left.\quad+a _Y(x)\left(b c x^{m+n}-a c^{2} x^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y & = \\
& -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)+a _Y(x)\left(b c x^{m+n}-a c^{2} x^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)+a _Y(x)\left(b c x^{m+n}-a c^{2} x^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& \left.\left.\left.\quad-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-x^{2 n}-Y(x) a^{2} c^{2} x+x^{m+n} _Y(x) a b c x-x^{m+1} _Y^{\prime}(x) b+\ldots}{x} Y^{\prime \prime}(x) x-n _Y^{\prime}(x)\right.\right.\right.}{x}\right\},\{-Y(x)\}\right)\right) x^{-n} \\
& a \mathrm{DESol}\left(\left\{\frac{-x^{1+2 n} a^{2} c^{2}=Y(x)+a b c x^{1+m+n}-Y_{(x)+\ldots} Y^{\prime \prime}(x) x-\ldots Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& \quad-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{2 n} _Y(x) a^{2} c^{2} x+x^{m+n} _Y(x) a b c x-x^{m+1} _Y^{\prime}(x) b+_Y^{\prime \prime}(x) x-n _Y^{\prime}(x)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} a^{2} c^{2} _Y(x)+a b c x^{1+m+n}-Y(x)+_Y^{\prime \prime}(x) x-_Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& \quad-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-x^{2 n} _Y(x) a^{2} c^{2} x+x^{m+n} _Y(x) a b c x-x^{m+1} _Y^{\prime}(x) b+\ldots Y^{\prime \prime}(x) x-n _Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{a \mathrm{DESol}\left(\left\{\frac{-x^{1+2 n} a^{2} c^{2}=Y(x)+a b c x^{1+m+n}-Y_{(x)+\ldots} Y^{\prime \prime}(x) x-\ldots Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x*x^m*b+n)*(diff(y(x), x))/x+
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```


\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 98
dsolve($\operatorname{diff}(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2+b * x^{\wedge} m * y(x)+b * c * x^{\wedge} m-a * c^{\wedge} 2 * x^{\wedge} n, y(x)$, singsol=all)

$$
\begin{aligned}
& a(c+y(x))\left(\int^{x} \mathrm{e}^{-\frac{2\left(-\frac{\left.b(n+1) _a^{m}+a _a^{n} c(1+m)\right) _a}{(1+m)(n+1)}\right.}{}}-a^{n} d _a\right)+c_{1} y(x)+c_{1} c+\mathrm{e}^{-\frac{2\left(-\frac{b(n+1) x^{m}}{2}+a x^{n} c(1+m)\right) x}{(1+m)(n+1)}} \\
& =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 3.436 (sec). Leaf size: 286

DSolve $\left[y^{\prime}[x]==a * x^{\wedge} n * y[x] \wedge 2+b * x^{\wedge} m * y[x]+b * c * x^{\wedge} m-a * c^{\wedge} 2 * x^{\wedge} n, y[x], x\right.$, IncludeSingulafSolutions $\rightarrow T$

Solve $\left[\int_{1}^{y(x)}\left(\frac{e^{\frac{b x^{m+1}}{m+1}-\frac{2 a c x^{n+1}}{n+1}}}{a b(m-n)(c+K[2])^{2}}\right.\right.$
$-\int_{1}^{x}\left(-\frac{\exp \left(\frac{b K[1]^{m+1}}{m+1}-\frac{2 a c K[1]^{n+1}}{n+1}\right) K[1]^{n}}{b(m-n)(c+K[2])}-\frac{\exp \left(\frac{b K[1]^{m+1}}{m+1}-\frac{2 a c K[1]^{n+1}}{n+1}\right)\left(-b K[1]^{m}+a c K[1]^{n}-a K[2] K[\right.}{a b(m-n)(c+K[2])^{2}}\right.$
$\left.+\int_{1}^{x} \frac{\exp \left(\frac{b K[1]^{m+1}}{m+1}-\frac{2 a c K[1]^{n+1}}{n+1}\right)\left(-b K[1]^{m}+a c K[1]^{n}-a y(x) K[1]^{n}\right)}{a b(m-n)(c+y(x))} d K[1]=c_{1}, y(x)\right]$

2.31 problem 31

2.31.1 Solving as riccati ode . 214

Internal problem ID [10361]
Internal file name [OUTPUT/9308_Monday_June_06_2022_01_51_00_PM_6355186/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 31 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}+a x^{n}\left(b x^{m}+c\right) y=b m x^{m-1}
$$

2.31.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{n} x^{m} a b y-x^{n} a c y+a x^{n} y^{2}+b m x^{m-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-x^{n} x^{m} a b y-x^{n} a c y+a x^{n} y^{2}+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}, f_{1}(x)=-b x^{m} x^{n} a-x^{n} a c$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =\left(-b x^{m} x^{n} a-x^{n} a c\right) x^{n} a \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2} b m x^{m-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\left(\left(-b x^{m} x^{n} a-x^{n} a c\right) x^{n} a+\frac{a n x^{n}}{x}\right) u^{\prime}(x)+x^{2 n} a^{2} b m x^{m-1} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{Y^{\prime}(x) x^{1+m+n} a b+_{-} Y^{\prime \prime}(x) x+a b m x^{m+n}-Y(x)+_{_} Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{Y^{\prime}(x) x^{1+m+n} a b+_{-} Y^{\prime \prime}(x) x+a b m x^{m+n}-Y(x)+_{_} Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\{-Y(x)\}\right)$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{=\frac{Y^{\prime}(x) x^{1+m+n} a b+_Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+_Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+_Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{=\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+\ldots Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+\ldots Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y= \tag{1}\\
& \left.\left.\left.-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{=\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y_{(x)+}}{x} Y^{\prime}(x)\left(a x^{n+1} c-n\right)\right.\right.\right.}{}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n} \\
& a \operatorname{DESol}\left(\left\{\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+\ldots Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)
\end{align*}
$$

Verification of solutions
$y=$

$$
\left.\left.-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{=\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+\ldots Y^{\prime}(x)\left(a x^{n+1} c-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{-\frac{Y^{\prime}(x) x^{1+m+n} a b+\ldots}{} Y^{\prime \prime}(x) x+a b m x^{m+n} _Y(x)+_Y^{\prime}(x)\left(a x^{n+1} c-n\right)\right.\right.} x^{\prime}\right\},\left\{_Y(x)\right\}\right)
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (a*x^n*c*x+x^(n+m)*a*b*x-n)*(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

X Solution by Maple
dsolve(diff $(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2-a * x^{\wedge} n *\left(b * x^{\wedge} m+c\right) * y(x)+b * m * x^{\wedge}(m-1), y(x)$, singsol=all)

No solution found
\checkmark Solution by Mathematica
Time used: 59.342 (sec). Leaf size: 353
DSolve $\left[y\right.$ ' $[x]==a * x^{\wedge} n * y[x] \wedge 2-a * x^{\wedge} n *\left(b * x^{\wedge} m+c\right) * y[x]+b * m * x^{\wedge}(m-1), y[x], x$, IncludeSingularSolutions
$y(x)$
$\rightarrow \frac{b m\left(b x^{m}+c\right)^{2}\left(1+c_{1} \int_{1}^{x} \frac{\exp \left(a K[1]^{n+1}\left(\frac{b K[1]^{m}}{m+n+1}+\frac{c}{n+1}\right)\right) K[1]^{m-1}}{\left(b K[1]^{m}+c\right)^{2}} d K[1]\right)}{b c_{1} m\left(b x^{m}+c\right) \int_{1}^{x} \frac{\exp \left(a K[1]^{n+1}\left(\frac{b K[1]^{m}}{m+n+1}+\frac{c}{n+1}\right)\right) K[1]^{m-1}}{\left(b K[1]^{m}+c\right)^{2}} d K[1]+c_{1} e^{a x^{n+1}\left(\frac{b x^{m}}{m+n+1}+\frac{c}{n+1}\right)}+b^{2} m x^{m}+b c m}$
$y(x) \rightarrow \frac{b m\left(b x^{m}+c\right)^{2} \int_{1}^{x} \frac{\exp \left(a K[1]^{n+1}\left(\frac{b K[1]^{m}}{m+n+1}+\frac{c}{n+1}\right)\right) K[1]^{m-1}}{\left(b K[1]^{m}+c\right)^{2}} d K[1]}{b m\left(b x^{m}+c\right) \int_{1}^{x} \frac{\exp \left(a K[1]^{n+1}\left(\frac{b K[1]^{m}}{m+n+1}+\frac{c}{n+1}\right)\right) K[1]^{m-1}}{\left(b K[1]^{m}+c\right)^{2}} d K[1]+e^{a x^{n+1}\left(\frac{b x^{m}}{m+n+1}+\frac{c}{n+1}\right)}}$

2.32 problem 32

2.32.1 Solving as riccati ode . 219

Internal problem ID [10362]
Internal file name [OUTPUT/9309_Monday_June_06_2022_01_51_03_PM_81658841/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+a n x^{n-1} y^{2}-c x^{m}\left(x^{n} a+b\right) y=-c x^{m}
$$

2.32.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{n-1} a n y^{2}+x^{m} x^{n} a c y+x^{m} b c y-c x^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{n} a n y^{2}}{x}+x^{m} x^{n} a c y+x^{m} b c y-c x^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-c x^{m}, f_{1}(x)=a c x^{m} x^{n}+b c x^{m}$ and $f_{2}(x)=-a n x^{n-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-a n x^{n-1} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a n x^{n-1}(n-1)}{x} \\
f_{1} f_{2} & =-\left(a c x^{m} x^{n}+b c x^{m}\right) a n x^{n-1} \\
f_{2}^{2} f_{0} & =-a^{2} n^{2} x^{2 n-2} c x^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$-a n x^{n-1} u^{\prime \prime}(x)-\left(-\frac{a n x^{n-1}(n-1)}{x}-\left(a c x^{m} x^{n}+b c x^{m}\right) a n x^{n-1}\right) u^{\prime}(x)-a^{2} n^{2} x^{2 n-2} c x^{m} u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\left(\int \frac{x^{n-1} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m}}{(m+1)(1+m+n)}}}{\left(x^{n} a+b\right)^{2}} d x\right) c_{2}+c_{1}\right)\left(x^{n} a+b\right)
$$

The above shows that
$=\frac{\left(a n c_{2}\left(x^{n} a+b\right)\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) n^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}} d x\right)+\mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}} c_{2}+a n c_{1}\left(x^{n} a+b\right)\right) x^{n}}{x\left(x^{n} a+b\right)}$
Using the above in (1) gives the solution

$$
\left.\left.\left.=\frac{\left(a n c _ { 2 } (x ^ { n } a + b) \left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}}\right.\right.}{y} d x\right)+\mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n) c x^{m} x\right.}{(m+1)(1+m+n)}} c_{2}+a n c_{1}\left(x^{n} a+b\right)\right) x^{n} x^{1-n}\right)
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{a n\left(x^{n} a+b\right)\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}} d x\right)+a^{2} n c_{3} x^{n}+a n c_{3} b+\mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{a n\left(x^{n} a+b\right)^{2}\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}} d x+c_{3}\right)}
$$

Summary

The solution(s) found are the following
y

$$
\begin{equation*}
\left.=\frac{a n\left(x^{n} a+b\right)\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n) c x^{m} x\right.}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}} d x\right)+a^{2} n c_{3} x^{n}+a n c_{3} b+\mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n) c x^{m} x\right.}{(m+1)(1+m+n)}}}{a n\left(x^{n} a+b\right)^{2}\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+++n)}}}{x\left(x^{n} a+b\right)^{2}}\right.} d x+c_{3}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

y

$$
\left.=\frac{a n\left(x^{n} a+b\right)\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}} d x\right)+a^{2} n c_{3} x^{n}+a n c_{3} b+\mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{a n\left(x^{n} a+b\right)^{2}\left(\int \frac{x^{n} \mathrm{e}^{\frac{\left(a(m+1) x^{n}+b(1+m+n)\right) c x^{m} x}{(m+1)(1+m+n)}}}{x\left(x^{n} a+b\right)^{2}}\right.} d x+c_{3}\right)
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x*x^m*b*c+x^(n+m)*a*c*x+n-1)*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x2and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 199

```
dsolve(diff (y(x),x)=-a*n*x^(n-1)*y(x)^2+c*x^m*(a*x^n+b)*y(x)-c*x^m,y(x), singsol=all)
```

$y(x)$

$$
\left.=\frac{a n\left(a x^{n}+b\right)\left(\int \frac{x^{n-1} \mathrm{e}^{\frac{c\left(a(1+m) x^{1+m+n}+b x^{1+m}(1+m+n)\right)}{(1+m)(1+m+n)}}}{\left(a x^{n}+b\right)^{2}}\right.}{(a)}-x^{n} c_{1} a-c_{1} b+\mathrm{e}^{\frac{c\left(a(1+m) x^{1+m+n}+b x^{1+m}(1+m+n)\right)}{(1+m)(1+m+n)}}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 8.659 (sec). Leaf size: 304
DSolve $\left[y\right.$ ' $[\mathrm{x}]==-\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}[\mathrm{x}]^{\wedge} 2+\mathrm{c} * \mathrm{x}^{\wedge} \mathrm{m} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}[\mathrm{x}]-\mathrm{c} * \mathrm{x}^{\wedge} \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions
$y(x)$
$\rightarrow \frac{a c_{1} n\left(a x^{n}+b\right) \int_{1}^{x} \frac{\exp \left(c K[1]^{m+1}\left(\frac{a K\left[11^{n}\right.}{m+n+\frac{b}{m+1}}\right)\right) K[1]^{n-1}}{\left(a K[1]^{n}+b\right)^{2}} d K[1]+a^{2} n x^{n}+c_{1} e^{c x^{m+1}\left(\frac{a x^{n}}{m+n+1}+\frac{b}{m+1}\right)}+a b n}{a n\left(a x^{n}+b\right)^{2}\left(1+c_{1} \int_{1}^{x} \frac{\exp \left(c K[1]^{m+1}\left(\frac{a K[1]^{n}}{m+1}+\frac{b}{m+1}\right)\right) K[1]^{n-1}}{\left(a K[1]^{n}+b\right)^{2}} d K[1]\right)}$
$y(x) \rightarrow \frac{\frac{e^{c x^{m+1}\left(\frac{a x^{n}}{m+1}+\frac{b}{m+1}\right)}}{a n \int_{1}^{x} \frac{\left.\exp (c K[1]]^{m+1}\left(\frac{a K[n+1]^{n}}{m+n+1}+\frac{b}{m+1}\right)\right) K[1]^{n-1}}{\left(a K[1]^{n}+b\right)^{2}}} d K[1]}{\left(a x^{n}+b\right)^{2}} a x^{n}+b$

2.33 problem 33

2.33.1 Solving as riccati ode . 224

Internal problem ID [10363]
Internal file name [OUTPUT/9310_Monday_June_06_2022_01_51_07_PM_78619454/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 33 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}-b x^{m} y=c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}
$$

2.33.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+x^{m} b y+c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}+x^{m} b y+\frac{c k x^{k}}{x}-b c x^{k} x^{m}-a c^{2} x^{n} x^{2 k}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}, f_{1}(x)=b x^{m}$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x} \\
f_{1} f_{2} & =b x^{m} x^{n} a \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2}\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$x^{n} a u^{\prime \prime}(x)-\left(\frac{a n x^{n}}{x}+b x^{m} x^{n} a\right) u^{\prime}(x)+x^{2 n} a^{2}\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{DESol}(& \left\{-Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)\right. \\
& \left.\left.+x^{n} a\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol } & \left(\left\{-Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)\right.\right. \\
& \left.\left.+x^{n} a\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y & = \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)+x^{n} a\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)\right.}{a \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x}+b x^{m}\right)+x^{n} a\left(c k x^{k-1}-b c x^{k+m}-a c^{2} x^{n+2 k}\right) _Y(x)\right\},\left\{_Y(x)\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$\begin{aligned} y= & \\ & \left.-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{n+2 k} x^{n+1}-Y(x) a^{2} c^{2}-a c _Y(x)\left(-k x^{k-1}+x^{k+m} b\right) x^{n+1}+\ldots Y^{\prime \prime}(x) x-\ldots Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\{-Y(x)\}\right)\right.}{a \operatorname{DESol}\left(\left\{\frac{-x^{2 n+2 k+1}-Y(x) a^{2} c^{2}-x^{k+1+m+n}=Y(x) a b c+\ldots}{\bar{Y}} Y^{\prime \prime}(x) x+x^{k+n}=Y(x) a c k-_Y^{\prime}(x)\left(x^{m+1} b+n\right)\right.\right.}\right\},\{-Y(x)\end{aligned}$

Summary

The solution(s) found are the following
$y=$
$\left.-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-x^{n+2 k} x^{n+1} _Y(x) a^{2} c^{2}-a c _Y(x)\left(-k x^{k-1}+x^{k+m} b\right) x^{n+1}+\ldots Y^{\prime \prime}(x) x-\ldots Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right.}{a \operatorname{DESol}\left(\left\{\frac{-x^{2 n+2 k+1} _Y(x) a^{2} c^{2}-x^{k+1+m+n} _Y(x) a b c+\ldots}{x} Y^{\prime \prime}(x) x+x^{k+n}-Y(x) a c k-\ldots Y^{\prime}(x)\left(x^{m+1} b+n\right)\right.\right.}\right\},\{-Y(x)$
Verification of solutions
$y=$

$$
\left.-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-x^{n+2 k} x^{n+1} _Y(x) a^{2} c^{2}-a c _Y(x)\left(-k x^{k-1}+x^{k+m} b\right) x^{n+1}+\ldots Y^{\prime \prime}(x) x-_Y^{\prime}(x)\left(x^{m+1} b+n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right.}{a \mathrm{DESol}\left(\left\{\frac{-x^{2 n+2 k+1} _Y(x) a^{2} c^{2}-x^{k+1+m+n} _Y(x) a b c+{ }_{\bar{x}}}{x} Y^{\prime \prime}(x) x+x^{k+n} _Y(x) a c k-_Y^{\prime}(x)\left(x^{m+1} b+n\right)\right.\right.}\right\},\left\{_Y(x)\right.
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x*x^m*b+n)*(diff(y(x), x))/x-
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

X Solution by Maple
dsolve(diff $(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2+b * x^{\wedge} m * y(x)+c * k * x^{\wedge}(k-1)-b * c * x^{\wedge}(m+k)-a * c^{\wedge} 2 * x^{\wedge}(n+2 * k), y(x)$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y^{\prime}[x]==a * x^{\wedge} n * y[x] \wedge 2+b * x^{\wedge} m * y[x]+c * k * x^{\wedge}(k-1)-b * c * x^{\wedge}(m+k)-a * c^{\wedge} 2 * x^{\wedge}(n+2 * k), y[x], x\right.$, Include
Not solved

2.34 problem 34

> 2.34.1 Solving as riccati ode

Internal problem ID [10364]
Internal file name [OUTPUT/9311_Monday_June_06_2022_01_51_13_PM_28351703/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a y^{2}-y b=c x^{2 b}
$$

2.34.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y^{2}+b y+c x^{2 b}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a y^{2}}{x}+\frac{c x^{2 b}}{x}+\frac{b y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{2 b}}{x}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=\frac{a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}} \\
f_{1} f_{2} & =\frac{a b}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} c x^{2 b}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a u^{\prime \prime}(x)}{x}-\left(-\frac{a}{x^{2}}+\frac{a b}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} c x^{2 b} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)+c_{2} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{x^{b} \sqrt{c a}\left(c_{1} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)-c_{2} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right)}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{x^{b} \sqrt{c a}\left(c_{1} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)-c_{2} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right)}{a\left(c_{1} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)+c_{2} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-c_{3} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) x^{b} \sqrt{c a}}{\left(c_{3} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) a}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{3} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) x^{b} \sqrt{c a}}{\left(c_{3} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-c_{3} \cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) x^{b} \sqrt{c a}}{\left(c_{3} \sin \left(\frac{x^{b} \sqrt{c a}}{b}\right)+\cos \left(\frac{x^{b} \sqrt{c a}}{b}\right)\right) a}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve($x * \operatorname{diff}(y(x), x)=a * y(x)^{\wedge} 2+b * y(x)+c * x^{\wedge}(2 * b), y(x)$, singsol=all)

$$
y(x)=\frac{\tan \left(\frac{x^{b} \sqrt{a} \sqrt{c}-c_{1} b}{b}\right) \sqrt{c} x^{b}}{\sqrt{a}}
$$

\checkmark Solution by Mathematica
Time used: 0.544 (sec). Leaf size: 139
DSolve[x*y'[x]==a*y[x]~2+b*y[x]+c*x^(2*b),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt{c} x^{b}\left(-\cos \left(\frac{\sqrt{a} \sqrt{c} x^{b}}{b}\right)+c_{1} \sin \left(\frac{\sqrt{a} \sqrt{c} x^{b}}{b}\right)\right)}{\sqrt{a}\left(\sin \left(\frac{\sqrt{a} \sqrt{c} x^{b}}{b}\right)+c_{1} \cos \left(\frac{\sqrt{a} \sqrt{c} x^{b}}{b}\right)\right)} \\
& y(x) \rightarrow \frac{\sqrt{c} x^{b} \tan \left(\frac{\sqrt{a} \sqrt{c} x^{b}}{b}\right)}{\sqrt{a}}
\end{aligned}
$$

2.35 problem 35

2.35.1 Solving as riccati ode . 233

Internal problem ID [10365]
Internal file name [OUTPUT/9312_Monday_June_06_2022_01_51_13_PM_77067681/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a y^{2}-y b=c x^{n}
$$

2.35.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y^{2}+b y+c x^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a y^{2}}{x}+\frac{c x^{n}}{x}+\frac{b y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{n}}{x}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=\frac{a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}} \\
f_{1} f_{2} & =\frac{a b}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} c x^{n}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a u^{\prime \prime}(x)}{x}-\left(-\frac{a}{x^{2}}+\frac{a b}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} c x^{n} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right) x^{\frac{b}{2}}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=-x^{-1+\frac{b}{2}}\left(\sqrt { c a } x ^ { \frac { n } { 2 } } \operatorname { B e s s e l J } \left(\frac{b+n}{n}\right.\right. & \left., \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1} \\
& +\operatorname{BesselY}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) \sqrt{c a} x^{\frac{n}{2}} c_{2} \\
& \left.-b\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right)\right)
\end{aligned}
$$

Using the above in (1) gives the solution
y
$=\frac{x^{-1+\frac{b}{2}}\left(\sqrt{c a} x^{\frac{n}{2}} \operatorname{BesselJ}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) \sqrt{c a} x^{\frac{n}{2}} c_{2}-b\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c\right.\right.}{a\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{n}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{\left(\operatorname{BesselJ}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) \sqrt{c a} x^{\frac{n}{2}}-b\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{2}{n}\right)\right.}{a\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{Bessel} Y\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right)}$
Summary
The solution(s) found are the following
y
$=\frac{\left(\operatorname{BesselJ}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) \sqrt{c a} x^{\frac{n}{2}}-b\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{Bessel} Y(\right.}{a\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right)}$
Verification of solutions
y
$=\frac{\left(\operatorname{BesselJ}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{b+n}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) \sqrt{c a} x^{\frac{n}{2}}-b\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}(\right.}{a\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right)}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b-1)*(diff(y(x), x))/x-a*c*x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 164
dsolve($x * \operatorname{diff}(y(x), x)=a * y(x)^{\wedge} 2+b * y(x)+c * x^{\wedge} n, y(x)$, singsol=all)
$y(x)$
$=\frac{\sqrt{a c}\left(\operatorname{Bessel} Y\left(\frac{b+n}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}\left(\frac{b+n}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-b\left(\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}(\right.}{a\left(\operatorname{BesselY}\left(\frac{b}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right)\right)}$
Solution by Mathematica
Time used: 0.513 (sec). Leaf size: 402
DSolve[x*y'[x]==a*y[x]~2+b*y[x]+c*x^n,y[x],x,IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \frac{\sqrt{a} \sqrt{c} x^{n / 2}\left(-2 \operatorname{BesselJ}\left(\frac{b}{n}-1, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)+c_{1}\left(\operatorname{BesselJ}\left(1-\frac{b}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)-\operatorname{BesselJ}\left(-\frac{b+n}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right.\right.\right.}{2 a\left(\operatorname{BesselJ}\left(\frac{b}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)+c_{1} \operatorname{BesselJ}\left(-\frac{b}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)\right)}$
$y(x) \rightarrow$
$-\frac{-\sqrt{a} \sqrt{c} x^{n / 2} \operatorname{BesselJ}\left(1-\frac{b}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)+\sqrt{a} \sqrt{c} x^{n / 2} \operatorname{BesselJ}\left(-\frac{b+n}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)+b \operatorname{BesselJ}\left(-\frac{b}{n}, \frac{2 \sqrt{c}}{}\right.}{2 a \operatorname{BesselJ}\left(-\frac{b}{n}, \frac{2 \sqrt{a} \sqrt{c} x^{n / 2}}{n}\right)}$

2.36 problem 36

2.36.1 Solving as riccati ode

Internal problem ID [10366]
Internal file name [OUTPUT/9313_Monday_June_06_2022_01_51_14_PM_27493872/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 36 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a y^{2}-\left(n+b x^{n}\right) y=c x^{2 n}
$$

2.36.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{n} b y+a y^{2}+c x^{2 n}+n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} b y}{x}+\frac{a y^{2}}{x}+\frac{c x^{2 n}}{x}+\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{2 n}}{x}, f_{1}(x)=\frac{n+b x^{n}}{x}$ and $f_{2}(x)=\frac{a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(n+b x^{n}\right) a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} c x^{2 n}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a u^{\prime \prime}(x)}{x}-\left(-\frac{a}{x^{2}}+\frac{\left(n+b x^{n}\right) a}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} c x^{2 n} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{x^{n} b}{2 n}}\left(c_{1} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{1}+c_{2} b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{\left.\left.x^{n} \frac{\sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{2}+c_{1} b\right)\right) x^{n-1} \mathrm{e}^{\frac{x^{n} b}{2 n}}}{2} . \frac{2}{}\right.\right.}{2}$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{1}+c_{2} b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{2}+c_{1} b\right)\right) x^{n-1} x}{2 a\left(c_{1} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{x^{n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& -\frac{x^{n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
\end{aligned}
$$

Verification of solutions
$y=$

$$
-\frac{x^{n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 69
dsolve ($x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\left(\mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n}\right) * \mathrm{y}(\mathrm{x})+\mathrm{c} * \mathrm{x}^{\wedge}(2 * \mathrm{n}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=-\frac{x^{n}\left(b^{2}-\sqrt{4 a b^{2} c-b^{4}} \tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}}\left(b x^{n}+c_{1} n\right)}{2 b^{2} n}\right)\right)}{2 a b}
$$

\checkmark Solution by Mathematica
Time used: 1.07 (sec). Leaf size: 114
DSolve $\left[x * y{ }^{\prime}[x]==a * y[x] \sim 2+\left(n+b * x^{\wedge} n\right) * y[x]+c * x^{\wedge}(2 * n), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\left.y(x) \rightarrow \frac{x^{n}\left(-b+\frac{\sqrt{b^{2}-4 a c}\left(-e^{\frac{x^{n} \sqrt{b^{2}-4 a c}}{n}}+c_{1}\right)}{e^{\frac{x^{n} \sqrt{b^{2}-4 a c}}{n}}+c_{1}}\right)}{2 a}\right)
$$

2.37 problem 37

2.37.1 Solving as riccati ode . 242

Internal problem ID [10367]
Internal file name [OUTPUT/9314_Monday_June_06_2022_01_51_15_PM_48702340/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-y^{2} x-a y=b x^{n}
$$

2.37.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x y^{2}+y a+b x^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{b x^{n}}{x}+\frac{y a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b x^{n}}{x}, f_{1}(x)=\frac{a}{x}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{a}{x} \\
f_{2}^{2} f_{0} & =\frac{b x^{n}}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\frac{a u^{\prime}(x)}{x}+\frac{b x^{n} u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselY}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{2}+\operatorname{BesselJ}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}\right) x^{\frac{1}{2}+\frac{a}{2}}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=x^{\frac{a}{2}+\frac{n}{2}} \sqrt{b}(-\operatorname{BesselJ}(& \left.\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1} \\
& \left.\quad-\operatorname{BesselY}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{2}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
y=-\frac{x^{\frac{a}{2}+\frac{n}{2}} \sqrt{b}\left(-\operatorname{BesselJ}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}-\operatorname{BesselY}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{2}\right) x^{-\frac{1}{2}-\frac{a}{2}}}{\operatorname{BesselY}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{2}+\operatorname{BesselJ}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sqrt{b} x^{-\frac{1}{2}+\frac{n}{2}}\left(\operatorname{BesselJ}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}+\operatorname{BesselY}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)\right)}{\operatorname{BesselY}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+\operatorname{BesselJ}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{b} x^{-\frac{1}{2}+\frac{n}{2}}\left(\operatorname{BesselJ}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}+\operatorname{BesselY}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)\right)}{\operatorname{BesselY}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+\operatorname{BesselJ}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{b} x^{-\frac{1}{2}+\frac{n}{2}}\left(\operatorname{BesselJ}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}+\operatorname{Bessel} Y\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)\right)}{\operatorname{BesselY}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+\operatorname{BesselJ}\left(\frac{-1-a}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{3}}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*a/x-b*x^(n-1)*
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 139
dsolve($x * \operatorname{diff}(y(x), x)=x * y(x)^{\wedge} 2+a * y(x)+b * x^{\wedge} n, y(x)$, singsol=all)

$$
y(x)=\frac{x^{\frac{n}{2}-\frac{1}{2}} \sqrt{b}\left(\operatorname{BesselY}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}+\operatorname{BesselJ}\left(\frac{-a+n}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)\right)}{\operatorname{BesselY}\left(\frac{-a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}+\operatorname{BesselJ}\left(\frac{-a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.381 (sec). Leaf size: 855

```
DSolve[x*y'[x]==x*y[x]^2+a*y[x]+b*x^n,y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow$ $\sqrt{\sqrt{b}\left(x^{n}\right)^{\frac{n+1}{2 n}} \operatorname{Gamma}\left(\frac{a+n+2}{n+1}\right) \operatorname{BesselJ}\left(\frac{a-n}{n+1}, \frac{2 \sqrt{b}\left(x^{n}\right)^{\frac{n+1}{2 n}}}{n+1}\right)-\sqrt{b}\left(x^{n}\right)^{\frac{n+1}{2 n}} \operatorname{Gamma}\left(\frac{a+n+2}{n+1}\right) \operatorname{BesselJ}\left(\frac{a+n+2}{n+1}, ~\right.}$

2.38 problem 38

$$
\text { 2.38.1 Solving as riccati ode . } 247
$$

Internal problem ID [10368]
Internal file name [OUTPUT/9315_Monday_June_06_2022_01_51_16_PM_89246891/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x+a_{3} x y^{2}+a_{2} y=-a_{1} x-a_{0}
$$

2.38.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{a_{3} x y^{2}+a_{1} x+a_{2} y+a_{0}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a_{3} y^{2}-a_{1}-\frac{a_{2} y}{x}-\frac{a_{0}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a_{1} x+a_{0}}{x}, f_{1}(x)=-\frac{a_{2}}{x}$ and $f_{2}(x)=-a_{3}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-a_{3} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{a_{2} a_{3}}{x} \\
f_{2}^{2} f_{0} & =-\frac{a_{3}^{2}\left(a_{1} x+a_{0}\right)}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-a_{3} u^{\prime \prime}(x)-\frac{a_{2} a_{3} u^{\prime}(x)}{x}-\frac{a_{3}^{2}\left(a_{1} x+a_{0}\right) u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{e}^{-i \sqrt{a_{1}} \sqrt{a_{3}} x}\left(\operatorname{KummerM}\left(\frac{i a_{0} \sqrt{a_{3}}+a_{2} \sqrt{a_{1}}}{2 \sqrt{a_{1}}}, a_{2}, 2 i \sqrt{a_{1}} \sqrt{a_{3}} x\right) c_{1}\right. \\
& \left.\quad+\operatorname{KummerU}\left(\frac{i a_{0} \sqrt{a_{3}}+a_{2} \sqrt{a_{1}}}{2 \sqrt{a_{1}}}, a_{2}, 2 i \sqrt{a_{1}} \sqrt{a_{3}} x\right) c_{2}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad\left(-\frac{\left(\left(-\frac{1}{2} a_{2}^{2}+a_{2}\right) a_{1}^{\frac{3}{2}}+a_{0}\left(i \sqrt{a_{3}} a_{1}-\frac{a_{0} a_{3} \sqrt{a_{1}}}{2}\right)\right) c_{2} \operatorname{KummerU}\left(\frac{\left(a_{2}+2\right) \sqrt{a_{1}}+i a_{0} \sqrt{a_{3}}}{2 \sqrt{a_{1}}}, a_{2}, 2 i \sqrt{a_{1}} \sqrt{a_{3}} x\right)}{2}-\frac{c_{1}\left(i a_{1} \sqrt{a_{3}} a_{0}+a_{1}^{\frac{3}{2}} a_{2}\right) \text { Kumme }}{}\right.
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{\frac{\left(-\left(\frac{1}{2} a_{2}^{2}-a_{2}\right) a_{1}^{\frac{3}{2}}+i a_{1} \sqrt{a_{3}} a_{0}-\frac{a_{0}^{2} a_{3} \sqrt{a_{1}}}{2}\right) \operatorname{KummerU}\left(\frac{\left(a_{2}+2\right) \sqrt{a_{1}}+i a_{0} \sqrt{a_{3}}}{2 \sqrt{a_{1}}}, a_{2}, 2 i \sqrt{a_{1}} \sqrt{a_{3}} x\right)}{2}+\frac{c_{3}\left(i a_{1} \sqrt{a_{3}} a_{0}+a_{1}^{\frac{3}{2}} a_{2}\right) \operatorname{KummerM}\left(\frac{\left(a_{2}+2\right) \sqrt{a}}{2}\right)}{2}}{a_{1}^{\frac{3}{2}} x a_{3}\left(\operatorname { K u m m e r M } \left(\frac{i a_{0} \sqrt{a_{3}}+}{2 \sqrt{a}}\right.\right.}
$$

Summary

The solution(s) found are the following

$$
y
$$

Verification of solutions

y

$$
=\frac{\frac{\left(-\left(\frac{1}{2} a_{2}^{2}-a_{2}\right) a_{1}^{\frac{3}{2}}+i a_{1} \sqrt{a_{3}} a_{0}-\frac{a_{0}^{2} a_{3} \sqrt{a_{1}}}{2}\right) \operatorname{KummerU}\left(\frac{\left(a_{2}+2\right) \sqrt{a_{1}}+i a_{0} \sqrt{a_{3}}}{2 \sqrt{a_{1}}}, a_{2}, 2 i \sqrt{a_{1}} \sqrt{a_{3}} x\right)}{2}+\frac{c_{3}\left(i a_{1} \sqrt{a_{3}} a_{0}+a_{1}^{\frac{3}{2}} a_{2}\right) \operatorname{KummerM}\left(\frac{\left(a_{2}+2\right) \sqrt{a_{2}}}{2} \sqrt{2}\right.}{2}}{a_{1}^{\frac{3}{2}} x a_{3}\left(\operatorname { K u m m e r M } \left(\frac{i a_{0} \sqrt{a_{3}}+}{2 \sqrt{a}}\right.\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`
```


\checkmark Solution by Maple

Time used: 0.031 (sec). Leaf size: 403

```
dsolve(x*diff(y(x),x)+a__ 3*x*y(x)~2+a__ 2*y(x)+a__ 1*x+a__0=0,y(x), singsol=all)
```

$$
y(x)=
$$

$$
-\frac{4 a_{1}\left(a _ { 1 } ^ { 3 } a _ { 3 } (a _ { 3 } a _ { 0 } - a _ { 2 } \sqrt { - a _ { 1 } a _ { 3 } }) \operatorname { K u m m e r M } \left(\frac{\sqrt{-a_{1} a_{3}} a_{0}+a_{1}\left(a_{2}+2\right)}{2 a_{1}}, a_{2}+1,2 x \sqrt{-a_{1} c}\right.\right.}{4 a_{1}^{3} a_{3}^{2}\left(\sqrt{-a_{1} a_{3}} a_{0}+a_{1} a_{2}\right) \text { KummerM }\left(\frac{\sqrt{-a_{1} a_{3}} a_{0}+a_{1}\left(a_{2}+2\right)}{2 a_{1}}, a_{2}+1,2 x \sqrt{-a_{1} a_{3}}\right)-c_{1} \sqrt{-a_{1} a_{3}}\left(a_{0}^{2} a_{3}+a\right.}
$$

\checkmark Solution by Mathematica
Time used: 0.748 (sec). Leaf size: 541
DSolve $[x * y$ ' $[x]+a 3 * x * y[x] \curvearrowright 2+a 2 * y[x]+a 1 * x+a 0==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow$
$-i\left(\sqrt{\mathrm{a} 1} c_{1}\right.$ HypergeometricU $\left(\frac{1}{2}\left(\frac{i \sqrt{\mathrm{a} 3 \mathrm{a} 0}}{\sqrt{\mathrm{a} 1}}+\mathrm{a} 2\right), \mathrm{a} 2,2 i \sqrt{\mathrm{a} 1} \sqrt{\mathrm{a} 3} x\right)+c_{1}(\sqrt{\mathrm{a} 1 \mathrm{a}} 2+i \mathrm{a} 0 \sqrt{\mathrm{a} 3})$ Hypergeom $\sqrt{\mathrm{a} 3}\left(c_{1}\right.$ Hypergeometric $\mathrm{U}\left(\frac{1}{2}\right) \frac{i \sqrt{\mathrm{a}} 3}{\sqrt{\mathrm{a}}}$
$y(x) \rightarrow \frac{\frac{(\mathrm{a} 0 \sqrt{\mathrm{a} 3}-i \sqrt{\mathrm{ala}} 2) \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{i \sqrt{\mathrm{a} 3 \mathrm{a} 0}}{\sqrt{\mathrm{a} 1}}+\mathrm{a} 2+2\right), \mathrm{a} 2+1,2 i \sqrt{\mathrm{a} 1} \sqrt{\mathrm{a} 3 x}\right)}{\text { HypergeometricU }\left(\frac{1}{2}\left(\frac{i \sqrt{\mathrm{a} 3 \mathrm{a} 0}+\mathrm{a} 2}{\sqrt{\mathrm{a} 1}), \mathrm{a} 2,2 i \sqrt{\mathrm{a} 1} \sqrt{\mathrm{a} 3 x})}-i \sqrt{\mathrm{a} 1}\right.\right.}}{\sqrt{\mathrm{a} 3}}$
$y(x) \rightarrow \frac{\frac{(\mathrm{a} 0 \sqrt{\mathrm{a} 3}-i \sqrt{\mathrm{a} 1 \mathrm{a}} 2) \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{i \sqrt{\mathrm{a} 3 \mathrm{a} 0} 1}{\sqrt{\mathrm{al}}}+\mathrm{a} 2+2\right), \mathrm{a} 2+1,2 i \sqrt{\mathrm{a} 1} \sqrt{\mathrm{a} 3} x\right)}{\text { HypergeometricU }\left(\frac{1}{2}\left(\frac{i \sqrt{\mathrm{a} 3 \mathrm{a} 0}+\mathrm{a} 22), \mathrm{a} 2,2 i \sqrt{\mathrm{a} 1} \sqrt{\mathrm{a} 3} x}{\sqrt{\mathrm{a} 1}+}-i \sqrt{\mathrm{a} 1}\right.\right.}}{\sqrt{\mathrm{a3}}}$

2.39 problem 39

2.39.1 Solving as first order ode lie symmetry calculated ode 251
2.39.2 Solving as riccati ode . 256

Internal problem ID [10369]
Internal file name [OUTPUT/9316_Monday_June_06_2022_01_51_19_PM_59962069/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 39 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Riccati]

$$
y^{\prime} x-a x^{n} y^{2}-y b=c x^{-n}
$$

2.39.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{a x^{n} y^{2}+b y+c x^{-n}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(a x^{n} y^{2}+b y+c x^{-n}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(a x^{n} y^{2}+b y+c x^{-n}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{\frac{x^{n} a n y^{2}}{x}-\frac{c x^{-n} n}{x}}{x}-\frac{a x^{n} y^{2}+b y+c x^{-n}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(2 a x^{n} y+b\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\underline{2 x^{n} x^{-n} a c y^{2} a_{3}+x^{n} a n x y^{2} a_{2}+x^{2 n} a^{2} y^{4} a_{3}-x^{n} a y^{3} a_{3}-x^{n} a y^{2} a_{1}-x^{-n} c n a_{1}-x^{-n} c x b_{3}-x^{-n} c y a_{3}-b_{2} x}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{n} x^{-n} a c y^{2} a_{3}-x^{n} a n x y^{2} a_{2}-x^{2 n} a^{2} y^{4} a_{3}+x^{n} a y^{3} a_{3}+x^{n} a y^{2} a_{1} \\
& +x^{-n} c n a_{1}+x^{-n} c x b_{3}+x^{-n} c y a_{3}+b_{2} x^{2}-2 x^{n} a b y^{3} a_{3}-x^{n} a n y^{3} a_{3} \tag{6E}\\
& \quad-x^{n} a n y^{2} a_{1}-2 x^{n} a x^{2} y b_{2}-x^{n} a x y^{2} b_{3}-2 x^{n} a x y b_{1}-2 x^{-n} b c y a_{3}+x^{-n} c n x a_{2} \\
& +x^{-n} c n y a_{3}-b^{2} y^{2} a_{3}-b x^{2} b_{2}+b y^{2} a_{3}-x^{-2 n} c^{2} a_{3}-b x b_{1}+b y a_{1}+x^{-n} c a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{3 n} a n x y^{2} a_{2}-b_{2} x^{2} x^{2 n}-c n a_{1} x^{n}-c x b_{3} x^{n}-c y a_{3} x^{n}+x^{4 n} a^{2} y^{4} a_{3}\right. \\
& -x^{3 n} a y^{3} a_{3}-x^{3 n} a y^{2} a_{1}+b^{2} y^{2} a_{3} x^{2 n}+b x^{2} b_{2} x^{2 n}-b y^{2} a_{3} x^{2 n} \tag{6E}\\
& +b x b_{1} x^{2 n}-b y a_{1} x^{2 n}+2 b c y a_{3} x^{n}-c n x a_{2} x^{n}-c n y a_{3} x^{n} \\
& +2 x^{3 n} a b y^{3} a_{3}+x^{3 n} a n y^{3} a_{3}+x^{3 n} a n y^{2} a_{1}+x^{3 n} a x^{2} y b_{2} \\
& \left.+x^{3 n} a x y^{2} b_{3}+2 x^{3 n} a x y b_{1}+2 a c y^{2} a_{3} x^{2 n}+c^{2} a_{3}-c a_{1} x^{n}\right) x^{-2 n}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, x^{n}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, x^{n}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -\frac{v_{3}^{4} a^{2} v_{2}^{4} a_{3}+2 v_{3}^{3} a b v_{2}^{3} a_{3}+v_{3}^{3} a n v_{1} v_{2}^{2} a_{2}+v_{3}^{3} a n v_{2}^{3} a_{3}+v_{3}^{3} a n v_{2}^{2} a_{1}-v_{3}^{3} a v_{2}^{3} a_{3}+2 v_{3}^{3} a v_{1}^{2} v_{2} b_{7}+v_{3}^{3} a v_{1} v_{2}^{2} b_{3}+2 a c}{}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 a b_{2} v_{3} v_{1}^{2} v_{2}+\left(-b b_{2}+b_{2}\right) v_{1}^{2}+\left(-a n a_{2}-a b_{3}\right) v_{1} v_{2}^{2} v_{3}-2 a b_{1} v_{3} v_{1} v_{2} \\
& -b b_{1} v_{1}+\frac{\left(c n a_{2}+c b_{3}\right) v_{1}}{v_{3}}-a^{2} a_{3} v_{3}^{2} v_{2}^{4}+\left(-2 a b a_{3}-a n a_{3}+a a_{3}\right) v_{2}^{3} v_{3} \tag{8E}\\
& +\left(-a n a_{1}+a a_{1}\right) v_{2}^{2} v_{3}+\left(-2 a c a_{3}-b^{2} a_{3}+b a_{3}\right) v_{2}^{2}+b a_{1} v_{2} \\
& +\frac{\left(-2 b c a_{3}+c n a_{3}+c a_{3}\right) v_{2}}{v_{3}}+\frac{c n a_{1}+c a_{1}}{v_{3}}-\frac{c^{2} a_{3}}{v_{3}^{2}}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b a_{1} & =0 \\
-2 a b_{1} & =0 \\
-2 a b_{2} & =0 \\
-a^{2} a_{3} & =0 \\
-b b_{1} & =0 \\
-c^{2} a_{3} & =0 \\
-b b_{2}+b_{2} & =0 \\
-a n a_{1}+a a_{1} & =0 \\
c n a_{1}+c a_{1} & =0 \\
-a n a_{2}-a b_{3} & =0 \\
c n a_{2}+c b_{3} & =0 \\
-2 a c a_{3}-b^{2} a_{3}+b a_{3} & =0 \\
-2 a b a_{3}-a n a_{3}+a a_{3} & =0 \\
-2 b c a_{3}+c n a_{3}+c a_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-n a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-n y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-n y-\left(\frac{a x^{n} y^{2}+b y+c x^{-n}}{x}\right)(x) \\
& =-a x^{n} y^{2}-b y-c x^{-n}-n y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-a x^{n} y^{2}-b y-c x^{-n}-n y} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 x^{n} \arctan \left(\frac{2 x^{2 n} a y+b x^{n}+n x^{n}}{\sqrt{-x^{2 n} b^{2}-2 x^{2 n} b n-x^{2 n} n^{2}+4 c a x^{2 n}}}\right)}{\sqrt{-x^{2 n} b^{2}-2 x^{2 n} b n-x^{2 n} n^{2}+4 c a x^{2 n}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{a x^{n} y^{2}+b y+c x^{-n}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{n y x^{n-1}}{x^{2 n} a y^{2}+y(b+n) x^{n}+c} \\
S_{y} & =-\frac{x^{n}}{x^{2 n} a y^{2}+y(b+n) x^{n}+c}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \arctan \left(\frac{2 a x^{n} y+b+n}{\sqrt{4 c a-b^{2}-2 b n-n^{2}}}\right)}{\sqrt{4 c a-b^{2}-2 b n-n^{2}}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{2 \arctan \left(\frac{2 a x^{n} y+b+n}{\sqrt{4 c a-b^{2}-2 b n-n^{2}}}\right)}{\sqrt{4 c a-b^{2}-2 b n-n^{2}}}=-\ln (x)+c_{1}
$$

Which gives
$y=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b n-n^{2}}+b+n\right) x^{-n}}{2 a}$
Summary
The solution(s) found are the following
y
$=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b n-n^{2}}+b+n\right) x^{-n}}{2 a}$

Verification of solutions

$y=-\frac{\left(\tan \left(-\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b n-n^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b n-n^{2}}+b+n\right) x^{-n}}{2 a}$
Verified OK.

2.39.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{n} y^{2}+b y+c x^{-n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} a y^{2}}{x}+\frac{c x^{-n}}{x}+\frac{b y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{-n}}{x}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=\frac{a x^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}} \\
f_{1} f_{2} & =\frac{b a x^{n}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} x^{2 n} c x^{-n}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a x^{n} u^{\prime \prime}(x)}{x}-\left(\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}}+\frac{b a x^{n}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} x^{2 n} c x^{-n} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{\frac{b}{2}} x^{\frac{n}{2}}\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{1}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{2}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{x^{\frac{n}{2}}\left(c_{2}\left(-b-n+\sqrt{-4 c a+b^{2}+2 b n+n^{2}}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{1}(b+n+\sqrt{-4 c a+b}\right.}{2 x}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\left(c_{2}\left(-b-n+\sqrt{-4 c a+b^{2}+2 b n+n^{2}}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{1}\left(b+n+\sqrt{-4 c a+b^{2}+2}\right.\right.}{2 a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{1}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{\left(\left(-b-n+\sqrt{-4 c a+b^{2}+2 b n+n^{2}}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}\left(b+n+\sqrt{-4 c a+b^{2}+2 b n}\right.\right.}{2 a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}\right)}$

Summary
The solution(s) found are the following
y

$$
=\frac{\left(\left(-b-n+\sqrt{-4 c a+b^{2}+2 b n+n^{2}}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}\left(b+n+\sqrt{-4 c a+b^{2}+2 b n}\right.\right.}{2 a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}\right)}
$$

Verification of solutions

$$
=\frac{\left(\left(-b-n+\sqrt{-4 c a+b^{2}+2 b n+n^{2}}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}\left(b+n+\sqrt{-4 c a+b^{2}+2 b n}\right.\right.}{2 a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b n+n^{2}}}{2}}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 73
dsolve($x * \operatorname{diff}(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2+b * y(x)+c * x^{\wedge}(-n), y(x)$, singsol=all)

$$
y(x)=\frac{x^{-n}\left(\tan \left(\frac{\sqrt{4 a c-b^{2}-2 b n-n^{2}}\left(\ln (x)-c_{1}\right)}{2}\right) \sqrt{4 a c-b^{2}-2 b n-n^{2}}-b-n\right)}{2 a}
$$

\checkmark Solution by Mathematica
Time used: 0.978 (sec). Leaf size: 138
DSolve $\left[x * y y^{\prime}[x]==a * x^{\wedge} n * y[x] \wedge 2+b * y[x]+c * x^{\wedge}(-n), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x^{-n}\left(\frac{\sqrt{-4 a c+b^{2}+2 b n+n^{2}}\left(-x^{\sqrt{-4 a c+b^{2}+2 b n+n^{2}}+c_{1}}\right)}{\left.x^{\sqrt{-4 a c+b^{2}+2 b n+n^{2}}+c_{1}}-b-n\right)}\right.}{2 a} \\
& y(x) \rightarrow \frac{x^{-n}\left(\sqrt{-4 a c+b^{2}+2 b n+n^{2}}-b-n\right)}{2 a}
\end{aligned}
$$

2.40 problem 40

2.40.1 Solving as riccati ode

Internal problem ID [10370]
Internal file name [OUTPUT/9317_Monday_June_06_2022_01_51_20_PM_83489069/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a x^{n} y^{2}-y m=-a b^{2} x^{n+2 m}
$$

2.40.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{n} y^{2}+y m-a b^{2} x^{n+2 m}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} a y^{2}}{x}+\frac{y m}{x}-\frac{a b^{2} x^{n} x^{2 m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a b^{2} x^{n+2 m}}{x}, f_{1}(x)=\frac{m}{x}$ and $f_{2}(x)=\frac{a x^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}} \\
f_{1} f_{2} & =\frac{m a x^{n}}{x^{2}} \\
f_{2}^{2} f_{0} & =-\frac{a^{3} x^{2 n} b^{2} x^{n+2 m}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a x^{n} u^{\prime \prime}(x)}{x}-\left(\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}}+\frac{m a x^{n}}{x^{2}}\right) u^{\prime}(x)-\frac{a^{3} x^{2 n} b^{2} x^{n+2 m} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)+c_{2} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)
$$

The above shows that

$$
u^{\prime}(x)=a b x^{m+n-1}\left(c_{1} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)+c_{2} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{b x^{m+n-1}\left(c_{1} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)+c_{2} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)\right) x^{-n} x}{c_{1} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)+c_{2} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{b x^{m}\left(c_{3} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)+\sinh \left(\frac{a b x^{m+n}}{m+n}\right)\right)}{c_{3} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)+\cosh \left(\frac{a b x^{m+n}}{m+n}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{b x^{m}\left(c_{3} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)+\sinh \left(\frac{a b x^{m+n}}{m+n}\right)\right)}{c_{3} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)+\cosh \left(\frac{a b x^{m+n}}{m+n}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{b x^{m}\left(c_{3} \cosh \left(\frac{a b x^{m+n}}{m+n}\right)+\sinh \left(\frac{a b x^{m+n}}{m+n}\right)\right)}{c_{3} \sinh \left(\frac{a b x^{m+n}}{m+n}\right)+\cosh \left(\frac{a b x^{m+n}}{m+n}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve ($x * \operatorname{diff}(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2+m * y(x)-a * b^{\wedge} 2 * x^{\wedge}(n+2 * m), y(x)$, singsol=all)

$$
y(x)=i \tan \left(\frac{c_{1}(n+m)+i a b x^{n+m}}{n+m}\right) b x^{m}
$$

\checkmark Solution by Mathematica
Time used: 1.736 (sec). Leaf size: 43
DSolve $\left[x * y y^{\prime}[x]==a * x^{\wedge} n * y[x] \wedge 2+m * y[x]-a * b^{\wedge} 2 * x^{\wedge}(n+2 * m), y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \sqrt{-b^{2}} x^{m} \tan \left(\frac{a \sqrt{-b^{2}} x^{m+n}}{m+n}+c_{1}\right)
$$

2.41 problem 41

2.41.1 Solving as riccati ode . 264

Internal problem ID [10371]
Internal file name [OUTPUT/9318_Monday_June_06_2022_01_51_21_PM_22191330/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-x^{2 n} y^{2}-(m-n) y=x^{2 m}
$$

2.41.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2 n} y^{2}+y m-n y+x^{2 m}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{2 n} y^{2}}{x}+\frac{y m}{x}-\frac{n y}{x}+\frac{x^{2 m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{x^{2 m}}{x}, f_{1}(x)=\frac{m-n}{x}$ and $f_{2}(x)=\frac{x^{2 n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x^{2 n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n}{x^{2}}-\frac{x^{2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{(m-n) x^{2 n}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{x^{4 n} x^{2 m}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{x^{2 n} u^{\prime \prime}(x)}{x}-\left(\frac{2 x^{2 n} n}{x^{2}}-\frac{x^{2 n}}{x^{2}}+\frac{(m-n) x^{2 n}}{x^{2}}\right) u^{\prime}(x)+\frac{x^{4 n} x^{2 m} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{x^{m+n}}{m+n}\right)+c_{2} \cos \left(\frac{x^{m+n}}{m+n}\right)
$$

The above shows that

$$
u^{\prime}(x)=x^{m+n-1}\left(c_{1} \cos \left(\frac{x^{m+n}}{m+n}\right)-c_{2} \sin \left(\frac{x^{m+n}}{m+n}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{x^{m+n-1}\left(c_{1} \cos \left(\frac{x^{m+n}}{m+n}\right)-c_{2} \sin \left(\frac{x^{m+n}}{m+n}\right)\right) x^{-2 n} x}{c_{1} \sin \left(\frac{x^{x^{m+n}}}{m+n}\right)+c_{2} \cos \left(\frac{x^{m+n}}{m+n}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{m-n}\left(-c_{3} \cos \left(\frac{x^{m+n}}{m+n}\right)+\sin \left(\frac{x^{m+n}}{m+n}\right)\right)}{c_{3} \sin \left(\frac{x^{m+n}}{m+n}\right)+\cos \left(\frac{x^{m+n}}{m+n}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{m-n}\left(-c_{3} \cos \left(\frac{x^{m+n}}{m+n}\right)+\sin \left(\frac{x^{m+n}}{m+n}\right)\right)}{c_{3} \sin \left(\frac{x^{m+n}}{m+n}\right)+\cos \left(\frac{x^{m+n}}{m+n}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{m-n}\left(-c_{3} \cos \left(\frac{x^{m+n}}{m+n}\right)+\sin \left(\frac{x^{m+n}}{m+n}\right)\right)}{c_{3} \sin \left(\frac{x^{m+n}}{m+n}\right)+\cos \left(\frac{x^{m+n}}{m+n}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
dsolve $\left(x * \operatorname{diff}(y(x), x)=x^{\wedge}(2 * n) * y(x)^{\wedge} 2+(m-n) * y(x)+x^{\wedge}(2 * m), y(x), \quad\right.$ singsol=all)

$$
y(x)=\tan \left(\frac{x^{n+m}+(-n-m) c_{1}}{n+m}\right) x^{-n+m}
$$

\checkmark Solution by Mathematica
Time used: 0.727 (sec). Leaf size: 28
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{x}^{\wedge}(2 * \mathrm{n}) * \mathrm{y}[\mathrm{x}] \sim 2+(\mathrm{m}-\mathrm{n}) * \mathrm{y}[\mathrm{x}]+\mathrm{x}^{\wedge}(2 * \mathrm{~m}), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{m-n} \tan \left(\frac{x^{m+n}}{m+n}+c_{1}\right)
$$

2.42 problem 42

2.42.1 Solving as riccati ode . 268

Internal problem ID [10372]
Internal file name [OUTPUT/9319_Monday_June_06_2022_01_51_22_PM_29239198/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a x^{n} y^{2}-y b=c x^{m}
$$

2.42.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{n} y^{2}+b y+c x^{m}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} a y^{2}}{x}+\frac{c x^{m}}{x}+\frac{b y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{m}}{x}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=\frac{a x^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}} \\
f_{1} f_{2} & =\frac{b a x^{n}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} x^{2 n} c x^{m}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a x^{n} u^{\prime \prime}(x)}{x}-\left(\frac{a n x^{n}}{x^{2}}-\frac{a x^{n}}{x^{2}}+\frac{b a x^{n}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} x^{2 n} c x^{m} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselJ}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{1}+\operatorname{BesselY}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{2}\right) x^{\frac{b}{2}+\frac{n}{2}}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=x^{-1+\frac{b}{2}+n+\frac{m}{2}} \sqrt{c a}(-\operatorname{Bessel} Y & \left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{2} \\
& \left.-\operatorname{BesselJ}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{1}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{x^{-1+\frac{b}{2}+n+\frac{m}{2}} \sqrt{c a}\left(-\operatorname{BesselY}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{2}-\operatorname{Bessel}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{1}\right) x^{-n} x x^{-\frac{b}{2}-\frac{n}{2}}}{a\left(\operatorname{BesselJ}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{1}+\operatorname{BesselY}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)}{a\left(\operatorname{BesselJ}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)}{a\left(\operatorname{BesselJ}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{\frac{m}{2}-\frac{n}{2}} \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b+m}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)}{a\left(\operatorname{BesselJ}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{-b-n}{m+n}, \frac{2 \sqrt{c a} x^{\frac{m}{2}+\frac{n}{2}}}{m+n}\right)\right)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b+n-1)*(diff(y(x), x))/x-x^(n
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 166
dsolve ($x * \operatorname{diff}(y(x), x)=a * x^{\wedge}(n) * y(x) \wedge 2+b * y(x)+c * x^{\wedge}(m), y(x)$, singsol=all)

$$
y(x)=\frac{x^{-\frac{n}{2}+\frac{m}{2}} \sqrt{a c}\left(\operatorname{BesselY}\left(\frac{-b+m}{n+m}, \frac{2 \sqrt{a c} x^{\frac{m}{2}+\frac{n}{2}}}{n+m}\right) c_{1}+\operatorname{BesselJ}\left(\frac{-b+m}{n+m}, \frac{2 \sqrt{a c} x^{\frac{m}{2}+\frac{n}{2}}}{n+m}\right)\right)}{a\left(\operatorname{Bessel} Y\left(\frac{-b-n}{n+m}, \frac{2 \sqrt{a c} x^{\frac{m}{2}}+\frac{n}{2}}{n+m}\right) c_{1}+\operatorname{BesselJ}\left(\frac{-b-n}{n+m}, \frac{2 \sqrt{a c} x^{\frac{m}{2}+\frac{n}{2}}}{n+m}\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.49 (sec). Leaf size: 1321

$$
\begin{aligned}
& \text { DSolve }\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}) * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \mathrm{y}[\mathrm{x}]+\mathrm{c} * \mathrm{x}^{\wedge}(\mathrm{m}), \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow\right. \text { True] } \\
& y(x) \\
& \rightarrow \frac{x^{-n}\left(\sqrt{a} \sqrt{c}(m+n) x^{m+n} \operatorname{BesselJ}\left(\frac{m-b}{m+n}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m+n}}}{\sqrt{(m+n)^{2}}}\right) c_{1} \operatorname{Gamma}\left(\frac{m-b}{m+n}\right)\left((m+n)^{2}\right)^{\frac{b+n}{m+n}}-\sqrt{a} \sqrt{c} m x^{m+n}\right.}{} \\
& y(x) \\
& \rightarrow \frac{x^{-n}\left(\sqrt{a} \sqrt{c}(m+n) \sqrt{x^{m+n}} \operatorname{BesselJ}\left(\frac{m-b}{m+n}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m+n}}}{\sqrt{(m+n)^{2}}}\right)-(b+n) \sqrt{(m+n)^{2}} \operatorname{BesselJ}\left(-\frac{b+n}{m+n}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{n}}}{\sqrt{(m+n)}}\right.\right.}{2 a \sqrt{(m+n)^{2}} \operatorname{BesselJ}\left(-\frac{b+n}{m+n}, \frac{2 \sqrt{a} \sqrt{c} \sqrt{x^{m+1}}}{\sqrt{(m+n)^{2}}}\right.}
\end{aligned}
$$

2.43 problem 43

2.43.1 Solving as riccati ode . 273

Internal problem ID [10373]
Internal file name [OUTPUT/9320_Monday_June_06_2022_01_51_23_PM_60768990/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-x^{2 n} y^{2} a-\left(b x^{n}-n\right) y=c
$$

2.43.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2 n} a y^{2}+x^{n} b y-n y+c}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{2 n} a y^{2}}{x}+\frac{x^{n} b y}{x}-\frac{n y}{x}+\frac{c}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c}{x}, f_{1}(x)=\frac{b x^{n}-n}{x}$ and $f_{2}(x)=\frac{x^{2 n} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x^{2 n} a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n a}{x^{2}}-\frac{a x^{2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{n}-n\right) x^{2 n} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{x^{4 n} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{x^{2 n} a u^{\prime \prime}(x)}{x}-\left(\frac{2 x^{2 n} n a}{x^{2}}-\frac{a x^{2 n}}{x^{2}}+\frac{\left(b x^{n}-n\right) x^{2 n} a}{x^{2}}\right) u^{\prime}(x)+\frac{x^{4 n} a^{2} c u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{x^{n} b}{2 n}}\left(c_{1} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{x^{n-1} \mathrm{e}^{\frac{x^{n} b}{2 n}}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{1}+c_{2} b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{2}+c_{1} b\right)\right)}{2}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{x^{n-1}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{1}+c_{2} b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{2}+c_{1} b\right)\right) x^{-2 n},}{2 a\left(c_{1} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{x^{-n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{x^{-n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=$

$$
-\frac{x^{-n}\left(\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n c_{3}+b\right) \cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\left(\sqrt{\frac{-4 c a+b^{2}}{n^{2}}} n+b c_{3}\right)\right)}{2 a\left(c_{3} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)+\cosh \left(\frac{x^{n} \sqrt{\frac{-4 c a+b^{2}}{n^{2}}}}{2}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 72
dsolve $\left(x * \operatorname{diff}(y(x), x)=a * x^{\wedge}(2 * n) * y(x) \wedge 2+\left(b * x^{\wedge} n-n\right) * y(x)+c, y(x)\right.$, singsol=all)

$$
y(x)=\frac{\left(\sqrt{4 a b^{2} c-b^{4}} \tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}\left(b x^{n}+c_{1} n\right)}}{2 b^{2} n}\right)-b^{2}\right) x^{-n}}{2 b a}
$$

\checkmark Solution by Mathematica
Time used: 1.071 (sec). Leaf size: 118
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) * \mathrm{y}[\mathrm{x}] \wedge 2+\left(\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n}-\mathrm{n}\right) * \mathrm{y}[\mathrm{x}]+\mathrm{c}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{-n}\left(-b+\frac{\sqrt{b^{2}-4 a c}\left(-e^{\frac{x^{n} \sqrt{b^{2}-4 a c}}{n}}+c_{1}\right)}{e^{\frac{x^{n} \sqrt{b^{2}-4 a c}}{n}}+c_{1}}\right)}{2 a}
$$

2.44 problem 44

$$
\text { 2.44.1 Solving as riccati ode . } 277
$$

Internal problem ID [10374]
Internal file name [OUTPUT/9321_Monday_June_06_2022_01_51_24_PM_98601438/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a x^{m+2 n} y^{2}-\left(b x^{m+n}-n\right) y=c x^{m}
$$

2.44.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{m+2 n} y^{2}+x^{m+n} b y+c x^{m}-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a x^{m} x^{2 n} y^{2}}{x}+\frac{x^{m} x^{n} b y}{x}+\frac{c x^{m}}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{m}}{x}, f_{1}(x)=\frac{b x^{m+n}-n}{x}$ and $f_{2}(x)=\frac{x^{m+2 n} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x^{m+2 n} a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{m+2 n}(m+2 n) a}{x^{2}}-\frac{a x^{m+2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{m+n}-n\right) x^{m+2 n} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{x^{2 m+4 n} a^{2} c x^{m}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{x^{m+2 n} a u^{\prime \prime}(x)}{x}-\left(\frac{x^{m+2 n}(m+2 n) a}{x^{2}}-\frac{a x^{m+2 n}}{x^{2}}+\frac{\left(b x^{m+n}-n\right) x^{m+2 n} a}{x^{2}}\right) u^{\prime}(x)+\frac{x^{2 m+4 n} a^{2} c x^{m} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{b x^{m+n}}{2 m+2 n}}\left(c_{1} \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\mathrm{e}^{\frac{b x^{m+n}}{2 m+2 n}} x^{m+n-1}\left(\left(c_{1}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+c_{2} b\right) \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\left(c_{2}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+c_{1} b\right) \sin \right.}{2}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{x^{m+n-1}\left(\left(c_{1}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+c_{2} b\right) \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\left(c_{2}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+c_{1} b\right) \sinh \left(\frac{x}{-}\right)\right.}{2 a\left(c_{1} \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b b^{2}}{(m+n)^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\left(c_{3}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b\right) \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\left((m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b c_{3}\right) \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right.}{2 a\left(c_{3} \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right)}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\left(c_{3}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b\right) \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\left((m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b c_{3}\right) \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right.\right.}{2 a\left(c_{3} \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\left(c_{3}(m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b\right) \cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\left((m+n) \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}+b c_{3}\right) \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right.\right.}{2 a\left(c_{3} \sinh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)+\cosh \left(\frac{x^{m+n} \sqrt{\frac{-4 c a+b^{2}}{(m+n)^{2}}}}{2}\right)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 78
dsolve $\left(x * \operatorname{diff}(y(x), x)=a * x^{\wedge}(2 * n+m) * y(x)^{\wedge} 2+\left(b * x^{\wedge}(n+m)-n\right) * y(x)+c * x^{\wedge} m, y(x)\right.$, singsol=all)

$$
y(x)=\frac{x^{-n}\left(\sqrt{4 a b^{2} c-b^{4}} \tan \left(\frac{\left(x^{n+m} b+c_{1}(n+m)\right) \sqrt{4 a b^{2} c-b^{4}}}{2 b^{2}(n+m)}\right)-b^{2}\right)}{2 a b}
$$

Solution by Mathematica
Time used: 1.566 (sec). Leaf size: 126
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}+\mathrm{m}) * \mathrm{y}[\mathrm{x}]^{\wedge} 2+\left(\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}+\mathrm{m})-\mathrm{n}\right) * \mathrm{y}[\mathrm{x}]+\mathrm{c} * \mathrm{x}^{\wedge} \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{x^{-n}\left(-b+\frac{\sqrt{b^{2}-4 a c}\left(-e^{\frac{\sqrt{b^{2}-4 a c} x^{m+n}}{m+n}}+c_{1}\right)}{e^{\frac{\sqrt{b^{2}-4 a c} x^{m+n}}{m+n}}+c_{1}}\right)}{2 a}
$$

2.45 problem 45

2.45.1 Solving as riccati ode . 281

Internal problem ID [10375]
Internal file name [OUTPUT/9322_Monday_June_06_2022_01_51_26_PM_43318158/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a_{2} x+b_{2}\right)\left(y^{\prime}+\lambda y^{2}\right)+\left(a_{1} x+b_{1}\right) y=-a_{0} x-b_{0}
$$

2.45.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a_{2} \lambda x+y^{2} b_{2} \lambda+y a_{1} x+a_{0} x+y b_{1}+b_{0}}{a_{2} x+b_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} a_{2} \lambda x}{a_{2} x+b_{2}}-\frac{y^{2} b_{2} \lambda}{a_{2} x+b_{2}}-\frac{y a_{1} x}{a_{2} x+b_{2}}-\frac{a_{0} x}{a_{2} x+b_{2}}-\frac{y b_{1}}{a_{2} x+b_{2}}-\frac{b_{0}}{a_{2} x+b_{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a_{0} x+b_{0}}{a_{2} x+b_{2}}, f_{1}(x)=-\frac{a_{1} x+b_{1}}{a_{2} x+b_{2}}$ and $f_{2}(x)=-\frac{\lambda a_{2} x+\lambda b_{2}}{a_{2} x+b_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) u}{a_{2} x+b_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\lambda a_{2}}{a_{2} x+b_{2}}+\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) a_{2}}{\left(a_{2} x+b_{2}\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(a_{1} x+b_{1}\right)\left(\lambda a_{2} x+\lambda b_{2}\right)}{\left(a_{2} x+b_{2}\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right)^{2}\left(a_{0} x+b_{0}\right)}{\left(a_{2} x+b_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) u^{\prime \prime}(x)}{a_{2} x+b_{2}}-\left(-\frac{\lambda a_{2}}{a_{2} x+b_{2}}+\frac{\left(\lambda a_{2} x+\lambda b_{2}\right) a_{2}}{\left(a_{2} x+b_{2}\right)^{2}}+\frac{\left(a_{1} x+b_{1}\right)\left(\lambda a_{2} x+\lambda b_{2}\right)}{\left(a_{2} x+b_{2}\right)^{2}}\right) u^{\prime}(x)-\frac{\left(\lambda a_{2} x+\lambda b_{2}\right)}{\left(a_{2}\right.}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{e}^{-\frac{\left(\sqrt{-4 a_{0} a_{2} \lambda+a_{1}^{2}}+a_{1}\right) x}{2 a_{2}}}\left(a_{2} x\right. \\
& \left.\quad+b_{2}\right)^{\frac{b_{2} a_{1}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}}\left(\operatorname { K u m m e r M } \left(\frac{\left(b_{2} a_{1}+2 a_{2}^{2}-a_{2} b_{1}\right) \sqrt{-4 a_{0} a_{2} \lambda+a_{1}^{2}}-2 a_{2}^{2} b_{0} \lambda+\left(2 a_{0} \lambda b_{2}+a_{1} b_{1}\right) a_{2}-a_{1}^{2}}{2 \sqrt{-4 a_{0} a_{2} \lambda+a_{1}^{2}} a_{2}^{2}}\right.\right. \\
& \quad+\operatorname{KummerU}\left(\frac{\left(b_{2} a_{1}+2 a_{2}^{2}-a_{2} b_{1}\right) \sqrt{-4 a_{0} a_{2} \lambda+a_{1}^{2}}-2 a_{2}^{2} b_{0} \lambda+\left(2 a_{0} \lambda b_{2}+a_{1} b_{1}\right) a_{2}-a_{1}^{2} b_{2}}{2 \sqrt{-4 a_{0} a_{2} \lambda+a_{1}^{2}} a_{2}^{2}}, \frac{b_{2} a_{1}+2 a_{2}^{2}-}{a_{2}^{2}}\right.
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad 2\left((\frac { (a _ { 1 } x + b _ { 1 }) \sqrt { - 4 a _ { 0 } a _ { 2 } \lambda + a _ { 1 } ^ { 2 } } } { 4 } + \lambda (a _ { 0 } x + \frac { b _ { 0 } } { 2 }) a _ { 2 } - \frac { x a _ { 1 } ^ { 2 } } { 4 } + \frac { a _ { 0 } \lambda b _ { 2 } } { 2 } - \frac { a _ { 1 } b _ { 1 } } { 4 }) c _ { 1 } a _ { 2 } \text { KummerM } \left(\frac{\left(b_{2} a_{1}+2 a_{2}^{2}-a_{2} b_{1}\right) \sqrt{-4 a}}{}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display
Summary
The solution(s) found are the following
Expression too large to display
(1)

Verification of solutions
Expression too large to display
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(a__1*x+b__1)*(diff(y(x), x))
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 827

> Expression too large to display
$\sqrt{ }$ Solution by Mathematica
Time used: 3.165 (sec). Leaf size: 1418
DSolve $\left[(\mathrm{a} 2 * \mathrm{x}+\mathrm{b} 2) *\left(\mathrm{y} \mathrm{y}^{[\mathrm{x}}\right]+\backslash[\right.$ Lambda $\left.] * \mathrm{y}[\mathrm{x}] \sim 2\right)+(\mathrm{a} 1 * \mathrm{x}+\mathrm{b} 1) * \mathrm{y}[\mathrm{x}]+\mathrm{a} 0 * \mathrm{x}+\mathrm{b} 0==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSo

Too large to display

2.46 problem 46

2.46.1 Solving as first order ode lie symmetry calculated ode 286
2.46.2 Solving as riccati ode . 292

Internal problem ID [10376]
Internal file name [OUTPUT/9323_Monday_June_06_2022_01_51_33_PM_76540793/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

$$
(x a+c) y^{\prime}-\alpha(a y+b x)^{2}-\beta(a y+b x)=-b x+\gamma
$$

2.46.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma}{x a+c} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma\right)\left(b_{3}-a_{2}\right)}{x a+c} \\
& -\frac{\left(a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma\right)^{2} a_{3}}{(x a+c)^{2}} \\
& -\left(\frac{2 a \alpha b y+2 \alpha b^{2} x+\beta b-b}{x a+c}\right. \tag{5E}\\
& \left.-\frac{\left(a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma\right) a}{(x a+c)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\frac{\left(2 a^{2} \alpha y+2 \alpha a x b+\beta a\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x a+c}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{a^{4} \alpha^{2} y^{4} a_{3}+4 a^{3} \alpha^{2} b x y^{3} a_{3}+6 a^{2} \alpha^{2} b^{2} x^{2} y^{2} a_{3}+4 a \alpha^{2} b^{3} x^{3} y a_{3}+\alpha^{2} b^{4} x^{4} a_{3}+2 a^{3} \alpha \beta y^{3} a_{3}+6 a^{2} \alpha b \beta x y^{2} a_{3}+}{} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -a^{4} \alpha^{2} y^{4} a_{3}-4 a^{3} \alpha^{2} b x y^{3} a_{3}-6 a^{2} \alpha^{2} b^{2} x^{2} y^{2} a_{3}-4 a \alpha^{2} b^{3} x^{3} y a_{3} \\
& -\alpha^{2} b^{4} x^{4} a_{3}-2 a^{3} \alpha \beta y^{3} a_{3}-6 a^{2} \alpha b \beta x y^{2} a_{3}-6 a \alpha b^{2} \beta x^{2} y a_{3} \\
& -2 \alpha b^{3} \beta x^{3} a_{3}-2 a^{3} \alpha x^{2} y b_{2}-a^{3} \alpha x y^{2} b_{3}+a^{3} \alpha y^{3} a_{3}-2 a^{2} \alpha b x^{3} b_{2} \\
& -2 a^{2} \alpha b x^{2} y a_{2}+2 a^{2} \alpha b x y^{2} a_{3}-2 a \alpha b^{2} x^{3} a_{2}+a \alpha b^{2} x^{3} b_{3} \\
& +3 a \alpha b^{2} x^{2} y a_{3}+2 \alpha b^{3} x^{3} a_{3}-2 a^{3} \alpha x y b_{1}+a^{3} \alpha y^{2} a_{1}-2 a^{2} \alpha b x^{2} b_{1} \\
& -2 a^{2} \alpha c x y b_{2}-a^{2} \alpha c y^{2} a_{2}-a^{2} \alpha c y^{2} b_{3}-2 a^{2} \alpha \gamma y^{2} a_{3}-a^{2} \beta^{2} y^{2} a_{3} \\
& -a \alpha b^{2} x^{2} a_{1}-2 a \alpha c x^{2} b_{2}-4 a \alpha b c x y a_{2}-2 a \alpha b c y^{2} a_{3} \tag{6E}\\
& -4 a \alpha b \gamma x y a_{3}-2 a b \beta^{2} x y a_{3}-3 \alpha b^{2} c x^{2} a_{2}+\alpha b^{2} c x^{2} b_{3} \\
& -2 \alpha b^{2} c x y a_{3}-2 \alpha x^{2} a_{3}-b^{2} \beta^{2} x^{2} a_{3}-2 a^{2} \alpha c y b_{1}-a^{2} \beta x^{2} b_{2} \\
& +a^{2} \beta y^{2} a_{3}-2 a \alpha b c x b_{1}-2 a \alpha b c y a_{1}-a b \beta x^{2} a_{2}+a b \beta x^{2} b_{3} \\
& +2 a b \beta x y a_{3}-2 \alpha b^{2} c x a_{1}+2 b^{2} \beta x^{2} a_{3}-a^{2} \beta x b_{1}+a^{2} \beta y a_{1} \\
& +a^{2} x^{2} b_{2}+a b x^{2} a_{2}-a b x^{2} b_{3}-a \beta c x b_{2}-a \beta c y a_{2}-2 a \beta \gamma y a_{3} \\
& -b^{2} x^{2} a_{3}-2 b \beta c x a_{2}+b s c b_{3}-b \beta c y a_{3}-2 b \beta \gamma x a_{3}-a \beta c b_{1} \\
& +2 a c x b_{2}+a \gamma x b_{3}+a \gamma y a_{3}-b \beta c a_{1}+2 b c x a_{2}-b c x b_{3}+b c y a_{3} \\
& +2 b \gamma x a_{3}+a \gamma a_{1}+b c a_{1}+c^{2} b_{2}-c \gamma a_{2}+c \gamma b_{3}-\gamma^{2} a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{4} \alpha^{2} a_{3} v_{2}^{4}-4 a^{3} \alpha^{2} b a_{3} v_{1} v_{2}^{3}-6 a^{2} \alpha^{2} b^{2} a_{3} v_{1}^{2} v_{2}^{2}-4 a \alpha^{2} b^{3} a_{3} v_{1}^{3} v_{2} \\
& -\alpha^{2} b^{4} a_{3} v_{1}^{4}-2 a^{3} \alpha \beta a_{3} v_{2}^{3}-6 a^{2} \alpha b \beta a_{3} v_{1} v_{2}^{2}-6 a \alpha b^{2} \beta a_{3} v_{1}^{2} v_{2} \\
& -2 \alpha b^{3} \beta a_{3} v_{1}^{3}+a^{3} \alpha a_{3} v_{2}^{3}-2 a^{3} \alpha b_{2} v_{1}^{2} v_{2}-a^{3} \alpha b_{3} v_{1} v_{2}^{2} \\
& -2 a^{2} \alpha b a_{2} v_{1}^{2} v_{2}+2 a^{2} \alpha b a_{3} v_{1} v_{2}^{2}-2 a^{2} \alpha b b_{2} v_{1}^{3}-2 a \alpha b^{2} a_{2} v_{1}^{3} \\
& +3 a \alpha b^{2} a_{3} v_{1}^{2} v_{2}+a \alpha b^{2} b_{3} v_{1}^{3}+2 \alpha b^{3} a_{3} v_{1}^{3}+a^{3} \alpha a_{1} v_{2}^{2}-2 a^{3} \alpha b_{1} v_{1} v_{2} \\
& -2 a^{2} \alpha b b_{1} v_{1}^{2}-a^{2} \alpha c a_{2} v_{2}^{2}-2 a^{2} \alpha c b_{2} v_{1} v_{2}-a^{2} \alpha c b_{3} v_{2}^{2}-2 a^{2} \alpha \gamma a_{3} v_{2}^{2} \\
& -a^{2} \beta^{2} a_{3} v_{2}^{2}-a \alpha b^{2} a_{1} v_{1}^{2}-4 a \alpha b c a_{2} v_{1} v_{2}-2 a \alpha b c a_{3} v_{2}^{2} 2 a \alpha b c b_{2} v_{1}^{2} \tag{7E}\\
& -4 a \alpha b \gamma a_{3} v_{1} v_{2}-2 a b \beta^{2} a_{3} v_{1} v_{2}-3 \alpha b^{2} c a_{2} v_{1}^{2}-2 \alpha b^{2} c a_{3} v_{1} v_{2} \\
& +\alpha b^{2} c b_{3} v_{1}^{2}-2 \alpha b^{2} \gamma a_{3} v_{1}^{2}-b^{2} \beta^{2} a_{3} v_{1}^{2}-2 a^{2} \alpha c b_{1} v_{2}+a^{2} \beta a_{3} v_{2}^{2} \\
& -a^{2} \beta b_{2} v_{1}^{2}-2 a \alpha b c a_{1} v_{2}-2 a \alpha b c b_{1} v_{1}-a b \beta a_{2}^{2} v_{1}^{2}+2 a b \beta a_{3} v_{1} v_{2} \\
& +a b \beta b_{3} v_{1}^{2}-2 \alpha b^{2} c a_{1} v_{1}+2 b^{2} \beta a_{3} v_{1}^{2}+a^{2} \beta a_{1} v_{2}-a^{2} \beta b_{1} v_{1} \\
& +a^{2} b_{2} v_{1}^{2}+a b a_{2} v_{1}^{2}-a b b_{3} v_{1}^{2}-a \beta c a_{2} v_{2}-a \beta c b_{2} v_{1}-2 a \beta \gamma a_{3} v_{2} \\
& -b^{2} a_{3} v_{1}^{2}-2 b \beta c a_{2} v_{1}-b \beta c a_{3} v_{2}+b \beta c b_{3} v_{1}-2 b \beta \gamma a_{3} v_{1}-a \beta c b_{1} \\
& +2 a c b_{2} v_{1}+a \gamma a_{3} v_{2}+a \gamma b_{3} v_{1}-b \beta c a_{1}+2 b c a_{2} v_{1}+b c a_{3} v_{2}-b c b_{3} v_{1} \\
& +2 b \gamma a_{3} v_{2}-c \gamma a_{2}+c \gamma b_{3}-\gamma^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -\alpha^{2} b^{4} a_{3} v_{1}^{4}-4 a \alpha^{2} b^{3} a_{3} v_{1}^{3} v_{2} \\
& +\left(-2 \alpha b^{3} \beta a_{3}-2 a^{2} \alpha b b_{2}-2 a \alpha b^{2} a_{2}+a \alpha b^{2} b_{3}+2 \alpha b^{3} a_{3}\right) v_{1}^{3} \\
& -6 a^{2} \alpha^{2} b^{2} a_{3} v_{1}^{2} v_{2}^{2} \\
& +\left(-6 a \alpha b^{2} \beta a_{3}-2 a^{3} \alpha b_{2}-2 a^{2} \alpha b a_{2}+3 a \alpha b^{2} a_{3}\right) v_{1}^{2} v_{2}+\left(-2 a^{2} \alpha b b_{1}\right. \\
& -a \alpha b^{2} a_{1}-2 a \alpha b c b_{2}-3 \alpha b^{2} c a_{2}+\alpha b^{2} c b_{3}-2 \alpha b^{2} \gamma a_{3}-b^{2} \beta^{2} a_{3} \\
& \left.-a^{2} \beta b_{2}-a b \beta a_{2}+a b \beta b_{3}+2 b^{2} \beta a_{3}+a^{2} b_{2}+a b a_{2}-a b b_{3}-b^{2} a_{3}\right) v_{1}^{2} \\
& -4 a^{3} \alpha^{2} b a_{3} v_{1} v_{2}^{3}+\left(-6 a^{2} \alpha b \beta a_{3}-a^{3} \alpha b_{3}+2 a^{2} \alpha b a_{3}\right) v_{1} v_{2}^{2} \tag{8E}\\
& +\left(-2 a^{3} \alpha b_{1}-2 a^{2} \alpha c b_{2}-4 a \alpha b c a_{2}-4 a \alpha b \gamma a_{3}-2 a b \beta^{2} a_{3}-2 \alpha b^{2} c a_{3}\right. \\
& \left.+2 a b \beta a_{3}\right) v_{1} v_{2}+\left(-2 a \alpha b c b_{1}-2 \alpha b^{2} c a_{1}-a^{2} \beta b_{1}-a \beta c b_{2}-2 b \beta c a_{2}\right. \\
& \left.+b \beta c b_{3}-2 b \beta \gamma a_{3}+2 a c b_{2}+a \gamma b_{3}+2 b c a_{2}-b c b_{3}+2 b \gamma a_{3}\right) v_{1} \\
& -a^{4} \alpha^{2} a_{3} v_{2}^{4}+\left(-2 a^{3} \alpha \beta a_{3}+a^{3} \alpha a_{3}\right) v_{2}^{3}+\left(a^{3} \alpha a_{1}-a^{2} \alpha c a_{2}\right. \\
& \left.-a^{2} \alpha c b_{3}-2 a^{2} \alpha \gamma a_{3}-a^{2} \beta^{2} a_{3}-2 a \alpha b c a_{3}+a^{2} \beta a_{3}\right) v_{2}^{2}+\left(-2 a^{2} \alpha c b_{1}\right. \\
& \left.-2 a \alpha b c a_{1}+a^{2} \beta a_{1}-a \beta c a_{2}-2 a \beta \gamma a_{3}-b \beta c a_{3}+a \gamma a_{3}+b c a_{3}\right) v_{2} \\
& -a \beta c b_{1}-b \beta c a_{1}+a \gamma a_{1}+b c a_{1}+c^{2} b_{2}-c \gamma a_{2}+c \gamma b_{3}-\gamma^{2} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-6 a \alpha b^{2} \beta a_{3} \\
-2 \alpha b^{3} \beta a_{3}-2 a^{2} \alpha b b_{2} \\
a^{3} \alpha a_{1}-a^{2} \alpha c a_{2}-a^{2} \alpha c b_{3}-2 a^{2} \alpha \gamma c \\
-2 a^{3} \alpha b_{1}-2 a^{2} \alpha c b_{2}-4 a \alpha b c a_{2}-4 a \alpha b \gamma a_{3} \\
-2 a^{2} \alpha c b_{1}-2 a \alpha b c a_{1}+a^{2} \beta a_{1}-a \beta c a_{2}- \\
-a \beta c b_{1}-b \beta c a_{1}+a \gamma a_{1}+b c \\
-2 a^{2} \alpha b b_{1}-a \alpha b^{2} a_{1}-2 a \alpha b c b_{2}-3 \alpha b^{2} c a_{2}+\alpha b^{2} c b_{3}-2 \alpha b^{2} \gamma a_{3}-b^{2} \beta^{2} a_{3}-a^{2} \beta b_{2}-a b \beta a_{2}+a b \beta b_{3}+2 b^{2} \beta
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-\frac{b_{1} a}{b} \\
a_{2} & =-\frac{b_{1} a^{2}}{c b} \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =\frac{b_{1} a}{c} \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{a(x a+c)}{b c} \\
\eta & =\frac{x a+c}{c}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{x a+c}{c}-\left(\frac{a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma}{x a+c}\right)\left(-\frac{a(x a+c)}{b c}\right) \\
& =\frac{a^{3} \alpha y^{2}+2 a^{2} \alpha b x y+a \alpha b^{2} x^{2}+a^{2} \beta y+a b \beta x+a \gamma+b c}{b c} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a^{3} \alpha y^{2}+2 a^{2} \alpha b x y+a \alpha b^{2} x^{2}+a^{2} \beta y+a b \beta x+a \gamma+b c}{b c}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 b c \arctan \left(\frac{2 a^{3} \alpha y+2 \alpha a^{2} x b+a^{2} \beta}{\sqrt{4 a^{4} \alpha \gamma-a^{4} \beta^{2}+4 a^{3} \alpha b c}}\right)}{\sqrt{4 a^{4} \alpha \gamma-a^{4} \beta^{2}+4 a^{3} \alpha b c}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma}{x a+c}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{b^{2} c}{a\left(a^{3} \alpha y^{2}+2 y\left(b x \alpha+\frac{\beta}{2}\right) a^{2}+\left(\alpha b^{2} x^{2}+b \beta x+\gamma\right) a+b c\right)} \\
& S_{y}=\frac{b c}{a^{3} \alpha y^{2}+2 y\left(b x \alpha+\frac{\beta}{2}\right) a^{2}+\left(\alpha b^{2} x^{2}+b \beta x+\gamma\right) a+b c}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{b c}{a(x a+c)} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{b c}{a(R a+c)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{b c \ln (R a+c)}{a^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 b c \arctan \left(\frac{\sqrt{a}(2 a \alpha y+2 b x \alpha+\beta)}{\sqrt{\left(4 \alpha \gamma-\beta^{2}\right) a+4 b c \alpha}}\right)}{a^{\frac{3}{2}} \sqrt{\left(4 \alpha \gamma-\beta^{2}\right) a+4 b c \alpha}}=\frac{b c \ln (x a+c)}{a^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{2 b c \arctan \left(\frac{\sqrt{a}(2 a \alpha y+2 b x \alpha+\beta)}{\sqrt{\left(4 \alpha \gamma-\beta^{2}\right) a+4 b c \alpha}}\right)}{a^{\frac{3}{2}} \sqrt{\left(4 \alpha \gamma-\beta^{2}\right) a+4 b c \alpha}}=\frac{b c \ln (x a+c)}{a^{2}}+c_{1}
$$

Which gives

$$
y=\frac{-2 \sqrt{a} \alpha b x+\tan \left(\frac{\sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}\left(c_{1} a^{2}+b c \ln (x a+c)\right)}{2 \sqrt{a} b c}\right) \sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}-\sqrt{a} \beta}{2 a^{\frac{3}{2}} \alpha}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 \sqrt{a} \alpha b x+\tan \left(\frac{\sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}\left(c_{1} a^{2}+b c \ln (x a+c)\right)}{2 \sqrt{a} b c}\right) \sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}-\sqrt{a} \beta}{2 a^{\frac{3}{2}} \alpha} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-2 \sqrt{a} \alpha b x+\tan \left(\frac{\sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}\left(c_{1} a^{2}+b c \ln (x a+c)\right)}{2 \sqrt{a} b c}\right) \sqrt{4 \alpha \gamma a-a \beta^{2}+4 b c \alpha}-\sqrt{a} \beta}{2 a^{\frac{3}{2}} \alpha}
$$

Verified OK.

2.46.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a^{2} \alpha y^{2}+2 a \alpha b x y+\alpha b^{2} x^{2}+a \beta y+b \beta x-b x+\gamma}{x a+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a^{2} \alpha y^{2}}{x a+c}+\frac{2 a \alpha b x y}{x a+c}+\frac{\alpha b^{2} x^{2}}{x a+c}+\frac{a \beta y}{x a+c}+\frac{b \beta x}{x a+c}-\frac{b x}{x a+c}+\frac{\gamma}{x a+c}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\alpha b^{2} x^{2}+b \beta x-b x+\gamma}{x a+c}, f_{1}(x)=\frac{2 \alpha a x b+\beta a}{x a+c}$ and $f_{2}(x)=\frac{\alpha a^{2}}{x a+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\alpha a^{2} u}{x a+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\alpha a^{3}}{(x a+c)^{2}} \\
f_{1} f_{2} & =\frac{(2 \alpha a x b+\beta a) \alpha a^{2}}{(x a+c)^{2}} \\
f_{2}^{2} f_{0} & =\frac{\alpha^{2} a^{4}\left(\alpha b^{2} x^{2}+b \beta x-b x+\gamma\right)}{(x a+c)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\alpha a^{2} u^{\prime \prime}(x)}{x a+c}-\left(-\frac{\alpha a^{3}}{(x a+c)^{2}}+\frac{(2 \alpha a x b+\beta a) \alpha a^{2}}{(x a+c)^{2}}\right) u^{\prime}(x)+\frac{\alpha^{2} a^{4}\left(\alpha b^{2} x^{2}+b \beta x-b x+\gamma\right) u(x)}{(x a+c)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{b x \alpha}\left((x a+c)^{\frac{-2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}} a+\beta a}{2 a}} c_{1}+(x a+c)^{-\frac{2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2 a} a-\beta a} c_{2}\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{a \mathrm{e}^{b x \alpha}\left(-c_{2}\left(-2 b x \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}-\beta\right)(x a+c)^{-\frac{2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2 a} a-\beta a}\right.}{a}+(x a+c)^{\frac{-2 b c \alpha+\sqrt{\frac{(-4 \alpha \gamma}{}}}{2 x a+2 c}}$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= & \left(-c_{2}\left(-2 b x \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}-\beta\right)(x a+c)^{-\frac{2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}} a^{2 a-\beta a}}{2 a}}+(x a+c)^{\frac{-2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right.}{a}}}{2 a}}\right. \\
& -\frac{(2 x a+2 c) \alpha\left((x a+c)^{\frac{-2 b c \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2 a} a+\beta a}\right.}{2 a} c_{1}+(x a+c)^{-\frac{2 b c \alpha-\alpha}{}}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{\left(-2 b x \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}-\beta\right)(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}-2 c_{3}\left(b x \alpha+\frac{\beta}{2}+\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}\right)(x a-}{2 \alpha a\left((x a+c)^{\frac{\sqrt{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}}{a}} c_{3}+(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}\right)}
$$

Summary
The solution(s) found are the following
y
(1)
$=\frac{\left(-2 b x \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}-\beta\right)(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}-2 c_{3}\left(b x \alpha+\frac{\beta}{2}+\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}\right)(x a-}{2 \alpha a\left((x a+c)^{\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}} c_{3}+(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}\right)}$

Verification of solutions

y
$=\frac{\left(-2 b x \alpha+\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}-\beta\right)(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}-2 c_{3}\left(b x \alpha+\frac{\beta}{2}+\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}\right)(x a-}{2 \alpha a\left((x a+c)^{\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}} c_{3}+(x a+c)^{-\frac{\sqrt{\frac{\left(-4 \alpha \gamma+\beta^{2}\right) a-4 b c \alpha}{a}}}{2}}\right)}$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = (-a*x-c)*b/(a*(a*x+c)), y(x)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- 1st order, canonical coordinates successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 94

```
dsolve((a*x+c)*diff (y (x),x)=alpha* (a*y (x)+b*x)^2+beta*(a*y(x)+b*x)-b*x+gamma,y(x), singsol=a
```

$$
y(x)
$$

$=\frac{-2 a^{2} \alpha x b-a^{2} \beta+\sqrt{-\left(\left(-4 \gamma \alpha+\beta^{2}\right) a-4 \alpha b c\right) a^{3}} \tan \left(\frac{-2 c_{1} a^{2}+\ln (a x+c) \sqrt{-\left(\left(-4 \gamma \alpha+\beta^{2}\right) a-4 \alpha b c\right) a^{3}}}{2 a^{2}}\right)}{2 a^{3} \alpha}$

Solution by Mathematica

Time used: 60.527 (sec). Leaf size: 98

```
DSolve[(a*x+c)*y'[x]==\[Alpha]*(a*y[x]+b*x)^2+\[Beta]*(a*y[x]+b*x)-b*x+\[Gamma],y[x],x,Inclu
```

$$
y(x) \rightarrow-\frac{-a \alpha \sqrt{\frac{4 a \alpha \gamma-a \beta^{2}+4 \alpha b c}{a^{3} \alpha^{2}}} \tan \left(\frac{1}{2} a \alpha \log (a x+c) \sqrt{\frac{4 a \alpha \gamma-a \beta^{2}+4 \alpha b c}{a^{3} \alpha^{2}}}+c_{1}\right)+2 \alpha b x+\beta}{2 a \alpha}
$$

2.47 problem 47

2.47.1 Solving as riccati ode

Internal problem ID [10377]
Internal file name [OUTPUT/9324_Monday_June_06_2022_01_51_35_PM_72746468/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
2 x^{2} y^{\prime}-2 y^{2}-x y=-2 a^{2} x
$$

2.47.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-2 a^{2} x+y x+2 y^{2}}{2 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{a^{2}}{x}+\frac{y}{2 x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a^{2}}{x}, f_{1}(x)=\frac{1}{2 x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{1}{2 x^{3}} \\
f_{2}^{2} f_{0} & =-\frac{a^{2}}{x^{5}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{3 u^{\prime}(x)}{2 x^{3}}-\frac{a^{2} u(x)}{x^{5}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+c_{2} \cosh \left(\frac{2 a}{\sqrt{x}}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{a\left(-c_{1} \cosh \left(\frac{2 a}{\sqrt{x}}\right)-c_{2} \sinh \left(\frac{2 a}{\sqrt{x}}\right)\right)}{x^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{a \sqrt{x}\left(-c_{1} \cosh \left(\frac{2 a}{\sqrt{x}}\right)-c_{2} \sinh \left(\frac{2 a}{\sqrt{x}}\right)\right)}{c_{1} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+c_{2} \cosh \left(\frac{2 a}{\sqrt{x}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(c_{3} \cosh \left(\frac{2 a}{\sqrt{x}}\right)+\sinh \left(\frac{2 a}{\sqrt{x}}\right)\right) a \sqrt{x}}{c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+\cosh \left(\frac{2 a}{\sqrt{x}}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{3} \cosh \left(\frac{2 a}{\sqrt{x}}\right)+\sinh \left(\frac{2 a}{\sqrt{x}}\right)\right) a \sqrt{x}}{c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+\cosh \left(\frac{2 a}{\sqrt{x}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{3} \cosh \left(\frac{2 a}{\sqrt{x}}\right)+\sinh \left(\frac{2 a}{\sqrt{x}}\right)\right) a \sqrt{x}}{c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+\cosh \left(\frac{2 a}{\sqrt{x}}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve $\left(2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x)=2 * y(x)^{\wedge} 2+x * y(x)-2 * a^{\wedge} 2 * x, y(x)\right.$, singsol $\left.=a l l\right)$

$$
y(x)=\tanh \left(\frac{i c_{1} \sqrt{x}+2 a}{\sqrt{x}}\right) \sqrt{x} a
$$

\checkmark Solution by Mathematica
Time used: 0.619 (sec). Leaf size: 43
DSolve $\left[2 * x^{\wedge} 2 * y^{\prime}[x]==2 * y[x] \wedge 2+x * y[x]-2 * a \wedge 2 * x, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\sqrt{-a^{2}} \sqrt{x} \tan \left(\frac{2 \sqrt{-a^{2}}}{\sqrt{x}}-c_{1}\right)
$$

2.48 problem 48

2.48.1 Solving as riccati ode . 300

Internal problem ID [10378]
Internal file name [OUTPUT/9325_Monday_June_06_2022_01_51_35_PM_24216642/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
2 x^{2} y^{\prime}-2 y^{2}-3 x y=-2 a^{2} x
$$

2.48.1 Solving as riccati ode

In canonical form the $O D E$ is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-2 a^{2} x+3 y x+2 y^{2}}{2 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{a^{2}}{x}+\frac{3 y}{2 x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a^{2}}{x}, f_{1}(x)=\frac{3}{2 x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{3}{2 x^{3}} \\
f_{2}^{2} f_{0} & =-\frac{a^{2}}{x^{5}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{u^{\prime}(x)}{2 x^{3}}-\frac{a^{2} u(x)}{x^{5}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sqrt{x}\left(c_{1} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+c_{2} \cosh \left(\frac{2 a}{\sqrt{x}}\right)\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(-2 \sqrt{x} c_{1} a+c_{2} x\right) \cosh \left(\frac{2 a}{\sqrt{x}}\right)+\left(-2 \sqrt{x} c_{2} a+c_{1} x\right) \sinh \left(\frac{2 a}{\sqrt{x}}\right)}{2 x^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-2 \sqrt{x} c_{1} a+c_{2} x\right) \cosh \left(\frac{2 a}{\sqrt{x}}\right)+\left(-2 \sqrt{x} c_{2} a+c_{1} x\right) \sinh \left(\frac{2 a}{\sqrt{x}}\right)}{2\left(c_{1} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+c_{2} \cosh \left(\frac{2 a}{\sqrt{x}}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sinh \left(\frac{2 a}{\sqrt{x}}\right)\left(2 a \sqrt{x}-c_{3} x\right)+2\left(\sqrt{x} c_{3} a-\frac{x}{2}\right) \cosh \left(\frac{2 a}{\sqrt{x}}\right)}{2 c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+2 \cosh \left(\frac{2 a}{\sqrt{x}}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sinh \left(\frac{2 a}{\sqrt{x}}\right)\left(2 a \sqrt{x}-c_{3} x\right)+2\left(\sqrt{x} c_{3} a-\frac{x}{2}\right) \cosh \left(\frac{2 a}{\sqrt{x}}\right)}{2 c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+2 \cosh \left(\frac{2 a}{\sqrt{x}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sinh \left(\frac{2 a}{\sqrt{x}}\right)\left(2 a \sqrt{x}-c_{3} x\right)+2\left(\sqrt{x} c_{3} a-\frac{x}{2}\right) \cosh \left(\frac{2 a}{\sqrt{x}}\right)}{2 c_{3} \sinh \left(\frac{2 a}{\sqrt{x}}\right)+2 \cosh \left(\frac{2 a}{\sqrt{x}}\right)}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
        <- Kovacics algorithm successful
    <- Abel AIR successful: ODE belongs to the OF1 1-parameter (Bessel type) class`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 102
dsolve ($2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x)=2 * y(x)^{\wedge} 2+3 * x * y(x)-2 * a \wedge 2 * x, y(x)$, singsol $\left.=a l l\right)$

$$
y(x)=\frac{\left(-2 x c_{1} \sqrt{-\frac{a^{2}}{x}}-x\right) \sin \left(2 \sqrt{-\frac{a^{2}}{x}}\right)-x\left(c_{1}-2 \sqrt{-\frac{a^{2}}{x}}\right) \cos \left(2 \sqrt{-\frac{a^{2}}{x}}\right)}{2 \cos \left(2 \sqrt{-\frac{a^{2}}{x}}\right) c_{1}+2 \sin \left(2 \sqrt{-\frac{a^{2}}{x}}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.457 (sec). Leaf size: 94
DSolve [2*x^2*y'[x]==2*y[x] $2+3 * x * y[x]-2 * a^{\wedge} 2 * x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{4 a^{2} c_{1} \sqrt{x}+2 a \sqrt{x} e^{\frac{4 a}{\sqrt{x}}}-x e^{\frac{4 a}{\sqrt{x}}}+2 a c_{1} x}{2 e^{\frac{4 a}{\sqrt{x}}}-4 a c_{1}} \\
& y(x) \rightarrow a(-\sqrt{x})-\frac{x}{2}
\end{aligned}
$$

2.49 problem 49

2.49.1 Solving as first order ode lie symmetry calculated ode 304
2.49.2 Solving as exact ode . 309
2.49.3 Solving as riccati ode . 314

Internal problem ID [10379]
Internal file name [OUTPUT/9326_Monday_June_06_2022_01_51_36_PM_57238639/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Riccati]

$$
x^{2} y^{\prime}-a x^{2} y^{2}-y b x=c
$$

2.49.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{a x^{2} y^{2}+b x y+c}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(a x^{2} y^{2}+b x y+c\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(a x^{2} y^{2}+b x y+c\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{2 a x y^{2}+b y}{x^{2}}-\frac{2\left(a x^{2} y^{2}+b x y+c\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(2 a x^{2} y+b x\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{a^{2} x^{4} y^{4} a_{3}+2 a b x^{3} y^{3} a_{3}+2 a x^{5} y b_{2}+a x^{4} y^{2} a_{2}+a x^{4} y^{2} b_{3}+2 a c x^{2} y^{2} a_{3}+2 a x^{4} y b_{1}+b^{2} x^{2} y^{2} a_{3}+b x^{4} b_{2}-1}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -a^{2} x^{4} y^{4} a_{3}-2 a b x^{3} y^{3} a_{3}-2 a x^{5} y b_{2}-a x^{4} y^{2} a_{2}-a x^{4} y^{2} b_{3}-2 a c x^{2} y^{2} a_{3} \tag{6E}\\
& \quad-2 a x^{4} y b_{1}-b^{2} x^{2} y^{2} a_{3}-b x^{4} b_{2}+b x^{2} y^{2} a_{3}-2 b c x y a_{3}-b x^{3} b_{1} \\
& \quad+b x^{2} y a_{1}+b_{2} x^{4}+c x^{2} a_{2}+c x^{2} b_{3}+2 c x y a_{3}-c^{2} a_{3}+2 c x a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{2} a_{3} v_{1}^{4} v_{2}^{4}-2 a b a_{3} v_{1}^{3} v_{2}^{3}-a a_{2} v_{1}^{4} v_{2}^{2}-2 a b_{2} v_{1}^{5} v_{2}-a b_{3} v_{1}^{4} v_{2}^{2}-2 a c a_{3} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& -2 a b_{1} v_{1}^{4} v_{2}-b^{2} a_{3} v_{1}^{2} v_{2}^{2}+b a_{3} v_{1}^{2} v_{2}^{2}-b b_{2} v_{1}^{4}-2 b c a_{3} v_{1} v_{2}+b a_{1} v_{1}^{2} v_{2} \\
& -b b_{1} v_{1}^{3}+b_{2} v_{1}^{4}+c a_{2} v_{1}^{2}+2 c a_{3} v_{1} v_{2}+c b_{3} v_{1}^{2}-c^{2} a_{3}+2 c a_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 a b_{2} v_{1}^{5} v_{2}-a^{2} a_{3} v_{1}^{4} v_{2}^{4}+\left(-a a_{2}-a b_{3}\right) v_{1}^{4} v_{2}^{2}-2 a b_{1} v_{1}^{4} v_{2}+\left(-b b_{2}+b_{2}\right) v_{1}^{4} \tag{8E}\\
& -2 a b a_{3} v_{1}^{3} v_{2}^{3}-b b_{1} v_{1}^{3}+\left(-2 a c a_{3}-b^{2} a_{3}+b a_{3}\right) v_{1}^{2} v_{2}^{2}+b a_{1} v_{1}^{2} v_{2} \\
& +\left(c a_{2}+c b_{3}\right) v_{1}^{2}+\left(-2 b c a_{3}+2 c a_{3}\right) v_{1} v_{2}+2 c a_{1} v_{1}-c^{2} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b a_{1} & =0 \\
-2 a b_{1} & =0 \\
-2 a b_{2} & =0 \\
-a^{2} a_{3} & =0 \\
-b b_{1} & =0 \\
2 c a_{1} & =0 \\
-c^{2} a_{3} & =0 \\
-2 a b a_{3} & =0 \\
-b b_{2}+b_{2} & =0 \\
-a a_{2}-a b_{3} & =0 \\
-2 b c a_{3}+2 c a_{3} & =0 \\
c a_{2}+c b_{3} & =0 \\
-2 a c a_{3}-b^{2} a_{3}+b a_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{a x^{2} y^{2}+b x y+c}{x^{2}}\right)(-x) \\
& =\frac{a x^{2} y^{2}+b x y+y x+c}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a x^{2} y^{2}+b x y+y x+c}{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 x \arctan \left(\frac{2 a x^{2} y+b x+x}{\sqrt{4 a c x^{2}-b^{2} x^{2}-2 b x^{2}-x^{2}}}\right)}{\sqrt{4 a c x^{2}-b^{2} x^{2}-2 b x^{2}-x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{a x^{2} y^{2}+b x y+c}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{a x^{2} y^{2}+y(b+1) x+c} \\
S_{y} & =\frac{x}{a x^{2} y^{2}+y(b+1) x+c}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \arctan \left(\frac{2 y a x+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{2 \arctan \left(\frac{2 y a x+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b-1}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}-b-1}{2 x a}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b-1}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}-b-1}{2 x a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\tan \left(\frac{\ln (x) \sqrt{4 c a-b^{2}-2 b-1}}{2}+\frac{c_{1} \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}-b-1}{2 x a}
$$

Verified OK.

2.49.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(a x^{2} y^{2}+b x y+c\right) \mathrm{d} x \\
\left(-a x^{2} y^{2}-b x y-c\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-a x^{2} y^{2}-b x y-c \\
& N(x, y)=x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-a x^{2} y^{2}-b x y-c\right) \\
& =-2 a x^{2} y-b x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}}\left(\left(-2 a x^{2} y-b x\right)-(2 x)\right) \\
& =\frac{-2 a x y-b-2}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{a x^{2} y^{2}+b x y+c}\left((2 x)-\left(-2 a x^{2} y-b x\right)\right) \\
& =-\frac{x(2 a x y+b+2)}{a x^{2} y^{2}+b x y+c}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(2 x)-\left(-2 a x^{2} y-b x\right)}{x\left(-a x^{2} y^{2}-b x y-c\right)-y\left(x^{2}\right)} \\
& =\frac{-2 a x y-b-2}{a x^{2} y^{2}+y(b+1) x+c}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-2 a t-b-2}{a t^{2}+(b+1) t+c}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-2 a t-b-2}{a t^{2}+(b+1) t+c}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln \left(a t^{2}+t b+c+t\right)-\frac{2 \arctan \left(\frac{2 a t+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}} \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a t+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a t^{2}+t b+c+t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}+2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+b x y+y x+c}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{44 a-b} b^{2}-2 b-1}\right.}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+b x y+y x+c}\left(-a x^{2} y^{2}-b x y-c\right) \\
& =-\frac{\left(a x^{2} y^{2}+b x y+c\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+y(b+1) x+c}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+b x y+y x+c}\left(x^{2}\right) \\
& =\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+y(b+1) x+c}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{\left.\left(a x^{2} y^{2}+b x y+c\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}\right)+\left(\frac{x^{2} \mathrm{e}^{\left.-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{44 a-b} b^{2}-2 b-1}\right.}{}\right)}}{a x^{2} y^{2}+y(b+1) x+c}\right)}{a x^{2} y^{2}+y(b+1) x+c}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\left(a x^{2} y^{2}+b x y+c\right) \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}+2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+y(b+1) x+c} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\left.\begin{array}{rl}
\frac{\partial \phi}{\partial y} & \left.=\frac{4 x^{2} a \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{\left(4 c a-b^{2}-2 b-1\right)\left(\frac{(2 a x y+b+1)^{2}}{4 c a-b^{2}-2 b-1}\right.}+1\right) \tag{4}
\end{array} f^{\prime}(y)\right)
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\left.x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b} 2-2 b-1}\right.}{\sqrt{4}-c-b^{2}-2 b-1}}\right)}{a x^{2} y^{2}+y(b+1) x+c}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+y(b+1) x+c}=\frac{x^{2} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}}}{a x^{2} y^{2}+y(b+1) x+c}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{44 a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}} x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x y+b+1}{\sqrt{4 c a-b^{2}-2 b-1}}\right)}{\sqrt{4 c a-b^{2}-2 b-1}}} x
$$

The solution becomes

$$
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}+b+1}{2 x a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}+b+1}{2 x a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\tan \left(\frac{\ln \left(-\frac{c_{1}}{x}\right) \sqrt{4 c a-b^{2}-2 b-1}}{2}\right) \sqrt{4 c a-b^{2}-2 b-1}+b+1}{2 x a}
$$

Verified OK.

2.49.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y^{2}+b x y+c}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b y}{x}+\frac{c}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c}{x^{2}}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{a b}{x} \\
f_{2}^{2} f_{0} & =\frac{a^{2} c}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-\frac{a b u^{\prime}(x)}{x}+\frac{a^{2} c u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{\frac{b}{2}} \sqrt{x}\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{1}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{2}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\left(c_{2}\left(1+b-\sqrt{-4 c a+b^{2}+2 b+1}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}+x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{1}\left(1+b+\sqrt{-4 c a+b^{2}+2 b+1}\right)\right) x}{2 \sqrt{x}}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& \quad-\frac{c_{2}\left(1+b-\sqrt{-4 c a+b^{2}+2 b+1}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}+x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{1}\left(1+b+\sqrt{-4 c a+b^{2}+2 b+1}\right)}{2 x a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{1}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{2}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{\left(-1-b+\sqrt{-4 c a+b^{2}+2 b+1}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}\left(1+b+\sqrt{-4 c a+b^{2}+2 b+1}\right)}{2 x a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}\right)}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(-1-b+\sqrt{-4 c a+b^{2}+2 b+1}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}\left(1+b+\sqrt{-4 c a+b^{2}+2 b+1}\right)}{2 x a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}\right)}$
Verification of solutions
y
$=\frac{\left(-1-b+\sqrt{-4 c a+b^{2}+2 b+1}\right) x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}-x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}\left(1+b+\sqrt{-4 c a+b^{2}+2 b+1}\right)}{2 x a\left(x^{\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}} c_{3}+x^{-\frac{\sqrt{-4 c a+b^{2}+2 b+1}}{2}}\right)}$
Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 59

```
dsolve(x^2*diff (y (x),x)=a*x^2*y(x)^2+b*x*y(x)+c,y(x), singsol=all)
```

$$
y(x)=\frac{-1-b+\tan \left(\frac{\sqrt{4 a c-b^{2}-2 b-1}\left(\ln (x)-c_{1}\right)}{2}\right) \sqrt{4 a c-b^{2}-2 b-1}}{2 a x}
$$

\checkmark Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 99
DSolve[x^2*y'[x]==a*x^2*y[x]^2+b*x*y[x]+c,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-4 a c+b^{2}+2 b+1}\left(1-\frac{2 c_{1}}{x^{\sqrt{-4 a c+b^{2}+2 b+1}+c_{1}}}\right)+b+1}{2 a x} \\
& y(x) \rightarrow-\frac{-\sqrt{-4 a c+b^{2}+2 b+1}+b+1}{2 a x}
\end{aligned}
$$

2.50 problem 50

2.50.1 Solving as riccati ode . 318

Internal problem ID [10380]
Internal file name [OUTPUT/9327_Monday_June_06_2022_01_51_39_PM_55641103/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-y^{2} c x^{2}-\left(a x^{2}+b x\right) y=\alpha x^{2}+\beta x+\gamma
$$

2.50.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} c x^{2}+a x^{2} y+\alpha x^{2}+b x y+\beta x+\gamma}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=c y^{2}+y a+\alpha+\frac{b y}{x}+\frac{\beta}{x}+\frac{\gamma}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\alpha x^{2}+\beta x+\gamma}{x^{2}}, f_{1}(x)=\frac{a x^{2}+b x}{x^{2}}$ and $f_{2}(x)=c$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{c u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{\left(a x^{2}+b x\right) c}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{c^{2}\left(\alpha x^{2}+\beta x+\gamma\right)}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
c u^{\prime \prime}(x)-\frac{\left(a x^{2}+b x\right) c u^{\prime}(x)}{x^{2}}+\frac{c^{2}\left(\alpha x^{2}+\beta x+\gamma\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=x^{\frac{b}{2}} e^{\frac{x a}{2}} & \left(c_{1} \text { WhittakerM }\left(-\frac{a b-2 \beta c}{2 \sqrt{a^{2}-4 \alpha c}}, \frac{\sqrt{b^{2}-4 c \gamma+2 b+1}}{2}, \sqrt{a^{2}-4 \alpha c} x\right)\right. \\
& \left.+c_{2} \text { WhittakerW }\left(-\frac{a b-2 \beta c}{2 \sqrt{a^{2}-4 \alpha c}}, \frac{\sqrt{b^{2}-4 c \gamma+2 b+1}}{2}, \sqrt{a^{2}-4 \alpha c} x\right)\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\left(- c _ { 1 } (a b - 2 \beta c - \sqrt { b ^ { 2 } - 4 c \gamma + 2 b + 1 } \sqrt { a ^ { 2 } - 4 \alpha c } - \sqrt { a ^ { 2 } - 4 \alpha c }) \text { WhittakerM } \left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 \alpha c}}, \frac{\sqrt{b^{2}-4 c}}{}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
&-\underline{\left(- c _ { 1 } (a b - 2 \beta c - \sqrt { b ^ { 2 } - 4 c \gamma + 2 b + 1 } \sqrt { a ^ { 2 } - 4 \alpha c } - \sqrt { a ^ { 2 } - 4 \alpha c }) \text { WhittakerM } \left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 \alpha c}}, \frac{\sqrt{b^{2}}}{}\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-c_{3}\left(a b-2 \beta c-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c}\right) \text { WhittakerM }\left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 \alpha c}}, \frac{\sqrt{b^{2}-}}{}\right.
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

$$
--c_{3}\left(a b-2 \beta c-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c}\right) \text { WhittakerM }\left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 a c}}, \frac{\sqrt{b^{2}-}}{}\right.
$$

Verification of solutions
$y=$

$$
-c_{3}\left(a b-2 \beta c-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c}\right) \text { WhittakerM }\left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 a c}}, \frac{\sqrt{b^{2}-}}{}\right.
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*x+b)*(diff(y(x), x))/x-c*(a
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Whittaker successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 443
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)=c * x^{\wedge} 2 * y(x)^{\wedge} 2+\left(a * x^{\wedge} 2+b * x\right) * y(x)+a l p h a * x^{\wedge} 2+b e t a * x+g a m m a, y(x)\right.$, singsol=a

$$
\begin{aligned}
& y(x)= \\
& \quad-\frac{\left(\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-a b+2 \beta c+\sqrt{a^{2}-4 \alpha c}\right) \text { WhittakerM }\left(-\frac{a b-2 \beta c-2 \sqrt{a^{2}-4 \alpha c}}{2 \sqrt{a^{2}-4 a c}}, \frac{\sqrt{b^{2}-4 c \gamma+2}}{2}\right.}{} .
\end{aligned}
$$

Solution by Mathematica

Time used: 1.712 (sec). Leaf size: 1584

```
DSolve[x^2*y'[x]==c*x^2*y[x]^2+(a*x^2+b*x)*y[x]+\[Alpha]*x^2+\[Beta]*x+\[Gamma],y[x],x, Inclu
```

$$
y(x) \rightarrow
$$

$$
\left(b+a x-x \sqrt{a^{2}-4 c \alpha}+\sqrt{b^{2}+2 b-4 c \gamma+1}+1\right) c_{1} \text { HypergeometricU }\left(\frac{a b-2 c \beta+\sqrt{a^{2}-4 c \alpha}\left(\sqrt{b^{2}+2 b-4 c \gamma+1}\right.}{2 \sqrt{a^{2}-4 c \alpha}}\right.
$$

$y(x)$

2.51 problem 51

2.51.1 Solving as riccati ode . 323

Internal problem ID [10381]
Internal file name [OUTPUT/9328_Monday_June_06_2022_01_51_52_PM_78719202/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-a x^{2} y^{2}-y b x=c x^{n}+s
$$

2.51.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y^{2}+b x y+c x^{n}+s}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b y}{x}+\frac{c x^{n}}{x^{2}}+\frac{s}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{n}+s}{x^{2}}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{a b}{x} \\
f_{2}^{2} f_{0} & =\frac{a^{2}\left(c x^{n}+s\right)}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-\frac{a b u^{\prime}(x)}{x}+\frac{a^{2}\left(c x^{n}+s\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=x^{\frac{b}{2}} \sqrt{x}(\operatorname{BesselJ} & \left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1} \\
& \left.+\operatorname{BesselY}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\underline{\left(-2 \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right) x^{\frac{n}{2}}+(\mathrm{B})\right.}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(-2 \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{2}\right) x^{\frac{n}{2}}+\right.}{2 a \sqrt{x}\left(\operatorname { B e s s e l J } \left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{2 \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-(\operatorname{Bessel} \mathrm{J}}{2 a x\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}\right.}$
Summary
The solution(s) found are the following
y
(1)
$=\frac{2 \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-(\operatorname{Bessel} \mathrm{J}}{2 a x\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}-1\right.}$
Verification of solutions
y
$=\frac{2 \sqrt{c a}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}+\operatorname{Bessel}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right)\right) x^{\frac{n}{2}}-(\operatorname{Bessel} \mathrm{J}}{2 a x\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{c a} x^{\frac{n}{2}}}{n}\right) c_{3}-1\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = b*(diff(y(x), x))/x-a*(x^(n-2)
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 263
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=a * x^{\wedge} 2 * y(x)^{\wedge} 2+b * x * y(x)+c * x^{\wedge} n+s, y(x)$, singsol=all)
$y(x)$
$=\frac{2\left(\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}+1, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right)\right) \sqrt{a c} x^{\frac{n}{2}}-(\operatorname{Bessel} Y}{2 x a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{n}, \frac{2 \sqrt{a c} x^{\frac{n}{2}}}{n}\right) c_{1}\right.}$
\checkmark Solution by Mathematica
Time used: 2.637 (sec). Leaf size: 2281
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==a * x^{\wedge} 2 * y[x] \sim 2+b * x * y[x]+c * x^{\wedge} n+s, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]
Too large to display

2.52 problem 52

2.52.1 Solving as riccati ode

328
Internal problem ID [10382]
Internal file name [OUTPUT/9329_Monday_June_06_2022_01_51_53_PM_16676066/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 52.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-a x^{2} y^{2}-y b x=c x^{2 n}+s x^{n}
$$

2.52.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y^{2}+b x y+c x^{2 n}+s x^{n}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b y}{x}+\frac{c x^{2 n}}{x^{2}}+\frac{s x^{n}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{2 n}+s x^{n}}{x^{2}}, f_{1}(x)=\frac{b}{x}$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{a b}{x} \\
f_{2}^{2} f_{0} & =\frac{a^{2}\left(c x^{2 n}+s x^{n}\right)}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-\frac{a b u^{\prime}(x)}{x}+\frac{a^{2}\left(c x^{2 n}+s x^{n}\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\left(\text { WhittakerW }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right) c_{2}\right. \\
& \left.\quad+\text { WhittakerM }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right) c_{1}\right) x^{\frac{b}{2}-\frac{n}{2}+\frac{1}{2}}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\underline{\left(-(i \sqrt{a} \sqrt{c} s-c(1+b+n)) c_{1} \text { WhittakerM }\left(-\frac{i \sqrt{a} s-2 n \sqrt{c}}{2 n \sqrt{c}}, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right)-2 c n c_{2} \text { WhittakerW }\left(-\frac{i \sqrt{a}}{}\right.\right.}$

Using the above in (1) gives the solution
$y=$
$-\frac{\left(-(i \sqrt{a} \sqrt{c} s-c(1+b+n)) c_{1} \text { WhittakerM }\left(-\frac{i \sqrt{a} s-2 n \sqrt{c}}{2 n \sqrt{c}}, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right)-2 c n c_{2} \text { WhittakerW }\left(-\frac{i}{2}\right)\right.}{2 c a(\mathrm{~Wh}}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{(i \sqrt{a} \sqrt{c} s-c(1+b+n)) c_{3} \text { WhittakerM }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right)+2 \text { WhittakerW }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+}{2 n}\right.}{2 a c x\left(\text { WhittakerW }\left(-\frac{i}{2 n}\right.\right.}$
Summary
The solution(s) found are the following
y
(1)
$=\frac{(i \sqrt{a} \sqrt{c} s-c(1+b+n)) c_{3} \text { WhittakerM }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right)+2 \text { WhittakerW }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+}{2 n}\right.}{2 a c x\left(\text { WhittakerW }\left(-\frac{i}{2}\right.\right.}$
Verification of solutions
y
$=\frac{(i \sqrt{a} \sqrt{c} s-c(1+b+n)) c_{3} \text { WhittakerM }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+1}{2 n}, \frac{2 i \sqrt{c} \sqrt{a} x^{n}}{n}\right)+2 \text { WhittakerW }\left(-\frac{i \sqrt{a} s}{2 n \sqrt{c}}+1, \frac{b+}{2 n}\right.}{2 a c x\left(\text { WhittakerW }\left(-\frac{i}{2 n}\right.\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = b*(diff(y(x), x))/x-a*(x^(2*n-
        Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
    <- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 373

```
dsolve(x^2*diff(y(x),x)=a*x^2*y(x)^2+b*x*y(x)+c*x^(2*n)+s*x^n,y(x), singsol=all)
```

$y(x)$
$=\frac{\operatorname{KummerM}\left(\frac{(b-n+1) \sqrt{c}+i \sqrt{a} s}{2 \sqrt{c} n}, \frac{b+n+1}{n}, \frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)((-b-n-1) \sqrt{c}+i \sqrt{a} s)+2 \sqrt{c} \operatorname{KummerU}\left(\frac{(b-n+1) \sqrt{c}}{2 \sqrt{c} n}\right.}{2 \sqrt{c} x a\left(\operatorname{KummerU}\left(\frac{(b+}{}\right.\right.}$
Solution by Mathematica
Time used: 1.839 (sec). Leaf size: 819

```
DSolve[x^2*y'[x]==a*x^2*y[x]^2+b*x*y[x]+c*x^(2*n)+s*x^n,y[x],x,IncludeSingularSolutions -> T
```

$y(x) \rightarrow$

$$
i \sqrt{a} c_{1} x^{n}(\sqrt{c}(b+n+1)-i \sqrt{a} s) \text { Hypergeometric } \mathrm{U}\left(\frac{b+3 n-\frac{i \sqrt{a} s}{\sqrt{c}}+1}{2 n}, \frac{b+2 n+1}{n},-\frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)+c_{1} n(i \sqrt{a} \sqrt{c}
$$

$$
a n x\left(c_{1}\right. \text { Hyperge }
$$

$y(x)$

$$
-\frac{\frac{\sqrt{a} x^{n}(\sqrt{a} s+i \sqrt{c}(b+n+1)) \text { HypergeometricU }\left(\frac{b+3 n-\frac{i \sqrt{a} s}{\sqrt{c}}+1}{2 n}, \frac{b+2 n+1}{n},-\frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)}{n \text { HypergeometricU }\left(\frac{b+n-\frac{i \sqrt{ }{ }^{s} s}{\sqrt{c}}+1}{2 n}, \frac{b+n+1}{n},-\frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)}+i \sqrt{a} \sqrt{c} x^{n}+b+1}{a x}
$$

$$
\begin{aligned}
& \rightarrow(x) \\
& \\
& \rightarrow-\frac{a x}{\frac{\sqrt{a} x^{n}(\sqrt{a} s+i \sqrt{c}(b+n+1)) \text { HypergeometricU }\left(\frac{b+3 n-\frac{i \sqrt{a} s}{\sqrt{c}}+1}{2 n}, \frac{b+2 n+1}{n},-\frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)}{n \text { HypergeometricU }\left(\frac{b+n-\frac{i \sqrt{a} s}{\sqrt{c}}+1}{2 n}, \frac{b+n+1}{n},-\frac{2 i \sqrt{a} \sqrt{c} x^{n}}{n}\right)}+i \sqrt{a} \sqrt{c} x^{n}+b+1} \\
& a x
\end{aligned}
$$

2.53 problem 53

2.53.1 Solving as riccati ode . 333

Internal problem ID [10383]
Internal file name [OUTPUT/9330_Monday_June_06_2022_01_51_58_PM_89123123/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 53.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-y^{2} c x^{2}-\left(x^{n} a+b\right) x y=\alpha x^{2 n}+\beta x^{n}+\gamma
$$

2.53.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} c x^{2}+a x^{n} x y+b x y+\beta x^{n}+\alpha x^{2 n}+\gamma}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=c y^{2}+\frac{x^{n} a y}{x}+\frac{b y}{x}+\frac{\beta x^{n}}{x^{2}}+\frac{\alpha x^{2 n}}{x^{2}}+\frac{\gamma}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\alpha x^{2 n}+\beta x^{n}+\gamma}{x^{2}}, f_{1}(x)=\frac{x^{n} a x+b x}{x^{2}}$ and $f_{2}(x)=c$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{c u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{\left(x^{n} a x+b x\right) c}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{c^{2}\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
c u^{\prime \prime}(x)-\frac{\left(x^{n} a x+b x\right) c u^{\prime}(x)}{x^{2}}+\frac{c^{2}\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =x^{\frac{b}{2}-\frac{n}{2}+\frac{1}{2}} \mathrm{e}^{\frac{x^{n} a}{2 n}}\left(c_{1} \text { WhittakerM }\left(-\frac{(b-n+1) a-2 \beta c}{2 \sqrt{a^{2}-4 \alpha c} n}, \frac{\sqrt{b^{2}-4 c \gamma+2 b+1}}{2 n}, \frac{\sqrt{a^{2}-4 \alpha c} x^{n}}{n}\right)\right. \\
& \left.\quad+c_{2} \text { WhittakerW }\left(-\frac{(b-n+1) a-2 \beta c}{2 \sqrt{a^{2}-4 \alpha c} n}, \frac{\sqrt{b^{2}-4 c \gamma+2 b+1}}{2 n}, \frac{\sqrt{a^{2}-4 \alpha c} x^{n}}{n}\right)\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$

Using the above in (1) gives the solution
$y=$

$$
-\underline{\left(-x^{\frac{n}{2}}\left(-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c} n+(b-n+1) a-2 \beta c\right) c_{1} \text { WhittakerM }\left(-\frac{-2}{}\right) .\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\underline{\left(-x^{\frac{n}{2}}\left(-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c} n+(b-n+1) a-2 \beta c\right) c_{3} \text { WhittakerM }\left(-\frac{-2}{}\right) .\right.}
$$

Summary
The solution(s) found are the following
$y=$
$-\underline{\left(-x^{\frac{n}{2}}\left(-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c} n+(b-n+1) a-2 \beta c\right) c_{3} \text { WhittakerM }\left(-\frac{-2}{}\right) .\right.}$

Verification of solutions
$y=$

$$
-\underline{\left(-x^{\frac{n}{2}}\left(-\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}-\sqrt{a^{2}-4 \alpha c} n+(b-n+1) a-2 \beta c\right) c_{3} \text { WhittakerM }\left(-\frac{-2}{}\right) ~\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(n-1)*a*x+b)*(diff(y(x), x)
        Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Whittaker successful
    <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 560
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)=c * x^{\wedge} 2 * y(x)^{\wedge} 2+\left(a * x^{\wedge} n+b\right) * x * y(x)+a l p h a * x^{\wedge}(2 * n)+b e t a * x^{\wedge} n+g a m m a, y(x)\right.$, sin
$y(x)=$
$-\underline{\left(\sqrt{b^{2}-4 c \gamma+2 b+1} \sqrt{a^{2}-4 \alpha c}+\sqrt{a^{2}-4 \alpha c} n+(n-b-1) a+2 \beta c\right) \text { WhittakerM }\left(-\frac{-2 \sqrt{a^{2}-4 \alpha c}+a}{2 \sqrt{a^{2}-2}}\right.}$
\checkmark Solution by Mathematica
Time used: 3.672 (sec). Leaf size: 1837
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==c * x^{\wedge} 2 * y[x] \wedge 2+\left(a * x^{\wedge} n+b\right) * x * y[x]+\backslash[A l p h a] * x^{\wedge}(2 * n)+\backslash[\right.$ Beta $] * x^{\wedge} n+\backslash[$ Gamma $], y[x], x$
$y(x)$

$$
-\left(\left(-\left(\left(n^{2}+\sqrt{n^{2}\left(b^{2}+2 b-4 c \gamma+1\right)}\right) a^{2}\right)+n(-b+n-1) \sqrt{a^{2}-4 c \alpha} a+2 c\left(2 \alpha n^{2}+\sqrt{a^{2}-4 c \alpha} \beta n\right.\right.\right.
$$

\qquad
$y(x)$
$x^{n}\left(2 c\left(\beta n \sqrt{a^{2}-4 \alpha c}+2 \alpha \sqrt{n^{2}\left(b^{2}+2 b-4 c \gamma+1\right)}+2 \alpha n^{2}\right)-\left(a^{2}\left(\sqrt{n^{2}\left(b^{2}+2 b-4 c \gamma+1\right)}+n^{2}\right)\right)+a n(-b+n-1) \sqrt{a^{2}-4 \alpha c}\right)$ HypergeometricU $($ Hypergeometric $\mathrm{U}\left(\frac{\left(n^{2}+\sqrt{n^{2}\left(b^{2}+2 b-4 c \gamma+1\right)}\right) a^{2}+(b-n+1) n \sqrt{a^{2}-4 c \alpha} a-2 c\left(2 \alpha n^{2}\right.}{2 n^{2}\left(a^{2}-4 c \alpha\right)}\right.$

2.54 problem 54

2.54.1 Solving as riccati ode

Internal problem ID [10384]
Internal file name [OUTPUT/9331_Monday_June_06_2022_01_52_31_PM_88664424/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{2} y^{\prime}-\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right) y^{2}-\left(x^{n} a+b\right) x y=c x^{2}
$$

2.54.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2 n} \alpha y^{2}+a x^{n} x y+x^{n} \beta y^{2}+b x y+c x^{2}+\gamma y^{2}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{2 n} \alpha y^{2}}{x^{2}}+\frac{x^{n} a y}{x}+\frac{x^{n} \beta y^{2}}{x^{2}}+\frac{b y}{x}+c+\frac{\gamma y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=c, f_{1}(x)=\frac{x^{n} a x+b x}{x^{2}}$ and $f_{2}(x)=\frac{\alpha x^{2 n}+\beta x^{n}+\gamma}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right) u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\frac{2 \alpha x^{2 n} n}{x}+\frac{\beta x^{n} n}{x}}{x^{2}}-\frac{2\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)}{x^{3}} \\
f_{1} f_{2} & =\frac{\left(x^{n} a x+b x\right)\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)}{x^{4}} \\
f_{2}^{2} f_{0} & =\frac{\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)^{2} c}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right) u^{\prime \prime}(x)}{x^{2}}-\left(\frac{\frac{2 \alpha x^{2 n} n}{x}+\frac{\beta x^{n} n}{x}}{x^{2}}-\frac{2\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)}{x^{3}}+\frac{\left(x^{n} a x+b x\right)\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right)}{x^{4}}\right) u$
Solving the above ODE (this ode solved using Maple, not this program), gives

Expression too large to display

The above shows that
$u^{\prime}(x)$
$=\xlongequal{c x^{-\frac{3}{2}+\frac{b}{2}}\left(\left(-n+\sqrt{b^{2}-4 c \gamma-2 b+1}\right)\left(\left(3 \gamma^{2} \alpha+3 \beta^{2} \gamma\right) x^{2 n-\frac{\sqrt{b^{2}-4 c \gamma-2 b+1}}{2}}+\left(6 \beta \gamma \alpha+\beta^{3}\right) x^{3 n-\frac{\sqrt{b^{2}-4 c \gamma-2 b+1}}{2}}\right.\right.}$

Using the above in (1) gives the solution

Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display
Summary
The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(n-1)*x^(2*n-2)*a*alpha*x^3
        Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 215200
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)=\left(\right.\right.$ alpha*x^$\left.(2 * n)+b e t a * x^{\wedge} n+g a m m a\right) * y(x)^{\wedge} 2+\left(a * x^{\wedge} n+b\right) * x * y(x)+c * x^{\wedge} 2, y(x)$,

> Expression too large to display
$\sqrt{ }$ Solution by Mathematica
Time used: 4.676 (sec). Leaf size: 2649
DSolve $\left[x^{\wedge} 2 * y^{\prime}[\mathrm{x}]==\left(\backslash[\right.\right.$ Alpha $] * x^{\wedge}(2 * n)+\backslash$ Beta $] * x^{\wedge} n+\backslash[$ Gamma $\left.]\right) * y[x] \wedge 2+\left(a * x^{\wedge} n+b\right) * x * y[x]+c * x^{\wedge} 2, y[x]$

Too large to display

2.55 problem 55

2.55.1 Solving as riccati ode . 343

Internal problem ID [10385]
Internal file name [OUTPUT/9332_Monday_June_06_2022_01_56_49_PM_58358154/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 55.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(x^{2}-1\right) y^{\prime}+\lambda\left(y^{2}-2 x y+1\right)=0
$$

2.55.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\lambda\left(-2 y x+y^{2}+1\right)}{x^{2}-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{2 \lambda y x}{x^{2}-1}-\frac{\lambda y^{2}}{x^{2}-1}-\frac{\lambda}{x^{2}-1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{\lambda}{x^{2}-1}, f_{1}(x)=\frac{2 \lambda x}{x^{2}-1}$ and $f_{2}(x)=-\frac{\lambda}{x^{2}-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\lambda u}{x^{2}-1}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 \lambda x}{\left(x^{2}-1\right)^{2}} \\
f_{1} f_{2} & =-\frac{2 \lambda^{2} x}{\left(x^{2}-1\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\lambda^{3}}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\lambda u^{\prime \prime}(x)}{x^{2}-1}-\left(-\frac{2 \lambda^{2} x}{\left(x^{2}-1\right)^{2}}+\frac{2 \lambda x}{\left(x^{2}-1\right)^{2}}\right) u^{\prime}(x)-\frac{\lambda^{3} u(x)}{\left(x^{2}-1\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\text { LegendreP }(\lambda-1, x) c_{1}+\text { LegendreQ }(\lambda-1, x) c_{2}\right)\left(x^{2}-1\right)^{\frac{\lambda}{2}}
$$

The above shows that

$$
u^{\prime}(x)=\lambda\left(x^{2}-1\right)^{-1+\frac{\lambda}{2}}\left(\text { LegendreP }(\lambda, x) c_{1}+\text { LegendreQ }(\lambda, x) c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(x^{2}-1\right)^{-1+\frac{\lambda}{2}}\left(\text { LegendreP }(\lambda, x) c_{1}+\text { LegendreQ }(\lambda, x) c_{2}\right)\left(x^{2}-1\right)\left(x^{2}-1\right)^{-\frac{\lambda}{2}}}{\text { LegendreP }(\lambda-1, x) c_{1}+\operatorname{LegendreQ}(\lambda-1, x) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\text { LegendreP }(\lambda, x) c_{3}+\operatorname{LegendreQ}(\lambda, x)}{\operatorname{LegendreP}(\lambda-1, x) c_{3}+\operatorname{LegendreQ}(\lambda-1, x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\text { LegendreP }(\lambda, x) c_{3}+\operatorname{LegendreQ}(\lambda, x)}{\operatorname{LegendreP}(\lambda-1, x) c_{3}+\operatorname{LegendreQ}(\lambda-1, x)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\text { LegendreP }(\lambda, x) c_{3}+\text { LegendreQ }(\lambda, x)}{\text { LegendreP }(\lambda-1, x) c_{3}+\text { LegendreQ }(\lambda-1, x)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 2F1 3-parameter class`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 280

```
dsolve((x^2-1)*diff(y(x),x)+lambda*(y(x)^2-2*x*y(x)+1)=0,y(x), singsol=all)
```

$y(x)=$

$$
2\left(\left(-\frac{x}{2}-\frac{1}{2}\right)^{-2 \lambda}(1+x)(-1+x)^{2} \text { HeunCPrime }\left(0,2 \lambda-1,0,0, \lambda^{2}-\lambda+\frac{1}{2}, \frac{2}{1+x}\right)+8(-1+x)^{2}\right. \text { Heun }
$$

\checkmark Solution by Mathematica
Time used: 0.643 (sec). Leaf size: 47
DSolve $\left[\left(x^{\wedge} 2-1\right) * y '[x]+\backslash[\right.$ Lambda $] *(y[x] \sim 2-2 * x * y[x]+1)==0, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
\begin{aligned}
& y(x) \rightarrow \frac{\text { LegendreQ }(\lambda, x)+c_{1} \text { LegendreP }(\lambda, x)}{\text { LegendreQ }(\lambda-1, x)+c_{1} \text { LegendreP }(\lambda-1, x)} \\
& y(x) \rightarrow \frac{\text { LegendreP }(\lambda, x)}{\text { LegendreP }(\lambda-1, x)}
\end{aligned}
$$

2.56 problem 56

2.56.1 Solving as riccati ode . 347

Internal problem ID [10386]
Internal file name [OUTPUT/9333_Monday_June_06_2022_01_56_50_PM_34885414/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a x^{2}+b\right) y^{\prime}+\alpha y^{2}+\beta x y=-\frac{b(a+\beta)}{\alpha}
$$

2.56.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\alpha^{2} y^{2}+\beta x y \alpha+a b+\beta b}{\left(a x^{2}+b\right) \alpha}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\alpha y^{2}}{a x^{2}+b}-\frac{\beta x y}{a x^{2}+b}-\frac{b a}{\left(a x^{2}+b\right) \alpha}-\frac{b \beta}{\left(a x^{2}+b\right) \alpha}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a b+\beta b}{\left(a x^{2}+b\right) \alpha}, f_{1}(x)=-\frac{\beta x}{a x^{2}+b}$ and $f_{2}(x)=-\frac{\alpha}{a x^{2}+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\alpha u}{a x^{2}+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 \alpha x a}{\left(a x^{2}+b\right)^{2}} \\
f_{1} f_{2} & =\frac{\beta x \alpha}{\left(a x^{2}+b\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\alpha(a b+\beta b)}{\left(a x^{2}+b\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\alpha u^{\prime \prime}(x)}{a x^{2}+b}-\left(\frac{\beta x \alpha}{\left(a x^{2}+b\right)^{2}}+\frac{2 \alpha x a}{\left(a x^{2}+b\right)^{2}}\right) u^{\prime}(x)-\frac{\alpha(a b+\beta b) u(x)}{\left(a x^{2}+b\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\left(a x^{2}+b\right)^{-\frac{\beta}{4 a}}(\text { LegendreQ } & \left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{2} \\
+ & \text { LegendreP } \left.\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{1}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=x(a+\beta)\left(a x^{2}+b\right)^{-\frac{4 a+\beta}{4 a}}\left(-\operatorname{LegendreQ}\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{2}\right. \\
&\left.- \text { LegendreP }\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{1}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
y
$=\frac{x(a+\beta)\left(a x^{2}+b\right)^{-\frac{4 a+\beta}{4 a}}\left(-\operatorname{LegendreQ}\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{2}-\operatorname{LegendreP}\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{1}\right)\left(a x^{2}+b\right)}{\alpha\left(\operatorname{LegendreQ}\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{2}+\operatorname{LegendreP}\left(\frac{\beta}{2 a}, \frac{2 a+\beta}{2 a}, \frac{a x}{\sqrt{-a b}}\right) c_{1}\right)}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{(a+\beta) x}{\alpha}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{(a+\beta) x}{\alpha} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{(a+\beta) x}{\alpha}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 2F1 3-parameter class`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 517
dsolve $\left(\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x)+a l\right.$ pha* $y(x)^{\wedge} 2+$ beta $* x * y(x)+b / a l p h a *(a+b e t a)=0, y(x)$, singsol=all)
$y(x)=$

$$
-\frac{b a^{2}\left(-\frac{\left(-\frac{-a x+\sqrt{-a b}}{2 \sqrt{-a b}}\right)^{\frac{\beta}{a}}\left(a x^{2}+b\right)\left(a x^{2}+2 \sqrt{-a b} x-b\right) \operatorname{HeunCPrime}\left(0,-1-\frac{\beta}{a}, 1+\frac{\beta}{2 a}, 0, \frac{1}{2}+\frac{\beta}{2 a}+\frac{\beta^{2}}{4 a^{2}}, \frac{2 \sqrt{-a b}}{-a x+\sqrt{-a b}}\right)}{2}-2 c_{1} b\left(\left(3 a x^{2}-. .\right]\right.\right.}{}
$$

\checkmark Solution by Mathematica
Time used: 1.111 (sec). Leaf size: 27
DSolve $\left[\left(a * x^{\wedge} 2+b\right) * y\right.$ ' $[x]+\backslash[$ Alpha $] * y[x] \sim 2+\backslash[$ Beta $] * x * y[x]+b / \backslash[$ Alpha $] *(a+\backslash[$ Beta $])==0, y[x], x$, Inclu

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x(a+\beta)}{\alpha} \\
& y(x) \rightarrow-\frac{x(a+\beta)}{\alpha}
\end{aligned}
$$

2.57 problem 57

2.57.1 Solving as riccati ode . 351

Internal problem ID [10387]
Internal file name [OUTPUT/9334_Monday_June_06_2022_01_56_51_PM_67885841/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 57.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(a x^{2}+b\right) y^{\prime}+\alpha y^{2}+\beta x y=-\gamma
$$

2.57.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\alpha y^{2}+\beta x y+\gamma}{a x^{2}+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\alpha y^{2}}{a x^{2}+b}-\frac{\beta x y}{a x^{2}+b}-\frac{\gamma}{a x^{2}+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{\gamma}{a x^{2}+b}, f_{1}(x)=-\frac{\beta x}{a x^{2}+b}$ and $f_{2}(x)=-\frac{\alpha}{a x^{2}+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\alpha u}{a x^{2}+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 \alpha x a}{\left(a x^{2}+b\right)^{2}} \\
f_{1} f_{2} & =\frac{\beta x \alpha}{\left(a x^{2}+b\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\alpha^{2} \gamma}{\left(a x^{2}+b\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\alpha u^{\prime \prime}(x)}{a x^{2}+b}-\left(\frac{\beta x \alpha}{\left(a x^{2}+b\right)^{2}}+\frac{2 \alpha x a}{\left(a x^{2}+b\right)^{2}}\right) u^{\prime}(x)-\frac{\alpha^{2} \gamma u(x)}{\left(a x^{2}+b\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\left(a x^{2}+b\right)^{-\frac{\beta}{4 a}}\left(\text { LegendreP }\left(\frac{\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right) c_{1}\right. \\
&\left.+ \text { LegendreQ }\left(\frac{\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right) c_{2}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(a x^{2}+b\right)^{-\frac{4 a+\beta}{4 a}}\left(\left(-\frac{\sqrt{4 \alpha \gamma a+b \beta^{2}} b}{2}+b^{\frac{3}{2}}\left(a+\frac{\beta}{2}\right)\right) c_{1} \sqrt{-a b} \text { LegendreP }\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right)+\left(-\frac{\sqrt{4 \alpha \gamma a}}{2}\right.\right.}{2}$

Using the above in (1) gives the solution
y
$=\frac{\left(a x^{2}+b\right)^{-\frac{4 a+\beta}{4 a}}\left(\left(-\frac{\sqrt{4 \alpha \gamma a+b \beta^{2}} b}{2}+b^{\frac{3}{2}}\left(a+\frac{\beta}{2}\right)\right) c_{1} \sqrt{-a b} \operatorname{LegendreP}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right)+\left(-\frac{\sqrt{4 \alpha \gamma a}}{2}\right.\right.}{a}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left((-2 a-\beta) \sqrt{b}+\sqrt{4 \alpha \gamma a+b \beta^{2}}\right)\left(\operatorname{LegendreP}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right) c_{3}+\operatorname{LegendreQ}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma \sigma}}{2 a}\right.\right.}{2 \sqrt{b} a \alpha\left(\operatorname { L e g e n d r e P } \left(\frac{\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& -\frac{\left((-2 a-\beta) \sqrt{b}+\sqrt{4 \alpha \gamma a+b \beta^{2}}\right)\left(\operatorname{LegendreP}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right) c_{3}+\operatorname{LegendreQ}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma c}}{2 a v}\right.\right.}{2 \sqrt{b} a \alpha\left(\operatorname { L e g e n d r e P } \left(\frac{\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}\right.\right.}
\end{aligned}
$$

Verification of solutions
$y=$

$$
-\frac{\left((-2 a-\beta) \sqrt{b}+\sqrt{4 \alpha \gamma a+b \beta^{2}}\right)\left(\operatorname{LegendreP}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}, \frac{a x}{\sqrt{-a b}}\right) c_{3}+\operatorname{LegendreQ}\left(\frac{2 a+\beta}{2 a}, \frac{\sqrt{4 a \gamma \sigma}}{2 a}\right.\right.}{2 \sqrt{b} a \alpha\left(\operatorname { L e g e n d r e P } \left(\frac{\beta}{2 a}, \frac{\sqrt{4 \alpha \gamma a+b \beta^{2}}}{2 a \sqrt{b}}\right.\right.}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 2F1 3-parameter class`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 858
dsolve $\left(\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x)+\right.$ alpha*y $(x) \wedge 2+$ beta $* x * y(x)+$ gamma $=0, y(x)$, singsol=all)
$y(x)=$
$2\left(-a b(-\sqrt{-a b} x+b)\left(a x^{2}+b\right)\right.$ HeunCPrime $\left(0, \frac{-a+\beta}{a},-\frac{\sqrt{4 \gamma \alpha a b+\beta^{2} b^{2}}}{2 a b}, 0, \frac{2 a^{2}-2 \beta a+\beta^{2}}{4 a^{2}},-\frac{2 \sqrt{-a b}}{a x-\sqrt{-a b}}\right)+c$
\checkmark Solution by Mathematica
Time used: 1.098 (sec). Leaf size: 598
DSolve $\left[\left(a * x^{\wedge} 2+b\right) * y^{\prime}[x]+\backslash[\right.$ Alpha $] * y[x] \sim 2+\backslash[$ Beta $] * x * y[x]+\backslash[$ Gamma $]==0, y[x], x$, IncludeSingularSolu
$y(x)$

$$
y(x) \rightarrow \frac{-2 x(a+\beta)+\frac{i\left(\sqrt{4 a \alpha \gamma+b \beta^{2}}-2 a \sqrt{b}-\sqrt{b} \beta\right) P_{\frac{\beta}{b \beta^{2}+4 a \alpha \gamma}}^{2 a \sqrt{b}}}{2 a}\left(\frac{i \sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{\sqrt{a} P^{\frac{\sqrt{\beta}^{b}+4 a \sqrt{b}}{2 a}}\left(\frac{i \sqrt{a} x}{\sqrt{b}}\right)}} 2 \alpha_{2 \alpha}
$$

2.58 problem 58

2.58.1 Solving as first order ode lie symmetry calculated ode 355
2.58.2 Solving as riccati ode . 364

Internal problem ID [10388]
Internal file name [OUTPUT/9335_Monday_June_06_2022_01_56_55_PM_79509054/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 58.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

$$
\left(a x^{2}+b\right) y^{\prime}+y^{2}-2 x y=-(1-a) x^{2}+b
$$

2.58.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-a x^{2}+x^{2}-2 y x+y^{2}-b}{a x^{2}+b} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{\left(-a x^{2}+x^{2}-2 y x+y^{2}-b\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{a x^{2}+b} \\
& -\frac{\left(-a x^{2}+x^{2}-2 y x+y^{2}-b\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{\left(a x^{2}+b\right)^{2}}-\left(-\frac{-2 x a+2 x-2 y}{a x^{2}+b}\right. \tag{5E}\\
& \left.+\frac{2\left(-a x^{2}+x^{2}-2 y x+y^{2}-b\right) x a}{\left(a x^{2}+b\right)^{2}}\right)\left(x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{(-2 x+2 y)\left(x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)}{a x^{2}+b}=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{2 a^{2} x^{5} a_{4}+a^{2} x^{5} a_{5}-2 a^{2} x^{5} b_{4}-a^{2} x^{5} b_{5}+a^{2} x^{4} y a_{5}+2 a^{2} x^{4} y a_{6}-a^{2} x^{4} y b_{5}-2 a^{2} x^{4} y b_{6}+a^{2} x^{4} a_{2}+a^{2} x^{4} a_{3}-}{=0}$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 a^{2} x^{5} a_{4}-a^{2} x^{5} a_{5}+2 a^{2} x^{5} b_{4}+a^{2} x^{5} b_{5}-a^{2} x^{4} y a_{5} \\
& -2 a^{2} x^{4} y a_{6}+a^{2} x^{4} y b_{5}+2 a^{2} x^{4} y b_{6}-a^{2} x^{4} a_{2}-a^{2} x^{4} a_{3} \\
& +a^{2} x^{4} b_{2}+a^{2} x^{4} b_{3}+2 a x^{5} a_{4}+2 a x^{5} a_{5}-2 a x^{5} b_{4}-a x^{5} b_{5} \\
& -2 a x^{4} y a_{4}-3 a x^{4} y a_{5}+4 a x^{4} y a_{6}+2 a x^{4} y b_{4}-2 a x^{4} y b_{6} \\
& +2 a x^{3} y^{2} a_{5}-8 a x^{3} y^{2} a_{6}+a x^{3} y^{2} b_{5}+2 a x^{3} y^{2} b_{6}-a x^{2} y^{3} a_{5} \\
& +6 a x^{2} y^{3} a_{6}-2 a x y^{4} a_{6}-4 a b x^{3} a_{4}-2 a b x^{3} a_{5}+4 a b x^{3} b_{4} \\
& +2 a b x^{3} b_{5}-2 a b x^{2} y a_{5}-4 a b x^{2} y a_{6}+2 a b x^{2} y b_{5}+4 a b x^{2} y b_{6} \\
& +a x^{4} a_{2}+2 a x^{4} a_{3}-2 a x^{4} b_{2}-a x^{4} b_{3}-4 a x^{3} y a_{3}+2 a x^{3} y b_{2} \\
& -a x^{2} y^{2} a_{2}+4 a x^{2} y^{2} a_{3}+a x^{2} y^{2} b_{3}-2 a x y^{3} a_{3}-x^{5} a_{5} \tag{6E}\\
& +4 x^{4} y a_{5}-2 x^{4} y a_{6}-6 x^{3} y^{2} a_{5}+8 x^{3} y^{2} a_{6}+4 x^{2} y^{3} a_{5} \\
& -12 x^{2} y^{3} a_{6}-x y^{4} a_{5}+8 x y^{4} a_{6}-2 y^{5} a_{6}-2 a b x^{2} a_{2} \\
& -2 a b x^{2} a_{3}+2 a b x^{2} b_{2}+2 a b x^{2} b_{3}-2 a x^{3} b_{1}+2 a x^{2} y a_{1} \\
& +2 a x^{2} y b_{1}-2 a x y^{2} a_{1}+4 b x^{3} a_{4}+2 b x^{3} a_{5}-2 b x^{3} b_{4}-b x^{3} b_{5} \\
& -6 b x^{2} y a_{4}-b x^{2} y a_{5}+4 b x^{2} y a_{6}+2 b x^{2} y b_{4}-2 b x^{2} y b_{6} \\
& +2 b x y^{2} a_{4}-2 b x y^{2} a_{5}-6 b x y^{2} a_{6}+b x y^{2} b_{5}+2 b x y^{2} b_{6} \\
& +b y^{3} a_{5}+2 b y^{3} a_{6}-x^{4} a_{3}+4 x^{3} y a_{3}-6 x^{2} y^{2} a_{3}+4 x y^{3} a_{3} \\
& -y^{4} a_{3}-2 b^{2} x a_{4}-b^{2} x a_{5}+2 b^{2} x b_{4}+b^{2} x b_{5}-b^{2} y a_{5}-2 b^{2} y a_{6} \\
& +b^{2} y b_{5}+2 b^{2} y b_{6}+3 b x^{2} a_{2}+2 b x^{2} a_{3}-2 b x^{2} b_{2}-b x^{2} b_{3} \\
& -4 b x y a_{2}-2 b x y a_{3}+2 b x y b_{2}+b y^{2} a_{2}+b y^{2} b_{3}-b^{2} a_{2} \\
& -b^{2} a_{3}+b^{2} b_{2}+b^{2} b_{3}+2 b x a_{1}-2 b x b_{1}-2 b y a_{1}+2 b y b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a^{2} a_{4} v_{1}^{5}-a^{2} a_{5} v_{1}^{5}-a^{2} a_{5} v_{1}^{4} v_{2}-2 a^{2} a_{6} v_{1}^{4} v_{2}+2 a^{2} b_{4} v_{1}^{5}+a^{2} b_{5} v_{1}^{5}+a^{2} b_{5} v_{1}^{4} v_{2}+2 a^{2} b_{6} v_{1}^{4} v_{2} \\
& -a^{2} a_{2} v_{1}^{4}-a^{2} a_{3} v_{1}^{4}+a^{2} b_{2} v_{1}^{4}+a^{2} b_{3} v_{1}^{4}+2 a a_{4} v_{1}^{5}-2 a a_{4} v_{1}^{4} v_{2}+2 a a_{5} v_{1}^{5}-3 a a_{5} v_{1}^{4} v_{2} \\
& +2 a a_{5} v_{1}^{3} v_{2}^{2}-a a_{5} v_{1}^{2} v_{2}^{3}+4 a a_{6} v_{1}^{4} v_{2}-8 a a_{6} v_{1}^{3} v_{2}^{2}+6 a a_{6} v_{1}^{2} v_{2}^{3}-2 a a_{6} v_{1} v_{2}^{4}-2 a b_{4} v_{1}^{5}+2 a b_{4} v_{1}^{4} v_{2} \\
& -a b_{5} v_{1}^{5}+a b_{5} v_{1}^{3} v_{2}^{2}-2 a b_{6} v_{1}^{4} v_{2}+2 a b_{6} v_{1}^{3} v_{2}^{2}-4 a b a_{4} v_{1}^{3}-2 a b a_{5} v_{1}^{3}-2 a b a_{5} v_{1}^{2} v_{2}-4 a b a_{6} v_{1}^{2} v_{2} \\
& +4 a b b_{4} v_{1}^{3}+2 a b b_{5} v_{1}^{3}+2 a b b_{5} v_{1}^{2} v_{2}+4 a b b_{6} v_{1}^{2} v_{2}+a a_{2} v_{1}^{4}-a a_{2} v_{1}^{2} v_{2}^{2}+2 a a_{3} v_{1}^{4}-4 a a_{3} v_{1}^{3} v_{2} \\
& +4 a a_{3} v_{1}^{2} v_{2}^{2}-2 a a_{3} v_{1} v_{2}^{3}-2 a b_{2} v_{1}^{4}+2 a b_{2} v_{1}^{3} v_{2}-a b_{3} v_{1}^{4}+a b_{3} v_{1}^{2} v_{2}^{2}-a_{5} v_{1}^{5}+4 a_{5} v_{1}^{4} v_{2}-6 a_{5} v_{1}^{3} v_{2}^{2} \\
& +4 a_{5} v_{1}^{2} v_{2}^{3}-a_{5} v_{1} v_{2}^{4}-2 a_{6} v_{1}^{4} v_{2}+8 a_{6} v_{1}^{3} v_{2}^{2}-12 a_{6} v_{1}^{2} v_{2}^{3}+8 a_{6} v_{1} v_{2}^{4}-2 a_{6} v_{2}^{5}-2 a b a_{2} v_{1}^{2} \\
& -2 a b a_{3} v_{1}^{2}+2 a b b_{2} v_{1}^{2}+2 a b b_{3} v_{1}^{2}+2 a a_{1} v_{1}^{2} v_{2}-2 a a_{1} v_{1} v_{2}^{2}-2 a b_{1} v_{1}^{3}+2 a b_{1} v_{1}^{2} v_{2}+4 b a_{4} v_{1}^{3} \\
& -6 b a_{4} v_{1}^{2} v_{2}+2 b a_{4} v_{1} v_{2}^{2}+2 b a_{5} v_{1}^{3}-b a_{5} v_{1}^{2} v_{2}-2 b a_{5} v_{1} v_{2}^{2}+b a_{5} v_{2}^{3}+4 b a_{6} v_{1}^{2} v_{2}-6 b a_{6} v_{1} v_{2}^{2} \\
& +2 b a_{6} v_{2}^{3}-2 b b_{4} v_{1}^{3}+2 b b_{4} v_{1}^{2} v_{2}-b b_{5} v_{1}^{3}+b b_{5} v_{1} v_{2}^{2}-2 b b_{6} v_{1}^{2} v_{2}+2 b b_{6} v_{1} v_{2}^{2}-a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2} \\
& -6 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}-2 b^{2} a_{4} v_{1}-b^{2} a_{5} v_{1}-b^{2} a_{5} v_{2}-2 b^{2} a_{6} v_{2}+2 b^{2} b_{4} v_{1}+b^{2} b_{5} v_{1} \\
& +b^{2} b_{5} v_{2}+2 b^{2} b_{6} v_{2}+3 b a_{2} v_{1}^{2}-4 b a_{2} v_{1} v_{2}+b a_{2} v_{2}^{2}+2 b a_{3} v_{1}^{2}-2 b a_{3} v_{1} v_{2}-2 b b_{2} v_{1}^{2}+2 b b_{2} v_{1} v_{2} \\
& -b b_{3} v_{1}^{2}+b b_{3} v_{2}^{2}-b^{2} a_{2}-b^{2} a_{3}+b^{2} b_{2}+b^{2} b_{3}+2 b a_{1} v_{1}-2 b a_{1} v_{2}-2 b b_{1} v_{1}+2 b b_{1} v_{2}=0 \tag{7E}
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a^{2} a_{4}-a^{2} a_{5}+2 a^{2} b_{4}+a^{2} b_{5}+2 a a_{4}+2 a a_{5}-2 a b_{4}-a b_{5}-a_{5}\right) v_{1}^{5} \\
& +\left(-a^{2} a_{5}-2 a^{2} a_{6}+a^{2} b_{5}+2 a^{2} b_{6}-2 a a_{4}\right. \\
& \left.-3 a a_{5}+4 a a_{6}+2 a b_{4}-2 a b_{6}+4 a_{5}-2 a_{6}\right) v_{1}^{4} v_{2} \\
& +\left(-a^{2} a_{2}-a^{2} a_{3}+a^{2} b_{2}+a^{2} b_{3}+a a_{2}+2 a a_{3}-2 a b_{2}-a b_{3}-a_{3}\right) v_{1}^{4} \\
& +\left(2 a a_{5}-8 a a_{6}+a b_{5}+2 a b_{6}-6 a_{5}+8 a_{6}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(-4 a a_{3}+2 a b_{2}+4 a_{3}\right) v_{1}^{3} v_{2}+\left(-4 a b a_{4}-2 a b a_{5}\right. \\
& \left.+4 a b b_{4}+2 a b b_{5}-2 a b_{1}+4 b a_{4}+2 b a_{5}-2 b b_{4}-b b_{5}\right) v_{1}^{3} \\
& +\left(-a a_{5}+6 a a_{6}+4 a_{5}-12 a_{6}\right) v_{1}^{2} v_{2}^{3} \\
& +\left(-a a_{2}+4 a a_{3}+a b_{3}-6 a_{3}\right) v_{1}^{2} v_{2}^{2}+\left(-2 a b a_{5}-4 a b a_{6}+2 a b b_{5}\right. \tag{8E}\\
& \left.+4 a b b_{6}+2 a a_{1}+2 a b_{1}-6 b a_{4}-b a_{5}+4 b a_{6}+2 b b_{4}-2 b b_{6}\right) v_{1}^{2} v_{2} \\
& +\left(-2 a b a_{2}-2 a b a_{3}+2 a b b_{2}+2 a b b_{3}+3 b a_{2}+2 b a_{3}-2 b b_{2}-b b_{3}\right) v_{1}^{2} \\
& +\left(-2 a a_{6}-a_{5}+8 a_{6}\right) v_{1} v_{2}^{4}+\left(-2 a a_{3}+4 a_{3}\right) v_{1} v_{2}^{3} \\
& +\left(-2 a a_{1}+2 b a_{4}-2 b a_{5}-6 b a_{6}+b b_{5}+2 b b_{6}\right) v_{1} v_{2}^{2} \\
& +\left(-4 b a_{2}-2 b a_{3}+2 b b_{2}\right) v_{1} v_{2} \\
& +\left(-2 b^{2} a_{4}-b^{2} a_{5}+2 b^{2} b_{4}+b^{2} b_{5}+2 b a_{1}-2 b b_{1}\right) v_{1} \\
& -2 a_{6} v_{2}^{5}-a_{3} v_{2}^{4}+\left(b a_{5}+2 b a_{6}\right) v_{2}^{3}+\left(b a_{2}+b b_{3}\right) v_{2}^{2} \\
& +\left(-b^{2} a_{5}-2 b^{2} a_{6}+b^{2} b_{5}+2 b^{2} b_{6}-2 b a_{1}+2 b b_{1}\right) v_{2} \\
& -b^{2} a_{2}-b^{2} a_{3}+b^{2} b_{2}+b^{2} b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{3} & =0 \\
-2 a_{6} & =0 \\
-2 a a_{3}+4 a_{3} & =0 \\
b a_{2}+b b_{3} & =0 \\
b a_{5}+2 b a_{6} & =0 \\
-4 a a_{3}+2 a b_{2}+4 a_{3} & =0 \\
-2 a a_{6}-a_{5}+8 a_{6} & =0 \\
-4 b a_{2}-2 b a_{3}+2 b b_{2} & =0 \\
-a a_{5}+6 a a_{6}+4 a_{5}-12 a_{6} & =0 \\
-a a_{2}+4 a a_{3}+a b_{3}-6 a_{3} & =0 \\
-b^{2} a_{2}-b^{2} a_{3}+b^{2} b_{2}+b^{2} b_{3} & =0 \\
2 a a_{5}-8 a a_{6}+a b_{5}+2 a b_{6}-6 a_{5}+8 a_{6} & =0 \\
-2 b^{2} a_{4}-b^{2} a_{5}+2 b^{2} b_{4}+b^{2} b_{5}+2 b a_{1}-2 b b_{1} & =0 \\
-b^{2} a_{5}-2 b^{2} a_{6}+b^{2} b_{5}+2 b^{2} b_{6}-2 b a_{1}+2 b b_{1} & =0 \\
-2 a a_{1}+2 b a_{4}-2 b a_{5}-6 b a_{6}+b b_{5}+2 b b_{6} & =0 \\
-2 a b a_{2}-2 a b a_{3}+2 a b b_{2}+2 a b b_{3}+3 b a_{2}+2 b a_{3}-2 b b_{2}-b b_{3} & =0 \\
-a^{2} a_{2}-a^{2} a_{3}+a^{2} b_{2}+a^{2} b_{3}+a a_{2}+2 a a_{3}-2 a b_{2}-a b_{3}-a_{3} & =0 \\
-2 a^{2} a_{4}-a^{2} a_{5}+2 a^{2} b_{4}+a^{2} b_{5}+2 a a_{4}+2 a a_{5}-2 a b_{4}-a b_{5}-a_{5} & =0 \\
-4 a b a_{4}-2 a b a_{5}+4 a b b_{4}+2 a b b_{5}-2 a b_{1}+4 b a_{4}+2 b a_{5}-2 b b_{4}-b b_{5} & =0 \\
-a^{2} a_{5}-2 a^{2} a_{6}+a^{2} b_{5}+2 a^{2} b_{6}-2 a a_{4}-3 a a_{5}+4 a a_{6}+2 a b_{4}-2 a b_{6}+4 a_{5}-2 a_{6} & =0 \\
-2 a b a_{5}-4 a b a_{6}+2 a b b_{5}+4 a b b_{6}+2 a a_{1}+2 a b_{1}-6 b a_{4}-b a_{5}+4 b a_{6}+2 b b_{4}-2 b b_{6} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=b_{1} \\
& a_{2}=0 \\
& a_{3}=0 \\
& a_{4}=\frac{a b_{1}}{b} \\
& a_{5}=0 \\
& a_{6}=0 \\
& b_{1}=b_{1} \\
& b_{2}=0 \\
& b_{3}=0 \\
& b_{4}=\frac{a b_{1}+b b_{6}}{b} \\
& b_{5}=-2 b_{6} \\
& b_{6}=b_{6}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=x^{2}-2 y x+y^{2}
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}-2 y x+y^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{-x+y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-a x^{2}+x^{2}-2 y x+y^{2}-b}{a x^{2}+b}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{(x-y)^{2}} \\
S_{y} & =\frac{1}{(x-y)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{a x^{2}+b} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R^{2} a+b}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\arctan \left(\frac{a R}{\sqrt{a b}}\right)}{\sqrt{a b}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{x-y}=-\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}+c_{1}
$$

Which simplifies to

$$
\frac{1}{x-y}=-\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}+c_{1}
$$

Which gives

$$
y=\frac{c_{1} \sqrt{a b} x-\arctan \left(\frac{a x}{\sqrt{a b}}\right) x-\sqrt{a b}}{c_{1} \sqrt{a b}-\arctan \left(\frac{a x}{\sqrt{a b}}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{a b} x-\arctan \left(\frac{a x}{\sqrt{a b}}\right) x-\sqrt{a b}}{c_{1} \sqrt{a b}-\arctan \left(\frac{a x}{\sqrt{a b}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{a b} x-\arctan \left(\frac{a x}{\sqrt{a b}}\right) x-\sqrt{a b}}{c_{1} \sqrt{a b}-\arctan \left(\frac{a x}{\sqrt{a b}}\right)}
$$

Verified OK.

2.58.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-a x^{2}+x^{2}-2 y x+y^{2}-b}{a x^{2}+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a x^{2}}{a x^{2}+b}-\frac{x^{2}}{a x^{2}+b}+\frac{2 y x}{a x^{2}+b}-\frac{y^{2}}{a x^{2}+b}+\frac{b}{a x^{2}+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{-a x^{2}+x^{2}-b}{a x^{2}+b}, f_{1}(x)=\frac{2 x}{a x^{2}+b}$ and $f_{2}(x)=-\frac{1}{a x^{2}+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{a x^{2}+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x a}{\left(a x^{2}+b\right)^{2}} \\
f_{1} f_{2} & =-\frac{2 x}{\left(a x^{2}+b\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{-a x^{2}+x^{2}-b}{\left(a x^{2}+b\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{a x^{2}+b}-\left(\frac{2 x a}{\left(a x^{2}+b\right)^{2}}-\frac{2 x}{\left(a x^{2}+b\right)^{2}}\right) u^{\prime}(x)-\frac{\left(-a x^{2}+x^{2}-b\right) u(x)}{\left(a x^{2}+b\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\arctan \left(\frac{\sqrt{a b} x}{b}\right) c_{2}+c_{1}\right)\left(a x^{2}+b\right)^{\frac{1}{2 a}}
$$

The above shows that

$$
u^{\prime}(x)=\left(a x^{2}+b\right)^{-\frac{2 a-1}{2 a}}\left(\arctan \left(\frac{\sqrt{a b} x}{b}\right) c_{2} x+\sqrt{a b} c_{2}+c_{1} x\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(a x^{2}+b\right)^{-\frac{2 a-1}{2 a}}\left(\arctan \left(\frac{\sqrt{a b} x}{b}\right) c_{2} x+\sqrt{a b} c_{2}+c_{1} x\right)\left(a x^{2}+b\right)\left(a x^{2}+b\right)^{-\frac{1}{2 a}}}{\arctan \left(\frac{\sqrt{a b} x}{b}\right) c_{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\arctan \left(\frac{\sqrt{a b} x}{b}\right) x+\sqrt{a b}+c_{3} x}{\arctan \left(\frac{\sqrt{a b} x}{b}\right)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arctan \left(\frac{\sqrt{a b} x}{b}\right) x+\sqrt{a b}+c_{3} x}{\arctan \left(\frac{\sqrt{a b} x}{b}\right)+c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\arctan \left(\frac{\sqrt{a b} x}{b}\right) x+\sqrt{a b}+c_{3} x}{\arctan \left(\frac{\sqrt{a b} x}{b}\right)+c_{3}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve((a*x^2+b)*diff (y(x),x)+y(x)^2-2*x*y(x)+(1-a)*x^2-b=0,y(x), singsol=all)
```

$$
y(x)=x+\frac{\sqrt{a b}}{c_{1} \sqrt{a b}+\arctan \left(\frac{a x}{\sqrt{a b}}\right)}
$$

Solution by Mathematica

Time used: 0.562 (sec). Leaf size: 41
DSolve $\left[\left(a * x^{\wedge} 2+b\right) * y{ }^{\prime}[x]+y[x] \sim 2-2 * x * y[x]+(1-a) * x^{\wedge} 2-b==0, y[x], x\right.$, IncludeSingularSolutions $->$ Tru

$$
\begin{aligned}
& y(x) \rightarrow x+\frac{1}{\frac{\arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}+c_{1}} \\
& y(x) \rightarrow x
\end{aligned}
$$

2.59 problem 59

2.59.1 Solving as first order ode lie symmetry calculated ode 367
2.59.2 Solving as riccati ode . 373

Internal problem ID [10389]
Internal file name [OUTPUT/9336_Monday_June_06_2022_01_56_57_PM_94594974/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

$$
\left(a x^{2}+b x+c\right) y^{\prime}-y^{2}-(2 \lambda x+b) y=\lambda(\lambda-a) x^{2}+\mu
$$

2.59.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu}{a x^{2}+b x+c} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2} \\
& +\frac{\left(-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{a x^{2}+b x+c} \\
& -\frac{\left(-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& -\left(\frac{-2 a \lambda x+2 \lambda^{2} x+2 \lambda y}{a x^{2}+b x+c}-\frac{\left(-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu\right)(2 x a+b)}{\left(a x^{2}+b x+c\right)^{2}}\right)\left(x^{2} a_{4}\right. \\
& \left.+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)-\frac{(2 \lambda x+b+2 y)\left(x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)}{a x^{2}+b x+c} \\
& =0 \tag{5E}
\end{align*}
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =\frac{c a_{2}}{b} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
a_{4} & =\frac{a a_{2}}{b} \\
a_{5} & =0 \\
a_{6} & =0 \\
b_{1} & =\frac{b c \lambda b_{6}+b \mu b_{6}-c \lambda a_{2}}{b} \\
b_{2} & =\lambda\left(b b_{6}-a_{2}\right) \\
b_{3} & =b b_{6} \\
b_{4} & =-\frac{\lambda\left(-b \lambda b_{6}+a a_{2}\right)}{b} \\
b_{5} & =2 \lambda b_{6} \\
b_{6} & =b_{6}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=\lambda^{2} x^{2}+b \lambda x+2 \lambda x y+b y+c \lambda+y^{2}+\mu
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\lambda^{2} x^{2}+b \lambda x+2 \lambda x y+b y+c \lambda+y^{2}+\mu} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 \arctan \left(\frac{2 \lambda x+b+2 y}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}\right)}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu}{a x^{2}+b x+c}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\lambda}{\lambda^{2} x^{2}+((b+2 y) x+c) \lambda+b y+y^{2}+\mu} \\
S_{y} & =\frac{1}{\lambda^{2} x^{2}+((b+2 y) x+c) \lambda+b y+y^{2}+\mu}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{a x^{2}+b x+c} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2} a+R b+c}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 \arctan \left(\frac{2 R a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \arctan \left(\frac{2 \lambda x+b+2 y}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}\right)}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}=\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1}
$$

Which simplifies to

$$
\frac{2 \arctan \left(\frac{2 \lambda x+b+2 y}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}\right)}{\sqrt{-b^{2}+4 c \lambda+4 \mu}}=\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)}{\sqrt{4 c a-b^{2}}}+c_{1}
$$

Which gives

$$
y=\frac{\tan \left(\frac{\sqrt{-b^{2}+4 c \lambda+4 \mu}\left(\sqrt{4 c a-b^{2}} c_{1}+2 \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}}}\right) \sqrt{-b^{2}+4 c \lambda+4 \mu}}{2}-\lambda x-\frac{b}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\tan \left(\frac{\sqrt{-b^{2}+4 c \lambda+4 \mu}\left(\sqrt{4 c a-b^{2}} c_{1}+2 \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}}}\right) \sqrt{-b^{2}+4 c \lambda+4 \mu}}{2}-\lambda x-\frac{b}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\tan \left(\frac{\sqrt{-b^{2}+4 c \lambda+4 \mu}\left(\sqrt{4 c a-b^{2}} c_{1}+2 \arctan \left(\frac{2 x a+b}{\sqrt{4 c a-b^{2}}}\right)\right)}{2 \sqrt{4 c a-b^{2}}}\right) \sqrt{-b^{2}+4 c \lambda+4 \mu}}{2}-\lambda x-\frac{b}{2}
$$

Verified OK.

2.59.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\lambda x^{2} a+\lambda^{2} x^{2}+2 \lambda x y+b y+y^{2}+\mu}{a x^{2}+b x+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{\lambda x^{2} a}{a x^{2}+b x+c}+\frac{\lambda^{2} x^{2}}{a x^{2}+b x+c}+\frac{2 \lambda x y}{a x^{2}+b x+c}+\frac{b y}{a x^{2}+b x+c}+\frac{y^{2}}{a x^{2}+b x+c}+\frac{\mu}{a x^{2}+b x+c}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda x^{2} a+\lambda^{2} x^{2}+\mu}{a x^{2}+b x+c}, f_{1}(x)=\frac{2 \lambda x+b}{a x^{2}+b x+c}$ and $f_{2}(x)=\frac{1}{a x^{2}+b x+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a x^{2}+b x+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 x a+b}{\left(a x^{2}+b x+c\right)^{2}} \\
f_{1} f_{2} & =\frac{2 \lambda x+b}{\left(a x^{2}+b x+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-\lambda x^{2} a+\lambda^{2} x^{2}+\mu}{\left(a x^{2}+b x+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a x^{2}+b x+c}-\left(-\frac{2 x a+b}{\left(a x^{2}+b x+c\right)^{2}}+\frac{2 \lambda x+b}{\left(a x^{2}+b x+c\right)^{2}}\right) u^{\prime}(x)+\frac{\left(-\lambda x^{2} a+\lambda^{2} x^{2}+\mu\right) u(x)}{\left(a x^{2}+b x+c\right)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\left.\begin{array}{rl}
u(x) \\
=\left(\frac{2 x a+b+\sqrt{-4 c a+b^{2}}}{-2 x a-b+\sqrt{-4 c a+b^{2}}}\right)^{-\frac{b}{2 \sqrt{-4 c a+b^{2}}}}\left(\frac{-2 x a-b+\sqrt{-4 c a+b^{2}}}{2 x a+b+\sqrt{-4 c a+b^{2}}}\right)^{-\frac{\lambda b}{2 a \sqrt{-4 c a+b^{2}}}\left(a x^{2}\right.} \\
+b x+c)^{\frac{\lambda}{2 a}}\left(c_{1}\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}}+2 x a}\right)^{\frac{a \sqrt{b^{2}-4 c \lambda-4 \mu}}{2 \sqrt{-4 c a+b^{2}}}}\right.
\end{array}\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{8\left(\left(i a \sqrt{4 c a-b^{2}} \sqrt{\frac{b^{2}-4 c \lambda-4 \mu}{a^{2}}}-\sqrt{-4 c a+b^{2}}(2 \lambda x+b)\right) c_{2}\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{b^{2}-4 c \lambda-4 \mu}}{2 \sqrt{-4 c a+b^{2}}}}-\left(\frac{-b+i \sqrt{4 c a-1}}{b+i \sqrt{4 c a-b}}\right.\right.}{\sqrt{-4 c a+b^{2}}(2 x a+b-}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{8\left(\left(i a \sqrt{4 c a-b^{2}} \sqrt{\frac{b^{2}-4 c \lambda-4 \mu}{a^{2}}}-\sqrt{-4 c a+b^{2}}(2 \lambda x+b)\right) c_{2}\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{\frac{a}{\frac{b^{2}-4 c \lambda-4 \mu}{2}}}{2 \sqrt{-4 c a+b^{2}}}}-\left(\frac{-b+i \sqrt{4 c}}{b+i \sqrt{4 c a}}\right.\right.}{\sqrt{-4 c a+b^{2}}\left(2 x a+b-\sqrt{-4 c a+b^{2}}\right)\left(2 x a+b+\sqrt{-4 c a+b^{2}}\right)\left(b+i \sqrt{4 c a-b^{2}}+2 x a\right)(-b+}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Summary

The solution(s) found are the following
$y=$

$$
8\left(\left(i a \sqrt{4 c a-b^{2}} \sqrt{\frac{b^{2}-4 c \lambda-4 \mu}{a^{2}}}-\sqrt{-4 c a+b^{2}}(2 \lambda x+b)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{b^{2}-4 c-4 \mu}}{2 \sqrt{-4 c a+b^{2}}}}-\left(\frac{-b+i \sqrt{4 c a-}}{b+i \sqrt{4 c a-b}}\right.\right.
$$

$$
\sqrt{-4 c a+b^{2}}\left(2 x a+b-\sqrt{-4 c a+b^{2}}\right)\left(2 x a+b+\sqrt{-4 c a+b^{2}}\right)\left(b+i \sqrt{4 c a-b^{2}}+2 x a\right)(-b+
$$

Verification of solutions

$y=$

$$
8\left((i a \sqrt { 4 c a - b ^ { 2 } } \sqrt { \frac { b ^ { 2 } - 4 c \lambda - 4 \mu } { a ^ { 2 } } } - \sqrt { - 4 c a + b ^ { 2 } } (2 \lambda x + b)) \left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{\left.b+i \sqrt{4 c a-b^{2}+2 x a}\right)^{-\frac{a \sqrt{b^{2}-4 c \lambda-4 \mu}}{2 \sqrt{-4 c a+b^{2}}}}-\left(\frac{-b+i \sqrt{4 c a-}}{b+i \sqrt{4 c a-b}}\right)}\right.\right.
$$

$$
\sqrt{-4 c a+b^{2}}\left(2 x a+b-\sqrt{-4 c a+b^{2}}\right)\left(2 x a+b+\sqrt{-4 c a+b^{2}}\right)\left(b+i \sqrt{4 c a-b^{2}}+2 x a\right)(-b+
$$

Verified OK.

$$
\begin{aligned}
& y= \\
& -8\left(\left(i a \sqrt{4 c a-b^{2}} \sqrt{\frac{b^{2}-4 c \lambda-4 \mu}{a^{2}}}-\sqrt{-4 c a+b^{2}}(2 \lambda x+b)\right)\left(\frac{-b+i \sqrt{4 c a-b^{2}}-2 x a}{b+i \sqrt{4 c a-b^{2}+2 x a}}\right)^{-\frac{a \sqrt{b^{2}-4 c c-4 \mu}}{2 \sqrt{-4 c a+b^{2}}}}-\left(\frac{-b+i \sqrt{4 c a-}}{b+i \sqrt{4 c a-b}}\right.\right. \\
& \sqrt{-4 c a+b^{2}}\left(2 x a+b-\sqrt{-4 c a+b^{2}}\right)\left(2 x a+b+\sqrt{-4 c a+b^{2}}\right)\left(b+i \sqrt{4 c a-b^{2}}+2 x a\right)(-b+
\end{aligned}
$$

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -2*x*(a-lambda)*(diff (y(x), x)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Group is reducible or imprimitive
        <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 542

$y(x)=$
$-8\left(\left(i a \sqrt{4 a c-b^{2}} \sqrt{\frac{b^{2}-4 c \lambda-4 \mu}{a^{2}}}-\sqrt{-4 a c+b^{2}}(2 x \lambda+b)\right) c_{1}\left(\frac{-b+i \sqrt{4 a c-b^{2}}-2 a x}{i \sqrt{4 a c-b^{2}}+2 a x+b}\right)^{-\frac{a \sqrt{b^{2}-4 c \lambda-4 \mu}}{2 \sqrt{-4 a c+b^{2}}}}-(i a \sqrt{4 a c}\right.$

$$
\sqrt{-4 a c+b^{2}}\left(2 a x-\sqrt{-4 a c+b^{2}}+b\right)\left(2 a x+\sqrt{-4 a c+b^{2}}+b\right)\left(i \sqrt{4 a c-b^{2}}+2 a x+b\right)(-b+
$$

Solution by Mathematica
Time used: 17.168 (sec). Leaf size: 93
DSolve $\left[\left(a * x^{\wedge} 2+b * x+c\right) * y^{\prime}[x]==y[x] \wedge 2+(2 * \backslash[\right.$ Lambda $] * x+b) * y[x]+\backslash[$ Lambda $] *\left(\backslash[\right.$ Lambda] $-a) * x^{\wedge} 2+\backslash[M u]$,

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{4(c \lambda+\mu)-b^{2}} \tan \left(\frac{\sqrt{-b^{2}+4 c \lambda+4 \mu} \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}+c_{1}\right)-b-2 \lambda x\right)
$$

2.60 problem 60

2.60.1 Solving as riccati ode . 378

Internal problem ID [10390]
Internal file name [OUTPUT/9337_Monday_June_06_2022_01_57_00_PM_79642548/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 60.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a x^{2}+b x+c\right) y^{\prime}-y^{2}-(x a+\mu) y=-\lambda^{2} x^{2}+\lambda(b-\mu) x+c \lambda
$$

2.60.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\lambda^{2} x^{2}+a x y+b \lambda x-\lambda x \mu+c \lambda+\mu y+y^{2}}{a x^{2}+b x+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{\lambda^{2} x^{2}}{a x^{2}+b x+c}+\frac{a x y}{a x^{2}+b x+c}+\frac{b \lambda x}{a x^{2}+b x+c}-\frac{\lambda x \mu}{a x^{2}+b x+c}+\frac{c \lambda}{a x^{2}+b x+c}+\frac{\mu y}{a x^{2}+b x+c}+\frac{?}{a x^{2}+}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda^{2} x^{2}+b \lambda x-\lambda x \mu+c \lambda}{a x^{2}+b x+c}, f_{1}(x)=\frac{x a+\mu}{a x^{2}+b x+c}$ and $f_{2}(x)=\frac{1}{a x^{2}+b x+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a x^{2}+b x+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 x a+b}{\left(a x^{2}+b x+c\right)^{2}} \\
f_{1} f_{2} & =\frac{x a+\mu}{\left(a x^{2}+b x+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-\lambda^{2} x^{2}+b \lambda x-\lambda x \mu+c \lambda}{\left(a x^{2}+b x+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a x^{2}+b x+c}-\left(-\frac{2 x a+b}{\left(a x^{2}+b x+c\right)^{2}}+\frac{x a+\mu}{\left(a x^{2}+b x+c\right)^{2}}\right) u^{\prime}(x)+\frac{\left(-\lambda^{2} x^{2}+b \lambda x-\lambda x \mu+c \lambda\right) u(x)}{\left(a x^{2}+b x+c\right)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

Expression too large to display

The above shows that

> Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary

The solution(s) found are the following

> Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

Maple trace Kovacic algorithm successful

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(y(x), x), x)=-(a * x+b-m u) *(\operatorname{diff}(y(x), x)) /(a$ Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
<- hypergeometric successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special functio
<- Kovacics algorithm succes 381 lil
<- Riccati to 2nd Order successful-
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 6204
dsolve $\left((a * x \wedge 2+b * x+c) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+(a * x+m u) * y(x)-l a m b d a \wedge 2 * x^{\wedge} 2+l a m b d a *(b-m u) * x+l a m b d a * c\right.$
Expression too large to display
\checkmark Solution by Mathematica
Time used: 23.352 (sec). Leaf size: 433
DSolve $\left[\left(a * x^{\wedge} 2+b * x+c\right) * y '[x]==y[x] \wedge 2+(a * x+\backslash[M u]) * y[x]-\backslash[L a m b d a] \wedge 2 * x^{\wedge} 2+\backslash[L a m b d a] *(b-\backslash[M u]) * x+\backslash[\right.$
$y(x)$

$$
(x(a x+b)+c)^{\frac{\lambda}{a}-\frac{1}{2}} \exp \left(-\frac{(a(b-2 \mu)+2 b \lambda) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}\right)\left(\lambda x (x (a x + b) + c) ^ { \frac { 1 } { 2 } - \frac { \lambda } { a } } \operatorname { e x p } \left(\frac{(a(b-2 \mu)+2 b \lambda) \operatorname{arctar}}{a \sqrt{4 a c-b}}\right.\right.
$$

$\int_{1}^{x} \exp$
$y(x) \rightarrow \lambda x$

2.61 problem 61

2.61.1 Solving as riccati ode . 383

Internal problem ID [10391]
Internal file name [OUTPUT/9338_Monday_June_06_2022_02_01_30_PM_6267541/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 61.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a_{2} x^{2}+b_{2} x+c_{2}\right) y^{\prime}-y^{2}-\left(a_{1} x+b_{1}\right) y=-\lambda\left(\lambda+a_{1}-a_{2}\right) x^{2}+\lambda\left(b_{2}-b_{1}\right) x+\lambda c_{2}
$$

2.61.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\lambda x^{2} a_{1}+\lambda x^{2} a_{2}-\lambda^{2} x^{2}+a_{1} x y-\lambda x b_{1}+\lambda x b_{2}+b_{1} y+c_{2} \lambda+y^{2}}{a_{2} x^{2}+b_{2} x+c_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{\lambda x^{2} a_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{\lambda x^{2} a_{2}}{a_{2} x^{2}+b_{2} x+c_{2}}-\frac{\lambda^{2} x^{2}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{a_{1} x y}{a_{2} x^{2}+b_{2} x+c_{2}}-\frac{\lambda x b_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{\lambda x b}{a_{2} x^{2}+b_{2}}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda x^{2} a_{1}+\lambda x^{2} a_{2}-\lambda^{2} x^{2}-\lambda x b_{1}+\lambda x b_{2}+c_{2} \lambda}{a_{2} x^{2}+b_{2} x+c_{2}}, f_{1}(x)=\frac{a_{1} x+b_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}$ and $f_{2}(x)=$ $\frac{1}{a_{2} x^{2}+b_{2} x+c_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\overline{a_{2} x^{2}+b_{2} x+c_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 a_{2} x+b_{2}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}} \\
f_{1} f_{2} & =\frac{a_{1} x+b_{1}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-\lambda x^{2} a_{1}+\lambda x^{2} a_{2}-\lambda^{2} x^{2}-\lambda x b_{1}+\lambda x b_{2}+c_{2} \lambda}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a_{2} x^{2}+b_{2} x+c_{2}}-\left(-\frac{2 a_{2} x+b_{2}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}}+\frac{a_{1} x+b_{1}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}}\right) u^{\prime}(x)+\frac{\left(-\lambda x^{2} a_{1}+\lambda x^{2} a_{2}-\lambda^{2} x^{2}-\lambda x b\right.}{\left(a_{2} x^{2}+b_{2} x+\right.}$
Solving the above ODE (this ode solved using Maple, not this program), gives

Expression too large to display

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

> Expression too large to display

Summary
The solution(s) found are the following

> Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a__1*x-2*a__2*x+b__1-b__ 2)*(d
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
        Solution has integrals. Trying a special function solution free of integrals...
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
            <- hypergeometric successful
        <- special function solution successful
            -> Trying to convert hypergeometric functions to elementary form...
            <- elementary form is not straightforward to achieve - returning special functio
        <- Kovacics algorithm succesi&6l
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 5771

> Expression too large to display
$\sqrt{ }$ Solution by Mathematica
Time used: 34.34 (sec). Leaf size: 284
DSolve $\left[\left(a 2 * x^{\wedge} 2+b 2 * x+c 2\right) * y^{\prime}[x]==y[x] \wedge 2+(a 1 * x+b 1) * y[x]-\backslash[\right.$ Lambda $] *\left(\backslash[\right.$ Lambda] $+a 1-a 2) * x^{\wedge} 2+\backslash[$ Lambd
$y(x)$

2.62 problem 62

2.62.1 Solving as riccati ode

Internal problem ID [10392]
Internal file name [OUTPUT/9339_Monday_June_06_2022_02_08_40_PM_75216398/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 62 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
\left(a_{2} x^{2}+b_{2} x+c_{2}\right) y^{\prime}-y^{2}-\left(a_{1} x+b_{1}\right) y=a_{0} x^{2}+b_{0} x+c_{0}
$$

2.62.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a_{0} x^{2}+a_{1} x y+b_{0} x+b_{1} y+y^{2}+c_{0}}{a_{2} x^{2}+b_{2} x+c_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=\frac{a_{0} x^{2}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{a_{1} x y}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{b_{0} x}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{b_{1} y}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{y^{2}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{c_{0}}{a_{2} x^{2}+b_{2} x}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a_{0} x^{2}+b_{0} x+c_{0}}{a_{2} x^{2}+b_{2} x+c_{2}}, f_{1}(x)=\frac{a_{1} x+b_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}$ and $f_{2}(x)=\frac{1}{a_{2} x^{2}+b_{2} x+c_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\overline{a_{2} x^{2}+b_{2} x+c_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 a_{2} x+b_{2}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}} \\
f_{1} f_{2} & =\frac{a_{1} x+b_{1}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{a_{0} x^{2}+b_{0} x+c_{0}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a_{2} x^{2}+b_{2} x+c_{2}}-\left(-\frac{2 a_{2} x+b_{2}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}}+\frac{a_{1} x+b_{1}}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{2}}\right) u^{\prime}(x)+\frac{\left(a_{0} x^{2}+b_{0} x+c_{0}\right) u(x)}{\left(a_{2} x^{2}+b_{2} x+c_{2}\right)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

Expression too large to display

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

> Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a__1*x-2*a__2*x+b__1-b__2)*(d
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 6462
dsolve $\left(\left(a_{-} 2 * x^{\wedge} 2+b_{-} 2 * x+c_{-} 2\right) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+\left(a_{-} 1 * x+b_{-} 1\right) * y(x)+a_{-} 0 * x^{\wedge} 2+b_{-} 0 * x+c_{-} 0, y(\right.$

Expression too large to display

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a 2 * x^{\wedge} 2+b 2 * x+c 2\right) * y{ }^{\prime}[x]==y[x]{ }^{\wedge} 2+(a 1 * x+b 1) * y[x]+a 0 * x^{\wedge} 2+b 0 * x+c 0, y[x], x\right.$, IncludeSingularSo

Timed out

2.63 problem 63

2.63.1 Solving as first order ode lie symmetry calculated ode 393
2.63.2 Solving as riccati ode . 398

Internal problem ID [10393]
Internal file name [OUTPUT/9340_Monday_June_06_2022_02_12_56_PM_17631241/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 63.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational, [_1st_order, ` with_symmetry_[F(x),G(x)]〕, _Riccati]

$$
(x-a)(x-b) y^{\prime}+y^{2}+k(y+x-a)(y+x-b)=0
$$

2.63.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}}{(a-x)(b-x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{aligned}
& 2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{\left(a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{(a-x)(b-x)} \\
& -\frac{\left(a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{(a-x)^{2}(b-x)^{2}} \\
& -\left(-\frac{-a k-b k+2 k x+2 k y}{(a-x)(b-x)}\right)\left(x^{2} a_{4}\right. \\
& -\frac{a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}}{(a-x)^{2}(b-x)} \\
& -\frac{a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}}{(a-x)(b-x)^{2}} \\
& \left.+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{(-a k-b k+2 k x+2 k y+2 y)\left(x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)}{(a-x)(b-x)}=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

> Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve
$-a^{2} k^{2} a_{5}-4 a^{2} k^{2} a_{6}-4 a b k^{2} a_{5}-16 a b k^{2} a_{6}$ $2 a^{2} b k^{2} a_{5}+4 a^{2} b k^{2} a_{6}+2 a b^{2} k^{2} a_{5}+4 a b^{2} k^{2} a_{6}-2 a^{2} b k a_{4}-2 a^{2} b k a_{5}+4$ $-a^{2} k^{2} a_{5}-4 a b k^{2} a_{5}-b^{2} k^{2} a_{5}+2 a^{2} k a_{4}+a^{2} k b_{4}-a^{2} k b_{5}+8 c$ $2 a^{2} b k^{2} a_{5}+2 a b^{2} k^{2} a_{5}-4 a^{2} b k a_{4}-a^{2} b k b_{4}+2 a^{2} b k b_{5}-a^{2} k^{2} a_{3}-4 a b^{2} k a_{4}-a b^{2} k b_{4}$ $-2 a^{2} k^{2} a_{5}-2 a^{2} k^{2} a_{6}-8 a b k^{2} a_{5}-8 a b k^{2} a_{6}-2 b^{2} k^{2} a_{5}-2 b^{2} k^{2} a_{6}+a^{2} k a_{4}+a^{2} k a_{5}-2 a^{2} k b_{6}+8 a b k a_{4}+4 a$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=a b a_{4} \\
& a_{2}=-(a+b) a_{4} \\
& a_{3}=0 \\
& a_{4}=a_{4} \\
& a_{5}=0 \\
& a_{6}=0 \\
& b_{1}=a b b_{4} \\
& b_{2}=-(a+b) b_{4} \\
& b_{3}=-\frac{a k a_{4}+a k b_{4}+b k a_{4}+b k b_{4}+a b_{4}+b b_{4}}{k} \\
& b_{4}=b_{4} \\
& b_{5}=\frac{2 k a_{4}+2 k b_{4}+2 b_{4}}{k} \\
& b_{6}=\frac{(k+1)\left(k a_{4}+k b_{4}+b_{4}\right)}{k^{2}}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
$\xi=0$
η
$=\frac{a b k^{2}-a k^{2} x-a k^{2} y-b k^{2} x-b k^{2} y+x^{2} k^{2}+2 y x k^{2}+y^{2} k^{2}-a k y-b k y+2 k x y+2 k y^{2}+y^{2}}{k^{2}}$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a b k^{2}-a k^{2} x-a k^{2} y-b k^{2} x-b k^{2} y+x^{2} k^{2}+2 y x k^{2}+y^{2} k^{2}-a k y-b k y+2 k x y+2 k y^{2}+y^{2}}{k^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{k \ln (-a k+k x+k y+y)}{(a-b)(k+1)}-\frac{k \ln (-b k+k x+k y+y)}{(a-b)(k+1)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}}{(a-x)(b-x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{k^{3}}{(k+1)((a-x-y) k-y)(k(b-x-y)-y)} \\
S_{y} & =\frac{k^{2}}{((a-x-y) k-y)(k(b-x-y)-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{k^{2}}{(a-x)(b-x)(k+1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{k^{2}}{(-R+a)(-R+b)(k+1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{k^{2}\left(-\frac{\ln (R-b)}{a-b}+\frac{\ln (R-a)}{a-b}\right)}{k+1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{k(\ln (k(y+x-a)+y)-\ln (k(y+x-b)+y))}{(a-b)(k+1)}=-\frac{k^{2}\left(-\frac{\ln (x-b)}{a-b}+\frac{\ln (x-a)}{a-b}\right)}{k+1}+c_{1}
$$

Which simplifies to

$$
\frac{k \ln (k(y+x-a)+y)-k \ln (k(y+x-b)+y)+k^{2} \ln (x-a)-k^{2} \ln (x-b)-c_{1}(a-b)(k+1)}{(a-b)(k+1)}=0
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& \frac{k \ln (k(y+x-a)+y)-k \ln (k(y+x-b)+y)+k^{2} \ln (x-a)-k^{2} \ln (x-b)-c_{1}(a(1) b)(k+1)}{(a-b)(k+1)} \\
& =0
\end{aligned}
$$

Verification of solutions
$\frac{k \ln (k(y+x-a)+y)-k \ln (k(y+x-b)+y)+k^{2} \ln (x-a)-k^{2} \ln (x-b)-c_{1}(a-b)(k+1)}{(a-b)(k+1)}$
$=0$
Verified OK.

2.63.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{a b k-a k x-a k y-b k x-b k y+k x^{2}+2 k x y+k y^{2}+y^{2}}{(a-x)(b-x)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{a b k}{(a-x)(b-x)}+\frac{a k x}{(a-x)(b-x)}+\frac{a k y}{(a-x)(b-x)}+\frac{b k x}{(a-x)(b-x)}+\frac{b k y}{(a-x)(b-x)}-\frac{k x^{2}}{(a-x)(b-}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a b k-a k x-b k x+k x^{2}}{(a-x)(b-x)}, f_{1}(x)=-\frac{-a k-b k+2 k x}{(a-x)(b-x)}$ and $f_{2}(x)=-\frac{k+1}{(a-x)(b-x)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{(k+1) u}{(a-x)(b-x)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k+1}{(a-x)^{2}(b-x)}-\frac{k+1}{(a-x)(b-x)^{2}} \\
f_{1} f_{2} & =\frac{(-a k-b k+2 k x)(k+1)}{(a-x)^{2}(b-x)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{(k+1)^{2}\left(a b k-a k x-b k x+k x^{2}\right)}{(a-x)^{3}(b-x)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{(k+1) u^{\prime \prime}(x)}{(a-x)(b-x)}-\left(-\frac{k+1}{(a-x)^{2}(b-x)}-\frac{k+1}{(a-x)(b-x)^{2}}+\frac{(-a k-b k+2 k x)(k+1)}{(a-x)^{2}(b-x)^{2}}\right) u^{\prime}(x)-\frac{(k+1)}{}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}(b-x)^{-k}+c_{2}(a-x)^{-k}
$$

The above shows that

$$
u^{\prime}(x)=k\left(c_{1}(b-x)^{-k-1}+c_{2}(a-x)^{-k-1}\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{k\left(c_{1}(b-x)^{-k-1}+c_{2}(a-x)^{-k-1}\right)(a-x)(b-x)}{(k+1)\left(c_{1}(b-x)^{-k}+c_{2}(a-x)^{-k}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{k(a-x)^{k+1}(b-x)^{k+1}\left(c_{3}(b-x)^{-k-1}+(a-x)^{-k-1}\right)}{(k+1)\left(c_{3}(a-x)^{k}+(b-x)^{k}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{k(a-x)^{k+1}(b-x)^{k+1}\left(c_{3}(b-x)^{-k-1}+(a-x)^{-k-1}\right)}{(k+1)\left(c_{3}(a-x)^{k}+(b-x)^{k}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{k(a-x)^{k+1}(b-x)^{k+1}\left(c_{3}(b-x)^{-k-1}+(a-x)^{-k-1}\right)}{(k+1)\left(c_{3}(a-x)^{k}+(b-x)^{k}\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*k+b*k-2*k*x+a+b-2*x)*(diff
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
        <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

```
dsolve((x-a)*(x-b)*diff (y(x),x)+y(x)^2+k*(y(x)+x-a)*(y(x)+x-b)=0,y(x), singsol=all)
```

$$
y(x)=\frac{k\left((b-x)^{1+k}+c_{1}(a-x)^{k}(a-x)\right)}{(1+k)\left(c_{1}(a-x)^{k}+(b-x)^{k}\right)}
$$

\checkmark Solution by Mathematica
Time used: 60.572 (sec). Leaf size: 99
DSolve $\left[(x-a) *(x-b) * y^{\prime}[x]+y[x] \sim 2+k *(y[x]+x-a) *(y[x]+x-b)==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{2}\left(\frac{k(a+b-2 x)}{k+1}\right. \\
& \left.+\sqrt{-\frac{k^{2}(a-b)^{2}}{(k+1)^{2}}} \tan \left(\frac{(k+1) \sqrt{-\frac{k^{2}(a-b)^{2}}{(k+1)^{2}}}(\log (x-b)-\log (x-a))}{2(a-b)}+c_{1}\right)\right)
\end{aligned}
$$

2.64 problem 64

2.64.1 Solving as riccati ode

Internal problem ID [10394]
Internal file name [OUTPUT/9341_Monday_June_06_2022_02_12_57_PM_55541898/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 64.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(c_{2} x^{2}+b_{2} x+a_{2}\right)\left(y^{\prime}+\lambda y^{2}\right)+\left(b_{1} x+a_{1}\right) y=-a_{0}
$$

2.64.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{c_{2} \lambda x^{2} y^{2}+y^{2} b_{2} \lambda x+y^{2} a_{2} \lambda+y b_{1} x+y a_{1}+a_{0}}{c_{2} x^{2}+b_{2} x+a_{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{y^{2} c_{2} \lambda x^{2}}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y^{2} b_{2} \lambda x}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y^{2} a_{2} \lambda}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y b_{1} x}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{y a_{1}}{c_{2} x^{2}+b_{2} x+a_{2}}-\frac{a_{0}}{c_{2} x^{2}+b_{2}}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a_{0}}{c_{2} x^{2}+b_{2} x+a_{2}}, f_{1}(x)=-\frac{b_{1} x+a_{1}}{c_{2} x^{2}+b_{2} x+a_{2}}$ and $f_{2}(x)=-\frac{c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right) u}{c_{2} x^{2}+b_{2} x+a_{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 c_{2} \lambda x+\lambda b_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}+\frac{\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right)\left(2 c_{2} x+b_{2}\right)}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(b_{1} x+a_{1}\right)\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right)}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right)^{2} a_{0}}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right) u^{\prime \prime}(x)}{c_{2} x^{2}+b_{2} x+a_{2}}-\left(-\frac{2 c_{2} \lambda x+\lambda b_{2}}{c_{2} x^{2}+b_{2} x+a_{2}}+\frac{\left(c_{2} \lambda x^{2}+\lambda x b_{2}+\lambda a_{2}\right)\left(2 c_{2} x+b_{2}\right)}{\left(c_{2} x^{2}+b_{2} x+a_{2}\right)^{2}}+\frac{\left(b_{1} x+a_{1}\right)\left(c_{2}\right)}{\left(c_{2} x^{2}\right.}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =c_{3} \text { hypergeom }\left(\left[-\frac{c_{2}-b_{1}+\sqrt{c_{2}^{2}+\left(-4 a_{0} \lambda-2 b_{1}\right) c_{2}+b_{1}^{2}}}{2 c_{2}}, \frac{-c_{2}+b_{1}+\sqrt{c_{2}^{2}+\left(-4 a_{0} \lambda-2 b_{1}\right) c_{2}+b_{1}^{2}}}{2 c_{2}}\right],\right. \\
& \quad+c_{4}\left(2 \sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{c_{2}^{2}}} x c_{2}^{2}+\sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{c_{2}^{2}}} b_{2} c_{2}-4 c_{2} a_{2}+b_{2}^{2}\right)
\end{aligned}
$$

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b__1*x+a__1)*(diff(y(x), x))
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 2160
dsolve $\left(\left(c_{-} 2 * x^{\wedge} 2+b_{_-} 2 * x+a_{-} 2\right) *\left(\operatorname{diff}(y(x), x)+\operatorname{lambda} * y(x)^{\wedge} 2\right)+\left(b_{--} 1 * x+a_{-} 1\right) * y(x)+a_{-} 0=0, y(x)\right.$,

> Expression too large to display
\checkmark Solution by Mathematica
Time used: 14.836 (sec). Leaf size: 1986
DSolve $\left[\left(c 2 * x^{\wedge} 2+b 2 * x+a 2\right) *\left(y^{\prime}[x]+\backslash[\right.\right.$ Lambda $\left.] * y[x]^{\wedge} 2\right)+(b 1 * x+a 1) * y[x]+a 0==0, y[x], x$, IncludeSingular

Too large to display

2.65 problem 65

2.65.1 Solving as riccati ode . 408

Internal problem ID [10395]
Internal file name [OUTPUT/9342_Monday_June_06_2022_02_14_05_PM_28407073/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 65.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{3} y^{\prime}-a x^{3} y^{2}-\left(b x^{2}+c\right) y=s x
$$

2.65.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{3} y^{2}+b x^{2} y+y c+s x}{x^{3}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b y}{x}+\frac{y c}{x^{3}}+\frac{s}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{s}{x^{2}}, f_{1}(x)=\frac{b x^{2}+c}{x^{3}}$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{\left(b x^{2}+c\right) a}{x^{3}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} s}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-\frac{\left(b x^{2}+c\right) a u^{\prime}(x)}{x^{3}}+\frac{a^{2} s u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

The above shows that
$u^{\prime}(x)$
$=\frac{8 s^{2}\left(c_{1}\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) \text { KummerM }\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{4}+\frac{b}{4}+\frac{1}{4}, 1+\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{2}, \frac{c}{2 x^{2}}\right)+4\right]}{\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right)^{2}(\sqrt{-4}}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{2 s^{2}\left(c_{1}(1-\sqrt{ }\right.}{\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right)\left(\sqrt{-4 a s+b^{2}+2 b+1}+b+1\right)\left(\frac{\left((b-1) x^{2}+c\right)\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) c_{1} \mathrm{Kum}}{}\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left(\frac{\left((b-1) x^{2}+c\right)\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) c_{3} \operatorname{KummerM}\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{4}+\frac{b}{4}+\frac{1}{4}, 1+\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{2}, \frac{c}{2 x^{2}}\right)}{2}+x^{2}\left(\frac{1}{2}+\frac{(b-1) \sqrt{-4 a s}-}{2}\right.\right.
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

$$
\left(\frac{\left((b-1) x^{2}+c\right)\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) c_{3} \text { KummerM }\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{4}+\frac{b}{4}+\frac{1}{4}, 1+\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{2}, \frac{c}{2 x^{2}}\right)}{2}+x^{2}\left(\frac{1}{2}+\frac{(b-1) \sqrt{-4 a s}}{2}\right.\right.
$$

Verification of solutions
$y=$

$$
\left(\frac{\left((b-1) x^{2}+c\right)\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) c_{3} \text { KummerM }\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{4}+\frac{b}{4}+\frac{1}{4}, 1+\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{2}, \frac{c}{2 x^{2}}\right)}{2}+x^{2}\left(\frac{1}{2}+\frac{(b-1) \sqrt{-4 a s}-}{2}\right.\right.
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b*x^2+c)*(diff(y(x), x))/x^3-
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 435

```
dsolve(x^3*diff(y(x), x)=a*x^3*y(x)^2+(b*x^2+c)*y(x)+s*x,y(x), singsol=all)
```

$y(x)=$

$$
\begin{aligned}
& \left(\frac{\left(1-\sqrt{-4 a s+b^{2}+2 b+1}+b\right) \text { KummerM }\left(\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{4}\right.}{4}\right. \\
& \frac{\left.\frac{b}{4}+\frac{1}{4}, 1+\frac{\sqrt{-4 a s+b^{2}+2 b+1}}{2}, \frac{c}{2 x^{2}}\right)}{2}+\left(\frac{1}{2}+\frac{(b-1) \sqrt{-4 a s+b}}{2}\right.
\end{aligned}
$$

Solution by Mathematica

Time used: 3.199 (sec). Leaf size: 907
DSolve $\left[x^{\wedge} 3 * y\right.$ ' $[x]==a * x^{\wedge} 3 * y[x] \wedge 2+\left(b * x^{\wedge} 2+c\right) * y[x]+s * x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow
$$

$$
-\left((\sqrt { - 4 a s + b ^ { 2 } + 2 b + 1 } - b - 1) c ^ { \frac { 1 } { 2 } \sqrt { - 4 a s + b ^ { 2 } + 2 b + 1 } } (\frac { 1 } { x }) ^ { \sqrt { - 4 a s + b ^ { 2 } + 2 b + 1 } } \text { Hypergeometric1F1 } \left(\frac{1}{4}(-b+\sqrt{l}\right.\right.
$$

$y(x)$

$$
\rightarrow \frac{\frac{c\left(b\left(\sqrt{-4 a s+b^{2}+2 b+1}+4\right)+3 \sqrt{-4 a s+b^{2}+2 b+1}-4 a s+b^{2}+3\right) \text { Hypergeometric1F1 }\left(\frac{1}{4}\left(-b-\sqrt{b^{2}+2 b-4 a s+1}+3\right), 2-\frac{1}{2} \sqrt{b^{2}+2 b-4 a s+1},-\frac{c}{2 x^{2}}\right.}{\text { Hypergeometric1F1 }\left(\frac{1}{4}\left(-b-\sqrt{b^{2}+2 b-4 a s+1}-1\right), 1-\frac{1}{2} \sqrt{b^{2}+2 b-4 a s+1},-\frac{c}{2 x^{2}}\right)}}{2 a x^{3}\left(4 a s-b^{2}-2 b+3\right)}
$$

2.66 problem 66

2.66.1 Solving as riccati ode . 413

Internal problem ID [10396]
Internal file name [OUTPUT/9343_Monday_June_06_2022_02_14_08_PM_49204472/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 66.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x^{3} y^{\prime}-a x^{3} y^{2}-x(b x+c) y=\alpha x+\beta
$$

2.66.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{3} y^{2}+b x^{2} y+y c x+\alpha x+\beta}{x^{3}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+\frac{b y}{x}+\frac{y c}{x^{2}}+\frac{\alpha}{x^{2}}+\frac{\beta}{x^{3}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\alpha x+\beta}{x^{3}}, f_{1}(x)=\frac{b x^{2}+c x}{x^{3}}$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{\left(b x^{2}+c x\right) a}{x^{3}} \\
f_{2}^{2} f_{0} & =\frac{a^{2}(\alpha x+\beta)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)-\frac{\left(b x^{2}+c x\right) a u^{\prime}(x)}{x^{3}}+\frac{a^{2}(\alpha x+\beta) u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives $u(x)$

$$
\begin{array}{r}
=x^{\frac{b}{2}+\frac{1}{2}-\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1}}{2}} \mathrm{e}^{-\frac{c}{x}}\left(\operatorname { K u m m e r U } \left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(3+b) c-2 \beta a}{2 c}, 1\right.\right. \\
\left.+\sqrt{-4 \alpha a+b^{2}+2 b+1}, \frac{c}{x}\right) c_{2} \\
\\
+\operatorname{KummerM}\left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(3+b) c-2 \beta a}{2 c}, 1\right. \\
\left.\left.+\sqrt{-4 \alpha a+b^{2}+2 b+1}, \frac{c}{x}\right) c_{1}\right)
\end{array}
$$

The above shows that
$u^{\prime}(x)=$

Using the above in (1) gives the solution
y
$=\frac{\left(x\left((\alpha a+b+2) c^{2}-a \beta(3+b) c+a^{2} \beta^{2}\right) c_{2} \operatorname{KummerU}\left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(b+5) c-2 \beta a}{2 c}, 1+\sqrt{-4 \alpha a+b^{2}+2}\right.\right.}{}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\underline{x\left((\alpha a+b+2) c^{2}-a \beta(3+b) c+a^{2} \beta^{2}\right) \operatorname{KummerU}\left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(b+5) c-2 \beta a}{2 c}, 1+\sqrt{-4 \alpha a+b^{2}+2 b+}\right.}$

Summary

The solution(s) found are the following
y
$=\frac{x\left((\alpha a+b+2) c^{2}-a \beta(3+b) c+a^{2} \beta^{2}\right) \operatorname{KummerU}\left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(b+5) c-2 \beta a}{2 c}, 1+\sqrt{-4 \alpha a+b^{2}+2 b+}\right.}{}$

Verification of solutions
y
$=\frac{x\left((\alpha a+b+2) c^{2}-a \beta(3+b) c+a^{2} \beta^{2}\right) \operatorname{KummerU}\left(\frac{\sqrt{-4 \alpha a+b^{2}+2 b+1} c+(b+5) c-2 \beta a}{2 c}, 1+\sqrt{-4 \alpha a+b^{2}+2 b+}\right.}{}$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b*x+c)*(diff(y(x), x))/x^2-a*
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 438
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x)=a * x^{\wedge} 3 * y(x) \wedge 2+x *(b * x+c) * y(x)+a l p h a * x+b e t a, y(x), \quad$ singsol $\left.=a l l\right)$
$y(x)$
$=\frac{\left((a \alpha+b+2) c^{2}-a \beta(b+3) c+a^{2} \beta^{2}\right) x c_{1} \operatorname{KummerU}\left(\frac{\sqrt{-4 a \alpha+b^{2}+2 b+1} c+(b+5) c-2 \beta a}{2 c}, 1+\sqrt{-4 a \alpha+b^{2}+2 b}\right.}{\underline{-1}}$
\checkmark Solution by Mathematica
Time used: 2.395 (sec). Leaf size: 908
DSolve $\left[x^{\wedge} 3 * y y^{\prime}[x]==a * x^{\wedge} 3 * y[x] \wedge 2+x *(b * x+c) * y[x]+\backslash[A l p h a] * x+\backslash[\right.$ Beta $], y[x], x$, IncludeSingularSolut
$y(x) \rightarrow$

$$
\frac{c^{\sqrt{-4 a \alpha+b^{2}+2 b+1}}\left(\frac{1}{x}\right)^{\sqrt{-4 a \alpha+b^{2}+2 b+1}+1}\left(c\left(\sqrt{-4 a \alpha+b^{2}+2 b+1}-b-1\right)+2 a \beta\right) \text { Hypergeometric1F1 }\left(\frac{1}{2}\left(-b+\frac{2 a \beta}{c}+\sqrt{b^{2}+2 b-4 a \alpha+1}+1\right), \sqrt{b}\right.}{\sqrt{-4 a \alpha+b^{2}+2 b+1}+1}
$$

$y(x)$

$$
\rightarrow \frac{\frac{\left(c\left(b\left(\sqrt{-4 a \alpha+b^{2}+2 b+1}+3\right)+2\left(-2 a \alpha+\sqrt{-4 a \alpha+b^{2}+2 b+1}+1\right)+b^{2}\right)-2 a \beta\left(\sqrt{-4 a \alpha+b^{2}+2 b+1}+1\right)\right) \text { Hypergeometric1F1 }\left(\frac{2 a \beta-c\left(b+\sqrt{b^{2}+2 b}\right.}{2 c}\right.}{\text { Hypergeometric1F1 }\left(\frac{2 a \beta-c\left(b+\sqrt{b^{2}+2 b-4 a \alpha+1}+1\right)}{2 c}, 1-\sqrt{b^{2}+2 b-4 a \alpha+1},-\frac{c}{x}\right)}}{2 a x^{2}\left(4 a \alpha-b^{2}-2 b\right)}
$$

2.67 problem 67

2.67.1 Solving as riccati ode . 418

Internal problem ID [10397]
Internal file name [OUTPUT/9344_Monday_June_06_2022_02_14_16_PM_45730703/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 67.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x\left(x^{2}+a\right)\left(y^{\prime}+\lambda y^{2}\right)+\left(b x^{2}+c\right) y=-s x
$$

2.67.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} \lambda x^{3}+y^{2} a \lambda x+b x^{2} y+y c+s x}{x\left(x^{2}+a\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{2} y^{2} \lambda}{x^{2}+a}-\frac{y^{2} a \lambda}{x^{2}+a}-\frac{x b y}{x^{2}+a}-\frac{y c}{x\left(x^{2}+a\right)}-\frac{s}{x^{2}+a}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{s}{x^{2}+a}, f_{1}(x)=-\frac{b x^{2}+c}{x\left(x^{2}+a\right)}$ and $f_{2}(x)=-\frac{\lambda x^{3}+a \lambda x}{x\left(x^{2}+a\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda x^{3}+a \lambda x\right) u}{x\left(x^{2}+a\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{3 \lambda x^{2}+\lambda a}{x\left(x^{2}+a\right)}+\frac{\lambda x^{3}+a \lambda x}{x^{2}\left(x^{2}+a\right)}+\frac{2 \lambda x^{3}+2 a \lambda x}{\left(x^{2}+a\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{2}+c\right)\left(\lambda x^{3}+a \lambda x\right)}{x^{2}\left(x^{2}+a\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda x^{3}+a \lambda x\right)^{2} s}{x^{2}\left(x^{2}+a\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda x^{3}+a \lambda x\right) u^{\prime \prime}(x)}{x\left(x^{2}+a\right)}-\left(-\frac{3 \lambda x^{2}+\lambda a}{x\left(x^{2}+a\right)}+\frac{\lambda x^{3}+a \lambda x}{x^{2}\left(x^{2}+a\right)}+\frac{2 \lambda x^{3}+2 a \lambda x}{\left(x^{2}+a\right)^{2}}+\frac{\left(b x^{2}+c\right)\left(\lambda x^{3}+a \lambda x\right)}{x^{2}\left(x^{2}+a\right)^{2}}\right) u^{\prime}(x)-
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\left.\begin{array}{l}
u(x)=\left(x^{2}\right. \\
+a)^{\frac{(2-b) a+c}{2 a}}\left(x ^ { \frac { a - c } { a } } \text { hypergeom } \left(\left[-\frac{b}{4}+\frac{5}{4}+\frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4},-\frac{b}{4}+\frac{5}{4}-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4}\right],\left[\frac{3 a-}{2 a}\right.\right.\right. \\
\left.-\frac{x^{2}}{a}\right) c_{1} \\
+ \text { hypergeom }\left(\left[-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4}-\frac{b}{4}+\frac{3}{4}+\frac{c}{2 a}, \frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4}-\frac{b}{4}+\frac{3}{4}+\frac{c}{2 a}\right],\left[\frac{1}{2}+\frac{c}{2 a}\right]\right. \\
\left.-\frac{x^{2}}{a}\right) c_{2}
\end{array}\right) .
$$

The above shows that
$u^{\prime}(x)$
$=\underline{ } \quad 3\left(\left(x^{2}+a\right) x^{2}\left((-\lambda s+b-2) a^{2}+c(-3+b) a-c^{2}\right)\left(a-\frac{c}{3}\right) c_{2}\right.$ hypergeom $\left(\left[\frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4}-\frac{b}{4}+\frac{7}{4}+\frac{c}{2 a}\right.\right.$

Using the above in (1) gives the solution
y
$=\xrightarrow{3\left(\left(x^{2}+a\right) x^{2}\left((-\lambda s+b-2) a^{2}+c(-3+b) a-c^{2}\right)\left(a-\frac{c}{3}\right) c_{2} \text { hypergeom }\left(\left[\frac{\sqrt{b^{2}-4 \lambda s-2 b+1}}{4}-\frac{b}{4}+\frac{7}{4}+\frac{c}{2 a}\right.\right.\right.}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
\left((-\lambda s+b-2) a^{2}+c(-3+b) a-c^{2}\right)\left(a-\frac{c}{3}\right)\left(a x^{\frac{a+c}{a}}+x^{\frac{3 a+c}{a}}\right) \text { hypergeom }\left(\left[-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1} a+a b-7 a-2 c}{4 a}\right.\right.
$$

Summary
The solution(s) found are the following
y

$$
\begin{equation*}
\left((-\lambda s+b-2) a^{2}+c(-3+b) a-c^{2}\right)\left(a-\frac{c}{3}\right)\left(a x^{\frac{a+c}{a}}+x^{\frac{3 a+c}{a}}\right) \text { hypergeom }\left(\left[-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1} a+a b-7 a-2 c}{4 a}\right.\right. \tag{1}
\end{equation*}
$$

Verification of solutions
y

$$
\left((-\lambda s+b-2) a^{2}+c(-3+b) a-c^{2}\right)\left(a-\frac{c}{3}\right)\left(a x^{\frac{a+c}{a}}+x^{\frac{3 a+c}{a}}\right) \text { hypergeom }\left(\left[-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1} a+a b-7 a-2 c}{4 a}\right.\right.
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*x^2+c)*(diff(y(x), x))/(x*
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 613
dsolve $\left(x *\left(x^{\wedge} 2+a\right) *(\operatorname{diff}(y(x), x)+l a m b d a * y(x) \wedge 2)+\left(b * x^{\wedge} 2+c\right) * y(x)+s * x=0, y(x), \quad\right.$ singsol=all)
$y(x)$

$$
\left(a-\frac{c}{3}\right)\left((-\lambda s+b-2) a^{2}+c(b-3) a-c^{2}\right)\left(a x^{\frac{a+c}{a}}+x^{\frac{3 a+c}{a}}\right) c_{1} \text { hypergeom }\left(\left[-\frac{\sqrt{b^{2}-4 \lambda s-2 b+1} a+a b-7 a-2 c}{4 a}\right.\right.
$$

\qquad
\checkmark Solution by Mathematica
Time used: 2.874 (sec). Leaf size: 862
DSolve $\left[x *\left(x^{\wedge} 2+a\right) *\left(y^{\prime}[x]+\backslash[\right.\right.$ Lambda $\left.] * y[x] \wedge 2\right)+\left(b * x^{\wedge} 2+c\right) * y[x]+s * x==0, y[x], x$, IncludeSingularSoluti
$y(x)$
$\rightarrow \frac{a^{\frac{1}{2}\left(\frac{c}{a}-3\right)}(a-c) x^{-\frac{c}{a}} \text { Hypergeometric2F1 }\left(\frac{b a-\sqrt{b^{2}-2 b-4 s \lambda+1} a+a-2 c}{4 a}, \frac{a\left(b+\sqrt{b^{2}-2 b-4 s \lambda+1}+1\right)-2 c}{4 a}, \frac{3}{2}-\frac{c}{2 a},-\frac{x^{2}}{a}\right)+}{\lambda a^{\frac{1}{2}\left(\frac{c}{a}-1\right)} x^{1-\frac{c}{a}} \text { Hypergeometric2F1 }\left(\frac{b a-\sqrt{b^{2}-2 b-4 s \lambda}}{4 a}\right.}$
$y(x) \rightarrow$
$s x$ Hypergeometric $2 \mathrm{~F} 1\left(\frac{1}{4}\left(b-\sqrt{b^{2}-2 b-4 s \lambda+1}+3\right), \frac{1}{4}\left(b+\sqrt{b^{2}-2 b-4 s \lambda+1}+3\right), \frac{1}{2}\left(\frac{c}{a}+3\right)\right.$, $(a+c)$ Hypergeometric2F1 $\left(\frac{1}{4}\left(b-\sqrt{b^{2}-2 b-4 s \lambda+1}-1\right), \frac{1}{4}\left(b+\sqrt{b^{2}-2 b-4 s \lambda+1}-1\right), \frac{a+c}{2 a}\right.$, $y(x) \rightarrow$

$$
-\frac{s x \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{4}\left(b-\sqrt{b^{2}-2 b-4 s \lambda+1}+3\right), \frac{1}{4}\left(b+\sqrt{b^{2}-2 b-4 s \lambda+1}+3\right), \frac{1}{2}\left(\frac{c}{a}+3\right),\right.}{(a+c) \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{4}\left(b-\sqrt{b^{2}-2 b-4 s \lambda+1}-1\right), \frac{1}{4}\left(b+\sqrt{b^{2}-2 b-4 s \lambda+1}-1\right), \frac{a+c}{2 a},\right.}
$$

2.68 problem 68

2.68.1 Solving as riccati ode . 423

Internal problem ID [10398]
Internal file name [OUTPUT/9345_Monday_June_06_2022_02_14_18_PM_29258920/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 68.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
x^{2}(x+a)\left(y^{\prime}+\lambda y^{2}\right)+x(b x+c) y=-\alpha x-\beta
$$

2.68.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a \lambda x^{2}+y^{2} \lambda x^{3}+b x^{2} y+y c x+\alpha x+\beta}{x^{2}(x+a)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} a \lambda}{x+a}-\frac{x y^{2} \lambda}{x+a}-\frac{b y}{x+a}-\frac{y c}{x(x+a)}-\frac{\alpha}{x(x+a)}-\frac{\beta}{x^{2}(x+a)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{\alpha x+\beta}{x^{2}(x+a)}, f_{1}(x)=-\frac{b x^{2}+c x}{x^{2}(x+a)}$ and $f_{2}(x)=-\frac{\lambda x^{2} a+\lambda x^{3}}{x^{2}(x+a)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda x^{2} a+\lambda x^{3}\right) u}{x^{2}(x+a)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 a \lambda x+3 \lambda x^{2}}{x^{2}(x+a)}+\frac{2 \lambda x^{2} a+2 \lambda x^{3}}{x^{3}(x+a)}+\frac{\lambda x^{2} a+\lambda x^{3}}{x^{2}(x+a)^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{2}+c x\right)\left(\lambda x^{2} a+\lambda x^{3}\right)}{x^{4}(x+a)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda x^{2} a+\lambda x^{3}\right)^{2}(\alpha x+\beta)}{x^{6}(x+a)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$-\frac{\left(\lambda x^{2} a+\lambda x^{3}\right) u^{\prime \prime}(x)}{x^{2}(x+a)}-\left(-\frac{2 a \lambda x+3 \lambda x^{2}}{x^{2}(x+a)}+\frac{2 \lambda x^{2} a+2 \lambda x^{3}}{x^{3}(x+a)}+\frac{\lambda x^{2} a+\lambda x^{3}}{x^{2}(x+a)^{2}}+\frac{\left(b x^{2}+c x\right)\left(\lambda x^{2} a+\lambda x^{3}\right)}{x^{4}(x+a)^{2}}\right)$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=(x \\
& +a)^{\frac{(-b+1) a+c}{a}}\left(c _ { 2 } x ^ { - \frac { - a + c + \sqrt { a ^ { 2 } + (- 4 \beta \lambda - 2 c) a + c ^ { 2 } } } { 2 a } } \text { hypergeom } \left(\left[-\frac{\sqrt{-4 \alpha \lambda+b^{2}-2 b+1} a+a b+\sqrt{a^{2}+(-4 \beta \lambda}}{2 a}\right.\right.\right. \\
& \left.-\frac{x}{a}\right) \\
& +c_{1} x^{\frac{a-c+\sqrt{a^{2}+(-4 \beta \lambda-2 c) a+c^{2}}}{2 a}} \text { hypergeom }\left(\left[\frac{-a b+\sqrt{-4 \alpha \lambda+b^{2}-2 b+1} a+2 a+c+\sqrt{a^{2}+(-4 \beta \lambda-2 c)}}{2 a}\right.\right. \\
& \left.\left.-\frac{x}{a}\right)\right)
\end{aligned}
$$

The above shows that
Expression too large to display
Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*x+c)*(diff(y(x), x))/(x*(a
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1508
dsolve $\left(x^{\wedge} 2 *(x+a) *\left(\operatorname{diff}(y(x), x)+l a m b d a * y(x)^{\wedge} 2\right)+x *(b * x+c) * y(x)+a l\right.$ pha $* x+b e t a=0, y(x), \quad$ singsol $=a l$

Expression too large to display
\checkmark Solution by Mathematica
Time used: 5.239 (sec). Leaf size: 1770

$$
\begin{aligned}
& \text { DSolve }\left[\mathrm{x}^{\wedge} 2 *(\mathrm{x}+\mathrm{a}) *\left(\mathrm{y}^{\prime}[\mathrm{x}]+\backslash[\text { Lambda }] * \mathrm{y}[\mathrm{x}] \wedge 2\right)+\mathrm{x} *(\mathrm{~b} * \mathrm{x}+\mathrm{c}) * \mathrm{y}[\mathrm{x}]+\backslash[\text { Alpha }] * \mathrm{x}+\backslash[\text { Beta }]==0, \mathrm{y}[\mathrm{x}], \mathrm{x},\right. \text { Includ } \\
& y(x) \\
& \quad 2 a\left(a-c+\sqrt{a^{2}-2(c+2 \beta \lambda) a+c^{2}}\right) \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{-c+a\left(b-\sqrt{b^{2}-2 b-4 \alpha \lambda+1}\right)+\sqrt{a^{2}-2(c+2 \beta \lambda) a+c^{2}}}{2 a},-c-\right. \\
& \rightarrow-
\end{aligned}
$$

$y(x)$
$\frac{a\left(c^{2}-2 a(2 \beta \lambda+c)\right)\left(\sqrt{a^{2}-2 a(2 \beta \lambda+c)+c^{2}}-a+c\right)}{x}-\frac{\left(2 \alpha a^{3} \lambda+a^{2}\left(2 \alpha \lambda \sqrt{a^{2}-2 a(2 \beta \lambda+c)+c^{2}}+4 b \beta \lambda+b c-2 \beta \lambda\right)-a\left(b c \sqrt{a^{2}-2 a(2 \beta \lambda+c)+c^{2}}+2\right.\right.}{\text { ну }}$ $\rightarrow \longrightarrow$ Hy

2.69 problem 69

2.69.1 Solving as homogeneousTypeD2 ode 428
2.69.2 Solving as riccati ode . 429

Internal problem ID [10399]
Internal file name [OUTPUT/9346_Monday_June_06_2022_02_14_39_PM_18970698/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2" Maple gives the following as the ode type

```
[[_homogeneous, `class D`], _rational, _Riccati]
```

$$
\left(a x^{2}+b x+e\right)\left(y^{\prime} x-y\right)-y^{2}=-x^{2}
$$

2.69.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(a x^{2}+b x+e\right)\left(\left(u^{\prime}(x) x+u(x)\right) x-u(x) x\right)-u(x)^{2} x^{2}=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}-1}{a x^{2}+b x+e}
\end{aligned}
$$

Where $f(x)=\frac{1}{a x^{2}+b x+e}$ and $g(u)=u^{2}-1$. Integrating both sides gives

$$
\frac{1}{u^{2}-1} d u=\frac{1}{a x^{2}+b x+e} d x
$$

$$
\begin{aligned}
\int \frac{1}{u^{2}-1} d u & =\int \frac{1}{a x^{2}+b x+e} d x \\
-\operatorname{arctanh}(u) & =\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}+c_{2}
\end{aligned}
$$

The solution is

$$
-\operatorname{arctanh}(u(x))-\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\operatorname{arctanh}\left(\frac{y}{x}\right)-\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}-c_{2}=0 \\
& -\operatorname{arctanh}\left(\frac{y}{x}\right)-\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\operatorname{arctanh}\left(\frac{y}{x}\right)-\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}-c_{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\operatorname{arctanh}\left(\frac{y}{x}\right)-\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}-c_{2}=0
$$

Verified OK.

2.69.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2} y+b x y+y e-x^{2}+y^{2}}{\left(a x^{2}+b x+e\right) x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=\frac{x a y}{a x^{2}+b x+e}+\frac{b y}{a x^{2}+b x+e}+\frac{y e}{\left(a x^{2}+b x+e\right) x}-\frac{x}{a x^{2}+b x+e}+\frac{y^{2}}{\left(a x^{2}+b x+e\right) x}$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{x}{a x^{2}+b x+e}, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{\left(a x^{2}+b x+e\right) x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{\left(a x^{2}+b x+e\right) x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 x a+b}{\left(a x^{2}+b x+e\right)^{2} x}-\frac{1}{\left(a x^{2}+b x+e\right) x^{2}} \\
f_{1} f_{2} & =\frac{1}{\left(a x^{2}+b x+e\right) x^{2}} \\
f_{2}^{2} f_{0} & =-\frac{1}{\left(a x^{2}+b x+e\right)^{3} x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{\left(a x^{2}+b x+e\right) x}+\frac{(2 x a+b) u^{\prime}(x)}{\left(a x^{2}+b x+e\right)^{2} x}-\frac{u(x)}{\left(a x^{2}+b x+e\right)^{3} x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+c_{2} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{1} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+c_{2} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)}{a x^{2}+b x+e}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{1} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+c_{2} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)\right) x}{c_{1} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+c_{2} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(c_{3} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)\right) x}{c_{3} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(c_{3} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)\right) x}{c_{3} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(c_{3} \cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)\right) x}{c_{3} \sinh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)+\cosh \left(\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 58

```
dsolve((a*x^2+b*x+e)*(x*diff(y(x),x)-y(x))-y(x)^2+x^2=0,y(x), singsol=all)
```

$$
y(x)=-\tanh \left(\frac{c_{1} \sqrt{4 e a-b^{2}}+2 \arctan \left(\frac{2 a x+b}{\sqrt{4 e a-b^{2}}}\right)}{\sqrt{4 e a-b^{2}}}\right) x
$$

\checkmark Solution by Mathematica
Time used: 1.973 (sec). Leaf size: 116

```
DSolve[(a*x^2+b*x+e)*(x*y'[x]-y[x])-y[x]^2+x^2==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\frac{x\left(-1+\exp \left(\frac{4 \arctan \left(\frac{2 a x+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}+2 c_{1}\right)\right)}{1+\exp \left(\frac{4 \arctan \left(\frac{2 a x+b}{\sqrt{4 a e-b^{2}}}\right)}{\sqrt{4 a e-b^{2}}}+2 c_{1}\right)}
$$

$$
y(x) \rightarrow-x
$$

$$
y(x) \rightarrow x
$$

2.70 problem 70

$$
\text { 2.70.1 Solving as riccati ode . } 433
$$

Internal problem ID [10400]
Internal file name [OUTPUT/9347_Monday_June_06_2022_02_14_40_PM_15338845/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 70.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
x^{2}\left(x^{2}+a\right)\left(y^{\prime}+\lambda y^{2}\right)+x\left(b x^{2}+c\right) y=-s
$$

2.70.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} \lambda x^{4}+y^{2} a \lambda x^{2}+b x^{3} y+y c x+s}{x^{2}\left(x^{2}+a\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{2} y^{2} \lambda}{x^{2}+a}-\frac{y^{2} a \lambda}{x^{2}+a}-\frac{x b y}{x^{2}+a}-\frac{y c}{x\left(x^{2}+a\right)}-\frac{s}{x^{2}\left(x^{2}+a\right)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{s}{x^{2}\left(x^{2}+a\right)}, f_{1}(x)=-\frac{b x^{3}+c x}{x^{2}\left(x^{2}+a\right)}$ and $f_{2}(x)=-\frac{\lambda x^{4}+\lambda x^{2} a}{x^{2}\left(x^{2}+a\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda x^{4}+\lambda x^{2} a\right) u}{x^{2}\left(x^{2}+a\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{4 \lambda x^{3}+2 a \lambda x}{x^{2}\left(x^{2}+a\right)}+\frac{2 \lambda x^{4}+2 \lambda x^{2} a}{x^{3}\left(x^{2}+a\right)}+\frac{2 \lambda x^{4}+2 \lambda x^{2} a}{x\left(x^{2}+a\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{3}+c x\right)\left(\lambda x^{4}+\lambda x^{2} a\right)}{x^{4}\left(x^{2}+a\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda x^{4}+\lambda x^{2} a\right)^{2} s}{x^{6}\left(x^{2}+a\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda x^{4}+\lambda x^{2} a\right) u^{\prime \prime}(x)}{x^{2}\left(x^{2}+a\right)}-\left(-\frac{4 \lambda x^{3}+2 a \lambda x}{x^{2}\left(x^{2}+a\right)}+\frac{2 \lambda x^{4}+2 \lambda x^{2} a}{x^{3}\left(x^{2}+a\right)}+\frac{2 \lambda x^{4}+2 \lambda x^{2} a}{x\left(x^{2}+a\right)^{2}}+\frac{\left(b x^{3}+c x\right)\left(\lambda x^{4}+\lambda x^{2} \sigma\right.}{x^{4}\left(x^{2}+a\right)^{2}}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\left(x^{2}\right. \\
& +a)^{\frac{(2-b) a+c}{2 a}}\left(c _ { 2 } x ^ { - \frac { - a + c + \sqrt { a ^ { 2 } + (- 4 \lambda s - 2 c) a + c ^ { 2 } } } { 2 a } } \text { hypergeom } \left(\left[-\frac{-3 a-c+\sqrt{a^{2}+(-4 \lambda s-2 c) a+c^{2}}}{4 a}, \frac{-2 a b+}{4}\right.\right.\right. \\
& +c_{1} x^{\frac{a-c+\sqrt{a^{2}+(-4 \lambda s-2 c) a+c^{2}}}{2 a}} \text { hypergeom }\left(\left[\frac{3 a+c+\sqrt{a^{2}+(-4 \lambda s-2 c) a+c^{2}}}{4 a}, \frac{-2 a b+5 a+c+\sqrt{a^{2}+(}}{4 a}\right.\right. \\
& \left.\frac{\left.-\frac{x^{2}}{a}\right)}{4}\right)
\end{aligned}
$$

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*x^2+c)*(diff(y(x), x))/(x*
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- Riccati to 2nd Order successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 1329
dsolve $\left(x^{\wedge} 2 *\left(x^{\wedge} 2+a\right) *\left(\operatorname{diff}(y(x), x)+\operatorname{lambda} * y(x)^{\wedge} 2\right)+x *\left(b * x^{\wedge} 2+c\right) * y(x)+s=0, y(x)\right.$, singsol=all)

Expression too large to display
\checkmark Solution by Mathematica
Time used: 7.158 (sec). Leaf size: 1470
DSolve $\left[x^{\wedge} 2 *\left(x^{\wedge} 2+a\right) *\left(y^{\prime}[x]+\backslash[\right.\right.$ Lambda $\left.] * y[x]^{\wedge} 2\right)+x *\left(b * x^{\wedge} 2+c\right) * y[x]+s==0, y[x], x$, IncludeSingularSolu
$y(x)$
$\underline{\left(a-c-\sqrt{a^{2}-2(c+2 s \lambda) a+c^{2}}\right) c_{1}\left(\left(-2 b a+a+c+\sqrt{a^{2}-2(c+2 s \lambda) a+c^{2}}\right) \text { Hypergeometric2F1 }\left(-\frac{-5 a+c+\sqrt{a^{2}-2(c+2 s \lambda) a+c^{2}}}{4 a},-\frac{-a(2 b+3)+c+\sqrt{a}}{4}\right.\right.}$
\rightarrow
$y(x)$
$\rightarrow \frac{x\left(a^{3}(-b)+a^{2}\left(b \sqrt{a^{2}-2 a(c+2 \lambda s)+c^{2}}-4(b-1) \lambda s+c\right)+a\left(b c\left(\sqrt{a^{2}-2 a(c+2 \lambda s)+c^{2}}+c\right)-c\right.\right.}{2 a^{2} \lambda\left(3 a^{2}+2 a\right.}$
$-\frac{\sqrt{a^{2}-2 a(c+2 \lambda s)+c^{2}}-a+c}{2 a \lambda x}$

2.71 problem 71

2.71.1 Solving as riccati ode 438

Internal problem ID [10401]
Internal file name [OUTPUT/9348_Monday_June_06_2022_02_14_54_PM_33630119/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 71.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
a\left(x^{2}-1\right)\left(y^{\prime}+\lambda y^{2}\right)+b x\left(x^{2}-1\right) y=-c x^{2}-d x-s
$$

2.71.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} a \lambda x^{2}+b x^{3} y-y^{2} a \lambda-b x y+c x^{2}+d x+s}{a\left(x^{2}-1\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{y^{2} \lambda x^{2}}{x^{2}-1}-\frac{b x^{3} y}{a\left(x^{2}-1\right)}+\frac{\lambda y^{2}}{x^{2}-1}+\frac{b x y}{a\left(x^{2}-1\right)}-\frac{c x^{2}}{a\left(x^{2}-1\right)}-\frac{d x}{a\left(x^{2}-1\right)}-\frac{s}{a\left(x^{2}-1\right)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{c x^{2}+d x+s}{a\left(x^{2}-1\right)}, f_{1}(x)=-\frac{b x^{3}-b x}{a\left(x^{2}-1\right)}$ and $f_{2}(x)=-\frac{\lambda x^{2} a-\lambda a}{a\left(x^{2}-1\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(\lambda x^{2} a-\lambda a\right) u}{a\left(x^{2}-1\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 \lambda x}{x^{2}-1}+\frac{2\left(\lambda x^{2} a-\lambda a\right) x}{a\left(x^{2}-1\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{3}-b x\right)\left(\lambda x^{2} a-\lambda a\right)}{a^{2}\left(x^{2}-1\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(\lambda x^{2} a-\lambda a\right)^{2}\left(c x^{2}+d x+s\right)}{a^{3}\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(\lambda x^{2} a-\lambda a\right) u^{\prime \prime}(x)}{a\left(x^{2}-1\right)}-\left(-\frac{2 \lambda x}{x^{2}-1}+\frac{2\left(\lambda x^{2} a-\lambda a\right) x}{a\left(x^{2}-1\right)^{2}}+\frac{\left(b x^{3}-b x\right)\left(\lambda x^{2} a-\lambda a\right)}{a^{2}\left(x^{2}-1\right)^{2}}\right) u^{\prime}(x)-\frac{\left(\lambda x^{2} a-\lambda a\right)^{2}(}{a^{3}(}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{3}+x\right) b _Y^{\prime}(x)}{a\left(x^{2}-1\right)}-\frac{\left(-c x^{2}-d x-s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)\right.\right. & -\frac{\left(-x^{3}+x\right) b_{-} Y^{\prime}(x)}{a\left(x^{2}-1\right)} \\
& \left.\left.-\frac{\left(-c x^{2}-d x-s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{3}+x\right) b _Y^{\prime}(x)}{a\left(x^{2}-1\right)}-\frac{\left(-c x^{2}-d x-s\right) \lambda_{-} Y(x)}{a\left(x^{2}-1\right)}\right\},\{-Y(x)\}\right)\right) a\left(x^{2}-1\right)}{\left(\lambda x^{2} a-\lambda a\right) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{3}+x\right) b _Y^{\prime}(x)}{a\left(x^{2}-1\right)}-\frac{\left(-c x^{2}-d x-s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\{-Y(x)\}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right)-Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\left\{_Y(x)\right\}\right)}{\lambda \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right) \not Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\{-Y(x)\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left.\left.y=\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right)-Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda _Y(x)}{a\left(x^{2}-1\right)}\right\},\left\{_Y(x)\right\}\right)}{\lambda \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right) \measuredangle}{a\left(x^{2}-1\right)} Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda _Y(x)\right.\right.}\right\},\{-Y(x)\}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right) \overline{-} Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda_{_} Y(x)}{a\left(x^{2}-1\right)}\right\},\left\{_Y(x)\right\}\right)}{\lambda \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) a\left(x^{2}-1\right)+b\left(x^{3}-x\right) _Y^{\prime}(x)+\left(c x^{2}+d x+s\right) \lambda_{_} Y(x)}{a\left(x^{2}-1\right)}\right\},\{-Y(x)\}\right)}
$$

Verified OK.

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -b*x*(diff(y(x), x))/a-lambda*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        trying a solution in terms of MeijerG functions
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
```



```
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

X Solution by Maple
dsolve $\left(a *\left(x^{\wedge} 2-1\right) *\left(\operatorname{diff}(y(x), x)+l a m b d a * y(x)^{\wedge} 2\right)+b * x *\left(x^{\wedge} 2-1\right) * y(x)+c * x^{\wedge} 2+d * x+s=0, y(x), \quad\right.$ singsol $=a$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{a} *\left(\mathrm{x}^{\wedge} 2-1\right) *\left(\mathrm{y}{ }^{\prime}[\mathrm{x}]+\backslash[\right.\right.$ Lambda $\left.] * \mathrm{y}[\mathrm{x}] \wedge 2\right)+\mathrm{b} * \mathrm{x} *\left(\mathrm{x}^{\wedge} 2-1\right) * \mathrm{y}[\mathrm{x}]+\mathrm{c} * \mathrm{x}^{\wedge} 2+\mathrm{d} * \mathrm{x}+\mathrm{s}==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSing

Not solved

2.72 problem 72

2.72.1 Solving as riccati ode

Internal problem ID [10402]
Internal file name [OUTPUT/9349_Monday_June_06_2022_02_14_56_PM_31336711/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 72 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{n+1} y^{\prime}-x^{2 n} y^{2} a-y x^{n} b=c x^{m}+d
$$

2.72.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\left(x^{2 n} a y^{2}+x^{n} b y+c x^{m}+d\right) x^{-n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} a y^{2}}{x}+\frac{b y}{x}+\frac{x^{-n} c x^{m}}{x}+\frac{x^{-n} d}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\left(c x^{m}+d\right) x^{-n-1}, f_{1}(x)=x^{n} b x^{-n-1}$ and $f_{2}(x)=x^{2 n} a x^{-n-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2 n} a x^{-n-1} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n a x^{-n-1}}{x}-\frac{x^{2 n} a x^{-n-1}(n+1)}{x} \\
f_{1} f_{2} & =x^{n} b x^{-2 n-2} x^{2 n} a \\
f_{2}^{2} f_{0} & =x^{4 n} a^{2} x^{-3 n-3}\left(c x^{m}+d\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$x^{2 n} a x^{-n-1} u^{\prime \prime}(x)-\left(\frac{2 x^{2 n} n a x^{-n-1}}{x}-\frac{x^{2 n} a x^{-n-1}(n+1)}{x}+x^{n} b x^{-2 n-2} x^{2 n} a\right) u^{\prime}(x)+x^{4 n} a^{2} x^{-3 n-3}\left(c x^{m}+\right.$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=x^{\frac{b}{2}} x^{\frac{n}{2}}(\operatorname{Bessel} Y & \left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2} \\
& \left.+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{x^{-1+\frac{b}{2}+\frac{n}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{2}\right)\right.}{m}$

Using the above in (1) gives the solution
$y=$
$-\frac{x^{-1+\frac{b}{2}+\frac{n}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c\right.\right.}{2 a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4}}{2}\right.\right.}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y & =\frac{x^{-n}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{m}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{m}}{m}\right)\right) \sqrt{c a}\right.}{2 a\left(\operatorname { B e s s e l Y } \left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m},\right.\right.},
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{x^{-n}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{\frac{m}{2}}}{m}\right)\right) \sqrt{c a}\right.}{2 a\left(\operatorname { B e s s e l Y } \left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m},\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{x^{-n}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{m}}{m}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m}+1, \frac{2 \sqrt{c a} x^{m}}{m}\right)\right) \sqrt{c a}\right.}{2 a\left(\operatorname { B e s s e l Y } \left(\frac{\sqrt{-4 a d+b^{2}+2 b n+n^{2}}}{m},\right.\right.}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b+n-1)*(diff(y(x), x))/x-x^(n
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 284
dsolve $\left(x^{\wedge}(n+1) * \operatorname{diff}(y(x), x)=a * x^{\wedge}(2 * n) * y(x)^{\wedge} 2+b * x^{\wedge} n * y(x)+c * x^{\wedge} m+d, y(x)\right.$, singsol=all)
$y(x)$

\checkmark Solution by Mathematica
Time used: 3.153 (sec). Leaf size: 2576
DSolve $\left[x^{\wedge}(n+1) * y^{\prime}[x]==a * x^{\wedge}(2 * n) * y[x] \wedge 2+b * x^{\wedge} n * y[x]+c * x^{\wedge} m+d, y[x], x\right.$, IncludeSingularSolutions

Too large to display

2.73 problem 73

2.73.1 Solving as riccati ode 448

Internal problem ID [10403]
Internal file name [OUTPUT/9350_Monday_June_06_2022_02_14_58_PM_25408529/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 73 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
x\left(a x^{k}+b\right) y^{\prime}-\alpha x^{n} y^{2}-\left(\beta-a n x^{k}\right) y=\gamma x^{-n}
$$

2.73.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x^{k} a n y-\alpha x^{n} y^{2}-\gamma x^{-n}-\beta y}{x\left(a x^{k}+b\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{k} a n y}{x\left(a x^{k}+b\right)}+\frac{\alpha x^{n} y^{2}}{x\left(a x^{k}+b\right)}+\frac{\gamma x^{-n}}{x\left(a x^{k}+b\right)}+\frac{\beta y}{x\left(a x^{k}+b\right)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\gamma x^{-n}}{x\left(a x^{k}+b\right)}, f_{1}(x)=-\frac{a n x^{k}-\beta}{x\left(a x^{k}+b\right)}$ and $f_{2}(x)=\frac{\alpha x^{n}}{x\left(a x^{k}+b\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\alpha x^{n} u}{x\left(a x^{k}+b\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\alpha x^{n} n}{x^{2}\left(a x^{k}+b\right)}-\frac{\alpha x^{n}}{x^{2}\left(a x^{k}+b\right)}-\frac{\alpha x^{n} a k x^{k}}{x^{2}\left(a x^{k}+b\right)^{2}} \\
f_{1} f_{2} & =-\frac{\left(a n x^{k}-\beta\right) \alpha x^{n}}{x^{2}\left(a x^{k}+b\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{\alpha^{2} x^{2 n} \gamma x^{-n}}{x^{3}\left(a x^{k}+b\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\alpha x^{n} u^{\prime \prime}(x)}{x\left(a x^{k}+b\right)}-\left(\frac{\alpha x^{n} n}{x^{2}\left(a x^{k}+b\right)}-\frac{\alpha x^{n}}{x^{2}\left(a x^{k}+b\right)}-\frac{\alpha x^{n} a k x^{k}}{x^{2}\left(a x^{k}+b\right)^{2}}-\frac{\left(a n x^{k}-\beta\right) \alpha x^{n}}{x^{2}\left(a x^{k}+b\right)^{2}}\right) u^{\prime}(x)+\frac{\alpha^{2} x^{2 n} \gamma x^{-n} u}{x^{3}\left(a x^{k}+b\right.}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & c_{1} x^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a+b n+\beta}{2 b}}\left(a x^{k}+b\right)^{-\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a+b n+\beta}{2 b k}} \\
& +c_{2} x^{\frac{-k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}}}{2 b} a+b n+\beta} \\
& \left(a x^{k}+b\right)^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a-b n-\beta}{2 b k}}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-x^{\frac{-k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} 2 b+b n+\beta}{2 b}} c_{2}\left(k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a-b n-\beta\right)\left(a x^{k}+b\right)^{\frac{\sqrt[k]{\frac{b^{2} n^{2}+2 \beta n-4 \alpha+\beta^{2}}{k^{2} a^{2}}}{ }_{2}^{2 b-b n-\beta}}{}}+c_{1}}{2 x\left(a x^{k}+\right.}$
Using the above in (1) gives the solution

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$=\frac{\left(x^{\frac{-k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} 2 b+b n+\beta}{2 b}}\left(k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a-b n-\beta\right)\left(a x^{k}+b\right)^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} \frac{a-b n-\beta}{2 b k}}{}-c_{3} x}\right.}{2 \alpha\left(x^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}}}{2 b}}\left(a x^{k}+b\right)^{-\frac{\sqrt{\frac{b^{2} n^{2}+2 \beta n b-4}{k^{2} a^{2}}}}{2 b}}\right.}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(x^{\frac{-k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a+b n+\beta}{2 b}}\left(k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a-b n-\beta\right)\left(a x^{k}+b\right)^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2}} a^{2}}}{2 b-b n-\beta}}-c_{3} x\right.}{2 \alpha\left(x^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}}}{2 b}}\left(a x^{k}+b\right)^{-\frac{\sqrt{\frac{b^{2} n^{2}+2 \beta n b-4}{k^{2} a^{2}}}}{2 b}}\right.}$

Verification of solutions

y
$=\frac{\left(x^{\frac{-k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} 2 b+b n+\beta}{2 b}}\left(k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}} a-b n-\beta\right)\left(a x^{k}+b\right)^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2}} a^{2}}}{a-b n-\beta}}-c_{3} x\right.}{2 \alpha\left(x^{\frac{k \sqrt{\frac{b^{2} n^{2}+2 \beta n b-4 \alpha \gamma+\beta^{2}}{k^{2} a^{2}}}}{2 b}}\left(a x^{k}+b\right)^{-\frac{\sqrt{\frac{b^{2} n^{2}+2 \beta n b-4}{k^{2} a^{2}}}}{2 b}}\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 138
dsolve $\left(x *\left(a * x^{\wedge} k+b\right) * \operatorname{diff}(y(x), x)=a l p h a * x^{\wedge} n * y(x) \wedge 2+\left(\operatorname{beta}-a * n * x^{\wedge} k\right) * y(x)+\operatorname{gamma} x^{\wedge}(-n), y(x)\right.$, sing
$y(x)=$

$$
-\frac{x^{-n}\left(\tanh \left(\frac{\left((-b n-\beta) \ln \left(a x^{k}+b\right)+\left((b n+\beta) \ln (x)+c_{1} b\right) k\right) \sqrt{(b n+\beta)^{2}\left(n^{2} b^{2}+2 b \beta n-4 \gamma \alpha+\beta^{2}\right)}}{2 k b(b n+\beta)^{2}}\right) \sqrt{(b n+\beta)^{2}\left(n^{2} b^{2}+2 b \beta n-\right.}\right.}{2 \alpha(b n+\beta)}
$$

\checkmark Solution by Mathematica
Time used: 4.641 (sec). Leaf size: 663
DSolve $\left[\mathrm{x} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{k}+\mathrm{b}\right) * \mathrm{y}^{\prime}[\mathrm{x}]==\backslash[\right.$ Alpha $] * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\left(\backslash[\right.$ Beta $\left.]-\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge} \mathrm{k}\right) * \mathrm{y}[\mathrm{x}]+\backslash[$ Gamma $] * \mathrm{x}^{\wedge}(-\mathrm{n}), \mathrm{y}[\mathrm{x}], \mathrm{x}$,
$y(x)$
\rightarrow $x^{-n}\left(b\left(n\left(-\exp \left(-\frac{\left(\log \left(a x^{k}+b\right)+\log (b)-k \log (x)+\log (k)\right)\left(\sqrt{\alpha} \sqrt{\gamma} \sqrt{\frac{-4 \alpha \gamma+b^{2} n^{2}+\beta^{2}+2 b \beta n}{\alpha \gamma}}+b n+\beta\right)}{2 b k}\right)\right)-c_{1} n \exp \left(-\frac{(1}{}\right.\right.\right.$
$y(x) \rightarrow \frac{x^{-n}\left(\sqrt{\alpha} \sqrt{\gamma} \sqrt{\frac{(b n+\beta)^{2}}{\alpha \gamma}-4}-b n-\beta\right)}{2 \alpha}$

2.74 problem 74

2.74.1 Solving as riccati ode

Internal problem ID [10404]
Internal file name [OUTPUT/9351_Monday_June_06_2022_02_15_01_PM_58658321/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 74 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

$$
x^{2}\left(x^{n} a-1\right)\left(y^{\prime}+\lambda y^{2}\right)+\left(p x^{n}+q\right) x y=-r x^{n}-s
$$

2.74.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x^{n} y^{2} a \lambda x^{2}-y^{2} \lambda x^{2}+x^{n} y p x+y q x+r x^{n}+s}{x^{2}\left(x^{n} a-1\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x^{n} y^{2} a \lambda}{x^{n} a-1}+\frac{y^{2} \lambda}{x^{n} a-1}-\frac{x^{n} y p}{x\left(x^{n} a-1\right)}-\frac{y q}{x\left(x^{n} a-1\right)}-\frac{r x^{n}}{x^{2}\left(x^{n} a-1\right)}-\frac{s}{x^{2}\left(x^{n} a-1\right)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{r x^{n}+s}{x^{2}\left(x^{n} a-1\right)}, f_{1}(x)=-\frac{x^{n} p x+q x}{x^{2}\left(x^{n} a-1\right)}$ and $f_{2}(x)=-\frac{x^{n} a \lambda x^{2}-\lambda x^{2}}{x^{2}\left(x^{n} a-1\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right) u}{x^{2}\left(x^{n} a-1\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{x^{n} n x a \lambda+2 x^{n} a \lambda x-2 \lambda x}{x^{2}\left(x^{n} a-1\right)}+\frac{2 x^{n} a \lambda x^{2}-2 \lambda x^{2}}{x^{3}\left(x^{n} a-1\right)}+\frac{\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right) x^{n} n a}{x^{3}\left(x^{n} a-1\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(x^{n} p x+q x\right)\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right)}{x^{4}\left(x^{n} a-1\right)^{2}} \\
f_{2}^{2} f_{0} & =-\frac{\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right)^{2}\left(r x^{n}+s\right)}{x^{6}\left(x^{n} a-1\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right) u^{\prime \prime}(x)}{x^{2}\left(x^{n} a-1\right)}-\left(-\frac{x^{n} n x a \lambda+2 x^{n} a \lambda x-2 \lambda x}{x^{2}\left(x^{n} a-1\right)}+\frac{2 x^{n} a \lambda x^{2}-2 \lambda x^{2}}{x^{3}\left(x^{n} a-1\right)}+\frac{\left(x^{n} a \lambda x^{2}-\lambda x^{2}\right) x^{n} n a}{x^{3}\left(x^{n} a-1\right)^{2}}+\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =x^{\frac{1}{2}+\frac{q}{2}}\left(c _ { 2 } x ^ { - \frac { \sqrt { 4 \lambda s + q ^ { 2 } + 2 q + 1 } } { 2 } } \text { hypergeom } \left(\left[\frac{-a \sqrt{4 \lambda s+q^{2}+2 q+1}+a q+\sqrt{a^{2}+(-4 \lambda r-2 p) a+p^{2}}+p}{2 a n},-\right.\right.\right. \\
& \quad+c_{1} x^{\frac{\sqrt{4 \lambda s+q^{2}+2 q+1}}{2}} \text { hypergeom }\left(\left[\frac{a \sqrt{4 \lambda s+q^{2}+2 q+1}+a q+\sqrt{a^{2}+(-4 \lambda r-2 p) a+p^{2}}+p}{2 a n}, \frac{a \sqrt{4 \lambda s+}}{}\right.\right.
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad x^{\frac{q}{2}-\frac{1}{2}}\left(x ^ { n - \frac { \sqrt { 4 \lambda s + q ^ { 2 } + 2 q + 1 } } { 2 } } c _ { 2 } \left(\left(\frac{a q^{2}}{2}+\frac{(-a n+a+p) q}{2}+a \lambda s+\lambda r-\frac{p n}{2}+\frac{p}{2}\right) \sqrt{4 \lambda s+q^{2}+2 q+1}-\frac{a q^{3}}{2}+\left(\frac{1}{2} a n\right.\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution

Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display
Verification of solutions
Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (x^(n-1)*p*x+q)*(diff(y(x), x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1222
dsolve $\left(x^{\wedge} 2 *\left(a * x^{\wedge} n-1\right) *\left(\operatorname{diff}(y(x), x)+\operatorname{lambda} * y(x)^{\wedge} 2\right)+\left(p * x^{\wedge} n+q\right) * x * y(x)+r * x^{\wedge} n+s=0, y(x)\right.$, singsol $=a$

Expression too large to display
\checkmark Solution by Mathematica
Time used: 7.968 (sec). Leaf size: 2419
DSolve $\left[x^{\wedge} 2 *\left(a * x^{\wedge} n-1\right) *\left(y^{\prime}[x]+\backslash[\right.\right.$ Lambda $\left.] * y[x] \wedge 2\right)+\left(p * x^{\wedge} n+q\right) * x * y[x]+r * x^{\wedge} n+s==0, y[x], x$, IncludeSing

Too large to display

2.75 problem 75

2.75.1 Solving as riccati ode . 457

Internal problem ID [10405]
Internal file name [OUTPUT/9352_Monday_June_06_2022_02_15_36_PM_48106836/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 75.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(x^{n} a+b x^{m}+c\right) y^{\prime}-c y^{2}+b x^{m-1} y=a x^{-2+n}
$$

2.75.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{b x^{m-1} y-c y^{2}-a x^{-2+n}}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{b x^{m} y}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{c y^{2}}{x^{n} a+b x^{m}+c}+\frac{a x^{n}}{\left(x^{n} a+b x^{m}+c\right) x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a x^{-2+n}}{x^{n} a+b x^{m}+c}, f_{1}(x)=-\frac{x^{m-1} b}{x^{n} a+b x^{m}+c}$ and $f_{2}(x)=\frac{c}{x^{n} a+b x^{m}+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{c u}{x^{n} a+b x^{m}+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{c\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{1} f_{2} & =-\frac{x^{m-1} b c}{\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{c^{2} a x^{-2+n}}{\left(x^{n} a+b x^{m}+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{c u^{\prime \prime}(x)}{x^{n} a+b x^{m}+c}-\left(-\frac{c\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}}-\frac{x^{m-1} b c}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right) u^{\prime}(x)+\frac{c^{2} a x^{-2+n} u(x)}{\left(x^{n} a+b x^{m}+c\right)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{Y^{\prime}(x)\left(-x^{n} n a-b m x^{m}-b x^{m}\right)}{\left(x^{n} a+b x^{m}+c\right) x}\right.\right. \\
&\left.\left.\quad+\frac{c a x^{-2+n}-Y(x)}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{Y^{\prime}(x)\left(-x^{n} n a-b m x^{m}-b x^{m}\right)}{\left(x^{n} a+b x^{m}+c\right) x}\right.\right. \\
&\left.\left.+\frac{c a x^{-2+n}-Y(x)}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-=\frac{Y^{\prime}(x)\left(-x^{n} n a-b m x^{m}-b x^{m}\right)}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{c a x^{-2+n}-Y(x)}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right\},\{-Y(x)\}\right)\right)\left(x^{n} a+b x^{m}+c\right)}{c \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{Y^{\prime}(x)\left(-x^{n} n a-b m x^{m}-b x^{m}\right)}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{c a x^{-2+n}-Y(x)}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& \\
& -\frac{\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}{}=\frac{Y^{\prime \prime}(x)+\left(x^{n} a+b x^{m}+c\right)\left(b(m+1) x^{m}+x^{n} n a\right) x _Y}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.\right.}{c \operatorname{DESol}\left(\left\{\frac{\left(x^{2 m} b^{2}+a^{2} x^{2 n}+2 b\left(x^{n} a+c\right) x^{m}+2 x^{n} a c+c^{2}\right) x^{2} _Y^{\prime \prime}(x)+\ldots Y^{\prime}(x) b^{2} x(m+1) x^{2 m}+-Y^{\prime}(x) x^{2 n} a^{2} n x+\left(\left(a(1+m+n) x^{n}+c(r\right.\right.}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2} _Y^{\prime \prime}(x)+\left(x^{n} a+b x^{m}+c\right)\left(b(m+1) x^{m}+x^{n} n a\right) x _Y}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.\right.}{c \operatorname{DESol}\left(\left\{\frac{\left(x^{2 m} b^{2}+a^{2} x^{2 n}+2 b\left(x^{n} a+c\right) x^{m}+2 x^{n} a c+c^{2}\right) x^{2} _Y^{\prime \prime}(x)+\ldots Y^{\prime}(x) b^{2} x(m+1) x^{2 m}+\ldots Y^{\prime}(x) x^{2 n} a^{2} n x+\left(\left(a(1+m+n) x^{n}+c(r)\right.\right.}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2} _Y^{\prime \prime}(x)+\left(x^{n} a+b x^{m}+c\right)\left(b(m+1) x^{m}+x^{n} n a\right) x _Y}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right)\right.\right.}{c \mathrm{DESol}\left(\left\{\frac{\left(x^{2 m} b^{2}+a^{2} x^{2 n}+2 b\left(x^{n} a+c\right) x^{m}+2 x^{n} a c+c^{2}\right) x^{2} _Y^{\prime \prime}(x)+\ldots Y^{\prime}(x) b^{2} x(m+1) x^{2 m}+\ldots Y^{\prime}(x) x^{2 n} a^{2} n x+\left(\left(a(1+m+n) x^{n}+c(r)\right.\right.}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (a*n*x^n+b*m*x^m+x^(m-1)*b*x)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in }46
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1236
dsolve $\left(\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * \operatorname{diff}(y(x), x)=c * y(x)^{\wedge} 2-b * x^{\wedge}(m-1) * y(x)+a * x^{\wedge}(n-2), y(x)\right.$, singsol=all)

Expression too large to display
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y y^{\prime}[x]==c * y[x] \wedge 2-b * x^{\wedge}(m-1) * y[x]+a * x^{\wedge}(n-2), y[x], x\right.$, IncludeSingularSoluti
Not solved

2.76 problem 76

> 2.76.1 Solving as riccati ode

Internal problem ID [10406]
Internal file name [OUTPUT/9353_Monday_June_06_2022_02_16_17_PM_53182186/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 76 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
\left(x^{n} a+b x^{m}+c\right) y^{\prime}-a x^{-2+n} y^{2}-b x^{m-1} y=c
$$

2.76.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{-2+n} y^{2}+b x^{m-1} y+c}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a x^{n} y^{2}}{\left(x^{n} a+b x^{m}+c\right) x^{2}}+\frac{b x^{m} y}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{c}{x^{n} a+b x^{m}+c}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c}{x^{n} a+b x^{m}+c}, f_{1}(x)=\frac{x^{m-1} b}{x^{n} a+b x^{m}+c}$ and $f_{2}(x)=\frac{a x^{-2+n}}{x^{n} a+b x^{m}+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{-2+n} u}{x^{n} a+b x^{m}+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a x^{-2+n}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}}+\frac{a x^{-2+n}(-2+n)}{\left(x^{n} a+b x^{m}+c\right) x} \\
f_{1} f_{2} & =\frac{x^{m-1} b a x^{-2+n}}{\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} x^{-4+2 n} c}{\left(x^{n} a+b x^{m}+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{a x^{-2+n} u^{\prime \prime}(x)}{x^{n} a+b x^{m}+c}-\left(-\frac{a x^{-2+n}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}}+\frac{a x^{-2+n}(-2+n)}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{x^{m-1} b a x^{-2+n}}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right) u^{\prime}(x)+\frac{a^{2} x^{-4}}{\left(x^{n} a+\right.}$
Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x)\left(x^{n} a+b x^{m}+c\right)^{2} x+a c x^{-2+n}-Y(x) x+2\left(\frac{b(m-n+1) x^{m}}{2}+x^{n} a-\frac{c(-2+n)}{2}\right)\left(x^{n} a+b x\right.}{x\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.$
The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x)\left(x^{n} a+b x^{m}+c\right)^{2} x+a c x^{n-1}-Y(x)+2\left(\frac{b(m-n+1) x^{m}}{2}+x^{n} a-\frac{c(-2+n)}{2}\right)\left(x^{n} a+b\right.}{x\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-Y^{\prime \prime}(x)\left(x^{n} a+b x^{m}+c\right)^{2} x+a c x^{n-1}-Y(x)+2\left(\frac{b(m-n+1) x^{m}}{2}+x^{n} a-\frac{c(-2+n)}{2}\right)\left(x^{n} a+b x^{m}+c\right) _Y^{\prime}(x)}{x\left(x^{n} a+b x^{m}+c\right)^{2}}\right\},\{-Y(x)\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x)\left(x^{n} a+b x^{m}+c\right)^{2} x+a c x^{-2+n}-Y(x) x+2\left(\frac{b(m-n+1) x^{m}}{2}+x^{n} a-\frac{c(-2+n)}{2}\right)\left(x^{n} a+b x^{m}+c\right)-Y^{\prime}(}{x\left(x^{n} a+b x^{m}+c\right)^{2}}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{x^{2-n}\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{1+2 m} b^{2} _Y^{\prime \prime}(x)+x^{1+2 n} a^{2} _Y^{\prime \prime}(x)+2 a b x^{1+m+n}-Y^{\prime \prime}(x)+2 c\left(a x^{n+1}+x^{m+1} b+\frac{c x}{2}\right.}{a \operatorname{DESol}\left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}}{}-Y^{\prime \prime}(x)+2\left(\frac{b(m-n+1)}{2}\right)\right.\right.}\right.\right.\right.}{a}
$$

Summary
The solution(s) found are the following
$y=$
(1)

$$
-\frac{x^{2-n}\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{1+2 m} b^{2} _Y^{\prime \prime}(x)+x^{1+2 n} a^{2} _Y^{\prime \prime}(x)+2 a b x^{1+m+n} _Y^{\prime \prime}(x)+2 c\left(a x^{n+1}+x^{m+1} b+\frac{c x}{2}\right.}{a \mathrm{DESol}\left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2} _Y^{\prime \prime}(x)+2\left(\frac{b(m-n+1)}{2}\right.}{}\right.\right.} \frac{1}{}\right)\right.\right.}{a}
$$

Verification of solutions

$y=$

$$
-\frac{x^{2-n}\left(x^{n} a+b x^{m}+c\right)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{x^{1+2 m} b^{2} _Y^{\prime \prime}(x)+x^{1+2 n} a^{2} _Y^{\prime \prime}(x)+2 a b x^{1+m+n} _Y^{\prime \prime}(x)+2 c\left(a x^{n+1}+x^{m+1} b+\frac{c x}{2}\right.}{2}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}-Y^{\prime \prime}(x)+2\left(\frac{b(m-n+1)}{2}\right.}{}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b*m*x^m-x^m*n*b-x^(m-1)*b*x+
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 旡烈d y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

X Solution by Maple
dsolve ($\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * \operatorname{diff}(y(x), x)=a * x^{\wedge}(n-2) * y(x)^{\wedge} 2+b * x^{\wedge}(m-1) * y(x)+c, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y y^{\prime}[x]==a * x^{\wedge}(n-2) * y[x] \wedge 2+b * x^{\wedge}(m-1) * y[x]+c, y[x], x\right.$, IncludeSingularSoluti

Not solved

2.77 problem 77

2.77.1 Solving as riccati ode . 467

Internal problem ID [10407]
Internal file name [OUTPUT/9354_Monday_June_06_2022_02_16_53_PM_78079711/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 77.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_rational, _Riccati]
```

Unable to solve or complete the solution.

$$
\left(x^{n} a+b x^{m}+c\right) y^{\prime}-\alpha x^{k} y^{2}-\beta x^{s} y=-\alpha \lambda^{2} x^{k}+\beta \lambda x^{s}
$$

2.77.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\alpha x^{k} y^{2}+\beta x^{s} y-\alpha \lambda^{2} x^{k}+\beta \lambda x^{s}}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\alpha \lambda^{2} x^{k}}{x^{n} a+b x^{m}+c}+\frac{\alpha x^{k} y^{2}}{x^{n} a+b x^{m}+c}+\frac{\beta \lambda x^{s}}{x^{n} a+b x^{m}+c}+\frac{\beta x^{s} y}{x^{n} a+b x^{m}+c}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\alpha \lambda^{2} x^{k}+\beta \lambda x^{s}}{x^{n} a+b x^{m}+c}, f_{1}(x)=\frac{\beta x^{s}}{x^{n} a+b x^{m}+c}$ and $f_{2}(x)=\frac{\alpha x^{k}}{x^{n} a+b x^{m}+c}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\alpha x^{k} u}{x^{n} a+b x^{m}+c}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\alpha k x^{k}}{x\left(x^{n} a+b x^{m}+c\right)}-\frac{\alpha x^{k}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{1} f_{2} & =\frac{\beta x^{s} \alpha x^{k}}{\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{\alpha^{2} x^{2 k}\left(-\alpha \lambda^{2} x^{k}+\beta \lambda x^{s}\right)}{\left(x^{n} a+b x^{m}+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\alpha x^{k} u^{\prime \prime}(x)}{x^{n} a+b x^{m}+c}-\left(\frac{\alpha k x^{k}}{x\left(x^{n} a+b x^{m}+c\right)}-\frac{\alpha x^{k}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{\left(x^{n} a+b x^{m}+c\right)^{2}}+\frac{\beta x^{s} \alpha x^{k}}{\left(x^{n} a+b x^{m}+c\right)^{2}}\right) u^{\prime}(x)+\frac{\alpha^{2} x^{2 k}\left(-\alpha \lambda^{2}\right.}{\left(x^{n} a+\right.}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (beta*x^s*x+x^n*a*k-a*n*x^n+x
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in 秋9nd y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 164
dsolve ($\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * \operatorname{diff}(y(x), x)=a l p h a * x^{\wedge} \wedge * y(x) \wedge 2+b e t a * x^{\wedge} s * y(x)-a l p h a * l a m b d a \wedge 2 * x^{\wedge} k+b e t a * 1$

$$
y(x)=\frac{-\alpha\left(\int \frac{\left.x^{k} e^{-\left(\int \frac{2 \alpha x^{k} \lambda-x^{s} \beta}{a x^{n}+b x^{m}+c} d x\right.}\right)}{a x^{n}+b x^{m}+c} d x\right) \lambda-\lambda c_{1}-\mathrm{e}^{-\left(\int \frac{2 \alpha x^{k} \lambda-x^{s} \beta}{a x^{n}+b x^{m}+c} d x\right)}}{c_{1}+\alpha\left(\int \frac{\left.x^{k} \mathrm{e}^{-\left(\int \frac{2 \alpha x^{k} \lambda-x^{s} \beta}{a x^{n}+b x^{m}+c} d x\right.}\right)}{a x^{n}+b x^{m}+c} d x\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 13.649 (sec). Leaf size: 389
DSolve $\left[\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}+\mathrm{c}\right) * \mathrm{y}^{\prime}[\mathrm{x}]==\backslash[\right.$ Alpha $] * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[$ Beta $] * \mathrm{x}^{\wedge} \mathrm{s} * \mathrm{y}[\mathrm{x}]-\backslash[$ Alpha $] * \backslash[$ Lambda $] \wedge 2 * x^{\wedge} \mathrm{k}+$

Solve $\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\frac{\beta K[1]^{s}-2 \alpha \lambda K[1]^{k}}{b K[1]^{m}+a K[1]^{n}+c} d K[1]\right)\left(-\alpha \lambda K[2]^{k}+\alpha y(x) K[2]^{k}+\beta K[2]^{s}\right)}{(k-s) \alpha \beta\left(b K[2]^{m}+a K[2]^{n}+c\right)(\lambda+y(x))} d K[2]\right.$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]}-\frac{\beta K[1]^{s}-2 \alpha \lambda K[1]^{k}}{b K K 1]^{m}+a K[1]^{n}+c} d K[1]\right) K[2]^{k}}{(k-s) \beta\left(b K[2]^{m}+a K[2]^{n}+c\right)(\lambda+K[3])}-\frac{\exp \left(-\int_{1}^{K[2]}-\frac{\beta K[11]^{s}-2 \alpha \lambda K[1]^{k}}{b K[1]^{m}+a K[1]^{n}+c} d K[1]\right)(-\alpha}{(k-s) \alpha \beta\left(b K[2]^{m}+a K[2]\right.}\right.\right.$
$\left.\left.-\frac{\exp \left(-\int_{1}^{x}-\frac{\beta K[1]^{s}-2 \alpha \lambda K[1]^{k}}{b K[1]^{m}+a K[1]^{n}+c} d K[1]\right)}{(k-s) \alpha \beta(\lambda+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]$

2.78 problem 78

2.78.1 Solving as homogeneousTypeD2 ode 471
2.78.2 Solving as riccati ode . 472

Internal problem ID [10408]
Internal file name [OUTPUT/9355_Monday_June_06_2022_02_18_02_PM_79181218/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 78.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2" Maple gives the following as the ode type

```
[[_homogeneous, `class D`], _rational, _Riccati]
```

$$
\left(x^{n} a+b x^{m}+c\right)\left(y^{\prime} x-y\right)+s x^{k}\left(y^{2}-\lambda x^{2}\right)=0
$$

2.78.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(x^{n} a+b x^{m}+c\right)\left(\left(u^{\prime}(x) x+u(x)\right) x-u(x) x\right)+s x^{k}\left(u(x)^{2} x^{2}-\lambda x^{2}\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{s x^{k}\left(u^{2}-\lambda\right)}{x^{n} a+b x^{m}+c}
\end{aligned}
$$

Where $f(x)=-\frac{s x^{k}}{x^{n} a+b x^{m}+c}$ and $g(u)=u^{2}-\lambda$. Integrating both sides gives

$$
\frac{1}{u^{2}-\lambda} d u=-\frac{s x^{k}}{x^{n} a+b x^{m}+c} d x
$$

$$
\begin{aligned}
\int \frac{1}{u^{2}-\lambda} d u & =\int-\frac{s x^{k}}{x^{n} a+b x^{m}+c} d x \\
-\frac{\operatorname{arctanh}\left(\frac{u}{\sqrt{\lambda}}\right)}{\sqrt{\lambda}} & =\int-\frac{s x^{k}}{x^{n} a+b x^{m}+c} d x+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{\operatorname{arctanh}\left(\frac{u(x)}{\sqrt{\lambda}}\right)}{\sqrt{\lambda}}-\left(\int-\frac{s x^{k}}{x^{n} a+b x^{m}+c} d x\right)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{\operatorname{arctanh}\left(\frac{y}{x \sqrt{\lambda}}\right)}{\sqrt{\lambda}}-\left(\int-\frac{s x^{k}}{x^{n} a+b x^{m}+c} d x\right)-c_{2}=0 \\
& -\frac{\operatorname{arctanh}\left(\frac{y}{x \sqrt{\lambda}}\right)}{\sqrt{\lambda}}+s\left(\int \frac{x^{k}}{x^{n} a+b x^{m}+c} d x\right)-c_{2}=0
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\operatorname{arctanh}\left(\frac{y}{x \sqrt{\lambda}}\right)}{\sqrt{\lambda}}+s\left(\int \frac{x^{k}}{x^{n} a+b x^{m}+c} d x\right)-c_{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\operatorname{arctanh}\left(\frac{y}{x \sqrt{\lambda}}\right)}{\sqrt{\lambda}}+s\left(\int \frac{x^{k}}{x^{n} a+b x^{m}+c} d x\right)-c_{2}=0
$$

Verified OK.

2.78.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-x^{k} \lambda s x^{2}+y^{2} x^{k} s-a x^{n} y-b x^{m} y-y c}{x\left(x^{n} a+b x^{m}+c\right)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=\frac{x x^{k} \lambda s}{x^{n} a+b x^{m}+c}-\frac{y^{2} x^{k} s}{x\left(x^{n} a+b x^{m}+c\right)}+\frac{a x^{n} y}{x\left(x^{n} a+b x^{m}+c\right)}+\frac{b x^{m} y}{\left(x^{n} a+b x^{m}+c\right) x}+\frac{y c}{x\left(x^{n} a+b x^{m}+c\right)}$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{x x^{k} \lambda s}{x^{n} a+b x^{m}+c}, f_{1}(x)=-\frac{-x^{n} a-b x^{m}-c}{x\left(x^{n} a+b x^{m}+c\right)}$ and $f_{2}(x)=-\frac{s x^{k}}{x\left(x^{n} a+b x^{m}+c\right)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{s x^{k} u}{x\left(x^{n} a+b x^{m}+c\right)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{s k x^{k}}{x^{2}\left(x^{n} a+b x^{m}+c\right)}+\frac{s x^{k}}{x^{2}\left(x^{n} a+b x^{m}+c\right)}+\frac{s x^{k}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{x\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{1} f_{2} & =\frac{\left(-x^{n} a-b x^{m}-c\right) s x^{k}}{x^{2}\left(x^{n} a+b x^{m}+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{s^{3} x^{3 k} \lambda}{x\left(x^{n} a+b x^{m}+c\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{s x^{k} u^{\prime \prime}(x)}{x\left(x^{n} a+b x^{m}+c\right)}-\left(-\frac{s k x^{k}}{x^{2}\left(x^{n} a+b x^{m}+c\right)}+\frac{s x^{k}}{x^{2}\left(x^{n} a+b x^{m}+c\right)}+\frac{s x^{k}\left(\frac{x^{n} n a}{x}+\frac{b x^{m} m}{x}\right)}{x\left(x^{n} a+b x^{m}+c\right)^{2}}+\frac{\left(-x^{n} a-\right.}{x^{2}\left(x^{n} a\right.}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & \left.c_{1} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}} d x\right.}\right) \\
& +c_{2} \mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} n_{b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}^{2}}} d x\right)}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=i s x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\left(c_{1} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\overline{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c}}\right.}\right.$
$\left.-c_{2} \mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}{}} d x\right.}\right)$

Using the above in (1) gives the solution
y
$=\frac{i \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\left(c_{1} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} n+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}} d x\right.}\right) ~ c_{2} \mathrm{e}^{-i s\left(\int x^{k} \sqrt{ }\right.}}{\left.c_{1} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\right.} d x\right)}+c_{2} \mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{2}{a^{2} x^{2 n}+2 a x^{m}}}\right.}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{i \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\left(c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}} d x\right.}\right)-\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a}{a}}\right.}}{\left.c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}{}} d x\right.}\right)+\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n}}{}}\right.}}$

Summary

The solution(s) found are the following
y
$=\frac{i \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\left(c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}} d x\right.}\right)-\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{{ }_{a}^{e}}{a}}\right.}}{\left.c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}{}}\right.} d x\right)}+\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n}}{}}\right.}$

Verification of solutions

y
$=\frac{i \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}}\left(c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{\lambda}{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}} d x\right)}-\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a}{a}}\right.}\right.}{\left.c_{3} \mathrm{e}^{i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n} b+2 x^{n} a c+x^{2 m} b^{2}+2 b c x^{m}+c^{2}}{}}\right.} d x\right)}+\mathrm{e}^{-i s\left(\int x^{k} \sqrt{-\frac{a^{2} x^{2 n}+2 a x^{m+n}}{}}\right.}$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 37

```
dsolve((a*x^n+b*x^m+c)*(x*diff (y(x),x)-y(x))+s*x^k*(y(x)^2-lambda*x^2)=0,y(x), singsol=all)
```

$$
y(x)=\tanh \left(s \sqrt{\lambda}\left(\int \frac{x^{k}}{a x^{n}+b x^{m}+c} d x+c_{1}\right)\right) x \sqrt{\lambda}
$$

\checkmark Solution by Mathematica
Time used: 22.652 (sec). Leaf size: 53
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) *(x * y '[x]-y[x])+s * x^{\wedge} k *\left(y[x] \wedge 2-\backslash[\right.\right.$ Lambda $\left.] * x^{\wedge} 2\right)==0, y[x], x$, IncludeSingular

$$
y(x) \rightarrow \sqrt{\lambda}(-x) \tanh \left(\sqrt{\lambda}\left(\int_{1}^{x}-\frac{s K[1]^{k}}{b K[1]^{m}+a K[1]^{n}+c} d K[1]+c_{1}\right)\right)
$$

3 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
3.1 problem 1 477
3.2 problem 2 482
3.3 problem 3 487
3.4 problem 4 492
3.5 problem 5 497
3.6 problem 6 501
3.7 problem 7 505
3.8 problem 8 510
3.9 problem 9 515
3.10 problem 10 521
3.11 problem 11 526
3.12 problem 12 535
3.13 problem 13 539
3.14 problem 14 544
3.15 problem 15 548
3.16 problem 16 554
3.17 problem 17 559
3.18 problem 18 562
3.19 problem 19 567
3.20 problem 20 571
3.21 problem 21 575

3.1 problem 1

$$
\text { 3.1.1 Solving as riccati ode . } 477
$$

Internal problem ID [10409]
Internal file name [OUTPUT/9356_Monday_June_06_2022_02_18_04_PM_49329698/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a y^{2}=b \mathrm{e}^{\lambda x}
$$

3.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b \mathrm{e}^{\lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a y^{2}+b \mathrm{e}^{\lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b \mathrm{e}^{\lambda x}, f_{1}(x)=0$ and $f_{2}(x)=a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\mathrm{e}^{\lambda x} a^{2} b
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a u^{\prime \prime}(x)+\mathrm{e}^{\lambda x} a^{2} b u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)
$$

The above shows that

$$
u^{\prime}(x)=\sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}\left(-\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{1}-\operatorname{Bessel}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}\left(-\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{1}-\operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{2}\right)}{\sqrt{a}\left(c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}\left(\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{3}+\operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}{\sqrt{a}\left(c_{3} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+\operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}\left(\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{3}+\operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}{\sqrt{a}\left(c_{3} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+\operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}\left(\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) c_{3}+\operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}{\sqrt{a}\left(c_{3} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+\operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*b*exp(lambda*x)*y(x), y(x)
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
            <- Bessel successful
        <- special function solution successful
        Change of variables used:
            [x = ln(t)/lambda]
        Linear ODE actually solved:
            a*b*u(t)+lambda^2*diff(u(t),t)+lambda^2*t*diff(diff(u(t),t),t) = 0
        <- change of variables successful
    <- Riccati to 2nd Order successful}48
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 96
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{b} * \exp (\operatorname{lambda} * \mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\left.y(x)=\frac{\sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}\left(\operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right) c_{1}+\operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right)\right)}{\sqrt{a}\left(c_{1} \operatorname{Bessel}\right.}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right)+\operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.551 (sec). Leaf size: 266
DSolve [y' $[\mathrm{x}]==\mathrm{a} * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt{b e^{\lambda x}}\left(2 \operatorname{BesselY}\left(1, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)+c_{1} \operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)\right)}{\sqrt{a}\left(2 \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)+c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)\right)} \\
& y(x) \rightarrow \frac{\sqrt{b e^{\lambda x}} \operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)}{\sqrt{a} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)} \\
& y(x) \rightarrow \frac{\sqrt{b e^{\lambda x}} \operatorname{BesselJ}\left(1, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)}{\sqrt{a} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{b e^{x \lambda}}}{\lambda}\right)}
\end{aligned}
$$

3.2 problem 2

3.2.1 Solving as riccati ode

Internal problem ID [10410]
Internal file name [OUTPUT/9357_Monday_June_06_2022_02_18_05_PM_73417862/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
$$

3.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(c_{1}+\exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=-\left(\mathrm{e}^{\lambda x} \exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2} a+\mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \lambda c_{2}+\mathrm{e}^{\lambda x} c_{1} a\right) \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

Using the above in (1) gives the solution

$$
y=\frac{\mathrm{e}^{\lambda x} \exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2} a+\mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \lambda c_{2}+\mathrm{e}^{\lambda x} c_{1} a}{c_{1}+\operatorname{expIntegral}}{ }_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\exp \operatorname{Integral}_{1}\left(-\frac{2 a e^{\lambda x}}{\lambda}\right) \mathrm{e}^{\lambda x} a+\mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \lambda+\mathrm{e}^{\lambda x} c_{3} a}{c_{3}+\exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{expIntegral}}{1}\left(-\frac{2 a e^{\lambda x}}{\lambda}\right) \mathrm{e}^{\lambda x} a+\mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \lambda+\mathrm{e}^{\lambda x} c_{3} a, \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right) \mathrm{e}^{\lambda x} a+\mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \lambda+\mathrm{e}^{\lambda x} c_{3} a}{c_{3}+\exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{\lambda x}}{\lambda}\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-a*lambda*exp(lambda*x)+a^2*e
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
        <- Kovacics algorithm successful
        Change of variables used:
            [x = ln(t)/lambda]
        Linear ODE actually solved:
            (-a^2*t+a*lambda)*u(t)+lambda^2*diff(u(t),t)+lambda^2*t*diff(diff(u(t),t),t) =
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 63

$$
y(x)=\frac{\mathrm{e}^{x \lambda} \exp \operatorname{Integral}_{1}\left(-\frac{2 a \mathrm{e}^{x \lambda}}{\lambda}\right) c_{1} a+\mathrm{e}^{\frac{2 a e^{x \lambda}}{\lambda}} c_{1} \lambda+\mathrm{e}^{x \lambda} a}{\operatorname{expIntegral}}\left(-\frac{2 a \mathrm{e}^{x \lambda}}{\lambda}\right) c_{1}+1,
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.507 (sec). Leaf size: 79
DSolve [y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \backslash$ [Lambda] $* \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}]-\mathrm{a} \wedge 2 * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingu

$$
\begin{aligned}
& y(x) \rightarrow \frac{a e^{\lambda x} \operatorname{Exp} \text { IntegralEi }\left(\frac{2 a e^{x \lambda}}{\lambda}\right)+\lambda\left(-e^{\frac{2 a e^{\lambda x}}{\lambda}}\right)+a c_{1} e^{\lambda x}}{\operatorname{ExpIntegralEi}\left(\frac{2 a e^{\lambda \lambda}}{\lambda}\right)+c_{1}} \\
& y(x) \rightarrow a e^{\lambda x}
\end{aligned}
$$

3.3 problem 3

$$
\text { 3.3.1 Solving as riccati ode . } 487
$$

Internal problem ID [10411]
Internal file name [OUTPUT/9358_Monday_June_06_2022_02_18_06_PM_56615204/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\sigma y^{2}=a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}
$$

3.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sigma y^{2}+a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\sigma y^{2}+a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}, f_{1}(x)=0$ and $f_{2}(x)=\sigma$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\sigma u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\sigma^{2}\left(a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\sigma u^{\prime \prime}(x)+\sigma^{2}\left(a+b \mathrm{e}^{\lambda x}+c \mathrm{e}^{2 \lambda x}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{e}^{-\frac{\lambda x}{2}}\left(\text { WhittakerM }\left(-\frac{i \sqrt{\sigma} b}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{\lambda x}}{\lambda}\right) c_{1}\right. \\
&\left.+ \text { WhittakerW }\left(-\frac{i \sqrt{\sigma} b}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2}\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{c_{1} \operatorname{WhittakerM}\left(-\frac{i \sqrt{\sigma} b-2 \lambda \sqrt{c}}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c}{ }^{2 x}}{\lambda}\right)\left(i\left(\sqrt{c} \sqrt{a}-\frac{b}{2}\right) \sqrt{\sigma}+\frac{\lambda \sqrt{c}}{2}\right)-\operatorname{WhittakerW}\left(-\frac{i \sqrt{\sigma} b-}{2 \lambda_{v}}\right.}{\sqrt{c} \sigma(\text { WhittakerM }(-}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{-c_{3} \text { WhittakerM }\left(-\frac{i \sqrt{\sigma} b-2 \lambda \sqrt{c}}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{\lambda x}}{\lambda}\right)\left(i\left(\sqrt{c} \sqrt{a}-\frac{b}{2}\right) \sqrt{\sigma}+\frac{\lambda \sqrt{c}}{2}\right)+\lambda \text { WhittakerW }\left(-\frac{i \sqrt{\sigma} b}{2 \lambda}\right.}{\sqrt{c} \sigma\left(\text { WhittakerM }\left(-\frac{i_{1}}{2}\right)\right.}$

Summary

The solution(s) found are the following
y
$=\frac{-c_{3} \operatorname{WhittakerM}\left(-\frac{i \sqrt{\sigma} b-2 \lambda \sqrt{c}}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{\lambda x}}{\lambda}\right)\left(i\left(\sqrt{c} \sqrt{a}-\frac{b}{2}\right) \sqrt{\sigma}+\frac{\lambda \sqrt{c}}{2}\right)+\lambda \text { WhittakerW }\left(-\frac{i \sqrt{\sigma} b}{2 \lambda}\right.}{\sqrt{c} \sigma\left(\text { WhittakerM }\left(-\frac{i}{2}\right)\right.}$
Verification of solutions
$=\frac{-c_{3} \operatorname{WhittakerM}\left(-\frac{i \sqrt{\sigma} b-2 \lambda \sqrt{c}}{2 \lambda \sqrt{c}}, \frac{i \sqrt{\sigma} \sqrt{a}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{\lambda x}}{\lambda}\right)\left(i\left(\sqrt{c} \sqrt{a}-\frac{b}{2}\right) \sqrt{\sigma}+\frac{\lambda \sqrt{c}}{2}\right)+\lambda \operatorname{WhittakerW}\left(-\frac{i \sqrt{\sigma} b}{2 \lambda}\right.}{\sqrt{c} \sigma\left(\text { WhittakerM }\left(-\frac{i}{2}\right)\right.}$
Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -sigma*(a+b*exp(lambda*x)+c*ex
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
                <- Whittaker successful
        <- special function solution successful
        Change of variables used:
        [x = ln(t)/lambda]
        Linear ODE actually solved:
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 348
dsolve(diff $(y(x), x)=$ sigma*y $(x) \sim 2+a+b * \exp (l a m b d a * x)+c * \exp (2 * l a m b d a * x), y(x), \quad$ singsol $=a l l)$
$y(x)$
$=\frac{- \text { WhittakerM }\left(-\frac{i \sqrt{\sigma} b-2 \lambda \sqrt{c}}{2 \lambda \sqrt{c}}, \frac{i \sqrt{a} \sqrt{\sigma}}{\lambda}, \frac{2 i \sqrt{\sigma} \sqrt{c} \mathrm{e}^{x \lambda}}{\lambda}\right)\left(i\left(\sqrt{c} \sqrt{a}-\frac{b}{2}\right) \sqrt{\sigma}+\frac{\lambda \sqrt{c}}{2}\right)+\lambda c_{1} \text { WhittakerW }\left(-\frac{i \sqrt{\sigma} b}{2 \lambda}\right.}{\sqrt{c} \sigma\left(\text { WhittakerW }\left(-\frac{i v}{2 \lambda}\right.\right.}$
Solution by Mathematica
Time used: 3.251 (sec). Leaf size: 1081

$$
\begin{aligned}
& y(x) \rightarrow \\
& \left.-\frac{i\left(c _ { 1 } \lambda (\sqrt { a } - \sqrt { c } e ^ { \lambda x }) \text { HypergeometricU } \left(\frac{i \sqrt{\sigma} b}{\sqrt{c}}+\lambda+2 i \sqrt{a} \sqrt{\sigma}\right.\right.}{2 \lambda}, \frac{2 i \sqrt{a} \sqrt{\sigma}}{\lambda}+1, \frac{2 i \sqrt{c} e^{x \lambda} \sqrt{\sigma}}{\lambda}\right)-i c_{1} e^{\lambda x}\left(b \sqrt{\sigma}+\sqrt{c}\left(9 \sqrt { \sigma } \left(c_{1}\right.\right. \text { Hyperge }\right.
\end{aligned}
$$

$y(x)$

$y(x)$

$$
\rightarrow \frac{-\frac{e^{\lambda x}(b \sqrt{\sigma}+\sqrt{c}(2 \sqrt{a} \sqrt{\sigma}-i \lambda)) \text { HypergeometricU }\left(\frac{\frac{i \sqrt{\sigma} b}{\sqrt{c}}+3 \lambda+2 i \sqrt{a} \sqrt{\sigma}}{2 \lambda}, \frac{2 i \sqrt{a} \sqrt{\sigma}}{\lambda}+2, \frac{2 i \sqrt{c} e^{x \lambda} \sqrt{\sigma}}{\lambda}\right)}{\lambda \text { HypergeometricU }\left(\frac{\frac{i \sqrt{\sigma} b}{\sqrt{c}}+\lambda+2 i \sqrt{a} \sqrt{\sigma}}{2 \lambda}, \frac{2 i \sqrt{a} \sqrt{\sigma}}{\lambda}+1, \frac{2 i \sqrt{c}{ }^{x \lambda} \lambda \sqrt{\sigma}}{\lambda}\right)}-i\left(\sqrt{a}-\sqrt{c} e^{\lambda x}\right)}{\sqrt{\sigma}}
$$

3.4 problem 4

3.4.1 Solving as riccati ode

Internal problem ID [10412]
Internal file name [OUTPUT/9359_Monday_June_06_2022_02_18_10_PM_32604344/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\sigma y^{2}-a y=b \mathrm{e}^{x}+c
$$

3.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sigma y^{2}+y a+b \mathrm{e}^{x}+c
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\sigma y^{2}+y a+b \mathrm{e}^{x}+c
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b \mathrm{e}^{x}+c, f_{1}(x)=a$ and $f_{2}(x)=\sigma$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\sigma u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\sigma a \\
f_{2}^{2} f_{0} & =\sigma^{2}\left(b \mathrm{e}^{x}+c\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\sigma u^{\prime \prime}(x)-\sigma a u^{\prime}(x)+\sigma^{2}\left(b \mathrm{e}^{x}+c\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{x a}{2}}\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{1}+\operatorname{Bessel} Y\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{2}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=-c_{1} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{(1+a) x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \\
& -c_{2} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{(1+a) x}{2}} \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \\
& +\frac{\mathrm{e}^{\frac{x a}{2}}\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{1}+\operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{2}\right)\left(\sqrt{a^{2}-4 \sigma c}+a\right)}{2}
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(-c_{1} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{(1+a) x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right)-c_{2} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{(1+a) x}{2}} \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1\right.\right.}{\sigma\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{1}+\operatorname{Be}\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{2 c_{3} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right)+2 \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}}{2 \sigma\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{3}+\right.}$

Summary

The solution(s) found are the following
y
$=\frac{2 c_{3} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right)+2 \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}}{2 \sigma\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{3}+\right.}$
Verification of solutions
$=\frac{2 c_{3} \sqrt{b} \sqrt{\sigma} \mathrm{e}^{\frac{x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right)+2 \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}}{2 \sigma\left(\operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{3}+\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*a-sigma*(b*exp
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
        <- special function solution successful
        Change of variables used:
        [x = ln(t)]
        Linear ODE actually solved:
        (b*sigma*t+c*sigma)*u(t)+(-a*t+t)*diff(u(t),t)+t^2*diff(diff(u(t),t),t) = 0
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 200
dsolve(diff $(y(x), x)=\operatorname{sigma} * y(x) \wedge 2+a * y(x)+b * \exp (x)+c, y(x)$, singsol=all)
$y(x)=$
$-\frac{-2 \sqrt{b} \mathrm{e}^{\frac{x}{2}} \operatorname{BesselJ}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) \sigma-2 \sqrt{b} \mathrm{e}^{\frac{x}{2}} \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}+1,2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c_{1} \sigma}{\sigma^{\frac{3}{2}}\left(2 \operatorname{BesselY}\left(\sqrt{a^{2}-4 \sigma c}, 2 \sqrt{\sigma} \sqrt{b} \mathrm{e}^{\frac{x}{2}}\right) c\right.}$
\checkmark Solution by Mathematica
Time used: 0.971 (sec). Leaf size: 546
DSolve $\left[y\right.$ ' $[\mathrm{x}]==$ sigma*y $[\mathrm{x}]{ }^{\wedge} 2+\mathrm{a} * \mathrm{y}[\mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\mathrm{x}]+\mathrm{c}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow$
$-\underline{a \sqrt{b \sigma e^{x}} \operatorname{Gamma}\left(\sqrt{a^{2}-4 c \sigma}+1\right) \operatorname{BesselJ}\left(\sqrt{a^{2}-4 c \sigma}, 2 \sqrt{b e^{x} \sigma}\right)+b \sigma e^{x} \operatorname{Gamma}\left(\sqrt{a^{2}-4 c \sigma}+1\right) \operatorname{Be}}$
$y(x) \rightarrow \frac{\frac{\sqrt{b \sigma e^{x}}\left(\operatorname{BesselJ}\left(1-\sqrt{a^{2}-4 c \sigma}, 2 \sqrt{b e^{x} \sigma}\right)-\operatorname{BesselJ}\left(-\sqrt{a^{2}-4 c \sigma}-1,2 \sqrt{b e^{x} \sigma}\right)\right)}{\operatorname{BesselJ}\left(-\sqrt{a^{2}-4 c \sigma}, 2 \sqrt{b e^{x} \sigma}\right)}-a}{2 \sigma}$

3.5 problem 5

3.5.1 Solving as riccati ode . 497

Internal problem ID [10413]
Internal file name [OUTPUT/9360_Monday_June_06_2022_02_18_11_PM_50198122/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-y b=a(\lambda-b) \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
$$

3.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a \mathrm{e}^{\lambda x} b+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}+b y+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a \mathrm{e}^{\lambda x} b+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}+b y+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a \mathrm{e}^{\lambda x} b+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}, f_{1}(x)=b$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =b \\
f_{2}^{2} f_{0} & =-a \mathrm{e}^{\lambda x} b+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-b u^{\prime}(x)+\left(-a \mathrm{e}^{\lambda x} b+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x} a}{\lambda}} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

The above shows that

$$
u^{\prime}(x)=-a\left(\left(\int \mathrm{e}^{\frac{b \lambda x+22^{\lambda x} a}{\lambda}} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{\frac{\lambda^{2} x-e^{\lambda x a}}{\lambda}}+c_{1} \mathrm{e}^{\frac{b \lambda x+\lambda^{\lambda x} a}{\lambda}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-a\left(\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x}}{\lambda}} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{\frac{\lambda^{2} x-\mathrm{e}^{\lambda x} a}{\lambda}}+c_{1} \mathrm{e}^{\frac{b \lambda x+\mathrm{e}^{\lambda x} a}{\lambda}}\right) \mathrm{e}^{\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x_{a}}}{\lambda}} d x\right) c_{1}+c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\mathrm{e}^{\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(a\left(\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x} a}{\lambda}} d x\right) c_{3}+1\right) \mathrm{e}^{\frac{\lambda^{2} x-\mathrm{e}^{\lambda x} a}{\lambda}}-c_{3} \mathrm{e}^{\frac{b \lambda x+\mathrm{e}^{\lambda x} a}{\lambda}}\right)}{\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x}}{\lambda}} d x\right) c_{3}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{a}{\lambda \lambda x}}\left(a\left(\left(\int \mathrm{e}^{\frac{b \lambda x+2}{\lambda} \mathrm{e}^{\lambda x} a} d x\right) c_{3}+1\right) \mathrm{e}^{\frac{\lambda^{2} x-\mathrm{e}^{\lambda x} a}{\lambda}}-c_{3} \mathrm{e}^{\frac{b \lambda x+\mathrm{e}^{\lambda x}}{\lambda}}\right)}{\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x}}{\lambda}} d x\right) c_{3}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{a{ }^{\lambda} \lambda}{\lambda}}\left(a\left(\left(\int \mathrm{e}^{\frac{b \lambda x+2}{\lambda} \mathrm{e}^{\lambda x} a} d x\right) c_{3}+1\right) \mathrm{e}^{\frac{\lambda^{2} x-\mathrm{e}^{\lambda x} a}{\lambda}}-c_{3} \mathrm{e}^{\frac{b \lambda x+\mathrm{e}^{\lambda x}}{\lambda}}\right)}{\left(\int \mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{\lambda x}}{\lambda}} d x\right) c_{3}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*b+(a*b*exp(lam
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 80

```
dsolve(diff (y(x),x)=y(x)^2+b*y(x)+a*(lambda-b)*exp(lambda*x) -a^2*exp(2*lambda*x),y(x), sings
```

$$
y(x)=\frac{\mathrm{e}^{x \lambda} a\left(\int \mathrm{e}^{\frac{b \lambda x+2 e^{x \lambda}}{\lambda}} d x\right)+\mathrm{e}^{x \lambda} c_{1} a-\mathrm{e}^{\frac{b \lambda x+2 \mathrm{e}^{x \lambda} a}{\lambda}}}{\int \mathrm{e}^{\frac{b \lambda x+22^{x \lambda}}{\lambda}} d x+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 3.226 (sec). Leaf size: 191
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2+b * y[x]+a *\left(\backslash\left[\right.\right.$ Lambda] -b) $* \operatorname{Exp}\left[\backslash[\right.$ Lambda] $* x]-a^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[$ Lambda] $* x], y[x], x, I$

$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{-2^{b / \lambda}\left(b-a e^{\lambda x}\right)\left(\frac{a e^{\lambda x}}{\lambda}\right)^{b / \lambda} L_{-\frac{b}{\lambda}}^{\frac{b}{\lambda}}\left(\frac{2 a e^{x \lambda}}{\lambda}\right)+a e^{\lambda x}\left(2^{\frac{b+\lambda}{\lambda}}\left(\frac{a e^{\lambda x}}{\lambda}\right)^{b / \lambda} L_{-\frac{b+\lambda}{\lambda}}^{\frac{b+\lambda}{\lambda}}\left(\frac{2 a e^{x \lambda}}{\lambda}\right)+c_{1}\right)}{2^{b / \lambda}\left(\frac{a e^{\lambda x}}{\lambda}\right)^{b / \lambda} L_{-\frac{b}{\lambda}}^{\frac{b}{\lambda}}\left(\frac{2 a e^{x \lambda}}{\lambda}\right)+c_{1}} \\
& y(x) \rightarrow a e^{\lambda x}
\end{aligned}
$$

3.6 problem 6

3.6.1 Solving as riccati ode . 501

Internal problem ID [10414]
Internal file name [OUTPUT/9361_Monday_June_06_2022_02_18_12_PM_24173088/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \mathrm{e}^{\lambda x} y=-a \mathrm{e}^{\lambda x} b-b^{2}
$$

3.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \mathrm{e}^{\lambda x} y-a \mathrm{e}^{\lambda x} b-b^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \mathrm{e}^{\lambda x} y-a \mathrm{e}^{\lambda x} b-b^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a \mathrm{e}^{\lambda x} b-b^{2}, f_{1}(x)=\mathrm{e}^{\lambda x} a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\mathrm{e}^{\lambda x} a \\
f_{2}^{2} f_{0} & =-a \mathrm{e}^{\lambda x} b-b^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\mathrm{e}^{\lambda x} a u^{\prime}(x)+\left(-a \mathrm{e}^{\lambda x} b-b^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{e}^{\frac{-\lambda^{2} x+\mathrm{e}^{\lambda x} a}{2 \lambda}}(\text { WhittakerM } & \left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{1} \\
& \left.+ \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=2(& c_{2}\left(\mathrm{e}^{\lambda x} a+\frac{3 b}{2}-\lambda\right) \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) \\
& \left.-\frac{b c_{1}\left(-2 \mathrm{e}^{\frac{a \mathrm{e}^{2 x}}{2 \lambda}}\left(\frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)^{\frac{2 b+\lambda}{2 \lambda}}+\mathrm{WhittakerM}\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)\right)}{2}\right) \mathrm{e}^{\frac{-\lambda^{2} x+\mathrm{\lambda}^{\lambda x} a}{2 \lambda}}
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{2\left(c_{2}\left(\mathrm{e}^{\lambda x} a+\frac{3 b}{2}-\lambda\right) \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)-\frac{b c_{1}\left(-2 \mathrm{e}^{\frac{a e^{\lambda x}}{2 \lambda}}\left(\frac{a a^{\lambda x}}{\lambda}\right)^{\frac{2 b+\lambda}{2 \lambda}}+\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a e^{\lambda x}}{\lambda}\right)\right)}{2}\right.}{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{1}+\text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{\left(-2 \mathrm{e}^{\lambda x} a-3 b+2 \lambda\right) \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)-2 c_{3}\left(\mathrm{e}^{\frac{a e^{\lambda x}}{2 \lambda}}\left(\frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)^{\frac{2 b+\lambda}{2 \lambda}}-\frac{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)}{2}\right)}{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{3}+\text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)}
$$

Summary
The solution(s) found are the following
y

$$
\begin{equation*}
=\frac{\left(-2 \mathrm{e}^{\lambda x} a-3 b+2 \lambda\right) \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)-2 c_{3}\left(\mathrm{e}^{\frac{a e^{\lambda x}}{2 \lambda}}\left(\frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)^{\frac{2 b+\lambda}{2 \lambda}}-\frac{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{x}}{\lambda}\right)}{2}\right)}{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{3}+\text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
y
$=\frac{\left(-2 \mathrm{e}^{\lambda x} a-3 b+2 \lambda\right) \text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)-2 c_{3}\left(\mathrm{e}^{\frac{a \mathrm{e}^{\lambda x}}{2 \lambda}}\left(\frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)^{\frac{2 b+\lambda}{2 \lambda}}-\frac{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)}{2}\right)}{\text { WhittakerM }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right) c_{3}+\text { WhittakerW }\left(\frac{-2 b+\lambda}{2 \lambda}, \frac{b}{\lambda}, \frac{a \mathrm{e}^{\lambda x}}{\lambda}\right)}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 73

```
dsolve(diff (y(x),x)=y(x)^2+a*exp(lambda*x)*y(x)-a*b*exp(lambda*x)-b^2,y(x), singsol=all)
```

$$
y(x)=\frac{-b\left(\int \mathrm{e}^{\frac{2 b \lambda x+\mathrm{e}^{x \lambda} a}{\lambda}} d x\right)+c_{1} b+\mathrm{e}^{\frac{2 b \lambda x+\mathrm{e}^{x \lambda} a}{\lambda}}}{-\left(\int \mathrm{e}^{\frac{2 b \lambda x+\mathrm{e}^{x \lambda}}{\lambda}} d x\right)+c_{1}}
$$

Solution by Mathematica
Time used: 0.944 (sec). Leaf size: 115
DSolve [y' $[x]==y[x] \sim 2+a * \operatorname{Exp}[\backslash[L a m b d a] * x] * y[x]-a * b * \operatorname{Exp}[\backslash[L a m b d a] * x]-b^{\wedge} 2, y[x], x$, IncludeSingular

$$
\begin{aligned}
& y(x) \rightarrow \frac{b\left(-2 \lambda e^{\frac{a e^{\lambda x}}{\lambda}}\left(-\frac{a e^{\lambda x}}{\lambda}\right)^{\frac{2 b}{\lambda}}+2 b \Gamma\left(\frac{2 b}{\lambda}, 0,-\frac{a e^{x \lambda}}{\lambda}\right)+c_{1} \lambda(-1)^{b / \lambda}\right)}{2 b \Gamma\left(\frac{2 b}{\lambda}, 0,-\frac{a e^{x \lambda}}{\lambda}\right)+c_{1} \lambda(-1)^{b / \lambda}} \\
& y(x) \rightarrow b
\end{aligned}
$$

3.7 problem 7

$$
\text { 3.7.1 Solving as riccati ode . } 505
$$

Internal problem ID [10415]
Internal file name [OUTPUT/9362_Monday_June_06_2022_02_18_15_PM_89074729/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}
$$

3.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(a \mathrm{e}^{2 \lambda x}\left(\mathrm{e}^{\lambda x}+b\right)^{n}-\frac{\lambda^{2}}{4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =\frac{-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \text { BesselI }\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{1}{4+2 n}} \mathrm{e}^{-\frac{\lambda x}{2}}+\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)}{(2+n) \Gamma\left(\frac{n+3}{2+n}\right)}
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad \lambda\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2}(2+n)^{2}\left(\mathrm{e}^{\frac{\lambda x}{2}} b+\mathrm{e}^{\frac{3 \lambda x}{2}}\right) \text { BesselI }\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\Gamma\left(\frac{n+3}{2+n}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\lambda\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2}(2+n)^{2}\left(\mathrm{e}^{\frac{\lambda x}{2}} b+\mathrm{e}^{\frac{3 \lambda x}{2}}\right) \text { BesselI }\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\Gamma\left(\frac{n+3}{2+n}\right)^{2}\right.}{2\left(\mathrm{e}^{\lambda x}+b\right)\left(-\csc \left(\frac{\pi(\eta}{2}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n)^{2}\left(b \mathrm{e}^{\lambda x}+\mathrm{e}^{2 \lambda x}\right) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{9}{2}\right.\right.}{2\left(\mathrm{e}^{\lambda x}+b\right)\left(-c_{3} \csc \left(\frac{\pi(}{2}\right.\right.}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n)^{2}\left(b \mathrm{e}^{\lambda x}+\mathrm{e}^{2 \lambda x}\right) \text { BesselI }\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{c}{}\right.\right.}{2\left(\mathrm{e}^{\lambda x}+b\right)\left(-c_{3} \csc \left(\frac{\pi}{2}\right.\right.}$

Verification of solutions

y
$=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n)^{2}\left(b \mathrm{e}^{\lambda x}+\mathrm{e}^{2 \lambda x}\right) \text { BesselI }\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a\left(\mathrm{e}^{\lambda x}+b\right)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{c}{}\right.\right.}{2\left(\mathrm{e}^{\lambda x}+b\right)\left(-c_{3} \csc \left(\frac{\pi}{2}\right.\right.}$
Verified OK.

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-a*exp(2*lambda*x)*(exp(lambd
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the OF1 ODE
        <- Whittaker successful
        <- special function solution successful
        Change of variables used:
        [x = ln(t)/lambda]508
        Linear ODE actually solved:
        (4*a*t^2*(t+b)^n-lambda^2)*u(t)+4*lambda^2*t*diff(u(t),t)+4*lambda^2*t^2*diff (di
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1342
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \exp (2 * \operatorname{lambda} * \mathrm{x}) *(\exp (\operatorname{lambda} \mathrm{x})+\mathrm{b})^{\wedge} \mathrm{n}-1 / 4 * \operatorname{lambda}{ }^{\wedge} 2, \mathrm{y}(\mathrm{x})\right.$, singsol=

Expression too large to display

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y \cdot[x]==y[x] \wedge 2+a * \operatorname{Exp}[2 * \backslash[$ Lambda $] * x] *(\operatorname{Exp}[\backslash[$ Lambda $] * x]+b) \wedge n-1 / 4 * \backslash[$ Lambda] $\sim 2, y[x], x$, Incl

Not solved

3.8 problem 8

3.8.1 Solving as riccati ode . 510

Internal problem ID [10416]
Internal file name [OUTPUT/9363_Monday_June_06_2022_02_18_57_PM_81881186/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}
$$

3.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(a \mathrm{e}^{8 \lambda x}+b \mathrm{e}^{6 \lambda x}+c \mathrm{e}^{4 \lambda x}-\lambda^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=c_{1} \mathrm{e}^{-\frac{i \mathrm{e}^{4 \lambda x} a+4 \lambda^{2} x \sqrt{a}+i \mathrm{e}^{2 \lambda x_{b}}}{4 \lambda \sqrt{a}}} \text { hypergeom }\left(\left[\frac{8 \lambda a^{\frac{3}{2}}+4 i c a-i b^{2}}{32 \lambda a^{\frac{3}{2}}}\right],\left[\frac{1}{2}\right], \frac{i\left(2 \mathrm{e}^{2 \lambda x} a+b\right)^{2}}{8 \lambda a^{\frac{3}{2}}}\right) \\
+c_{2} \text { hypergeom }\left(\left[\frac{24 \lambda a^{\frac{3}{2}}+4 i c a-i b^{2}}{32 \lambda a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{i\left(2 \mathrm{e}^{2 \lambda x} a+b\right)^{2}}{8 \lambda a^{\frac{3}{2}}}\right)\left(2 a \mathrm{e}^{-\frac{-4 \lambda^{2} x \sqrt{a}+i \mathrm{e}^{4 \lambda x} a+i \mathrm{e}^{2 \lambda x_{b}}}{4 \lambda \sqrt{a}}}\right. \\
\left.+\mathrm{e}^{-\frac{i \mathrm{e}^{4 \lambda x} a+4 \lambda^{2} x \sqrt{a}+i \mathrm{e}^{2 \lambda x_{b}}}{4 \lambda \sqrt{a}}} b\right)
\end{array}
$$

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

> Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-a*exp(8*lambda*x) -b*exp(6*la
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                    <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\`
            <- hypergeometric successful
        <- special function solution successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1078
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2+a * \exp (8 * \operatorname{lambda} * x)+b * \exp (6 * \operatorname{lambda*x})+c * \exp (4 * \operatorname{lambda} * x)-\operatorname{lambda} \wedge 2, y($

> Expression too large to display
\checkmark Solution by Mathematica
Time used: 4.991 (sec). Leaf size: 1282
DSolve $[y$ ' $[x]==y[x] \sim 2+a * \operatorname{Exp}[8 * \backslash[$ Lambda] $* x]+b * \operatorname{Exp}[6 * \backslash[$ Lambda] $* x]+c * \operatorname{Exp}[4 * \backslash[$ Lambda] $* x]-\backslash[$ Lambda
$y(x)$
$\rightarrow \xrightarrow{-e^{2 x \lambda} \text { Hypergeometric1F1 }\left(\frac{-i b^{2}+4 i a c+40 a^{3 / 2} \lambda}{32 a^{3 / 2} \lambda}, \frac{3}{2}, \frac{i\left(2 e^{2 x \lambda} a+b\right)^{2}}{8 a^{3 / 2} \lambda}\right) b^{3}-2 a e^{4 x \lambda} \text { Hypergeometric1F1 }\left(\frac{-i b^{2}+4 i a c+}{32 a^{3 /}}\right.}$

$$
\begin{aligned}
y(x) \rightarrow & \frac{\left(\frac{1}{8}+\frac{i}{8}\right) e^{2 \lambda x}\left(8 a^{3 / 2} \lambda+4 i a c-i b^{2}\right) \operatorname{HermiteH}\left(\frac{i\left(b^{2}-4 a c+24 i a^{3 / 2} \lambda\right)}{16 a^{3 / 2} \lambda}, \frac{\left(\frac{1}{4}+\frac{i}{4}\right)\left(2 e^{2 x \lambda} a+b\right)}{a^{3 / 4} \sqrt{\lambda}}\right)}{a^{5 / 4} \sqrt{\lambda} \operatorname{HermiteH}\left(\frac{i\left(b^{2}-4 a c+8 i i^{3 / 2} \lambda\right)}{16 a^{3 / 2} \lambda}, \frac{\left(\frac{1}{4}+\frac{i}{4}\right)\left(2 e^{2 x \lambda} a+b\right)}{a^{3 / 4} \sqrt{\lambda}}\right)} \\
& +\frac{i b e^{2 \lambda x}}{2 \sqrt{a}}+i \sqrt{a} e^{4 \lambda x}+\lambda
\end{aligned}
$$

3.9 problem 9

$$
\text { 3.9.1 Solving as riccati ode . } 515
$$

Internal problem ID [10417]
Internal file name [OUTPUT/9364_Monday_June_06_2022_02_18_59_PM_79365723/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a \mathrm{e}^{k x} y^{2}=b \mathrm{e}^{s x}
$$

3.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{k x} y^{2}+b \mathrm{e}^{s x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a \mathrm{e}^{k x} y^{2}+b \mathrm{e}^{s x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b \mathrm{e}^{s x}, f_{1}(x)=0$ and $f_{2}(x)=a \mathrm{e}^{k x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \mathrm{e}^{k x} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =a k \mathrm{e}^{k x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 k x} \mathrm{e}^{s x} a^{2} b
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a \mathrm{e}^{k x} u^{\prime \prime}(x)-a k \mathrm{e}^{k x} u^{\prime}(x)+\mathrm{e}^{2 k x} \mathrm{e}^{s x} a^{2} b u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)= \\
& -\frac{\mathrm{e}^{-\frac{s x}{2}}\left(\mathrm{e}^{\frac{x(k+s)}{2}} \operatorname{BesselJ}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} c_{1}+\operatorname{BesselY}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \mathrm{e}^{\frac{x(k+s)}{2}} \sqrt{a} \sqrt{b} c_{2}\right.}{\sqrt{b} \sqrt{a}}
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\left(-c_{1} \operatorname{Bessel} J\right. & \left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \\
& \left.-c_{2} \operatorname{BesselY}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right)\right) \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(2 k+s)}{2}}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y \\
& =\frac{\left(-c_{1} \operatorname{BesselJ}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(k+s)}{2}}}{k+s}\right)-c_{2} \operatorname{BesselY}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(i)}{}}}{k+s}\right.\right.}{\mathrm{e}^{\frac{x(k+s)}{2}} \operatorname{BesselJ}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} c_{1}+\operatorname{BesselY}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b}{ }^{\frac{x(k+s)}{2}}}{k+s}\right) \mathrm{e}^{\frac{x(k+s)}{2}} \sqrt{a} \sqrt{b} c_{2}-s\left(c_{1} \mathrm{E}\right.} .
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{b \mathrm{e}^{s x}\left(c_{3} \operatorname{BesselJ}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(k+s)}{2}}}{k+s}\right)+\operatorname{BesselY}\left(\frac{s}{k+s},\right.\right.}{\mathrm{e}^{\frac{x(k+s)}{2}} \operatorname{BesselJ}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} c_{3}+\operatorname{BesselY}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{\sqrt{b}} \sqrt{b} \frac{x(k+s)}{2}}{k+s}\right) \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}-s\left(c_{3}\right]}
$$

Summary
The solution(s) found are the following
$y=$
(1)

$$
-\frac{b \mathrm{e}^{s x}\left(c_{3} \operatorname{BesselJ}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right)+\operatorname{BesselY}\left(\frac{s}{k+s},\right.\right.}{\mathrm{e}^{\frac{x(k+s)}{2}} \operatorname{BesselJ}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} c_{3}+\operatorname{BesselY}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}-s\left(c_{3}\right]}
$$

Verification of solutions
$y=$

$$
-\frac{b \mathrm{e}^{s x}\left(c_{3} \operatorname{BesselJ}\left(\frac{s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(k+s)}{2}}}{k+s}\right)+\operatorname{BesselY}\left(\frac{s}{k+s},\right.\right.}{\mathrm{e}^{\frac{x(k+s)}{2}} \operatorname{BesselJ}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} c_{3}+\operatorname{BesselY}\left(\frac{k+2 s}{k+s}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(k+s)}{2}}-s\left(c_{3}\right]}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = k*(diff(y(x), x))-a*exp(k*x)*b
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
        <- special function solution successful
        Change of variables used:
        [x = ln(t)/(s+k)]
        Linear ODE actually solved:
                a*b*u(t)+(k*s+s^2)*diff(u(t),t)+(k^2*t+2*k*s*t+s^2*t)*diff(diff(u(t),t),t) = 0
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 228
dsolve(diff $(y(x), x)=a * \exp (k * x) * y(x) \wedge 2+b * \exp (s * x), y(x)$, singsol=all)
$y(x)=$
$-\frac{b \mathrm{e}^{s x}\left(\operatorname{BesselY}\left(\frac{s}{s+k}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(s+k)}{2}}}{s+k}\right) c_{1}+\operatorname{BesselJ}\left(\frac{s}{s+k},\right.\right.}{\operatorname{BesselJ}\left(\frac{2 s+k}{s+k}, \frac{2 \sqrt{a} \sqrt{b} e^{\frac{x(s+k)}{2}}}{s+k}\right) \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(s+k)}{2}}+\sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(s+k)}{2}} \operatorname{BesselY}\left(\frac{2 s+k}{s+k}, \frac{2 \sqrt{a} \sqrt{b} \mathrm{e}^{\frac{x(s+k)}{2}}}{s+k}\right) c_{1}-s(\operatorname{Be}}$

Solution by Mathematica

Time used: 6.491 (sec). Leaf size: 1097
DSolve [y' $[\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\mathrm{k} * \mathrm{x}] * \mathrm{y}[\mathrm{x}]^{\sim} 2+\mathrm{b} * \operatorname{Exp}[\mathrm{~s} * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \\
& \rightarrow-e^{-k x}\left(-k K_{\frac{k \log \left(e^{k+s}\right)}{(k+s)^{2}}}\left(2 \sqrt{-\frac{a b\left(\left(e^{k+s}\right)^{x}\right)^{\frac{k+s}{\log \left(e^{k+s}\right)} \log ^{2}\left(e^{k+s}\right)}}{(k+s)^{4}}}\right)-c_{1} k(-1)^{\frac{k \log \left(e^{k+s}\right)}{(k+s)^{2}}} \operatorname{BesselI}\left(\frac{k \log \left(e^{k+s}\right)}{(k+s)^{2}}, 2 \sqrt{-\frac{a b}{}}\right.\right.
\end{aligned}
$$

$y(x)$

3.10 problem 10

$$
\text { 3.10.1 Solving as riccati ode . } 521
$$

Internal problem ID [10418]
Internal file name [OUTPUT/9365_Monday_June_06_2022_02_19_01_PM_15885292/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-b \mathrm{e}^{x \mu} y^{2}=a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{(\mu+2 \lambda) x}
$$

3.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =b \mathrm{e}^{x \mu} y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{(\mu+2 \lambda) x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=b \mathrm{e}^{x \mu} y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{2 \lambda x} \mathrm{e}^{x \mu}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{(\mu+2 \lambda) x}, f_{1}(x)=0$ and $f_{2}(x)=b \mathrm{e}^{x \mu}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{b \mathrm{e}^{x \mu} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =b \mu \mathrm{e}^{x \mu} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =b^{2} \mathrm{e}^{2 x \mu}\left(a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{(\mu+2 \lambda) x}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
b \mathrm{e}^{x \mu} u^{\prime \prime}(x)-b \mu \mathrm{e}^{x \mu} u^{\prime}(x)+b^{2} \mathrm{e}^{2 x \mu}\left(a \lambda \mathrm{e}^{\lambda x}-a^{2} b \mathrm{e}^{(\mu+2 \lambda) x}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)\right.\right. \\
\left.\left.+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)\right.\right. \\
&\left.\left.+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y & = \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{e}^{-x \mu}}{b \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$\begin{aligned} y= & -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)}-Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)}-Y(x) a b \lambda-\mu-Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{e}^{-x \mu}}{b \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}\end{aligned}$

Summary

The solution(s) found are the following
$y=$
$-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{e}^{-x \mu}}{b \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)} _Y(x) a b \lambda-\mu _Y^{\prime}(x)+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}$
Verification of solutions
$\begin{aligned} y & = \\ & -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)}-Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)}-Y(x) a b \lambda-\mu _Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{e}^{-x \mu}}{b \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 x(\lambda+\mu)} _Y(x) a^{2} b^{2}+\mathrm{e}^{x(\lambda+\mu)}-Y(x) a b \lambda-\mu _Y^{\prime}(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}\end{aligned}$
Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = mu*(diff(y(x), x))-b*exp(x*mu)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(b*exp(x*mu)*y(x)^2+y(x)+x`2*(a*lambda*ex
        Methods for first order ODEs:
    --- Trying classification methods{4---
    trying a quadrature
    trying 1st order linear
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{b} * \exp (\mathrm{mu} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \operatorname{lambda*} \exp (\mathrm{l} a \mathrm{mbda} \mathrm{x})-\mathrm{a}{ }^{\wedge} 2 * \mathrm{~b} * \exp ((\mathrm{mu}+2 * \operatorname{lambda}) * \mathrm{x}), \mathrm{y}(\mathrm{x}\right.$

No solution found
Solution by Mathematica
Time used: 8.808 (sec). Leaf size: 844
DSolve $\left[y \cdot[x]==b * \operatorname{Exp}[\backslash[M u] * x] * y[x] \sim 2+a * \backslash[L a m b d a] * \operatorname{Exp}[\backslash[L a m b d a] * x]-a^{\wedge} 2 * b * \operatorname{Exp}[(\backslash[M u]+2 * \backslash[\right.$ Lambda
$y(x)$
$\rightarrow \xrightarrow{e^{\mu(-x)}\left(-2 a b \log \left(e^{\lambda+\mu}\right)\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}}\left(2(\lambda+\mu) L^{\frac{\mu \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}+1}\right.\right.} \begin{aligned} & -\frac{\log \left(e^{\lambda+\mu}\right)}{2(\lambda+\mu)}-\frac{3}{2}\end{aligned}\left(-\frac{2 a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}} \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}\right)+c$
$y(x) \rightarrow$
$-\frac{a e^{\mu(-x)} \log \left(e^{\lambda+\mu}\right)\left(\log \left(e^{\lambda+\mu}\right)+\lambda+\mu\right)\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}} \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\log \left(e^{\lambda+\mu}\right)}{\lambda+\mu}+3\right), \frac{2(\lambda+\mu}{}\right.}{(\lambda+\mu)^{2} \text { HypergeometricU }\left(\frac{\lambda+\mu+\log \left(e^{\lambda+\mu}\right)}{2(\lambda+\mu)}, \frac{\mu \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}+1,-\frac{2 a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\log }}{(\lambda+}\right.}$
$-\frac{e^{\mu(-x)}\left(\log \left(e^{\lambda+\mu}\right)\left(2 a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}}+\mu\right)+\mu(\lambda+\mu)\right)}{2 b(\lambda+\mu)}$

3.11 problem 11

3.11.1 Solving as first order ode lie symmetry calculated ode 526
3.11.2 Solving as riccati ode . 531

Internal problem ID [10419]
Internal file name [OUTPUT/9366_Monday_June_06_2022_02_19_03_PM_98824791/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing
Exponential Functions
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], _Riccati]
```

$$
y^{\prime}-a \mathrm{e}^{\lambda x} y^{2}-y b=c \mathrm{e}^{-\lambda x}
$$

3.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}\right)\left(b_{3}-a_{2}\right)-\left(\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}\right)^{2} a_{3} \tag{5E}\\
& \quad-\left(\lambda \mathrm{e}^{\lambda x} a y^{2}-c \lambda \mathrm{e}^{-\lambda x}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\left(2 a \mathrm{e}^{\lambda x} y+b\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{-\lambda x} a c y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a b y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3} \\
& -\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1}-2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} c^{2} a_{3} \\
& -2 \mathrm{e}^{-\lambda x} b c y a_{3}+\mathrm{e}^{-\lambda x} c \lambda x a_{2}+\mathrm{e}^{-\lambda x} c \lambda y a_{3}-b^{2} y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1} \\
& +\mathrm{e}^{-\lambda x} c \lambda a_{1}-\mathrm{e}^{-\lambda x} c a_{2}+\mathrm{e}^{-\lambda x} c b_{3}-b x b_{2}-b y a_{2}-b b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{aligned}
& -\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{-\lambda x} a c y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a b y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3} \\
& \quad-\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1}-2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} c^{2} a_{3} \\
& -2 \mathrm{e}^{-\lambda x} b c y a_{3}+\mathrm{e}^{-\lambda x} c \lambda x a_{2}+\mathrm{e}^{-\lambda x} c \lambda y a_{3}-b^{2} y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1} \\
& +\mathrm{e}^{-\lambda x} c \lambda a_{1}-\mathrm{e}^{-\lambda x} c a_{2}+\mathrm{e}^{-\lambda x} c b_{3}-b x b_{2}-b y a_{2}-b b_{1}+b_{2}=0
\end{aligned}
$$

Simplifying the above gives

$$
\begin{gather*}
-\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 a c y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a b y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3} \\
-\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1}-2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} c^{2} a_{3} \tag{6E}\\
-2 \mathrm{e}^{-\lambda x} b c y a_{3}+\mathrm{e}^{-\lambda x} c \lambda x a_{2}+\mathrm{e}^{-\lambda x} c \lambda y a_{3}-b^{2} y^{2} a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1} \\
+\mathrm{e}^{-\lambda x} c \lambda a_{1}-\mathrm{e}^{-\lambda x} c a_{2}+\mathrm{e}^{-\lambda x} c b_{3}-b x b_{2}-b y a_{2}-b b_{1}+b_{2}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{\lambda x}, \mathrm{e}^{-2 \lambda x}, \mathrm{e}^{-\lambda x}, \mathrm{e}^{2 \lambda x}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{\lambda x}=v_{3}, \mathrm{e}^{-2 \lambda x}=v_{4}, \mathrm{e}^{-\lambda x}=v_{5}, \mathrm{e}^{2 \lambda x}=v_{6}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{6} a^{2} v_{2}^{4} a_{3}-2 v_{3} a b v_{2}^{3} a_{3}-v_{3} a \lambda v_{1} v_{2}^{2} a_{2}-v_{3} a \lambda v_{2}^{3} a_{3}-v_{3} a \lambda v_{2}^{2} a_{1}-2 a c v_{2}^{2} a_{3} \tag{7E}\\
& \quad-v_{3} a v_{2}^{2} a_{2}-2 v_{3} a v_{1} v_{2} b_{2}-v_{3} a v_{2}^{2} b_{3}-b^{2} v_{2}^{2} a_{3}-2 v_{5} b c v_{2} a_{3}+v_{5} c \lambda v_{1} a_{2}+v_{5} c \lambda v_{2} a_{3} \\
& \quad-2 v_{3} a v_{2} b_{1}-v_{4} c^{2} a_{3}+v_{5} c \lambda a_{1}-b v_{2} a_{2}-b v_{1} b_{2}-v_{5} c a_{2}+v_{5} c b_{3}-b b_{1}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3} a \lambda v_{1} v_{2}^{2} a_{2}-2 v_{3} a v_{1} v_{2} b_{2}+v_{5} c \lambda v_{1} a_{2}-b v_{1} b_{2}-v_{6} a^{2} v_{2}^{4} a_{3} \\
& +\left(-2 a_{3} a b-\lambda a_{3} a\right) v_{2}^{3} v_{3}+\left(-a \lambda a_{1}-a_{2} a-b_{3} a\right) v_{2}^{2} v_{3} \tag{8E}\\
& +\left(-2 a_{3} a c-a_{3} b^{2}\right) v_{2}^{2}-2 v_{3} a v_{2} b_{1}+\left(-2 a_{3} b c+\lambda a_{3} c\right) v_{2} v_{5} \\
& -b v_{2} a_{2}-v_{4} c^{2} a_{3}+\left(c \lambda a_{1}-c a_{2}+c b_{3}\right) v_{5}-b b_{1}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
c \lambda a_{2} & =0 \\
-2 a b_{1} & =0 \\
-2 a b_{2} & =0 \\
-b b_{2} & =0 \\
-c^{2} a_{3} & =0 \\
-a_{2} b & =0 \\
-a_{3} a^{2} & =0 \\
-\lambda a_{2} a & =0 \\
-b b_{1}+b_{2} & =0 \\
-2 a_{3} a c-a_{3} b^{2} & =0 \\
-2 a_{3} a b-\lambda a_{3} a & =0 \\
-2 a_{3} b c+\lambda a_{3} c & =0 \\
-a \lambda a_{1}-a_{2} a-b_{3} a & =0 \\
c \lambda a_{1}-c a_{2}+c b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-\lambda a_{1}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =1 \\
\eta & =-\lambda y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-\lambda y-\left(\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}\right)(\\
& =-\mathrm{e}^{\lambda x} a y^{2}-b y-\lambda y-c \mathrm{e}^{-\lambda x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\mathrm{e}^{\lambda x} a y^{2}-b y-\lambda y-c \mathrm{e}^{-\lambda x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 \mathrm{e}^{\lambda x} \arctan \left(\frac{2 \mathrm{e}^{2 \lambda x} a y+b \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}}{\sqrt{-\mathrm{e}^{2 \lambda x} b^{2}-2 \mathrm{e}^{2 \lambda x} b \lambda-\mathrm{e}^{2 \lambda x} \lambda^{2}+4 c \mathrm{e}^{2 \lambda x} a}}\right)}{\sqrt{-\mathrm{e}^{2 \lambda x} b^{2}-2 \mathrm{e}^{2 \lambda x} b \lambda-\mathrm{e}^{2 \lambda x} \lambda^{2}+4 c \mathrm{e}^{2 \lambda x} a}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\mathrm{e}^{\lambda x} \lambda y}{\mathrm{e}^{2 \lambda x} a y^{2}+y(b+\lambda) \mathrm{e}^{\lambda x}+c} \\
& S_{y}=-\frac{\mathrm{e}^{\lambda x}}{\mathrm{e}^{2 \lambda x} a y^{2}+y(b+\lambda) \mathrm{e}^{\lambda x}+c}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \arctan \left(\frac{2 a \mathrm{e}^{\lambda x} y+b+\lambda}{\sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}\right)}{\sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}=c_{1}-x
$$

Which simplifies to

$$
-\frac{2 \arctan \left(\frac{2 a \mathrm{e}^{\lambda x} y+b+\lambda}{\sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}\right)}{\sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}=c_{1}-x
$$

Which gives

$$
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}-\frac{x \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}+b+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}-\frac{x \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}+b+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}-\frac{x \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}}{2}\right) \sqrt{4 c a-b^{2}-2 b \lambda-\lambda^{2}}+b+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a}
$$

Verified OK.

3.11.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}+b y+c \mathrm{e}^{-\lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=c \mathrm{e}^{-\lambda x}, f_{1}(x)=b$ and $f_{2}(x)=\mathrm{e}^{\lambda x} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =a \mathrm{e}^{\lambda x} b \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a^{2} c \mathrm{e}^{-\lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-\left(a \lambda \mathrm{e}^{\lambda x}+a \mathrm{e}^{\lambda x} b\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a^{2} c \mathrm{e}^{-\lambda x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+c_{2} \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)= & \frac{c_{2}\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}}{2} \\
& +\frac{c_{1} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right)}{2}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left.\left(\frac{c_{2}\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}}{2}+\frac{c_{1} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right)}{2}\right) \mathrm{e}^{-\lambda}\right)}{a\left(c_{1} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+c_{2} \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}(b+\lambda+\sqrt{-4 c a}\right.}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\right)}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}(b+\lambda+\sqrt{-4 c a}\right.}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) \mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}(b+\lambda+\sqrt{-4 c a}\right.}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(b+\lambda+\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{\frac{\left(b+\lambda-\sqrt{-4 c a+b^{2}+2 b \lambda+\lambda^{2}}\right) x}{2}}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 96
dsolve(diff $(y(x), x)=a * \exp (\operatorname{lambda*x}) * y(x)^{\wedge} 2+b * y(x)+c * \exp (-l a m b d a * x), y(x), \quad$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)= \\
& \quad-\frac{\left(-\sqrt{(b+\lambda)^{2}\left(4 a c-b^{2}-2 \lambda b-\lambda^{2}\right)} \tan \left(\frac{\left((b+\lambda) x+c_{1}\right) \sqrt{(b+\lambda)^{2}\left(4 a c-b^{2}-2 \lambda b-\lambda^{2}\right)}}{2(b+\lambda)^{2}}\right)+(b+\lambda)^{2}\right) \mathrm{e}^{-x \lambda}}{2 a(b+\lambda)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.927 (sec). Leaf size: 188
DSolve [y' $[\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * x] * y[\mathrm{x}] \sim 2+b * y[x]+c * \operatorname{Exp}[-\backslash[$ Lambda $] * x], y[x], x$, IncludeSingularSol

$$
\begin{aligned}
& y(x) \rightarrow \frac{e^{\lambda(-x)}\left(-\sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}+\frac{2}{\frac{1}{\left.\sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}+c_{1} e^{x \sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}}-b-\lambda\right)}} 22 a\right.}{y(x) \rightarrow} \\
& \quad-\frac{e^{\lambda(-x)}\left(b\left(\sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}+2 \lambda\right)+\lambda\left(\sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}+\lambda\right)-4 a c+b^{2}\right)}{2 a \sqrt{-4 a c+b^{2}+2 b \lambda+\lambda^{2}}}
\end{aligned}
$$

3.12 problem 12

3.12.1 Solving as riccati ode . 535

Internal problem ID [10420]
Internal file name [OUTPUT/9367_Monday_June_06_2022_02_19_04_PM_92605250/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a \mathrm{e}^{x \mu} y^{2}-\lambda y=-a b^{2} \mathrm{e}^{(\mu+2 \lambda) x}
$$

3.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{x \mu} y^{2}+\lambda y-a b^{2} \mathrm{e}^{(\mu+2 \lambda) x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a \mathrm{e}^{x \mu} y^{2}+\lambda y-a b^{2} \mathrm{e}^{2 \lambda x} \mathrm{e}^{x \mu}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a b^{2} \mathrm{e}^{(\mu+2 \lambda) x}, f_{1}(x)=\lambda$ and $f_{2}(x)=a \mathrm{e}^{x \mu}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \mathrm{e}^{x \mu} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =a \mu \mathrm{e}^{x \mu} \\
f_{1} f_{2} & =\lambda a \mathrm{e}^{x \mu} \\
f_{2}^{2} f_{0} & =-a^{3} \mathrm{e}^{2 x \mu} b^{2} \mathrm{e}^{(\mu+2 \lambda) x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a \mathrm{e}^{x \mu} u^{\prime \prime}(x)-\left(a \mu \mathrm{e}^{x \mu}+\lambda a \mathrm{e}^{x \mu}\right) u^{\prime}(x)-a^{3} \mathrm{e}^{2 x \mu} b^{2} \mathrm{e}^{(\mu+2 \lambda) x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+c_{2} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{a b \mathrm{e}^{2 x(\lambda+\mu)}\left(-c_{1} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+c_{2} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}{\sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{b \mathrm{e}^{2 x(\lambda+\mu)}\left(-c_{1} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+c_{2} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right) \mathrm{e}^{-x \mu}}{\sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}\left(c_{1} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+c_{2} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{b \mathrm{e}^{(\mu+2 \lambda) x}\left(c_{3} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)-\sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}{\sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}\left(c_{3} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+\cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{b \mathrm{e}^{(\mu+2 \lambda) x}\left(c_{3} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)-\sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}{\sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}\left(c_{3} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)+\cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{b \mathrm{e}^{(\mu+2 \lambda) x}\left(c_{3} \cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)-\sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}{\sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}\left(c_{3} \sin \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x}} \mathrm{e}^{2 x \mu}}{\lambda+\mu}\right)+\cos \left(\frac{a b \sqrt{-\mathrm{e}^{2 \lambda x} \mathrm{e}^{2 x \mu}}}{\lambda+\mu}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (lambda+mu)*(diff(y(x), x))+a
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 79
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\mathrm{mu} * \mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{lambda} * \mathrm{y}(\mathrm{x})-\mathrm{a} * \mathrm{~b} \wedge 2 * \exp ((\mathrm{mu}+2 * \operatorname{lambda}) * \mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=

$$
y(x)=-\frac{b\left(c_{1} \sinh \left(\frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right)+\cosh \left(\frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right)\right) \mathrm{e}^{x \lambda}}{c_{1} \cosh \left(\frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right)+\sinh \left(\frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right)}
$$

\checkmark Solution by Mathematica
Time used: 2.706 (sec). Leaf size: 286
DSolve $[y$ ' $[x]==a * \operatorname{Exp}[\backslash[M u] * x] * y[x] \wedge 2+\backslash[$ Lambda $] *[x]-a * b \wedge 2 * \operatorname{Exp}[(\backslash[M u]+2 * \backslash[$ Lambda $]) * x], y[x], x, I$

$$
y(x) \rightarrow-\frac{\tan \left(\frac{a b^{2} e^{x(2 \lambda+\mu)} \sqrt{-\frac{e^{-2 x \lambda}}{b^{2}}}}{\lambda+\mu}-c_{1}\right)}{\sqrt{-\frac{e^{-2 x \lambda}}{b^{2}}}} \text { if condition }
$$

3.13 problem 13

$$
\text { 3.13.1 Solving as riccati ode . } 539
$$

Internal problem ID [10421]
Internal file name [OUTPUT/9368_Monday_June_06_2022_02_19_05_PM_49258887/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\mathrm{e}^{\lambda x} y^{2}-a \mathrm{e}^{x \mu} y=a \lambda \mathrm{e}^{(\mu-\lambda) x}
$$

3.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} y^{2}+a \mathrm{e}^{x \mu} y+a \lambda \mathrm{e}^{(\mu-\lambda) x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\mathrm{e}^{\lambda x} y^{2}+a \mathrm{e}^{x \mu} y+a \lambda \mathrm{e}^{-\lambda x} \mathrm{e}^{x \mu}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{(\mu-\lambda) x}, f_{1}(x)=a \mathrm{e}^{x \mu}$ and $f_{2}(x)=\mathrm{e}^{\lambda x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =a \mathrm{e}^{x \mu} \mathrm{e}^{\lambda x} \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a \lambda \mathrm{e}^{(\mu-\lambda) x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\mathrm{e}^{\lambda x} u^{\prime \prime}(x)-\left(a \mathrm{e}^{x \mu} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a \lambda \mathrm{e}^{(\mu-\lambda) x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{\lambda x}+c_{2} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)
$$

The above shows that

$$
u^{\prime}(x)=-\frac{\left(c_{2} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{x \mu}-\mathrm{e}^{\lambda x} c_{1}(\mu-\lambda)\right) \lambda}{\mu-\lambda}
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(c_{2} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{x \mu}-\mathrm{e}^{\lambda x} c_{1}(\mu-\lambda)\right) \lambda \mathrm{e}^{-\lambda x}}{(\mu-\lambda)\left(c_{1} \mathrm{e}^{\lambda x}+c_{2} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}-c_{3}(\mu-\lambda)\right) \lambda}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}-c_{3}(\mu-\lambda)\right) \lambda}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}-c_{3}(\mu-\lambda)\right) \lambda}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*exp(x*mu) +lambda)*(diff(y(x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
                    <- Kummer successful
            <- special function solution successful
                    Solution using Kummer functions still has integrals. Trying a hypergeometric
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                    <- hyper3 successful: 542ceived ODE is equivalent to the 1F1 ODE
            -> Trying to convert hypergeometric functions to elementary form...
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 97
dsolve \(\left(\operatorname{diff}(y(x), x)=\exp (\operatorname{lambda} * x) * y(x)^{\wedge} 2+a * \exp (m u * x) * y(x)+a * \operatorname{lambda*exp}((m u-l a m b d a) * x), y(x)\right.\),
\[
y(x)=\frac{\lambda\left(a c_{1} \mathrm{e}^{(\mu-\lambda) x} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)+\lambda-\mu\right)}{(\mu-\lambda)\left(c_{1} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)+\mathrm{e}^{x \lambda}\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 4.392 (sec). Leaf size: 148
DSolve \(\left[\mathrm{y}^{\prime}[\mathrm{x}]==\operatorname{Exp}[\backslash[\right.\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \backslash[\) Lambda \(] * \operatorname{Exp}[(\backslash[M u]-\backslash[\) Lambda \(]) *\)
\[
\begin{aligned}
& y(x) \rightarrow-\frac{e^{\lambda(-x)}\left(-\lambda\left(-\frac{a e^{\mu x}}{\mu}\right)^{\lambda / \mu} \Gamma\left(-\frac{\lambda}{\mu},-\frac{a e^{x \mu}}{\mu}\right)+\mu e^{\frac{a e^{\mu x}}{\mu}}+c_{1} \lambda\left(e^{\mu x}\right)^{\lambda / \mu}\right)}{-\left(-\frac{a e^{\mu x}}{\mu}\right)^{\lambda / \mu} \Gamma\left(-\frac{\lambda}{\mu},-\frac{a e^{x \mu}}{\mu}\right)+c_{1}\left(e^{\mu x}\right)^{\lambda / \mu}} \\
& y(x) \rightarrow \lambda\left(-e^{\lambda(-x)}\right)
\end{aligned}
\]

\subsection*{3.14 problem 14}
3.14.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 544

Internal problem ID [10422]
Internal file name [OUTPUT/9369_Monday_June_06_2022_02_19_06_PM_308271/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+\mathrm{e}^{\lambda x} y^{2} \lambda-a \mathrm{e}^{x \mu} y=-a \mathrm{e}^{(\mu-\lambda) x}
\]

\subsection*{3.14.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\lambda \mathrm{e}^{\lambda x} y^{2}+a \mathrm{e}^{x \mu} y-a \mathrm{e}^{(\mu-\lambda) x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-\lambda \mathrm{e}^{\lambda x} y^{2}+a \mathrm{e}^{x \mu} y-a \mathrm{e}^{-\lambda x} \mathrm{e}^{x \mu}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \mathrm{e}^{(\mu-\lambda) x}, f_{1}(x)=a \mathrm{e}^{x \mu}\) and \(f_{2}(x)=-\lambda \mathrm{e}^{\lambda x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\lambda \mathrm{e}^{\lambda x} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\mathrm{e}^{\lambda x} \lambda^{2} \\
f_{1} f_{2} & =-a \mathrm{e}^{x \mu} \lambda \mathrm{e}^{\lambda x} \\
f_{2}^{2} f_{0} & =-\lambda^{2} \mathrm{e}^{2 \lambda x} a \mathrm{e}^{(\mu-\lambda) x}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
-\lambda \mathrm{e}^{\lambda x} u^{\prime \prime}(x)-\left(-a \mathrm{e}^{x \mu} \lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x} \lambda^{2}\right) u^{\prime}(x)-\lambda^{2} \mathrm{e}^{2 \lambda x} a \mathrm{e}^{(\mu-\lambda) x} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \mathrm{e}^{\lambda x}+c_{2} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)
\]

The above shows that
\[
u^{\prime}(x)=-\frac{\left(c_{2} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{x \mu}-\mathrm{e}^{\lambda x} c_{1}(\mu-\lambda)\right) \lambda}{\mu-\lambda}
\]

Using the above in (1) gives the solution
\[
y=-\frac{\left(c_{2} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{x \mu}-\mathrm{e}^{\lambda x} c_{1}(\mu-\lambda)\right) \mathrm{e}^{-\lambda x}}{(\mu-\lambda)\left(c_{1} \mathrm{e}^{\lambda x}+c_{2} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\operatorname{hypergeom}\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}+c_{3}(\mu-\lambda)}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\operatorname{hypergeom}\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{- \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}+c_{3}(\mu-\lambda)}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\operatorname{hypergeom}\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\operatorname{hypergeom}\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right) a \mathrm{e}^{(\mu-\lambda) x}+c_{3}(\mu-\lambda)}{(\mu-\lambda)\left(c_{3} \mathrm{e}^{\lambda x}+\operatorname{hypergeom}\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{\mu} \mu}{\mu}\right)\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order <- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 96
dsolve \(\left(\operatorname{diff}(y(x), x)=-1 \operatorname{ambda} \exp (\operatorname{lambda} * x) * y(x)^{\wedge} 2+a * \exp (m u * x) * y(x)-a * \exp ((m u-1 a m b d a) * x), y(x)\right.\),
\[
y(x)=\frac{a c_{1} \mathrm{e}^{(\mu-\lambda) x} \text { hypergeom }\left(\left[\frac{\mu-\lambda}{\mu}\right],\left[\frac{-\lambda+2 \mu}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)+\lambda-\mu}{(\lambda-\mu)\left(c_{1} \text { hypergeom }\left(\left[-\frac{\lambda}{\mu}\right],\left[\frac{\mu-\lambda}{\mu}\right], \frac{a \mathrm{e}^{x \mu}}{\mu}\right)+\mathrm{e}^{x \lambda}\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 4.358 (sec). Leaf size: 147
DSolve [y' \([x]==-\backslash[\) Lambda \(] * \operatorname{Exp}[\backslash[\) Lambda \(] * x] * y[x] \sim 2+a * \operatorname{Exp}[\backslash[M u] * x] * y[x]-a * \operatorname{Exp}[(\backslash[M u]-\backslash[L a m b d a])\)
\[
\begin{aligned}
& y(x) \rightarrow \frac{e^{\lambda(-x)}\left(-\lambda\left(-\frac{a e^{\mu x}}{\mu}\right)^{\lambda / \mu} \Gamma\left(-\frac{\lambda}{\mu},-\frac{a e^{x \mu}}{\mu}\right)+\mu e^{\frac{a e^{\mu x}}{\mu}}+c_{1} \lambda\left(e^{\mu x}\right)^{\lambda / \mu}\right)}{\lambda\left(-\left(-\frac{a e^{\mu x}}{\mu}\right)^{\lambda / \mu} \Gamma\left(-\frac{\lambda}{\mu},-\frac{a e^{x \mu}}{\mu}\right)+c_{1}\left(e^{\mu x}\right)^{\lambda / \mu}\right)} \\
& y(x) \rightarrow e^{\lambda(-x)}
\end{aligned}
\]

\subsection*{3.15 problem 15}
\[
\text { 3.15.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 548
\]

Internal problem ID [10423]
Internal file name [OUTPUT/9370_Monday_June_06_2022_02_19_07_PM_49470304/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{x \mu} y^{2}-a b \mathrm{e}^{x(\lambda+\mu)} y=-b \lambda \mathrm{e}^{\lambda x}
\]

\subsection*{3.15.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{x \mu} y^{2}+a b \mathrm{e}^{x(\lambda+\mu)} y-b \lambda \mathrm{e}^{\lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \mathrm{e}^{x \mu} y^{2}+a b \mathrm{e}^{\lambda x} \mathrm{e}^{x \mu} y-b \lambda \mathrm{e}^{\lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-b \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=\mathrm{e}^{x(\lambda+\mu)} a b\) and \(f_{2}(x)=a \mathrm{e}^{x \mu}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \mathrm{e}^{x \mu} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \mu \mathrm{e}^{x \mu} \\
f_{1} f_{2} & =\mathrm{e}^{x(\lambda+\mu)} a^{2} b \mathrm{e}^{x \mu} \\
f_{2}^{2} f_{0} & =-\mathrm{e}^{2 x \mu} \mathrm{e}^{\lambda x} a^{2} b \lambda
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \mathrm{e}^{x \mu} u^{\prime \prime}(x)-\left(a \mu \mathrm{e}^{x \mu}+\mathrm{e}^{x(\lambda+\mu)} a^{2} b \mathrm{e}^{x \mu}\right) u^{\prime}(x)-\mathrm{e}^{2 x \mu} \mathrm{e}^{\lambda x} a^{2} b \lambda u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & 4\left(\mu+\frac{\lambda}{2}\right)^{2} \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)} a b-2(\lambda+\mu)\left(\frac{3 \lambda}{2}+\mu\right) x}{2 \lambda+2 \mu}} c_{2} \text { WhittakerM }\left(\frac{\lambda+2 \mu}{2 \lambda+2 \mu}, \frac{2 \lambda+3 \mu}{2 \lambda+2 \mu}, \frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right) \\
+ & (\lambda+\mu)\left((\lambda+2 \mu) \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)} a b-2(\lambda+\mu)\left(\frac{3 \lambda}{2}+\mu\right) x}{2 \lambda+2 \mu}}\right. \\
& \left.+b a \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)_{a b-x \lambda(\lambda+\mu)}^{2 \lambda+2 \mu}}}{2 \lambda}}\right) c_{2} \text { WhittakerM }\left(-\frac{\lambda}{2 \lambda+2 \mu}, \frac{2 \lambda+3 \mu}{2 \lambda+2 \mu}, \frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right) \\
+ & c_{1} \mathrm{e}^{\frac{a b e^{x(\lambda+\mu)}}{\lambda+\mu}}
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=6\left(-\frac{2\left(\mu+\frac{\lambda}{2}\right)(\lambda+\mu) \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu) a b-2(\lambda+\mu)\left(\frac{3 \lambda}{2}+\mu\right) x}}{2 \lambda+2 \mu}}}{3}\right. \\
& \left.+a \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)_{a b-x \lambda(\lambda+\mu)}}}{2 \lambda+2 \mu}} b\left(\frac{2 \lambda}{3}+\mu\right)\right)(\mu \\
& \left.+\frac{\lambda}{2}\right) c_{2} \text { WhittakerM }\left(\frac{\lambda+2 \mu}{2 \lambda+2 \mu}, \frac{2 \lambda+3 \mu}{2 \lambda+2 \mu}, \frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right) \\
& +\left(\left(-\lambda^{2}-3 \lambda \mu-2 \mu^{2}\right) \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)} a b-2(\lambda+\mu)\left(\frac{3 \lambda}{2}+\mu\right) x}{2 \lambda+2 \mu}}\right.
\end{aligned}
\]
\[
\begin{aligned}
& +\mu) c_{2} \text { WhittakerM }\left(-\frac{\lambda}{2 \lambda+2 \mu}, \frac{2 \lambda+3 \mu}{2 \lambda+2 \mu}, \frac{a b \mathrm{e}^{x(\lambda+\mu)}}{\lambda+\mu}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y=\left(6 ( - \frac { 2 ( \mu + \frac { \lambda } { 2 } ) ( \lambda + \mu ) \mathrm { e } ^ { \frac { \mathrm { e } ^ { x ( \lambda + \mu ) a b - 2 ( \lambda + \mu ) ( \frac { 3 \lambda } { 2 } + \mu ) x } } { 2 \lambda + 2 \mu } } } { 3 } + a \mathrm { e } ^ { \frac { \mathrm { e } ^ { x ( \lambda + \mu ) a b - x \lambda ( \lambda + \mu ) } } { 2 \lambda + 2 \mu } } b ( \frac { 2 \lambda } { 3 } + \mu ) ) ( \mu + \frac { \lambda } { 2 } ) c _ { 2 } \text { WhittakerM } \left(\frac{\lambda+}{2 \lambda+}\right.\right. \\
& a\left(4\left(\mu+\frac{\lambda}{2}\right)^{2} \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+1}}{}}\right.
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\[
-\frac{\mathrm{e}^{-x \mu}\left(6 ( - \frac { 2 ( \mu + \frac { \lambda } { 2 } ) ( \lambda + \mu ) \mathrm { e } ^ { \frac { \mathrm { e } ^ { x ( \lambda + \mu ) } a b - 2 ( \lambda + \mu ) ( \frac { 3 \lambda } { 2 } + \mu ) x } { 2 \lambda + 2 \mu } } } { 3 } + a \mathrm { e } ^ { \frac { \mathrm { e } ^ { x ( \lambda + \mu ) _ { a b - x \lambda ( \lambda + \mu ) } } } { 2 \lambda + 2 \mu } } b ( \frac { 2 \lambda } { 3 } + \mu ) ) ( \mu + \frac { \lambda } { 2 } ) \text { WhittakerM } \left(\frac{2}{2}\right.\right.}{\left(4\left(\mu+\frac{\lambda}{2}\right)^{2} \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu) a b}}{}}\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\mathrm{e}^{-x \mu}\left(6 \left(-\frac{\left.2\left(\mu+\frac{\lambda}{2}\right)(\lambda+\mu) \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu)_{a b-2(\lambda+\mu)\left(\frac{3 \lambda}{2}+\mu\right) x}^{2 \lambda+2 \mu}}}{3}}+a \mathrm{e}^{\frac{e^{x(\lambda+\mu)_{a b-x \lambda(\lambda+\mu)}}}{2 \lambda+2 \mu}} b\left(\frac{2 \lambda}{3}+\mu\right)\right)\left(\mu+\frac{\lambda}{2}\right) \text { WhittakerM }\left(\frac{1}{2}\right.}{\left(4\left(\mu+\frac{\lambda}{2}\right)^{2} \mathrm{e}^{\frac{\mathrm{e}^{x(\lambda+\mu) a b}}{}}\right.}{ }^{2}\right.\right.}{(4)} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y=\)

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b*a*exp(lambda*x+mu*x)+mu)*(d
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[x = ln(t)/(lambda+mu)]
Linear ODE actually solved:
-a*b*lambda*u(t)+(-a*b*lambda*t-a*b*mu*t+lambda`2+lambda*mu)*diff (u(t),t)+(lambd <- change of variables successful <- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 629
dsolve \((\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\mathrm{mu} * \mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{a} * \mathrm{~b} * \exp ((\operatorname{lambda}+\mathrm{mu}) * \mathrm{x}) * \mathrm{y}(\mathrm{x})-\mathrm{b} * \operatorname{lambda} * \exp (\mathrm{l} \operatorname{ambda} * \mathrm{x}), \mathrm{y}(\)
\(y(x)\)
\(=\frac{-6\left(-\frac{2(\lambda+\mu)\left(\mu+\frac{\lambda}{2}\right) \mathrm{e}^{\frac{a b \mathrm{e}^{x(\lambda+\mu)}-4(\lambda+\mu) x\left(\mu+\frac{3 \lambda}{4}\right)}{2 \lambda+2 \mu}}}{3}+a \mathrm{e}^{\frac{a b \mathrm{e}^{x(\lambda+\mu)}-2(\lambda+\mu) x\left(\mu+\frac{\lambda}{2}\right)}{2 \lambda+2 \mu}} b\left(\frac{2 \lambda}{3}+\mu\right)\right) c_{1}\left(\mu+\frac{\lambda}{2}\right) \text { WhittakerM }( }{\left(4 \mathrm{e}^{\frac{a b \mathrm{e}^{x(\lambda+\mu)}-2(\lambda+\mu) x\left(\frac{3 \lambda}{2}+1\right.}{2 \lambda+2 \mu}}\right.}\)
Solution by Mathematica
Time used: 12.587 (sec). Leaf size: 902
DSolve \(\left[y y^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{a} * \mathrm{~b} * \operatorname{Exp}[(\backslash[\right.\) Lambda] \(+\backslash[\mathrm{Mu}]) * \mathrm{x}] * \mathrm{y}[\mathrm{x}]-\mathrm{b} * \backslash[\) Lambda] \(* \operatorname{Exp}[\backslash[\) Lamb
\(y(x)\)
\[
\rightarrow \xrightarrow{e^{\mu(-x)}\left(a b \operatorname { l o g } ( e ^ { \lambda + \mu } ) ( ( e ^ { \lambda + \mu } ) ^ { x } ) ^ { \frac { \lambda + \mu } { \operatorname { l o g } ( e ^ { \lambda + \mu } ) } } \left(2(\lambda+\mu) L_{-\frac{\mu \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}+1}^{-\frac{\log \left(e^{\lambda+\mu}\right)}{2(\lambda+\mu)}-\frac{3}{2}}\left(\frac{a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{10}{\log \left(e^{\lambda+\mu}\right)}} \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}\right)+c_{1}(\log )\right.\right.}
\]
\(y(x)\)
\[
\begin{aligned}
& \rightarrow \frac{b e^{\mu(-x)} \log \left(e^{\lambda+\mu}\right)\left(\log \left(e^{\lambda+\mu}\right)+\lambda+\mu\right)\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}} \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\log \left(e^{\lambda+\mu}\right)}{\lambda+\mu}+3\right), \frac{\mu \log \left(e^{\lambda+}\right.}{(\lambda+\mu)^{2}}\right.}{2(\lambda+\mu)^{2} \text { HypergeometricU }\left(\frac{\lambda+\mu+\log \left(e^{\lambda+\mu}\right)}{2(\lambda+\mu)}, \frac{\mu \log \left(e^{\lambda+\mu}\right)}{(\lambda+\mu)^{2}}+1, \frac{a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+1}{}\left(\lambda^{\lambda+\mu}\right)}}{(\lambda+\mu)^{2}}\right.} \\
& -\frac{e^{\mu(-x)}\left((\lambda+\mu)\left(a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}}+\mu\right)+\log \left(e^{\lambda+\mu}\right)\left(\mu-a b\left(\left(e^{\lambda+\mu}\right)^{x}\right)^{\left.\left.\frac{\lambda+\mu}{\log \left(e^{\lambda+\mu}\right)}\right)\right)}\right.\right.}{2 a(\lambda+\mu)}
\end{aligned}
\]

\subsection*{3.16 problem 16}

> 3.16.1 Solving as riccati ode

Internal problem ID [10424]
Internal file name [OUTPUT/9371_Monday_June_06_2022_02_19_38_PM_36966880/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{k x} y^{2}-y b=c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}
\]

\subsection*{3.16.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{k x} y^{2}+b y+c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \mathrm{e}^{k x} y^{2}+b y+c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}, f_{1}(x)=b\) and \(f_{2}(x)=a \mathrm{e}^{k x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \mathrm{e}^{k x} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a k \mathrm{e}^{k x} \\
f_{1} f_{2} & =b a \mathrm{e}^{k x} \\
f_{2}^{2} f_{0} & =a^{2} \mathrm{e}^{2 k x}\left(c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \mathrm{e}^{k x} u^{\prime \prime}(x)-\left(b a \mathrm{e}^{k x}+a k \mathrm{e}^{k x}\right) u^{\prime}(x)+a^{2} \mathrm{e}^{2 k x}\left(c \mathrm{e}^{s x}+d \mathrm{e}^{-k x}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\mathrm{e}^{\frac{(b+k) x}{2}}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{1}\right. \\
&\left.+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{2}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=-\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{1}\right. \\
& \left.\quad+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{2}\right) \sqrt{a} \sqrt{c} \mathrm{e}^{\frac{x(b+s+2 k)}{2}} \\
& +\frac{\mathrm{e}^{\frac{(b+k) x}{2}}\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{2}\right)}{2}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left(-\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} e^{\frac{x(k+s)}{2}}}{k+s}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} e^{\frac{x(k+s)}{2}}}{k+s}\right)\right.\right.}{a\left(\operatorname { B e s s e l J } \left(\frac{\sqrt{-4 a d+b^{2}+2 b k+}}{k+s}\right.\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\(-\frac{\mathrm{e}^{-\frac{x(3 k+b)}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{ }}{2 a(\text { BesselJ }( }\right)\right.\right.}{2}\)

Summary
The solution(s) found are the following
\(y=\)
\(-\frac{\mathrm{e}^{-\frac{x(3 k+b)}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{2}}{2}\right.\right.\right.}{2 a(\text { BesselJ }(1)}\)

\section*{Verification of solutions}
\(y=\)
\[
-\frac{\mathrm{e}^{-\frac{x(3 k+b)}{2}}\left(-2\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(k+s)}{2}}}{k+s}\right) c_{3}+\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 b k+k^{2}}+k+s}{k+s}, \frac{2 \sqrt{c} \sqrt{ }}{2 a\left(\operatorname { B e s s e l J } \left(\frac{v}{2}\right.\right.}\right) .\right.\right.}{2}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b+k)*(diff(y(x), x))-a*exp(k*
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
Change of variables used:
[x = ln(t)/(s+k)]
Linear ODE actually solved:
(a*c*t+a*d)*u(t)+(-b*k*t-b*s*t+k*s*t+s^2*t)*diff(u(t),t)+(k^2*t^2+2*k*s*t^2+s^2*
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 332
dsolve(diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\mathrm{k} * \mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{b} * \mathrm{y}(\mathrm{x})+\mathrm{c} * \exp (\mathrm{~s} * \mathrm{x})+\mathrm{d} * \exp (-\mathrm{k} * \mathrm{x}), \mathrm{y}(\mathrm{x})\), singsol=all)
\(y(x)\)
\(=\frac{\left(\sqrt{c} a\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 k b+k^{2}}+s+k}{s+k}, \frac{2 \sqrt{c} \sqrt{a} e^{\frac{x(s+k)}{2}}}{s+k}\right) c_{1}+\operatorname{BesselJ}\left(\frac{\sqrt{-4 a d+b^{2}+2 k b+k^{2}}+s+k}{s+k}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{x(s+k)}{2}}}{s+k}\right)\right.\right.}{a^{\frac{3}{2}}\left(\operatorname{BesselY}\left(\frac{\sqrt{-4 a d+b^{2}+2 k b+k^{2}}}{s+k}, \frac{2 \sqrt{c} \sqrt{a} \mathrm{e}^{\frac{2}{3}}}{s+k}\right.\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 18.386 (sec). Leaf size: 1636
DSolve \([y\) ' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\mathrm{k} * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \mathrm{y}[\mathrm{x}]+\mathrm{c} * \operatorname{Exp}[\mathrm{~s} * \mathrm{x}]+\mathrm{d} * \operatorname{Exp}[-\mathrm{k} * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolution
\(y(x)\)
\(\rightarrow \frac{e^{-k x}\left(-\left((b+k) K_{\frac{\sqrt{\left(b^{2}+2 k b+k^{2}-4 a d\right)(k+s)^{4} \log ^{2}\left(e^{k+s}\right)}}{(k+s)^{4}}}\left(2 \sqrt{-\frac{a c\left(\left(e^{k+s}\right)^{x}\right)^{\frac{k+s}{\log \left(e^{k+s}\right)} \log ^{2}\left(e^{k+s}\right)}}{(k+s)^{4}}}\right)\right)+(-1)^{\frac{k^{4}+4 s k^{3}+6 s^{2} k}{2}}\right.}{}\)
\(y(x)\)
\(\rightarrow \xrightarrow{ } e^{-k x}\left(-(b+k)(k+s)^{3} \sqrt{-\frac{a c \log ^{2}\left(e^{k+s}\right)\left(\left(e^{k+s}\right)^{x}\right)^{\frac{k+s}{\log \left(e^{k+s}\right)}}}{(k+s)^{4}}} \operatorname{BesselI}\left(\frac{\sqrt{\left(b^{2}+2 k b+k^{2}-4 a d\right)(k+s)^{4} \log ^{2}\left(e^{k+s}\right)}}{(k+s)^{4}}, 2 \sqrt{-\frac{a c( }{}}\right.\right.\)

\subsection*{3.17 problem 17}
3.17.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 559

Internal problem ID [10425]
Internal file name [OUTPUT/9372_Monday_June_06_2022_02_19_40_PM_7352493/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[_Riccati]

```

Unable to solve or complete the solution.
\[
y^{\prime}-a \mathrm{e}^{(\mu+2 \lambda) x} y^{2}-\left(\mathrm{e}^{x(\lambda+\mu)} b-\lambda\right) y=c \mathrm{e}^{x \mu}
\]

\subsection*{3.17.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{(\mu+2 \lambda) x} y^{2}+\mathrm{e}^{x(\lambda+\mu)} b y+c \mathrm{e}^{x \mu}-\lambda y
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \mathrm{e}^{2 \lambda x} \mathrm{e}^{x \mu} y^{2}+\mathrm{e}^{\lambda x} \mathrm{e}^{x \mu} b y+c \mathrm{e}^{x \mu}-\lambda y
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c \mathrm{e}^{x \mu}, f_{1}(x)=\mathrm{e}^{x(\lambda+\mu)} b-\lambda\) and \(f_{2}(x)=\mathrm{e}^{(\mu+2 \lambda) x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{(\mu+2 \lambda) x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =(\mu+2 \lambda) \mathrm{e}^{(\mu+2 \lambda) x} a \\
f_{1} f_{2} & =\left(\mathrm{e}^{x(\lambda+\mu)} b-\lambda\right) \mathrm{e}^{(\mu+2 \lambda) x} a \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2(\mu+2 \lambda) x} a^{2} c \mathrm{e}^{x \mu}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\mathrm{e}^{(\mu+2 \lambda) x} a u^{\prime \prime}(x)-\left((\mu+2 \lambda) \mathrm{e}^{(\mu+2 \lambda) x} a+\left(\mathrm{e}^{x(\lambda+\mu)} b-\lambda\right) \mathrm{e}^{(\mu+2 \lambda) x} a\right) u^{\prime}(x)+\mathrm{e}^{2(\mu+2 \lambda) x} a^{2} c \mathrm{e}^{x \mu} u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.016 (sec). Leaf size: 79
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp ((2 * \operatorname{lambda}+\mathrm{mu}) * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+(\mathrm{b} * \exp ((\operatorname{lambda}+\mathrm{mu}) * \mathrm{x})-l a m b d a) * y(\mathrm{x})+c * \exp (\mathrm{~m}\right.\)
\[
y(x)=\frac{\mathrm{e}^{-x \lambda}\left(\sqrt{4 a b^{2} c-b^{4}} \tan \left(\frac{\left(\mathrm{e}^{x(\lambda+\mu)} b+(\lambda+\mu) c_{1}\right) \sqrt{4 a b^{2} c-b^{4}}}{2 b^{2}(\lambda+\mu)}\right)-b^{2}\right)}{2 a b}
\]
\(\checkmark\) Solution by Mathematica
Time used: 6.375 (sec). Leaf size: 349
DSolve \(\left[\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[(2 * \backslash[\right.\) Lambda] \(+\backslash[\mathrm{Mu}]) * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2+(\mathrm{b} * \operatorname{Exp}[(\backslash[\) Lambda] \(+\backslash[\mathrm{Mu}]) * \mathrm{x}]-\backslash[\) Lambda] \() * y[\mathrm{x}\)
\(y(x)\)
\(\rightarrow \frac{e^{\lambda(-x)}\left(b^{2} e^{x(\lambda+\mu)}\left(\pi+i c_{1}\left(e^{\sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x(\lambda+\mu)}}{(\lambda+\mu)^{2}}}}-1\right)\right)-b(\lambda+\mu) \sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x(\lambda+\mu)}}{(\lambda+\mu)^{2}}}\right.}{\left(\pi-i c_{1}\left(e^{\sqrt{\frac{\left(b^{2}-4 a c\right) e^{2}}{(\lambda+\mu)}}}\right.\right.} \underset{2 a(\lambda+\mu) \sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x(\lambda+\mu)}}{(\lambda+\mu)^{2}}}}{ }\left(\pi-i c_{1}\left(e^{\sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x}}{(\lambda+\mu)^{2}}}}\right.\right.\)
\(y(x) \rightarrow \frac{e^{\lambda(-x)}\left(-(\lambda+\mu) e^{-x(\lambda+\mu)} \sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x(\lambda+\mu)}}{(\lambda+\mu)^{2}}} \tanh \left(\frac{1}{2} \sqrt{\frac{\left(b^{2}-4 a c\right) e^{2 x(\lambda+\mu)}}{(\lambda+\mu)^{2}}}\right)-b\right)}{2 a}\)

\subsection*{3.18 problem 18}
\[
\text { 3.18.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 556
\]

Internal problem ID [10426]
Internal file name [OUTPUT/9373_Monday_June_06_2022_02_19_41_PM_60059753/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{k x} y^{2}-y b=c \mathrm{e}^{k n x}+d \mathrm{e}^{k(1+2 n) x}
\]

\subsection*{3.18.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{k x} y^{2}+b y+c \mathrm{e}^{k n x}+d \mathrm{e}^{k(1+2 n) x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \mathrm{e}^{k x} y^{2}+b y+c \mathrm{e}^{k n x}+d \mathrm{e}^{2 k n x} \mathrm{e}^{k x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c \mathrm{e}^{k n x}+d \mathrm{e}^{k(1+2 n) x}, f_{1}(x)=b\) and \(f_{2}(x)=a \mathrm{e}^{k x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \mathrm{e}^{k x} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a k \mathrm{e}^{k x} \\
f_{1} f_{2} & =b a \mathrm{e}^{k x} \\
f_{2}^{2} f_{0} & =a^{2} \mathrm{e}^{2 k x}\left(c \mathrm{e}^{k n x}+d \mathrm{e}^{k(1+2 n) x}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \mathrm{e}^{k x} u^{\prime \prime}(x)-\left(b a \mathrm{e}^{k x}+a k \mathrm{e}^{k x}\right) u^{\prime}(x)+a^{2} \mathrm{e}^{2 k x}\left(c \mathrm{e}^{k n x}+d \mathrm{e}^{k(1+2 n) x}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)=\operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)}\right.\right. & \quad Y(x) a c+\_Y^{\prime \prime}(x) \\
& \left.\left.+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+Y^{\prime \prime}(x)\right.\right. \\
&\left.\left.+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
y & = \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+_{\_} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-k x}}{a \operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+\_Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\[
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)}-Y(x) a c+_{\_} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-k x}}{a \operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+_{\_} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
(1)
\(-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+_{\_} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-k x}}{a \mathrm{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+\_Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)}\)
Verification of solutions
\(y=\)
\[
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)}-Y(x) a c+_{\_} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-k x}}{a \operatorname{DESol}\left(\left\{\mathrm{e}^{2 k x(n+1)} \_Y(x) a d+\mathrm{e}^{k x(n+1)} \_Y(x) a c+_{-} Y^{\prime \prime}(x)+(-b-k) \_Y^{\prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b+k)*(diff(y(x), x))-a*exp(k*
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(a*exp(k*x)*y(x)^2+y(x)+y(x)*b*x+x^2*(c*e
Methods for first order ODEs:
--- Trying classification methods55---
trying a quadrature
trying 1st order linear

```

X Solution by Maple
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\mathrm{k} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{y}(\mathrm{x})+\mathrm{c} * \exp (\mathrm{k} * \mathrm{n} * \mathrm{x})+\mathrm{d} * \exp (\mathrm{k} *(2 * \mathrm{n}+1) * \mathrm{x}), \mathrm{y}(\mathrm{x}), \quad\) singsol \(=a\)

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 27.598 (sec). Leaf size: 2503
DSolve \([y \cdot[x]==a * \operatorname{Exp}[k * x] * y[x] \sim 2+b * y[x]+c * \operatorname{Exp}[k * n * x]+d * \operatorname{Exp}[k *(2 * n+1) * x], y[x], x\), IncludeSingula

Too large to display

\subsection*{3.19 problem 19}
\[
\text { 3.19.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 567
\]

Internal problem ID [10427]
Internal file name [OUTPUT/9374_Monday_June_06_2022_02_19_43_PM_62152854/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
\[
\left[\left[\_1 s t \_o r d e r, ~ ` \text { _with_symmetry_ }[F(x), G(x)] `\right], \quad\right. \text { Riccati] }
\]
\[
y^{\prime}-\mathrm{e}^{x \mu}\left(y-b \mathrm{e}^{\lambda x}\right)^{2}=b \lambda \mathrm{e}^{\lambda x}
\]

\subsection*{3.19.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{x \mu} \mathrm{e}^{2 \lambda x} b^{2}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{x \mu} b y+\mathrm{e}^{x \mu} y^{2}+b \lambda \mathrm{e}^{\lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\mathrm{e}^{x \mu} \mathrm{e}^{2 \lambda x} b^{2}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{x \mu} b y+\mathrm{e}^{x \mu} y^{2}+b \lambda \mathrm{e}^{\lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\mathrm{e}^{x \mu} \mathrm{e}^{2 \lambda x} b^{2}+b \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=-2 b \mathrm{e}^{\lambda x} \mathrm{e}^{x \mu}\) and \(f_{2}(x)=\mathrm{e}^{x \mu}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{x \mu} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\mu \mathrm{e}^{x \mu} \\
f_{1} f_{2} & =-2 b \mathrm{e}^{\lambda x} \mathrm{e}^{2 x \mu} \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 x \mu}\left(\mathrm{e}^{x \mu} \mathrm{e}^{2 \lambda x} b^{2}+b \lambda \mathrm{e}^{\lambda x}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{x \mu} u^{\prime \prime}(x)-\left(\mu \mathrm{e}^{x \mu}-2 b \mathrm{e}^{\lambda x} \mathrm{e}^{2 x \mu}\right) u^{\prime}(x)+\mathrm{e}^{2 x \mu}\left(\mathrm{e}^{x \mu} \mathrm{e}^{2 \lambda x} b^{2}+b \lambda \mathrm{e}^{\lambda x}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{\frac{-2 \mathrm{e}^{x(\lambda+\mu)_{b+x \mu(\lambda+\mu)}} 2 \lambda+2 \mu}{}}\left(c_{1} \sinh \left(\frac{x \mu}{2}\right)+c_{2} \cosh \left(\frac{x \mu}{2}\right)\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=-\left(\left(\mathrm{e}^{x(\lambda+\mu)} c_{2} b-\frac{\mu\left(c_{1}+c_{2}\right)}{2}\right) \cosh \left(\frac{x \mu}{2}\right)\right. \\
& \left.+\left(\mathrm{e}^{x(\lambda+\mu)} b c_{1}-\frac{\mu\left(c_{1}+c_{2}\right)}{2}\right) \sinh \left(\frac{x \mu}{2}\right)\right) \mathrm{e}^{\frac{-2 \mathrm{e}^{x(\lambda+\mu)_{b+x \mu(\lambda+\mu)}^{2 \lambda}}}{2 \lambda+2 \mu}}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
y=\frac{\left(\left(\mathrm{e}^{x(\lambda+\mu)} c_{2} b-\frac{\mu\left(c_{1}+c_{2}\right)}{2}\right) \cosh \left(\frac{x \mu}{2}\right)+\left(\mathrm{e}^{x(\lambda+\mu)} b c_{1}-\frac{\mu\left(c_{1}+c_{2}\right)}{2}\right) \sinh \left(\frac{x \mu}{2}\right)\right) \mathrm{e}^{-x \mu}}{c_{1} \sinh \left(\frac{x \mu}{2}\right)+c_{2} \cosh \left(\frac{x \mu}{2}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{\left(\left(\mathrm{e}^{x(\lambda+\mu)} b-\frac{\mu\left(c_{3}+1\right)}{2}\right) \cosh \left(\frac{x \mu}{2}\right)+\left(\mathrm{e}^{x(\lambda+\mu)} b c_{3}-\frac{\mu\left(c_{3}+1\right)}{2}\right) \sinh \left(\frac{x \mu}{2}\right)\right) \mathrm{e}^{-x \mu}}{c_{3} \sinh \left(\frac{x \mu}{2}\right)+\cosh \left(\frac{x \mu}{2}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(\left(\mathrm{e}^{x(\lambda+\mu)} b-\frac{\mu\left(c_{3}+1\right)}{2}\right) \cosh \left(\frac{x \mu}{2}\right)+\left(\mathrm{e}^{x(\lambda+\mu)} b c_{3}-\frac{\mu\left(c_{3}+1\right)}{2}\right) \sinh \left(\frac{x \mu}{2}\right)\right) \mathrm{e}^{-x \mu}}{c_{3} \sinh \left(\frac{x \mu}{2}\right)+\cosh \left(\frac{x \mu}{2}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(\left(\mathrm{e}^{x(\lambda+\mu)} b-\frac{\mu\left(c_{3}+1\right)}{2}\right) \cosh \left(\frac{x \mu}{2}\right)+\left(\mathrm{e}^{x(\lambda+\mu)} b c_{3}-\frac{\mu\left(c_{3}+1\right)}{2}\right) \sinh \left(\frac{x \mu}{2}\right)\right) \mathrm{e}^{-x \mu}}{c_{3} \sinh \left(\frac{x \mu}{2}\right)+\cosh \left(\frac{x \mu}{2}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular polynomial solution successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

dsolve(diff (y(x),x)=exp(mu*x)*(y(x)-b*exp(lambda*x))^2+b*lambda*exp(lambda*x),y(x), singsol=

```
\[
y(x)=\frac{\left(\mathrm{e}^{x(\lambda+\mu)} c_{1} b \mu+b \mathrm{e}^{x \lambda}-c_{1} \mu^{2}\right) \mathrm{e}^{-x \mu}}{c_{1} \mu+\mathrm{e}^{-x \mu}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.524 (sec). Leaf size: 40
DSolve \(\left[\mathrm{y} \mathrm{y}^{\prime}[\mathrm{x}]==\operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] *(\mathrm{y}[\mathrm{x}]-\mathrm{b} * \operatorname{Exp}[\backslash[\right.\) Lambda] \(* \mathrm{x}]) \wedge 2+\mathrm{b} * \backslash[\) Lambda] \(* \operatorname{Exp}[\backslash[\) Lambda] \(* \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\[
\begin{aligned}
& y(x) \rightarrow b e^{\lambda x}+\frac{\mu}{-e^{\mu x}+c_{1} \mu} \\
& y(x) \rightarrow b e^{\lambda x}
\end{aligned}
\]

\subsection*{3.20 problem 20}
3.20.1 Solving as riccati ode 571

Internal problem ID [10428]
Internal file name [OUTPUT/9375_Monday_June_06_2022_02_19_44_PM_77437593/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing

\section*{Exponential Functions}

Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right) y^{\prime}-y^{2}-k \mathrm{e}^{\nu x} y=-m^{2}+k m \mathrm{e}^{\nu x}
\]

\subsection*{3.20.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+k \mathrm{e}^{\nu x} y-m^{2}+k m \mathrm{e}^{\nu x}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{k m \mathrm{e}^{\nu x}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}+\frac{k \mathrm{e}^{\nu x} y}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}-\frac{m^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}+\frac{y^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-m^{2}+k m \mathrm{e}^{\nu x}}{\mathrm{e}^{x x} a+b \mathrm{e}^{x \mu}+c}, f_{1}(x)=\frac{k \mathrm{e}^{\nu x}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}\) and \(f_{2}(x)=\frac{1}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} \\
f_{1} f_{2} & =\frac{k \mathrm{e}^{\nu x}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-m^{2}+k m \mathrm{e}^{\nu x}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}-\left(-\frac{a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}}+\frac{k \mathrm{e}^{\nu x}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}}\right) u^{\prime}(x)+\frac{\left(-m^{2}+k m \mathrm{e}^{\nu x}\right) u(x)}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)
\(=\mathrm{DESol}\left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k-Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}(x)\right.}\right.\right.\)
The above shows that
\(u^{\prime}(x)\)
\(=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}\right.}\right.\right.\)
Using the above in (1) gives the solution
\(y=\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right) \mathrm{e}^{2 \lambda x}+}{\operatorname{DESol}\left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k-Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(-Y^{\prime}(x) \lambda+\_Y^{\prime \prime}\right.}\right.\right.}\right)\right.\right.}{-}
\]

Summary
The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right) \mathrm{e}^{2 \lambda x}+}\right.\right.\right.}{\operatorname{DESol}\left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}( \right.}\right)\right.} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y=\)
\[
\begin{aligned}
& -{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\underline{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(\_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right) \mathrm{e}^{2 \lambda x}+}\right) .\right.} \\
& \text { DESol }\left(\left\{\frac{\left(2 \_Y^{\prime \prime}(x)+\_Y^{\prime}(x)(\lambda+\mu)\right) a b \mathrm{e}^{x(\lambda+\mu)}-k a \_Y^{\prime}(x) \mathrm{e}^{x(\lambda+\nu)}-k \_Y^{\prime}(x) b \mathrm{e}^{x(\mu+\nu)}+a^{2}\left(-Y^{\prime}(x) \lambda+\_Y^{\prime \prime}()\right.}{}\right.\right.
\end{aligned}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 202
dsolve \(\left((a * \exp (\operatorname{lambda} * x)+b * \exp (m u * x)+c) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+\mathrm{k} * \exp (n u * x) * y(x)-m-2+\mathrm{k} * \mathrm{~m} * \exp (n u * x\right.\)
\(y(x)\)

\(\checkmark\) Solution by Mathematica
Time used: 16.545 (sec). Leaf size: 358
DSolve \(\left[(a * \operatorname{Exp}[\backslash[\right.\) Lambda \(] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]+\mathrm{c}) * \mathrm{y}^{\prime}[\mathrm{x}]=\mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\mathrm{k} * \operatorname{Exp}[\backslash[\mathrm{Nu}] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]-\mathrm{m}^{\wedge} 2+\mathrm{k} * \mathrm{~m} * \operatorname{Exp}[\backslash\)

Solve \(\left[\int_{1}^{x}-\frac{\exp \left(-\int_{1}^{K[2]}-\frac{e^{\nu K[1]} k-2 m}{e^{\lambda K[1]} a+b e^{\mu K[1]}+c}\right.}{} d K[1]\right)\left(e^{\nu K[2]} k-m+y(x)\right) ~\left(e^{\lambda K[2]} a+b e^{\mu K[2]}+c\right) k \nu(m+y(x)) ~ d K[2]\)
\(+\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}-\frac{e^{\nu K[1]} k-2 m}{e^{\lambda K[1]} a+b b^{\mu K[1]}+c}\right.}{} d K[1]\right)\)


\subsection*{3.21 problem 21}
\[
\text { 3.21.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 575
\]

Internal problem ID [10429]
Internal file name [OUTPUT/9376_Monday_June_06_2022_02_20_48_PM_50645941/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)\left(y^{\prime}-y^{2}\right)=-a \lambda^{2} \mathrm{e}^{\lambda x}-b \mu^{2} \mathrm{e}^{x \mu}
\]

\subsection*{3.21.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\mathrm{e}^{\lambda x} a y^{2}-a \lambda^{2} \mathrm{e}^{\lambda x}+b \mathrm{e}^{x \mu} y^{2}-b \mu^{2} \mathrm{e}^{x \mu}+c y^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-\frac{a \lambda^{2} \mathrm{e}^{\lambda x}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}+\frac{\mathrm{e}^{\lambda x} a y^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}-\frac{b \mu^{2} \mathrm{e}^{x \mu}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}+\frac{b \mathrm{e}^{x \mu} y^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}+\frac{c y^{2}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-a \lambda^{2} \mathrm{e}^{\lambda x}-b \mu^{2} \mathrm{e}^{x \mu}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{-a \lambda^{2} \mathrm{e}^{\lambda x}-b \mu^{2} \mathrm{e}^{x \mu}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\frac{\left(-a \lambda^{2} \mathrm{e}^{\lambda x}-b \mu^{2} \mathrm{e}^{x \mu}\right) u(x)}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\left(\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\left((\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)} a b+a^{2} \lambda \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 x \mu} b^{2} \mu+c\left(a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}\right)\right) c_{1}\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)+a b c_{2}(\lambda+\mu) \mathrm{e}^{x(\lambda}}{\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left((\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)} a b+a^{2} \lambda \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 x \mu} b^{2} \mu+c\left(a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}\right)\right) c_{1}\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)+a b c_{2}(\lambda+\mu) \mathrm{e}^{2}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}\left(\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right) c_{1}+\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{-\left((\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)} a b+a^{2} \lambda \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 x \mu} b^{2} \mu+c\left(a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}\right)\right) c_{3}\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)-(\lambda+\mu) \mathrm{e}^{x(\lambda+\mu}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}\left(\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right) c_{3}+1\right)}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\[
=\frac{-\left((\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)} a b+a^{2} \lambda \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 x \mu} b^{2} \mu+c\left(a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}\right)\right) c_{3}\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)-(\lambda+\mu) \mathrm{e}^{x(\lambda+\mu}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}\left(\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right) c_{3}+1\right)}
\]

Verification of solutions
\(y\)
\[
=\frac{-\left((\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)} a b+a^{2} \lambda \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 x \mu} b^{2} \mu+c\left(a \lambda \mathrm{e}^{\lambda x}+b \mu \mathrm{e}^{x \mu}\right)\right) c_{3}\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)-(\lambda+\mu) \mathrm{e}^{x(\lambda+\mu}}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}\left(\left(\int \frac{1}{\left(\mathrm{e}^{\lambda x} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right) c_{3}+1\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*lambda^2*exp(lambda*x)+mu^2
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 176
dsolve \(\left((a * \exp (l a m b d a * x)+b * \exp (m u * x)+c) *\left(\operatorname{diff}(y(x), x)-y(x)^{\wedge} 2\right)+a * \operatorname{lambda} \wedge^{\wedge} 2 * \exp (\operatorname{lambda} * x)+b * m u \wedge 2\right.\)
\(y(x)\)
\(=\frac{\left(-a b(\lambda+\mu) \mathrm{e}^{x(\lambda+\mu)}-a^{2} \lambda \mathrm{e}^{2 x \lambda}-\mathrm{e}^{2 x \mu} b^{2} \mu-c\left(a \lambda \mathrm{e}^{x \lambda}+b \mu \mathrm{e}^{x \mu}\right)\right)\left(\int \frac{1}{\left(\mathrm{e}^{x \lambda} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)-a b c_{1}(\lambda+\mu) \mathrm{e}^{x(\lambda}}{\left(\mathrm{e}^{x \lambda} a+b \mathrm{e}^{x \mu}+c\right)^{2}\left(c_{1}+\int \frac{1}{\left(\mathrm{e}^{x \lambda} a+b \mathrm{e}^{x \mu}+c\right)^{2}} d x\right)}\)
\(\checkmark\) Solution by Mathematica
Time used: 24.922 (sec). Leaf size: 393
DSolve \(\left[(a * \operatorname{Exp}[\backslash[\operatorname{Lambda}] * x]+b * \operatorname{Exp}[\backslash[M u] * x]+c) *\left(y y^{\prime}[x]-y[x] \sim 2\right)+a * \backslash\left[\right.\right.\) Lambda \(\wedge^{\wedge} 2 * \operatorname{Exp}[\backslash[\) Lambda \(] * x]+b\)

Solve \(\left[\int_{1}^{x}\right.\)
\(-\frac{-a e^{\lambda K[1]} \lambda^{2}-b e^{\mu K[1]} \mu^{2}+a e^{\lambda K[1]} y(x)^{2}+b e^{\mu K[1]} y(x)^{2}+c y(x)^{2}}{\left(e^{\lambda K[1]} a+b e^{\mu K[1]}+c\right)\left(a e^{\lambda K[1]} \lambda+b e^{\mu K[1]} \mu+a e^{\lambda K[1]} y(x)+b e^{\mu K[1]} y(x)+c y(x)\right)^{2}} d K[1]\)
\(+\int_{1}^{y(x)}\left(\frac{1}{\left(a e^{x \lambda} \lambda+b e^{x \mu} \mu+a e^{x \lambda} K[2]+b e^{x \mu} K[2]+c K[2]\right)^{2}}\right.\)
\(-\int_{1}^{x}\left(\frac{2\left(-a e^{\lambda K[1]} \lambda^{2}-b e^{\mu K[1]} \mu^{2}+a e^{\lambda K[1]} K[2]^{2}+b e^{\mu K[1]} K[2]^{2}+c K[2]^{2}\right)}{\left(a e^{\lambda K[1]} \lambda+b e^{\mu K[1]} \mu+a e^{\lambda K[1]} K[2]+b e^{\mu K[1]} K[2]+c K[2]\right)^{3}}-\frac{2 a e^{\lambda K[1}}{\left(e^{\lambda K[1]} a+b e^{\mu K[1]}+c\right)\left(a e^{\lambda K[ }\right.}\right.\)
4 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
4.1 problem 22 ..... 580
4.2 problem 23 ..... 584
4.3 problem 24 ..... 592
4.4 problem 25 ..... 597
4.5 problem 26 ..... 602
4.6 problem 27 ..... 606
4.7 problem 28 ..... 611
4.8 problem 29 ..... 616
4.9 problem 30 ..... 620
4.10 problem 31 ..... 625
4.11 problem 32 ..... 630
4.12 problem 33 ..... 635
4.13 problem 34 ..... 639
4.14 problem 35 ..... 643
4.15 problem 36 ..... 647
4.16 problem 37 ..... 651
4.17 problem 38 ..... 656
4.18 problem 39 ..... 660
4.19 problem 40 ..... 664

\section*{4.1 problem 22}
4.1.1 Solving as riccati ode

Internal problem ID [10430]
Internal file name [OUTPUT/9377_Monday_June_06_2022_02_20_50_PM_93195118/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \mathrm{e}^{\lambda x} y=\mathrm{e}^{\lambda x} a
\]

\subsection*{4.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\mathrm{e}^{\lambda x} a x y+\mathrm{e}^{\lambda x} a
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+\mathrm{e}^{\lambda x} a x y+\mathrm{e}^{\lambda x} a
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\mathrm{e}^{\lambda x} a, f_{1}(x)=a x \mathrm{e}^{\lambda x}\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a x \mathrm{e}^{\lambda x} \\
f_{2}^{2} f_{0} & =\mathrm{e}^{\lambda x} a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-a x \mathrm{e}^{\lambda x} u^{\prime}(x)+\mathrm{e}^{\lambda x} a u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\frac{x\left(c_{2} \lambda^{2}+\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}}}{x^{2}} d x\right) c_{1}\right)}{\lambda^{2}}
\]

The above shows that
\[
u^{\prime}(x)=\frac{c_{2} \lambda^{2} x+c_{1}\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}}}{x^{2}} d x\right) x+\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}} c_{1}}{\lambda^{2} x}
\]

Using the above in (1) gives the solution
\[
y=-\frac{c_{2} \lambda^{2} x+c_{1}\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x}}{\lambda^{2}}}}{x^{2}} d x\right) x+\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}} c_{1}}{x^{2}\left(c_{2} \lambda^{2}+\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x}}{\lambda^{2}}}}{x^{2}} d x\right) c_{1}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\lambda^{2} x-c_{3}\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}}}{x^{2}} d x\right) x-\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} x_{a}}{\lambda^{2}}} c_{3}}{x^{2}\left(\lambda^{2}+\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{2} x_{a}}{\lambda^{2}}}}{x^{2}} d x\right) c_{3}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\lambda^{2} x-c_{3}\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}}}{x^{2}} d x\right) x-\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}} c_{3}}{x^{2}\left(\lambda^{2}+\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1))^{\lambda} x_{a}}{\lambda^{2}}}}{x^{2}} d x\right) c_{3}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\left.\left.y=\frac{-\lambda^{2} x-c_{3}\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}}}{x^{2}} d x\right) x-\mathrm{e}^{\frac{(\lambda x-1) \mathrm{e}^{\lambda x} a}{\lambda^{2}}} c_{3}}{x^{2}\left(\lambda^{2}+\left(\int \frac{\mathrm{e}^{\frac{(\lambda x-1))^{\lambda x}}{\lambda^{2}}}}{x^{2}}\right.\right.} d x\right) c_{3}\right)
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 85
dsolve (diff \((y(x), x)=y(x) \wedge 2+a * x * \exp (\operatorname{lambda} * x) * y(x)+a * \exp (\operatorname{lambda} a x), y(x)\), singsol=all)
\[
y(x)=\frac{-c_{1} \lambda^{2} x+\left(\int \frac{\mathrm{e}^{\frac{\mathrm{e}^{x \lambda} a(x \lambda-1)}{\lambda^{2}}}}{x^{2}} d x\right) x+\mathrm{e}^{\frac{\mathrm{e}^{x \lambda a(x \lambda-1)}}{\lambda^{2}}}}{x^{2}\left(c_{1} \lambda^{2}-\left(\int \frac{\mathrm{e}^{\frac{\mathrm{e}^{x \lambda} a(x \lambda-1)}{\lambda^{2}}}}{x^{2}} d x\right)\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.132 (sec). Leaf size: 110
DSolve \([y\) ' \([x]==y[x] \sim 2+a * x * \operatorname{Exp}[\backslash[\) Lambda] \(* x] * y[x]+a * \operatorname{Exp}[\backslash[L a m b d a] * x], y[x], x\), IncludeSingularSolu
\[
\left.\begin{array}{l}
y(x) \rightarrow-\frac{x \int_{1}^{x} \frac{e^{\frac{a e^{\lambda K[1]}(\lambda K[1]-1)}{\lambda^{2}}}}{K[1]^{2}}}{l} d K[1]+e^{\frac{a e^{\lambda x}(\lambda x-1)}{\lambda^{2}}}+c_{1} x \\
x^{2}\left(\int_{1}^{x} \frac{e^{\frac{a e^{\lambda K[1]}(\lambda K[1]-1)}{\lambda^{2}}}}{K[1]^{2}}\right.
\end{array} d K[1]+c_{1}\right), ~ l
\]

\section*{4.2 problem 23}
4.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 584
4.2.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 589

Internal problem ID [10431]
Internal file name [OUTPUT/9378_Monday_June_06_2022_02_20_51_PM_54210900/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
```

[[_1st_order, _with_linear_symmetries], _Riccati]

```
\[
y^{\prime}-a \mathrm{e}^{\lambda x} y^{2}=b \mathrm{e}^{-\lambda x}
\]

\subsection*{4.2.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
& b_{2}+\left(\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}\right)\left(b_{3}-a_{2}\right)-\left(\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}\right)^{2} a_{3}  \tag{5E}\\
& \quad-\left(\mathrm{e}^{\lambda x} a \lambda y^{2}-b \lambda \mathrm{e}^{-\lambda x}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-2 a \mathrm{e}^{\lambda x} y\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{-\lambda x} a b y^{2} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1} \\
& -2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} b^{2} a_{3}+\mathrm{e}^{-\lambda x} b \lambda x a_{2} \\
& +\mathrm{e}^{-\lambda x} b \lambda y a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1}+\mathrm{e}^{-\lambda x} b \lambda a_{1}-\mathrm{e}^{-\lambda x} b a_{2}+\mathrm{e}^{-\lambda x} b b_{3}+b_{2}=0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 \mathrm{e}^{\lambda x} \mathrm{e}^{-\lambda x} a b y^{2} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1}  \tag{6E}\\
& \quad-2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} b^{2} a_{3}+\mathrm{e}^{-\lambda x} b \lambda x a_{2} \\
& +\mathrm{e}^{-\lambda x} b \lambda y a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1}+\mathrm{e}^{-\lambda x} b \lambda a_{1}-\mathrm{e}^{-\lambda x} b a_{2}+\mathrm{e}^{-\lambda x} b b_{3}+b_{2}=0
\end{align*}
\]

Simplifying the above gives
\[
\begin{align*}
& -\mathrm{e}^{2 \lambda x} a^{2} y^{4} a_{3}-2 a b y^{2} a_{3}-\mathrm{e}^{\lambda x} a \lambda x y^{2} a_{2}-\mathrm{e}^{\lambda x} a \lambda y^{3} a_{3}-\mathrm{e}^{\lambda x} a \lambda y^{2} a_{1}  \tag{6E}\\
& \quad-2 \mathrm{e}^{\lambda x} a x y b_{2}-\mathrm{e}^{\lambda x} a y^{2} a_{2}-\mathrm{e}^{\lambda x} a y^{2} b_{3}-\mathrm{e}^{-2 \lambda x} b^{2} a_{3}+\mathrm{e}^{-\lambda x} b \lambda x a_{2} \\
& +\mathrm{e}^{-\lambda x} b \lambda y a_{3}-2 \mathrm{e}^{\lambda x} a y b_{1}+\mathrm{e}^{-\lambda x} b \lambda a_{1}-\mathrm{e}^{-\lambda x} b a_{2}+\mathrm{e}^{-\lambda x} b b_{3}+b_{2}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\left\{x, y, \mathrm{e}^{\lambda x}, \mathrm{e}^{-2 \lambda x}, \mathrm{e}^{-\lambda x}, \mathrm{e}^{2 \lambda x}\right\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{\lambda x}=v_{3}, \mathrm{e}^{-2 \lambda x}=v_{4}, \mathrm{e}^{-\lambda x}=v_{5}, \mathrm{e}^{2 \lambda x}=v_{6}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{gather*}
-v_{6} a^{2} v_{2}^{4} a_{3}-v_{3} a \lambda v_{1} v_{2}^{2} a_{2}-v_{3} a \lambda v_{2}^{3} a_{3}-v_{3} a \lambda v_{2}^{2} a_{1}-2 a b v_{2}^{2} a_{3}  \tag{7E}\\
-v_{3} a v_{2}^{2} a_{2}-2 v_{3} a v_{1} v_{2} b_{2}-v_{3} a v_{2}^{2} b_{3}+v_{5} b \lambda v_{1} a_{2}+v_{5} b \lambda v_{2} a_{3} \\
-2 v_{3} a v_{2} b_{1}-v_{4} b^{2} a_{3}+v_{5} b \lambda a_{1}-v_{5} b a_{2}+v_{5} b b_{3}+b_{2}=0
\end{gather*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& -v_{3} a \lambda v_{1} v_{2}^{2} a_{2}-2 v_{3} a v_{1} v_{2} b_{2}+v_{5} b \lambda v_{1} a_{2}-v_{6} a^{2} v_{2}^{4} a_{3}-v_{3} a \lambda v_{2}^{3} a_{3}  \tag{8E}\\
& +\left(-a \lambda a_{1}-a a_{2}-a b_{3}\right) v_{2}^{2} v_{3}-2 a b v_{2}^{2} a_{3}-2 v_{3} a v_{2} b_{1} \\
& +v_{5} b \lambda v_{2} a_{3}-v_{4} b^{2} a_{3}+\left(b \lambda a_{1}-b a_{2}+b b_{3}\right) v_{5}+b_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
b_{2} & =0 \\
b \lambda a_{2} & =0 \\
\lambda a_{3} b & =0 \\
-2 a b_{1} & =0 \\
-2 a b_{2} & =0 \\
-b^{2} a_{3} & =0 \\
-a_{3} a^{2} & =0 \\
-a \lambda a_{2} & =0 \\
-\lambda a_{3} a & =0 \\
-2 a_{3} a b & =0 \\
-a \lambda a_{1}-a a_{2}-a b_{3} & =0 \\
b \lambda a_{1}-b a_{2}+b b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-\lambda a_{1}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
\xi & =1 \\
\eta & =-\lambda y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-\lambda y-\left(\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}\right)(1) \\
& =-\mathrm{e}^{\lambda x} a y^{2}-\lambda y-b \mathrm{e}^{-\lambda x} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\mathrm{e}^{\lambda x} a y^{2}-\lambda y-b \mathrm{e}^{-\lambda x}} d y
\end{aligned}
\]

Which results in
\[
S=-\frac{2 \mathrm{e}^{\lambda x} \arctan \left(\frac{2 \mathrm{e}^{2 \lambda x} a y+\lambda \mathrm{e}^{\lambda x}}{\sqrt{4 \mathrm{e}^{2 \lambda x} a b-\mathrm{e}^{2 \lambda x} \lambda^{2}}}\right)}{\sqrt{4 \mathrm{e}^{2 \lambda x} a b-\mathrm{e}^{2 \lambda x} \lambda^{2}}}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{\mathrm{e}^{\lambda x} \lambda y}{\mathrm{e}^{2 \lambda x} a y^{2}+\mathrm{e}^{\lambda x} \lambda y+b} \\
S_{y} & =-\frac{\mathrm{e}^{\lambda x}}{\mathrm{e}^{2 \lambda x} a y^{2}+\mathrm{e}^{\lambda x} \lambda y+b}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=-1
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
-\frac{2 \arctan \left(\frac{2 a e^{\lambda x} y+\lambda}{\sqrt{4 a b-\lambda^{2}}}\right)}{\sqrt{4 a b-\lambda^{2}}}=c_{1}-x
\]

Which simplifies to
\[
-\frac{2 \arctan \left(\frac{2 a e^{\lambda x} y+\lambda}{\sqrt{4 a b-\lambda^{2}}}\right)}{\sqrt{4 a b-\lambda^{2}}}=c_{1}-x
\]

Which gives
\[
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 a b-\lambda^{2}}}{2}-\frac{x \sqrt{4 a b-\lambda^{2}}}{2}\right) \sqrt{4 a b-\lambda^{2}}+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 a b-\lambda^{2}}}{2}-\frac{x \sqrt{4 a b-\lambda^{2}}}{2}\right) \sqrt{4 a b-\lambda^{2}}+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\left(\tan \left(\frac{c_{1} \sqrt{4 a b-\lambda^{2}}}{2}-\frac{x \sqrt{4 a b-\lambda^{2}}}{2}\right) \sqrt{4 a b-\lambda^{2}}+\lambda\right) \mathrm{e}^{-\lambda x}}{2 a}
\]

Verified OK.

\subsection*{4.2.2 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}+b \mathrm{e}^{-\lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \mathrm{e}^{-\lambda x}, f_{1}(x)=0\) and \(f_{2}(x)=\mathrm{e}^{\lambda x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a^{2} b \mathrm{e}^{-\lambda x}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-a \lambda \mathrm{e}^{\lambda x} u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a^{2} b \mathrm{e}^{-\lambda x} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+c_{2} \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}
\]

The above shows that
\[
u^{\prime}(x)=\frac{c_{2}\left(\lambda-\sqrt{-4 a b+\lambda^{2}}\right) \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}}{2}+\frac{c_{1} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right)}{2}
\]

Using the above in (1) gives the solution
\[
y=-\frac{\left(\frac{c_{2}\left(\lambda-\sqrt{-4 a b+\lambda^{2}}\right) \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}}{2}+\frac{c_{1} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right)}{2}\right) \mathrm{e}^{-\lambda x}}{a\left(c_{1} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+c_{2} \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=-\frac{\left(\left(\lambda-\sqrt{-4 a b+\lambda^{2}}\right) \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right)\right) \mathrm{e}^{-\lambda x}}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\right)}\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\left(\left(\lambda-\sqrt{-4 a b+\lambda^{2}}\right) \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right)\right) \mathrm{e}^{-\lambda x}}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y=-\frac{\left(\left(\lambda-\sqrt{-4 a b+\lambda^{2}}\right) \mathrm{e}^{-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right)\right) \mathrm{e}^{-\lambda x}}{2 a\left(c_{3} \mathrm{e}^{\frac{\left(\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}}+\mathrm{e}^{\left.-\frac{\left(-\lambda+\sqrt{-4 a b+\lambda^{2}}\right) x}{2}\right)}\right.}\)
Verified OK.
Maple trace
```

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 64
dsolve \((\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{b} * \exp (-\operatorname{lambda} * \mathrm{x}), \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=-\frac{\left(\lambda^{2}-\tan \left(\frac{\sqrt{4 a b \lambda^{2}-\lambda^{4}}\left(x \lambda+c_{1}\right)}{2 \lambda^{2}}\right) \sqrt{4 a b \lambda^{2}-\lambda^{4}}\right) \mathrm{e}^{-x \lambda}}{2 a \lambda}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.624 (sec). Leaf size: 123
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \operatorname{Exp}[-\backslash[\) Lambda] \(* \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\[
\begin{aligned}
& y(x) \rightarrow \frac{e^{\lambda(-x)}\left(-\sqrt{\lambda^{2}-4 a b}+\frac{1}{\frac{1}{\sqrt{\lambda^{2}-4 a b}}+c_{1} e^{x \sqrt{\lambda^{2}-4 a b}}}-\lambda\right)}{2 a} \\
& y(x) \rightarrow \frac{e^{\lambda(-x)}\left(4 a b-\lambda\left(\sqrt{\lambda^{2}-4 a b}+\lambda\right)\right)}{2 a \sqrt{\lambda^{2}-4 a b}}
\end{aligned}
\]

\section*{4.3 problem 24}
4.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 592

Internal problem ID [10432]
Internal file name [OUTPUT/9379_Monday_June_06_2022_02_20_52_PM_89615702/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{\lambda x} y^{2}=b x^{n-1} n-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}
\]

\subsection*{4.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} a y^{2}+b x^{n-1} n-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+\mathrm{e}^{\lambda x} a y^{2}+\frac{b x^{n} n}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b x^{n-1} n-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}, f_{1}(x)=0\) and \(f_{2}(x)=\mathrm{e}^{\lambda x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a^{2}\left(b x^{n-1} n-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-a \lambda \mathrm{e}^{\lambda x} u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a^{2}\left(b x^{n-1} n-a b^{2} \mathrm{e}^{\lambda x} x^{2 n}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1}-Y(x) a b n-\underset{Y^{\prime}}{\prime}(x) \lambda\right.\right. \\
&\left.\left.+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda\right.\right. \\
&\left.\left.+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
y & = \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-\lambda x}}{a \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\[
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1}-Y(x) a b n-_{-} Y^{\prime}(x) \lambda+{ }_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-\lambda x}}{a \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n \__{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-\lambda x}}{a \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y=\)
\[
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)\right) \mathrm{e}^{-\lambda x}}{a \operatorname{DESol}\left(\left\{-x^{2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n-1} \_Y(x) a b n-_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*lambda-exp(lam
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying 2nd order exact linear
trying symmetries linear in }x\mathrm{ and }y(x
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
-> Trying changes of variablegg5 to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

```

X Solution by Maple
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\operatorname{lambda} \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)-\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \exp \left(\operatorname{lambda}{ }^{2} \mathrm{x}\right) * \mathrm{x}^{\wedge}(2 * \mathrm{n}), \mathrm{y}(\mathrm{x})\right.\), sin

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{b} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)-\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{x}^{\wedge}(2 * \mathrm{n}), \mathrm{y}[\mathrm{x}], \mathrm{x}\), In

Not solved

\section*{4.4 problem 25}
4.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 597

Internal problem ID [10433]
Internal file name [OUTPUT/9380_Monday_June_06_2022_02_20_55_PM_76225887/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\mathrm{e}^{\lambda x} y^{2}-a x^{n} y=a \lambda x^{n} \mathrm{e}^{-\lambda x}
\]

\subsection*{4.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} y^{2}+a x^{n} y+a \lambda x^{n} \mathrm{e}^{-\lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\mathrm{e}^{\lambda x} y^{2}+a x^{n} y+a \lambda x^{n} \mathrm{e}^{-\lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \lambda x^{n} \mathrm{e}^{-\lambda x}, f_{1}(x)=x^{n} a\) and \(f_{2}(x)=\mathrm{e}^{\lambda x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =\mathrm{e}^{\lambda x} x^{n} a \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a \lambda x^{n} \mathrm{e}^{-\lambda x}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{\lambda x} u^{\prime \prime}(x)-\left(\mathrm{e}^{\lambda x} x^{n} a+\lambda \mathrm{e}^{\lambda x}\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a \lambda x^{n} \mathrm{e}^{-\lambda x} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{\int \frac{\left(\int \mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}} d x\right) \lambda-c_{1} \lambda+\mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{1}} d x} c_{2}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{c_{2}\left(\left(\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x\right) \lambda-c_{1} \lambda+\mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}}\right) \mathrm{e}^{\int \frac{\left(\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x\right) \lambda-c_{1} \lambda+\mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}}}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{1}} d x}}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{1}}\)
Using the above in (1) gives the solution
\(y=\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\mathrm{e}^{-\lambda x}\left(\left(\int \mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}} d x\right) \lambda-\lambda c_{3}+\mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}}\right)}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{3}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-\lambda x}\left(\left(\int \mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}} d x\right) \lambda-\lambda c_{3}+\mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}}\right)}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{3}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\mathrm{e}^{-\lambda x}\left(\left(\int \mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}} d x\right) \lambda-\lambda c_{3}+\mathrm{e}^{\frac{a x^{n+1}-\lambda x(n+1)}{n+1}}\right)}{\int \mathrm{e}^{\frac{x\left(x^{n} a-\lambda(n+1)\right)}{n+1}} d x-c_{3}}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^n*a+lambda)*(diff(y(x), x))
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 89
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \operatorname{lambda} \mathrm{x}^{\wedge} \mathrm{n} * \exp (-\mathrm{lambda} * \mathrm{x}), \mathrm{y}(\mathrm{x})\right.\), sing
\[
y(x)=-\frac{\mathrm{e}^{-x \lambda}\left(\left(\int \mathrm{e}^{\frac{x^{n+1} a-x \lambda(n+1)}{n+1}} d x\right) \lambda+\lambda c_{1}+\mathrm{e}^{\frac{x^{n+1} a-x \lambda(n+1)}{n+1}}\right)}{c_{1}+\int \mathrm{e}^{\frac{x\left(a x^{n}-(n+1) \lambda\right)}{n+1}} d x}
\]

Solution by Mathematica
Time used: 1.93 (sec). Leaf size: 254
DSolve \(\left[y\right.\) ' \([x]==\operatorname{Exp}[\backslash[\) Lambda \(] * x] * y[x] \sim 2+a * x^{\wedge}(n) * y[x]+a * \backslash\left[\right.\) Lambda] \(* x^{\wedge} n * \operatorname{Exp}[-\backslash[L a m b d a] * x], y[x], x\),

Solve \(\left[\int_{1}^{y(x)}\left(\frac{e^{\frac{a x^{n+1}}{n+1}}}{\left(\lambda+e^{x \lambda} K[2]\right)^{2}}\right.\right.\)
\(-\int_{1}^{x}\left(\frac{2 e^{\frac{a K\left[1 n^{n+1}\right.}{n+1}}\left(a \lambda K[1]^{n}+a e^{\lambda K[1]} K[2] K[1]^{n}+e^{2 \lambda K[1]} K[2]^{2}\right)}{\left(\lambda+e^{\lambda K[1]} K[2]\right)^{3}}-\frac{e^{\frac{a K[1]^{n+1}}{n+1}-\lambda K[1]}\left(a e^{\lambda K[1]} K[1]^{n}+2 e^{2 \lambda K[1]} K\right.}{\left(\lambda+e^{\lambda K[1]} K[2]\right)^{2}}\right.\)
\(\left.+\int_{1}^{x}-\frac{e^{\frac{a K[1]^{n+1}}{n+1}-\lambda K[1]}\left(a \lambda K[1]^{n}+a e^{\lambda K[1]} y(x) K[1]^{n}+e^{2 \lambda K[1]} y(x)^{2}\right)}{\left(\lambda+e^{\lambda K[1]} y(x)\right)^{2}} d K[1]=c_{1}, y(x)\right]\)

\section*{4.5 problem 26}
4.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 602

Internal problem ID [10434]
Internal file name [OUTPUT/9381_Monday_June_06_2022_02_20_59_PM_24609640/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+\mathrm{e}^{\lambda x} y^{2} \lambda-a x^{n} y \mathrm{e}^{\lambda x}=-x^{n} a
\]

\subsection*{4.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\lambda \mathrm{e}^{\lambda x} y^{2}+a x^{n} y \mathrm{e}^{\lambda x}-x^{n} a
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-\lambda \mathrm{e}^{\lambda x} y^{2}+a x^{n} y \mathrm{e}^{\lambda x}-x^{n} a
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-x^{n} a, f_{1}(x)=\mathrm{e}^{\lambda x} x^{n} a\) and \(f_{2}(x)=-\lambda \mathrm{e}^{\lambda x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\lambda \mathrm{e}^{\lambda x} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\mathrm{e}^{\lambda x} \lambda^{2} \\
f_{1} f_{2} & =-\mathrm{e}^{2 \lambda x} x^{n} a \lambda \\
f_{2}^{2} f_{0} & =-\mathrm{e}^{2 \lambda x} x^{n} a \lambda^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
-\lambda \mathrm{e}^{\lambda x} u^{\prime \prime}(x)-\left(-\mathrm{e}^{2 \lambda x} x^{n} a \lambda-\mathrm{e}^{\lambda x} \lambda^{2}\right) u^{\prime}(x)-\mathrm{e}^{2 \lambda x} x^{n} a \lambda^{2} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\frac{\mathrm{e}^{\lambda x}\left(\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) c_{2}+c_{1} \lambda\right)}{\lambda}
\]

The above shows that
\[
u^{\prime}(x)=\frac{\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) c_{2} \lambda+\mathrm{e}^{\lambda x} c_{1} \lambda^{2}+c_{2} \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}}{\lambda}
\]

Using the above in (1) gives the solution
\[
y=\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) c_{2} \lambda+\mathrm{e}^{\lambda x} c_{1} \lambda^{2}+c_{2} \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{\lambda\left(\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) c_{2}+c_{1} \lambda\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{\lambda\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x+\lambda c_{3}\right)}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{\lambda\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right.} d x+\lambda c_{3}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{\lambda\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x+\lambda c_{3}\right)}
\]

Verified OK.
Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a} \mathrm{x}^{\wedge} \mathrm{n} * \exp (\mathrm{lambda*x})+1 \mathrm{ambda}\right) *(\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) )
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Change of variables used:
[ \(\mathrm{x}=\ln (\mathrm{t}) / \mathrm{l}\) ambda]
Linear ODE actually solved:
\(a *(\ln (t) / l a m b d a) \wedge n * u(t)-a *(\ln (t) / l a m b d a) \wedge n * t * d i f f(u(t), t)+t * l a m b d a * d i f f(d i f f(u(t\)
<- change of variables successful
<- Riccati to 2nd Order successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 92
dsolve \(\left(\operatorname{diff}(y(x), x)=-\operatorname{lambda} \exp (\operatorname{lambda} * x) * y(x)^{\wedge} 2+a * x^{\wedge}(n) * \exp (\operatorname{lambda} x) * y(x)-a * x^{\wedge} n, y(x)\right.\), sing
\[
y(x)=\frac{\mathrm{e}^{-x \lambda}\left(\int \mathrm{e}^{-x \lambda+a\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)} d x\right) c_{1} \lambda+\lambda^{2} \mathrm{e}^{-x \lambda}+c_{1} \mathrm{e}^{-2 x \lambda+a\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)}}{\lambda\left(\left(\int \mathrm{e}^{-x \lambda+a\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)} d x\right) c_{1}+\lambda\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 6.627 (sec). Leaf size: 185
DSolve [y' \([\mathrm{x}]==-\backslash\left[\right.\) Lambda] \(* \operatorname{Exp}\left[\backslash[\right.\) Lambda] \(* \mathrm{x}] * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}) * \operatorname{Exp}\left[\backslash[\right.\) Lambda] \(* \mathrm{x}] * \mathrm{y}[\mathrm{x}]-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}, \mathrm{y}[\mathrm{x}], \mathrm{x}\),
\(y(x)\)

\(y(x) \rightarrow e^{\lambda(-x)}\)

\section*{4.6 problem 27}
4.6.1 Solving as riccati ode

Internal problem ID [10435]
Internal file name [OUTPUT/9382_Monday_June_06_2022_02_21_00_PM_76993873/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{\lambda x} y^{2}+a b x^{n} \mathrm{e}^{\lambda x} y=b x^{n-1} n
\]

\subsection*{4.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} a y^{2}-a b x^{n} \mathrm{e}^{\lambda x} y+b x^{n-1} n
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}-a b x^{n} \mathrm{e}^{\lambda x} y+\frac{b x^{n} n}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b x^{n-1} n, f_{1}(x)=-a b x^{n} \mathrm{e}^{\lambda x}\) and \(f_{2}(x)=\mathrm{e}^{\lambda x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =-a^{2} b x^{n} \mathrm{e}^{2 \lambda x} \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a^{2} b x^{n-1} n
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-\left(-a^{2} b x^{n} \mathrm{e}^{2 \lambda x}+a \lambda \mathrm{e}^{\lambda x}\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a^{2} b x^{n-1} n u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{1}+\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda c_{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=-a b x^{n} \mathrm{e}^{\lambda x-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{1}+\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda c_{2}\right)+c_{2} \lambda \mathrm{e}^{\lambda x}
\]

Using the above in (1) gives the solution
\(y=-\frac{\left(-a b x^{n} \mathrm{e}^{\lambda x-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{1}+\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda c_{2}\right)+c_{2} \lambda \mathrm{e}^{\lambda x}\right) \mathrm{e}^{-\lambda x} \mathrm{e}^{\int a b x^{n} \mathrm{e}^{\lambda x} d x}}{a\left(c_{1}+\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right) \lambda c_{2}\right)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{\mathrm{e}^{-\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right.}\left(a b x^{n} \mathrm{e}^{\lambda x-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)-\lambda \mathrm{e}^{\lambda x}\right)}{a\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(a b x^{n} \mathrm{e}^{\lambda x-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)-\lambda \mathrm{e}^{\lambda x}\right)}{a\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\mathrm{e}^{-\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(a b x^{n} \mathrm{e}^{\lambda x-a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)}\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)-\lambda \mathrm{e}^{\lambda x}\right)}{a\left(c_{3}+\lambda\left(\int \mathrm{e}^{\lambda x+a b\left(\int \mathrm{e}^{\lambda x} x^{n} d x\right)} d x\right)\right)}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-exp(lambda*x)*x^n*a*b+lambda
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
<- 2nd order exact_linear successful
Change of variables used:
[x = ln(t)/lambda]
Linear ODE actually solved:
b*(ln(t)/lambda)^n/ln(t)*lambda*n*a*u(t)+t*(ln(t)/lambda)^n*a*b*lambda*diff(u(t)
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 88
dsolve(diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge}(\mathrm{n}) * \exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{b} * \mathrm{n} * \mathrm{x} \uparrow(\mathrm{n}-1), \mathrm{y}(\mathrm{x})\),
\[
y(x)=\frac{x^{n} \lambda\left(\int \mathrm{e}^{x \lambda+a b\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)} d x\right) c_{1} a b+x^{n} a b-c_{1} \lambda \mathrm{e}^{a b\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)}}{a\left(\lambda\left(\int \mathrm{e}^{x \lambda+a b\left(\int \mathrm{e}^{x \lambda} x^{n} d x\right)} d x\right) c_{1}+1\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 63.132 (sec). Leaf size: 188
DSolve \(\left[y\right.\) ' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2-\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge}(\mathrm{n}) * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{b} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1), \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\(y(x)\)
\[
\rightarrow \frac{a b c_{1}\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right)^{n} \int_{1}^{e^{x \lambda}} \exp \left(\frac{a b \Gamma(n+1,-\log (K[1]))(-\log (K[1]))^{-n}\left(\frac{\log (K[1])}{\lambda}\right)^{n}}{\lambda}\right) d K[1]-c_{1} \lambda \exp \left(\frac{a b\left(-\log \left(e^{\lambda x}\right)\right)^{-n}\left(\frac{\log ( }{}\right.}{a+a c_{1} \int_{1}^{e^{x \lambda}} \exp \left(\frac{a b \Gamma(n+1,-\log (K[1]))(-\log (K[1]))^{-n}\left(\frac{\log (K[1])}{\lambda}\right)^{n}}{\lambda}\right) d K[1]} . \frac{}{\lambda}\right)}{}
\]

\section*{4.7 problem 28}
4.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 611

Internal problem ID [10436]
Internal file name [OUTPUT/9383_Monday_June_06_2022_02_21_02_PM_33130912/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} y^{2}=b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\]

\subsection*{4.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{n} y^{2}+b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}, f_{1}(x)=0\) and \(f_{2}(x)=x^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2}\left(b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
x^{n} a u^{\prime \prime}(x)-\frac{x^{n} n a u^{\prime}(x)}{x}+x^{2 n} a^{2}\left(b \lambda \mathrm{e}^{\lambda x}-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)
\(=\mathrm{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1}-Y(x) a b \lambda+_{-} Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\)
The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1} \_Y(x) a b \lambda+_{-} Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1}-Y(x) a b \lambda+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1} \_Y(x) a b \lambda+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1} \bar{x} Y(x) a b \lambda+\ldots Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1} \_Y(x) a b \lambda+\ldots Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)}\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y= \\
& \left.\left.-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x} \_Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1}-Y(x) a b \lambda+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}}{}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1}-Y(x) a b \lambda+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)\right.\right.} \underset{x}{ }\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Verification of solutions
\(y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}=Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1} \overline{-} Y(x) a b \lambda+\ldots Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{-x^{1+2 n} \mathrm{e}^{2 \lambda x}-Y(x) a^{2} b^{2}+\mathrm{e}^{\lambda x} x^{n+1}-Y(x) a b \lambda+\ldots Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)}\)
Verified OK.
```

`Methods for first order ODEs:

```
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=n *(\operatorname{diff}(y(x), x)) / x+a * x^{\wedge} n * b *(x\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) *
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \(\rightarrow\) trying a solution of the form \(\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\) ) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
\(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (i n t(r(x), d x))\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)]

X Solution by Maple
dsolve (diff \((y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2+b * l a m b d a * \exp (l a m b d a * x)-a * b \wedge 2 * x^{\wedge} n * \exp (2 * \operatorname{lambda} a x), y(x)\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' \([x]==a * x^{\wedge} n * y[x] \wedge 2+b * \backslash\left[\right.\) Lambda] \(* \operatorname{Exp}[\backslash[L a m b d a] * x]-a * b^{\wedge} 2 * x^{\wedge} n * \operatorname{Exp}[2 * \backslash[L a m b d a] * x], y[x], x\),

Not solved

\section*{4.8 problem 29}
4.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 616

Internal problem ID [10437]
Internal file name [OUTPUT/9384_Monday_June_06_2022_02_21_04_PM_3481108/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} y^{2}-\lambda y=-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\]

\subsection*{4.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+\lambda y-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{n} y^{2}+\lambda y-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a b^{2} x^{n} \mathrm{e}^{2 \lambda x}, f_{1}(x)=\lambda\) and \(f_{2}(x)=x^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =\lambda a x^{n} \\
f_{2}^{2} f_{0} & =-x^{3 n} a^{3} b^{2} \mathrm{e}^{2 \lambda x}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
x^{n} a u^{\prime \prime}(x)-\left(\frac{x^{n} n a}{x}+\lambda a x^{n}\right) u^{\prime}(x)-x^{3 n} a^{3} b^{2} \mathrm{e}^{2 \lambda x} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & -c_{1} \sinh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right) \\
& +c_{2} \cosh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)=a b x^{n} \mathrm{e}^{\lambda x}( & c_{2} \sinh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right) \\
& \left.-c_{1} \cosh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{b \mathrm{e}^{\lambda x}\left(c_{2} \sinh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)-c_{1} \cosh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)\right)}{-c_{1} \sinh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)+c_{2} \cosh \left(\frac{x^{n} a b\left((\Gamma(n,-\lambda x) n-\Gamma(n+1))(-\lambda x)^{-n}+\mathrm{e}^{\lambda x}\right)}{\lambda}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{b \mathrm{e}^{\lambda x}\left(\sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-c_{3} \cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)\right)}{c_{3} \sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-\cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)}
\]

Summary
The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{b \mathrm{e}^{\lambda x}\left(\sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-c_{3} \cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)\right)}{c_{3} \sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-\cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y\)
\[
=\frac{b \mathrm{e}^{\lambda x}\left(\sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-c_{3} \cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)\right)}{c_{3} \sinh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)-\cosh \left(\frac{(-\lambda x)^{-n} x^{n} a b\left(\mathrm{e}^{\lambda x}(-\lambda x)^{n}+\Gamma(n,-\lambda x) n-\Gamma(n+1)\right)}{\lambda}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 62
```

dsolve(diff (y(x),x)=a*x^n*y(x)^2+lambda*y(x) -a*b^2* (x^n*exp(2*lambda*x),y(x), singsol=all)

```
\[
y(x)=\tanh \left(\frac{-a b x^{n}(n \Gamma(n,-x \lambda)-\Gamma(n+1))(-x \lambda)^{-n}-b a \mathrm{e}^{x \lambda} x^{n}+i \lambda c_{1}}{\lambda}\right) b \mathrm{e}^{x \lambda}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.69 (sec). Leaf size: 57
DSolve[y'[x]==a*x^n*y[x]^2+\[Lambda]*y[x]-a*b^2*x^n*Exp[2*\[Lambda]*x],y[x],x,IncludeSingula
\[
y(x) \rightarrow \sqrt{-b^{2}} e^{\lambda x} \tan \left(\frac{a \sqrt{-b^{2}} x^{n}(\lambda(-x))^{-n} \Gamma(n+1,-x \lambda)}{\lambda}+c_{1}\right)
\]

\section*{4.9 problem 30}
4.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 620

Internal problem ID [10438]
Internal file name [OUTPUT/9385_Monday_June_06_2022_02_21_05_PM_40185526/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 30 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} y^{2}+a b x^{n} \mathrm{e}^{\lambda x} y=b \lambda \mathrm{e}^{\lambda x}
\]

\subsection*{4.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}-a b x^{n} \mathrm{e}^{\lambda x} y+b \lambda \mathrm{e}^{\lambda x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{n} y^{2}-a b x^{n} \mathrm{e}^{\lambda x} y+b \lambda \mathrm{e}^{\lambda x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=-a b x^{n} \mathrm{e}^{\lambda x}\) and \(f_{2}(x)=x^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =-a^{2} b x^{2 n} \mathrm{e}^{\lambda x} \\
f_{2}^{2} f_{0} & =\mathrm{e}^{\lambda x} x^{2 n} a^{2} b \lambda
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
x^{n} a u^{\prime \prime}(x)-\left(-a^{2} b x^{2 n} \mathrm{e}^{\lambda x}+\frac{x^{n} n a}{x}\right) u^{\prime}(x)+\mathrm{e}^{\lambda x} x^{2 n} a^{2} b \lambda u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+_{-} Y^{\prime}(x)\right) x^{n+1}+_{-} Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a b \mathrm{e}^{\lambda x}\left(\lambda \_Y(x)+\_Y^{\prime}(x)\right) x^{n+1}+\_Y^{\prime \prime}(x) x-n \_Y^{\prime}(x)}{x}\right\},\left\{\_Y(x)\right\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(exp(lambda*x)*x^n*a*b*x-n)*(
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the f
-> Trying changes of variables to rationalize or make the ODE simplef
trying a symmetry of the form [xi=0, eta=F(x)]

```

X Solution by Maple


No solution found
\(\checkmark\) Solution by Mathematica
Time used: 53.05 (sec). Leaf size: 190
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}[\mathrm{x}] \sim 2-\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{n} * \operatorname{Exp}[\backslash[\) Lambda] \(* \mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{b} * \backslash[\) Lambda] \(* \operatorname{Exp}[\backslash[\) Lambda] \(* \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\)
\(y(x)\)
\(\rightarrow \frac{b e^{2 \lambda x}\left(\int_{1}^{e^{x \lambda}} \frac{\exp \left(\frac{a b \Gamma(n+1,-\log (K[1]))(-\log (K[1]))^{-n}\left(\frac{\log (K[1])}{\lambda}\right)^{n}}{\lambda}\right)}{K[1]^{2}} d K[1]+c_{1}\right)}{e^{\lambda x} \int_{1}^{e^{x \lambda}} \frac{\exp \left(\frac{a b \Gamma(n+1,-\log (K[1]))(-\log (K[1]))^{-n}\left(\frac{\log (K[1])}{\lambda}\right)^{n}}{\lambda}\right)}{K[1]^{2}} d K[1]+\exp \left(\frac{a b\left(-\log \left(e^{\lambda x}\right)\right)^{-n}\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right)^{n} \Gamma\left(n+1,-\log \left(e^{x \lambda}\right)\right)}{\lambda}\right.}\)
\(y(x) \rightarrow b e^{\lambda x}\)

\subsection*{4.10 problem 31}
\[
\text { 4.10.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 625
\]

Internal problem ID [10439]
Internal file name [OUTPUT/9386_Monday_June_06_2022_02_21_08_PM_74422371/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+(k+1) x^{k} y^{2}-a x^{k+1} \mathrm{e}^{\lambda x} y=-\mathrm{e}^{\lambda x} a
\]

\subsection*{4.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{k} y^{2} k+a x^{k+1} \mathrm{e}^{\lambda x} y-x^{k} y^{2}-\mathrm{e}^{\lambda x} a
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-x^{k} y^{2} k+a x^{k} x \mathrm{e}^{\lambda x} y-x^{k} y^{2}-\mathrm{e}^{\lambda x} a
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-\mathrm{e}^{\lambda x} a, f_{1}(x)=x^{k+1} \mathrm{e}^{\lambda x} a\) and \(f_{2}(x)=-x^{k} k-x^{k}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \mathrm{e}^{\lambda x} a\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} \mathrm{e}^{\lambda x} a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \mathrm{e}^{\lambda x} a\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} \mathrm{e}^{\lambda x} a u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x^{k+1}\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
\]

The above shows that
\[
u^{\prime}(x)=c_{2} x^{-k-1} \mathrm{e}^{\int \frac{a x^{k+2}{ }_{e} \lambda x}{x}+k} d x+x^{k}(k+1)\left(\left(\int \mathrm{e}^{\int \frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{\left(c_{2} x^{-k-1} \mathrm{e}^{\int \frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x}+x^{k}(k+1)\left(\left(\int \mathrm{e}^{\int \frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right)\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \mathrm{e}^{\lambda x} a+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{a x^{k+2} \mathrm{e}^{\lambda x}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(1+k)*exp(lambda*x)*a*x+k)*
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the f
-> Trying changes of variables to rationalize or make the ODE simplef
trying a symmetry of the form [xi=0, eta=F(x)]

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 184
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{k}+1) * \exp (\operatorname{lambda} \mathrm{a} \mathrm{x}) * \mathrm{y}(\mathrm{x})-\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x}), \mathrm{y}(\mathrm{x})\), sin
\(y(x)\)
\(=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \mathrm{e}^{x \lambda} a x-2 k-2}{x} d x}+\left(\int x^{k} \mathrm{e}^{a\left(\int x^{1+k} \mathrm{e}^{x \lambda} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{a\left(\int x^{1+k} \mathrm{e}^{x \lambda} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} c\right.}{\left(\int x^{k} \mathrm{e}^{a\left(\int x^{1+k} \mathrm{e}^{x \lambda} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{a\left(\int x^{1+k} \mathrm{e}^{x \lambda} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x-c_{1}}\)
Solution by Mathematica
Time used: 86.249 (sec). Leaf size: 280
DSolve \(\left[y\right.\) ' \([x]==-(k+1) * x^{\wedge} k * y[x] \sim 2+a * x^{\wedge}(k+1) * \operatorname{Exp}[\backslash[\) Lambda \(] * x] * y[x]-a * \operatorname{Exp}[\backslash[\) Lambda \(] * x], y[x], x\), In
\(y(x)\)
\[
\rightarrow \frac{a \lambda \exp \left(\frac{a\left(-\log \left(e^{\lambda x}\right)\right)^{-k}\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right)^{k} \Gamma\left(k+2,-\log \left(e^{x \lambda}\right)\right)}{\lambda^{2}}\right)\left(1+c_{1} \int_{1}^{e^{x \lambda}} \operatorname{ex}\right.}{a c_{1} \lambda\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right)^{k+1} \exp \left(\frac{a\left(-\log \left(e^{\lambda x}\right)\right)^{-k}\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right)^{k} \Gamma\left(k+2,-\log \left(e^{x \lambda}\right)\right)}{\lambda^{2}}\right) \int_{1}^{e^{x \lambda}} \exp \left(-\frac{a \Gamma(k+2,-\log (K[1]))(-\log (K[1]))-}{\lambda^{2}}\right.}
\]

\subsection*{4.11 problem 32}
\[
\text { 4.11.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 630
\]

Internal problem ID [10440]
Internal file name [OUTPUT/9387_Monday_June_06_2022_02_21_12_PM_78437714/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} y^{2}+a x^{n}\left(b \mathrm{e}^{\lambda x}+c\right) y=c x^{n}
\]

\subsection*{4.11.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a b x^{n} \mathrm{e}^{\lambda x} y-x^{n} a c y+a x^{n} y^{2}+c x^{n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a b x^{n} \mathrm{e}^{\lambda x} y-x^{n} a c y+a x^{n} y^{2}+c x^{n}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c x^{n}, f_{1}(x)=-a b x^{n} \mathrm{e}^{\lambda x}-x^{n} a c\) and \(f_{2}(x)=x^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =\left(-a b x^{n} \mathrm{e}^{\lambda x}-x^{n} a c\right) x^{n} a \\
f_{2}^{2} f_{0} & =x^{3 n} a^{2} c
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
x^{n} a u^{\prime \prime}(x)-\left(\left(-a b x^{n} \mathrm{e}^{\lambda x}-x^{n} a c\right) x^{n} a+\frac{x^{n} n a}{x}\right) u^{\prime}(x)+x^{3 n} a^{2} c u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)
\(=\mathrm{DESol}\left(\left\{\frac{a c x^{1+2 n}-Y(x)+_{\neq} Y^{\prime \prime}(x) x+_{\not} Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\left\{\_Y(x)\right\}\right)\)
The above shows that
\(u^{\prime}(x)\)
\(=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+_{\_} Y^{\prime \prime}(x) x+_{-} Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\left\{\_Y(x)\right\}\right)\)
Using the above in (1) gives the solution
\[
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \mathrm{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\{-Y(x)\}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\ldots Y^{\prime \prime}(x) x+\_Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n}-Y(x)+\ldots Y^{\prime \prime}(x) x+\_Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\{-Y(x)\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\_Y^{\prime \prime}(x) x+\_Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\left\{\_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\_Y^{\prime \prime}(x) x+\_Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\_Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a c x^{1+2 n} \_Y(x)+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(x^{n+1}\left(b \mathrm{e}^{\lambda x}+c\right) a-n\right)}{x}\right\},\{-Y(x)\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(exp(lambda*x)*x^n*a*b*x+a*x
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the ffgrm r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
-> Trying changes of variables to rationalize or make the ODE simplef
trying a symmetry of the form [xi=0, eta=F(x)]

```

X Solution by Maple
dsolve(diff \((y(x), x)=a * x^{\wedge} n * y(x) \wedge 2-a * x^{\wedge} n *(b * \exp (l a m b d a * x)+c) * y(x)+c * x^{\wedge} n, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' \([x]==a * x^{\wedge} n * y[x] \sim 2-a * x^{\wedge} n *(b * \operatorname{Exp}[\backslash[\) Lambda \(] * x]+c) * y[x]+c * x^{\wedge} n, y[x], x\), IncludeSingularSol

Not solved

\subsection*{4.12 problem 33}
4.12.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 635

Internal problem ID [10441]
Internal file name [OUTPUT/9388_Monday_June_06_2022_02_21_15_PM_99041241/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} \mathrm{e}^{2 \lambda x} y^{2}-\left(b x^{n} \mathrm{e}^{\lambda x}-\lambda\right) y=c x^{n}
\]

\subsection*{4.12.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} \mathrm{e}^{2 \lambda x} y^{2}+x^{n} \mathrm{e}^{\lambda x} b y+c x^{n}-\lambda y
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{n} \mathrm{e}^{2 \lambda x} y^{2}+x^{n} \mathrm{e}^{\lambda x} b y+c x^{n}-\lambda y
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c x^{n}, f_{1}(x)=b x^{n} \mathrm{e}^{\lambda x}-\lambda\) and \(f_{2}(x)=x^{n} \mathrm{e}^{2 \lambda x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} \mathrm{e}^{2 \lambda x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n \mathrm{e}^{2 \lambda x} a}{x}+2 \mathrm{e}^{2 \lambda x} x^{n} a \lambda \\
f_{1} f_{2} & =\left(b x^{n} \mathrm{e}^{\lambda x}-\lambda\right) x^{n} \mathrm{e}^{2 \lambda x} a \\
f_{2}^{2} f_{0} & =x^{3 n} \mathrm{e}^{4 \lambda x} a^{2} c
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(x^{n} \mathrm{e}^{2 \lambda x} a u^{\prime \prime}(x)-\left(\frac{x^{n} n \mathrm{e}^{2 \lambda x} a}{x}+2 \mathrm{e}^{2 \lambda x} x^{n} a \lambda+\left(b x^{n} \mathrm{e}^{\lambda x}-\lambda\right) x^{n} \mathrm{e}^{2 \lambda x} a\right) u^{\prime}(x)+x^{3 n} \mathrm{e}^{4 \lambda x} a^{2} c u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives


The above shows that


Using the above in (1) gives the solution
\(y\)


Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\mathrm{e}^{-\lambda x}\left(\tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}}\left(\Gamma(n,-\lambda x) x^{n} b(-\lambda x)^{-n} n-x^{n}(-\lambda x)^{-n} \Gamma(n+1) b+b x^{n} \mathrm{e}^{\lambda x}+\lambda c_{3}\right)}{2 b^{2} \lambda}\right) \sqrt{4 a b^{2} c-b^{4}}-b^{2}\right)}{2 a b}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\mathrm{e}^{-\lambda x}\left(\tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}}\left(\Gamma(n,-\lambda x) x^{n} b(-\lambda x)^{-n} n-x^{n}(-\lambda x)^{-n} \Gamma(n+1) b+b x^{n} \mathrm{e}^{\lambda x}+\lambda c 3\right)}{2 b^{2} \lambda}\right) \sqrt{4 a b^{2} c-b^{4}}-b^{2}\right)}{2 a b}\)
Verification of solutions
\(y\)
\(=\frac{\mathrm{e}^{-\lambda x}\left(\tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}}\left(\Gamma(n,-\lambda x) x^{n} b(-\lambda x)^{-n} n-x^{n}(-\lambda x)^{-n} \Gamma(n+1) b+b x^{n} \mathrm{e}^{\lambda x}+\lambda c_{3}\right)}{2 b^{2} \lambda}\right) \sqrt{4 a b^{2} c-b^{4}}-b^{2}\right)}{2 a b}\)
Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 114
dsolve (diff \((y(x), x)=a * x^{\wedge} n * \exp (2 * \operatorname{lambda} a x) * y(x)^{\wedge} 2+\left(b * x^{\wedge} n * \exp (\operatorname{lambda} * x)-l a m b d a\right) * y(x)+c * x^{\wedge} n, y(x\)
\(y(x)\)
\(=\frac{\left(\tan \left(\frac{\sqrt{4 a b^{2} c-b^{4}}\left(x^{n}(-x \lambda)^{-n} \Gamma(n,-x \lambda) b n-x^{n}(-x \lambda)^{-n} \Gamma(n+1) b+\mathrm{e}^{x \lambda} x^{n} b+\lambda c_{1}\right)}{2 b^{2} \lambda}\right) \sqrt{4 a b^{2} c-b^{4}}-b^{2}\right) \mathrm{e}^{-x \lambda}}{2 a b}\)
\(\checkmark\) Solution by Mathematica
Time used: 3.112 (sec). Leaf size: 102
DSolve \(\left[y\right.\) ' \([x]==a * x^{\wedge} n * \operatorname{Exp}[2 * \backslash[\) Lambda \(] * x] * y[x] \wedge 2+\left(b * x^{\wedge} n * \operatorname{Exp}\left[\backslash[\right.\right.\) Lambda] \(* x]-\backslash[\) Lambda] \() * y[x]+c * x^{\wedge} n\),

Solve \(\left[\int_{1}^{\sqrt{\frac{a e^{2 x \lambda}}{c}} y(x)} \frac{1}{K[1]^{2}-\sqrt{\frac{b^{2}}{a c}} K[1]+1} d K[1]=\frac{c x^{n} e^{\lambda(-x)}(\lambda(-x))^{-n} \sqrt{\frac{a e^{2 \lambda x}}{c}} \Gamma(n+1,-x \lambda)}{\lambda}\right.\)
\(\left.+c_{1}, y(x)\right]\)

\subsection*{4.13 problem 34}
4.13.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 639

Internal problem ID [10442]
Internal file name [OUTPUT/9389_Monday_June_06_2022_02_21_19_PM_91254245/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
\[
\left[\left[\_1 s t \_o r d e r, ~ ` \text { _with_symmetry_ }[F(x), G(x)] `\right], \quad\right. \text { Riccati] }
\]
\[
y^{\prime}-a \mathrm{e}^{\lambda x}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
\]

\subsection*{4.13.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+2 x^{n} \mathrm{e}^{\lambda x} a b c-2 a b x^{n} \mathrm{e}^{\lambda x} y+\mathrm{e}^{\lambda x} a c^{2}-2 \mathrm{e}^{\lambda x} a c y+\mathrm{e}^{\lambda x} a y^{2}+b x^{n-1} n
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+2 x^{n} \mathrm{e}^{\lambda x} a b c-2 a b x^{n} \mathrm{e}^{\lambda x} y+\mathrm{e}^{\lambda x} a c^{2}-2 \mathrm{e}^{\lambda x} a c y+\mathrm{e}^{\lambda x} a y^{2}+\frac{b x^{n} n}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+2 x^{n} \mathrm{e}^{\lambda x} a b c+\mathrm{e}^{\lambda x} a c^{2}+b x^{n-1} n, f_{1}(x)=-2 a b x^{n} \mathrm{e}^{\lambda x}-\) \(2 \mathrm{e}^{\lambda x} a c\) and \(f_{2}(x)=\mathrm{e}^{\lambda x} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =\left(-2 a b x^{n} \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x} a c\right) \mathrm{e}^{\lambda x} a \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} a^{2}\left(a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+2 x^{n} \mathrm{e}^{\lambda x} a b c+\mathrm{e}^{\lambda x} a c^{2}+b x^{n-1} n\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-\left(a \lambda \mathrm{e}^{\lambda x}+\left(-2 a b x^{n} \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x} a c\right) \mathrm{e}^{\lambda x} a\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} a^{2}\left(a b^{2} \mathrm{e}^{\lambda x} x^{2 n}+2 x^{n} \mathrm{e}^{\lambda x} a b c+\mathrm{e}^{\lambda x} a c^{2}+b x\right.\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{-\frac{\left(\int\left(2 a\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\lambda\right) d x\right)}{2}}\left(c_{1} \sinh \left(\frac{\lambda x}{2}\right)+c_{2} \cosh \left(\frac{\lambda x}{2}\right)\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=-( \\
&\left(a c_{2}\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\frac{\lambda\left(c_{1}+c_{2}\right)}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \\
&\left.+\sinh \left(\frac{\lambda x}{2}\right)\left(a c_{1}\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\frac{\lambda\left(c_{1}+c_{2}\right)}{2}\right)\right) \mathrm{e}^{-\frac{\left(\int\left(2 a\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\lambda\right) d x\right)}{2}}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\(=\frac{\left(\left(a c_{2}\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\frac{\lambda\left(c_{1}+c_{2}\right)}{2}\right) \cosh \left(\frac{\lambda x}{2}\right)+\sinh \left(\frac{\lambda x}{2}\right)\left(a c_{1}\left(b x^{n}+c\right) \mathrm{e}^{\lambda x}-\frac{\lambda\left(c_{1}+c_{2}\right)}{2}\right)\right) \mathrm{e}^{-\lambda x}}{a\left(c_{1} \sinh \left(\frac{\lambda x}{2}\right)+c_{2} \cosh \left(\frac{\lambda x}{2}\right)\right)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(=\frac{\left(-\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}+2\left(b x^{n}+c\right) a\right) \cosh \left(\frac{\lambda x}{2}\right)+2\left(-\frac{\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}}{2}+\left(b x^{n}+c\right) c_{3} a\right) \sinh \left(\frac{\lambda x}{2}\right)}{2\left(c_{3} \sinh \left(\frac{\lambda x}{2}\right)+\cosh \left(\frac{\lambda x}{2}\right)\right) a}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\left(-\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}+2\left(b x^{n}+c\right) a\right) \cosh \left(\frac{\lambda x}{2}\right)+2\left(-\frac{\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}}{2}+\left(b x^{n}+c\right) c_{3} a\right) \sinh \left(\frac{\lambda x}{2}\right)}{2\left(c_{3} \sinh \left(\frac{\lambda x}{2}\right)+\cosh \left(\frac{\lambda x}{2}\right)\right) a}\)
Verification of solutions
\(y\)
\[
=\frac{\left(-\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}+2\left(b x^{n}+c\right) a\right) \cosh \left(\frac{\lambda x}{2}\right)+2\left(-\frac{\lambda\left(c_{3}+1\right) \mathrm{e}^{-\lambda x}}{2}+\left(b x^{n}+c\right) c_{3} a\right) \sinh \left(\frac{\lambda x}{2}\right)}{2\left(c_{3} \sinh \left(\frac{\lambda x}{2}\right)+\cosh \left(\frac{\lambda x}{2}\right)\right) a}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular polynomial solution successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 50
```

dsolve(diff (y(x), x)=a*exp(lambda*x)*(y(x)-b*x^n-c)^2+b*n*x^(n-1),y(x), singsol=all)

```
\[
y(x)=\frac{a c_{1} \lambda\left(b x^{n}+c\right) \mathrm{e}^{x \lambda}+x^{n} a b-c_{1} \lambda^{2}+a c}{\left(\lambda c_{1} \mathrm{e}^{x \lambda}+1\right) a}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.563 (sec). Leaf size: 40
DSolve[y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] *\left(\mathrm{y}[\mathrm{x}]-\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n}-\mathrm{c}\right)^{\wedge} 2+\mathrm{b} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolution
\[
\begin{aligned}
& y(x) \rightarrow \frac{\lambda}{-a e^{\lambda x}+c_{1} \lambda}+b x^{n}+c \\
& y(x) \rightarrow b x^{n}+c
\end{aligned}
\]

\subsection*{4.14 problem 35}
\[
\text { 4.14.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 643
\]

Internal problem ID [10443]
Internal file name [OUTPUT/9390_Monday_June_06_2022_02_21_21_PM_25838751/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime} x-a \mathrm{e}^{\lambda x} y^{2}-k y=a b^{2} x^{2 k} \mathrm{e}^{\lambda x}
\]

\subsection*{4.14.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\mathrm{e}^{\lambda x} a y^{2}+k y+a b^{2} x^{2 k} \mathrm{e}^{\lambda x}}{x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a b^{2} x^{2 k} \mathrm{e}^{\lambda x}}{x}+\frac{\mathrm{e}^{\lambda x} a y^{2}}{x}+\frac{k y}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a b^{2} x^{2 k} \mathrm{e}^{\lambda x}}{x}, f_{1}(x)=\frac{k}{x}\) and \(f_{2}(x)=\frac{a \mathrm{e}^{\lambda x}}{x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \mathrm{e}^{\mathrm{\lambda} x} u}{x}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \mathrm{e}^{\lambda x}}{x^{2}}+\frac{a \lambda \mathrm{e}^{\lambda x}}{x} \\
f_{1} f_{2} & =\frac{k a \mathrm{e}^{\lambda x}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \mathrm{e}^{3 \lambda x} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{a \mathrm{e}^{\lambda x} u^{\prime \prime}(x)}{x}-\left(-\frac{a \mathrm{e}^{\lambda x}}{x^{2}}+\frac{a \lambda \mathrm{e}^{\lambda x}}{x}+\frac{k a \mathrm{e}^{\lambda x}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \mathrm{e}^{3 \lambda x} b^{2} x^{2 k} u(x)}{x^{3}}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & c_{1} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right) \\
& +c_{2} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\left(c_{1} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right. \\
&\left.\quad-c_{2} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right) a b x^{k-1} \mathrm{e}^{\lambda x}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
& -\frac{\left(c_{1} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)-c_{2} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right) b x^{k-1} x}{c_{1} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+c_{2} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{b x^{k}\left(-c_{3} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right)}{c_{3} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)}
\]

Summary
The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{b x^{k}\left(-c_{3} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right)}{c_{3} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y\)
\[
=\frac{b x^{k}\left(-c_{3} \cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)\right)}{c_{3} \sin \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)+\cos \left(a b x^{k}(-\lambda x)^{-k}(\Gamma(k)-\Gamma(k,-\lambda x))\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```

\section*{Solution by Maple}

Time used: 0.015 (sec). Leaf size: 38
```

dsolve(x*diff (y (x), x)=a*exp(lambda*x)*y (x)^2+k*y (x)+a*b^2*x^(2*k)*exp(lambda*x),y(x), singso

```
\[
y(x)=-\tan \left(a b x^{k}(\Gamma(k,-x \lambda)-\Gamma(k))(-x \lambda)^{-k}+c_{1}\right) b x^{k}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.593 (sec). Leaf size: 47
DSolve [x*y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), Inclu
\[
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(-a \sqrt{b^{2}} x^{k}(\lambda(-x))^{-k} \Gamma(k,-x \lambda)+c_{1}\right)
\]

\subsection*{4.15 problem 36}
\[
\text { 4.15.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 647
\]

Internal problem ID [10444]
Internal file name [OUTPUT/9391_Monday_June_06_2022_02_21_22_PM_4099908/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime} x-a x^{2 n} \mathrm{e}^{\lambda x} y^{2}-\left(b x^{n} \mathrm{e}^{\lambda x}-n\right) y=\mathrm{e}^{\lambda x} c
\]

\subsection*{4.15.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2 n} \mathrm{e}^{\lambda x} y^{2}+x^{n} \mathrm{e}^{\lambda x} b y+\mathrm{e}^{\lambda x} c-n y}{x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a x^{2 n} \mathrm{e}^{\lambda x} y^{2}}{x}+\frac{\mathrm{e}^{\lambda x} x^{n} b y}{x}+\frac{\mathrm{e}^{\lambda x} c}{x}-\frac{n y}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{\mathrm{e}^{\lambda x} c}{x}, f_{1}(x)=\frac{b x^{n} \mathrm{e}^{\lambda x}-n}{x}\) and \(f_{2}(x)=\frac{x^{2 n} \mathrm{e}^{\lambda x} a}{x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x^{2 n} \mathrm{e}^{x x} a u}{x}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n \mathrm{e}^{\lambda x} a}{x^{2}}+\frac{x^{2 n} \lambda \mathrm{e}^{\lambda x} a}{x}-\frac{\mathrm{e}^{\lambda x} a x^{2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{n} \mathrm{e}^{\lambda x}-n\right) x^{2 n} \mathrm{e}^{\lambda x} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{x^{4 n} \mathrm{e}^{3 \lambda x} a^{2} c}{x^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{x^{2 n} \mathrm{e}^{\lambda x} a u^{\prime \prime}(x)}{x}-\left(\frac{2 x^{2 n} n \mathrm{e}^{\lambda x} a}{x^{2}}+\frac{x^{2 n} \lambda \mathrm{e}^{\lambda x} a}{x}-\frac{\mathrm{e}^{\lambda x} a x^{2 n}}{x^{2}}+\frac{\left(b x^{n} \mathrm{e}^{\lambda x}-n\right) x^{2 n} \mathrm{e}^{\lambda x} a}{x^{2}}\right) u^{\prime}(x)+\frac{x^{4 n} \mathrm{e}^{3 \lambda x} a^{2} c u(x)}{x^{3}}=
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\left(c_{1} \operatorname{BesselJ}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)\right. \\
&\left.+c_{2} \operatorname{BesselY}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)\right) \mathrm{e}^{\frac{\left(\rho\left(\frac{b x^{n} e^{\lambda x}}{x}+\lambda+\frac{3 n}{x}\right) d x\right)}{2}}
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\mathrm{e}^{\frac{\left(\int \frac{b x^{n} \mathrm{e}^{\lambda x}+\lambda x+3 n}{x} d x\right.}{2}}{ }^{2}\left(c_{1} \operatorname{Bessel}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)+c_{2} \operatorname{BesselY}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)\right)\left(b x^{n}\right.}{2 x}\)
Using the above in (1) gives the solution
\[
y=-\frac{\mathrm{e}^{\frac{\left(\int \frac{b x^{n} \mathrm{e}^{\lambda x}+\lambda x+3 n}{x} d x\right.}{2}}\left(b x^{n} \mathrm{e}^{\lambda x}+\lambda x+3 n\right) x^{-2 n} \mathrm{e}^{-\lambda x} \mathrm{e}^{\int\left(-\frac{b x^{n-1} \mathrm{e}^{\lambda x}}{2}-\frac{\lambda}{2}-\frac{3 n}{2 x}\right) d x}}{2 a}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\left((\lambda x+3 n) \mathrm{e}^{-\lambda x}+b x^{n}\right) x^{-2 n}}{2 a}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\left((\lambda x+3 n) \mathrm{e}^{-\lambda x}+b x^{n}\right) x^{-2 n}}{2 a} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\left((\lambda x+3 n) \mathrm{e}^{-\lambda x}+b x^{n}\right) x^{-2 n}}{2 a}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 86
dsolve \(\left(\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) * \exp (\mathrm{l} \operatorname{ambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\left(\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \exp (\mathrm{lambda} \mathrm{x})-\mathrm{n}\right) * y(\mathrm{x})+\mathrm{c} * \exp (\mathrm{l} \operatorname{amb}\right.\)
\[
y(x)=-\frac{\left(\tan \left(\frac{\left(x^{n} b(\Gamma(n,-x \lambda)-\Gamma(n))(-x \lambda)^{-n}-c_{1}\right) \sqrt{4 a b^{2} c-b^{4}}}{2 b^{2}}\right) \sqrt{4 a b^{2} c-b^{4}}+b^{2}\right) x^{-n}}{2 a b}
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.62 (sec). Leaf size: 87
DSolve \(\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) * \operatorname{Exp}[\backslash[\right.\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\left(\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \operatorname{Exp}[\backslash[\right.\) Lambda] \(* \mathrm{x}]-\mathrm{n}) * \mathrm{y}[\mathrm{x}]+\mathrm{c} * \operatorname{Exp}[\backslash[\mathrm{La}\)
\[
\begin{aligned}
& \text { Solve }\left[\int_{1}^{\sqrt{\frac{a x^{2 n}}{c}} y(x)} \frac{1}{K[1]^{2}-\sqrt{\frac{b^{2}}{a c}} K[1]+1} d K[1]=\right. \\
& \left.-c(\lambda(-x))^{-n} \sqrt{\frac{a x^{2 n}}{c}} \Gamma(n,-x \lambda)+c_{1}, y(x)\right]
\end{aligned}
\]

\subsection*{4.16 problem 37}
4.16.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 651

Internal problem ID [10445]
Internal file name [OUTPUT/9392_Monday_June_06_2022_02_21_24_PM_52456256/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}
\]

\subsection*{4.16.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} \mathrm{e}^{2 \lambda x^{2}}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\]

The above shows that
\[
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}} \_Y(x) a \lambda x+_{-} Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+_{-} Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}}-Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}} \_Y(x) a \lambda x+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}} \_Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}} \_Y(x) a \lambda x+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-\mathrm{e}^{2 \lambda x^{2}} \_Y(x) a^{2}+2 \mathrm{e}^{\lambda x^{2}} \_Y(x) a \lambda x+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-2*a*lambda*x*exp(x^2*lambda)
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(2*a*lambda*x*exp(x^2*la
Methods for first order ODEs:
654
--- Trying classification methods ---
trying a quadrature

```

X Solution by Maple


No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0


Not solved

\subsection*{4.17 problem 38}
4.17.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 656

Internal problem ID [10446]
Internal file name [OUTPUT/9393_Monday_June_06_2022_02_21_27_PM_31744357/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \mathrm{e}^{-\lambda x^{2}} y^{2}-y \lambda x=a b^{2}
\]

\subsection*{4.17.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \mathrm{e}^{-\lambda x^{2}} y^{2}+\lambda x y+a b^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \mathrm{e}^{-\lambda x^{2}} y^{2}+\lambda x y+a b^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b^{2}, f_{1}(x)=\lambda x\) and \(f_{2}(x)=\mathrm{e}^{-\lambda x^{2}} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{-\lambda x^{2}} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-2 \lambda x \mathrm{e}^{-\lambda x^{2}} a \\
f_{1} f_{2} & =\lambda x \mathrm{e}^{-\lambda x^{2}} a \\
f_{2}^{2} f_{0} & =\mathrm{e}^{-2 \lambda x^{2}} a^{3} b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\mathrm{e}^{-\lambda x^{2}} a u^{\prime \prime}(x)+\lambda x \mathrm{e}^{-\lambda x^{2}} a u^{\prime}(x)+\mathrm{e}^{-2 \lambda x^{2}} a^{3} b^{2} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+c_{2} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)
\]

The above shows that
\(u^{\prime}(x)=a b \mathrm{e}^{-\frac{\lambda x^{2}}{2}}\left(c_{1} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)-c_{2} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)\right)\)
Using the above in (1) gives the solution
\[
y=-\frac{b \mathrm{e}^{-\frac{\lambda x^{2}}{2}}\left(c_{1} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)-c_{2} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)\right) \mathrm{e}^{\lambda x^{2}}}{c_{1} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+c_{2} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(-c_{3} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)\right)}{c_{3} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(-c_{3} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)\right)}{c_{3} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(-c_{3} \cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)\right)}{c_{3} \sin \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)+\cos \left(\frac{\sqrt{2} a b \sqrt{\pi} \operatorname{erf}\left(\frac{x \sqrt{2} \sqrt{\lambda}}{2}\right)}{2 \sqrt{\lambda}}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 45
dsolve(diff \(\left.(y(x), x)=a * \exp (-1 \operatorname{lambda*x})^{\wedge}\right) * y(x) \wedge 2+l a m b d a * x * y(x)+a * b \wedge 2, y(x)\), singsol=all)
\[
y(x)=\tan \left(\frac{a b \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{\lambda} x}{2}\right)-2 c_{1} \sqrt{\lambda}}{2 \sqrt{\lambda}}\right) b \mathrm{e}^{\frac{x^{2} \lambda}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.252 (sec). Leaf size: 63
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}\left[-\backslash[\right.\) Lambda \(\left.] * \mathrm{x}^{\wedge} 2\right] * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[\) Lambda \(] * x * y[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolu
\[
y(x) \rightarrow \sqrt{b^{2}} e^{\frac{\lambda x^{2}}{2}} \tan \left(\frac{\sqrt{\frac{\pi}{2}} a \sqrt{b^{2}} \operatorname{erf}\left(\frac{\sqrt{\lambda} x}{\sqrt{2}}\right)}{\sqrt{\lambda}}+c_{1}\right)
\]

\subsection*{4.18 problem 39}
4.18.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 660

Internal problem ID [10447]
Internal file name [OUTPUT/9394_Monday_June_06_2022_02_21_28_PM_93629603/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a x^{n} y^{2}-y \lambda x=a b^{2} x^{n} \mathrm{e}^{\lambda x^{2}}
\]

\subsection*{4.18.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}+\lambda x y+a b^{2} x^{n} \mathrm{e}^{\lambda x^{2}}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{n} y^{2}+\lambda x y+a b^{2} x^{n} \mathrm{e}^{\lambda x^{2}}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b^{2} x^{n} \mathrm{e}^{\lambda x^{2}}, f_{1}(x)=\lambda x\) and \(f_{2}(x)=x^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =\lambda x x^{n} a \\
f_{2}^{2} f_{0} & =x^{3 n} a^{3} b^{2} \mathrm{e}^{\lambda x^{2}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
x^{n} a u^{\prime \prime}(x)-\left(\frac{x^{n} n a}{x}+\lambda x x^{n} a\right) u^{\prime}(x)+x^{3 n} a^{3} b^{2} \mathrm{e}^{\lambda x^{2}} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & c_{1} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right) \\
& +c_{2} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
& \begin{array}{r}
=a b x^{n} \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(c_{1} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)\right. \\
\left.\quad-c_{2} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)\right)
\end{array}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
& -\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(c_{1} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)-c_{2} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}(-\right.\right.}{c_{1} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)+c_{2} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}(-\lambda\right.}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
\begin{aligned}
& y= \\
& -\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(c_{3} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)-\sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}(-\lambda\right.\right.}{c_{3} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)+\cos \left(a b x ^ { n + 1 } 2 ^ { - \frac { 1 } { 2 } + \frac { n } { 2 } } \left(-\lambda x^{2}\right.\right.}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=  \tag{1}\\
&-\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(c_{3} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)-\sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}(-\lambda\right.\right.}{c_{3} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)+\cos \left(a b x ^ { n + 1 } 2 ^ { - \frac { 1 } { 2 } + \frac { n } { 2 } } \left(-\lambda x^{2}\right.\right.}
\end{align*}
\]

Verification of solutions
\(y=\)
\[
-\frac{b \mathrm{e}^{\frac{\lambda x^{2}}{2}}\left(c_{3} \cos \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)-\sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}(-\lambda\right.\right.}{c_{3} \sin \left(a b x^{n+1} 2^{-\frac{1}{2}+\frac{n}{2}}\left(-\lambda x^{2}\right)^{-\frac{n}{2}-\frac{1}{2}}\left(\Gamma\left(\frac{n}{2}+\frac{1}{2}\right)-\Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{\lambda x^{2}}{2}\right)\right)\right)+\cos \left(a b x ^ { n + 1 } 2 ^ { - \frac { 1 } { 2 } + \frac { n } { 2 } } \left(-\lambda x^{2}\right.\right.}
\]

\section*{Verified OK.}

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 90
dsolve(diff \((y(x), x)=a * x^{\wedge} n * y(x) \wedge 2+l a m b d a * x * y(x)+a * b^{\wedge} 2 * x^{\wedge} n * \exp \left(\operatorname{lambda} * x^{\wedge} 2\right), y(x)\), singsol=all)
\[
\begin{aligned}
y(x)=-\tan \left(-a b 2^{\frac{n}{2}-\frac{1}{2}} x^{n+1} \Gamma\left(\frac{n}{2}+\frac{1}{2}\right)\left(-x^{2} \lambda\right)^{-\frac{n}{2}-\frac{1}{2}}\right. \\
\left.\quad+a b 2^{\frac{n}{2}-\frac{1}{2}} x^{n+1}\left(-x^{2} \lambda\right)^{-\frac{n}{2}-\frac{1}{2}} \Gamma\left(\frac{n}{2}+\frac{1}{2},-\frac{x^{2} \lambda}{2}\right)+c_{1}\right) b \mathrm{e}^{\frac{x^{2} \lambda}{2}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.366 (sec). Leaf size: 83
DSolve \(\left[y\right.\) ' \([x]==a * x^{\wedge} n * y[x] \wedge 2+\backslash[L a m b d a] * x * y[x]+a * b^{\wedge} 2 * x^{\wedge} n * \operatorname{Exp}\left[\backslash[\right.\) Lambda \(\left.] * x^{\wedge} 2\right], y[x], x\), IncludeSingu
\[
y(x) \rightarrow \sqrt{b^{2}} e^{\frac{\lambda x^{2}}{2}} \tan \left(a \sqrt{b^{2}} \lambda 2^{\frac{n-1}{2}} x^{n+3}\left(\lambda\left(-x^{2}\right)\right)^{-\frac{n}{2}-\frac{3}{2}} \Gamma\left(\frac{n+1}{2},-\frac{x^{2} \lambda}{2}\right)+c_{1}\right)
\]

\subsection*{4.19 problem 40}
\[
\text { 4.19.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 664
\]

Internal problem ID [10448]
Internal file name [OUTPUT/9395_Monday_June_06_2022_02_21_29_PM_90333248/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
x^{4}\left(y^{\prime}-y^{2}\right)=a+b \mathrm{e}^{\frac{k}{x}}+c \mathrm{e}^{\frac{2 k}{x}}
\]

\subsection*{4.19.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{4} y^{2}+b \mathrm{e}^{\frac{k}{x}}+c \mathrm{e}^{\frac{2 k}{x}}+a}{x^{4}}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+\frac{b \mathrm{e}^{\frac{k}{x}}}{x^{4}}+\frac{c \mathrm{e}^{\frac{2 k}{x}}}{x^{4}}+\frac{a}{x^{4}}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a+b \mathrm{e}^{\frac{k}{x}+c \mathrm{e}^{\frac{2 k}{x}}}}{x^{4}}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a+b \mathrm{e}^{\frac{k}{x}}+c \mathrm{e}^{\frac{2 k}{x}}}{x^{4}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\frac{\left(a+b \mathrm{e}^{\frac{k}{x}}+c \mathrm{e}^{\frac{2 k}{x}}\right) u(x)}{x^{4}}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=x \mathrm{e}^{-\frac{k}{2 x}}\left(\text { WhittakerM }\left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right) c_{1}\right. \\
&\left.+ \text { WhittakerW }\left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right) c_{2}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad \mathrm{e}^{-\frac{k}{2 x}}\left(( ( i \sqrt { a } + \frac { k } { 2 } ) \sqrt { c } - \frac { i b } { 2 } ) c _ { 1 } \text { WhittakerM } ( - \frac { i b - 2 k \sqrt { c } } { 2 k \sqrt { c } } , \frac { i \sqrt { a } } { k } , \frac { 2 i \sqrt { c } \mathrm { e } ^ { \frac { k } { x } } } { k } ) - \text { WhittakerW } \left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \xlongequal[2]{2}\right.\right.
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\[
=\frac{\left(\left(i \sqrt{a}+\frac{k}{2}\right) \sqrt{c}-\frac{i b}{2}\right) c_{1} \text { WhittakerM }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)-\text { WhittakerW }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right) c}{\sqrt{c} x^{2}\left(\operatorname { W h i t t a k e r M } \left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i}{}\right.\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{-\frac{((-2 i \sqrt{a}-k) \sqrt{c}+i b) c_{3} \text { WhittakerM }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)}{2}-k \text { WhittakerW }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right) \sqrt{c}+\left(i c \mathrm{e}^{\frac{k}{x}}\right.}{\sqrt{c} x^{2}\left(\operatorname{WhittakerM}\left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)

Verification of solutions
\(y\)
\(=\frac{-\frac{((-2 i \sqrt{a}-k) \sqrt{c}+i b) c_{3} \text { WhittakerM }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)}{2}-k \text { WhittakerW }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right) \sqrt{c}+\left(i c \mathrm{e}^{\frac{k}{x}}\right.}{\sqrt{c} x^{2}\left(\text { WhittakerM }\left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)\right.}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(a+b*exp(k/x)+c*exp(2*k/x))*y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Whittaker successful
<- special function solution successful
Change of variables used:
[x = 1/ln(t)]667
Linear ODE actually solved:
(ln}(\textrm{t})*\textrm{a}+\operatorname{ln}(\textrm{t})*\textrm{b}*\textrm{t}^\textrm{k}+\operatorname{ln}(\textrm{t})*\textrm{c}*(\textrm{t}^\textrm{k})^2)*\textrm{u}(\textrm{t})+(\textrm{t}*\operatorname{ln}(\textrm{t})+2*\textrm{t})*\operatorname{diff}(\textrm{u}(\textrm{t}),\textrm{t})+\operatorname{ln}(\textrm{t})*\textrm{t}^2

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 302
```

dsolve(x^4*(diff(y(x),x)-y(x)^2)=a+b*exp(k/x)+c*exp(2*k/x),y(x), singsol=all)

```
\(y(x)\)
\(=\frac{\left(\left(i \sqrt{a}+\frac{k}{2}\right) \sqrt{c}-\frac{i b}{2}\right) \text { WhittakerM }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)-c_{1} k \text { WhittakerW }\left(-\frac{i b-2 k \sqrt{c}}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 i \sqrt{c} \mathrm{e}^{\frac{k}{x}}}{k}\right)}{\sqrt{c} x^{2}\left(\text { WhittakerW }\left(-\frac{i b}{2 k \sqrt{c}}, \frac{i \sqrt{a}}{k}, \frac{2 \imath_{V}}{}\right.\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 4.039 (sec). Leaf size: 940
DSolve \(\left[x^{\wedge} 4 *\left(y^{\prime}[x]-y[x] \sim 2\right)==a+b * \operatorname{Exp}[k / x]+c * \operatorname{Exp}[2 * k / x], y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True
\(y(x)\)
\(\rightarrow \frac{e^{k / x} \log \left(e^{k / x}\right)\left(c_{1}(b+\sqrt{c}(2 \sqrt{a}-i k)) \text { HypergeometricU }\left(\frac{\frac{i b}{\sqrt{c}}+3 k+2 i \sqrt{a}}{2 k}, \frac{2 i \sqrt{a}}{k}+2, \frac{2 i \sqrt{c} e^{k / x}}{k}\right)-2 i \sqrt{c} k L^{\frac{2 i}{}}-\right.}{k x^{2} \log \left(e^{k / x}\right)}\)
\(y(x)\)
\(\left.\rightarrow \frac{\left.\frac{e^{k / x}(b+\sqrt{c}(2 \sqrt{a}-i k)) \text { HypergeometricU }\left(\frac{i b}{\sqrt{c}}+3 k+2 i \sqrt{a}\right.}{2 k}, \frac{2 i \sqrt{a}}{k}+2, \frac{2 i \sqrt{c} e^{k / x}}{k}\right)}{k \text { HypergeometricU }\left(\frac{i b}{\sqrt{c}+k+2 i \sqrt{a}} \frac{2 i \sqrt{a}}{2 k}+1, \frac{2 i \sqrt{c} c^{k / x}}{k}\right)}+i\left(\sqrt{a}-\sqrt{c} e^{k / x}\right)-\frac{k}{\log \left(e^{k / x}\right)}\right)\)
\(y(x)\)
\(\rightarrow \frac{\left.\frac{\left.\frac{e^{k / x}(b+\sqrt{c}(2 \sqrt{a}-i k)) \text { HypergeometricU }\left(\frac{\frac{i b}{\sqrt{c}}+3 k+2 i \sqrt{a}}{2 k}, \frac{2 i \sqrt{a}}{k}+2, \frac{2 i \sqrt{c} e^{k / x}}{k}\right)}{k \text { HypergeometricU }\left(\frac{i b}{\sqrt{c}+k+2 i \sqrt{a}}\right.} \frac{2 i \sqrt{a}}{k}+1, \frac{2 i \sqrt{c} c^{k / x}}{k}\right)}{k}\right) i\left(\sqrt{a}-\sqrt{c} e^{k / x}\right)-\frac{k}{\log \left(e^{k / x}\right)}}{x^{2}}\)
5 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
5.1 problem 1 ..... 670
5.2 problem 2 ..... 675
5.3 problem 3 ..... 679
5.4 problem 4 ..... 683
5.5 problem 5 ..... 688
5.6 problem 6 ..... 693
5.7 problem 7 ..... 697
5.8 problem 8 ..... 702
5.9 problem 9 ..... 707
5.10 problem 10 ..... 711
5.11 problem 11 ..... 715
5.12 problem 12 ..... 720
5.13 problem 13 ..... 725
5.14 problem 14 ..... 730
5.15 problem 15 ..... 735
5.16 problem 16 ..... 740
5.17 problem 17 ..... 744

\section*{5.1 problem 1}
\[
\text { 5.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 670
\]

Internal problem ID [10449]
Internal file name [OUTPUT/9396_Monday_June_06_2022_02_21_32_PM_22140854/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}
\]

\subsection*{5.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2}+a \lambda \sinh (\lambda x)-a^{2} \sinh (\lambda x)^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & \mathrm{e} \frac{a \sinh (\lambda x)}{\lambda}\left(c_{1} \operatorname{HeunC}\left(\frac{4 i a}{\lambda},-\frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)\right. \\
& \left.+c_{2} \sinh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{\mathrm{e}^{\frac{a \sinh (\lambda x)}{\lambda}}\left(c _ { 2 } ( - 2 a \operatorname { s i n h } ( \frac { i \pi } { 4 } + \frac { \lambda x } { 2 } ) \operatorname { c o s h } ( \lambda x ) - \lambda \operatorname { c o s h } ( \frac { i \pi } { 4 } + \frac { \lambda x } { 2 } ) ) \operatorname { H e u n C } \left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh }{2}\right.\right.}{}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\(=\frac{c_{2}\left(-2 a \sinh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right) \cosh (\lambda x)-\lambda \cosh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right)\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)+}{2 c_{1} \text { Heun }}\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\left(-2 a \sinh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right) \cosh (\lambda x)-\lambda \cosh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right)\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)+\left(-\frac{1}{2}\right.}{2 \sinh \left(\frac{i \pi}{4}\right.}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=\frac{\left(-2 a \sinh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right) \cosh (\lambda x)-\lambda \cosh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right)\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)+(-}{2 \sinh \left(\frac{i \pi}{4}\right.}\)
Verification of solutions
\(y\)
\(=\frac{\left(-2 a \sinh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right) \cosh (\lambda x)-\lambda \cosh \left(\frac{i \pi}{4}+\frac{\lambda x}{2}\right)\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (\lambda x)}{2}+\frac{1}{2}\right)+(-}{2 \sinh \left(\frac{i \pi}{4}\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=\left(a^{\wedge} 2-a * l a m b d a * s i n h(l a m b d a * x)+a\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\)
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (i n t(r(x), d x))\) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying a quadrature
checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\)
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. T 673 l ng a special function solution free of integrals...
-> Trying a solution in terms of special functions:
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 318
dsolve (diff \((y(x), x)=y(x)^{\wedge} 2-a^{\wedge} 2+a * \operatorname{lambda*} \sinh (\operatorname{lambda*x})-a^{\wedge} 2 * \sinh (\operatorname{lambda} * x) \wedge 2, y(x)\), singsol=al
\(y(x)\)
\(=\frac{\left(-2 \sinh \left(\frac{i \pi}{4}+\frac{x \lambda}{2}\right) \cosh (x \lambda) c_{1} a-\cosh \left(\frac{i \pi}{4}+\frac{x \lambda}{2}\right) c_{1} \lambda\right) \operatorname{HeunC}\left(\frac{4 i a}{\lambda}, \frac{1}{2},-\frac{1}{2}, \frac{2 i a}{\lambda},-\frac{8 i a-3 \lambda}{8 \lambda},-\frac{i \sinh (x \lambda)}{2}+\frac{1}{2}\right)}{2 \sinh \left(\frac{i}{4}\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 11.807 (sec). Leaf size: 162
DSolve \(\left[y\right.\) ' \([x]==y[x] \sim 2-a^{\wedge} 2+a * \backslash[\) Lambda \(] * \operatorname{Sinh}[\backslash[\) Lambda \(] * x]-a^{\wedge} 2 * \operatorname{Sinh}[\backslash[\) Lambda \(] * x] \sim 2, y[x], x\), Includ
\(y(x)\)
\(\left.\left.\rightarrow \frac{e^{\lambda(-x)}\left(a\left(e^{2 \lambda x}+1\right) \int_{1}^{e^{x \lambda}} \frac{e^{\frac{a\left(K[1]^{2}-1\right)}{\lambda K[1]}}}{K[1]}\right.}{\text { (1] }} d K[1]-2 \lambda e^{\frac{a e^{\lambda(-x)}\left(e^{2 \lambda x}-1\right)}{\lambda}+\lambda x}+a c_{1} e^{2 \lambda x}+a c_{1}\right)\right)\)
\(y(x) \rightarrow \frac{1}{2} a e^{\lambda(-x)}\left(e^{2 \lambda x}+1\right)\)

\section*{5.2 problem 2}
5.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 675

Internal problem ID [10450]
Internal file name [OUTPUT/9397_Monday_June_06_2022_02_21_36_PM_50210798/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a \sinh (\beta x) y=a b \sinh (\beta x)-b^{2}
\]

\subsection*{5.2.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \sinh (\beta x) y+a b \sinh (\beta x)-b^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a \sinh (\beta x) y+a b \sinh (\beta x)-b^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b \sinh (\beta x)-b^{2}, f_{1}(x)=\sinh (\beta x) a\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\sinh (\beta x) a \\
f_{2}^{2} f_{0} & =a b \sinh (\beta x)-b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\sinh (\beta x) a u^{\prime}(x)+\left(a b \sinh (\beta x)-b^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{b x}\left(c_{1}+c_{2} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right)\right)
\]

The above shows that
\[
u^{\prime}(x)=\mathrm{e}^{b x}\left(\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right) c_{2} b \beta+c_{2} \beta \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}}+c_{1} b\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right) c_{2} b \beta+c_{2} \beta \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}}+c_{1} b}{c_{1}+c_{2} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right) b \beta-\mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} \beta-b c_{3}}{c_{3}+\beta\left(\int \mathrm{e}^{-\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right) b \beta-\mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} \beta-b c_{3}}{c_{3}+\beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right) b \beta-\mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} \beta-b c_{3}}{c_{3}+\beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (\beta x)}{\beta}} d x\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 73
```

dsolve(diff(y(x),x)=y(x)^2+a*sinh(beta*x)*y(x)+a*b*sinh(beta*x)-b^2,y(x), singsol=all)

```
\[
y(x)=\frac{b\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (x \beta)}{\beta}} d x\right)-c_{1} b+\mathrm{e}^{\frac{-2 b \beta x+a \cosh (x \beta)}{\beta}}}{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+a \cosh (x \beta)}{\beta}} d x\right)+c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 9.168 (sec). Leaf size: 183
DSolve \(\left[y\right.\) ' \([x]==y[x] \sim 2+a * \operatorname{Sinh}[\backslash[\) Beta \(] * x] * y[x]+a * b * \operatorname{Sinh}[\backslash[\) Beta \(] * x]-b^{\wedge} 2, y[x], x\), IncludeSingularSo

Solve \(\left[\int_{1}^{x}-\frac{e^{\frac{a \cosh (\beta K[1])}{\beta}-2 b K[1]}(-b+a \sinh (\beta K[1])+y(x))}{a \beta(b+y(x))} d K[1]\right.\)
\(+\int_{1}^{y(x)}\left(\frac{e^{\frac{a \cosh (x \beta)}{\beta}-2 b x}}{a \beta(b+K[2])^{2}}\right.\)
\(\left.\left.-\int_{1}^{x}\left(\frac{e^{\frac{a \cosh (\beta K[1])}{\beta}-2 b K[1]}(-b+K[2]+a \sinh (\beta K[1]))}{a \beta(b+K[2])^{2}}-\frac{e^{\frac{a \cosh (\beta K[1])}{\beta}-2 b K[1]}}{a \beta(b+K[2])}\right) d K[1]\right) d K[2]=c_{1}, y(x)\right]\)

\section*{5.3 problem 3}
\[
\text { 5.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 679
\]

Internal problem ID [10451]
Internal file name [OUTPUT/9398_Monday_June_06_2022_02_21_38_PM_36739669/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \sinh (b x)^{m} y=a \sinh (b x)^{m}
\]

\subsection*{5.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \sinh (b x)^{m} y+a \sinh (b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \sinh (b x)^{m} y+a \sinh (b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \sinh (b x)^{m}, f_{1}(x)=x a \sinh (b x)^{m}\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x a \sinh (b x)^{m} \\
f_{2}^{2} f_{0} & =a \sinh (b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-x a \sinh (b x)^{m} u^{\prime}(x)+a \sinh (b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\frac{x\left(c_{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right)+c_{1} b\right)}{b}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{c_{2} \mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)+c_{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right) x+c_{1} b x}{b x}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
y=-\frac{c_{2} \mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)+c_{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right) x+c_{1} b x}{x^{2}\left(c_{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right)+c_{1} b\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)-\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right) x-c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x+b c_{3}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)-\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right) x-c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x+b c_{3}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)-\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x\right) x-c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(x a \sinh (b x)^{m}-\tanh (b x) b\right) d x} \cosh (b x)}{x^{2}} d x+b c_{3}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 85
```

dsolve(diff (y(x),x)=y(x)^2+a*x*\operatorname{sinh}(b*x)^m*y(x)+a*\operatorname{sinh}(b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{\sinh (b x)^{m} x^{2} a-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{\sinh (b x)^{m} x^{2} a-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{\sinh (b x)^{m} x^{2} a-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 7.437 (sec). Leaf size: 379
DSolve \(\left[y y^{\prime}[x]==y[x] \sim 2+a * x * \operatorname{Sinh}[b * x] \wedge m * y[x]+a * \operatorname{Sinh}[b * x] \wedge m, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) T
\(y(x) \rightarrow\)

\(y(x) \rightarrow-\frac{1}{x}\)

\section*{5.4 problem 4}
5.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 683

Internal problem ID [10452]
Internal file name [OUTPUT/9399_Monday_June_06_2022_02_21_43_PM_13728466/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\lambda \sinh (\lambda x) y^{2}=-\lambda \sinh (\lambda x)^{3}
\]

\subsection*{5.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sinh (\lambda x) \lambda y^{2}-\lambda \sinh (\lambda x)^{3}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\sinh (\lambda x) \lambda y^{2}-\lambda \sinh (\lambda x)^{3}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-\lambda \sinh (\lambda x)^{3}, f_{1}(x)=0\) and \(f_{2}(x)=\lambda \sinh (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sinh (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cosh (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\lambda^{3} \sinh (\lambda x)^{5}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\lambda \sinh (\lambda x) u^{\prime \prime}(x)-\lambda^{2} \cosh (\lambda x) u^{\prime}(x)-\lambda^{3} \sinh (\lambda x)^{5} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{e}^{-\frac{\cosh (\lambda x)^{2}}{2}}\left(c_{1}+c_{2} \operatorname{erfi}(\cosh (\lambda x))\right)
\]

The above shows that
\[
u^{\prime}(x)=-\frac{\left(\sqrt{\pi} \cosh (\lambda x)\left(c_{1}+c_{2} \operatorname{erfi}(\cosh (\lambda x))\right) \mathrm{e}^{-\frac{\cosh (\lambda x)^{2}}{2}}-2 c_{2} \mathrm{e}^{\frac{\cosh (\lambda x)^{2}}{2}}\right) \lambda \sinh (\lambda x)}{\sqrt{\pi}}
\]

Using the above in (1) gives the solution
\[
y=\frac{\left(\sqrt{\pi} \cosh (\lambda x)\left(c_{1}+c_{2} \mathrm{erfi}(\cosh (\lambda x))\right) \mathrm{e}^{-\frac{\cosh (\lambda x)^{2}}{2}}-2 c_{2} \mathrm{e}^{\frac{\cosh (\lambda x)^{2}}{2}}\right) \mathrm{e}^{\frac{\cosh (2 \lambda x)}{4}+\frac{1}{4}}}{\sqrt{\pi}\left(c_{1}+c_{2} \text { erfi }(\cosh (\lambda x))\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-2 \mathrm{e}^{\cosh (\lambda x)^{2}}+\cosh (\lambda x) \sqrt{\pi}\left(c_{3}+\mathrm{erfi}(\cosh (\lambda x))\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erfi}(\cosh (\lambda x))\right)}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-2 \mathrm{e}^{\cosh (\lambda x)^{2}}+\cosh (\lambda x) \sqrt{\pi}\left(c_{3}+\operatorname{erfi}(\cosh (\lambda x))\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erfi}(\cosh (\lambda x))\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-2 \mathrm{e}^{\cosh (\lambda x)^{2}}+\cosh (\lambda x) \sqrt{\pi}\left(c_{3}+\operatorname{erfi}(\cosh (\lambda x))\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erfi}(\cosh (\lambda x))\right)}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*cosh(lambda*x)*(diff(y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[x = arccosh(t)/lambda]
Linear ODE actually solved:
-16*(t-1)^(1/2)*(t+1)^(1/2)*(t^4-2*t`2+1)*u(t)+16*(t-1)^(1/2)*(t+1)^(1/2)*(t^2-1 <- change of variables successful <- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 51
dsolve(diff \((y(x), x)=l a m b d a * \sinh (l a m b d a * x) * y(x)^{\wedge} 2-l a m b d a * \sinh (l a m b d a * x) \wedge 3, y(x)\), singsol=all)
\[
y(x)=-\frac{2\left(\mathrm{e}^{\frac{\cosh (2 x \lambda)}{2}+\frac{1}{2}} c_{1}-\frac{\cosh (x \lambda) \sqrt{\pi}\left(\operatorname{erfi}(\cosh (x \lambda)) c_{1}+1\right)}{2}\right)}{\sqrt{\pi}\left(\mathrm{erfi}(\cosh (x \lambda)) c_{1}+1\right)}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' \([\mathrm{x}]==\backslash[\) Lambda] \(* \operatorname{Sinh}[\backslash[\) Lambda \(] * x] * y[x] \sim 2-\backslash[\) Lambda \(] * \operatorname{Sinh}[\backslash[\) Lambda] \(* x] \sim 3, y[x], x\), Includ

Not solved

\section*{5.5 problem 5}
5.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 688

Internal problem ID [10453]
Internal file name [OUTPUT/9400_Monday_June_06_2022_02_21_45_PM_17419007/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\left(a \sinh (\lambda x)^{2}-\lambda\right) y^{2}=-a \sinh (\lambda x)^{2}+\lambda-a
\]

\subsection*{5.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sinh (\lambda x)^{2} a y^{2}-a \sinh (\lambda x)^{2}-\lambda y^{2}-a+\lambda
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\sinh (\lambda x)^{2} a y^{2}-a \sinh (\lambda x)^{2}-\lambda y^{2}-a+\lambda
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \sinh (\lambda x)^{2}+\lambda-a, f_{1}(x)=0\) and \(f_{2}(x)=a \sinh (\lambda x)^{2}-\lambda\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(a \sinh (\lambda x)^{2}-\lambda\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =2 a \sinh (\lambda x) \lambda \cosh (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(a \sinh (\lambda x)^{2}-\lambda\right)^{2}\left(-a \sinh (\lambda x)^{2}+\lambda-a\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives \(\left(a \sinh (\lambda x)^{2}-\lambda\right) u^{\prime \prime}(x)-2 a \sinh (\lambda x) \lambda \cosh (\lambda x) u^{\prime}(x)+\left(a \sinh (\lambda x)^{2}-\lambda\right)^{2}\left(-a \sinh (\lambda x)^{2}+\lambda-a\right) u(\) Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-2 \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}} \sinh (\lambda x)\left(c_{2} \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right)-\frac{c_{1}}{2}\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)=( & \sinh (2 \lambda x)\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}} \\
& \left.-\frac{\sinh (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}}{2}+2 c_{2} \lambda \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{4 \lambda}}\right) \operatorname{csch}(\lambda x)\left(a \sinh (\lambda x)^{2}-\lambda\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
=\frac{\left(\sinh (2 \lambda x)\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}-\frac{\sinh (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}}{2}+2 c_{2} \lambda \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{4 \lambda}}\right)}{2 \sinh (\lambda x)\left(c_{2} \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right)-\frac{c_{1}}{2}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{csch}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right) \operatorname{coth}(\lambda x)+c_{3} \operatorname{coth}(\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{csch}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right) \operatorname{coth}(\lambda x)+c_{3} \operatorname{coth}(\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}}\)
Verification of solutions
\(=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{csch}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right) \operatorname{coth}(\lambda x)+c_{3} \operatorname{coth}(\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{csch}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = 2*sinh(lambda*x)*a*lambda*cosh
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 104
dsolve \((\operatorname{diff}(y(x), x)=(a * \sinh (\operatorname{lambda} * x) \wedge 2-1 a m b d a) * y(x) \wedge 2-a * \sinh (\operatorname{lambda} * x) \wedge 2+1 a m b d a-a, y(x)\), sin
\(y(x)\)
\(=\frac{2 \operatorname{coth}(x \lambda) \lambda\left(\int-\mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}}\left(a-\operatorname{csch}(x \lambda)^{2} \lambda\right) d x\right) c_{1}+2 \operatorname{csch}(x \lambda)^{2} \mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}} c_{1} \lambda-\operatorname{coth}(x \lambda)}{2 \lambda\left(\int-\mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}}\left(a-\operatorname{csch}(x \lambda)^{2} \lambda\right) d x\right) c_{1}-1}\)
\(\checkmark\) Solution by Mathematica
Time used: 50.151 (sec). Leaf size: 211

\[
\begin{aligned}
& y(x) \\
& \rightarrow \frac{\operatorname{csch}^{2}(\lambda x)\left(c_{1} \sinh (2 \lambda x) \int_{1}^{x} e^{\frac{a \sinh ^{2}(\lambda K[1])}{\lambda}} \operatorname{csch}^{2}(\lambda K[1])\left(\lambda-a \sinh ^{2}(\lambda K[1])\right) d K[1]+2 c_{1} e^{\frac{a \sinh ^{2}(\lambda x)}{\lambda}}+\sinh ( \right.}{2+2 c_{1} \int_{1}^{x} e^{\frac{a \sinh ^{2}(\lambda K[1])}{\lambda}} \operatorname{csch}^{2}(\lambda K[1])\left(\lambda-a \sinh ^{2}(\lambda K[1])\right) d K[1]} \\
& \begin{array}{r}
y(x) \rightarrow \frac{1}{2} \operatorname{csch}^{2}(\lambda x)\left(\frac{2 \sinh ^{2}(\lambda x)}{\lambda}\right. \\
\int_{1}^{x} e^{\frac{a \sinh ^{2}(\lambda K[1])}{\lambda}} \operatorname{csch}^{2}(\lambda K[1])\left(\lambda-a \sinh ^{2}(\lambda K[1])\right) d K[1] \\
+\sinh (2 \lambda x))
\end{array}
\end{aligned}
\]

\section*{5.6 problem 6}
5.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 693

Internal problem ID [10454]
Internal file name [OUTPUT/9401_Monday_June_06_2022_02_22_19_PM_6503264/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \sinh (\lambda x)+b) y^{\prime}-y^{2}-c \sinh (x \mu) y=-d^{2}+c d \sinh (x \mu)
\]

\subsection*{5.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \sinh (x \mu) y-d^{2}+c d \sinh (x \mu)}{a \sinh (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \sinh (x \mu)}{a \sinh (\lambda x)+b}+\frac{c \sinh (x \mu) y}{a \sinh (\lambda x)+b}-\frac{d^{2}}{a \sinh (\lambda x)+b}+\frac{y^{2}}{a \sinh (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \sinh (x \mu)}{a \sinh (\lambda x)+b}, f_{1}(x)=\frac{c \sinh (x \mu)}{a \sinh (\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \sinh (\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\overline{a \sinh (\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda \cosh (\lambda x)}{(a \sinh (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \sinh (x \mu)}{(a \sinh (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \sinh (x \mu)}{(a \sinh (\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{u^{\prime \prime}(x)}{a \sinh (\lambda x)+b}-\left(-\frac{a \lambda \cosh (\lambda x)}{(a \sinh (\lambda x)+b)^{2}}+\frac{c \sinh (x \mu)}{(a \sinh (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \sinh (x \mu)\right) u(x)}{(a \sinh (\lambda x)+b)^{3}}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 253
dsolve \(\left((a * \sinh (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+c * \sinh (m u * x) * y(x)-d^{\wedge} 2+c * d * \sinh (m u * x), y(x)\right.\),
\(y(x)\)

\(\checkmark\) Solution by Mathematica
Time used: 28.506 (sec). Leaf size: 289
DSolve \(\left[(a * \operatorname{Sinh}[\backslash[\operatorname{Lambda}] * x]+b) * y{ }^{\prime}[x]==y[x] \sim 2+c * \operatorname{Sinh}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Sinh}[\backslash[M u] * x], y[x]\right.\)

Solve \(\left[\int_{1}^{x}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sinh (\mu K[1])}{b+a \sinh (\lambda K[1])} d K[1]\right)(-d+c \sinh (\mu K[2])+y(x))}{c \mu(b+a \sinh (\lambda K[2]))(d+y(x))} d K[2]\right.\)
\(+\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x} \frac{2 d-c \sinh (\mu K[1])}{b+a \sinh (\lambda K[1])} d K[1]\right)}{c \mu(d+K[3])^{2}}\right.\)
\(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sinh (\mu K[1])}{b+a \sinh (\lambda K[1])} d K[1]\right)(-d+K[3]+c \sinh (\mu K[2]))}{c \mu(d+K[3])^{2}(b+a \sinh (\lambda K[2]))}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sinh (\mu K[1])}{b+a \sinh (\lambda K[1])} d K[1\right.}{c \mu(d+K[3])(b+a \sinh (\lambda K[2])}\right.\)

\section*{5.7 problem 7}

> 5.7.1 Solving as riccati ode

Internal problem ID [10455]
Internal file name [OUTPUT/9402_Monday_June_06_2022_02_23_34_PM_5846101/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
(a \sinh (\lambda x)+b)\left(y^{\prime}-y^{2}\right)=-a \lambda^{2} \sinh (\lambda x)
\]

\subsection*{5.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\sinh (\lambda x) y^{2} a-a \lambda^{2} \sinh (\lambda x)+y^{2} b}{a \sinh (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-\frac{a \lambda^{2} \sinh (\lambda x)}{a \sinh (\lambda x)+b}+\frac{\sinh (\lambda x) y^{2} a}{a \sinh (\lambda x)+b}+\frac{y^{2} b}{a \sinh (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-\frac{a \lambda^{2} \sinh (\lambda x)}{a \sinh (\lambda x)+b}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a \lambda^{2} \sinh (\lambda x)}{a \sinh (\lambda x)+b}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\frac{a \lambda^{2} \sinh (\lambda x) u(x)}{a \sinh (\lambda x)+b}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=-a c_{1} \cosh \left(\frac{\lambda x}{2}\right)\left(a^{2}+b^{2}\right)^{\frac{3}{2}}\left(a \sinh \left(\frac{\lambda x}{2}\right)+b \cosh \left(\frac{\lambda x}{2}\right)\right) \\
&-2\left(\sinh \left(\frac{\lambda x}{2}\right) a \cosh \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right)\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{1}\right. \\
&\left.+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{1}-c_{2}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad 4\left(\left(\cosh \left(\frac{\lambda x}{2}\right)^{2}+\sinh \left(\frac{\lambda x}{2}\right)^{2}\right)\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{1}+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{1}-c_{2}\right)\right.
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\[
=\frac{4\left(\left(\cosh \left(\frac{\lambda x}{2}\right)^{2}+\sinh \left(\frac{\lambda x}{2}\right)^{2}\right)\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{1}+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{1}-c_{2}\right) a\right.}{\sqrt{a^{2}+b^{2}}\left(-2 \tanh \left(\frac{\lambda x}{2}\right)^{2} b+4 \tanh \left(\frac{\lambda x}{2}\right) a+2 b\right)\left(-a c_{1} \cosh \left(\frac{\lambda x}{2}\right)(a\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\[
\frac{4\left(\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{3}+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{3}-1\right) a\left(\cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)\right.}{+b^{2}}\left(2 a c_{3} \cosh \left(\frac{\lambda x}{2}\right)\left(a^{2}+b^{2}\right)^{\frac{3}{2}}\left(a \sinh \left(\frac{\lambda x}{2}\right)+b \cosh \left(\frac{\lambda x}{2}\right)\right)+4\left(\sinh \left(\frac{\lambda x}{2}\right) a \cosh \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right)(\operatorname{arc}\right.
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{4\left(\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{3}+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{3}-1\right) a\left(\cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)\right.}{\sqrt{a^{2}+b^{2}}\left(2 a c_{3} \cosh \left(\frac{\lambda x}{2}\right)\left(a^{2}+b^{2}\right)^{\frac{3}{2}}\left(a \sinh \left(\frac{\lambda x}{2}\right)+b \cosh \left(\frac{\lambda x}{2}\right)\right)+4\left(\sinh \left(\frac{\lambda x}{2}\right) a \cosh \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right)(\operatorname{arc}\right.} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y=\)
\[
-\frac{4\left(\left(\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2} c_{3}+\operatorname{arctanh}\left(\frac{-b \tanh \left(\frac{\lambda x}{2}\right)+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4} c_{3}-1\right) a\left(\cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right) v\right.}{\sqrt{a^{2}+b^{2}}\left(2 a c_{3} \cosh \left(\frac{\lambda x}{2}\right)\left(a^{2}+b^{2}\right)^{\frac{3}{2}}\left(a \sinh \left(\frac{\lambda x}{2}\right)+b \cosh \left(\frac{\lambda x}{2}\right)\right)+4\left(\sinh \left(\frac{\lambda x}{2}\right) a \cosh \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right)(\operatorname{arc}\right.}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda^2*sinh(lambda*x)*a*y(x)
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 250
dsolve \(\left((a * \sinh (\operatorname{lambda} * x)+b) *\left(\operatorname{diff}(y(x), x)-y(x)^{\wedge} 2\right)+a * \operatorname{lambda}{ }^{\wedge} 2 * \sinh (\operatorname{lambda} * x)=0, y(x), \quad\right.\) singsol \(=\)
\[
\begin{aligned}
& y(x)= \\
& \quad-\frac{4\left(\left(\operatorname{arctanh}\left(\frac{-\tanh \left(\frac{x \lambda}{2}\right) b+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2}+\operatorname{arctanh}\left(\frac{-\tanh \left(\frac{x \lambda}{2}\right) b+a}{\sqrt{a^{2}+b^{2}}}\right) b^{4}-c_{1}\right) a\left(\cosh \left(\frac{x \lambda}{2}\right)^{2}-\frac{1}{2}\right) \sqrt{a^{2}}\right.}{\sqrt{a^{2}+b^{2}}\left(2 a \cosh \left(\frac{x \lambda}{2}\right)\left(a^{2}+b^{2}\right)^{\frac{3}{2}}\left(a \sinh \left(\frac{x \lambda}{2}\right)+b \cosh \left(\frac{x \lambda}{2}\right)\right)+4\left(\operatorname{arctanh}\left(\frac{-\tanh \left(\frac{x \lambda}{2}\right) b+a}{\sqrt{a^{2}+b^{2}}}\right) a^{2} b^{2}+a\right.\right.}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 24.532 (sec). Leaf size: 202
DSolve \(\left[(a * \operatorname{Sinh}[\backslash[\operatorname{Lambda}] * x]+b) *\left(y^{\prime}[x]-y[x] \sim 2\right)+a * \backslash[\operatorname{Lambda}]{ }^{\wedge} 2 * \operatorname{Sinh}[\backslash[\right.\) Lambda] \(* x]=0, y[x], x\), Incl
\[
\begin{aligned}
& \left.\begin{array}{l}
y(x)
\end{array}\right) \\
& -\frac{\lambda\left(\sqrt{-a^{2}-b^{2}}(b-a \sinh (\lambda x))+a \cosh (\lambda x)\left(2 b \arctan \left(\frac{a-b \tanh \left(\frac{\lambda x}{2}\right)}{\sqrt{-a^{2}-b^{2}}}\right)-c_{1} \lambda\left(-a^{2}-b^{2}\right)^{3 / 2}\right)\right)}{-a \sqrt{-a^{2}-b^{2}} \cosh (\lambda x)+(a \sinh (\lambda x)+b)\left(2 b \arctan \left(\frac{a-b \tanh \left(\frac{\lambda x}{2}\right)}{\sqrt{-a^{2}-b^{2}}}\right)-c_{1} \lambda\left(-a^{2}-b^{2}\right)^{3 / 2}\right)} \\
& \\
& y(x) \rightarrow-\frac{a \lambda \cosh (\lambda x)}{a \sinh (\lambda x)+b}
\end{aligned}
\]

\section*{5.8 problem 8}
5.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 702

Internal problem ID [10456]
Internal file name [OUTPUT/9403_Monday_June_06_2022_02_24_26_PM_28185864/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\alpha y^{2}=\beta+\gamma \cosh (x)
\]

\subsection*{5.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\alpha y^{2}+\beta+\gamma \cosh (x)
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\alpha y^{2}+\beta+\gamma \cosh (x)
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\beta+\gamma \cosh (x), f_{1}(x)=0\) and \(f_{2}(x)=\alpha\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\alpha u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\alpha^{2}(\beta+\gamma \cosh (x))
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\alpha u^{\prime \prime}(x)+\alpha^{2}(\beta+\gamma \cosh (x)) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \text { MathieuC }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{2} \text { MathieuS }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=\frac{i\left(c_{2} \text { MathieuSPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{1} \text { MathieuCPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}{2}
\]

Using the above in (1) gives the solution
\[
y=-\frac{i\left(c_{2} \text { MathieuSPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{1} \text { MathieuCPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}{2 \alpha\left(c_{1} \text { MathieuC }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{2} \text { MathieuS }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{i\left(\text { MathieuSPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{3} \text { MathieuCPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+\text { MathieuS }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{i\left(\text { MathieuSPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{3} \text { MathieuCPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+\text { MathieuS }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{i\left(\text { MathieuSPrime }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+c_{3} \operatorname{MathieuCPrime}\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)+\operatorname{MathieuS}\left(-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right)\right)}
\]

Verified OK.
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -alpha*(beta+gamma*cosh(x))*y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
705
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {z = 1/2*t+1/2}, {kappa

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 70
dsolve (diff \((y(x), x)=\) alpha*y \((x)^{\wedge} 2+\) beta+gamma*cosh \((x), y(x), \quad\) singsol \(\left.=a l l\right)\)
\[
y(x)=-\frac{i\left(c_{1} \text { MathieuSPrime }\left(-4 \alpha \beta, 2 \gamma \alpha, \frac{i x}{2}\right)+\operatorname{MathieuCPrime}\left(-4 \alpha \beta, 2 \gamma \alpha, \frac{i x}{2}\right)\right)}{2 \alpha\left(c_{1} \text { MathieuS }\left(-4 \alpha \beta, 2 \gamma \alpha, \frac{i x}{2}\right)+\operatorname{MathieuC}\left(-4 \alpha \beta, 2 \gamma \alpha, \frac{i x}{2}\right)\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.543 (sec). Leaf size: 140
DSolve [y' \([\mathrm{x}]==\backslash[\) Alpha \(] * \mathrm{y}[\mathrm{x}] \sim 2+\backslash[\) Beta \(]+\backslash[\) Gamma \(] * \operatorname{Cosh}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow \mathrm{Tr}\)
\[
\begin{aligned}
y(x) & \rightarrow-\frac{i c_{1} \text { MathieuCPrime }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]-i \text { MathieuSPrime }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]}{2 \alpha c_{1} \text { MathieuC }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]-2 \alpha \text { MathieuS }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]} \\
y(x) & \rightarrow-\frac{i \text { MathieuCPrime }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]}{2 \alpha \text { MathieuC }\left[-4 \alpha \beta, 2 \alpha \gamma, \frac{i x}{2}\right]}
\end{aligned}
\]

\section*{5.9 problem 9}
5.9.1 Solving as riccati ode

Internal problem ID [10457]
Internal file name [OUTPUT/9404_Monday_June_06_2022_02_24_28_PM_71061260/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a \cosh (\beta x) y=a b \cosh (\beta x)-b^{2}
\]

\subsection*{5.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \cosh (\beta x) y+a b \cosh (\beta x)-b^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a \cosh (\beta x) y+a b \cosh (\beta x)-b^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b \cosh (\beta x)-b^{2}, f_{1}(x)=a \cosh (\beta x)\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \cosh (\beta x) \\
f_{2}^{2} f_{0} & =a b \cosh (\beta x)-b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-a \cosh (\beta x) u^{\prime}(x)+\left(a b \cosh (\beta x)-b^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & c_{1} \operatorname{HeunD}\left(-\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \\
& +c_{2} \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}}
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & -\frac{\operatorname{csch}\left(\frac{\beta x}{2}\right)^{2} c_{1} \beta \operatorname{HeunDPrime}\left(-\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right)}{2} \\
& +\left(-\frac{\operatorname{csch}\left(\frac{\beta x}{2}\right)^{2} \operatorname{HeunDPrime}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \beta}{2}\right. \\
& \left.+a \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \cosh (\beta x)\right) c_{2} \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{-\frac{\operatorname{csch}\left(\frac{\beta x}{2}\right)^{2} c_{1} \beta \text { HeunDPrime }\left(-\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right)}{2}+\left(-\frac{\operatorname{csch}\left(\frac{\beta x}{2}\right)^{2} \operatorname{HeunDPrime}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right.\right.}{2}\right.}{c_{1} \operatorname{HeunD}\left(-\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right)+c_{2} \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b}{}\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{-2 \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} a \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \cosh (\beta x)+\beta \operatorname{csch}\left(\frac{\beta x}{2}\right)^{2}\left(\mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} \operatorname{HeunDPrim\epsilon }\right.}{2 \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}}+2 c}\)
Summary
The solution(s) found are the following
\(y\)
\(=\frac{-2 \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} a \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \cosh (\beta x)+\beta \operatorname{csch}\left(\frac{\beta x}{2}\right)^{2}\left(\mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} \operatorname{HeunDPrim\epsilon }\right.}{2 \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}}+2 c}\)
Verification of solutions
\(y\)
\(=\frac{-2 \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} a \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \cosh (\beta x)+\beta \operatorname{csch}\left(\frac{\beta x}{2}\right)^{2}\left(\mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}} \operatorname{HeunDPrime}\right.}{2 \operatorname{HeunD}\left(\frac{2 a}{\beta}, \frac{4 b(a-b)}{\beta^{2}}, \frac{4 a}{\beta}, \frac{4 b(a+b)}{\beta^{2}}, \operatorname{coth}\left(\frac{\beta x}{2}\right)\right) \mathrm{e}^{\frac{a \sinh (\beta x)}{\beta}}+2 c}\)
Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 73
dsolve (diff \((y(x), x)=y(x) \wedge 2+a * \cosh (\operatorname{beta} a x) * y(x)+a * b * \cosh (\operatorname{beta} * x)-b \wedge 2, y(x)\), singsol=all)
\[
y(x)=\frac{b\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sinh (x \beta) a}{\beta}} d x\right)-c_{1} b+\mathrm{e}^{\frac{-2 b \beta x+\sinh (x \beta) a}{\beta}}}{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sinh (x \beta) a}{\beta}} d x\right)+c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 9.815 (sec). Leaf size: 242
DSolve \(\left[y\right.\) ' \([x]==y[x] \sim 2+a * \operatorname{Cosh}[\backslash[\) Beta \(] * x] * y[x]+a * b * \operatorname{Cosh}[\backslash[\) Beta \(] * x]-b^{\wedge} 2, y[x], x\), IncludeSingularSo
\[
\begin{aligned}
& y(x) \rightarrow-\frac{b \int_{1}^{e^{x \beta}} e^{\frac{a\left(K[1]^{2}-1\right)}{2 \beta K[1]}} K[1]^{-\frac{2 b}{\beta}-1} d K[1]+\beta e^{\frac{a e^{\beta(-x)}\left(e^{2 \beta x}-1\right)}{2 \beta}}\left(e^{\beta x}\right)^{-\frac{2 b}{\beta}}+b c_{1}}{\int_{1}^{e^{x \beta}} e^{\frac{a\left(K[1]^{2}-1\right)}{2 \beta K[1]}} K[1]^{-\frac{2 b}{\beta}-1} d K[1]+c_{1}} \\
& y(x) \rightarrow-b \quad \\
& y(x) \rightarrow-\frac{\beta e^{\frac{a e^{\beta(-x)\left(e^{2 \beta x}-1\right)}}{2 \beta}}\left(e^{\beta x}\right)^{-\frac{2 b}{\beta}}}{\int_{1}^{e^{x \beta}} e^{\frac{a\left(K[1]^{2}-1\right)}{2 \beta K[1]}} K[1]^{-\frac{2 b}{\beta}-1} d K[1]}
\end{aligned}
\]

\subsection*{5.10 problem 10}
5.10.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 711

Internal problem ID [10458]
Internal file name [OUTPUT/9405_Monday_June_06_2022_02_24_32_PM_77442611/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \cosh (b x)^{m} y=a \cosh (b x)^{m}
\]

\subsection*{5.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \cosh (b x)^{m} y+a \cosh (b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \cosh (b x)^{m} y+a \cosh (b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \cosh (b x)^{m}, f_{1}(x)=\cosh (b x)^{m} a x\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\cosh (b x)^{m} a x \\
f_{2}^{2} f_{0} & =a \cosh (b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\cosh (b x)^{m} a x u^{\prime}(x)+a \cosh (b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2}-2}{x} d x}
\]

Using the above in (1) gives the solution
\[
y=-\frac{c_{1}\left(\int \mathrm{e}^{\frac{\int \cosh (b x)^{m} x_{a x^{2}-2}^{x}}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\frac{\cosh (b x)^{m a x^{2}-2}}{x} d x}}{x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x_{a x}-2}{x} d x} d x\right)+c_{2}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+1\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cosh (b x)^{m_{a x}} x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2}-2}{x} d x} d x\right)+1\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+1\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 85
```

dsolve(diff(y(x),x)=y(x)^2+a*x*\operatorname{cosh}(b*x)^m*y(x)+a*\operatorname{cosh}(b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2} a-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2} a-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{\cosh (b x)^{m} x^{2} a-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 7.557 (sec). Leaf size: 394
DSolve \(\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}]^{\wedge} 2+\mathrm{a} * \mathrm{x} * \operatorname{Cosh}[\mathrm{~b} * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \operatorname{Cosh}[\mathrm{~b} * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) T
\(y(x) \rightarrow\)
\(-\frac{\int_{1}^{x} \xlongequal{\exp \left(-\frac{2^{-m} a\left(e^{-b K[1]}+e^{b K[1]}\right)^{m}\left(1+e^{2 b K[1]}\right)^{-m}\left({ }_{3} F_{2}\left(-m,-\frac{m}{2},-\frac{m}{2} ; 1-\frac{m}{2}, 1-\frac{m}{2} ;-e^{2 b K[1]}\right)+b m \text { Hypergeometric2F1 }\left(-m,-\frac{m}{2}, 1-\frac{m}{2},-e^{2 b K[1}\right.\right.}{b^{2} m^{2}}\right.}}{x\left(\int_{1}^{x} \frac{\exp \left(-\frac{2^{-m a}\left(e^{-b K[1]}+e^{b K[1]}\right)^{m}\left(1+e^{2 b K[1]}\right)^{-m}\left(3^{F} F_{2}\left(-m,-\frac{m}{2},-\frac{m}{2}\right.\right.}{2}\right.}{}\right.}\)
\(y(x) \rightarrow-\frac{1}{x}\)

\subsection*{5.11 problem 11}
5.11.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 715

Internal problem ID [10459]
Internal file name [OUTPUT/9406_Monday_June_06_2022_02_24_34_PM_92845045/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\left(a \cosh (\lambda x)^{2}-\lambda\right) y^{2}=-a \cosh (\lambda x)^{2}+a+\lambda
\]

\subsection*{5.11.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\cosh (\lambda x)^{2} a y^{2}-a \cosh (\lambda x)^{2}-\lambda y^{2}+a+\lambda
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\cosh (\lambda x)^{2} a y^{2}-a \cosh (\lambda x)^{2}-\lambda y^{2}+a+\lambda
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \cosh (\lambda x)^{2}+a+\lambda, f_{1}(x)=0\) and \(f_{2}(x)=a \cosh (\lambda x)^{2}-\lambda\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(a \cosh (\lambda x)^{2}-\lambda\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =2 a \sinh (\lambda x) \lambda \cosh (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(a \cosh (\lambda x)^{2}-\lambda\right)^{2}\left(-a \cosh (\lambda x)^{2}+a+\lambda\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\left(a \cosh (\lambda x)^{2}-\lambda\right) u^{\prime \prime}(x)-2 a \sinh (\lambda x) \lambda \cosh (\lambda x) u^{\prime}(x)+\left(a \cosh (\lambda x)^{2}-\lambda\right)^{2}\left(-a \cosh (\lambda x)^{2}+a+\lambda\right) u\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-2 \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}\left(c_{2} \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right)-\frac{c_{1}}{2}\right) \cosh (\lambda x)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\left(a \cosh (\lambda x)^{2}\right. \\
& -\lambda) \operatorname{sech}(\lambda x)\left(\sinh (2 \lambda x)\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}\right. \\
& \\
& \\
& \left.-\frac{\sinh (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}}{2}+2 c_{2} \lambda \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{4 \lambda}}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\(=\frac{\operatorname{sech}(\lambda x)\left(\sinh (2 \lambda x)\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}-\frac{\sinh (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cosh (2 \lambda x) a}{4 \lambda}}}{2}+2 c_{2} \lambda\right.}{2\left(c_{2} \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right)-\frac{c_{1}}{2}\right) \cosh (\lambda x)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{sech}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right) \tanh (\lambda x)+c_{3} \tanh (\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{sech}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right) \tanh (\lambda x)+c_{3} \tanh (\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
=\frac{-2 \mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}} \operatorname{sech}(\lambda x)^{2} \lambda-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right) \tanh (\lambda x)+c_{3} \tanh (\lambda x)}{-2 \lambda\left(\int-\mathrm{e}^{\frac{\cosh (2 \lambda x) a}{2 \lambda}}\left(a-\operatorname{sech}(\lambda x)^{2} \lambda\right) d x\right)+c_{3}}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = 2*a*\operatorname{cosh(lambda*x)*lambda*sinh}
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalef18 to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 104
dsolve \((\operatorname{diff}(y(x), x)=(a * \cosh (\operatorname{lambda} * x) \wedge 2-1 a m b d a) * y(x) \wedge 2+a+1 a m b d a-a * \cosh (\operatorname{lambda} a x) \wedge 2, y(x)\), sin
\(y(x)\)
\(=\frac{2 \tanh (x \lambda) \lambda\left(\int-\mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}}\left(a-\operatorname{sech}(x \lambda)^{2} \lambda\right) d x\right) c_{1}+2 \operatorname{sech}(x \lambda)^{2} \mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}} c_{1} \lambda-\tanh (x \lambda)}{2 \lambda\left(\int-\mathrm{e}^{\frac{a \cosh (2 x \lambda)}{2 \lambda}}\left(a-\operatorname{sech}(x \lambda)^{2} \lambda\right) d x\right) c_{1}-1}\)
\(\checkmark\) Solution by Mathematica
Time used: 49.81 (sec). Leaf size: 211

\[
\begin{aligned}
& y(x) \\
& \rightarrow \frac{\operatorname{sech}^{2}(\lambda x)\left(c_{1} \sinh (2 \lambda x) \int_{1}^{x} e^{\frac{a \cosh ^{2}(\lambda K[1])}{\lambda}}\left(\lambda-a \cosh ^{2}(\lambda K[1])\right) \operatorname{sech}^{2}(\lambda K[1]) d K[1]+2 c_{1} e^{\frac{a \cosh ^{2}(\lambda x)}{\lambda}}+\sinh ( \right.}{2+2 c_{1} \int_{1}^{x} e^{\frac{a \cosh ^{2}(\lambda K[1])}{\lambda}}\left(\lambda-a \cosh ^{2}(\lambda K[1])\right) \operatorname{sech}^{2}(\lambda K[1]) d K[1]} \\
& \begin{array}{r}
y(x) \rightarrow \frac{1}{2} \operatorname{sech}^{2}(\lambda x)\left(\frac{2 e^{\frac{a \cosh ^{2}(\lambda x)}{\lambda}}}{\int_{1}^{x} e^{\frac{a \cosh ^{2}(\lambda K[1])}{\lambda}}\left(\lambda-a \cosh ^{2}(\lambda K[1])\right) \operatorname{sech}^{2}(\lambda K[1]) d K[1]}\right. \\
+\sinh (2 \lambda x))
\end{array}
\end{aligned}
\]

\subsection*{5.12 problem 12}
\[
\text { 5.12.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 720
\]

Internal problem ID [10460]
Internal file name [OUTPUT/9407_Monday_June_06_2022_02_24_39_PM_73916692/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
2 y^{\prime}-(a-\lambda+a \cosh (\lambda x)) y^{2}=a+\lambda-a \cosh (\lambda x)
\]

\subsection*{5.12.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\cosh (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}-\frac{\lambda y^{2}}{2}+\frac{a}{2}+\frac{\lambda}{2}-\frac{a \cosh (\lambda x)}{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{\cosh (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}-\frac{\lambda y^{2}}{2}+\frac{a}{2}+\frac{\lambda}{2}-\frac{a \cosh (\lambda x)}{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a}{2}+\frac{\lambda}{2}-\frac{a \cosh (\lambda x)}{2}, f_{1}(x)=0\) and \(f_{2}(x)=\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{a \lambda \sinh (\lambda x)}{2} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\right)^{2}\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \cosh (\lambda x)}{2}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\left(\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\right) u^{\prime \prime}(x)-\frac{a \lambda \sinh (\lambda x) u^{\prime}(x)}{2}+\left(\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\right)^{2}\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \cosh (\lambda x)}{2}\right)\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-\frac{\cosh \left(\frac{\lambda x}{2}\right) \mathrm{e}^{-\frac{\cosh (\lambda x) a}{2 \lambda}}\left(c_{2} \lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)-2 c_{1}\right)}{2}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\operatorname{sech}\left(\frac{\lambda x}{2}\right)(a-\lambda+a \cosh (\lambda x))\left(4 \mathrm{e}^{\frac{\cosh (\lambda x) a}{2 \lambda}} c_{2} \lambda+\sinh (\lambda x)\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-}\right.}{8}\)
Using the above in (1) gives the solution
\(y\)
\(=\frac{\operatorname{sech}\left(\frac{\lambda x}{2}\right)(a-\lambda+a \cosh (\lambda x))\left(4 \mathrm{e}^{\frac{\cosh (\lambda x) a}{2 \lambda}} c_{2} \lambda+\sinh (\lambda x)\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-}\right.}{4\left(\frac{a}{2}-\frac{\lambda}{2}+\frac{a \cosh (\lambda x)}{2}\right) \cosh \left(\frac{\lambda x}{2}\right)\left(c_{2} \lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right)\right.\right.}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2}\left(4 \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}} \lambda+\lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sinh (\lambda x)-2 c_{3} \sinh (\lambda x)\right)}{2 \lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)-4 c_{3}}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2}\left(4 \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}} \lambda+\lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sinh (\lambda x)-2 c_{3} \sinh (\lambda x)\right)}{2 \lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)-4 c_{3}}\)
Verification of solutions
\(=\frac{\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2}\left(4 \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}} \lambda+\lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sinh (\lambda x)-2 c_{3} \sinh (\lambda x)\right)}{2 \lambda\left(\int \mathrm{e}^{\frac{\cosh (\lambda x) a}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)-4 c_{3}}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = sinh(lambda*x)*a*lambda*(diff
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalefice to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 101
dsolve \(\left(2 * \operatorname{diff}(y(x), x)=(a-l a m b d a+a * \cosh (\operatorname{lambda} * x)) * y(x)^{\wedge} 2+a+l a m b d a-a * \cosh (l a m b d a * x), y(x)\right.\), sin
\(y(x)\)
\(=\frac{\tanh \left(\frac{x \lambda}{2}\right) \lambda\left(\int \mathrm{e}^{\frac{a \cosh (x \lambda)}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{x \lambda}{2}\right)^{2} \lambda\right) d x\right) c_{1}+2 \operatorname{sech}\left(\frac{x \lambda}{2}\right)^{2} \mathrm{e}^{\frac{a \cosh (x \lambda)}{\lambda}} c_{1} \lambda-2 \tanh \left(\frac{x \lambda}{2}\right)}{\lambda\left(\int \mathrm{e}^{\frac{a \cosh (x \lambda)}{\lambda}}\left(-2 a+\operatorname{sech}\left(\frac{x \lambda}{2}\right)^{2} \lambda\right) d x\right) c_{1}-2}\)
\(\checkmark\) Solution by Mathematica
Time used: 59.899 (sec). Leaf size: 338
DSolve \(\left[2 * y^{\prime}[\mathrm{x}]==(\mathrm{a}-\backslash[\right.\) Lambda] \(+\mathrm{a} * \operatorname{Cosh}[\backslash[\) Lambda] \(* \mathrm{x}]) * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a}+\backslash[\) Lambda] \(-\mathrm{a} * \operatorname{Cosh}[\backslash[\) Lambda] \(* \mathrm{x}], \mathrm{y}[\mathrm{x}\)
\[
\begin{aligned}
& y(x) \\
& \rightarrow \frac{\operatorname{sech}^{2}\left(\frac{\lambda x}{2}\right)\left(c_{1} \sinh (\lambda x) \int_{1}^{x}-e^{\frac{2 a \cosh ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}(\cosh (\lambda K[1]) a+a-\lambda) \operatorname{sech}^{2}\left(\frac{1}{2} \lambda K[1]\right) d K[1]+4 c_{1} e^{\frac{2 a \cosh ^{2}\left(\frac{\lambda x}{2}\right.}{\lambda}}\right.}{2+2 c_{1} \int_{1}^{x}-e^{\frac{2 a \cosh ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}(\cosh (\lambda K[1]) a+a-\lambda) \operatorname{sech}^{2}\left(\frac{1}{2} \lambda K[1]\right) d K[1]} \\
& y(x) \rightarrow \frac{1}{2} \operatorname{sech}^{2}\left(\frac{\lambda x}{2}\right)\left(\begin{array}{c}
4 e^{\frac{2 a \cosh ^{2}\left(\frac{\lambda x}{2}\right)}{\lambda}} \\
\int_{1}^{x}-e^{\frac{2 a \cosh ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}(\cosh (\lambda K[1]) a+a-\lambda) \operatorname{sech}^{2}\left(\frac{1}{2} \lambda K[1]\right) d K[1] \\
+\sinh (\lambda x))
\end{array}\right. \\
& \begin{array}{r}
y(x) \rightarrow \frac{1}{2} \operatorname{sech}^{2}\left(\frac{\lambda x}{2}\right)\left(\frac{4 e^{\frac{2 a \cosh ^{2}\left(\frac{\lambda x}{2}\right)}{\lambda}}}{\int_{1}^{x}-e^{\frac{2 a \cosh ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}(\cosh (\lambda K[1]) a+a-\lambda) \operatorname{sech}^{2}\left(\frac{1}{2} \lambda K[1]\right) d K[1]}\right. \\
+\sinh (\lambda x))
\end{array}
\end{aligned}
\]

\subsection*{5.13 problem 13}
\[
\text { 5.13.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 725
\]

Internal problem ID [10461]
Internal file name [OUTPUT/9408_Monday_June_06_2022_02_24_42_PM_90381490/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=-\lambda^{2}+a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}
\]

\subsection*{5.13.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-\lambda^{2}+a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-\lambda^{2}+\frac{a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n}}{\sinh (\lambda x)^{4}}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-\lambda^{2}+a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\lambda^{2}+a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-\lambda^{2}+a \cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\mathrm{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \_Y(x) a-_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\]

The above shows that
\(u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \__{-} Y(x) a-_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)\)
Using the above in (1) gives the solution
\[
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}-Y(x) a-_{-} Y(x) \lambda^{2}+_{\not} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \_Y(x) a-_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}-Y(x) a-_{-} Y(x) \lambda^{2}+_{\not} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \_Y(x) a-_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}-Y(x) a-_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \_Y(x) a-_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4}-Y(x) a-_{-} Y(x) \lambda^{2}+_{\neq} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\cosh (\lambda x)^{n} \sinh (\lambda x)^{-n-4} \_^{Y} Y(x) a-_{-} Y(x) \lambda^{2}+Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}\)
Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (lambda^2-a*cosh(lambda*x)^n*s
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the frgm [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in }\textrm{x}\mathrm{ and }\textrm{y}(\textrm{x}

```

X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x)=y(x)^{\wedge} 2-\operatorname{lambda} \wedge 2+a * \cosh (\operatorname{lambda} * x)^{\wedge} n * \sinh (\operatorname{lambda} * x)^{\wedge}(-n-4), y(x)\right.\), singsol \(=a\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0


Not solved

\subsection*{5.14 problem 14}
5.14.1 Solving as riccati ode

Internal problem ID [10462]
Internal file name [OUTPUT/9409_Monday_June_06_2022_02_27_10_PM_68507380/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\sinh (\lambda x) y^{2} a=b \sinh (\lambda x) \cosh (\lambda x)^{n}
\]

\subsection*{5.14.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sinh (\lambda x) y^{2} a+b \sinh (\lambda x) \cosh (\lambda x)^{n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\sinh (\lambda x) y^{2} a+b \sinh (\lambda x) \cosh (\lambda x)^{n}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \sinh (\lambda x) \cosh (\lambda x)^{n}, f_{1}(x)=0\) and \(f_{2}(x)=a \sinh (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \sinh (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \cosh (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2} \sinh (\lambda x)^{3} b \cosh (\lambda x)^{n}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \sinh (\lambda x) u^{\prime \prime}(x)-a \lambda \cosh (\lambda x) u^{\prime}(x)+a^{2} \sinh (\lambda x)^{3} b \cosh (\lambda x)^{n} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)=\sqrt{\cosh (\lambda x)}\left(c_{1} \operatorname{BesselJ}\right. & \left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) \\
& \left.+c_{2} \operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{\left(\sqrt{a} \sqrt{b} \operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) \cosh (\lambda x)^{1+\frac{n}{2}} c_{1}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) \sqrt{a} \sqrt{b}\right.}{\sqrt{\mathrm{c}}} \\
& \text { Using the above in (1) gives the solution } \\
& y \\
& =\frac{\sqrt{a} \sqrt{b} \operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) \cosh (\lambda x)^{1+\frac{n}{2}} c_{1}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) \sqrt{a} \sqrt{b} \cosh }{\cosh (\lambda x) a\left(c_{1} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)+\right.}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\left(-\sqrt{b}\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)\right) \cosh (\lambda x)^{1+\frac{n}{2}} \sqrt{a}+\lambda\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)+\operatorname{Bessel}\right)}
\]

Summary
The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\left(-\sqrt{b}\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)\right) \cosh (\lambda x)^{1+\frac{n}{2}} \sqrt{a}+\lambda\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)+\operatorname{Bessel}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\left(-\sqrt{b}\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)\right) \cosh (\lambda x)^{1+\frac{n}{2}} \sqrt{a}+\lambda\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a} \sqrt{b} \cosh (\lambda x)^{1+\frac{n}{2}}}{\lambda(2+n)}\right)+\operatorname{Bessel}\right)}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*cosh(lambda*x)*(diff(y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
Change of variables used:
[x = arccosh(t)/lambda]
Linear ODE actually solved:
4*(t-1)^(1/2)*(t+1)^(1/2)*t^n*a*b*(t^2-1)*u(t)+4*(t-1)^(1/2)*(t+1)^(1/2)*lambda^
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 245
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \sinh (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \sinh (\operatorname{lambda} a \mathrm{x}) * \cosh (\operatorname{lambda} * \mathrm{x})^{\wedge} \mathrm{n}, \mathrm{y}(\mathrm{x})\right.\), singsol=
\(y(x)\)
\(=\frac{\operatorname{sech}(x \lambda)\left(-\lambda \sqrt{a}\left(\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh (x \lambda)^{\frac{n}{2}+1}}{\lambda(n+2)}\right) c_{1}+\operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh (x \lambda)^{\frac{n}{2}+1}}{\lambda(n+2)}\right)\right)+(\operatorname{BesselY}\right.}{a^{\frac{3}{2}}\left(\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh (x \lambda)^{\frac{n}{2}+1}}{\lambda(n+2)}\right) c_{1}+\operatorname{Besse}\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.376 (sec). Leaf size: 667
DSolve \(\left[\mathrm{y}{ }^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Sinh}[\backslash[\right.\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{b} * \operatorname{Sinh}[\backslash[\operatorname{Lambda}] * \mathrm{x}] * \operatorname{Cosh}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge \mathrm{n}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \operatorname{Inc} \mathrm{l}\)
\(y(x)\)
\(\rightarrow \xrightarrow{\sqrt{a} \sqrt{b} c_{1} \operatorname{Gamma}\left(\frac{n+1}{n+2}\right) \cosh ^{\frac{n}{2}}(\lambda x) \operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh \frac{n}{2}+1}{n \lambda+2 \lambda}\right)-\operatorname{sech}(\lambda x)\left(\operatorname{Gamma}\left(1+\frac{1}{n+2}\right)(\sqrt{a}\right.}\)
\(y(x)\)
\(\left.\rightarrow \frac{\left.\left.\frac{\sqrt{a} \sqrt{b} \cosh ^{\frac{n}{2}}(\lambda x)\left(\operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh \frac{n}{2}+1(x \lambda)}{n \lambda+2 \lambda}\right)-\operatorname{BesselJ}\left(-\frac{n+3}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh }{n \lambda+2 \lambda}(x \lambda)\right.\right.}{n+2}\right)\right)}{\operatorname{BesselJ}\left(-\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cosh }{n \lambda+2 \lambda}(x \lambda)\right.}\right)-\lambda \operatorname{sech}(\lambda x)\)

\subsection*{5.15 problem 15}

> 5.15.1 Solving as riccati ode

Internal problem ID [10463]
Internal file name [OUTPUT/9410_Monday_June_06_2022_02_27_12_PM_40133814/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 15 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2} \cosh (\lambda x) a=b \cosh (\lambda x) \sinh (\lambda x)^{n}
\]

\subsection*{5.15.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\cosh (\lambda x) a y^{2}+b \cosh (\lambda x) \sinh (\lambda x)^{n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\cosh (\lambda x) a y^{2}+b \cosh (\lambda x) \sinh (\lambda x)^{n}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \cosh (\lambda x) \sinh (\lambda x)^{n}, f_{1}(x)=0\) and \(f_{2}(x)=a \cosh (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \cosh (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \sinh (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2} \cosh (\lambda x)^{3} b \sinh (\lambda x)^{n}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \cosh (\lambda x) u^{\prime \prime}(x)-a \lambda \sinh (\lambda x) u^{\prime}(x)+a^{2} \cosh (\lambda x)^{3} b \sinh (\lambda x)^{n} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)
\(=\frac{-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{1}{4+2 n}}+c_{2} \sinh (\lambda x) \operatorname{BesselI}\left(\frac{1}{2+n}, 2\right.}{(2+n) \Gamma\left(\frac{n+3}{2+n}\right)}\)

The above shows that
\(u^{\prime}(x)\)
\(=\underline{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cosh (\lambda x)(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\cosh (\lambda x) c_{2} \operatorname{Bess}\right.}\)

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cosh (\lambda x)(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\cosh (\lambda x) c_{2} \operatorname{B} \epsilon\right.}{a \cosh (\lambda x)\left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2}}{\lambda^{2}(2+n)^{2}}}\right.\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=
\]
\[
-\frac{\lambda(2+n)\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\operatorname{csch}(\lambda x) \pi c_{3} \csc \left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sinh (\lambda x)}{\lambda^{2}(2+n)}\right.\right.\right.}{(-1}
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\lambda(2+n)\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\operatorname{csch}(\lambda x) \pi c_{3} \csc \left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sinh (\lambda x)}{\lambda^{2}(2+n)}\right.\right.\right.}{(-1)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y=\)
\[
-\frac{\lambda(2+n)\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\operatorname{csch}(\lambda x) \pi c_{3} \csc \left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sinh (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sinh (\lambda x)}{\lambda^{2}(2+n)}\right.\right.\right.}{(-1}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*sinh(lambda*x)*(diff(y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the OF1 ODE
<- Kummer successful
<- special function solution successful
Change of variables used:
[x = arccosh(t)/lambda]
Linear ODE actually solved:
4*a*b*(t^2-1)^(1/2*n)*t^3*u(t)+4*lambda^2*diff (u(t),t)+(4*lambda^2*t^3-4*lambda^
<- change of variables successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 951
dsolve \(\left(\operatorname{diff}(y(x), x)=a * \cosh (\operatorname{lambda} * x) * y(x)^{\wedge} 2+b * \cosh (\operatorname{lambda} x) * \sinh (\operatorname{lambda} x)^{\wedge} n, y(x)\right.\), singsol=

\section*{Expression too large to display}
\(\checkmark\) Solution by Mathematica
Time used: 1.277 (sec). Leaf size: 633
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Cosh}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{b} * \operatorname{Cosh}[\backslash[\operatorname{Lambda}] * \mathrm{x}] * \operatorname{Sinh}[\backslash[\) Lambda] \(* \mathrm{x}] \wedge n, \mathrm{y}[\mathrm{x}], \mathrm{x}, \operatorname{Inc}]\)
\(y(x)\)
\(\rightarrow \xrightarrow{\operatorname{csch}(\lambda x)\left(-\lambda \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sinh ^{\frac{n}{2}+1}(x \lambda)}{n \lambda+2 \lambda}\right)+\sqrt{a} \sqrt{b} \sinh ^{\frac{n}{2}+1}(\lambda x)\left(\operatorname{Gamma}\left(1+\frac{1}{;},\right.\right.\right.}\)
\(y(x)\)
\(\left.\rightarrow \frac{\frac{\sqrt{a} \sqrt{b} \sinh ^{\frac{n}{2}}(\lambda x)\left(\operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sinh }{n \lambda+2 \lambda}\left(\frac{n}{2}+1(x \lambda)\right.\right.\right.}{\left.n+\operatorname{BesselJ}\left(-\frac{n+3}{n+2}, \frac{2 \sqrt{a} \sqrt{6} \sinh }{n \lambda+2 \lambda} \frac{\frac{n}{2}+1}{n \lambda \lambda)}\right)\right)}}{\operatorname{BesselJ}\left(-\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sinh }{n \lambda+2 \lambda}(x \lambda)\right.}\right)-\lambda \operatorname{csch}(\lambda x)\)

\subsection*{5.16 problem 16}
5.16.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 740

Internal problem ID [10464]
Internal file name [OUTPUT/9411_Monday_June_06_2022_02_27_14_PM_53299429/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \cosh (\lambda x)+b) y^{\prime}-y^{2}-c \cosh (x \mu) y=-d^{2}+c d \cosh (x \mu)
\]

\subsection*{5.16.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \cosh (x \mu) y-d^{2}+c d \cosh (x \mu)}{a \cosh (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \cosh (x \mu)}{a \cosh (\lambda x)+b}+\frac{c \cosh (x \mu) y}{a \cosh (\lambda x)+b}-\frac{d^{2}}{a \cosh (\lambda x)+b}+\frac{y^{2}}{a \cosh (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \cosh (x \mu)}{a \cosh (\lambda x)+b}, f_{1}(x)=\frac{c \cosh (x \mu)}{a \cosh (\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \cosh (\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a \cosh (\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda \sinh (\lambda x)}{(a \cosh (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \cosh (x \mu)}{(a \cosh (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \cosh (x \mu)}{(a \cosh (\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{a \cosh (\lambda x)+b}-\left(-\frac{a \lambda \sinh (\lambda x)}{(a \cosh (\lambda x)+b)^{2}}+\frac{c \cosh (x \mu)}{(a \cosh (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \cosh (x \mu)\right) u(x)}{(a \cosh (\lambda x)+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 268
dsolve \(\left((a * \cosh (\operatorname{lambda} a x)+b) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+c * \cosh (m u * x) * y(x)-d^{\wedge} 2+c * d * \cosh (m u * x), y(x)\right.\),
\(y(x)\)

\(\checkmark\) Solution by Mathematica
Time used: 24.309 (sec). Leaf size: 289
DSolve \(\left[(a * \operatorname{Cosh}[\backslash[\operatorname{Lambda}] * x]+b) * y\right.\) ' \([x]==y[x] \sim 2+c * \operatorname{Cosh}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Cosh}[\backslash[M u] * x], y[x]\)
\[
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \cosh (\mu K[1])}{b+a \cosh (\lambda K[1])} d K[1]\right)(-d+c \cosh (\mu K[2])+y(x))}{c \mu(b+a \cosh (\lambda K[2]))(d+y(x))} d K[2]\right. \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x} \frac{2 d-c \cosh (\mu K[[1])}{b+\cosh h(\lambda[1])} d K[1]\right)}{c \mu(d+K[3])^{2}}\right. \\
& -\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]} \frac{\left.\frac{2 d-c \cosh h(\mu K[1]}{b+a \cosh (\lambda K[1])} d K[1]\right)(-d+c \cosh (\mu K[2])+K[3])}{c \mu(b+a \cosh (\lambda K[2]))(d+K[3])^{2}}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \cosh (\mu K[1])}{b+a \cosh (\lambda K[1])} d K[]\right.}{c \mu(b+a \cosh (\lambda K[2]))(d+K[3}\right.}{}=\frac{3}{3}\right)
\end{aligned}
\]

\subsection*{5.17 problem 17}
5.17.1 Solving as riccati ode

Internal problem ID [10465]
Internal file name [OUTPUT/9412_Monday_June_06_2022_02_28_26_PM_5814984/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
(a \cosh (\lambda x)+b)\left(y^{\prime}-y^{2}\right)=-a \lambda^{2} \cosh (\lambda x)
\]

\subsection*{5.17.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\cosh (\lambda x) a y^{2}-a \lambda^{2} \cosh (\lambda x)+y^{2} b}{a \cosh (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-\frac{a \lambda^{2} \cosh (\lambda x)}{a \cosh (\lambda x)+b}+\frac{\cosh (\lambda x) a y^{2}}{a \cosh (\lambda x)+b}+\frac{y^{2} b}{a \cosh (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-\frac{a \lambda^{2} \cosh (\lambda x)}{a \cosh (\lambda x)+b}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a \lambda^{2} \cosh (\lambda x)}{a \cosh (\lambda x)+b}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\frac{a \lambda^{2} \cosh (\lambda x) u(x)}{a \cosh (\lambda x)+b}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & -2 c_{1}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \\
& +\sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{1} a+2 c_{2}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\left(-2 c_{1} a \cosh \left(\frac{\lambda x}{2}\right) \sinh \left(\frac{\lambda x}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}+2 \sinh \left(\frac{\lambda x}{2}\right) c_{2} a \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}}+c_{1}\right.}{\sqrt{a^{2}-b^{2}}}\)
Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left(-2 c_{1} a \cosh \left(\frac{\lambda x}{2}\right) \sinh \left(\frac{\lambda x}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}+2 \sinh \left(\frac{\lambda x}{2}\right) c_{2} a \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}}+\right.}{\sqrt{a^{2}-b^{2}}\left(-2 c_{1}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)+\sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-}\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{\lambda\left(-2 c_{3} a \cosh \left(\frac{\lambda x}{2}\right) \sinh \left(\frac{\lambda x}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}+2 \sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} a+c_{3}( \right.}{\sqrt{a^{2}-b^{2}}\left(2 c_{3}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b}\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\lambda\left(-2 c_{3} a \cosh \left(\frac{\lambda x}{2}\right) \sinh \left(\frac{\lambda x}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}+2 \sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} a+c_{3}\right.}{\sqrt{a^{2}-b^{2}}\left(2 c_{3}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b}\right.}\)

\section*{Verification of solutions}
\(=\frac{\lambda}{y\left(-2 c_{3} a \cosh \left(\frac{\lambda x}{2}\right) \sinh \left(\frac{\lambda x}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}+2 \sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} a+c_{3}\right.} \sqrt{\sqrt{a^{2}-b^{2}}\left(2 c_{3}\left(a \cosh \left(\frac{\lambda x}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{\tanh \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sinh \left(\frac{\lambda x}{2}\right) \cosh \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b}\right.}\)

\section*{Verified OK.}

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*lambda^2*\operatorname{cosh(lambda*x)*y(x)}
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 204
```

dsolve((a*\operatorname{cosh(lambda*x)+b)*(diff(y(x),x)-y(x)^2)+a*lambda^2*cosh(lambda*x)=0,y(x), singsol=}=()

```
\(y(x)\)
\[
=\frac{\lambda\left(-2 \arctan \left(\frac{(a-b) \tanh \left(\frac{x \lambda}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}} a b \cosh \left(\frac{x \lambda}{2}\right) \sinh \left(\frac{x \lambda}{2}\right)+2 \sqrt{a^{2}-b^{2}} c_{1} a \cosh \left(\frac{x \lambda}{2}\right) \sinh \left(\frac{x \lambda}{2}\right)+(a\right.}{\sqrt{a^{2}-b^{2}}\left(2\left(\cosh \left(\frac{x \lambda}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) b \arctan \left(\frac{(a-b) \tanh \left(\frac{x \lambda}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)-\sqrt{a^{2}-b^{2}} a \cosh \left(\frac{x \lambda}{2}\right) \sinh \left(\frac{x \lambda}{2}\right)\right.}
\]
\(\checkmark\) Solution by Mathematica
Time used: 7.749 (sec). Leaf size: 246
DSolve \(\left[(a * \operatorname{Cosh}[\backslash[\operatorname{Lambda}] * x]+b) *\left(y^{\prime}[x]-y[x] \sim 2\right)+a * \backslash[\operatorname{Lambda}]{ }^{\wedge} 2 * \operatorname{Cosh}[\backslash[\right.\) Lambda] \(* x]=0, y[x], x\), Incl
\(y(x) \rightarrow\)
\(-\frac{\lambda\left(a \sinh (\lambda x)\left(2 b \arctan \left(\frac{(b-a) \tanh \left(\frac{\lambda x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)+c_{1} \lambda\left(a^{2}-b^{2}\right)^{3 / 2}\right)+a \sqrt{a^{2}-b^{2}} \cosh (\lambda x)+\right.}{b\left(2 b \arctan \left(\frac{(b-a) \tanh \left(\frac{\lambda x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)+c_{1} \lambda\left(a^{2}-b^{2}\right)^{3 / 2}\right)+a \cosh (\lambda x)\left(2 b \arctan \left(\frac{(b-a) \tanh \left(\frac{\lambda x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)+c_{1} \lambda\left(a^{2}\right.\right.}\)
\(y(x) \rightarrow-\frac{a \lambda \sinh (\lambda x)}{a \cosh (\lambda x)+b}\)
6 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
6.1 problem 18 ..... 750
6.2 problem 19 ..... 755
6.3 problem 20 ..... 760
6.4 problem 21 ..... 764
6.5 problem 22 ..... 768
6.6 problem 23 ..... 773
6.7 problem 24 ..... 778
6.8 problem 25 ..... 782
6.9 problem 26 ..... 786
6.10 problem 27 ..... 791

\section*{6.1 problem 18}
\[
\text { 6.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 750
\]

Internal problem ID [10466]
Internal file name [OUTPUT/9413_Monday_June_06_2022_02_28_29_PM_65894832/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=\lambda a-a(a+\lambda) \tanh (\lambda x)^{2}
\]

\subsection*{6.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & - \text { LegendreP }\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{1} \lambda \\
& - \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{2} \lambda \\
& +\tanh (\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)\right. \\
& \left.+c_{2} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)\right)(a+\lambda)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
& -\frac{-\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{1} \lambda-\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{2} \lambda+\tanh (\lambda x)\left(c_{1}\right. \text { LegendreP }}{c_{1} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}\right.} \\
& \text { Dividing both numerator and denominator by } c_{1} \text { gives, after renaming the constant } \\
& \frac{c_{2}}{c_{1}}=c_{3} \text { the following solution } \\
& y \\
& =\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c _ { 3 } \operatorname { L e g e n d r e P } \left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh ( \right.}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c_{3} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh ( \right.}\)
Verification of solutions
\(y\)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c_{3} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh \right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a}^{\wedge} 2 * \tanh (\operatorname{lambda*x})^{\wedge} 2+a * \tanh (1\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm A Liouvillian solution exists Reducible group (found an exponential solution) Group is reducible, not completely reducible Solution has integrals. Trying a special function solution free of integrals... -> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could \({ }^{3}\) result into a too large expression - feturning speci <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 122

\(y(x)\)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (x \lambda)\right) \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \tanh (x \lambda)\right) c_{1} \lambda-\tanh (x \lambda)\left(c_{1} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a}{\lambda}\right)\right.}{c_{1} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh (x \lambda)\right)+\operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \tanh ( \right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 8.574 (sec). Leaf size: 177
DSolve \(\left[y^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \backslash[\right.\) Lambda] \(-\mathrm{a} *(\mathrm{a}+\backslash[\) Lambda \(]) * \operatorname{Tanh}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingulars
\(y(x)\)
\(\rightarrow \frac{a\left(-\lambda\left(e^{2 \lambda x}-1\right) \text { Hypergeometric2F1 }\left(-\frac{2 a}{\lambda},-\frac{a}{\lambda}, 1-\frac{a}{\lambda},-e^{2 x \lambda}\right)-2 \lambda\left(e^{2 \lambda x}+1\right)^{\frac{2 a}{\lambda}+1}+a c_{1}\left(e^{2 \lambda x}-1\right)\left(e^{2 \lambda}\right.\right.}{\left(e^{2 \lambda x}+1\right)\left(-\lambda \text { Hypergeometric2F1 }\left(-\frac{2 a}{\lambda},-\frac{a}{\lambda}, 1-\frac{a}{\lambda},-e^{2 x \lambda}\right)+a c_{1}\left(e^{2 \lambda x}\right)^{a / \lambda}\right)}\)
\(y(x) \rightarrow \frac{a\left(e^{2 \lambda x}-1\right)}{e^{2 \lambda x}+1}\)

\section*{6.2 problem 19}
\[
\text { 6.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . } 7755
\]

Internal problem ID [10467]
Internal file name [OUTPUT/9414_Monday_June_06_2022_02_28_31_PM_34807093/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=3 \lambda a-\lambda^{2}-a(a+\lambda) \tanh (\lambda x)^{2}
\]

\subsection*{6.2.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & -2 \text { LegendreP }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{1} \lambda \\
& -2 \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{2} \lambda \\
& +\tanh (\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)\right. \\
& \left.+c_{2} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)\right)(a+\lambda)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{-2 \text { LegendreP }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{1} \lambda-2 \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{2} \lambda+\tanh (\lambda x)\left(c_{1}\right. \text { Leg }}{c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)+c_{2} \text { LegendreQ }}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c_{3} \text { Legendre }\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-}{\lambda}\right.}\)

Summary
The solution(s) found are the following
\(y\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c_{3} \text { Legendre }\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}\right.}\)
Verification of solutions
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) c_{3} \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right) \lambda-\tanh (\lambda x)\left(c_{3} \text { Legendre }\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-}{\lambda}\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a}^{\wedge} 2 * \tanh (\operatorname{lambda*x})^{\wedge} 2+a * \tanh (1\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm A Liouvillian solution exists Reducible group (found an exponential solution) Group is reducible, not completely reducible Solution has integrals. Trying a special function solution free of integrals... -> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - feturning speci <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 148
dsolve (diff \((y(x), x)=y(x) \wedge 2+3 * a * l a m b d a-l a m b d a \wedge 2-a *(a+l a m b d a) * \tanh (l a m b d a * x) \wedge 2, y(x)\), singsol=a
\(y(x)\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (x \lambda)\right) \lambda+2 \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (x \lambda)\right) c_{1} \lambda-\tanh (x \lambda)\left(c_{1} \text { Legendre }\right.}{c_{1} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \tanh (x \lambda)\right)+\operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-}{\lambda}\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 12.804 (sec). Leaf size: 631
DSolve \(\left[\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+3 * \mathrm{a} * \backslash[\right.\) Lambda] \(-\backslash[\) Lambda] \(\sim 2-\mathrm{a} *(\mathrm{a}+\backslash[\) Lambda] \() * \operatorname{Tanh}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), In
\(y(x)\)
\(\quad \rightarrow-\lambda(a-2 \lambda)\left(e^{2 \lambda x}-1\right)\left(e^{2 \lambda x}+1\right)^{\frac{2 a}{\lambda}}\left(\frac{1}{e^{2 \lambda x}-1}+1\right)^{a / \lambda}\left(a\left(4 e^{2 \lambda x}+e^{4 \lambda x}-1\right)+\lambda-\lambda e^{4 \lambda x}\right)\) AppellF1 \((1-\)
\(y(x) \rightarrow \frac{a\left(e^{2 \lambda x}-1\right)^{2}-\lambda\left(e^{2 \lambda x}+1\right)^{2}}{e^{4 \lambda x}-1}\)

\section*{6.3 problem 20}

> 6.3.1 Solving as riccati ode

Internal problem ID [10468]
Internal file name [OUTPUT/9415_Monday_June_06_2022_02_28_33_PM_45959373/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \tanh (b x)^{m} y=a \tanh (b x)^{m}
\]

\subsection*{6.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \tanh (b x)^{m} y+a \tanh (b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \tanh (b x)^{m} y+a \tanh (b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \tanh (b x)^{m}, f_{1}(x)=\tanh (b x)^{m} a x\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\tanh (b x)^{m} a x \\
f_{2}^{2} f_{0} & =a \tanh (b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\tanh (b x)^{m} a x u^{\prime}(x)+a \tanh (b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} m^{2}-2}{x} d x} d x\right)+c_{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m_{a}} x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\tanh (b x)^{m} x^{2}-2}{x} d x}
\]

Using the above in (1) gives the solution
\[
\left.\left.y=-\frac{c_{1}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\tanh (b x)^{m} x^{2}-2}{x} d x}}{x\left(c _ { 1 } \left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} x^{2} x^{2}-2}{x}} d x\right.\right.} d x\right)+c_{2}\right)
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m_{a x}} x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\tanh (b x)^{m_{a x}-2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+1\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\tanh (b x)^{m} m_{a x^{2}-2}^{x}}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} x^{2}-2}{x} d x} d x\right)+1\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} a x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\tanh (b x)^{m} a x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\tanh (b x)^{m} a x^{2}-2}{x} d x} d x\right)+1\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 85
```

dsolve(diff(y(x),x)=y(x)^2+a*x*\operatorname{tanh}(b*x)^m*y(x)+a*tanh (b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{a \tanh (b x)^{m} x^{2}-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{a \tanh (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{a \tanh (b x)^{m} x^{2}-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 12.331 (sec). Leaf size: 126
DSolve \([y\) ' \([x]==y[x] \sim 2+a * x * \operatorname{Tanh}[b * x] \wedge m * y[x]+a * T a n h[b * x] \sim m, y[x], x\), IncludeSingularSolutions \(\rightarrow\) I
\(y(x) \rightarrow\)
\(-\frac{\exp \left(-\int_{1}^{x}-a K[1] \tanh ^{m}(b K[1]) d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a K[1] \tanh ^{m}(b K[1]) d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a K[1] \tanh ^{m}(b K[1]) d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)}\)
\(y(x) \rightarrow-\frac{1}{x}\)

\section*{6.4 problem 21}
6.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 764

Internal problem ID [10469]
Internal file name [OUTPUT/9416_Monday_June_06_2022_02_28_36_PM_97894842/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \tanh (\lambda x)+b) y^{\prime}-y^{2}-c \tanh (x \mu) y=-d^{2}+c d \tanh (x \mu)
\]

\subsection*{6.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \tanh (x \mu) y-d^{2}+c d \tanh (x \mu)}{a \tanh (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \tanh (x \mu)}{a \tanh (\lambda x)+b}+\frac{c \tanh (x \mu) y}{a \tanh (\lambda x)+b}-\frac{d^{2}}{a \tanh (\lambda x)+b}+\frac{y^{2}}{a \tanh (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \tanh (x \mu)}{a \tanh (\lambda x)+b}, f_{1}(x)=\frac{c \tanh (x \mu)}{a \tanh (\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \tanh (\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\overline{a \tanh (\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda\left(1-\tanh (\lambda x)^{2}\right)}{(a \tanh (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \tanh (x \mu)}{(a \tanh (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \tanh (x \mu)}{(a \tanh (\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{a \tanh (\lambda x)+b}-\left(-\frac{a \lambda\left(1-\tanh (\lambda x)^{2}\right)}{(a \tanh (\lambda x)+b)^{2}}+\frac{c \tanh (x \mu)}{(a \tanh (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \tanh (x \mu)\right) u(x)}{(a \tanh (\lambda x)+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 302
dsolve \(\left((a * \tanh (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+c * \tanh (m u * x) * y(x)-d^{\wedge} 2+c * d * \tanh (m u * x), y(x)\right.\),
\(y(x)\)
\[
=\frac{-\mathrm{e}^{c\left(\int \frac{\tanh (x \mu)}{a \tanh (x \lambda)+b} d x\right)}(\tanh (x \lambda)+1)^{\frac{d}{\lambda(a-b)}}(\tanh (x \lambda)-1)^{\frac{d}{\lambda(a+b)}}(a \tanh (x \lambda)+b)^{-\frac{2 a d}{\lambda\left(a^{2}-b^{2}\right)}}-d\left(\int(a \tanh ( \right.}{\int(a \tanh (x \lambda)+b)^{\frac{\left(-a^{2}+b^{2}\right) \lambda-2 a d}{\lambda\left(a^{2}-b^{2}\right)}}(\tanh (x \lambda)-1)^{\frac{d}{\lambda(a+b)}}(\operatorname{ta}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 163.692 (sec). Leaf size: 800
DSolve \(\left[(a * \operatorname{Tanh}[\backslash[\operatorname{Lambda}] * x]+b) * y{ }^{\prime}[x]==y[x] \sim 2+c * \operatorname{Tanh}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Tanh}[\backslash[M u] * x], y[x]\right.\)

Solve \(\left[\int_{1}^{x} \frac{e^{-\int_{1}^{K[2] ~} \frac{\operatorname{sech}(\mu K[1])(2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])+c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(b \operatorname{coshh}(\lambda K[1])+a \sinh (\lambda K[1]))} d[1]}(d \cosh (\lambda K[2]}{c \mu(b \cosh (\lambda K[2]-\mu K[2])+b c}\right.\)
\(+\int_{1}^{y(x)}\left(\frac{e^{-\int_{1}^{x} \frac{\operatorname{sech}(\mu K[1])(2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])+c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(b \cosh (\lambda K[1])+a \sinh (\lambda K[1]))}}}{c \mu(d+K[3])^{2}}\right.\)
\(-\int_{1}^{x}\left(\frac{e^{-\int_{1}^{K[2]} \frac{\operatorname{sech}(\mu K[1])(2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])+c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(b \cosh (\lambda K[1])+a \sinh (\lambda K[1])}(-\cosh (\lambda K[2]-}}{c \mu(d+K[3])(b \cosh (\lambda K[2]-\mu K[2])+b \cosh (\lambda K[2]+\mu K[2])+a \sinh (\lambda K[2]-\mu K[2])+}\right.\)

\section*{6.5 problem 22}
6.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 768

Internal problem ID [10470]
Internal file name [OUTPUT/9417_Monday_June_06_2022_02_29_55_PM_36680957/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=\lambda a-a(a+\lambda) \operatorname{coth}(\lambda x)^{2}
\]

\subsection*{6.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & -\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{1} \lambda-\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{2} \lambda \\
& +\operatorname{coth}(\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)\right. \\
& \left.+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)\right)(a+\lambda)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
&-\frac{-\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{1} \lambda-\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{2} \lambda+\operatorname{coth}(\lambda x)\left(c_{1}\right. \text { LegendreP }}{c_{1} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)+c_{2} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}()\right.}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}()\right.}\)
Verification of solutions
\(y\)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}()\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a}^{\wedge} 2 * \operatorname{coth}(\operatorname{lambda*x}) \wedge 2+a * \operatorname{coth}(1\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm A Liouvillian solution exists Reducible group (found an exponential solution) Group is reducible, not completely reducible Solution has integrals. Trying a special function solution free of integrals... -> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - feturning speci <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 122

\(y(x)\)
\(=\frac{\operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(x \lambda)\right) \lambda+\operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(x \lambda)\right) c_{1} \lambda-\operatorname{coth}(x \lambda)\left(c_{1} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda},\right.\right.}{c_{1} \operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(x \lambda)\right)+\operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a}{\lambda}, \operatorname{coth}(a\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 8.402 (sec). Leaf size: 175
DSolve \(\left[y^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \backslash[\right.\) Lambda] \(-\mathrm{a} *(\mathrm{a}+\backslash[\) Lambda \(]) * \operatorname{Coth}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingulars
\(y(x)\)
\(\rightarrow \frac{a\left(-\lambda\left(e^{2 \lambda x}+1\right) \text { Hypergeometric } 2 \mathrm{~F} 1\left(-\frac{2 a}{\lambda},-\frac{a}{\lambda}, 1-\frac{a}{\lambda}, e^{2 x \lambda}\right)+2 \lambda\left(1-e^{2 \lambda x}\right)^{\frac{2 a}{\lambda}+1}+a c_{1}\left(e^{2 \lambda x}+1\right)\left(e^{2 \lambda x}\right)\right.}{\left(e^{2 \lambda x}-1\right)\left(-\lambda \text { Hypergeometric2F1 }\left(-\frac{2 a}{\lambda},-\frac{a}{\lambda}, 1-\frac{a}{\lambda}, e^{2 x \lambda}\right)+a c_{1}\left(e^{2 \lambda x}\right)^{a / \lambda}\right)}\)
\(y(x) \rightarrow \frac{a\left(e^{2 \lambda x}+1\right)}{e^{2 \lambda x}-1}\)

\section*{6.6 problem 23}
6.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 773

Internal problem ID [10471]
Internal file name [OUTPUT/9418_Monday_June_06_2022_02_29_57_PM_21366693/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=3 \lambda a-\lambda^{2}-a(a+\lambda) \operatorname{coth}(\lambda x)^{2}
\]

\subsection*{6.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \operatorname{coth}(\lambda x)^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+3 \lambda a-\lambda^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)+c_{2} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & -2 \text { LegendreP }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{1} \lambda \\
& -2 \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{2} \lambda \\
& +\operatorname{coth}(\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)\right. \\
& \left.\quad+c_{2} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)\right)(a+\lambda)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\(-\frac{-2 \text { LegendreP }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{1} \lambda-2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{2} \lambda+\operatorname{coth}(\lambda x)\left(c_{1} \operatorname{Leg}_{\epsilon}\right.}{c_{1} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)+c_{2} \text { LegendreQ }}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \text { Legendre } F\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}\right.}\)

Summary
The solution(s) found are the following
\(y\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+2 \text { LegendreQ }\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \text { Legendre }\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)+\text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a-t}{\lambda}\right.}\)
Verification of solutions
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) c_{3} \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right) \lambda-\operatorname{coth}(\lambda x)\left(c_{3} \text { LegendreF }\right.}{c_{3} \operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(\lambda x)\right)+\operatorname{LegendreQ}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a}^{\wedge} 2 * \operatorname{coth}(\operatorname{lambda*x}) \wedge 2+a * \operatorname{coth}(1\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Trying a Liouvillian solution using Kovacics algorithm A Liouvillian solution exists Reducible group (found an exponential solution) Group is reducible, not completely reducible Solution has integrals. Trying a special function solution free of integrals... -> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form coul \(\bar{d}^{6}\) result into a too large expression - returning speci <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 148
dsolve (diff \((y(x), x)=y(x)^{\wedge} 2-l a m b d a^{\wedge} 2+3 * a * l a m b d a-a *(a+l a m b d a) * \operatorname{coth}(l a m b d a * x) \wedge 2, y(x)\), singsol=a
\(y(x)\)
\(=\frac{2 \operatorname{LegendreP}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(x \lambda)\right) \lambda+2 \operatorname{LegendreQ}\left(\frac{a+\lambda}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(x \lambda)\right) c_{1} \lambda-\operatorname{coth}(x \lambda)\left(c_{1} \text { Legendre }\right.}{c_{1} \text { LegendreQ }\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}, \operatorname{coth}(x \lambda)\right)+\operatorname{LegendreP}\left(\frac{a}{\lambda}, \frac{a-\lambda}{\lambda}\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 14.312 (sec). Leaf size: 659

\(y(x)\)
\(-\lambda(a-2 \lambda)\left(e^{2 \lambda x}+1\right)\left(1-e^{2 \lambda x}\right)^{\frac{2 a}{\lambda}}\left(\frac{e^{2 \lambda x}}{e^{2 \lambda x}+1}\right)^{a / \lambda}\left(a\left(-4 e^{2 \lambda x}+e^{4 \lambda x}-1\right)+\lambda-\lambda e^{4 \lambda x}\right) \operatorname{AppellF} 1\left(1-\frac{a}{\lambda}\right.\),
\(y(x) \rightarrow \frac{a\left(e^{2 \lambda x}+1\right)^{2}-\lambda\left(e^{2 \lambda x}-1\right)^{2}}{e^{4 \lambda x}-1}\)

\section*{6.7 problem 24}
6.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 778

Internal problem ID [10472]
Internal file name [OUTPUT/9419_Monday_June_06_2022_02_30_00_PM_88007401/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \operatorname{coth}(b x)^{m} y=a \operatorname{coth}(b x)^{m}
\]

\subsection*{6.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \operatorname{coth}(b x)^{m} y+a \operatorname{coth}(b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \operatorname{coth}(b x)^{m} y+a \operatorname{coth}(b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \operatorname{coth}(b x)^{m}, f_{1}(x)=a \operatorname{coth}(b x)^{m} x\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \operatorname{coth}(b x)^{m} x \\
f_{2}^{2} f_{0} & =a \operatorname{coth}(b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-a \operatorname{coth}(b x)^{m} x u^{\prime}(x)+a \operatorname{coth}(b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x\left(\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m_{a x^{2}}-2}}{x} d x} d x\right) c_{1}+c_{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m_{a} x^{2}-2}}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m_{a}} x^{2}-2}{x} d x} c_{1}
\]

Using the above in (1) gives the solution
\[
\left.\left.y=-\frac{\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} c_{1}}{x\left(\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} x^{2}-2}{x}} d x\right.\right.} d x\right) c_{1}+c_{2}\right) \quad
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}+1\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\operatorname{coth}(b x)^{m} x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 85
```

dsolve(diff(y(x),x)=y(x)^2+a*x*\operatorname{coth}(b*x)^m*y(x)+a*\operatorname{coth}(b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{a \operatorname{coth}(b x)^{m} x^{2}-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{a \operatorname{coth}(b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{a \operatorname{coth}(b x)^{m} x^{2}-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 11.817 (sec). Leaf size: 126
DSolve \(\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}]^{\wedge} 2+\mathrm{a} * \mathrm{x} * \operatorname{Coth}[\mathrm{~b} * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \operatorname{Coth}[\mathrm{~b} * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) T
\(y(x) \rightarrow\)
\(-\frac{\exp \left(-\int_{1}^{x}-a \operatorname{coth}^{m}(b K[1]) K[1] d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a \operatorname{coth}^{m}(b K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a \operatorname{coth}^{m}(b K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)}\)
\(y(x) \rightarrow-\frac{1}{x}\)

\section*{6.8 problem 25}
6.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 782

Internal problem ID [10473]
Internal file name [OUTPUT/9420_Monday_June_06_2022_02_30_03_PM_79434428/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \operatorname{coth}(\lambda x)+b) y^{\prime}-y^{2}-c \operatorname{coth}(x \mu) y=-d^{2}+c d \operatorname{coth}(x \mu)
\]

\subsection*{6.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \operatorname{coth}(x \mu) y-d^{2}+c d \operatorname{coth}(x \mu)}{a \operatorname{coth}(\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \operatorname{coth}(x \mu)}{a \operatorname{coth}(\lambda x)+b}+\frac{c \operatorname{coth}(x \mu) y}{a \operatorname{coth}(\lambda x)+b}-\frac{d^{2}}{a \operatorname{coth}(\lambda x)+b}+\frac{y^{2}}{a \operatorname{coth}(\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \operatorname{coth}(x \mu)}{a \operatorname{coth}(\lambda x)+b}, f_{1}(x)=\frac{c \operatorname{coth}(x \mu)}{a \operatorname{coth}(\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \operatorname{coth}(\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a \operatorname{coth}(\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda\left(1-\operatorname{coth}(\lambda x)^{2}\right)}{(a \operatorname{coth}(\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \operatorname{coth}(x \mu)}{(a \operatorname{coth}(\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \operatorname{coth}(x \mu)}{(a \operatorname{coth}(\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{a \operatorname{coth}(\lambda x)+b}-\left(-\frac{a \lambda\left(1-\operatorname{coth}(\lambda x)^{2}\right)}{(a \operatorname{coth}(\lambda x)+b)^{2}}+\frac{c \operatorname{coth}(x \mu)}{(a \operatorname{coth}(\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \operatorname{coth}(x \mu)\right) u(x)}{(a \operatorname{coth}(\lambda x)+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.031 (sec). Leaf size: 302
dsolve \(\left((a * \operatorname{coth}(\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x) \wedge 2+c * \operatorname{coth}(m u * x) * y(x)-d^{\wedge} 2+c * d * \operatorname{coth}(m u * x), y(x)\right.\),
\(y(x)\)
\[
=\frac{-\mathrm{e}^{c\left(\int \frac{\operatorname{coth}(x \mu)}{a \operatorname{coth}(x \lambda)+b} d x\right)}(\operatorname{coth}(x \lambda)+1)^{\frac{d}{\lambda^{(a-b)}}}(\operatorname{coth}(x \lambda)-1)^{\frac{d}{\lambda(a+b)}}(a \operatorname{coth}(x \lambda)+b)^{-\frac{2 a d}{\lambda\left(a^{2}-b^{2}\right)}}-d\left(\int(a \operatorname{coth}(x\right.}{\int(a \operatorname{coth}(x \lambda)+b)^{\frac{\left(-a^{2}+b^{2}\right) \lambda-2 a d}{\lambda\left(a^{2}-b^{2}\right)}}(\operatorname{coth}(x \lambda)-1)^{\frac{d}{\lambda(a+b)}}(\cot }
\]
\(\checkmark\) Solution by Mathematica
Time used: 153.106 (sec). Leaf size: 808
DSolve \(\left[(a * \operatorname{Coth}[\backslash[\operatorname{Lambda}] * x]+b) * y{ }^{\prime}[x]==y[x] \sim 2+c * \operatorname{Coth}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Coth}[\backslash[M u] * x], y[x]\right.\)

Solve \(\left[\int_{1}^{x}\right.\)
\(-\frac{e^{-\int_{1}^{K[2]} \frac{\operatorname{csch}(\mu K[1])(-2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])-c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(a \cosh (\lambda K[1])+b \sinh (\lambda K[1]))} d K[1]}(d \cosh (\lambda K[2]-\mu K[2}{c \mu(b \cosh (\lambda K[2]-\mu K[2])-b \cosh (\lambda K[ }\)
\(+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{e^{-\int_{1}^{K[2]} \frac{\operatorname{csch}(\mu K[1])(-2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])-c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(a \cosh (\lambda K[1])+b \sinh (\lambda K[1]))}(d \cos ]} c \mu(d+K[3])^{2}(b \cosh (\lambda K}{c \mu(1)}\right.\right.\)
\(\left.\left.-\frac{e^{-\int_{1}^{x} \frac{\operatorname{csch}(\mu K[1])(-2 d \cosh (\lambda K[1]-\mu K[1])+2 d \cosh (\lambda K[1]+\mu K[1])-c \sinh (\lambda K[1]-\mu K[1])-c \sinh (\lambda K[1]+\mu K[1]))}{2(a \cosh (\lambda K[1])+b \sinh (\lambda K[1]))} d K[1]}}{c \mu(d+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]\)

\section*{6.9 problem 26}
6.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 786

Internal problem ID [10474]
Internal file name [OUTPUT/9421_Monday_June_06_2022_02_31_39_PM_41931427/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}
\]

\subsection*{6.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-2 \tanh (\lambda x)^{2} \lambda^{2}-2 \lambda^{2} \operatorname{coth}(\lambda x)^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\operatorname{sech}(\lambda x) \operatorname{csch}(\lambda x)\left(c_{2} \ln (\operatorname{coth}(\lambda x)-1)-c_{2} \ln (\operatorname{coth}(\lambda x)+1)+c_{1}\right. \\
&\left.+2 \sinh (\lambda x) \cosh (\lambda x)\left(2 \cosh (\lambda x)^{2}-1\right) c_{2}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)=-2 \lambda & \operatorname{sech}(\lambda x)^{2} \operatorname{csch}(\lambda x)^{2}\left(c_{2}\left(\cosh (\lambda x)^{2}-\frac{1}{2}\right) \ln (\operatorname{coth}(\lambda x)-1)\right. \\
& +c_{2}\left(-\cosh (\lambda x)^{2}+\frac{1}{2}\right) \ln (\operatorname{coth}(\lambda x)+1)-4 \cosh (\lambda x)^{5} \sinh (\lambda x) c_{2} \\
+ & \left.4 c_{2} \cosh (\lambda x)^{3} \sinh (\lambda x)+\cosh (\lambda x)^{2} c_{1}+c_{2} \cosh (\lambda x) \sinh (\lambda x)-\frac{c_{1}}{2}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
=\frac{2 \lambda \operatorname{sech}(\lambda x) \operatorname{csch}(\lambda x)\left(c_{2}\left(\cosh (\lambda x)^{2}-\frac{1}{2}\right) \ln (\operatorname{coth}(\lambda x)-1)+c_{2}\left(-\cosh (\lambda x)^{2}+\frac{1}{2}\right) \ln (\operatorname{coth}(\lambda x)+1)\right.}{c_{2} \ln (\operatorname{coth}(\lambda x)-1)-c_{2} \ln (\operatorname{coth}(\lambda x)+1)+c_{1}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\operatorname{sech}(\lambda x) \operatorname{csch}(\lambda x)\left(8 \cosh (\lambda x)^{5} \sinh (\lambda x)-8 \sinh (\lambda x) \cosh (\lambda x)^{3}-2 \cosh (\lambda x)^{2} \ln (\operatorname{coth}(\lambda x)-1)+2\right.}{-4 \sinh (\lambda x) \cosh (\lambda x)^{3}+2 \cosh (\lambda x) \mathrm{s}}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=\frac{\operatorname{sech}(\lambda x) \operatorname{csch}(\lambda x)\left(8 \cosh (\lambda x)^{5} \sinh (\lambda x)-8 \sinh (\lambda x) \cosh (\lambda x)^{3}-2 \cosh (\lambda x)^{2} \ln (\operatorname{coth}(\lambda x)-1)+2\right.}{-4 \sinh (\lambda x) \cosh (\lambda x)^{3}+2 \cosh (\lambda x) \mathrm{s}}\)
Verification of solutions
\(y\)
\(=\frac{\operatorname{sech}(\lambda x) \operatorname{csch}(\lambda x)\left(8 \cosh (\lambda x)^{5} \sinh (\lambda x)-8 \sinh (\lambda x) \cosh (\lambda x)^{3}-2 \cosh (\lambda x)^{2} \ln (\operatorname{coth}(\lambda x)-1)+2\right.}{-4 \sinh (\lambda x) \cosh (\lambda x)^{3}+2 \cosh (\lambda x)}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (2*lambda^2*tanh(lambda*x)^ 2+2
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[x = arccoth(t)/lambda]
Linear ODE actually solved:
(-2*t`4-2)*u(t)+(2*t^5-2*t^3)*diff(u(t),t)+(t^6-2*t`4+t^2)*diff(diff(u(t),t),t)
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 143
dsolve \(\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2-2 * \operatorname{lambda}{ }^{\wedge} 2 * \tanh (\operatorname{lambda} * x) \wedge 2-2 * \operatorname{lambda} \wedge 2 * \operatorname{coth}(\operatorname{lambda} * x) \wedge 2, y(x), \sin \right.\)
\(y(x)\)
\(=\frac{2\left(-\frac{1}{2}+c_{1}\left(-\cosh (x \lambda)^{2}+\frac{1}{2}\right) \ln (\operatorname{coth}(x \lambda)-1)+c_{1}\left(\cosh (x \lambda)^{2}-\frac{1}{2}\right) \ln (\operatorname{coth}(x \lambda)+1)+4 \cosh (x \lambda)^{5} c\right.}{-4 \cosh (x \lambda)^{3} c_{1} \sinh (x \lambda)+2 \sinh (x \lambda) \cosh (x \lambda) c_{1}+}\)
\(\checkmark\) Solution by Mathematica
Time used: 7.989 (sec). Leaf size: 132

\[
\begin{aligned}
& y(x) \rightarrow-\frac{2 \lambda\left(e^{12 \lambda x}+2 e^{4 \lambda x}\left(e^{4 \lambda x}+1\right) \log \left(e^{4 \lambda x}\right)+\left(-7+c_{1}\right)\left(-e^{4 \lambda x}\right)-\left(7+c_{1}\right) e^{8 \lambda x}-1\right)}{\left(e^{4 \lambda x}-1\right)\left(e^{8 \lambda x}-2 e^{4 \lambda x} \log \left(e^{4 \lambda x}\right)+c_{1} e^{4 \lambda x}-1\right)} \\
& y(x) \rightarrow \frac{2 \lambda\left(e^{4 \lambda x}+1\right)}{e^{4 \lambda x}-1}
\end{aligned}
\]

\subsection*{6.10 problem 27}
6.10.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 791

Internal problem ID [10475]
Internal file name [OUTPUT/9422_Monday_June_06_2022_02_31_42_PM_84409171/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-2. Equations with hyperbolic tangent and cotangent.
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=-2 a b+\lambda a+b \lambda-a(a+\lambda) \tanh (\lambda x)^{2}-b(b+\lambda) \operatorname{coth}(\lambda x)^{2}
\]

\subsection*{6.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-b^{2} \operatorname{coth}(\lambda x)^{2}-b \operatorname{coth}(\lambda x)^{2} \lambda-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda-2 a b+\lambda a+b \lambda+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\(y^{\prime}=-b^{2} \operatorname{coth}(\lambda x)^{2}-b \operatorname{coth}(\lambda x)^{2} \lambda-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda-2 a b+\lambda a+b \lambda+y^{2}\)
With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-b^{2} \operatorname{coth}(\lambda x)^{2}-b \operatorname{coth}(\lambda x)^{2} \lambda-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda-\) \(2 a b+\lambda a+b \lambda, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-b^{2} \operatorname{coth}(\lambda x)^{2}-b \operatorname{coth}(\lambda x)^{2} \lambda-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda-2 a b+\lambda a+b \lambda
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(u^{\prime \prime}(x)+\left(-b^{2} \operatorname{coth}(\lambda x)^{2}-b \operatorname{coth}(\lambda x)^{2} \lambda-a^{2} \tanh (\lambda x)^{2}-a \tanh (\lambda x)^{2} \lambda-2 a b+\lambda a+b \lambda\right) u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\operatorname{csch}(\lambda x)^{\frac{-a-b}{\lambda}}\left(c_{1} \operatorname{coth}(\lambda x)^{-\frac{a}{\lambda}}\left(-\operatorname{csch}(\lambda x)^{2}\right)^{\frac{a+b}{\lambda}}\right. \\
&\left.+c_{2} \operatorname{coth}(\lambda x)^{\frac{a+\lambda}{\lambda}} \operatorname{hypergeom}\left(\left[1, \frac{1}{2}-\frac{b}{\lambda}\right],\left[\frac{3}{2}+\frac{a}{\lambda}\right], \operatorname{coth}(\lambda x)^{2}\right)\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\xrightarrow{4\left(\frac{\operatorname{coth}(\lambda x)^{\frac{a+\lambda}{\lambda}} c_{2}((b-\lambda) \operatorname{coth}(\lambda x)+\tanh (\lambda x)(a+\lambda))\left(\frac{3 \lambda}{2}+a\right) \operatorname{hypergeom}\left(\left[1, \frac{1}{2}-\frac{b}{\lambda}\right],\left[\frac{3}{2}+\frac{a}{\lambda}\right], \operatorname{coth}(\lambda x)^{2}\right)}{2}+\operatorname{coth}(\lambda x)^{\frac{a+\lambda}{\lambda}} c_{2}\left(-\frac{\lambda}{2}+b\right.\right.}\)

Using the above in (1) gives the solution
\(y=\)


Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{-4 \operatorname{coth}(\lambda x)^{\frac{2 a+2 \lambda}{\lambda}} \lambda \operatorname{csch}(\lambda x)^{2}\left(-\frac{\lambda}{2}+b\right) \text { hypergeom }\left(\left[2,-\frac{2 b-3 \lambda}{2 \lambda}\right],\left[\frac{2 a+5 \lambda}{2 \lambda}\right], \operatorname{coth}(\lambda x)^{2}\right)+(((-3 a-3 b)}{\left(c_{3}\right)}\)
Summary
The solution(s) found are the following
\(y\)
(1)
\(=\frac{-4 \operatorname{coth}(\lambda x)^{\frac{2 a+2 \lambda}{\lambda}} \lambda \operatorname{csch}(\lambda x)^{2}\left(-\frac{\lambda}{2}+b\right) \text { hypergeom }\left(\left[2,-\frac{2 b-3 \lambda}{2 \lambda}\right],\left[\frac{2 a+5 \lambda}{2 \lambda}\right], \operatorname{coth}(\lambda x)^{2}\right)+(((-3 a-3 b)}{\left(c_{3}\right.}\)
Verification of solutions
\(y\)
\(=\frac{-4 \operatorname{coth}(\lambda x)^{\frac{2 a+2 \lambda}{\lambda}} \lambda \operatorname{csch}(\lambda x)^{2}\left(-\frac{\lambda}{2}+b\right) \text { hypergeom }\left(\left[2,-\frac{2 b-3 \lambda}{2 \lambda}\right],\left[\frac{2 a+5 \lambda}{2 \lambda}\right], \operatorname{coth}(\lambda x)^{2}\right)+(((-3 a-3 b)}{\left(c_{3}\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b^2*\operatorname{coth(lambda*x)^2+b*coth(l}\l
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach4
<- heuristic approach successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 289
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2+a * l a m b d a+b * l a m b d a-2 * a * b-a *(a+l a m b d a) * \tanh (l a m b d a * x) ~ \wedge 2-b *(b+l a m b d a$
$y(x)$
$=\frac{-4 c_{1} \lambda\left(b-\frac{\lambda}{2}\right) \operatorname{coth}(x \lambda)^{\frac{2 a+2 \lambda}{\lambda}} \operatorname{csch}(x \lambda)^{2} \text { hypergeom }\left(\left[2,-\frac{2 b-3 \lambda}{2 \lambda}\right],\left[\frac{2 a+5 \lambda}{2 \lambda}\right], \operatorname{coth}(x \lambda)^{2}\right)-2 c_{1}\left(\left(\left(\frac{3 a}{2}+\frac{3 b}{2}\right)\right.\right.}{(\text { hyp }}$
$\sqrt{ }$ Solution by Mathematica
Time used: 40.238 (sec). Leaf size: 493
DSolve[y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \backslash[$ Lambda] $+\mathrm{b} * \backslash[$ Lambda] $-2 * \mathrm{a} * \mathrm{~b}-\mathrm{a} *(\mathrm{a}+\backslash[$ Lambda] $) * T a n h[\backslash[$ Lambda] $* \mathrm{x}] \sim 2-\mathrm{b} *(\mathrm{~b}+$
$y(x) \rightarrow$

$$
(a+b)\left(e^{2 \lambda x}\right)^{\frac{a+b}{\lambda}}\left(\frac{2 \lambda\left(a\left(e^{2 \lambda x}-1\right)^{2}+b\left(e^{2 \lambda x}+1\right)^{2}\right)\left(e^{2 \lambda x}\right)^{-\frac{a+b}{\lambda}} \operatorname{AppellF1}\left(-\frac{a+b}{\lambda},-\frac{2 b}{\lambda},-\frac{2 a}{\lambda},-\frac{a+b-\lambda}{\lambda}, e^{2 x \lambda},-e^{2 x \lambda}\right)}{(a+b)\left(e^{2 \lambda x}-1\right)\left(e^{2 \lambda x}+1\right)}+4 \lambda\left(e^{2 \lambda x}\right)\right.
$$

$y(x) \rightarrow \frac{a\left(e^{2 \lambda x}-1\right)^{2}+b\left(e^{2 \lambda x}+1\right)^{2}}{e^{4 \lambda x}-1}$

7 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions

7.1 problem 1 797
7.2 problem 2 802
7.3 problem 3 807
7.4 problem 4 812
7.5 problem 5 817
7.6 problem 6 822
7.7 problem 7 827
7.8 problem 8 832
7.9 problem 9 837

7.1 problem 1

7.1.1 Solving as riccati ode 797

Internal problem ID [10476]
Internal file name [OUTPUT/9423_Monday_June_06_2022_02_31_52_PM_82473112/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a \ln (x)^{n} y^{2}=b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{n}
$$

7.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \ln (x)^{n} y^{2}+b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a b^{2} x^{2 m} \ln (x)^{n}+a \ln (x)^{n} y^{2}+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=\ln (x)^{n}$ a. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\ln (x)^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\ln (x)^{n} n a}{x \ln (x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\ln (x)^{2 n} a^{2}\left(b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\ln (x)^{n} a u^{\prime \prime}(x)-\frac{\ln (x)^{n} n a u^{\prime}(x)}{x \ln (x)}+\ln (x)^{2 n} a^{2}\left(b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\text { DESol }(& \left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}\right. \\
& \left.\left.+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol } & \left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}\right.\right. \\
& \left.\left.+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)\right) \ln (x)}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)\right) \ln (x)}{a \operatorname{DESol}\left(\left\{\frac{-a^{2} b^{2}-Y(x) \ln (x)^{1+2 n} x^{1+2 m}+a b m x^{m}}{} \frac{Y(x) \ln (x)^{n+1}+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{\ln (x) x}\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$
(1)

$$
\left.\left.-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}+a _Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)\right) \ln (x)}{a \operatorname{DESol}\left(\left\{\frac{-a^{2} b^{2}-Y(x) \ln (x)^{1+2 n} x^{1+2 m}+a b m x^{m}}{\ln (x) x} Y(x) \ln (x)^{n+1}+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)\right.\right.}\right\},\{-Y(x)\}\right)
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& \left.\left.-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{x \ln (x)}+a-Y(x)\left(\ln (x)^{n} b m x^{m-1}-a b^{2} x^{2 m} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)\right) \ln (x)}{a \operatorname{DESol}\left(\left\{\frac{-a^{2} b^{2}-Y(x) \ln (x)^{1+2 n} x^{1+2 m}+a b m x^{m}}{\frac{Y(x) \ln (x)^{n+1}+}{}+Y^{\prime \prime}(x) \ln (x) x-n=Y^{\prime}(x)}\right.\right.} \overline{\ln (x) x}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(y(x), x), x)=n *(\operatorname{diff}(y(x), x)) /(x * \ln (x))+a *$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe -> trying a solution of the $f 800^{m} r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (i n t(r(x), d x))$ -> Trying changes of variables to rationalize or make the ODE simplef trying a symmetry of the form [xi=0, eta=F(x)]

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=a *(\ln (x)) \wedge n * y(x) \wedge 2+b * m * x^{\wedge}(m-1)-a * b \wedge 2 * x^{\wedge}(2 * m) *(\ln (x))^{\wedge} n, y(x)\right.$, singsol=all

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==a *(\log [x])^{\wedge} n * y[x] \wedge 2+b * m * x^{\wedge}(m-1)-a * b^{\wedge} 2 * x^{\wedge}(2 * m) *(\log [x]) \wedge n, y[x], x$, IncludeSingula

Not solved

7.2 problem 2

7.2.1 Solving as riccati ode . 802

Internal problem ID [10477]
Internal file name [OUTPUT/9424_Monday_June_06_2022_02_31_55_PM_71859029/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-a y^{2}=b \ln (x)+c
$$

7.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y^{2}+b \ln (x)+c}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a y^{2}}{x}+\frac{b \ln (x)}{x}+\frac{c}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b \ln (x)+c}{x}, f_{1}(x)=0$ and $f_{2}(x)=\frac{a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a^{2}(b \ln (x)+c)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a u^{\prime \prime}(x)}{x}+\frac{a u^{\prime}(x)}{x^{2}}+\frac{a^{2}(b \ln (x)+c) u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+c_{2} \operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(-\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{1}-\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{2}\right)(a b)^{\frac{1}{3}}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{1}-\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{2}\right)(a b)^{\frac{1}{3}}}{a\left(c_{1} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+c_{2} \operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{Airy} \operatorname{Ai}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{Airy} \operatorname{Ai}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\operatorname{AiryAi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{3}+\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)(a b)^{\frac{1}{3}}}{a\left(c_{3} \operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+\operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-a*(ln(x)*b+
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
        <- special function solution successful
        Change of variables used:
        [x = exp(t)]
        Linear ODE actually solved:
        (a*b*t+a*c)*u(t)+diff(diff(u(t),t),t) = 0
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 91
dsolve($x * \operatorname{diff}(y(x), x)=a * y(x)^{\wedge} 2+b * \ln (x)+c, y(x)$, singsol=all)

$$
y(x)=\frac{(a b)^{\frac{1}{3}}\left(\operatorname{AiryBi}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right) c_{1}+\operatorname{Airy} \operatorname{Ai}\left(1,-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)}{a\left(c_{1} \operatorname{AiryBi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)+\operatorname{AiryAi}\left(-\frac{(a b)^{\frac{1}{3}}(b \ln (x)+c)}{b}\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.682 (sec). Leaf size: 149
DSolve[x*y'[x]==a*y[x] $2+b * \log [x]+c, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{b\left(\operatorname{AiryBiPrime}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)+c_{1} \operatorname{AiryAiPrime}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)\right)}{(-a b)^{2 / 3}\left(\operatorname{AiryBi}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)+c_{1} \operatorname{AiryAi}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)\right)} \\
& y(x) \rightarrow \frac{b \operatorname{AiryAiPrime}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)}{(-a b)^{2 / 3} \operatorname{AiryAi}\left(-\frac{a(c+b \log (x))}{(-a b)^{2 / 3}}\right)}
\end{aligned}
$$

7.3 problem 3

$$
\text { 7.3.1 Solving as riccati ode . } 807
$$

Internal problem ID [10478]
Internal file name [OUTPUT/9425_Monday_June_06_2022_02_31_57_PM_8846351/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-a y^{2}=b \ln (x)^{k}+c \ln (x)^{2 k+2}
$$

7.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y^{2}+b \ln (x)^{k}+c \ln (x)^{2 k+2}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a y^{2}}{x}+\frac{b \ln (x)^{k}}{x}+\frac{c \ln (x)^{2 k} \ln (x)^{2}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b \ln (x)^{k}+c \ln (x)^{2 k+2}}{x}, f_{1}(x)=0$ and $f_{2}(x)=\frac{a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a^{2}\left(b \ln (x)^{k}+c \ln (x)^{2 k+2}\right)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a u^{\prime \prime}(x)}{x}+\frac{a u^{\prime}(x)}{x^{2}}+\frac{a^{2}\left(b \ln (x)^{k}+c \ln (x)^{2 k+2}\right) u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =\mathrm{e}^{-\frac{i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}}\left(\operatorname{hypergeom}\left(\left[\frac{(k+1) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{k+1}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right) c_{1}\right. \\
& \left.\quad+\text { hypergeom }\left(\left[\frac{(3+k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right) c_{2} \ln (x)\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)=$

$$
-\frac{\left(-\ln (x)^{k+1}(3+k)(i(k+1) \sqrt{c} \sqrt{a}-a b) c_{1} \text { hypergeom }\left(\left[\frac{(5+3 k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+2 k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right)+\right.}{}
$$

Using the above in (1) gives the solution
y
$=\frac{-\ln (x)^{k+1}(3+k)(i(k+1) \sqrt{c} \sqrt{a}-a b) c_{1} \text { hypergeom }\left(\left[\frac{(5+3 k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+2 k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right)+(k .}{}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\underline{-\ln (x)^{k+1}(3+k)(i(k+1) \sqrt{c} \sqrt{a}-a b) c_{3} \operatorname{hypergeom}\left(\left[\frac{(5+3 k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+2 k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right)+(k .}$

Summary
The solution(s) found are the following
y
$=\underline{-\ln (x)^{k+1}(3+k)(i(k+1) \sqrt{c} \sqrt{a}-a b) c_{3} \text { hypergeom }\left(\left[\frac{(5+3 k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+2 k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right)+(k .}$

Verification of solutions
y
$=\underline{-\ln (x)^{k+1}(3+k)(i(k+1) \sqrt{c} \sqrt{a}-a b) c_{3} \text { hypergeom }\left(\left[\frac{(5+3 k) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(4+2 k)}\right],\left[\frac{3+2 k}{k+2}\right], \frac{2 i \sqrt{c} \sqrt{a} \ln (x)^{k+2}}{k+2}\right)+(k .}$

Verified OK.

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-a*(b*\operatorname{ln}(x)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
                <- Whittaker successful
        <- special function solution successful
        Change of variables used:
            [x = exp(t)]
        Linear ODE actually solved:
            a*(b*t^k+c*t^(2+2*k))*u(t)+diff(diff(u(t),t),t) = 0
    <- change of variables successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 480
dsolve ($x * \operatorname{diff}(y(x), x)=a * y(x) \wedge 2+b *(\ln (x))^{\wedge} k+c *(\ln (x))^{\wedge}(2 * k+2), y(x)$, singsol=all)
$y(x)$
$=\underline{-\ln (x)^{1+k}(k+3)(i \sqrt{c}(1+k) \sqrt{a}-a b) \text { hypergeom }\left(\left[\frac{(3 k+5) \sqrt{c}+i \sqrt{a} b}{\sqrt{c}(2 k+4)}\right],\left[\frac{2 k+3}{k+2}\right], \frac{2 i \sqrt{a} \sqrt{c} \ln (x)^{k+2}}{k+2}\right)+(-(i)}$
\checkmark Solution by Mathematic
Time used: 3.775 (sec). Leaf size: 807
Solve $\left[x * y y^{\prime}[x]==a * y[x] \wedge 2+b *(\log [x]) \wedge k+c *(\log [x])^{\wedge}(2 * k+2), y[x], x\right.$, IncludeSingularSolutions \rightarrow
$y(x) \rightarrow$

$$
\log ^{k+1}(x)\left(\sqrt{c} c_{1}(k+2) \sqrt{-(k+2)^{2}} \text { Hypergeometric } \mathrm{U}\left(\frac{1}{2}\left(\frac{\sqrt{a} b}{\sqrt{c} \sqrt{-(k+2)^{2}}}+\frac{k+1}{k+2}\right), \frac{k+1}{k+2}, \frac{2 \sqrt{a} \sqrt{c} \log ^{k+2}(x)}{\sqrt{-(k+2)^{2}}}\right)+\right.
$$

$y(x)$
$\rightarrow \frac{\log ^{k+1}(x)\left(-\frac{\left(\sqrt{a} b(k+2)+\sqrt{c} \sqrt{-(k+2)^{2}}(k+1)\right) \text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a b}}{\sqrt{c} \sqrt{-(k+2)^{2}}}+\frac{3 k+5}{k+2}\right), \frac{2 k+3}{k+2}, \frac{2 \sqrt{a} \sqrt{c} \log ^{k+2}(x)}{\sqrt{-(k+2)^{2}}}\right)}{\text { HypergeometricU }\left(\frac{1}{2}\left(\frac{\sqrt{a b}}{\sqrt{c} \sqrt{-(k+2)^{2}}}+\frac{k+1}{k+2}\right), \frac{k+1}{k+2}, \frac{2 \sqrt{a} \sqrt{c} \log ^{k+2}(x)}{\sqrt{-(k+2)^{2}}}\right)}-\sqrt{c} \sqrt{-(} \sqrt{a}(k+2)^{2}\right.}{\sqrt{-(~}}$

7.4 problem 4

7.4.1 Solving as riccati ode . 812

Internal problem ID [10479]
Internal file name [OUTPUT/9426_Monday_June_06_2022_02_32_00_PM_24545857/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-y^{2} x=-a^{2} x \ln (\beta x)^{2}+a
$$

7.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{a^{2} x \ln (\beta x)^{2}-x y^{2}-a}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} \ln (\beta x)^{2}+y^{2}+\frac{a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a^{2} x \ln (\beta x)^{2}-a}{x}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a^{2} x \ln (\beta x)^{2}-a}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2}-a\right) u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2}-a\right) _Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2}-a\right) _Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2}-a\right)-Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2}-a\right)-Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right) _Y(x)}{x}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right) _Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right) _Y(x)}{x}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right) _Y(x)}{x}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x-a\left(\ln (\beta x)^{2} a x-1\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*(ln(beta*x)^2*a*x-1)*y(x)/x,
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
        <- unable to find a useful change of variables
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(-ln(beta*x)^2*a^2+a/x))
        Methods for first order ODEs:
        --- Trying classification methods,5---
        trying a quadrature
        trying 1st order linear
```

X Solution by Maple
dsolve ($x * \operatorname{diff}(y(x), x)=x * y(x) \wedge 2-a^{\wedge} 2 * x *(\ln (b e t a * x)) \wedge 2+a, y(x), \quad$ singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==x * y[x] \wedge 2-a^{\wedge} 2 * x *(\log [\backslash[\operatorname{Beta}] * x]) \wedge 2+a, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

Not solved

7.5 problem 5

$$
\text { 7.5.1 Solving as riccati ode . } 817
$$

Internal problem ID [10480]
Internal file name [OUTPUT/9427_Monday_June_06_2022_02_32_05_PM_43314102/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-y^{2} x=-a^{2} x \ln (\beta x)^{2 k}+a k \ln (\beta x)^{k-1}
$$

7.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-x y^{2}+a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-a^{2} \ln (\beta x)^{2 k}+\frac{a k \ln (\beta x)^{k}}{x \ln (\beta x)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}}{x}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right) u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{-\ln (\beta x)^{1+2 k}-Y(x) a^{2} x+\ln (\beta x)^{k}-Y_{(x) a k+} Y^{\prime \prime}(x) \ln (\beta x) x}{\ln (\beta x) x}\right\},\{-Y(x)\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{-\ln (\beta x)^{1+2 k}-Y(x) a^{2} x+\ln (\beta x)^{k}-Y(x) a k+\ldots Y^{\prime \prime}(x) \ln (\beta x) x}{\ln (\beta x) x}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.\left.y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(a^{2} x \ln (\beta x)^{2 k}-a k \ln (\beta x)^{k-1}\right)-Y(x)}{x}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{-\ln (\beta x)^{1+2 k}-Y(x) a^{2} x+\ln (\beta x)^{k}-\bar{x}}{\ln (\beta x) x} Y(x) a k+Y^{\prime \prime}(x) \ln (\beta x) x\right.\right.}\right\},\{-Y(x)\}\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*(ln(beta*x)^(2*k)*a*x-ln(bet
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
        <- unable to find a useful change of variables
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(-ln(beta*x)^(2*k)*a^2+a
        Methods for first order ODEs:
        --- Trying classification methog&{0---
        trying a quadrature
        trying 1st order linear
```

X Solution by Maple
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x} * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{a}^{\wedge} 2 * \mathrm{x} *(\ln (\mathrm{beta} \mathrm{x}))^{\wedge}(2 * \mathrm{k})+\mathrm{a} * \mathrm{k} *(\ln (\text { beta } * x))^{\wedge}(\mathrm{k}-1), \mathrm{y}(\mathrm{x})\right.$, singsol

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{x} * \mathrm{y} \mathrm{I}^{\prime}[\mathrm{x}]==\mathrm{x} * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2-\mathrm{a} \wedge 2 * \mathrm{x} *(\log [\backslash[\text { Beta }] * \mathrm{x}])^{\wedge}(2 * \mathrm{k})+\mathrm{a} * \mathrm{k} *(\log [\backslash[\text { Beta }] * \mathrm{x}])^{\wedge}(\mathrm{k}-1), \mathrm{y}[\mathrm{x}], \mathrm{x}, \operatorname{Incl}\right.$

Not solved

7.6 problem 6

7.6.1 Solving as riccati ode . 822

Internal problem ID [10481]
Internal file name [OUTPUT/9428_Monday_June_06_2022_02_32_08_PM_61700309/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-a x^{n} y^{2}=b-a b^{2} x^{n} \ln (x)^{2}
$$

7.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{a b^{2} x^{n} \ln (x)^{2}-a x^{n} y^{2}-b}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{a b^{2} x^{n} \ln (x)^{2}}{x}+\frac{a x^{n} y^{2}}{x}+\frac{b}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{-b+a b^{2} x^{n} \ln (x)^{2}}{x}, f_{1}(x)=0$ and $f_{2}(x)=\frac{a x^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a x^{n} n}{x^{2}}-\frac{a x^{n}}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{a^{2} x^{2 n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a x^{n} u^{\prime \prime}(x)}{x}-\left(\frac{a x^{n} n}{x^{2}}-\frac{a x^{n}}{x^{2}}\right) u^{\prime}(x)-\frac{a^{2} x^{2 n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right) u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{(n-1) _Y^{\prime}(x)}{x}\right.\right. \\
& \left.\left.\quad-\frac{a x^{n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right) _Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{(n-1) _Y^{\prime}(x)}{x}\right.\right. \\
&\left.\left.-\frac{a x^{n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{(n-1)_{-} Y^{\prime}(x)}{x}-\frac{a x^{n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n} x}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{(n-1)_{-} Y^{\prime}(x)}{x}-\frac{a x^{n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$\left.\left.\left.\left.y=-\frac{x^{1-n}\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=Y^{\prime \prime}(x) x^{2}-\ln (x)^{2} x^{2 n}-Y(x) a^{2} b^{2}-(n-1) _Y^{\prime}(x) x+x^{n}-Y(x) a b\right.\right.\right.}{x^{2}}\right\},\{-Y(x)\}\right)\right)\right)$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y= \tag{1}\\
& -\frac{x^{1-n}\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{2}-\ln (x)^{2} x^{2 n}=Y(x) a^{2} b^{2}-(n-1) _Y^{\prime}(x) x+x^{n} _Y(x) a b}{x^{2}}\right\},\left\{_Y(x)\right\}\right)\right)}{a \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{2}-\ln (x)^{2} x^{2 n} _Y(x) a^{2} b^{2}-(n-1) _Y^{\prime}(x) x+x^{n} _Y(x) a b}{x^{2}}\right\},\left\{_Y(x)\right\}\right)}
\end{align*}
$$

Verification of solutions
$y=-\frac{x^{1-n}\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=Y^{\prime \prime}(x) x^{2}-\ln (x)^{2} x^{2 n} _\frac{Y(x) a^{2} b^{2}-(n-1) _Y^{\prime}(x) x+x^{n} _Y(x) a b}{x^{2}}\right\},\left\{_Y(x)\right\}\right)\right)}{a \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{2}-\ln (x)^{2} x^{2 n} _Y(x) a^{2} b^{2}-(n-1) _Y^{\prime}(x) x+x^{n} _Y(x) a b}{x^{2}}\right\},\left\{_Y(x)\right\}\right)}$
Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(y(x), x), x)=(n-1) *(\operatorname{diff}(y(x), x)) / x+x^{\wedge}(n-1$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
\rightarrow trying a solution of the $f 85^{m} \mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$
-> Trying changes of variables to rationalize or make the ODE simplef trying a symmetry of the form [xi=0, eta=F(x)]

X Solution by Maple
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{b}-\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge} \mathrm{n} *(\ln (\mathrm{x}))^{\wedge} \wedge 2, \mathrm{y}(\mathrm{x})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==a * x^{\wedge} n * y[x] \wedge 2+b-a * b^{\wedge} 2 * x^{\wedge} n *(\log [x]) \wedge 2, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

Not solved

7.7 problem 7

7.7.1 Solving as riccati ode

Internal problem ID [10482]
Internal file name [OUTPUT/9429_Monday_June_06_2022_02_32_10_PM_31193013/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-x^{2} y^{2}=a \ln (x)^{2}+b \ln (x)+c
$$

7.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2} y^{2}+a \ln (x)^{2}+b \ln (x)+c}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{a \ln (x)^{2}}{x^{2}}+\frac{b \ln (x)}{x^{2}}+\frac{c}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a \ln (x)^{2}+b \ln (x)+c}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a \ln (x)^{2}+b \ln (x)+c}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(a \ln (x)^{2}+b \ln (x)+c\right) u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =x^{-\frac{i b-\sqrt{a}}{2 \sqrt{a}}} \mathrm{e}^{-\frac{i \ln (x)^{2} \sqrt{a}}{2}}\left(2 \ln (x) \text { hypergeom }\left(\left[\frac{12 a^{\frac{3}{2}}+i(4 c-1) a-i b^{2}}{16 a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{i(2 a \ln (x)+b)^{2}}{4 a^{\frac{3}{2}}}\right) c_{2} a\right. \\
& + \text { hypergeom }\left(\left[\frac{12 a^{\frac{3}{2}}+i(4 c-1) a-i b^{2}}{16 a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{i(2 a \ln (x)+b)^{2}}{4 a^{\frac{3}{2}}}\right) c_{2} b \\
& \left.+c_{1} \text { hypergeom }\left(\left[\frac{4 a^{\frac{3}{2}}+i(4 c-1) a-i b^{2}}{16 a^{\frac{3}{2}}}\right],\left[\frac{1}{2}\right], \frac{i(2 a \ln (x)+b)^{2}}{4 a^{\frac{3}{2}}}\right)\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& \quad 2 x^{-\frac{i b+\sqrt{a}}{2 \sqrt{a}}}\left(-\left(\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}+\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}-\frac{\ln (x)^{2}\left(c-\frac{1}{4}\right) a^{\frac{7}{2}}}{3}+\frac{b^{4} \sqrt{a}}{48}+i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) c_{2} \mathrm{hy}\right.
\end{aligned}
$$

Using the above in (1) gives the solution
y

$$
=\underline{2 x^{-\frac{i b+\sqrt{a}}{2 \sqrt{a}}}\left(-\left(\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}+\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}-\frac{\ln (x)^{2}\left(c-\frac{1}{4}\right) a^{\frac{7}{2}}}{3}+\frac{b^{4} \sqrt{a}}{48}+i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) c_{2} \operatorname{hyp} \epsilon\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\underline{\left(-\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}-\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}+\frac{\ln (x)^{2}\left(c-\frac{1}{4}\right) a^{\frac{7}{2}}}{3}-\frac{b^{4} \sqrt{a}}{48}-i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) \text { hypergeom }\left(\left[\frac{28 a}{}\right.\right.}$

Summary
The solution(s) found are the following
y
$=\underline{\left(-\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}-\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}+\frac{\ln (x)^{2}\left(c-\frac{1}{4}\right) a^{\frac{7}{2}}}{3}-\frac{b^{4} \sqrt{a}}{48}-i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) \text { hypergeom }\left(\left[\frac{28 a}{}\right.\right.}$

Verification of solutions
y
$=\xlongequal[{\left(-\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}-\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}+\frac{\ln (x)^{2}\left(c-\frac{1}{4}\right) a^{\frac{7}{2}}}{3}-\frac{b^{4} \sqrt{a}}{48}-i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) \text { hypergeom }\left(\left[\frac{28 a}{}\right.\right.}]{ }$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (a*ln(x)^2+ln(x)*b+c)*y(x)/x
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                    <- hyper3 successful: ígdirect Equivalence to OF1 under \\\`@@ Moebius\`\`
            <- hypergeometric successful
        <- special function solution successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 477
dsolve ($x^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}^{\wedge} 2 * \mathrm{y}(\mathrm{x})^{\wedge}{ }^{\wedge}+\mathrm{a} *(\ln (\mathrm{x}))^{\wedge} 2+\mathrm{b} * \ln (\mathrm{x})+\mathrm{c}, \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)$
$=\underline{\left(-\frac{b \ln (x)(b \ln (x)-4 c+1) a^{\frac{5}{2}}}{12}-\frac{\left(b \ln (x)-c+\frac{1}{4}\right) b^{2} a^{\frac{3}{2}}}{12}+\frac{\left(c-\frac{1}{4}\right) \ln (x)^{2} a^{\frac{7}{2}}}{3}-\frac{\sqrt{a} b^{4}}{48}-i\left(a \ln (x)+\frac{b}{2}\right)^{2} a^{2}\right) c_{1} \text { hypergeom }(}$
\checkmark Solution by Mathematica
Time used: 1.151 (sec). Leaf size: 868
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==x^{\wedge} 2 * y[x] \wedge 2+a *(\log [x]) \wedge 2+b * \log [x]+c, y[x], x\right.$, IncludeSingularSolutions \rightarrow True
$y(x)$
$\rightarrow \frac{i b \text { ParabolicCylinderD }\left(\frac{-i b^{2}-4 a^{3 / 2}+i a(4 c-1)}{8 a^{3 / 2}},-\frac{\left(\frac{1}{2}-\frac{i}{2}\right)(b+2 a \log (x))}{a^{3 / 4}}\right)+2 i a \log (x) \text { ParabolicCylinderD }\left(\frac{-i b^{2}-4}{}, 4\right.}{}$
$y(x) \rightarrow$

$$
-\frac{2 \sqrt[4]{-1} \sqrt{2} \sqrt[4]{a} \text { ParabolicCylinderD }\left(\frac{i b^{2}+4 a^{3 / 2}-i a(4 c-1)}{8 a^{3 / 2}}, \frac{\left(\frac{1}{2}+\frac{i}{2}\right)(b+2 a \log (x))}{a^{3 / 4}}\right)}{\text { ParabolicCylinderD }\left(\frac{i b^{2}-4 a^{3 / 2}-i a(4 c-1)}{8 a^{3 / 2}}, \frac{\left(\frac{1}{2}+\frac{i}{2}\right)(b+2 a \log (x))}{a^{3 / 4}}\right)}+\frac{i b}{\sqrt{a}}+2 i \sqrt{a} \log (x)+1
$$

$y(x) \rightarrow$

7.8 problem 8

7.8.1 Solving as riccati ode . 832

Internal problem ID [10483]
Internal file name [OUTPUT/9430_Monday_June_06_2022_02_32_12_PM_7672516/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-x^{2} y^{2}=a(b \ln (x)+c)^{n}+\frac{1}{4}
$$

7.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{4 x^{2} y^{2}+4 a(b \ln (x)+c)^{n}+1}{4 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{a(b \ln (x)+c)^{n}}{x^{2}}+\frac{1}{4 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{4 a(b \ln (x)+c)^{n}+1}{4 x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{4 a(b \ln (x)+c)^{n}+1}{4 x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(4 a(b \ln (x)+c)^{n}+1\right) u(x)}{4 x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a(b \ln (x)+c)^{n}+1\right) _Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a(b \ln (x)+c)^{n}+1\right) _Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a(b \ln (x)+c)^{n}+1\right) _Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{\left(4 a(b \ln (x)+c)^{n}+1\right) _Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n} _Y(x) a+4 _Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n}-Y(x) a+4-Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n} _Y(x) a+4 _Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n} _Y(x) a+4-Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n}-Y(x) a+4-Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{4(b \ln (x)+c)^{n}-Y(x) a+4-Y^{\prime \prime}(x) x^{2}+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(1/4)*(4*a*(ln(x)*b+c)^n+1)*y
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(a*(ln(x)*b+c)^n/x^2+(1)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        trying Bernoulli
        trying separable
        trying inverse linear
        trying homogeneous types:
        trying Chini
        differential order: 1; looking f%% linear symmetries
        trying exact
        Looking for potential symmetries
```

X Solution by Maple
dsolve ($x \wedge 2 * \operatorname{diff}(y(x), x)=x \wedge 2 * y(x) \wedge 2+a *(b * \ln (x)+c) \wedge n+1 / 4, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==x^{\wedge} 2 * y[x] \wedge 2+a *(b * \log [x]+c)^{\wedge} n+1 / 4, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved

7.9 problem 9

7.9.1 Solving as riccati ode . 837

Internal problem ID [10484]
Internal file name [OUTPUT/9431_Monday_June_06_2022_02_32_14_PM_30986494/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-1. Equations Containing Logarithmic Functions
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} \ln (x a)\left(y^{\prime}-y^{2}\right)=1
$$

7.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} \ln (x a) x^{2}+1}{x^{2} \ln (x a)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{1}{x^{2} \ln (x a)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x^{2} \ln (x a)}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{1}{x^{2} \ln (x a)}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{u(x)}{x^{2} \ln (x a)}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=-\ln (x a) \text { expIntegral }{ }_{1}(-\ln (x a)) c_{2}-c_{2} a x+c_{1} \ln (x a)
$$

The above shows that

$$
u^{\prime}(x)=\frac{-\exp \operatorname{Integral}_{1}(-\ln (x a)) c_{2}+c_{1}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{-\exp \operatorname{Integral}_{1}(-\ln (x a)) c_{2}+c_{1}}{x\left(-\ln (x a) \exp \operatorname{Integral}_{1}(-\ln (x a)) c_{2}-c_{2} a x+c_{1} \ln (x a)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\left.y=\frac{-\exp \operatorname{Integral}_{1}(-\ln (x a))+c_{3}}{x(\operatorname{expIntegral}}{ }_{1}(-\ln (x a)) \ln (x a)-c_{3} \ln (x a)+x a\right) ~
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left.y=\frac{-\exp \operatorname{Integral}_{1}(-\ln (x a))+c_{3}}{x(\operatorname{expIntegral}}{ }_{1}(-\ln (x a)) \ln (x a)-c_{3} \ln (x a)+x a\right) ~, ~ \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.y=\frac{-\operatorname{expIntegral}}{1} 1(-\ln (x a))+c_{3} \exp _{3} \operatorname{expIntegral}{ }_{1}(-\ln (x a)) \ln (x a)-c_{3} \ln (x a)+x a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -y(x)/(x^2* ln(a*x)), y(x)`
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
        Change of variables used:
            [x = exp(t)/a]
        Linear ODE actually solved:
                u(t)-t*diff(u(t),t)+t*diff(diff(u(t),t),t) = 0
    <- change of variables successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45
dsolve $\left(x^{\wedge} 2 * \ln (a * x) *(\operatorname{diff}(y(x), x)-y(x) \wedge 2)=1, y(x), \quad\right.$ singsol=all $)$

$$
\left.y(x)=\frac{-c_{1} \operatorname{expIntegral}}{1}(-\ln (a x))+1 ~\left(c_{1} \exp \operatorname{Integral}_{1}(-\ln (a x))-1\right) \ln (a x)+c_{1} a x\right) \quad
$$

\checkmark Solution by Mathematica
Time used: 0.616 (sec). Leaf size: 74
DSolve $\left[x^{\wedge} \sim 2 * \log [a * x] *(y\right.$ ' $[x]-y[x] \sim 2)==1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{a+c_{1} \log \operatorname{Integral}(a x)}{-c_{1} x \log \operatorname{Integral}(a x) \log (a x)+a c_{1} x^{2}-a x \log (a x)} \\
& y(x) \rightarrow \frac{\log \operatorname{Integral}(a x)}{a x^{2}-x \log \operatorname{Integral}(a x) \log (a x)}
\end{aligned}
$$

8 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
8.1 problem 10 843
8.2 problem 11 847
8.3 problem 12 851
8.4 problem 13 856
8.5 problem 14 861
8.6 problem 15 871
8.7 problem 16 875
8.8 problem 17 880
8.9 problem 18 889
8.10 problem 19 893
8.11 problem 20 897
8.12 problem 21 901
8.13 problem 22 906
8.14 problem 23 911

8.1 problem 10

> 8.1.1 Solving as riccati ode .

Internal problem ID [10485]
Internal file name [OUTPUT/9432_Monday_June_06_2022_02_32_15_PM_13889787/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \ln (\beta x) y=-a b \ln (\beta x)-b^{2}
$$

8.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \ln (\beta x) y-a b \ln (\beta x)-b^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \ln (\beta x) y-a b \ln (\beta x)-b^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a b \ln (\beta x)-b^{2}, f_{1}(x)=\ln (\beta x) a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\ln (\beta x) a \\
f_{2}^{2} f_{0} & =-a b \ln (\beta x)-b^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\ln (\beta x) a u^{\prime}(x)+\left(-a b \ln (\beta x)-b^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=-\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{1}\right) c_{2} \mathrm{e}^{-b x}
$$

The above shows that

$$
u^{\prime}(x)=c_{2}\left(b \mathrm{e}^{-b x}\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x\right)+b \mathrm{e}^{-b x} c_{1}-\mathrm{e}^{-x(a-b)}(\beta x)^{x a}\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(b \mathrm{e}^{-b x}\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x\right)+b \mathrm{e}^{-b x} c_{1}-\mathrm{e}^{-x(a-b)}(\beta x)^{x a}\right) \mathrm{e}^{b x}}{\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}\right) b-(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)}}{\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}\right) b-(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)}}{\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}\right) b-(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)}}{\int(\beta x)^{x a} \mathrm{e}^{-x(a-2 b)} d x+c_{3}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 74

```
dsolve(diff (y (x), x)=y(x)^2+a*ln(beta*x)*y(x)-a*b*ln(beta*x)-b^2,y(x), singsol=all)
```

$$
y(x)=\frac{\left(\int(x \beta)^{a x} \mathrm{e}^{-(a-2 b) x} d x-c_{1}\right) b-(x \beta)^{a x} \mathrm{e}^{-(a-2 b) x}}{\int(x \beta)^{a x} \mathrm{e}^{-(a-2 b) x} d x-c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 1.584 (sec). Leaf size: 187
DSolve $[\mathrm{y}$ ' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \log [\backslash[$ Beta $] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]-\mathrm{a} * \mathrm{~b} * \log [\backslash[$ Beta $] * \mathrm{x}]-\mathrm{b} \wedge 2, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolu

Solve $\left[\int_{1}^{x} \frac{e^{2 b K[1]-a K[1]}(\beta K[1])^{a K[1]}(b+a \log (\beta K[1])+y(x))}{a(b-y(x))} d K[1]\right.$
$+\int_{1}^{y(x)}\left(\frac{e^{2 b x-a x}(x \beta)^{a x}}{a(K[2]-b)^{2}}\right.$
$\left.-\int_{1}^{x}\left(\frac{e^{2 b K[1]-a K[1]}(b+K[2]+a \log (\beta K[1]))(\beta K[1])^{a K[1]}}{a(b-K[2])^{2}}+\frac{e^{2 b K[1]-a K[1]}(\beta K[1])^{a K[1]}}{a(b-K[2])}\right) d K[1]\right) d K[2]=c_{1}$

8.2 problem 11

8.2.1 Solving as riccati ode . 847

Internal problem ID [10486]
Internal file name [OUTPUT/9433_Monday_June_06_2022_02_32_17_PM_25607459/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a x \ln (b x)^{m} y=a \ln (b x)^{m}
$$

8.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \ln (b x)^{m} y+a \ln (b x)^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a x \ln (b x)^{m} y+a \ln (b x)^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \ln (b x)^{m}, f_{1}(x)=a \ln (b x)^{m} x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \ln (b x)^{m} x \\
f_{2}^{2} f_{0} & =a \ln (b x)^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-a \ln (b x)^{m} x u^{\prime}(x)+a \ln (b x)^{m} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m_{a} x^{2}-2}}{x} d x} d x\right) c_{1}+c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m_{a}} x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} c_{1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} c_{1}}{x\left(\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} x_{a x}-2}{x} d x} d x\right) c_{3}+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}+1\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.\left.y=\frac{-\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\ln (b x)^{m} a x^{2}-2}{x}} d x\right.\right.} d x\right) c_{3}+1\right) \quad,
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 85

```
dsolve(diff (y (x), x)=y(x)^2+a*x*(ln(b*x))^m*y(x)+a*(ln(b*x))^m,y(x), singsol=all)
```

$$
y(x)=\frac{-\mathrm{e}^{\int \frac{a \ln (b x)^{m} x^{2}-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{a \ln (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{a \ln (b x)^{m} x^{2}-2}{x} d x} d x\right) x}
$$

\checkmark Solution by Mathematica
Time used: 3.589 (sec). Leaf size: 181
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2+a * x *(\log [b * x]) \wedge m * y[x]+a *(\log [b * x])^{\wedge} m, y[x], x$, IncludeSingularSolutions
$y(x) \rightarrow$
$-\frac{x \int_{1}^{x} \frac{\exp \left(\frac{2^{-m-1} a \Gamma(m+1,-2 \log (b K[1]))(-\log (b K[1]))^{-m} \log ^{m}(b K[1])}{b^{2}}\right)}{K[]^{2}} d K[1]+\exp \left(\frac{\left.a 2^{-m-1}(-\log (b x))^{-m} \log ^{m}(b x)\right)}{b^{2}}\right.}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(\frac{2^{-m-1} a \Gamma(m+1,-2 \log (b K[1]))(-\log (b K[1]))^{-m} \log ^{m}(b K[1])}{b^{2}}\right)}{K[1]^{2}} d K[1]+c_{1}\right)}$
$y(x) \rightarrow-\frac{1}{x}$

8.3 problem 12

8.3.1 Solving as riccati ode
 851

Internal problem ID [10487]
Internal file name [OUTPUT/9434_Monday_June_06_2022_02_32_18_PM_89796833/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a x^{n} y^{2}+a b x^{n+1} \ln (x) y=b \ln (x)+b
$$

8.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n} y^{2}-a b x^{n+1} \ln (x) y+b \ln (x)+b
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} y^{2}-a b x^{n} x \ln (x) y+b \ln (x)+b
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b \ln (x)+b, f_{1}(x)=-a \ln (x) x^{n+1} b$ and $f_{2}(x)=x^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{x^{n} n a}{x} \\
f_{1} f_{2} & =-a^{2} \ln (x) x^{n+1} b x^{n} \\
f_{2}^{2} f_{0} & =x^{2 n} a^{2}(b \ln (x)+b)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{n} a u^{\prime \prime}(x)-\left(\frac{x^{n} n a}{x}-a^{2} \ln (x) x^{n+1} b x^{n}\right) u^{\prime}(x)+x^{2 n} a^{2}(b \ln (x)+b) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{a_{-} Y(x) b(1+\ln (x)) x^{n+1}+_{_} Y^{\prime \prime}(x) x+_{_} Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+_Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)$
Using the above in (1) gives the solution
$y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\left\{_Y(x)\right\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)}$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{a-Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a-Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Verification of solutions
$y=-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)\right) x^{-n}}{a \operatorname{DESol}\left(\left\{\frac{a _Y(x) b(1+\ln (x)) x^{n+1}+\ldots Y^{\prime \prime}(x) x+\ldots Y^{\prime}(x)\left(a \ln (x) x^{2+n} b-n\right)}{x}\right\},\{-Y(x)\}\right)}$
Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=-\left(\mathrm{x}^{\wedge}(\mathrm{n}+1) * \ln (\mathrm{x}) * \mathrm{a} * \mathrm{~b} * \mathrm{x}-\mathrm{n}\right) *(\operatorname{diff}$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the ffrm $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$
-> Trying changes of variables to rationalize or make the ODE simplef trying a symmetry of the form [xi=0, eta=F(x)]

X Solution by Maple
dsolve(diff $(y(x), x)=a * x^{\wedge} n * y(x)^{\wedge} 2-a * b * x^{\wedge}(n+1) * \ln (x) * y(x)+b * \ln (x)+b, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==a * x^{\wedge} n * y[x] \sim 2-a * b * x^{\wedge}(n+1) * \log [x] * y[x]+b * \log [x]+b, y[x], x$, IncludeSingularSolution

Not solved

8.4 problem 13

8.4.1 Solving as riccati ode . 856

Internal problem ID [10488]
Internal file name [OUTPUT/9435_Monday_June_06_2022_02_32_20_PM_19258479/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(n+1) x^{n} y^{2}-a x^{n+1} \ln (x)^{m} y=-a \ln (x)^{m}
$$

8.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{n+1} \ln (x)^{m} y-x^{n} y^{2} n-x^{n} y^{2}-a \ln (x)^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{n} x \ln (x)^{m} y-x^{n} y^{2} n-x^{n} y^{2}-a \ln (x)^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a \ln (x)^{m}, f_{1}(x)=a \ln (x)^{m} x^{n+1}$ and $f_{2}(x)=-n x^{n}-x^{n}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-n x^{n}-x^{n}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x} \\
f_{1} f_{2} & =a \ln (x)^{m} x^{n+1}\left(-n x^{n}-x^{n}\right) \\
f_{2}^{2} f_{0} & =-\left(-n x^{n}-x^{n}\right)^{2} a \ln (x)^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-n x^{n}-x^{n}\right) u^{\prime \prime}(x)-\left(-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x}+a \ln (x)^{m} x^{n+1}\left(-n x^{n}-x^{n}\right)\right) u^{\prime}(x)-\left(-n x^{n}-x^{n}\right)^{2} a \ln (x)^{m} u(x
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{n+1}\left(\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that
$u^{\prime}(x)=x^{n}(n+1)\left(\left(\int \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x} d x} x^{-2 n-2} d x\right) c_{2}+c_{1}\right)+c_{2} x^{-n-1} \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x}} d x$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(x^{n}(n+1)\left(\left(\int \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x} d x} x^{-2 n-2} d x\right) c_{2}+c_{1}\right)+c_{2} x^{-n-1} \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}}{x}+n} d x\right.}{\left(-n x^{n}-x^{n}\right)\left(\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right)(n+1) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right)(n+1) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right)(n+1) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(a \ln (x)^{m} x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{a \ln (x)^{m} x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*x^(n+1)*ln(x)^m*x+n)*(diff(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the ffgm r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 184
dsolve $\left(\operatorname{diff}(y(x), x)=-(n+1) * x^{\wedge} n * y(x)^{\wedge} 2+a * x^{\wedge}(n+1) *(\ln (x))^{\wedge} m * y(x)-a *(\ln (x))^{\wedge} m, y(x)\right.$, singsol=all
$y(x)$
$=\frac{x^{-n-1}\left(x^{n+1} \mathrm{e}^{\int \frac{a x^{n+1} \ln (x)^{m} x-2 n-2}{x} d x}+\left(\int x^{n} \mathrm{e}^{a\left(\int x^{n+1} \ln (x)^{m} d x\right)-2\left(\int \frac{1}{x} d x\right)(n+1)} d x\right) n+\int x^{n} \mathrm{e}^{a\left(\int x^{n+1} \ln (x)^{m} d x\right)-2\left(\int\right.}\right.}{\left(\int x^{n} \mathrm{e}^{a\left(\int x^{n+1} \ln (x)^{m} d x\right)-2\left(\int \frac{1}{x} d x\right)(n+1)} d x\right) n+\int x^{n} \mathrm{e}^{a\left(\int x^{n+1} \ln (x)^{m} d x\right)-2\left(\int \frac{1}{x} d x\right)(n+1)} d x-c_{1}}$
Solution by Mathematica
Time used: 5.364 (sec). Leaf size: 311
DSolve $\left[y^{\prime}[x]==-(n+1) * x^{\wedge} n * y[x]^{\wedge} 2+a * x^{\wedge}(n+1) *(\log [x])^{\wedge} m * y[x]-a *(\log [x])^{\wedge} m, y[x], x\right.$, IncludeSingula
$y(x)$

$$
\rightarrow \frac{x^{-2(n+1)}\left(c_{1}(n+1) x^{n+1} \int_{1}^{x} \exp \left(\frac{a \Gamma(m+1,-((n+2) \log (K[1]))) \log ^{m}(K[1])(-((n+2) \log (K[1])))^{-m}}{n+2}-(n+2) \log (K[1])\right)\right.}{(n+1)\left(1+c_{1} \int_{1}^{x} \exp \left(\frac{a \Gamma(m+1,-((n+2) \log (K[1]))) \log ^{m}(K[1])(-((n+2) \log }{n+2}\right.\right.}
$$

$y(x)$
$\rightarrow \frac{x^{-2(n+1)}\left(\frac{\exp \left(\frac{a \log ^{m}(x)(-((n+2) \log (x)))}{\left.n+m_{\Gamma(m+1,-((n+2) \log (x)))}^{n+2}\right)}\right.}{\int_{1}^{x} \exp \left(\frac{a \Gamma(m+1,-((n+2) \log (K[1]))) \log ^{m}(K[1])(-((n+2) \log (K[1])))-m}{n+2}-(n+2) \log (K[1])\right) d K[1]}+(n+1) x^{n+1}\right)}{n+1}$

8.5 problem 14

8.5.1 Solving as linear ode
8.5.2 Solving as first order ode lie symmetry lookup ode 862
8.5.3 Solving as exact ode . 864
8.5.4 Maple step by step solution . 868

Internal problem ID [10489]
Internal file name [OUTPUT/9436_Monday_June_06_2022_02_32_23_PM_88598672/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y=b \ln (x)+b
$$

8.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\ln (x)^{n} a(1-\ln (x) b x) \\
q(x) & =b(1+\ln (x))
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\ln (x)^{n} a(1-\ln (x) b x) y=b(1+\ln (x))
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(b(1+\ln (x))) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x} y\right) & =\left(\mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x}\right)(b(1+\ln (x))) \\
\mathrm{d}\left(\mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x} y\right) & =\left(b(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x} y=\int b(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} \mathrm{d} x \\
& \mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x} y=\int b(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\ln (x)^{n} a(1-\ln (x) b x) d x}$ results in

$$
y=\mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(\int b(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x\right)+c_{1} \mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
$$

which simplifies to

$$
y=\mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(b\left(\int(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x\right)+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(b\left(\int(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(b\left(\int(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x\right)+c_{1}\right)
$$

Verified OK.

8.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=a \ln (x)^{n} y-a b x \ln (x)^{n+1} y+b \ln (x)+b \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\int \ln (x)^{n} a(1-\ln (x) b x) d x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\int \ln (x)^{n} a(1-\ln (x) b x) d x}} d y
\end{aligned}
$$

8.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(a \ln (x)^{n} y-a b x \ln (x)^{n+1} y+b \ln (x)+b\right) \mathrm{d} x \\
\left(-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y-b \ln (x)-b\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y-b \ln (x)-b \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y-b \ln (x)-b\right) \\
& =\ln (x)^{n} a(-1+\ln (x) b x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\ln (x)^{n} a+\ln (x)^{n+1} a x b\right)-(0)\right) \\
& =\ln (x)^{n} a(-1+\ln (x) b x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \ln (x)^{n} a(-1+\ln (x) b x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\int \ln (x)^{n} a(-1+\ln (x) b x) d x} \\
& =\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y-b \ln (x)-b\right) \\
& =\left(a y(-1+\ln (x) b x) \ln (x)^{n}-b(1+\ln (x))\right) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}(1) \\
& =\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(a y(-1+\ln (x) b x) \ln (x)^{n}-b(1+\ln (x))\right) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right)+\left(\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{aligned}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(a y(-1+\ln (x) b x) \ln (x)^{n}-b(1+\ln (x))\right) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} \mathrm{d} x \\
\phi & =\int^{x}\left(a y\left(-1+\ln \left(_a\right) b _a\right) \ln \left(_a\right)^{n}\right. \\
& \left.\quad-b\left(1+\ln \left(_a\right)\right)\right) \mathrm{e}^{a\left(\int \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)} d _a+f(y)
\end{aligned}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}=\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y}\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) d _a+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int^{x}\left(a y\left(-1+\ln \left(_a\right) b _a\right) \ln \left(_a\right)^{n}-b\left(1+\ln \left(_a\right)\right)\right) \mathrm{e}^{a\left(\int \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)} d _a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) d _a+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{x}\left(a y\left(-1+\ln \left(_a\right) b _a\right) \ln \left(_a\right)^{n}-b\left(1+\ln \left(_a\right)\right)\right) \mathrm{e}^{a\left(\int \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)} d _a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) d _a
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \int^{x}\left(a y\left(-1+\ln \left(_a\right) b _a\right) \ln \left(_a\right)^{n}\right. \\
& \left.\quad-b\left(1+\ln \left(_a\right)\right)\right) \mathrm{e}^{a\left(\int \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)} d _a \tag{1}\\
& +\int_{0}^{y}\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) d _a=c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \int^{x}\left(a y\left(-1+\ln \left(_a\right) b _a\right) \ln \left(_a\right)^{n}-b\left(1+\ln \left(_a\right)\right)\right) \mathrm{e}^{a\left(\int \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)} d _a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{a\left(\int^{x} \ln \left(_a\right)^{n}\left(-1+\ln \left(_a\right) b _a\right) d _a\right)}+\mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\right) d _a=c_{1}
\end{aligned}
$$

Verified OK.

8.5.4 Maple step by step solution

Let's solve

$$
y^{\prime}-a \ln (x)^{n} y+a b x \ln (x)^{n+1} y=b \ln (x)+b
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\left(\ln (x)^{n} a-\ln (x)^{n+1} a x b\right) y+b \ln (x)+b$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\left(-\ln (x)^{n} a+\ln (x)^{n+1} a x b\right) y=b \ln (x)+b$
- The ODE is linear; multiply by an integrating factor $\mu(x)$ $\mu(x)\left(y^{\prime}+\left(-\ln (x)^{n} a+\ln (x)^{n+1} a x b\right) y\right)=\mu(x)(b \ln (x)+b)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$ $\mu(x)\left(y^{\prime}+\left(-\ln (x)^{n} a+\ln (x)^{n+1} a x b\right) y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$

$$
\mu^{\prime}(x)=\mu(x)\left(-\ln (x)^{n} a+\ln (x)^{n+1} a x b\right)
$$

- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\int \ln (x)^{n} a(-1+\ln (x) b x) d x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(b \ln (x)+b) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(b \ln (x)+b) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(b \ln (x)+b) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\int \ln (x)^{n} a(-1+\ln (x) b x) d x}$
$y=\frac{\int \mathrm{e}^{\int \ln (x)^{n} a(-1+\ln (x) b x) d x}(b \ln (x)+b) d x+c_{1}}{\mathrm{e}^{\int \ln (x)^{n} a(-1+\ln (x) b x) d x}}$
- Simplify
$y=\mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}\left(b\left(\int(1+\ln (x)) \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)} d x\right)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 51

```
dsolve(diff (y(x), x)=a*(ln(x))^n*y(x)-a*b*x*(ln(x))^(n+1)*y(x)+b*\operatorname{ln}(\textrm{x})+\textrm{b},\textrm{y}(\textrm{x}),}\mathrm{ , singsol=all)
```

$$
y(x)=\left(b\left(\int \mathrm{e}^{a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}(\ln (x)+1) d x\right)+c_{1}\right) \mathrm{e}^{-a\left(\int \ln (x)^{n}(-1+\ln (x) b x) d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.86 (sec). Leaf size: 124
DSolve [y' $[x]==a *(\log [x])^{\wedge} n * y[x]-a * b * x *(\log [x])^{\wedge}(n+1) * y[x]+b * \log [x]+b, y[x], x$, IncludeSingularS

$$
\begin{aligned}
& y(x) \rightarrow \exp \left(a 2^{-n-2}(-\log (x))^{-n} \log ^{n}(x)(b \Gamma(n+2,-2 \log (x))\right. \\
& \left.\left.+2^{n+2} \Gamma(n+1,-\log (x))\right)\right)\left(\int _ { 1 } ^ { x } b \operatorname { e x p } \left(-2^{-n-2} a\left(2^{n+2} \Gamma(n+1,-\log (K[1]))+b \Gamma(n+2,-2 \log (K[1]))\right)\right.\right. \\
& \left.+1) d K[1]+c_{1}\right)
\end{aligned}
$$

8.6 problem 15

8.6.1 Solving as riccati ode . 871

Internal problem ID [10490]
Internal file name [OUTPUT/9437_Monday_June_06_2022_02_32_25_PM_74432929/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_1st_order, ` _with_symmetry_[F(x), G(x)]`], _Riccati]

$$
y^{\prime}-a \ln (x)^{k}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
$$

8.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} \ln (x)^{k} a b^{2}+2 x^{n} \ln (x)^{k} a b c-2 x^{n} \ln (x)^{k} a b y+\ln (x)^{k} a c^{2}-2 \ln (x)^{k} a c y+\ln (x)^{k} a y^{2}+b x^{n-1} r
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 n} \ln (x)^{k} a b^{2}+2 x^{n} \ln (x)^{k} a b c-2 x^{n} \ln (x)^{k} a b y+\ln (x)^{k} a c^{2}-2 \ln (x)^{k} a c y+\ln (x)^{k} a y^{2}+\frac{b x^{n} n}{x}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 n} \ln (x)^{k} a b^{2}+2 x^{n} \ln (x)^{k} a b c+\ln (x)^{k} a c^{2}+b x^{n-1} n, f_{1}(x)=$ $-2 \ln (x)^{k} a x^{n} b-2 \ln (x)^{k} a c$ and $f_{2}(x)=\ln (x)^{k} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\ln (x)^{k} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\ln (x)^{k} k a}{x \ln (x)} \\
f_{1} f_{2} & =\left(-2 \ln (x)^{k} a x^{n} b-2 \ln (x)^{k} a c\right) \ln (x)^{k} a \\
f_{2}^{2} f_{0} & =\ln (x)^{2 k} a^{2}\left(x^{2 n} \ln (x)^{k} a b^{2}+2 x^{n} \ln (x)^{k} a b c+\ln (x)^{k} a c^{2}+b x^{n-1} n\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\ln (x)^{k} a u^{\prime \prime}(x)-\left(\frac{\ln (x)^{k} k a}{x \ln (x)}+\left(-2 \ln (x)^{k} a x^{n} b-2 \ln (x)^{k} a c\right) \ln (x)^{k} a\right) u^{\prime}(x)+\ln (x)^{2 k} a^{2}\left(x^{2 n} \ln (x)^{k} a\right.$
Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\frac{(-\ln (x))^{-k}\left(-c_{2}\left(x(-\ln (x))^{k}+\Gamma(k,-\ln (x)) k-\Gamma(k+1)\right) \ln (x)^{\frac{k}{2}}+\ln (x)^{-\frac{k}{2}} c_{1}(-\ln (x))^{k}\right) \mathrm{e}^{-\frac{(\rho(2 \ln }{}}}{\sqrt{x}}$
The above shows that
$u^{\prime}(x)$
$=\frac{(-\ln (x))^{-k}\left(\left(\left(x^{n+1} b+c x\right)(-\ln (x))^{k}-\left(b x^{n}+c\right)(-\Gamma(k,-\ln (x)) k+\Gamma(k+1))\right) a c_{2} \ln (x)^{\frac{3 k}{2}}-(-\ln \right.}{\sqrt{x}}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\left(\left(x^{n+1} b+c x\right)(-\ln (x))^{k}-\left(b x^{n}+c\right)(-\Gamma(k,-\ln (x)) k+\Gamma(k+1))\right) a c_{2} \ln (x)^{\frac{3 k}{2}}-(-\ln (x))^{k} \ln (\right.}{a\left(-c_{2}\left(x(-\ln (x))^{k}+\Gamma(k,-\ln (x)) k-\Gamma(k+1)\right) \ln (x)^{\frac{k}{2}}+\ln (x)^{-\frac{k}{2}} c_{1}(-\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y
$$

$$
=\frac{\ln (x)^{-k}\left(-(-\ln (x))^{k} \ln (x)^{\frac{k}{2}}\left(x^{n} c_{3} a b+c_{3} c a+1\right)+\ln (x)^{\frac{3 k}{2}} a\left(\left(x^{n+1} b+c x\right)(-\ln (x))^{k}+(\Gamma(k,-\ln (x)\right.\right.}{\left(\left(x(-\ln (x))^{k}+\Gamma(k,-\ln (x)) k-\Gamma(k+1)\right) \ln (x)^{\frac{k}{2}}-\ln (x)^{-\frac{k}{2}} c_{3}(-\ln (x))^{k}\right.}
$$

Summary
The solution(s) found are the following
y

$$
\begin{equation*}
=\frac{\ln (x)^{-k}\left(-(-\ln (x))^{k} \ln (x)^{\frac{k}{2}}\left(x^{n} c_{3} a b+c_{3} c a+1\right)+\ln (x)^{\frac{3 k}{2}} a\left(\left(x^{n+1} b+c x\right)(-\ln (x))^{k}+(\Gamma(k,-\ln (x)\right.\right.}{\left(\left(x(-\ln (x))^{k}+\Gamma(k,-\ln (x)) k-\Gamma(k+1)\right) \ln (x)^{\frac{k}{2}}-\ln (x)^{-\frac{k}{2}} c_{3}(-\ln (x))^{k}\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
=\frac{\ln (x)^{-k}\left(-(-\ln (x))^{k} \ln (x)^{\frac{k}{2}}\left(x^{n} c_{3} a b+c_{3} c a+1\right)+\ln (x)^{\frac{3 k}{2}} a\left(\left(x^{n+1} b+c x\right)(-\ln (x))^{k}+(\Gamma(k,-\ln (x)\right.\right.}{\left(\left(x(-\ln (x))^{k}+\Gamma(k,-\ln (x)) k-\Gamma(k+1)\right) \ln (x)^{\frac{k}{2}}-\ln (x)^{-\frac{k}{2}} c_{3}(-\ln (x))^{k}\right.}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
dsolve (diff $(y(x), x)=a *(\ln (x))^{\wedge} k *\left(y(x)-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y(x)$, singsol=all)

$$
y(x)=b x^{n}+c+\frac{1}{c_{1}-a\left(\int \ln (x)^{k} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.572 (sec). Leaf size: 51
DSolve $\left[y y^{\prime}[x]==a *(\log [x])^{\wedge} k *\left(y[x]-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y[x], x\right.$, IncludeSingularSolutions $->~ T$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{-a(-\log (x))^{-k} \log ^{k}(x) \Gamma(k+1,-\log (x))+c_{1}}+b x^{n}+c \\
& y(x) \rightarrow b x^{n}+c
\end{aligned}
$$

8.7 problem 16

8.7.1 Solving as riccati ode . 875

Internal problem ID [10491]
Internal file name [OUTPUT/9438_Monday_June_06_2022_02_32_27_PM_544547/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a \ln (x)^{n} y^{2}-b \ln (x)^{m} y=b c \ln (x)^{m}-a c^{2} \ln (x)^{n}
$$

8.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \ln (x)^{n} y^{2}+b \ln (x)^{m} y+b c \ln (x)^{m}-a c^{2} \ln (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a \ln (x)^{n} y^{2}+b \ln (x)^{m} y+b c \ln (x)^{m}-a c^{2} \ln (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b c \ln (x)^{m}-a c^{2} \ln (x)^{n}, f_{1}(x)=\ln (x)^{m} b$ and $f_{2}(x)=\ln (x)^{n} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\ln (x)^{n} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\ln (x)^{n} n a}{x \ln (x)} \\
f_{1} f_{2} & =\ln (x)^{m} b \ln (x)^{n} a \\
f_{2}^{2} f_{0} & =\ln (x)^{2 n} a^{2}\left(b c \ln (x)^{m}-a c^{2} \ln (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\ln (x)^{n} a u^{\prime \prime}(x)-\left(\frac{\ln (x)^{n} n a}{x \ln (x)}+\ln (x)^{m} b \ln (x)^{n} a\right) u^{\prime}(x)+\ln (x)^{2 n} a^{2}\left(b c \ln (x)^{m}-a c^{2} \ln (x)^{n}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-Y^{\prime}(x)\left(\frac{n}{x \ln (x)}+\ln (x)^{m} b\right)\right.\right. \\
& \left.\left.\quad+a-Y(x)\left(b c \ln (x)^{m+n}-a c^{2} \ln (x)^{2 n}\right)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)--Y^{\prime}(x)\left(\frac{n}{x \ln (x)}+\ln (x)^{m} b\right)\right.\right. \\
&\left.\left.+a _Y(x)\left(b c \ln (x)^{m+n}-a c^{2} \ln (x)^{2 n}\right)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x \ln (x)}+\ln (x)^{m} b\right)+a _Y(x)\left(b c \ln (x)^{m+n}-a c^{2} \ln (x)^{2 n}\right)\right\},\left\{_Y(\right.\right.\right.}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-_Y^{\prime}(x)\left(\frac{n}{x \ln (x)}+\ln (x)^{m} b\right)+a _Y(x)\left(b c \ln (x)^{m+n}-a c^{2} \ln (x)^{2 n}\right)\right\},\{-\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-\ln (x) \ln (x)^{2 n} _Y(x) a^{2} c^{2} x+\ln (x) \ln (x)^{m+n} _Y_{(x) a b c x-\ln (x)^{m+1}}^{\ln (x) x} Y^{\prime}(x) b x+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{\ln }\right\},\{-\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{-x a^{2} c^{2}}{}=Y(x) \ln (x)^{1+2 n}+a b c x _Y(x) \ln (x)^{1+m+n}-\ln (x)^{m+1}-Y^{\prime}(x) b x+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)\right.\right.} \\
& x \ln (x) \\
&
\end{aligned},\{
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{-\ln (x) \ln (x)^{2 n} _Y(x) a^{2} c^{2} x+\ln (x) \ln (x)^{m+n} _Y(x) a b c x-\ln (x)^{m+1} _Y^{\prime}(x) b x+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{\ln (x) x}\right\},\{-\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{-x a^{2} c^{2} _Y(x) \ln (x)^{1+2 n}+a b c x _Y(x) \ln (x)^{1+m+n}-\ln (x)^{m+1} _Y^{\prime}(x) b x+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{x \ln (x)}\right\},\{ \right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{-\ln (x) \ln (x)^{2 n} _Y(x) a^{2} c^{2} x+\ln (x) \ln (x)^{m+n} _Y(x) a b c x-\ln (x)^{m+1} _Y^{\prime}(x) b x+_Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{\ln (x) x}\right\},\{-\right.\right.}{a \text { DESol }\left(\left\{\frac{-x a^{2} c^{2} _Y_{(x)} \ln (x)^{1+2 n}+a b c x _Y(x) \ln (x)^{1+m+n}-\ln (x)^{m+1} _Y^{\prime}(x) b x+\ldots Y^{\prime \prime}(x) \ln (x) x-n _Y^{\prime}(x)}{x \ln (x)}\right\},\right.}
\end{aligned}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (ln(x)^m*ln(x)*b*x+n)*(diff(y
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the f98m r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 99

```
dsolve(diff(y(x),x)=a*(ln(x))^n*y(x)^2+b*(ln(x))^m*y(x)+b*c*(ln(x))^m-a*c^2*(ln}(x)\mp@subsup{)}{}{\wedge}n,y(x)
```

$$
y(x)=\frac{-c a\left(\int \ln (x)^{n} \mathrm{e}^{-\left(\int\left(2 \ln (x)^{n} a c-\ln (x)^{m} b\right) d x\right)} d x\right)-c_{1} c-\mathrm{e}^{-\left(\int\left(2 \ln (x)^{n} a c-\ln (x)^{m} b\right) d x\right)}}{c_{1}+a\left(\int \ln (x)^{n} \mathrm{e}^{-\left(\int\left(2 \ln (x)^{n} a c-\ln (x)^{m} b\right) d x\right)} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 3.927 (sec). Leaf size: 385
DSolve $\left[y y^{\prime}[x]==a *(\log [x])^{\wedge} n * y[x] \wedge 2+b *(\log [x])^{\wedge} m * y[x]+b * c *(\log [x])^{\wedge} m-a * c^{\wedge} 2 *(\log [x])^{\wedge} n, y[x], x, I\right.$

Solve $\left[\int_{1}^{x} \frac{\exp \left(b \Gamma(m+1,-\log (K[1]))(-\log (K[1]))^{-m} \log ^{m}(K[1])-2 a c \Gamma(n+1,-\log (K[1]))(-\log (K[\right.}{a b(m-n)(c+y(x))}\right.$ $+\int_{1}^{y(x)}\left(\frac{\exp \left(b \Gamma(m+1,-\log (x))(-\log (x))^{-m} \log ^{m}(x)-2 a c \Gamma(n+1,-\log (x))(-\log (x))^{-n} \log ^{n}(x)\right)}{a b(m-n)(c+K[2])^{2}}\right.$ $-\int_{1}^{x}\left(-\frac{\exp \left(b \Gamma(m+1,-\log (K[1]))(-\log (K[1]))^{-m} \log ^{m}(K[1])-2 a c \Gamma(n+1,-\log (K[1]))(-\log (K[1]\right.}{b(m-n)(c+K[2])}\right.$

8.8 problem 17

8.8.1 Solving as first order ode lie symmetry calculated ode 880
8.8.2 Solving as riccati ode . 885

Internal problem ID [10492]
Internal file name [OUTPUT/9439_Monday_June_06_2022_02_32_31_PM_90703748/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], _Riccati]
```

$$
y^{\prime} x-(a y+b \ln (x))^{2}=0
$$

8.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{(y a+b \ln (x))^{2}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(y a+b \ln (x))^{2}\left(b_{3}-a_{2}\right)}{x}-\frac{(y a+b \ln (x))^{4} a_{3}}{x^{2}} \\
& -\left(\frac{2(y a+b \ln (x)) b}{x^{2}}-\frac{(y a+b \ln (x))^{2}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{2(y a+b \ln (x)) a\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\ln (x)^{4} b^{4} a_{3}+4 \ln (x)^{3} a b^{3} y a_{3}+6 \ln (x)^{2} a^{2} b^{2} y^{2} a_{3}+4 \ln (x) a^{3} b y^{3} a_{3}+a^{4} y^{4} a_{3}-\ln (x)^{2} b^{2} x b_{3}-\ln (x)^{2} b^{2}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\ln (x)^{4} b^{4} a_{3}-4 \ln (x)^{3} a b^{3} y a_{3}-6 \ln (x)^{2} a^{2} b^{2} y^{2} a_{3}-4 \ln (x) a^{3} b y^{3} a_{3} \\
& -a^{4} y^{4} a_{3}+\ln (x)^{2} b^{2} x b_{3}+\ln (x)^{2} b^{2} y a_{3}-2 \ln (x) a b x^{2} b_{2}+2 \ln (x) a b y^{2} a_{3} \tag{6E}\\
& -2 a^{2} x^{2} y b_{2}-a^{2} x y^{2} b_{3}+a^{2} y^{3} a_{3}+\ln (x)^{2} b^{2} a_{1}-2 \ln (x) a b x b_{1} \\
& +2 \ln (x) a b y a_{1}-2 \ln (x) b^{2} x a_{2}-2 \ln (x) b^{2} y a_{3}-2 a^{2} x y b_{1}+a^{2} y^{2} a_{1} \\
& -2 a b x y a_{2}-2 a b y^{2} a_{3}-2 \ln (x) b^{2} a_{1}-2 a b y a_{1}+b_{2} x^{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (x)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (x)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{4} v_{2}^{4} a_{3}-4 v_{3} a^{3} b v_{2}^{3} a_{3}-6 v_{3}^{2} a^{2} b^{2} v_{2}^{2} a_{3}-4 v_{3}^{3} a b^{3} v_{2} a_{3}-v_{3}^{4} b^{4} a_{3}+a^{2} v_{2}^{3} a_{3} \\
& -2 a^{2} v_{1}^{2} v_{2} b_{2}-a^{2} v_{1} v_{2}^{2} b_{3}+2 v_{3} a b v_{2}^{2} a_{3}-2 v_{3} a b v_{1}^{2} b_{2}+v_{3}^{2} b^{2} v_{2} a_{3}+v_{3}^{2} b^{2} v_{1} b_{3} \tag{7E}\\
& +a^{2} v_{2}^{2} a_{1}-2 a^{2} v_{1} v_{2} b_{1}+2 v_{3} a b v_{2} a_{1}-2 a b v_{1} v_{2} a_{2}-2 a b v_{2}^{2} a_{3}-2 v_{3} a b v_{1} b_{1} \\
& +v_{3}^{2} b^{2} a_{1}-2 v_{3} b^{2} v_{1} a_{2}-2 v_{3} b^{2} v_{2} a_{3}-2 a b v_{2} a_{1}-2 v_{3} b^{2} a_{1}+b_{2} v_{1}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 a^{2} v_{1}^{2} v_{2} b_{2}-2 v_{3} a b v_{1}^{2} b_{2}+b_{2} v_{1}^{2}-a^{2} v_{1} v_{2}^{2} b_{3}+\left(-2 a^{2} b_{1}-2 a b a_{2}\right) v_{1} v_{2} \\
& +v_{3}^{2} b^{2} v_{1} b_{3}+\left(-2 a b b_{1}-2 b^{2} a_{2}\right) v_{1} v_{3}-a^{4} v_{2}^{4} a_{3}-4 v_{3} a^{3} b v_{2}^{3} a_{3}+a^{2} v_{2}^{3} a_{3} \tag{8E}\\
& -6 v_{3}^{2} a^{2} b^{2} v_{2}^{2} a_{3}+2 v_{3} a b v_{2}^{2} a_{3}+\left(a^{2} a_{1}-2 a b a_{3}\right) v_{2}^{2}-4 v_{3}^{3} a b^{3} v_{2} a_{3}+v_{3}^{2} b^{2} v_{2} a_{3} \\
& +\left(2 a b a_{1}-2 b^{2} a_{3}\right) v_{2} v_{3}-2 a b v_{2} a_{1}-v_{3}^{4} b^{4} a_{3}+v_{3}^{2} b^{2} a_{1}-2 v_{3} b^{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
a^{2} a_{3} & =0 \\
b^{2} a_{1} & =0 \\
b^{2} a_{3} & =0 \\
b^{2} b_{3} & =0 \\
-2 a^{2} b_{2} & =0 \\
-a^{2} b_{3} & =0 \\
-a^{4} a_{3} & =0 \\
-2 b^{2} a_{1} & =0 \\
-b^{4} a_{3} & =0 \\
-2 a b a_{1} & =0 \\
2 a b a_{3} & =0 \\
-2 a b b_{2} & =0 \\
-4 a b^{3} a_{3} & =0 \\
-6 a^{2} b^{2} a_{3} & =0 \\
-4 a^{3} b a_{3} & =0 \\
2 a b a_{1}-2 b^{2} a_{3} & =0 \\
a^{2} a_{1}-2 a b a_{3} & =0 \\
-2 a b b_{1}-2 b^{2} a_{2} & =0 \\
-2 a^{2} b_{1}-2 a b a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{a b_{1}}{b} \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{a x}{b} \\
\eta & =1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{(y a+b \ln (x))^{2}}{x}\right)\left(-\frac{a x}{b}\right) \\
& =\frac{\ln (x)^{2} a b^{2}+2 \ln (x) a^{2} b y+a^{3} y^{2}+b}{b} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\ln (x)^{2} a b^{2}+2 \ln (x) a^{2} b y+a^{3} y^{2}+b}{b}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{b \arctan \left(\frac{2 y a^{3}+2 \ln (x) a^{2} b}{2 a \sqrt{a b}}\right)}{a \sqrt{a b}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{(y a+b \ln (x))^{2}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{b^{2}}{a x\left(\ln (x)^{2} a b^{2}+2 \ln (x) a^{2} b y+a^{3} y^{2}+b\right)} \\
S_{y} & =\frac{b}{\ln (x)^{2} a b^{2}+2 \ln (x) a^{2} b y+a^{3} y^{2}+b}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{b}{a x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{b}{a R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{b \ln (R)}{a}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{b} \arctan \left(\frac{\sqrt{a}(a y+b \ln (x))}{\sqrt{b}}\right)}{a^{\frac{3}{2}}}=\frac{b \ln (x)}{a}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{b} \arctan \left(\frac{\sqrt{a}(a y+b \ln (x))}{\sqrt{b}}\right)}{a^{\frac{3}{2}}}=\frac{b \ln (x)}{a}+c_{1}
$$

Which gives

$$
y=-\frac{b \ln (x) \sqrt{a}-\tan \left(\frac{\sqrt{a}\left(c_{1} a+b \ln (x)\right)}{\sqrt{b}}\right) \sqrt{b}}{a^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{b \ln (x) \sqrt{a}-\tan \left(\frac{\sqrt{a}\left(c_{1} a+b \ln (x)\right)}{\sqrt{b}}\right) \sqrt{b}}{a^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{b \ln (x) \sqrt{a}-\tan \left(\frac{\sqrt{a}\left(c_{1} a+b \ln (x)\right)}{\sqrt{b}}\right) \sqrt{b}}{a^{\frac{3}{2}}}
$$

Verified OK.

8.8.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{(y a+b \ln (x))^{2}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\ln (x)^{2} b^{2}}{x}+\frac{2 \ln (x) a b y}{x}+\frac{a^{2} y^{2}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\ln (x)^{2} b^{2}}{x}, f_{1}(x)=\frac{2 a b \ln (x)}{x}$ and $f_{2}(x)=\frac{a^{2}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a^{2} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a^{2}}{x^{2}} \\
f_{1} f_{2} & =\frac{2 a^{3} b \ln (x)}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{4} \ln (x)^{2} b^{2}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a^{2} u^{\prime \prime}(x)}{x}-\left(-\frac{a^{2}}{x^{2}}+\frac{2 a^{3} b \ln (x)}{x^{2}}\right) u^{\prime}(x)+\frac{a^{4} \ln (x)^{2} b^{2} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{\ln (x)^{2} a b}{2}}\left(x^{-\sqrt{-a b}} c_{2}+x^{\sqrt{-a b}} c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\mathrm{e}^{\frac{\ln (x)^{2} a b}{2}}\left(c_{2}(a \ln (x) b-\sqrt{-a b}) x^{-\sqrt{-a b}}+c_{1} x^{\sqrt{-a b}}(a \ln (x) b+\sqrt{-a b})\right)}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}(a \ln (x) b-\sqrt{-a b}) x^{-\sqrt{-a b}}+c_{1} x^{\sqrt{-a b}}(a \ln (x) b+\sqrt{-a b})}{a^{2}\left(x^{-\sqrt{-a b}} c_{2}+x^{\sqrt{-a b}} c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3}(a \ln (x) b+\sqrt{-a b}) x^{2 \sqrt{-a b}}-a \ln (x) b+\sqrt{-a b}}{a^{2}\left(1+x^{2 \sqrt{-a b}} c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3}(a \ln (x) b+\sqrt{-a b}) x^{2 \sqrt{-a b}}-a \ln (x) b+\sqrt{-a b}}{a^{2}\left(1+x^{2 \sqrt{-a b}} c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-c_{3}(a \ln (x) b+\sqrt{-a b}) x^{2 \sqrt{-a b}}-a \ln (x) b+\sqrt{-a b}}{a^{2}\left(1+x^{2 \sqrt{-a b}} c_{3}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -b/(a*x), y(x)`
    Sublevel }
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        <- quadrature successful
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
dsolve($x * \operatorname{diff}(y(x), x)=(a * y(x)+b * \ln (x))^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\frac{-\ln (x) a b+\tan \left(\left(\ln (x)+c_{1}\right) \sqrt{a b}\right) \sqrt{a b}}{a^{2}}
$$

\checkmark Solution by Mathematica
Time used: 6.524 (sec). Leaf size: 43
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==(\mathrm{a} * \mathrm{y}[\mathrm{x}]+\mathrm{b} * \log [\mathrm{x}])^{\wedge} 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{b \log (x)}{a}+\sqrt{\frac{b}{a^{3}}} \tan \left(a^{2} \sqrt{\frac{b}{a^{3}}} \log (x)+c_{1}\right)
$$

8.9 problem 18

8.9.1 Solving as riccati ode . 889

Internal problem ID [10493]
Internal file name [OUTPUT/9440_Monday_June_06_2022_02_32_32_PM_95367239/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
y^{\prime} x-a \ln (\lambda x)^{m} y^{2}-k y=a b^{2} x^{2 k} \ln (\lambda x)^{m}
$$

8.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a \ln (\lambda x)^{m} y^{2}+k y+a b^{2} x^{2 k} \ln (\lambda x)^{m}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a b^{2} x^{2 k} \ln (\lambda x)^{m}}{x}+\frac{a \ln (\lambda x)^{m} y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a b^{2} x^{2 k} \ln (\lambda x)^{m}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{a \ln (\lambda x)^{m}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \ln (\lambda x)^{m} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a \ln (\lambda x)^{m} m}{x^{2} \ln (\lambda x)}-\frac{a \ln (\lambda x)^{m}}{x^{2}} \\
f_{1} f_{2} & =\frac{k a \ln (\lambda x)^{m}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \ln (\lambda x)^{3 m} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a \ln (\lambda x)^{m} u^{\prime \prime}(x)}{x}-\left(\frac{a \ln (\lambda x)^{m} m}{x^{2} \ln (\lambda x)}-\frac{a \ln (\lambda x)^{m}}{x^{2}}+\frac{k a \ln (\lambda x)^{m}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \ln (\lambda x)^{3 m} b^{2} x^{2 k} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i a b x^{k-1} \ln (\lambda x)^{m} \mathrm{e}^{-i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}\left(c_{1} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1} \mathrm{e}^{-i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}\left(c_{1} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}-c_{2}\right) x}{c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i a b\left(\int x^{k-1} \ln (\lambda x)^{m} d x\right)}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 31
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} *(\ln (\operatorname{lambda} * \mathrm{x}))^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{k} * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{~b} \wedge{ }^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) *(\ln (\operatorname{lambda} * \mathrm{x}))^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\right.$,

$$
y(x)=-\tan \left(-a b\left(\int x^{-1+k} \ln (x \lambda)^{m} d x\right)+c_{1}\right) b x^{k}
$$

\checkmark Solution by Mathematica
Time used: 2.161 (sec). Leaf size: 70
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} *(\log [\backslash[\text { Lambda }] * \mathrm{x}])^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) *(\log [\backslash[\operatorname{Lambda}] * \mathrm{x}])^{\wedge} \mathrm{m}, \mathrm{y}[\mathrm{x}]\right.$
$y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\frac{a \sqrt{b^{2}} x^{k}(\lambda x)^{-k} \log ^{m}(\lambda x)(-k \log (\lambda x))^{-m} \Gamma(m+1,-k \log (x \lambda))}{k}+c_{1}\right)$

8.10 problem 19

$$
\text { 8.10.1 Solving as riccati ode . } 893
$$

Internal problem ID [10494]
Internal file name [OUTPUT/9441_Monday_June_06_2022_02_32_34_PM_36674882/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_1st_order, `\(w i t h _s y m m e t r y _[F(x), G(x)]`\)], _Riccati]

$$
y^{\prime} x-a x^{n}(y+b \ln (x))^{2}=-b
$$

8.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a b^{2} x^{n} \ln (x)^{2}+2 \ln (x) x^{n} a b y+a x^{n} y^{2}-b}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\ln (x)^{2} x^{n} a b^{2}}{x}+\frac{2 \ln (x) x^{n} a b y}{x}+\frac{x^{n} a y^{2}}{x}-\frac{b}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-b+a b^{2} x^{n} \ln (x)^{2}}{x}, f_{1}(x)=\frac{2 a b x^{n} \ln (x)}{x}$ and $f_{2}(x)=\frac{a x^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a x^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a x^{n} n}{x^{2}}-\frac{a x^{n}}{x^{2}} \\
f_{1} f_{2} & =\frac{2 a^{2} b x^{2 n} \ln (x)}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{2} x^{2 n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{a x^{n} u^{\prime \prime}(x)}{x}-\left(\frac{a x^{n} n}{x^{2}}-\frac{a x^{n}}{x^{2}}+\frac{2 a^{2} b x^{2 n} \ln (x)}{x^{2}}\right) u^{\prime}(x)+\frac{a^{2} x^{2 n}\left(-b+a b^{2} x^{n} \ln (x)^{2}\right) u(x)}{x^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-\frac{a b x^{n}}{n^{2}}}\left(x^{\frac{a b x^{n}}{n}} c_{1}+x^{\frac{n^{2}+a x^{n} b}{n}} c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(\ln (x) x^{\frac{2 n^{2}+a x^{n} b}{n}} c_{2} a b+\ln (x) x^{\frac{n^{2}+a x^{n} b}{n}} c_{1} a b+x^{\frac{n^{2}+a x^{n} b}{n}} c_{2} n\right) \mathrm{e}^{-\frac{a b x^{n}}{n^{2}}}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\ln (x) x^{\frac{2 n^{2}+a x^{n} b}{n}} c_{2} a b+\ln (x) x^{\frac{n^{2}+a x^{n} b}{n}} c_{1} a b+x^{\frac{n^{2}+a x^{n} b}{n}} c_{2} n\right) x^{-n}}{a\left(x^{\frac{a b x^{n}}{n}} c_{1}+x^{\frac{n^{2}+a x^{x_{b}}}{n}} c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x^{-\frac{a b x^{n}}{n}}\left(a b x^{\frac{n^{2}+a x^{n} b}{n}} \ln (x)+x^{\frac{a b x^{n}}{n}}\left(\ln (x) c_{3} a b+n\right)\right)}{a\left(x^{n}+c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{-\frac{a b x^{n}}{n}}\left(a b x^{\frac{n^{2}+a x^{n} b}{n}} \ln (x)+x^{\frac{a b x^{n}}{n}}\left(\ln (x) c_{3} a b+n\right)\right)}{a\left(x^{n}+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{-\frac{a b x^{n}}{n}}\left(a b x^{\frac{n^{2}+a x^{n} b}{n}} \ln (x)+x^{\frac{a b x^{n}}{n}}\left(\ln (x) c_{3} a b+n\right)\right)}{a\left(x^{n}+c_{3}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x*diff(y(x),x)=a*x^n*(y(x)+b*ln(x))^2-b,y(x), singsol=all)
```

$$
y(x)=-b \ln (x)+\frac{n}{c_{1} n-a x^{n}}
$$

\checkmark Solution by Mathematica
Time used: 0.649 (sec). Leaf size: 35
DSolve[x*y'[x]==a*x^n*(y[x]+b*Log[x])^2-b,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-b \log (x)+\frac{n}{-a x^{n}+c_{1} n} \\
& y(x) \rightarrow-b \log (x)
\end{aligned}
$$

8.11 problem 20

$$
\text { 8.11.1 Solving as riccati ode . } 897
$$

Internal problem ID [10495]
Internal file name [OUTPUT/9442_Monday_June_06_2022_02_32_35_PM_83494421/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
y^{\prime} x-a x^{2 n} \ln (x) y^{2}-\left(b x^{n} \ln (x)-n\right) y=c \ln (x)
$$

8.11.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{2 n} \ln (x) y^{2}+x^{n} \ln (x) b y+c \ln (x)-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a x^{2 n} \ln (x) y^{2}}{x}+\frac{x^{n} \ln (x) b y}{x}+\frac{c \ln (x)}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c \ln (x)}{x}, f_{1}(x)=\frac{b x^{n} \ln (x)-n}{x}$ and $f_{2}(x)=\frac{x^{2 n} \ln (x) a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x^{2 n} \ln (x) a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x^{2 n} n \ln (x) a}{x^{2}}+\frac{a x^{2 n}}{x^{2}}-\frac{\ln (x) a x^{2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(b x^{n} \ln (x)-n\right) x^{2 n} \ln (x) a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{x^{4 n} \ln (x)^{3} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{x^{2 n} \ln (x) a u^{\prime \prime}(x)}{x}-\left(\frac{2 x^{2 n} n \ln (x) a}{x^{2}}+\frac{a x^{2 n}}{x^{2}}-\frac{\ln (x) a x^{2 n}}{x^{2}}+\frac{\left(b x^{n} \ln (x)-n\right) x^{2 n} \ln (x) a}{x^{2}}\right) u^{\prime}(x)+\frac{x^{4 n} \ln }{}$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\left(c_{1} \operatorname{BesselJ}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)\right. \\
& \\
& \left.\quad+c_{2} \operatorname{BesselY}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)\right) \sqrt{\ln (x)} x^{\frac{b x^{n}+3 n^{2}}{2 n}} \mathrm{e}^{-\frac{b x^{n}}{2 n^{2}}}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{x^{\frac{-2 n+b x^{n}+3 n^{2}}{2 n}} \mathrm{e}^{-\frac{b x^{n}}{2 n^{2}}}\left(1+\ln (x)^{2} x^{n} b+3 n \ln (x)\right)\left(c_{1} \operatorname{BesselJ}\left(\frac{\sqrt{3} \sqrt{-c a}}{8 b}, \frac{\sqrt{3} \sqrt{2} \sqrt{c a x^{2 n}} x^{-n}}{8 b}\right)+c_{2} \operatorname{Bessel} Y\left(\frac{\sqrt{3}}{\varepsilon}\right.\right.}{2 \sqrt{\ln (x)}}$
Using the above in (1) gives the solution

$$
y=-\frac{x^{\frac{-2 n+b x^{n}+3 n^{2}}{2 n}}\left(1+\ln (x)^{2} x^{n} b+3 n \ln (x)\right) x^{-2 n} x x^{-\frac{b x^{n}+3 n^{2}}{2 n}}}{2 \ln (x)^{2} a}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x^{-2 n}\left(1+\ln (x)^{2} x^{n} b+3 n \ln (x)\right)}{2 a \ln (x)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{-2 n}\left(1+\ln (x)^{2} x^{n} b+3 n \ln (x)\right)}{2 a \ln (x)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{-2 n}\left(1+\ln (x)^{2} x^{n} b+3 n \ln (x)\right)}{2 a \ln (x)^{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 80
dsolve $\left(\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) * \ln (\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\left(\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \ln (\mathrm{x})-\mathrm{n}\right) * \mathrm{y}(\mathrm{x})+\mathrm{c} * \ln (\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)

$$
y(x)=\frac{\left(\tan \left(\frac{\left(b(n \ln (x)-1) x^{n}+c_{1} n^{2}\right) \sqrt{4 a b^{2} c-b^{4}}}{2 b^{2} n^{2}}\right) \sqrt{4 a b^{2} c-b^{4}}-b^{2}\right) x^{-n}}{2 a b}
$$

\checkmark Solution by Mathematica
Time used: 1.872 (sec). Leaf size: 130
DSolve $\left[x * y{ }^{\prime}[x]==a * x^{\wedge}(2 * n) * \log [x] * y[x] \sim 2+\left(b * x^{\wedge} n * \log [x]-n\right) * y[x]+c * \log [x], y[x], x\right.$, IncludeSingula

$$
y(x) \rightarrow \frac{x^{-n}\left(-b+\frac{\sqrt{b^{2}-4 a c}\left(-e^{\frac{x^{n} \sqrt{b^{2}-4 a c}(n \log (x)-1)}{n^{2}}}+c_{1}\right)}{e^{\frac{x^{n} \sqrt{b^{2}-4 a a(n \log (x)-1)}}{n^{2}}}+c_{1}}\right)}{2 a}
$$

8.12 problem 21

8.12.1 Solving as riccati ode . 901

Internal problem ID [10496]
Internal file name [OUTPUT/9443_Monday_June_06_2022_02_32_37_PM_81719794/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-y^{2} a^{2} x^{2}+x y=b^{2} \ln (x)^{n}
$$

8.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} a^{2} x^{2}-y x+b^{2} \ln (x)^{n}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a^{2} y^{2}+\frac{b^{2} \ln (x)^{n}}{x^{2}}-\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{b^{2} \ln (x)^{n}}{x^{2}}, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=a^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\frac{a^{2}}{x} \\
f_{2}^{2} f_{0} & =\frac{a^{4} b^{2} \ln (x)^{n}}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
a^{2} u^{\prime \prime}(x)+\frac{a^{2} u^{\prime}(x)}{x}+\frac{a^{4} b^{2} \ln (x)^{n} u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\left(\operatorname { B e s s e l J } \left(\frac{1}{2+n}\right.\right. & \left., \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{1} \\
& \left.\quad+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{2}\right) \sqrt{\ln (x)}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-\sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}} \operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{1}-\sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}} \operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{2}-}{\sqrt{\ln (x)} x}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{-\sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}} \operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{1}-\sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}} \operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c}{\ln (x) x a^{2}\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{1}+\operatorname{BesselY}\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
=\frac{\ln (x)^{1+\frac{n}{2}}\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right)\right) \sqrt{a^{2} b^{2}}-\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{C}}{2}\right.}{\ln (x) x a^{2}\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}}}{2}\right.\right.}
$$

Summary
The solution(s) found are the following
y

Verification of solutions
y
$=\frac{\ln (x)^{1+\frac{n}{2}}\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right)\right) \sqrt{a^{2} b^{2}}-\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{C}}{2}\right.}{\ln (x) x a^{2}\left(\operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{1+\frac{n}{2}}}{2+n}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{a^{2} b^{2}}}{2}\right.\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-a^2*b^2* ln
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
            <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            <- Bessel successful
        <- special function solution successful
        Change of variables used:
            [x = exp(t)]
        Linear ODE actually solved:
            a^2*b^2*t^n*u(t)+diff(diff(u(t),t),t) = 0
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 251
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=a^{\wedge} 2 * x^{\wedge} 2 * y(x)^{\wedge} 2-x * y(x)+b^{\wedge} 2 *(\ln (x))^{\wedge} n, y(x)$, singsol=all)
$y(x)$
$=\frac{\ln (x)^{\frac{n}{2}+1} \operatorname{BesselY}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{\frac{n}{2}+1}}{n+2}\right) \sqrt{a^{2} b^{2}} c_{1}+\operatorname{BesselJ}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{\frac{n}{2}+1}}{n+2}\right) \sqrt{a^{2} b^{2}} \ln (x)^{\frac{n}{2}+1}-\operatorname{Bes}}{\left(\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x)^{\frac{n}{2}+1}}{n+2}\right) c_{1}+\operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a^{2} b^{2}} \ln (x}{n+2}\right.\right.}$
\checkmark Solution by Mathematica
Time used: 45.846 (sec). Leaf size: 1769
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==a^{\wedge} 2 * x^{\wedge} 2 * y[x] \wedge 2-x * y[x]+b^{\wedge} 2 *(\log [x])^{\wedge} n, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$
$y(x)$
$\rightarrow \overline{x\left(2 a(n+2)^{\frac{2(n+1)}{n+2}} \operatorname{BesselJ}\left(-\frac{1}{n+2}, \frac{2 a \sqrt{\left(b^{2} \log ^{n+1}(x)\right)^{1+\frac{1}{n+1}}}}{\sqrt{b^{\frac{2}{n+1}(n+2)^{2}}}}\right) \operatorname{Gamma}\left(\frac{2 n+3}{n+2}\right)\left(b^{2} \log ^{n+1}(x)\right)^{1+\frac{1}{n+1}} b^{\frac{2}{n+2}}+a n\right.}$
$y(x)$

$$
2 b^{2} \sqrt{(n+2)^{2} b^{\frac{2}{n+1}}} \log ^{n+1}(x) \sqrt{(b}
$$

$$
\rightarrow \overline{x\left(-a(n+2)\left(b^{2} \log ^{n+1}(x)\right)^{\frac{1}{n+1}+1} \operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 a \sqrt{\left(b^{2} \log ^{n+1}(x)\right)^{1+\frac{1}{n+1}}}}{\sqrt{b^{\frac{2}{n+1}(n+2)^{2}}}}\right)+a(n+2)\left(b^{2} \log ^{n+1}(x)\right)^{\frac{1}{n+1}+1}, .\right.}
$$

8.13 problem 22

8.13.1 Solving as riccati ode

906
Internal problem ID [10497]
Internal file name [OUTPUT/9444_Monday_June_06_2022_02_32_39_PM_53703409/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
(a \ln (x)+b) y^{\prime}-y^{2}-c \ln (x)^{n} y=-\lambda^{2}+\lambda c \ln (x)^{n}
$$

8.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \ln (x)^{n} y-\lambda^{2}+\lambda c \ln (x)^{n}}{a \ln (x)+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\lambda c \ln (x)^{n}}{a \ln (x)+b}+\frac{c \ln (x)^{n} y}{a \ln (x)+b}-\frac{\lambda^{2}}{a \ln (x)+b}+\frac{y^{2}}{a \ln (x)+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda^{2}+\lambda c \ln (x)^{n}}{a \ln (x)+b}, f_{1}(x)=\frac{c \ln (x)^{n}}{a \ln (x)+b}$ and $f_{2}(x)=\frac{1}{a \ln (x)+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a \ln (x)+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{(a \ln (x)+b)^{2} x} \\
f_{1} f_{2} & =\frac{c \ln (x)^{n}}{(a \ln (x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-\lambda^{2}+\lambda c \ln (x)^{n}}{(a \ln (x)+b)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a \ln (x)+b}-\left(-\frac{a}{(a \ln (x)+b)^{2} x}+\frac{c \ln (x)^{n}}{(a \ln (x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-\lambda^{2}+\lambda c \ln (x)^{n}\right) u(x)}{(a \ln (x)+b)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\right.\right. & \frac{\left(-\frac{a}{x}+\ln (x)^{n} c\right) _Y^{\prime}(x)}{a \ln (x)+b} \\
& \left.\left.+\frac{\left(-\lambda^{2}+\lambda c \ln (x)^{n}\right) _Y(x)}{(a \ln (x)+b)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)\right.\right. & -\frac{\left(-\frac{a}{x}+\ln (x)^{n} c\right) _Y^{\prime}(x)}{a \ln (x)+b} \\
& \left.\left.+\frac{\left(-\lambda^{2}+\lambda c \ln (x)^{n}\right) _Y(x)}{(a \ln (x)+b)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& \left.\left.y=\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{a}{x}+\ln (x)^{n} c\right) _Y^{\prime}(x)}{a \ln (x)+b}+\frac{\left(-\lambda^{2}+\lambda c \ln (x)^{n}\right)-Y_{(x)}}{(a \ln (x)+b)^{2}}\right\},\{-Y(x)\}\right)\right)(a \ln (x)+b)}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{a}{x}+\ln (x)^{n} c\right) _Y^{\prime}(x)}{a \ln (x)+b}+\frac{\left(-\lambda^{2}+\lambda c \ln (x)^{n}\right)-}{(a \ln (x)+b)^{2}} Y(x)\right.\right.}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{-a c x \ln (x)^{n+1} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right) _Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) x}{(a \ln (x)+b)^{2} x}\right\},\{.\right.\right.}{\operatorname{DESol}\left(\left\{\frac{-a c x \ln (x)^{n+1} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right) _Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) a}{(a \ln (x)+b)^{2} x}\right.\right.}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-a c x \ln (x)^{n+1} _Y^{\prime}(x)+_Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right) _Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) x}{(a \ln (x)+b)^{2} x}\right\},\{.\right.\right.}{\operatorname{DESol}\left(\left\{\frac{-a c x \ln (x)^{n+1} _Y^{\prime}(x)+_Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right) _Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) 2}{(a \ln (x)+b)^{2} x}\right.\right.} .
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-a c x \ln (x)^{n+1} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right) _Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) x}{(a \ln (x)+b)^{2} x}\right\},\{ \right.\right.}{\operatorname{DESol}\left(\left\{\frac{\left.-a c x \ln (x)^{n+1}-Y^{\prime}(x)+\ldots Y^{\prime \prime}(x)(a \ln (x)+b)^{2} x+\left(-b \ln (x)^{n} c x+(a \ln (x)+b) a\right)\right)_{1}^{\prime} Y^{\prime}(x)+\lambda\left(\ln (x)^{n} c-\lambda\right) _Y(x) a}{(a \ln (x)+b)^{2} x}\right.\right.} .
\end{aligned}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (ln(x)^n*c*x-a)*(diff(y(x), x)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the f0gm r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 107
dsolve $\left((a * \ln (x)+b) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+c *(\ln (x))^{\wedge} n * y(x)-\operatorname{lambda}{ }^{\wedge} 2+\operatorname{lambda}{ }^{c} c *(\ln (x)) \wedge n, y(x)\right.$,

$$
\left.y(x)=\frac{-\left(\int \frac{\mathrm{e}^{\int \frac{\ln (x) n^{n} c-2 \lambda}{a \ln (x)+b} d x}}{a \ln (x)+b}\right.}{} d x\right) \lambda-\lambda c_{1}-\mathrm{e}^{\int \frac{\ln \left(x x^{n} c-2 \lambda\right.}{a \ln (x)+b} d x}
$$

\checkmark Solution by Mathematica
Time used: 5.348 (sec). Leaf size: 275
DSolve $\left[(a * \log [x]+b) * y^{\prime}[x]==y[x] \sim 2+c *(\log [x]) \wedge n * y[x]-\backslash[\operatorname{Lambda}] \wedge 2+\backslash[\operatorname{Lambda}] * c *(\log [x]) \wedge n, y[x]\right.$,

$$
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 \lambda-c \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)\left(c \log ^{n}(K[2])-\lambda+y(x)\right)}{c n(b+a \log (K[2]))(\lambda+y(x))} d K[2]\right. \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x} \frac{2 \lambda-c \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)}{c n(\lambda+K[3])^{2}}\right. \\
& -\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 \lambda-c \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)\left(c \log ^{n}(K[2])-\lambda+K[3]\right)}{c n(\lambda+K[3])^{2}(b+a \log (K[2]))}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 \lambda-c \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)}{c n(\lambda+K[3])(b+a \log (K[2]))}\right)
\end{aligned}
$$

8.14 problem 23

8.14.1 Solving as riccati ode . 911

Internal problem ID [10498]
Internal file name [OUTPUT/9445_Monday_June_06_2022_02_32_43_PM_25188570/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
(a \ln (x)+b) y^{\prime}-\ln (x)^{n} y^{2}-y c=-\lambda^{2} \ln (x)^{n}+c \lambda
$$

8.14.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\ln (x)^{n} y^{2}+y c-\lambda^{2} \ln (x)^{n}+c \lambda}{a \ln (x)+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\lambda^{2} \ln (x)^{n}}{a \ln (x)+b}+\frac{\ln (x)^{n} y^{2}}{a \ln (x)+b}+\frac{c \lambda}{a \ln (x)+b}+\frac{y c}{a \ln (x)+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda^{2} \ln (x)^{n}+c \lambda}{a \ln (x)+b}, f_{1}(x)=\frac{c}{a \ln (x)+b}$ and $f_{2}(x)=\frac{\ln (x)^{n}}{a \ln (x)+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\ln (x)^{n} u}{a \ln (x)+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\ln (x)^{n} n}{x \ln (x)(a \ln (x)+b)}-\frac{\ln (x)^{n} a}{(a \ln (x)+b)^{2} x} \\
f_{1} f_{2} & =\frac{c \ln (x)^{n}}{(a \ln (x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{\ln (x)^{2 n}\left(-\lambda^{2} \ln (x)^{n}+c \lambda\right)}{(a \ln (x)+b)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\ln (x)^{n} u^{\prime \prime}(x)}{a \ln (x)+b}-\left(\frac{\ln (x)^{n} n}{x \ln (x)(a \ln (x)+b)}-\frac{\ln (x)^{n} a}{(a \ln (x)+b)^{2} x}+\frac{c \ln (x)^{n}}{(a \ln (x)+b)^{2}}\right) u^{\prime}(x)+\frac{\ln (x)^{2 n}\left(-\lambda^{2} \ln (x)^{n}\right.}{(a \ln (x)+b}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x) \\
& =\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)\right.\right. \\
& \quad-(a \ln (x)+b)_{-} Y^{\prime}(x)\left(\frac{n}{x \ln (x)(a \ln (x)+b)}-\frac{a}{(a \ln (x)+b)^{2} x}+\frac{c}{(a \ln (x)+b)^{2}}\right) \\
& \left.\left.+\frac{-Y(x)\left(-\ln (x)^{2 n} \lambda^{2}+\lambda c \ln (x)^{n}\right)}{(a \ln (x)+b)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)\right.\right. \\
& \quad-(a \ln (x)+b)_{_} Y^{\prime}(x)\left(\frac{n}{x \ln (x)(a \ln (x)+b)}-\frac{a}{(a \ln (x)+b)^{2} x}+\frac{c}{(a \ln (x)+b)^{2}}\right) \\
& \left.\left.+\frac{-Y(x)\left(-\ln (x)^{2 n} \lambda^{2}+\lambda c \ln (x)^{n}\right)}{(a \ln (x)+b)^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-(a \ln (x)+b) _Y^{\prime}(x)\left(\frac{n}{x \ln (x)(a \ln (x)+b)}-\frac{a}{(a \ln (x)+b)^{2} x}+\frac{c}{(a \ln (x)+b)^{2}}\right)+-\frac{Y(x)(-}{}\right.\right.\right.}{\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-(a \ln (x)+b)-Y^{\prime}(x)\left(\frac{n}{x \ln (x)(a \ln (x)+b)}-\frac{a}{(a \ln (x)+b)^{2} x}+\frac{c}{(a \ln (x)+b)^{2}}\right)+\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$
$-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-x _Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda _Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x) \ln (x)+b n)-\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right.\right.\right.}{\operatorname{DESol}\left(\left\{\frac{-x-Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda _Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x)\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right.\right.}$

Summary
The solution(s) found are the following
$y=$
$-\frac{\left(\frac{\partial}{\partial x} \text { DESol }\left(\left\{\frac{-x _Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda _Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x) \ln (x)+b n)-\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right.\right.\right.}{\text { DESol }\left(\left\{\frac{-x-Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda _Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x)\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right.\right.}$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{-x _Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda __Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x) \ln (x)+b n)-\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right)\right.\right.}{\text { DESol }\left(\left\{\frac{-x _Y(x) \ln (x)^{1+2 n} \lambda^{2}+c x \lambda _Y(x) \ln (x)^{n+1}+(a \ln (x)+b)\left(x \ln (x)(a \ln (x)+b) _Y^{\prime \prime}(x)-((a(n-1)+c x)\right.}{x \ln (x)(a \ln (x)+b)^{2}}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (ln(x)*a*n+c*x*\operatorname{ln}(x)-\operatorname{ln}(x)*a+b
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 124
dsolve $\left((a * \ln (x)+b) * \operatorname{diff}(y(x), x)=(\ln (x))^{\wedge} n * y(x) \wedge 2+c * y(x)-\operatorname{lambda} \wedge 2 *(\ln (x))^{\wedge} n+c * \operatorname{lambda}, y(x)\right.$,

$$
y(x)=\frac{-\lambda c_{1}-\left(\int \frac{\ln (x)^{n} \mathrm{e}^{-\left(\int \frac{2 \ln (x)^{n} \lambda-c}{a \ln (x)+b} d x\right)}}{a \ln (x)+b} d x\right) \lambda-\mathrm{e}^{-\left(\int \frac{2 \ln (x)^{n} \lambda-c}{a \ln (x)+b} d x\right)}}{c_{1}+\int \frac{\ln (x)^{n} \mathrm{e}^{-\left(\int \frac{2 \ln (x)^{n} \lambda-c}{a \ln (x)+b} d x\right)}}{a \ln (x)+b} d x}
$$

\checkmark Solution by Mathematica
Time used: 5.137 (sec). Leaf size: 286

```
DSolve[(a*Log[x]+b)*y'[x]==(\operatorname{Log}[x])^n*y[x]^2+c*y[x]-\[Lambda]^2*(Log[x])^n+c*\ [Lambda],y[x],
```

Solve $\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\frac{c-2 \lambda \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)\left(-\lambda \log ^{n}(K[2])+y(x) \log ^{n}(K[2])+c\right)}{c n(b+a \log (K[2]))(\lambda+y(x))} d K[2]\right.$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]}-\frac{c-2 \lambda \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right) \log ^{n}(K[2])}{c n(\lambda+K[3])(b+a \log (K[2]))}-\frac{\exp \left(-\int_{1}^{K[2]}-\frac{c-2 \lambda \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)(-)}{c n(\lambda+K[3])^{2}(b-}\right.\right.$
$\left.\left.-\frac{\exp \left(-\int_{1}^{x}-\frac{c-2 \lambda \log ^{n}(K[1])}{b+a \log (K[1])} d K[1]\right)}{c n(\lambda+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]$
9 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
9.1 problem 1 917
9.2 problem 2 922
9.3 problem 3 927
9.4 problem 4 929
9.5 problem 5 933
9.6 problem 6 938
9.7 problem 7 943
9.8 problem 8 948
9.9 problem 9 953
9.10 problem 10 958
9.11 problem 11 962
9.12 problem 12 965
9.13 problem 13 968

9.1 problem 1

$$
\text { 9.1.1 Solving as riccati ode . } 917
$$

Internal problem ID [10499]
Internal file name [OUTPUT/9446_Monday_June_06_2022_02_32_55_PM_8580992/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\alpha y^{2}=\beta+\gamma \sin (\lambda x)
$$

9.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\alpha y^{2}+\beta+\gamma \sin (\lambda x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\alpha y^{2}+\beta+\gamma \sin (\lambda x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta+\gamma \sin (\lambda x), f_{1}(x)=0$ and $f_{2}(x)=\alpha$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\alpha u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\alpha^{2}(\beta+\gamma \sin (\lambda x))
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\alpha u^{\prime \prime}(x)+\alpha^{2}(\beta+\gamma \sin (\lambda x)) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \text { MathieuC }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+c_{2} \text { MathieuS }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\lambda\left(c_{1} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+c_{2} \text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}{2}$
Using the above in (1) gives the solution
$\begin{aligned} & y= \\ &-\frac{\lambda\left(c_{1} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+c_{2} \operatorname{MathieuSPrime}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{1} \operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+c_{2} \operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}\end{aligned}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}$

Summary

The solution(s) found are the following
$y=$
(1)

$$
-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}
$$

Verification of solutions
$y=-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -alpha*(beta+gamma*sin(lambda*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the grtional form of Mathieu ODE under a power @ Moebius
            Equivalence transformation and function parameters: {t = 1/2*t+1/2}, {kappa =
            <- Equivalence to the rational form of Mathieu ODE successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 110
dsolve(diff $(y(x), x)=$ alpha* $y(x) \wedge 2+b e t a+g a m m a * \sin (\operatorname{lambda} a x), y(x)$, singsol=all)
$y(x)=$
$\quad-\frac{\lambda\left(c_{1} \text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}},-\frac{\pi}{4}+\frac{x \lambda}{2}\right)+\text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}},-\frac{\pi}{4}+\frac{x \lambda}{2}\right)\right)}{2 \alpha\left(c_{1} \operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \gamma}{\lambda^{2}},-\frac{\pi}{4}+\frac{x \lambda}{2}\right)+\operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}},-\frac{\pi}{4}+\frac{x \lambda}{2}\right)\right)}$
\checkmark Solution by Mathematica
Time used: 0.612 (sec). Leaf size: 191
DSolve [y' $[\mathrm{x}]==\backslash[$ Alpha $] *[\mathrm{x}] \sim 2+\backslash$ [Beta] $+\backslash[$ Gamma $* \operatorname{Sin}[\backslash[$ Lambda $] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSoluti
$y(x) \rightarrow$
$-\frac{\lambda\left(\text { MathieuSPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(\pi-2 \lambda x)\right]+c_{1} \text { MathieuCPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(2 \lambda x-\pi)\right]\right)}{2 \alpha\left(\text { MathieuS }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(2 \lambda x-\pi)\right]+c_{1} \text { MathieuC }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(\pi-2 \lambda x)\right]\right)}$
$y(x) \rightarrow \frac{\lambda \text { MathieuCPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(\pi-2 \lambda x)\right]}{2 \alpha \text { MathieuC }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{1}{4}(\pi-2 \lambda x)\right]}$

9.2 problem 2

9.2.1 Solving as riccati ode

922
Internal problem ID [10500]
Internal file name [OUTPUT/9447_Monday_June_06_2022_02_32_58_PM_31295989/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}
$$

9.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-a^{2}+a \lambda \sin (\lambda x)+a^{2} \sin (\lambda x)^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & \mathrm{e}^{\frac{\sin (\lambda x) a}{\lambda}}\left(c_{1} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)\right. \\
& \left.+c_{2} \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\left(c _ { 2 } (\operatorname { c o s } (\lambda x) \operatorname { s i n } (\frac { \pi } { 4 } + \frac { \lambda x } { 2 }) a + \frac { \lambda \operatorname { c o s } (\frac { \pi } { 4 } + \frac { \lambda x } { 2 }) } { 2 }) \operatorname { H e u n C } \left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2}\right.\right. \\
+\cos (\lambda x)\left(\frac{c_{2} \lambda \operatorname{HeunCPrime}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)}{2}+\frac{1}{2}\right) \\
+\operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right) c_{1} a \\
\\
\left.\left.+\frac{c_{1} \lambda \operatorname{HeunCPrime}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)}{2}\right)\right) \mathrm{e}^{\frac{\sin (\lambda x) a}{\lambda}}
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{c_{2}\left(\cos (\lambda x) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) a+\frac{\lambda \cos \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)+\cos (\lambda x)\left(\frac{c_{2} \lambda}{}\right.}{c_{1} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{-\left(\cos (\lambda x) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) a+\frac{\lambda \cos \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)-\cos (\lambda x)\left(\frac{\lambda \text { Heun } 6}{}\right.}{c_{3} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda},\right.}$

Summary
The solution(s) found are the following
y
$=\frac{-\left(\cos (\lambda x) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) a+\frac{\lambda \cos \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)-\cos (\lambda x)\left(\frac{\lambda \text { Heun }}{}\right.}{c_{3} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{5}{3}\right.}$
Verification of solutions
y
$=\frac{-\left(\cos (\lambda x) \sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) a+\frac{\lambda \cos \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (\lambda x)}{2}+\frac{1}{2}\right)-\cos (\lambda x)\left(\frac{\lambda \text { Heun }}{}\right.}{c_{3} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda},\right.}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2-a*lambda*sin(lambda*x)-a^
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
            to LODEs admitting Liouvillian solutions.
            -> Trying a Liouvillian solution using Kovacics algorithm
                    A Liouvillian solution exists
                    Reducible group (found an exponential solution)
                    Group is reducible, not completely reducible
                    Solution has integrals. Trying a special function solution free of integrals.
                    -> Trying a solution in terms of special functions:
                    -> Bessel
                    -> elliptic
                -> Legendre
                -> Whittaker
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    -> hypergeometric
                    -> heuristic approach
                            -> hyper3: Equivatence to 2F1, 1F1 or OF1 under a power @ Moebius
                -> Mathieu
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 289
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2-a^{\wedge} 2+a * \operatorname{lambda} * \sin (\operatorname{lambda} * x)+a^{\wedge} 2 * \sin (\operatorname{lambda} * x) \wedge 2, y(x)\right.$, singsol $\left.=a l l\right)$
$y(x)$
$=\frac{\left(-2 a c_{1} \cos (x \lambda) \sin \left(\frac{\pi}{4}+\frac{x \lambda}{2}\right)-c_{1} \lambda \cos \left(\frac{\pi}{4}+\frac{x \lambda}{2}\right)\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin (x \lambda)}{2}+\frac{1}{2}\right)-2(a \operatorname{Heu}}{2 \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\sin }{}\right.}$
\checkmark Solution by Mathematica
Time used: 4.337 (sec). Leaf size: 132
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2-a^{\wedge} 2+a * \backslash[\operatorname{Lambda}] * \operatorname{Sin}\left[\backslash[\right.$ Lambda] $* x]+a^{\wedge} 2 * \operatorname{Sin}[\backslash[$ Lambda $] * x] \sim 2, y[x], x$, Include S

$$
\begin{aligned}
& y(x) \rightarrow-\frac{a c_{1} \cos (\lambda x) \int_{1}^{x} e^{-\frac{2 a \sin (\lambda K[1])}{\lambda}} d K[1]+a \cos (\lambda x)+c_{1} e^{-\frac{2 a \sin (\lambda x)}{\lambda}}}{1+c_{1} \int_{1}^{x} e^{-\frac{2 a \sin (\lambda K[1])}{\lambda}} d K[1]} \\
& y(x) \rightarrow-\frac{e^{-\frac{2 a \sin (\lambda x)}{\lambda}}}{\int_{1}^{x} e^{-\frac{2 a \sin (\lambda K[1])}{\lambda}} d K[1]}-a \cos (\lambda x)
\end{aligned}
$$

9.3 problem 3

$$
\text { 9.3.1 Solving as riccati ode . } 927
$$

Internal problem ID [10501]
Internal file name [OUTPUT/9448_Monday_June_06_2022_02_33_01_PM_4199649/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

Unable to solve or complete the solution.

$$
y^{\prime}-y^{2}=\lambda^{2}+c \sin (\lambda x+a)^{n} \sin (\lambda x+b)^{-n-4}
$$

9.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda^{2}+c \sin (\lambda x+a)^{n} \sin (\lambda x+b)^{-n-4}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda^{2}+\frac{c(\sin (\lambda x) \cos (a)+\cos (\lambda x) \sin (a))^{n} \sin (\lambda x+b)^{-n}}{(\sin (\lambda x) \cos (b)+\cos (\lambda x) \sin (b))^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\lambda^{2}+c \sin (\lambda x+a)^{n} \sin (\lambda x+b)^{-n-4}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\lambda^{2}+c \sin (\lambda x+a)^{n} \sin (\lambda x+b)^{-n-4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(\lambda^{2}+c \sin (\lambda x+a)^{n} \sin (\lambda x+b)^{-n-4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.
X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2+\operatorname{lambda} \wedge^{\wedge} 2+c * \sin (\operatorname{lambda} * x+a) \wedge n * \sin (\operatorname{lambda} * x+b) \wedge(-n-4), y(x)\right.$, singsol

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2+\backslash\left[\right.$ Lambda $\wedge^{\wedge} 2+c * \operatorname{Sin}[\backslash[\operatorname{Lambda}] * x+a] \wedge n * \operatorname{Sin}[\backslash[\operatorname{Lambda}] * x+b] \wedge(-n-4), y[x], x$, Inc

Not solved

9.4 problem 4

> 9.4.1 Solving as riccati ode .

Internal problem ID [10502]
Internal file name [OUTPUT/9449_Monday_June_06_2022_02_36_09_PM_13360096/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \sin (\beta x) y=a b \sin (\beta x)-b^{2}
$$

9.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \sin (\beta x) y+a b \sin (\beta x)-b^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \sin (\beta x) y+a b \sin (\beta x)-b^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b \sin (\beta x)-b^{2}, f_{1}(x)=\sin (\beta x) a$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\sin (\beta x) a \\
f_{2}^{2} f_{0} & =a b \sin (\beta x)-b^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\sin (\beta x) a u^{\prime}(x)+\left(a b \sin (\beta x)-b^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(-i c_{2} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right)+c_{1}\right) \mathrm{e}^{b x}
$$

The above shows that

$$
u^{\prime}(x)=\left(-i\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right) c_{2} b \beta-i c_{2} \beta \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}}+c_{1} b\right) \mathrm{e}^{b x}
$$

Using the above in (1) gives the solution

$$
\left.y=-\frac{-i\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}(x) c_{2} b \beta-i c_{2} \beta \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}}+c_{1} b}\right.}{-i c_{2} \beta\left(\int \mathrm{e}^{-2 b \beta x-a \cos (\beta x)}{ }^{-2}\right)} d x\right)+c_{1} \quad
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right) b \beta-i b c_{3}-\mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} \beta}{\beta\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right)+i c_{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right) b \beta-i b c_{3}-\mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} \beta}{\beta\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right)+i c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right) b \beta-i b c_{3}-\mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} \beta}{\beta\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (\beta x)}{\beta}} d x\right)+i c_{3}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 76
dsolve (diff $(y(x), x)=y(x) \wedge 2+a * \sin (\operatorname{beta} * x) * y(x)+a * b * \sin (b e t a * x)-b \wedge 2, y(x)$, singsol=all)

$$
y(x)=\frac{b\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (x \beta)}{\beta}} d x\right)-c_{1} b+\mathrm{e}^{\frac{-2 b \beta x-a \cos (x \beta)}{\beta}}}{-\left(\int \mathrm{e}^{\frac{-2 b \beta x-a \cos (x \beta)}{\beta}} d x\right)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 9.066 (sec). Leaf size: 187
DSolve $[y$ ' $[x]==y[x] \sim 2+a * \operatorname{Sin}[\backslash[B e t a] * x] * y[x]+a * b * \operatorname{Sin}[\backslash[B e t a] * x]-b \wedge 2, y[x], x$, IncludeSingularSolu

Solve $\left[\int_{1}^{x}-\frac{e^{-\frac{a \cos (\beta K[1])}{\beta}-2 b K[1]}(-b+a \sin (\beta K[1])+y(x))}{a \beta(b+y(x))} d K[1]+\int_{1}^{y(x)}\left(\frac{e^{-2 b x-\frac{a \cos (x \beta)}{\beta}}}{a \beta(b+K[2])^{2}}\right.\right.$
$\left.\left.-\int_{1}^{x}\left(\frac{e^{-\frac{a \cos (\beta K[1])}{\beta}-2 b K[1]}(-b+K[2]+a \sin (\beta K[1]))}{a \beta(b+K[2])^{2}}-\frac{e^{-\frac{a \cos (\beta K[1])}{\beta}-2 b K[1]}}{a \beta(b+K[2])}\right) d K[1]\right) d K[2]=c_{1}, y(x)\right]$

9.5 problem 5

9.5.1 Solving as riccati ode . 933

Internal problem ID [10503]
Internal file name [OUTPUT/9450_Monday_June_06_2022_02_36_25_PM_10230958/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \sin (b x)^{m} y=a \sin (b x)^{m}
$$

9.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \sin (b x)^{m} y+a \sin (b x)^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \sin (b x)^{m} y+a \sin (b x)^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \sin (b x)^{m}, f_{1}(x)=a \sin (b x)^{m}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \sin (b x)^{m} \\
f_{2}^{2} f_{0} & =a \sin (b x)^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-a \sin (b x)^{m} u^{\prime}(x)+a \sin (b x)^{m} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \sin (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*sin(x*b)^m*(diff(y(x), x))-a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            -> Mathieu
                    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact ligear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
```

X Solution by Maple
dsolve(diff($y(x), x)=y(x)^{\wedge} 2+a * \sin (b * x)^{\wedge} m * y(x)+a * \sin (b * x)^{\wedge} m, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==y[x] \wedge 2+a * \operatorname{Sin}[b * x] \sim m * y[x]+a * \operatorname{Sin}[b * x] \wedge m, y[x], x$, IncludeSingularSolutions $->$ True $]$

Not solved

9.6 problem 6

9.6.1 Solving as riccati ode . 938

Internal problem ID [10504]
Internal file name [OUTPUT/9451_Monday_June_06_2022_02_36_31_PM_98522936/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \sin (\lambda x) y^{2}=\lambda \sin (\lambda x)^{3}
$$

9.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sin (\lambda x) \lambda y^{2}+\lambda \sin (\lambda x)^{3}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\sin (\lambda x) \lambda y^{2}+\lambda \sin (\lambda x)^{3}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\lambda \sin (\lambda x)^{3}, f_{1}(x)=0$ and $f_{2}(x)=\lambda \sin (\lambda x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sin (\lambda x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cos (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\lambda^{3} \sin (\lambda x)^{5}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\lambda \sin (\lambda x) u^{\prime \prime}(x)-\lambda^{2} \cos (\lambda x) u^{\prime}(x)+\lambda^{3} \sin (\lambda x)^{5} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-\frac{\cos (\lambda x)^{2}}{2}}\left(c_{2} \mathrm{erfi}(\cos (\lambda x))+c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\lambda \sin (\lambda x)\left(\sqrt{\pi} \cos (\lambda x)\left(c_{2} \operatorname{erfi}(\cos (\lambda x))+c_{1}\right) \mathrm{e}^{-\frac{\cos (\lambda x)^{2}}{2}}-2 c_{2} \mathrm{e}^{\frac{\cos (\lambda x)^{2}}{2}}\right)}{\sqrt{\pi}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\sqrt{\pi} \cos (\lambda x)\left(c_{2} \mathrm{erfi}(\cos (\lambda x))+c_{1}\right) \mathrm{e}^{-\frac{\cos (\lambda x)^{2}}{2}}-2 c_{2} \mathrm{e}^{\frac{\cos (\lambda x)^{2}}{2}}\right) \mathrm{e}^{\frac{\cos (2 \lambda x)}{4}+\frac{1}{4}}}{\sqrt{\pi}\left(c_{2} \mathrm{erfi}(\cos (\lambda x))+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{-2 \mathrm{e}^{\cos (\lambda x)^{2}}+\cos (\lambda x) \sqrt{\pi}\left(\mathrm{erfi}(\cos (\lambda x))+c_{3}\right)}{\sqrt{\pi}\left(\operatorname{erfi}(\cos (\lambda x))+c_{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{-2 \mathrm{e}^{\cos (\lambda x)^{2}}+\cos (\lambda x) \sqrt{\pi}\left(\mathrm{erfi}(\cos (\lambda x))+c_{3}\right)}{\sqrt{\pi}\left(\operatorname{erfi}(\cos (\lambda x))+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{-2 \mathrm{e}^{\cos (\lambda x)^{2}}+\cos (\lambda x) \sqrt{\pi}\left(\mathrm{erfi}(\cos (\lambda x))+c_{3}\right)}{\sqrt{\pi}\left(\operatorname{erfi}(\cos (\lambda x))+c_{3}\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*cos(lambda*x)*(diff(y(x
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
        <- Kovacics algorithm successful
        Change of variables used:
            [x = arccos(t)/lambda]
        Linear ODE actually solved:
            16*(-t^2+1)^(1/2)*(t^4-2*t^2+1)*u(t)+16*(-t^2+1)^(3/2)*diff(diff(u(t),t),t) = 0
        <- change of variables successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 51
dsolve(diff $(y(x), x)=l a m b d a * \sin (\operatorname{lambda} * x) * y(x) \wedge 2+l a m b d a * \sin (\operatorname{lambda} * x) \wedge 3, y(x)$, singsol=all)

$$
y(x)=\frac{2 \mathrm{e}^{\frac{\cos (2 \pi \lambda)}{2}+\frac{1}{2}} c_{1}-\cos (x \lambda) \sqrt{\pi}\left(\mathrm{erfi}(\cos (x \lambda)) c_{1}+1\right)}{\sqrt{\pi}\left(\operatorname{erf}(\cos (x \lambda)) c_{1}+1\right)}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y '[x]==\backslash[$ Lambda] $* \operatorname{Sin}[\backslash[$ Lambda] $* x] * y[x] \wedge 2+\backslash[$ Lambda] $* \operatorname{Sin}[\backslash[$ Lambda] $* x] \wedge 3, y[x], x$, IncludeS
Not solved

9.7 problem 7

9.7.1 Solving as riccati ode . 943

Internal problem ID [10505]
Internal file name [OUTPUT/9452_Monday_June_06_2022_02_36_32_PM_15666899/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
2 y^{\prime}-(\lambda+a-a \sin (\lambda x)) y^{2}=-a+\lambda-a \sin (\lambda x)
$$

9.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\sin (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}+\frac{\lambda y^{2}}{2}+\frac{\lambda}{2}-\frac{a}{2}-\frac{a \sin (\lambda x)}{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\sin (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}+\frac{\lambda y^{2}}{2}+\frac{\lambda}{2}-\frac{a}{2}-\frac{a \sin (\lambda x)}{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda}{2}-\frac{a}{2}-\frac{a \sin (\lambda x)}{2}, f_{1}(x)=0$ and $f_{2}(x)=\frac{a}{2}+\frac{\lambda}{2}-\frac{a \sin (\lambda x)}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \sin (\lambda x)}{2}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda \cos (\lambda x)}{2} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \sin (\lambda x)}{2}\right)^{2}\left(\frac{\lambda}{2}-\frac{a}{2}-\frac{a \sin (\lambda x)}{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \sin (\lambda x)}{2}\right) u^{\prime \prime}(x)+\frac{a \lambda \cos (\lambda x) u^{\prime}(x)}{2}+\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{a \sin (\lambda x)}{2}\right)^{2}\left(\frac{\lambda}{2}-\frac{a}{2}-\frac{a \sin (\lambda x)}{2}\right) u(x)=$
Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\frac{\sqrt{\sin (\lambda x)} \cos \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) \mathrm{e}^{\frac{-a \sin (\lambda x)+\lambda^{2}(a+\lambda)\left(\int_{\frac{\cot (\lambda x)}{a \sin (\lambda x)-a-\lambda} d x}^{d x}\right.}{2 \lambda}}\left(c_{1}+c_{2}\left(\int^{\left.\left.\sin (\lambda x) \frac{((-1+\ldots a) a-\lambda) \mathrm{e}^{\frac{a a}{\lambda}}}{(-1+\ldots a)^{\frac{3}{2}} \sqrt{-a+1}} d _a\right)\right)}\right.\right.}{\sqrt{a \sin (\lambda x)-a-\lambda}}$
The above shows that
$u^{\prime}(x)=$
$-\underbrace{\csc \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) \sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \mathrm{e}^{\frac{-a \sin (\lambda x)+\lambda^{2}(a+\lambda)\left(\int \frac{\cot (\lambda x)}{a \sin (\lambda x)-a-\lambda} d x\right)}{2 \lambda}}\left(\sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)\left(c_{1}+c_{2}\left(\int^{\sin (\lambda x)} \frac{((-1+\ldots a) a-)}{(-1+\ldots a)^{\frac{3}{2}}}\right)\right.\right.}$

Using the above in (1) gives the solution
y

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$
$-\underline{\sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \sqrt{2}\left(\sqrt{2} \sqrt{\sin (\lambda x)-1}\left(a \cos (\lambda x)^{2}+2\left(a+\frac{\lambda}{2}\right)(\sin (\lambda x)-1)\right) \operatorname{cssn}\left(\sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)(\cos \right.}$

Simplifying the solution $y=-\overbrace{}^{\sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \sqrt{2}\left(\sqrt{2} \sqrt{\sin (\lambda x)-1}\left(a \cos (\lambda x)^{2}+2\left(a+\frac{\lambda}{2}\right)(\sin (\lambda x)-1)\right) \operatorname{csgn}\left(\sin \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)\right)(\cos (\lambda x) a-\right.}$
to $y=-\frac{\sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \sqrt{2}\left(\sqrt{2} \sqrt{\sin (\lambda x)-1}\left(a \cos (\lambda x)^{2}+2\left(a+\frac{\lambda}{2}\right)(\sin (\lambda x)-1)\right)\left(\cos (\lambda x) a+\tan \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right) \lambda\right)\left(\int^{\sin (\lambda x)} \frac{((-1+\ldots a) a-\lambda) e}{} \frac{a a}{\lambda}\right.\right.}{(-1+\ldots a)^{\frac{3}{2}} \sqrt{-a_{+1}}}$

Summary

The solution(s) found are the following
$y=$
$-\underline{\sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \sqrt{2}\left(\sqrt{2} \sqrt{\sin (\lambda x)-1}\left(a \cos (\lambda x)^{2}+2\left(a+\frac{\lambda}{2}\right)(\sin (\lambda x)-1)\right)\left(\cos (\lambda x) a+\tan \left(\frac{\pi}{4}+\frac{\lambda}{}, \underline{2}\right.\right.\right.}$

Verification of solutions

$y=$
$-\underline{\sec \left(\frac{\pi}{4}+\frac{\lambda x}{2}\right)^{2} \sqrt{2}\left(\sqrt{2} \sqrt{\sin (\lambda x)-1}\left(a \cos (\lambda x)^{2}+2\left(a+\frac{\lambda}{2}\right)(\sin (\lambda x)-1)\right)\left(\cos (\lambda x) a+\tan \left(\frac{\pi}{4}+\frac{)}{2}\right.\right.\right.}$

Warning, solution could not be verified

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*lambda*cos(lambda*x)*(diff(y
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals.
            -> Trying a solution in terms of special functions:
                -> Bessel
                -> elliptic
                -> Legendre
                -> Whittaker
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
                -> hypergeometric
                    -> heuristic approach
                            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                -> Mathieu
                                    946
                                    -> Equivalence to the rational form of Mathieu ODE under a power @ Moeb
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 220
dsolve $\left(2 * \operatorname{diff}(y(x), x)=(l a m b d a+a-a * \sin (l a m b d a * x)) * y(x)^{\wedge} 2+l a m b d a-a-a * \sin (l a m b d a * x), y(x)\right.$, sings
$y(x)=$

$$
-\frac{\left(\left(\left(\int^{\sin (x \lambda)} \frac{\left(a\left(_a-1\right)-\lambda\right) e^{\frac{a_{-}}{\lambda}}}{(a-1)^{\frac{3}{2}} \sqrt{-a+1}} d _a\right) c_{1}+1\right) \sqrt{-\cos \left(\frac{\pi}{4}+\frac{x \lambda}{2}\right)^{2}}\left(a \cos (x \lambda)+\tan \left(\frac{\pi}{4}+\frac{x \lambda}{2}\right) \lambda\right) \operatorname{csgn}(\sin \right.}{\sqrt{-\cos \left(\frac{\pi}{4}+\frac{x \lambda}{2}\right)^{2}}\left(\left(\int^{\sin (x \lambda)} \frac{\left(a\left(_a-1\right)-\lambda\right) e^{\frac{a}{\lambda}}{ }^{a}}{\left(a_{-1}\right)^{\frac{3}{2}} \sqrt{-a+1}} d _\right.\right.}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[2 * y^{\prime}[\mathrm{x}]==(\backslash[\right.$ Lambda $]+\mathrm{a}-\mathrm{a} * \operatorname{Sin}[\backslash[$ Lambda $] * \mathrm{x}]) * \mathrm{y}[\mathrm{x}] \sim 2+\backslash[$ Lambda] $-\mathrm{a}-\mathrm{a} * \operatorname{Sin}[\backslash[$ Lambda $] * \mathrm{x}], \mathrm{y}[\mathrm{x}]$,

Not solved

9.8 problem 8

9.8.1 Solving as riccati ode . 948

Internal problem ID [10506]
Internal file name [OUTPUT/9453_Monday_June_06_2022_02_36_43_PM_56838212/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\left(\lambda+\sin (\lambda x)^{2} a\right) y^{2}=-a+\lambda+\sin (\lambda x)^{2} a
$$

9.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\sin (\lambda x)^{2} a y^{2}+\sin (\lambda x)^{2} a+\lambda y^{2}-a+\lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\sin (\lambda x)^{2} a y^{2}+\sin (\lambda x)^{2} a+\lambda y^{2}-a+\lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a+\lambda+\sin (\lambda x)^{2} a, f_{1}(x)=0$ and $f_{2}(x)=\lambda+\sin (\lambda x)^{2} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(\lambda+\sin (\lambda x)^{2} a\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \sin (\lambda x) a \lambda \cos (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(\lambda+\sin (\lambda x)^{2} a\right)^{2}\left(-a+\lambda+\sin (\lambda x)^{2} a\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\left(\lambda+\sin (\lambda x)^{2} a\right) u^{\prime \prime}(x)-2 \sin (\lambda x) a \lambda \cos (\lambda x) u^{\prime}(x)+\left(\lambda+\sin (\lambda x)^{2} a\right)^{2}\left(-a+\lambda+\sin (\lambda x)^{2} a\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sin (\lambda x) \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{4 \lambda}}\left(c_{1}+2 i c_{2} \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right)\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\csc (\lambda x)(\lambda \\
& \left.\quad+\sin (\lambda x)^{2} a\right)\left(i \sin (2 \lambda x)\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{4 \lambda}}\right. \\
& \\
& \left.\quad+2 i c_{2} \lambda \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}+\frac{\sin (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{4 \lambda}}}{2}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\csc (\lambda x)\left(i \sin (2 \lambda x)\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{4 \lambda}}+2 i c_{2} \lambda \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}+\frac{\sin (2 \lambda x) c_{1} \mathrm{e}^{-\frac{\cos (2 \lambda}{4 \lambda}}}{2}\right.}{\sin (\lambda x)\left(c_{1}+2 i c_{2} \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{2 \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}} \csc (\lambda x)^{2} \lambda-i c_{3} \cot (\lambda x)+2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right) \cot (\lambda x)}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}} \csc (\lambda x)^{2} \lambda-i c_{3} \cot (\lambda x)+2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right) \cot (\lambda x)}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}} \csc (\lambda x)^{2} \lambda-i c_{3} \cot (\lambda x)+2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right) \cot (\lambda x)}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\csc (\lambda x)^{2} \lambda+a\right) d x\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = 2*sin(lambda*x)*a*lambda*cos(l
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
                    -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                            -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    -> hypergeometric
                    -> heuristic approach
                            -> hyper3: Equivalenice to 2F1, 1F1 or OF1 under a power @ Moebius
            -> Mathieu
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 102
dsolve $(\operatorname{diff}(y(x), x)=(l a m b d a+a * \sin (l a m b d a * x) \wedge 2) * y(x) \wedge 2+l a m b d a-a+a * \sin (l a m b d a * x) \wedge 2, y(x)$, sings
$y(x)=\frac{2 \cot (x \lambda) \lambda\left(\int \mathrm{e}^{\frac{a \cos (2 x \lambda)}{2 \lambda}}\left(\csc (x \lambda)^{2} \lambda+a\right) d x\right) c_{1}+2 \csc (x \lambda)^{2} \mathrm{e}^{\frac{a \cos (2 x \lambda)}{2 \lambda}} c_{1} \lambda-i \cot (x \lambda)}{-2 \lambda\left(\int \mathrm{e}^{\frac{a \cos (2 x \lambda)}{2 \lambda}}\left(\csc (x \lambda)^{2} \lambda+a\right) d x\right) c_{1}+i}$
\checkmark Solution by Mathematica
Time used: 41.676 (sec). Leaf size: 187
DSolve $[y$ ' $[x]==(\backslash[$ Lambda] $+a * \operatorname{Sin}[\backslash[$ Lambda] $* x] \sim 2) * y[x] \wedge 2+\backslash[$ Lambda] $-a+a * \operatorname{Sin}[\backslash[$ Lambda] $* x] \sim 2, y[x]$,

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{2\left(c_{1} \cot (\lambda x) \int_{1}^{x} e^{-\frac{a \sin ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \csc ^{2}(\lambda K[1])+a\right) d K[1]+c_{1} \csc ^{2}(\lambda x) e^{-\frac{a \sin ^{2}(\lambda x)}{\lambda}}+\cot (\lambda x)\right)}{2+2 c_{1} \int_{1}^{x} e^{-\frac{a \sin ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \csc ^{2}(\lambda K[1])+a\right) d K[1]} \\
& y(x) \rightarrow-\frac{\csc ^{2}(\lambda x) e^{-\frac{a \sin ^{2}(\lambda x)}{\lambda}}}{\int_{1}^{x} e^{-\frac{a \sin ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \csc ^{2}(\lambda K[1])+a\right) d K[1]}-\cot (\lambda x)
\end{aligned}
$$

9.9 problem 9

9.9.1 Solving as riccati ode . 953

Internal problem ID [10507]
Internal file name [OUTPUT/9454_Monday_June_06_2022_02_37_24_PM_58114225/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(k+1) x^{k} y^{2}-a x^{k+1} \sin (x)^{m} y=-a \sin (x)^{m}
$$

9.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{k+1} \sin (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \sin (x)^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x^{k} x \sin (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \sin (x)^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a \sin (x)^{m}, f_{1}(x)=x^{k+1} \sin (x)^{m} a$ and $f_{2}(x)=-x^{k} k-x^{k}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \sin (x)^{m} a\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} a \sin (x)^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \sin (x)^{m} a\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} a \sin (x)^{m} u($
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{k+1}\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\left(c_{2} x^{-2 k-1}\right. & \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} \\
& \left.+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{k}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y=\frac{\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{k} x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \sin (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}
$$

Summary

The solution(s) found are the following
y
$=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \sin (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}$

Verification of solutions
$y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \sin (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \sin (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}$
Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(1+k)*\operatorname{sin}(x)`m*a*x+k)*(diff
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
                -> trying with_periodic_functions in the coefficients
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_fygctions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 174

```
dsolve(diff (y(x),x)=-(k+1)*x^k*y(x)^2+a* (x^(k+1)*\operatorname{sin}(\textrm{x}\mp@subsup{)}{}{\wedge}m*y(x)-a*\operatorname{sin}(\textrm{x}\mp@subsup{)}{}{\wedge}m,y(x), singsol=all)
```

$y(x)$
$\left.=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \sin (x)^{m} a x-2 k-2}{x} d x}+\left(\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \sin (x)^{m} a x-2 k-2}{x} d x} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \sin (x)^{m} a x-2 k-2}{x} d x} d x-c_{1}\right.}{\left(\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \sin (x)^{m}-2 k-2}{x}} d x\right.} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \sin (x)^{m}-2 k-2}{x}} d x d x-c_{1}$
\checkmark Solution by Mathematica
Time used: 16.483 (sec). Leaf size: 248
DSolve $\left[y\right.$ ' $[x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+a * x^{\wedge}(k+1) * \operatorname{Sin}[x] \wedge m * y[x]-a * \operatorname{Sin}[x] \wedge m, y[x], x$, IncludeSingularSol

$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{x^{-k-1}\left(c_{1} x \exp \left(\int_{1}^{x}-\frac{-a \sin ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right)+c_{1}(k+1) \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \sin ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d I\right.\right.}{(k+1)\left(1+c_{1} \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \sin ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]\right)} \\
& y(x) \rightarrow \frac{x^{-k}\left(\frac{\exp \left(\int_{1}^{x}-\frac{-a \sin ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right.}{\int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \sin ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]}+\frac{k+1}{x}\right)}{k+1}
\end{aligned}
$$

9.10 problem 10

$$
\text { 9.10.1 Solving as riccati ode . } 958
$$

Internal problem ID [10508]
Internal file name [OUTPUT/9455_Monday_June_06_2022_02_37_33_PM_50920785/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
```

$$
y^{\prime}-a \sin (\lambda x+\mu)^{k}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
$$

9.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} \sin (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \sin (\lambda x+\mu)^{k} a b c-2 x^{n} \sin (\lambda x+\mu)^{k} a b y+\sin (\lambda x+\mu)^{k} a c^{2}-2 \sin (\lambda x
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 n}(\sin (\lambda x) \cos (\mu)+\cos (\lambda x) \sin (\mu))^{k} a b^{2}+2 x^{n}(\sin (\lambda x) \cos (\mu)+\cos (\lambda x) \sin (\mu))^{k} a b c-2 x^{n}(\sin (\lambda a$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 n} \sin (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \sin (\lambda x+\mu)^{k} a b c+\sin (\lambda x+\mu)^{k} a c^{2}+$ $b x^{n-1} n, f_{1}(x)=-2 \sin (\lambda x+\mu)^{k} a x^{n} b-2 \sin (\lambda x+\mu)^{k} a c$ and $f_{2}(x)=\sin (\lambda x+\mu)^{k} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\sin (\lambda x+\mu)^{k} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\sin (\lambda x+\mu)^{k} k \lambda \cos (\lambda x+\mu) a}{\sin (\lambda x+\mu)} \\
f_{1} f_{2} & =\left(-2 \sin (\lambda x+\mu)^{k} a x^{n} b-2 \sin (\lambda x+\mu)^{k} a c\right) \sin (\lambda x+\mu)^{k} a \\
f_{2}^{2} f_{0} & =\sin (\lambda x+\mu)^{2 k} a^{2}\left(x^{2 n} \sin (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \sin (\lambda x+\mu)^{k} a b c+\sin (\lambda x+\mu)^{k} a c^{2}+b x^{n-1} n\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\sin (\lambda x+\mu)^{k} a u^{\prime \prime}(x)-\left(\frac{\sin (\lambda x+\mu)^{k} k \lambda \cos (\lambda x+\mu) a}{\sin (\lambda x+\mu)}+\left(-2 \sin (\lambda x+\mu)^{k} a x^{n} b-2 \sin (\lambda x+\mu)^{k} a c\right)\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{e}^{-\frac{\left(\int\left(2 a\left(b x^{n}+c\right) \sin (\lambda x+\mu)^{k}-\cot (\lambda x+\mu) \lambda(k-1)\right) d x\right)}{2}} \sin (\lambda x \\
&+\mu)\left(c_{1} \text { LegendreP }\left(\frac{k}{2}-\frac{1}{2}, \frac{k}{2}+\frac{1}{2}, \cos (\lambda x+\mu)\right)\right. \\
&\left.+c_{2} \text { LegendreQ }\left(\frac{k}{2}-\frac{1}{2}, \frac{k}{2}+\frac{1}{2}, \cos (\lambda x+\mu)\right)\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=-a \sin (\lambda x+\mu)^{k} \mathrm{e}^{-\frac{\left(\rho\left(2 a\left(b x^{n}+c\right) \sin (\lambda x+\mu)^{k}-\cot (\lambda x+\mu) \lambda(k-1)\right) d x\right)}{2}} \sin (\lambda x \\
\quad+\mu)\left(c_{1} \text { LegendreP }\left(\frac{k}{2}-\frac{1}{2}, \frac{k}{2}+\frac{1}{2}, \cos (\lambda x+\mu)\right)\right. \\
\left.+c_{2} \text { LegendreQ }\left(\frac{k}{2}-\frac{1}{2}, \frac{k}{2}+\frac{1}{2}, \cos (\lambda x+\mu)\right)\right)\left(b x^{n}+c\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
y=b x^{n}+c
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=b x^{n}+c
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=b x^{n}+c \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=b x^{n}+c
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve(diff $(y(x), x)=a * \sin (\operatorname{lambda} * x+m u)^{\wedge} k *\left(y(x)-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y(x)$, singsol=all)

$$
y(x)=b x^{n}+c+\frac{1}{c_{1}-a\left(\int(\sin (x \lambda) \cos (\mu)+\cos (x \lambda) \sin (\mu))^{k} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 5.928 (sec). Leaf size: 93
DSolve $\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Sin}[\backslash$ LLambda] $* x+\backslash[\mathrm{Mu}]] \wedge \mathrm{k} *\left(\mathrm{y}[\mathrm{x}]-\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n}-\mathrm{c}\right) \wedge 2+\mathrm{b} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1), \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingular

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{-\frac{a \sqrt{\cos ^{2}(\mu+\lambda x)} \sec (\mu+\lambda x) \sin ^{k+1}(\mu+\lambda x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{k+1}{2}, \frac{k+3}{2}, \sin ^{2}(x \lambda+\mu)\right)}{(k+1) \lambda}+c_{1}} \\
& +b x^{n}+c \\
y(x) \rightarrow & b x^{n}+c
\end{aligned}
$$

9.11 problem 11

$$
\text { 9.11.1 Solving as riccati ode . } 962
$$

Internal problem ID [10509]
Internal file name [OUTPUT/9456_Monday_June_06_2022_02_38_20_PM_86812107/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
y^{\prime} x-a \sin (\lambda x)^{m} y^{2}-k y=a b^{2} x^{2 k} \sin (\lambda x)^{m}
$$

9.11.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a \sin (\lambda x)^{m} y^{2}+k y+a b^{2} x^{2 k} \sin (\lambda x)^{m}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a b^{2} x^{2 k} \sin (\lambda x)^{m}}{x}+\frac{a \sin (\lambda x)^{m} y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a b^{2} x^{2 k} \sin (\lambda x)^{m}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{a \sin (\lambda x)^{m}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \sin (\lambda x)^{m} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a \sin (\lambda x)^{m} m \lambda \cos (\lambda x)}{\sin (\lambda x) x}-\frac{a \sin (\lambda x)^{m}}{x^{2}} \\
f_{1} f_{2} & =\frac{k a \sin (\lambda x)^{m}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \sin (\lambda x)^{3 m} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{a \sin (\lambda x)^{m} u^{\prime \prime}(x)}{x}-\left(\frac{a \sin (\lambda x)^{m} m \lambda \cos (\lambda x)}{\sin (\lambda x) x}-\frac{a \sin (\lambda x)^{m}}{x^{2}}+\frac{k a \sin (\lambda x)^{m}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \sin (\lambda x)^{3 m} b^{2} x^{2 k} \imath}{x^{3}}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i a b x^{k-1} \sin (\lambda x)^{m}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}\right) x}{c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \sin (\lambda x)^{m} d x\right)}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31
dsolve $\left(x * \operatorname{diff}(y(x), x)=a * \sin (\operatorname{lambda} * x)^{\wedge} m * y(x)^{\wedge} 2+\mathrm{k} * y(x)+a * b^{\wedge} 2 * x^{\wedge}(2 * k) * \sin (\operatorname{lambda} * x) \wedge m, y(x)\right.$, si

$$
y(x)=-\tan \left(-a b\left(\int x^{-1+k} \sin (x \lambda)^{m} d x\right)+c_{1}\right) b x^{k}
$$

Solution by Mathematica
Time used: 1.774 (sec). Leaf size: 50
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Sin}[\backslash[\right.$ Lambda $] * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{Sin}[\backslash[$ Lambda $] * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}$

$$
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} a K[1]^{k-1} \sin ^{m}(\lambda K[1]) d K[1]+c_{1}\right)
$$

9.12 problem 12

9.12.1 Solving as riccati ode . 965

Internal problem ID [10510]
Internal file name [OUTPUT/9457_Monday_June_06_2022_02_38_23_PM_57207150/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

Unable to solve or complete the solution.

$$
(a \sin (\lambda x)+b) y^{\prime}-y^{2}-c \sin (x \mu) y=-d^{2}+c d \sin (x \mu)
$$

9.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \sin (x \mu) y-d^{2}+c d \sin (x \mu)}{a \sin (\lambda x)+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{c d \sin (x \mu)}{a \sin (\lambda x)+b}+\frac{c \sin (x \mu) y}{a \sin (\lambda x)+b}-\frac{d^{2}}{a \sin (\lambda x)+b}+\frac{y^{2}}{a \sin (\lambda x)+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-d^{2}+c d \sin (x \mu)}{a \sin (\lambda x)+b}, f_{1}(x)=\frac{c \sin (x \mu)}{a \sin (\lambda x)+b}$ and $f_{2}(x)=\frac{1}{a \sin (\lambda x)+b}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a \sin (\lambda x)+b}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda \cos (\lambda x)}{(a \sin (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \sin (x \mu)}{(a \sin (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \sin (x \mu)}{(a \sin (\lambda x)+b)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{u^{\prime \prime}(x)}{a \sin (\lambda x)+b}-\left(-\frac{a \lambda \cos (\lambda x)}{(a \sin (\lambda x)+b)^{2}}+\frac{c \sin (x \mu)}{(a \sin (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \sin (x \mu)\right) u(x)}{(a \sin (\lambda x)+b)^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```


\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 265
dsolve $\left((a * \sin (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+c * \sin (m u * x) * y(x)-d^{\wedge} 2+c * d * \sin (m u * x), y(x)\right.$, sing
$y(x)$

\checkmark Solution by Mathematica
Time used: 15.846 (sec). Leaf size: 289
DSolve $\left[(a * \operatorname{Sin}[\backslash[\operatorname{Lambda}] * x]+b) * y{ }^{\prime}[x]==y[x] \sim 2+c * \operatorname{Sin}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Sin}[\backslash[M u] * x], y[x], x\right.$,

$$
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])} d K[1]\right)(-d+c \sin (\mu K[2])+y(x))}{c \mu(b+a \sin (\lambda K[2]))(d+y(x))} d K[2]\right. \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x} \frac{2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])} d K[1]\right)}{c \mu(d+K[3])^{2}}\right. \\
& -\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])} d K[1]\right)(-d+K[3]+c \sin (\mu K[2]))}{c \mu(d+K[3])^{2}(b+a \sin (\lambda K[2]))}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \sin (\mu K[1])}{b+a \sin (\lambda K[1])} d K[1]\right)}{c \mu(d+K[3])(b+a \sin (\lambda K[2]))}\right)
\end{aligned}
$$

9.13 problem 13

$$
\text { 9.13.1 Solving as riccati ode . } 968
$$

Internal problem ID [10511]
Internal file name [OUTPUT/9458_Monday_June_06_2022_02_39_36_PM_69357783/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-1. Equations with sine
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
(a \sin (\lambda x)+b)\left(y^{\prime}-y^{2}\right)=a \lambda^{2} \sin (\lambda x)
$$

9.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} \sin (\lambda x) a+a \lambda^{2} \sin (\lambda x)+y^{2} b}{a \sin (\lambda x)+b}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a \lambda^{2} \sin (\lambda x)}{a \sin (\lambda x)+b}+\frac{y^{2} \sin (\lambda x) a}{a \sin (\lambda x)+b}+\frac{y^{2} b}{a \sin (\lambda x)+b}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{a \lambda^{2} \sin (\lambda x)}{a \sin (\lambda x)+b}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a \lambda^{2} \sin (\lambda x)}{a \sin (\lambda x)+b}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{a \lambda^{2} \sin (\lambda x) u(x)}{a \sin (\lambda x)+b}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & 2 c_{1}(a-b)(a+b) b^{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right) \\
& +a c_{1} \cos \left(\frac{\lambda x}{2}\right)(a-b)(a+b)\left(a \sin \left(\frac{\lambda x}{2}\right)+b \cos \left(\frac{\lambda x}{2}\right)\right) \sqrt{-a^{2}+b^{2}} \\
& +2 c_{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& -\frac{\left(-2 c_{1}\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)(a-b)(a+b) a \sqrt{-a^{2}+b^{2}} b^{2} \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)-2\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right) c_{2} a \sqrt{-}\right.}{\sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\left(-2 c_{1}\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)(a-b)(a+b) a \sqrt{-a^{2}+b^{2}} b^{2} \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)-2\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right) c_{2} a \sqrt{-a}\right.}{\sqrt{-a^{2}+b^{2}}\left(2 c_{1}(a-b)(a+b) b^{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a c_{1} \cos \left(\frac{\lambda x}{2}\right)(a-b)\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{\lambda\left(-2 c_{3}\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)(a-b)(a+b) a \sqrt{-a^{2}+b^{2}} b^{2} \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a\left(-2 \cos \left(\frac{\lambda x}{2}\right)^{2}+1\right) \sqrt{-}\right.}{\sqrt{-a^{2}+b^{2}}\left(2 c_{3}(a-b)(a+b) b^{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a c_{3} \cos \left(\frac{\lambda x}{2}\right)(a-\right.}$
Summary
The solution(s) found are the following
y
$=\frac{\lambda\left(-2 c_{3}\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)(a-b)(a+b) a \sqrt{-a^{2}+b^{2}} b^{2} \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a\left(-2 \cos \left(\frac{\lambda x}{2}\right)^{2}+1\right) \sqrt{-}\right.}{\sqrt{-a^{2}+b^{2}}\left(2 c_{3}(a-b)(a+b) b^{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a c_{3} \cos \left(\frac{\lambda x}{2}\right)(a-\right.}$
Verification of solutions
y
$=\frac{\lambda\left(-2 c_{3}\left(\cos \left(\frac{\lambda x}{2}\right)^{2}-\frac{1}{2}\right)(a-b)(a+b) a \sqrt{-a^{2}+b^{2}} b^{2} \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a\left(-2 \cos \left(\frac{\lambda x}{2}\right)^{2}+1\right) \sqrt{-}\right.}{\sqrt{-a^{2}+b^{2}}\left(2 c_{3}(a-b)(a+b) b^{2}\left(\sin \left(\frac{\lambda x}{2}\right) a \cos \left(\frac{\lambda x}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{b \tan \left(\frac{\lambda x}{2}\right)+a}{\sqrt{-a^{2}+b^{2}}}\right)+a c_{3} \cos \left(\frac{\lambda x}{2}\right)(a-\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*lambda^2*sin(lambda*x)*y(x)
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 261
dsolve $\left((a * \sin (\operatorname{lambda} * x)+b) *\left(\operatorname{diff}(y(x), x)-y(x)^{\wedge} 2\right)-a * \operatorname{lambda}{ }^{\wedge} 2 * \sin (\operatorname{lambda} * x)=0, y(x), \quad\right.$ singsol $=a l$
$y(x)$
$=\frac{\left(-2(a-b) b^{2}(a+b)\left(\cos \left(\frac{x \lambda}{2}\right)^{2}-\frac{1}{2}\right) a \sqrt{-a^{2}+b^{2}} \arctan \left(\frac{\tan \left(\frac{x \lambda}{2}\right) b+a}{\sqrt{-a^{2}+b^{2}}}\right)+2 c_{1}\left(\cos \left(\frac{x \lambda}{2}\right)^{2}-\frac{1}{2}\right) a \sqrt{-a^{2}-}\right.}{\sqrt{-a^{2}+b^{2}}\left(2(a-b) b^{2}(a+b)\left(\sin \left(\frac{x \lambda}{2}\right) a \cos \left(\frac{x \lambda}{2}\right)+\frac{b}{2}\right) \arctan \left(\frac{\tan \left(\frac{x \lambda}{2}\right) b+a}{\sqrt{-a^{2}+b^{2}}}\right)+a \cos \left(\frac{x \lambda}{2}\right)(a-b)(a-1\right.}$
\checkmark Solution by Mathematica
Time used: 24.795 (sec). Leaf size: 189
DSolve $\left[(a * \operatorname{Sin}[\backslash[\operatorname{Lambda}] * x]+b) *(y \prime[x]-y[x] \sim 2)-a * \backslash[\text { Lambda }]^{\wedge} 2 * \operatorname{Sin}[\backslash[\right.$ Lambda $] * x]==0, y[x], x$, Includ
$y(x)$
$\rightarrow \frac{\lambda\left(2 a b \cos (\lambda x) \arctan \left(\frac{a+b \tan \left(\frac{\lambda x}{2}\right)}{\sqrt{b^{2}-a^{2}}}\right)+\sqrt{b^{2}-a^{2}}\left(-a c_{1} \lambda\left(a^{2}-b^{2}\right) \cos (\lambda x)-a \sin (\lambda x)+b\right)\right)}{-2 b(a \sin (\lambda x)+b) \arctan \left(\frac{a+b \tan \left(\frac{\lambda x}{2}\right)}{\sqrt{b^{2}-a^{2}}}\right)+\sqrt{b^{2}-a^{2}}\left(-a \cos (\lambda x)+c_{1} \lambda\left(a^{2}-b^{2}\right)(a \sin (\lambda x)+b)\right)}$
$y(x) \rightarrow-\frac{a \lambda \cos (\lambda x)}{a \sin (\lambda x)+b}$
10 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
10.1 problem 14 974
10.2 problem 15 979
10.3 problem 16 984
10.4 problem 17 986
10.5 problem 18 990
10.6 problem 19 995
10.7 problem 20 1000
10.8 problem 21 1005
10.9 problem 22 1010
10.10problem 23 1015
10.11problem 24 1019
10.12problem 25 1022
10.13problem 26 1025

10.1 problem 14

10.1.1 Solving as riccati ode 974

Internal problem ID [10512]
Internal file name [OUTPUT/9459_Monday_June_06_2022_02_40_18_PM_5103947/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine. Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\alpha y^{2}=\beta+\gamma \cos (\lambda x)
$$

10.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\alpha y^{2}+\beta+\gamma \cos (\lambda x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\alpha y^{2}+\beta+\gamma \cos (\lambda x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta+\gamma \cos (\lambda x), f_{1}(x)=0$ and $f_{2}(x)=\alpha$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\alpha u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\alpha^{2}(\beta+\gamma \cos (\lambda x))
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\alpha u^{\prime \prime}(x)+\alpha^{2}(\beta+\gamma \cos (\lambda x)) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \text { MathieuC }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+c_{2} \operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\lambda\left(c_{1} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+c_{2} \text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\lambda\left(c_{1} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+c_{2} \text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{1} \operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+c_{2} \operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \text { MathieuC }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\lambda\left(c_{3} \text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}{2 \alpha\left(c_{3} \operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)+\operatorname{MathieuS}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right)\right)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -alpha*(beta+gamma*cos(lambda*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
                -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                -> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius Equivalence transformation and function parameters: \(\{z=1 / 2 * t+1 / 2\}\), \{kappa
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 94
dsolve(diff $(y(x), x)=\operatorname{alpha*y}(x)^{\wedge} 2+$ beta+gamma*cos (lambda*x), $y(x)$, singsol=all)

$$
y(x)=-\frac{\lambda\left(c_{1} \text { MathieuSPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}}, \frac{x \lambda}{2}\right)+\text { MathieuCPrime }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}}, \frac{x \lambda}{2}\right)\right)}{2 \alpha\left(c_{1} \text { MathieuS }\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}}, \frac{x \lambda}{2}\right)+\operatorname{MathieuC}\left(\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \gamma \alpha}{\lambda^{2}}, \frac{x \lambda}{2}\right)\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.577 (sec). Leaf size: 163
DSolve [y' $[x]==\backslash[$ Alpha] $* y[x] \sim 2+\backslash$ Beta] $+\backslash[$ Gamma] $* \operatorname{Cos}[\backslash[$ Lambda] $* x], y[x], x$, IncludeSingularSoluti

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\lambda\left(\text { MathieuSPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]+c_{1} \text { MathieuCPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]\right)}{2 \alpha\left(\text { MathieuS }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]+c_{1} \text { MathieuC }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]\right)} \\
& y(x) \rightarrow-\frac{\lambda \text { MathieuCPrime }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]}{2 \alpha \text { MathieuC }\left[\frac{4 \alpha \beta}{\lambda^{2}},-\frac{2 \alpha \gamma}{\lambda^{2}}, \frac{\lambda x}{2}\right]}
\end{aligned}
$$

10.2 problem 15

10.2.1 Solving as riccati ode . 979

Internal problem ID [10513]
Internal file name [OUTPUT/9460_Monday_June_06_2022_02_40_20_PM_50369115/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}
$$

10.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-a^{2}+a \lambda \cos (\lambda x)+a^{2} \cos (\lambda x)^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}} & \left(c_{1} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)\right. \\
& \left.+c_{2} \cos \left(\frac{\lambda x}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=-2 \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(\frac{c_{2}\left(\cos (\lambda x) a+a+\frac{\lambda}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}\right. \\
&+\frac{(1+\cos (\lambda x)) c_{2} \lambda \text { HeunCPrime }\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{4} \\
&+ c_{1} \cos \left(\frac{\lambda x}{2}\right)\left(a \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)\right. \\
&\left.\left.+\frac{\lambda \operatorname{HeunCPrime}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}\right)\right) \sin \left(\frac{\lambda x}{2}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$=\frac{2\left(\frac{c_{2}\left(\cos (\lambda x) a+a+\frac{\lambda}{2}\right) \operatorname{Heunc}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}+\frac{(1+\cos (\lambda x)) c_{2} \lambda \operatorname{HeunCPrime}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{4}+\right.}{c_{1} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{2\left(\frac{\left(\cos (\lambda x) a+a+\frac{\lambda}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}+\frac{(1+\cos (\lambda x)) \operatorname{HeunCPrime}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right) \lambda}{4}+c_{3}\right.}{c_{3} \operatorname{HeunC}\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}$
Summary
The solution(s) found are the following
y
$=\frac{2\left(\frac{\left(\cos (\lambda x) a+a+\frac{\lambda}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}+\frac{(1+\cos (\lambda x)) \text { HeunCPrime }\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right) \lambda}{4}+c_{3}\right.}{c_{3} \text { HeunC }\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}$

Verification of solutions

y
$=\frac{2\left(\frac{\left(\cos (\lambda x) a+a+\frac{\lambda}{2}\right) \operatorname{Heunc}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}{2}+\frac{(1+\cos (\lambda x)) \text { HeunCPrime }\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right) \lambda}{4}+c_{3}\right.}{c_{3} \text { HeunC }\left(\frac{4 a}{\lambda},-\frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (\lambda x)}{2}+\frac{1}{2}\right)}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2-a*lambda*cos(lambda*x)-co
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                -> heuristic approach2
                -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
```

 -> Mathieu
 \checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 272
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2-a^{\wedge} 2+a * l a m b d a * \cos (\operatorname{lambda} * x)+a^{\wedge} 2 * \cos (\operatorname{lambda} * x) \wedge 2, y(x)\right.$, singsol $\left.=a l l\right)$
$y(x)$
$=\frac{\left(2 a c_{1} \sin (x \lambda) \cos \left(\frac{x \lambda}{2}\right)+c_{1} \lambda \sin \left(\frac{x \lambda}{2}\right)\right) \text { HeunC }\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}, \frac{\cos (x \lambda)}{2}+\frac{1}{2}\right)+2 \sin (x \lambda)(a \text { HeunC }}{2 \cos \left(\frac{x \lambda}{2}\right) \operatorname{HeunC}\left(\frac{4 a}{\lambda}, \frac{1}{2},-\frac{1}{2},-\frac{2 a}{\lambda}, \frac{8 a+3 \lambda}{8 \lambda}\right.}$
$\sqrt{ }$ Solution by Mathematica
Time used: 3.942 (sec). Leaf size: 131
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2-a^{\wedge} 2+a * \backslash[$ Lambda $] * \operatorname{Cos}[\backslash[$ Lambda $] * x]+a^{\wedge} 2 * \operatorname{Cos}[\backslash[$ Lambda $] * x] \sim 2, y[x], x$, IncludeS

$$
\begin{aligned}
& y(x) \rightarrow \frac{a c_{1} \sin (\lambda x) \int_{1}^{x} e^{-\frac{2 a \cos (\lambda K[1])}{\lambda}} d K[1]+a \sin (\lambda x)+c_{1}\left(-e^{-\frac{2 a \cos (\lambda x)}{\lambda}}\right)}{1+c_{1} \int_{1}^{x} e^{-\frac{2 a \cos (\lambda K[1])}{\lambda}} d K[1]} \\
& y(x) \rightarrow a \sin (\lambda x)-\frac{e^{-\frac{2 a \cos (\lambda x)}{\lambda}}}{\int_{1}^{x} e^{-\frac{2 a \cos (\lambda K[1])}{\lambda}} d K[1]}
\end{aligned}
$$

10.3 problem 16

10.3.1 Solving as riccati ode

Internal problem ID [10514]
Internal file name [OUTPUT/9461_Monday_June_06_2022_02_40_22_PM_53437655/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

Unable to solve or complete the solution.

$$
y^{\prime}-y^{2}=\lambda^{2}+c \cos (\lambda x+a)^{n} \cos (\lambda x+b)^{-n-4}
$$

10.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda^{2}+c \cos (\lambda x+a)^{n} \cos (\lambda x+b)^{-n-4}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda^{2}+\frac{c(\cos (\lambda x) \cos (a)-\sin (\lambda x) \sin (a))^{n} \cos (\lambda x+b)^{-n}}{(\cos (\lambda x) \cos (b)-\sin (\lambda x) \sin (b))^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\lambda^{2}+c \cos (\lambda x+a)^{n} \cos (\lambda x+b)^{-n-4}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\lambda^{2}+c \cos (\lambda x+a)^{n} \cos (\lambda x+b)^{-n-4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(\lambda^{2}+c \cos (\lambda x+a)^{n} \cos (\lambda x+b)^{-n-4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.
X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2+\operatorname{lambda}{ }^{\wedge} 2+c * \cos (\operatorname{lambda} * x+a) \wedge n * \cos (\operatorname{lambda} * x+b) \wedge(-n-4), y(x)\right.$, singsol

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2+\backslash\left[\right.$ Lambda $\wedge^{\wedge} 2+c * \operatorname{Cos}[\backslash[$ Lambda $] * x+a] \wedge n * \operatorname{Cos}[\backslash[$ Lambda $] * x+b] \wedge(-n-4), y[x], x$, Inc

Not solved

10.4 problem 17

10.4.1 Solving as riccati ode . 986

Internal problem ID [10515]
Internal file name [OUTPUT/9462_Monday_June_06_2022_02_43_31_PM_724295/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \cos (\beta x) y=a b \cos (\beta x)-b^{2}
$$

10.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \cos (\beta x) y+a b \cos (\beta x)-b^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \cos (\beta x) y+a b \cos (\beta x)-b^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b \cos (\beta x)-b^{2}, f_{1}(x)=a \cos (\beta x)$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \cos (\beta x) \\
f_{2}^{2} f_{0} & =a b \cos (\beta x)-b^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-a \cos (\beta x) u^{\prime}(x)+\left(a b \cos (\beta x)-b^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}+i c_{2} \mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)
$$

The above shows that

$$
u^{\prime}(x)=c_{1} b \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}+i c_{2} b \mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)+i \beta c_{2} \mathrm{e}^{\frac{\sin (\beta x) a-b(\beta x-\pi)}{\beta}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} b \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}+i c_{2} b \mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)+i \beta c_{2} \mathrm{e}^{\frac{\sin (\beta x) a-b(\beta x-\pi)}{\beta}}}{c_{1} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}+i c_{2} \mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\beta \mathrm{e}^{\frac{\sin (\beta x) a-b(\beta x-\pi)}{\beta}}-b\left(i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)\right)}{i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\beta \mathrm{e}^{\frac{\sin (\beta x) a-b(\beta x-\pi)}{\beta}}-b\left(i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)\right)}{i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{-\frac{-b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\beta \mathrm{e}^{\frac{\sin (\beta x) a-b(\beta x-\pi)}{\beta}}-b\left(i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)\right)}{i c_{3} \mathrm{e}^{-\frac{b(-2 \beta x+\pi)}{2 \beta}}-\mathrm{e}^{b x} \beta\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (\beta x) a+\pi b}{\beta}} d x\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 73
dsolve (diff $(y(x), x)=y(x) \wedge 2+a * \cos (\operatorname{beta} * x) * y(x)+a * b * \cos ($ beta $* x)-b \wedge 2, y(x)$, singsol=all)

$$
y(x)=\frac{b\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (x \beta) a}{\beta}} d x\right)-c_{1} b+\mathrm{e}^{\frac{-2 b \beta x+\sin (x \beta) a}{\beta}}}{-\left(\int \mathrm{e}^{\frac{-2 b \beta x+\sin (x \beta) a}{\beta}} d x\right)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 9.071 (sec). Leaf size: 183
DSolve $[y$ ' $[x]==y[x] \sim 2+a * \operatorname{Cos}[\backslash[B e t a] * x] * y[x]+a * b * \operatorname{Cos}[\backslash[B e t a] * x]-b \wedge 2, y[x], x$, IncludeSingularSolu

Solve $\left[\int_{1}^{x} \frac{e^{\frac{a \sin (\beta K[1])}{\beta}-2 b K[1]}(-b+a \cos (\beta K[1])+y(x))}{a \beta(b+y(x))} d K[1]\right.$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{e^{\frac{a \sin (\beta K[1])}{\beta}-2 b K[1]}}{a \beta(b+K[2])}-\frac{e^{\frac{a \sin (\beta K[1])}{\beta}-2 b K[1]}(-b+a \cos (\beta K[1])+K[2])}{a \beta(b+K[2])^{2}}\right) d K[1]\right.$
$\left.\left.-\frac{e^{\frac{a \sin (x \beta)}{\beta}-2 b x}}{a \beta(b+K[2])^{2}}\right) d K[2]=c_{1}, y(x)\right]$

10.5 problem 18

10.5.1 Solving as riccati ode

Internal problem ID [10516]
Internal file name [OUTPUT/9463_Monday_June_06_2022_02_44_05_PM_18158228/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-a \cos (b x)^{m} y=a \cos (b x)^{m}
$$

10.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \cos (b x)^{m} y+a \cos (b x)^{m}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a \cos (b x)^{m} y+a \cos (b x)^{m}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \cos (b x)^{m}, f_{1}(x)=a \cos (b x)^{m}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =a \cos (b x)^{m} \\
f_{2}^{2} f_{0} & =a \cos (b x)^{m}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-a \cos (b x)^{m} u^{\prime}(x)+a \cos (b x)^{m} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_{-} Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y^{\prime \prime}(x)+a \cos (b x)^{m}\left(-_Y^{\prime}(x)+_Y(x)\right)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*cos(x*b)^m*(diff(y(x), x))-a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            -> Mathieu
                    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact ligĝ3r
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
```

X Solution by Maple
dsolve(diff($y(x), x)=y(x)^{\wedge} 2+a * \cos (b * x)^{\wedge} m * y(x)+a * \cos (b * x)^{\wedge} m, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==y[x] \wedge 2+a * \operatorname{Cos}[b * x] \wedge m * y[x]+a * \operatorname{Cos}[b * x] \wedge m, y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved

10.6 problem 19

10.6.1 Solving as riccati ode

995
Internal problem ID [10517]
Internal file name [OUTPUT/9464_Monday_June_06_2022_02_44_10_PM_6467390/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\cos (\lambda x) y^{2} \lambda=\lambda \cos (\lambda x)^{3}
$$

10.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\cos (\lambda x) \lambda y^{2}+\lambda \cos (\lambda x)^{3}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\cos (\lambda x) \lambda y^{2}+\lambda \cos (\lambda x)^{3}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\lambda \cos (\lambda x)^{3}, f_{1}(x)=0$ and $f_{2}(x)=\lambda \cos (\lambda x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \cos (\lambda x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\sin (\lambda x) \lambda^{2} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\lambda^{3} \cos (\lambda x)^{5}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\lambda \cos (\lambda x) u^{\prime \prime}(x)+\sin (\lambda x) \lambda^{2} u^{\prime}(x)+\lambda^{3} \cos (\lambda x)^{5} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{\mathrm{e}^{-\sin (\lambda x)^{2}-\frac{\cos (\lambda x)^{2}}{2}}\left(\left(c_{1}-2 c_{2}\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)+2 c_{2}\right) \sin (\lambda x) \sqrt{\pi}}{2 \sqrt{-\sin (\lambda x)^{2}}}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\lambda\left(-\frac{\sqrt{\pi} \sin (\lambda x)^{2}\left(c_{1}-2 c_{2}\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)}{2}+\mathrm{e}^{\sin (\lambda x)^{2}}\left(c_{1}-2 c_{2}\right) \sqrt{-\sin (\lambda x)^{2}}-\sin (\lambda x)^{2} \sqrt{\pi} c_{2}\right) \mathrm{e}^{\frac{\cos (\lambda x)^{2}}{2}-1} \cos }{\sqrt{-\sin (\lambda x)^{2}}}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{2\left(-\frac{\sqrt{\pi} \sin (\lambda x)^{2}\left(c_{1}-2 c_{2}\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)}{2}+\mathrm{e}^{\sin (\lambda x)^{2}}\left(c_{1}-2 c_{2}\right) \sqrt{-\sin (\lambda x)^{2}}-\sin (\lambda x)^{2} \sqrt{\pi} c_{2}\right) \mathrm{e}^{\frac{\cos (\lambda x)^{2}}{2}-1} \mathrm{e}}{\left(\left(c_{1}-2 c_{2}\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)+2 c_{2}\right) \sin (\lambda x) \sqrt{\pi}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{2\left(-\frac{\sin (\lambda x) \sqrt{\pi}\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)}{2}+\csc (\lambda x) \mathrm{e}^{\sin (\lambda x)^{2}}\left(c_{3}-2\right) \sqrt{-\sin (\lambda x)^{2}}-\sin (\lambda x) \sqrt{\pi}\right)}{\left(\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)+2\right) \sqrt{\pi}}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{2\left(-\frac{\sin (\lambda x) \sqrt{\pi}\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)}{2}+\csc (\lambda x) \mathrm{e}^{\sin (\lambda x)^{2}}\left(c_{3}-2\right) \sqrt{-\sin (\lambda x)^{2}}-\sin (\lambda x) \sqrt{\pi}\right)}{\left(\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)+2\right) \sqrt{\pi}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{2\left(-\frac{\sin (\lambda x) \sqrt{\pi}\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)}{2}+\csc (\lambda x) \mathrm{e}^{\sin (\lambda x)^{2}}\left(c_{3}-2\right) \sqrt{-\sin (\lambda x)^{2}}-\sin (\lambda x) \sqrt{\pi}\right)}{\left(\left(c_{3}-2\right) \operatorname{erf}\left(\sqrt{-\sin (\lambda x)^{2}}\right)+2\right) \sqrt{\pi}}
\end{aligned}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -lambda*sin(lambda*x)*(diff(y
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
                    <- Kummer successful
                <- special function solution successful
                    -> Trying to convert hypergeometric functions to elementary form...
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 95
dsolve(diff $(y(x), x)=l a m b d a * \cos (\operatorname{lambda} x) * y(x) \wedge 2+l a m b d a * \cos (\operatorname{lambda} * x) \wedge 3, y(x)$, singsol=all)
$y(x)=$

$$
-\frac{4 \csc (x \lambda)\left(-\frac{\sqrt{\pi} \sin (x \lambda)^{2}\left(c_{1}-\frac{1}{2}\right) \operatorname{erf}\left(\sqrt{-\sin (x \lambda)^{2}}\right)}{2}+\left(c_{1}-\frac{1}{2}\right) \mathrm{e}^{\sin (x \lambda)^{2}} \sqrt{-\sin (x \lambda)^{2}}+\frac{\sin (x \lambda)^{2} \sqrt{\pi} c_{1}}{2}\right)}{\sqrt{\pi}\left(\operatorname{erf}\left(\sqrt{-\sin (x \lambda)^{2}}\right)\left(2 c_{1}-1\right)-2 c_{1}\right)}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==\backslash[$ Lambda] $* \operatorname{Cos}[\backslash[$ Lambda] $* x] * y[x] \sim 2+\backslash[$ Lambda] $* \operatorname{Cos}[\backslash[$ Lambda] $* x] \sim 3, y[x], x$, Include S

Not solved

10.7 problem 20

10.7.1 Solving as riccati ode . 1000

Internal problem ID [10518]
Internal file name [OUTPUT/9465_Monday_June_06_2022_02_44_12_PM_8959918/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
2 y^{\prime}-(\lambda+a-\cos (\lambda x) a) y^{2}=-a+\lambda-\cos (\lambda x) a
$$

10.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\cos (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}+\frac{\lambda y^{2}}{2}+\frac{\lambda}{2}-\frac{a}{2}-\frac{\cos (\lambda x) a}{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{\cos (\lambda x) a y^{2}}{2}+\frac{a y^{2}}{2}+\frac{\lambda y^{2}}{2}+\frac{\lambda}{2}-\frac{a}{2}-\frac{\cos (\lambda x) a}{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda}{2}-\frac{a}{2}-\frac{\cos (\lambda x) a}{2}, f_{1}(x)=0$ and $f_{2}(x)=\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{a \lambda \sin (\lambda x)}{2} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}\right)^{2}\left(\frac{\lambda}{2}-\frac{a}{2}-\frac{\cos (\lambda x) a}{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}\right) u^{\prime \prime}(x)-\frac{a \lambda \sin (\lambda x) u^{\prime}(x)}{2}+\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}\right)^{2}\left(\frac{\lambda}{2}-\frac{a}{2}-\frac{\cos (\lambda x) a}{2}\right) u(x)=
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{\sin \left(\frac{\lambda x}{2}\right) \mathrm{e}^{-\frac{a \cos (\lambda x)}{2 \lambda}}\left(i c_{2} \lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)+2 c_{1}\right)}{2}
$$

The above shows that
$u^{\prime}(x)=$

$$
-\frac{\csc \left(\frac{\lambda x}{2}\right)(\cos (\lambda x) a-a-\lambda)\left(i \sin (\lambda x)\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{a \cos (\lambda x)}{2 \lambda}}+4 i \mathrm{e}^{\frac{a \cos (\lambda x)}{2 \lambda}} c\right.}{8}
$$

Using the above in (1) gives the solution

$$
=\frac{\csc \left(\frac{\lambda x}{2}\right)(\cos (\lambda x) a-a-\lambda)\left(i \sin (\lambda x)\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) c_{2} \lambda \mathrm{e}^{-\frac{a \cos (\lambda x)}{2 \lambda}}+4 i \mathrm{e}^{\frac{a \cos (\lambda x)}{2 \lambda}} c_{2} \lambda\right.}{4\left(\frac{a}{2}+\frac{\lambda}{2}-\frac{\cos (\lambda x) a}{2}\right) \sin \left(\frac{\lambda x}{2}\right)\left(i c_{2} \lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)+2\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2\left(i \sin (\lambda x) c_{3}-\frac{\lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sin (\lambda x)}{2}-2 \lambda \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\right) \csc \left(\frac{\lambda x}{2}\right)^{2}}{4 i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)}
$$

Summary

The solution(s) found are the following

$$
y=-\frac{2\left(i \sin (\lambda x) c_{3}-\frac{\lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sin (\lambda x)}{2}-2 \lambda \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\right) \csc \left(\frac{\lambda x}{2}\right)^{2}}{4 i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)}(1)
$$

Verification of solutions

$$
y=-\frac{2\left(i \sin (\lambda x) c_{3}-\frac{\lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right) \sin (\lambda x)}{2}-2 \lambda \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\right) \csc \left(\frac{\lambda x}{2}\right)^{2}}{4 i c_{3}-2 \lambda\left(\int \mathrm{e}^{\frac{a \cos (\lambda x)}{\lambda}}\left(2 a+\csc \left(\frac{\lambda x}{2}\right)^{2} \lambda\right) d x\right)}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*lambda*sin(lambda*x)*(diff(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
                    -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                            -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    -> hypergeometric
                    -> heuristic approach
                            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            -> Mathieu
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 122
dsolve $(2 * \operatorname{diff}(y(x), x)=(\operatorname{lambda}+a-a * \cos (\operatorname{lambda} a x)) * y(x) \wedge 2+l a m b d a-a-a * \cos (\operatorname{lambda} a x), y(x)$, sings
$y(x)$
$=\frac{-\cot \left(\frac{x \lambda}{2}\right) \lambda\left(\int \mathrm{e}^{\frac{a \cos (x \lambda)}{\lambda}} \operatorname{csgn}\left(\sin \left(\frac{x \lambda}{2}\right)\right)\left(\csc \left(\frac{x \lambda}{2}\right)^{2} \lambda+2 a\right) d x\right) c_{1}-2 \csc \left(\frac{x \lambda}{2}\right)^{2} \operatorname{csgn}\left(\sin \left(\frac{x \lambda}{2}\right)\right) \mathrm{e}^{\frac{a \cos (x \lambda)}{\lambda}} c_{1}}{\lambda\left(\int \mathrm{e}^{\frac{a \cos (x \lambda)}{\lambda}} \operatorname{csgn}\left(\sin \left(\frac{x \lambda}{2}\right)\right)\left(\csc \left(\frac{x \lambda}{2}\right)^{2} \lambda+2 a\right) d x\right) c_{1}-2 i}$
\checkmark Solution by Mathematica
Time used: 34.139 (sec). Leaf size: 234
DSolve $\left[2 * y^{\prime}[\mathrm{x}]==(\backslash[\right.$ Lambda] $+\mathrm{a}-\mathrm{a} * \operatorname{Cos}[\backslash[$ Lambda $] * \mathrm{x}]) * \mathrm{y}[\mathrm{x}] \sim 2+\backslash[$ Lambda] $-\mathrm{a}-\mathrm{a} * \operatorname{Cos}[\backslash[$ Lambda $] * \mathrm{x}], \mathrm{y}[\mathrm{x}]$,

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{2\left(c_{1} \cot \left(\frac{\lambda x}{2}\right) \int_{1}^{x} e^{-\frac{2 a \sin ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}\left(\lambda \csc ^{2}\left(\frac{1}{2} \lambda K[1]\right)+2 a\right) d K[1]+2 c_{1} \csc ^{2}\left(\frac{\lambda x}{2}\right) e^{-\frac{2 a \sin ^{2}\left(\frac{\lambda x}{2}\right)}{\lambda}}+\cot \left(\frac{\lambda x}{2}\right)\right)}{2+2 c_{1} \int_{1}^{x} e^{-\frac{2 a \sin ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}\left(\lambda \csc ^{2}\left(\frac{1}{2} \lambda K[1]\right)+2 a\right) d K[1]} \\
& y(x) \rightarrow \frac{1}{2} \csc ^{2}\left(\frac{\lambda x}{2}\right)\left(-\frac{4 e^{-\frac{2 a \sin ^{2}\left(\frac{\lambda x}{2}\right)}{\lambda}}}{\int_{1}^{x} e^{-\frac{2 a \sin ^{2}\left(\frac{1}{2} \lambda K[1]\right)}{\lambda}}\left(\lambda \csc ^{2}\left(\frac{1}{2} \lambda K[1]\right)+2 a\right) d K[1]}-\sin (\lambda x)\right)
\end{aligned}
$$

10.8 problem 21

10.8.1 Solving as riccati ode . 1005

Internal problem ID [10519]
Internal file name [OUTPUT/9466_Monday_June_06_2022_02_44_15_PM_26441355/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\left(\lambda+a \cos (\lambda x)^{2}\right) y^{2}=-a+\lambda+a \cos (\lambda x)^{2}
$$

10.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\cos (\lambda x)^{2} a y^{2}+a \cos (\lambda x)^{2}+\lambda y^{2}-a+\lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\cos (\lambda x)^{2} a y^{2}+a \cos (\lambda x)^{2}+\lambda y^{2}-a+\lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a+\lambda+a \cos (\lambda x)^{2}, f_{1}(x)=0$ and $f_{2}(x)=\lambda+a \cos (\lambda x)^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(\lambda+a \cos (\lambda x)^{2}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-2 \sin (\lambda x) a \lambda \cos (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\left(\lambda+a \cos (\lambda x)^{2}\right)^{2}\left(-a+\lambda+a \cos (\lambda x)^{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\left(\lambda+a \cos (\lambda x)^{2}\right) u^{\prime \prime}(x)+2 \sin (\lambda x) a \lambda \cos (\lambda x) u^{\prime}(x)+\left(\lambda+a \cos (\lambda x)^{2}\right)^{2}\left(-a+\lambda+a \cos (\lambda x)^{2}\right) u(x)=0$ Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\cos (\lambda x) \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}\left(c_{1}+2 i c_{2} \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right)\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)= \\
& -\frac{\sec (\lambda x)\left(\lambda+a \cos (\lambda x)^{2}\right)\left(2 i \sin (2 \lambda x)\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right) c_{2} \lambda \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}+\sin (2 \lambda x) c_{1} \mathrm{e}\right.}{2}
\end{aligned}
$$

Using the above in (1) gives the solution
y
$=\frac{\sec (\lambda x)\left(2 i \sin (2 \lambda x)\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right) c_{2} \lambda \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}+\sin (2 \lambda x) c_{1} \mathrm{e}^{\frac{\cos (2 \lambda x) a}{4 \lambda}}-4 i \lambda c_{2} \mathrm{e}^{-\frac{\cos }{}}\right.}{2 \cos (\lambda x)\left(c_{1}+2 i c_{2} \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right)\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=\frac{i c_{3} \tan (\lambda x)-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right) \tan (\lambda x)+2 \sec (\lambda x)^{2} \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}} \lambda}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right)}$

Summary

The solution(s) found are the following

$$
=\frac{i c_{3} \tan (\lambda x)-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right) \tan (\lambda x)+2 \sec (\lambda x)^{2} \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}} \lambda}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right)}
$$

Verification of solutions
$y=\frac{i c_{3} \tan (\lambda x)-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right) \tan (\lambda x)+2 \sec (\lambda x)^{2} \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}} \lambda}{i c_{3}-2 \lambda\left(\int \mathrm{e}^{-\frac{\cos (2 \lambda x) a}{2 \lambda}}\left(\sec (\lambda x)^{2} \lambda+a\right) d x\right)}$
Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -2*a*cos(lambda*x)*lambda*sin
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                            -> hyper3: Equivalence to 1F1 under a power @ Moebius
                    -> hypergeometric
                    -> heuristic approach
                            -> hyper3: EquivalenCe to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 102
dsolve \((\operatorname{diff}(y(x), x)=(l a m b d a+a * \cos (l a m b d a * x) \wedge 2) * y(x) \wedge 2+l a m b d a-a+a * \cos (l a m b d a * x) \wedge 2, y(x)\), sings
\(y(x)\)
\(=\frac{2 \sec (x \lambda)^{2} \mathrm{e}^{-\frac{a \cos (2 x \lambda)}{2 \lambda}} c_{1} \lambda-2 \tan (x \lambda) \lambda\left(\int \mathrm{e}^{-\frac{a \cos (2 x \lambda)}{2 \lambda}}\left(\sec (x \lambda)^{2} \lambda+a\right) d x\right) c_{1}+i \tan (x \lambda)}{-2 \lambda\left(\int \mathrm{e}^{-\frac{a \cos (2 x \lambda)}{2 \lambda}}\left(\sec (x \lambda)^{2} \lambda+a\right) d x\right) c_{1}+i}\)
\(\checkmark\) Solution by Mathematica
Time used: 36.333 (sec). Leaf size: 263
DSolve \([y\) ' \([x]==(\backslash[\) Lambda] \(+a * \operatorname{Cos}[\backslash[\) Lambda] \(* x] \sim 2) * y[x] \sim 2+\backslash[\) Lambda] \(-a+a * \operatorname{Cos}[\backslash[\) Lambda] \(* x] \sim 2, y[x]\),
\(y(x)\)
\(\rightarrow \frac{2\left(c_{1} \tan (\lambda x) \int_{1}^{x} e^{-\frac{a \cos ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \sec ^{2}(\lambda K[1])+a\right) d K[1]+c_{1} \sec ^{2}(\lambda x)\left(-e^{-\frac{a \cos ^{2}(\lambda x)}{\lambda}}\right)+\tan (\lambda x)\right)}{2+2 c_{1} \int_{1}^{x} e^{-\frac{a \cos ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \sec ^{2}(\lambda K[1])+a\right) d K[1]}\)
\(y(x) \rightarrow \frac{1}{2} \sec ^{2}(\lambda x)\left(\sin (2 \lambda x)-\frac{2 e^{-\frac{a \cos ^{2}(\lambda x)}{\lambda}}}{\int_{1}^{x} e^{-\frac{a \cos ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \sec ^{2}(\lambda K[1])+a\right) d K[1]}\right)\)
\(y(x) \rightarrow \frac{1}{2} \sec ^{2}(\lambda x)\left(\sin (2 \lambda x)-\frac{2 e^{-\frac{a \cos ^{2}(\lambda x)}{\lambda}}}{\int_{1}^{x} e^{-\frac{\cos ^{2}(\lambda K[1])}{\lambda}}\left(\lambda \sec ^{2}(\lambda K[1])+a\right) d K[1]}\right)\)

\section*{10.9 problem 22}
10.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1010

Internal problem ID [10520]
Internal file name [OUTPUT/9467_Monday_June_06_2022_02_45_03_PM_33788457/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+(k+1) x^{k} y^{2}-a x^{k+1} \cos (x)^{m} y=-a \cos (x)^{m}
\]

\subsection*{10.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{k+1} \cos (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \cos (x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{k} x \cos (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \cos (x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \cos (x)^{m}, f_{1}(x)=a \cos (x)^{m} x^{k+1}\) and \(f_{2}(x)=-x^{k} k-x^{k}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =a \cos (x)^{m} x^{k+1}\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} a \cos (x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives \(\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+a \cos (x)^{m} x^{k+1}\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} a \cos (x)^{m} u\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x^{k+1}\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=x^{k}\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}\right. \\
&\left.+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{x^{k}\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cos (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cos (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)

Verification of solutions
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cos (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cos (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)
Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (cos(x)^m*x^(1+k)*a*x+k)*(diff
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful cha\etage| i3 variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 174
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{k}+1) * \cos (\mathrm{x})^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})-\mathrm{a} * \cos (\mathrm{x})^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\), singsol=all)
\(y(x)\)
\(=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{\cos (x)^{m} x^{1+k} k_{a x-2 k-2}}{x} d x}+\left(\int x^{k} \mathrm{e}^{\int \frac{\cos (x)^{m} x^{1+k} x_{a x-2 k-2}}{x} d x} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{\cos (x)^{m} x^{1+k} a x-2 k-2}{x} d x} d x-c_{1}\right)}{\left(\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \cos \left(x m^{m}-2 k-2\right.}{x} d x} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \cos (x)^{m}-2 k-2}{x} d x} d x-c_{1}}\)
\(\checkmark\) Solution by Mathematica
Time used: 20.002 (sec). Leaf size: 248
DSolve \(\left[y\right.\) ' \([x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+a * x^{\wedge}(k+1) * \operatorname{Cos}[x] \wedge m * y[x]-a * \operatorname{Cos}[x] \wedge m, y[x], x\), IncludeSingularSol
\[
\begin{aligned}
& y(x) \\
& \rightarrow \frac{x^{-k-1}\left(c_{1} x \exp \left(\int_{1}^{x}-\frac{-a \cos ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right)+c_{1}(k+1) \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \cos ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d\right)\right.}{(k+1)\left(1+c_{1} \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \cos ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]\right)} \\
& y(x) \rightarrow \frac{x^{-k}\left(\frac{\exp \left(\int_{1}^{x}-\frac{-a \cos ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right.}{\int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \cos ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]}+\frac{k+1}{x}\right)}{k+1}
\end{aligned}
\]

\subsection*{10.10 problem 23}
10.10.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1015

Internal problem ID [10521]
Internal file name [OUTPUT/9468_Monday_June_06_2022_02_45_15_PM_21042046/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

```
\[
y^{\prime}-a \cos (\lambda x+\mu)^{k}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
\]

\subsection*{10.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} \cos (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cos (\lambda x+\mu)^{k} a b c-2 x^{n} \cos (\lambda x+\mu)^{k} a b y+\cos (\lambda x+\mu)^{k} a c^{2}-2 \cos (\lambda
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\(y^{\prime}=x^{2 n}(\cos (\mu) \cos (\lambda x)-\sin (\lambda x) \sin (\mu))^{k} a b^{2}+2 x^{n}(\cos (\mu) \cos (\lambda x)-\sin (\lambda x) \sin (\mu))^{k} a b c-2 x^{n}(\cos (\mu\)
With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=x^{2 n} \cos (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cos (\lambda x+\mu)^{k} a b c+\cos (\lambda x+\mu)^{k} a c^{2}+\) \(b x^{n-1} n, f_{1}(x)=-2 a x^{n} b \cos (\lambda x+\mu)^{k}-2 c a \cos (\lambda x+\mu)^{k}\) and \(f_{2}(x)=a \cos (\lambda x+\mu)^{k}\).
Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \cos (\lambda x+\mu)^{k} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \cos (\lambda x+\mu)^{k} k \lambda \sin (\lambda x+\mu)}{\cos (\lambda x+\mu)} \\
f_{1} f_{2} & =\left(-2 a x^{n} b \cos (\lambda x+\mu)^{k}-2 c a \cos (\lambda x+\mu)^{k}\right) a \cos (\lambda x+\mu)^{k} \\
f_{2}^{2} f_{0} & =a^{2} \cos (\lambda x+\mu)^{2 k}\left(x^{2 n} \cos (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cos (\lambda x+\mu)^{k} a b c+\cos (\lambda x+\mu)^{k} a c^{2}+b x^{n-1} n\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(a \cos (\lambda x+\mu)^{k} u^{\prime \prime}(x)-\left(-\frac{a \cos (\lambda x+\mu)^{k} k \lambda \sin (\lambda x+\mu)}{\cos (\lambda x+\mu)}+\left(-2 a x^{n} b \cos (\lambda x+\mu)^{k}-2 c a \cos (\lambda x+\mu)^{k}\right.\right.\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)=\left(c_{1}\right. & \left.-i c_{2} \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)\right) \sqrt{\sin (\lambda x+\mu)}(\cos (\mu) \cos (\lambda x) \\
& -\sin (\lambda x) \sin (\mu))^{-\frac{k}{2}} \mathrm{e}^{-\frac{\left(\int\left(2 \sec (\lambda x+\mu) a\left(b x^{n}+c\right) \cos (\lambda x+\mu)^{k+1}+\lambda(\tan (\lambda x+\mu) k+\cot (\lambda x+\mu))\right) d x\right)}{2}}
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\left(( \operatorname { c o s } ( \mu ) \operatorname { c o s } ( \lambda x ) - \operatorname { s i n } ( \lambda x ) \operatorname { s i n } ( \mu ) ) \left(i c_{2} a\left(b x^{n}+c\right) \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)\right.\right. \\
& +\frac{\left.k x^{n} c_{1} a b-i c_{2} \lambda-c_{1} c a\right) \cos (\lambda x+\mu)^{k+1}}{} \begin{array}{r}
\quad \begin{array}{r} 
\\
+\mu\left(i c_{2} \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)-c_{1}\right)((-\sin (\lambda x) \cos (\mu)-\cos (\lambda x) \sin (\mu)) \cos (\lambda x+\mu)+\sin (\lambda x+\mu) \\
2
\end{array} \\
-\sin (\lambda x) \sin (\mu))^{-\frac{k}{2}-1} \mathrm{e}^{-\frac{\left(\int\left(2 \sec (\lambda x+\mu) a\left(b x^{n}+c\right) \cos (\lambda x+\mu)^{k+1}+\lambda(\tan (\lambda x+\mu) k+\cot (\lambda x+\mu)) d x\right)\right.}{2}}
\end{array}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\left((\cos (\mu) \cos (\lambda x)-\sin (\lambda x) \sin (\mu))\left(i c_{2} a\left(b x^{n}+c\right) \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)-x^{n} c_{1} a b-i c_{2} \lambda-c_{1} c a\right)\right.
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{a\left(b x^{n}+c\right) \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i x^{n} c_{3} a b-\lambda+i c_{3} c a}{a\left(\lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i c_{3}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{a\left(b x^{n}+c\right) \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i x^{n} c_{3} a b-\lambda+i c_{3} c a}{a\left(\lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i c_{3}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{a\left(b x^{n}+c\right) \lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i x^{n} c_{3} a b-\lambda+i c_{3} c a}{a\left(\lambda\left(\int \cos (\lambda x+\mu)^{k} d x\right)+i c_{3}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (d) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
dsolve(diff \((y(x), x)=a * \cos (\operatorname{lambda} * x+m u) \wedge k *\left(y(x)-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y(x)\), singsol=all)
\[
y(x)=b x^{n}+c+\frac{1}{c_{1}-a\left(\int(\cos (x \lambda) \cos (\mu)-\sin (x \lambda) \sin (\mu))^{k} d x\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 6.016 (sec). Leaf size: 92
DSolve [y' \([x]==a * \operatorname{Cos}\left[\backslash[\right.\) Lambda \(] * x+\backslash[M u]{ }^{\wedge} k *\left(y[x]-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y[x], x\), IncludeSingular
\(y(x) \rightarrow \frac{1}{\frac{a \sqrt{\sin ^{2}(\mu+\lambda x)} \csc (\mu+\lambda x) \cos ^{k+1}(\mu+\lambda x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{k+1}{2}, \frac{k+3}{2}, \cos ^{2}(x \lambda+\mu)\right)}{(k+1) \lambda}+c_{1}}+b x^{n}+c\)
\(y(x) \rightarrow b x^{n}+c\)

\subsection*{10.11 problem 24}
10.11.1 Solving as riccati ode 1019

Internal problem ID [10522]
Internal file name [OUTPUT/9469_Monday_June_06_2022_02_45_54_PM_50478589/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[_Riccati]

```
\[
y^{\prime} x-a \cos (\lambda x)^{m} y^{2}-k y=a b^{2} x^{2 k} \cos (\lambda x)^{m}
\]

\subsection*{10.11.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a \cos (\lambda x)^{m} y^{2}+k y+a b^{2} x^{2 k} \cos (\lambda x)^{m}}{x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a b^{2} x^{2 k} \cos (\lambda x)^{m}}{x}+\frac{a \cos (\lambda x)^{m} y^{2}}{x}+\frac{k y}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a b^{2} x^{2 k} \cos (\lambda x)^{m}}{x}, f_{1}(x)=\frac{k}{x}\) and \(f_{2}(x)=\frac{a \cos (\lambda x)^{m}}{x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \cos (\lambda x)^{m} u}{x}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \cos (\lambda x)^{m} m \lambda \sin (\lambda x)}{\cos (\lambda x) x}-\frac{a \cos (\lambda x)^{m}}{x^{2}} \\
f_{1} f_{2} & =\frac{k a \cos (\lambda x)^{m}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \cos (\lambda x)^{3 m} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{a \cos (\lambda x)^{m} u^{\prime \prime}(x)}{x}-\left(-\frac{a \cos (\lambda x)^{m} m \lambda \sin (\lambda x)}{\cos (\lambda x) x}-\frac{a \cos (\lambda x)^{m}}{x^{2}}+\frac{k a \cos (\lambda x)^{m}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \cos (\lambda x)^{3 m} b^{2} x}{x^{3}}
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}
\]

The above shows that
\[
u^{\prime}(x)=i a b x^{k-1} \cos (\lambda x)^{m}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{i b x^{k-1}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}\right) x}{c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cos (\lambda x)^{m} d x\right)}}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 31
dsolve \(\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \cos (\operatorname{lambda} \mathrm{x})^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{k} * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \cos (\operatorname{lambda} * \mathrm{x})^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\right.\), si
\[
y(x)=-\tan \left(-a b\left(\int x^{-1+k} \cos (x \lambda)^{m} d x\right)+c_{1}\right) b x^{k}
\]

Solution by Mathematica
Time used: 1.628 (sec). Leaf size: 50
DSolve \(\left[\mathrm{x} * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Cos}[\backslash[\right.\) Lambda \(] * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{Cos}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\[
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} a \cos ^{m}(\lambda K[1]) K[1]^{k-1} d K[1]+c_{1}\right)
\]

\subsection*{10.12 problem 25}
10.12.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1022

Internal problem ID [10523]
Internal file name [OUTPUT/9470_Monday_June_06_2022_02_45_57_PM_6452655/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[_Riccati]

```

Unable to solve or complete the solution.
\[
(\cos (\lambda x) a+b) y^{\prime}-y^{2}-c \cos (x \mu) y=-d^{2}+c d \cos (x \mu)
\]

\subsection*{10.12.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \cos (x \mu) y-d^{2}+c d \cos (x \mu)}{\cos (\lambda x) a+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \cos (x \mu)}{\cos (\lambda x) a+b}+\frac{c \cos (x \mu) y}{\cos (\lambda x) a+b}-\frac{d^{2}}{\cos (\lambda x) a+b}+\frac{y^{2}}{\cos (\lambda x) a+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \cos (x \mu)}{\cos (\lambda x) a+b}, f_{1}(x)=\frac{c \cos (x \mu)}{\cos (\lambda x) a+b}\) and \(f_{2}(x)=\frac{1}{\cos (\lambda x) a+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{\cos (\lambda x) a+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{a \lambda \sin (\lambda x)}{(\cos (\lambda x) a+b)^{2}} \\
f_{1} f_{2} & =\frac{c \cos (x \mu)}{(\cos (\lambda x) a+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \cos (x \mu)}{(\cos (\lambda x) a+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{\cos (\lambda x) a+b}-\left(\frac{a \lambda \sin (\lambda x)}{(\cos (\lambda x) a+b)^{2}}+\frac{c \cos (x \mu)}{(\cos (\lambda x) a+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \cos (x \mu)\right) u(x)}{(\cos (\lambda x) a+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 268
dsolve \(\left((a * \cos (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+c * \cos (m u * x) * y(x)-d^{\wedge} 2+c * d * \cos (m u * x), y(x)\right.\), sing
\(y(x)\)

\(\checkmark\) Solution by Mathematica
Time used: 12.31 (sec). Leaf size: 289
DSolve \(\left[(a * \operatorname{Cos}[\backslash[\operatorname{Lambda}] * x]+b) * y\right.\) ' \([x]==y[x] \sim 2+c * \operatorname{Cos}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Cos}[\backslash[M u] * x], y[x], x\),

Solve \(\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])} d K[1]\right)(-d+c \cos (\mu K[2])+y(x))}{c \mu(b+a \cos (\lambda K[2]))(d+y(x))} d K[2]\right.\)
\(+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2] ~} \frac{2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])} d K[1]\right)}{c \mu(b+a \cos (\lambda K[2]))(d+K[3])}-\frac{\exp \left(-\int_{1}^{K[2]} \frac{2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])} d K[1]\right)(-d+c \cos (\mu K[2]}{c \mu(b+a \cos (\lambda K[2]))(d+K[3])^{2}}\right.\right.\)
\(\left.\left.-\frac{\exp \left(-\int_{1}^{x} \frac{2 d-c \cos (\mu K[1])}{b+a \cos (\lambda K[1])} d K[1]\right)}{c \mu(d+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]\)

\subsection*{10.13 problem 26}
10.13.1 Solving as riccati ode

Internal problem ID [10524]
Internal file name [OUTPUT/9471_Monday_June_06_2022_02_47_08_PM_56852219/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-2. Equations with cosine.
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[_Riccati]

```
\[
(\cos (\lambda x) a+b)\left(y^{\prime}-y^{2}\right)=a \lambda^{2} \cos (\lambda x)
\]

\subsection*{10.13.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y^{2} \cos (\lambda x)+a \lambda^{2} \cos (\lambda x)+y^{2} b}{\cos (\lambda x) a+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a \lambda^{2} \cos (\lambda x)}{\cos (\lambda x) a+b}+\frac{a y^{2} \cos (\lambda x)}{\cos (\lambda x) a+b}+\frac{y^{2} b}{\cos (\lambda x) a+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a \lambda^{2} \cos (\lambda x)}{\cos (\lambda x) a+b}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{a \lambda^{2} \cos (\lambda x)}{\cos (\lambda x) a+b}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\frac{a \lambda^{2} \cos (\lambda x) u(x)}{\cos (\lambda x) a+b}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)= & -2 c_{1} b\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) \\
& +\sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{1} a+2 c_{2}\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\left(2 \sqrt{a^{2}-b^{2}} \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) c_{1} a b \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)-2 \sqrt{a^{2}-b^{2}} c_{2} a \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)+c_{1}(a-b)\right.}{\sqrt{a^{2}-b^{2}}}\)
Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left(2 \sqrt{a^{2}-b^{2}} \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) c_{1} a b \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)-2 \sqrt{a^{2}-b^{2}} c_{2} a \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)+c_{1}(a-\right.}{\sqrt{a^{2}-b^{2}}\left(-2 c_{1} b\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)+\sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{1} b\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\[
=\frac{\lambda\left(2 \sqrt{a^{2}-b^{2}} \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) c_{3} a b \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)-2 \sqrt{a^{2}-b^{2}} \sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) a+c_{3}(a-b)\right.}{\sqrt{a^{2}-b^{2}}\left(2 c_{3} b\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{3} a\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{\lambda\left(2 \sqrt{a^{2}-b^{2}} \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) c_{3} a b \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)-2 \sqrt{a^{2}-b^{2}} \sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) a+c_{3}(a-b)\right.}{\sqrt{a^{2}-b^{2}}\left(2 c_{3} b\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{3} a\right.} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(=\frac{\lambda}{y\left(2 \sqrt{a^{2}-b^{2}} \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right) c_{3} a b \cos \left(\frac{\lambda x}{2}\right) \sin \left(\frac{\lambda x}{2}\right)-2 \sqrt{a^{2}-b^{2}} \sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) a+c_{3}(a-b)\right.} \sqrt{\sqrt{a^{2}-b^{2}}\left(2 c_{3} b\left(\cos \left(\frac{\lambda x}{2}\right)^{2} a-\frac{a}{2}+\frac{b}{2}\right) \operatorname{arctanh}\left(\frac{\tan \left(\frac{\lambda x}{2}\right)(a-b)}{\sqrt{a^{2}-b^{2}}}\right)-\sin \left(\frac{\lambda x}{2}\right) \cos \left(\frac{\lambda x}{2}\right) \sqrt{a^{2}-b^{2}} c_{3} a\right.}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -a*lambda^2*\operatorname{cos}(lambda*x)*y(x)
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 204
dsolve \(\left((a * \cos (\operatorname{lambda} * x)+b) *(\operatorname{diff}(y(x), x)-y(x) \wedge 2)-a * l a m b d a \_2 * \cos (l a m b d a * x)=0, y(x), \quad\right.\) singsol \(=a l\)
\(y(x)\)
\[
=\frac{\left(2 \operatorname{arctanh}\left(\frac{(a-b) \tan \left(\frac{x \lambda}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}} a b \cos \left(\frac{x \lambda}{2}\right) \sin \left(\frac{x \lambda}{2}\right)-2 \sqrt{a^{2}-b^{2}} c_{1} a \cos \left(\frac{x \lambda}{2}\right) \sin \left(\frac{x \lambda}{2}\right)+\left(a \operatorname { c o s } \left(\frac{x \lambda}{2}\right.\right.\right.}{\sqrt{a^{2}-b^{2}}\left(2\left(a \cos \left(\frac{x \lambda}{2}\right)^{2}-\frac{a}{2}+\frac{b}{2}\right) b \operatorname{arctanh}\left(\frac{(a-b) \tan \left(\frac{x \lambda}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)-\sqrt{a^{2}-b^{2}} a \cos \left(\frac{x \lambda}{2}\right) \sin \left(\frac{x \lambda}{2}\right)-2 c_{1}\right.}
\]
\(\checkmark\) Solution by Mathematica
Time used: 7.903 (sec). Leaf size: 202
DSolve \(\left[(a * \operatorname{Cos}[\backslash[\operatorname{Lambda}] * x]+b) *(y \prime[x]-y[x] \sim 2)-a * \backslash\left[\right.\right.\) Lambda] \({ }^{\wedge} 2 * \operatorname{Cos}[\backslash[\) Lambda \(] * x]==0, y[x], x\), Includ
\(y(x) \rightarrow\)
\(-\frac{\lambda\left(-2 a b \sin (\lambda x) \operatorname{arctanh}\left(\frac{(b-a) \tan \left(\frac{\lambda x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)+\sqrt{a^{2}-b^{2}}\left(-a c_{1} \lambda\left(a^{2}-b^{2}\right) \sin (\lambda x)+a \cos (\lambda x)-b\right)\right)}{2 b(a \cos (\lambda x)+b) \operatorname{arctanh}\left(\frac{(b-a) \tan \left(\frac{\lambda x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)+\sqrt{a^{2}-b^{2}}\left(b c_{1} \lambda\left(a^{2}-b^{2}\right)+a c_{1} \lambda\left(a^{2}-b^{2}\right) \cos (\lambda x)+a \sin ( \right.}\)
\(y(x) \rightarrow \frac{a \lambda \sin (\lambda x)}{a \cos (\lambda x)+b}\)
11 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
11.1 problem 27 ..... 1031
11.2 problem 28 ..... 1036
11.3 problem 29 ..... 1041
11.4 problem 30 ..... 1046
11.5 problem 31 ..... 1050
11.6 problem 32 ..... 1054
11.7 problem 33 ..... 1058
11.8 problem 34 ..... 1063
11.9 problem 35 ..... 1068
11.10problem 36 ..... 1071
11.11problem 37 ..... 1074

\section*{11.1 problem 27}
11.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1031

Internal problem ID [10525]
Internal file name [OUTPUT/9472_Monday_June_06_2022_02_47_10_PM_81937076/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=\lambda a+a(\lambda-a) \tan (\lambda x)^{2}
\]

\subsection*{11.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+\lambda a+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+\lambda a+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+\lambda a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\sqrt{\cos (\lambda x)}\left(c_{1} \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)\right. \\
&\left.+c_{2} \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\sin (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{1} a+\sin (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{2} a-\lambda\left(c_{1} \text { Leg }\right.}{\sqrt{\cos (\lambda x)}}\)
Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\sin (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{1} a+\sin (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{2} a-\lambda\left(c_{1} \mathrm{I}\right.}{\cos (\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+c_{2}\right. \text { Legend }}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\(-\frac{\sec (\lambda x)\left(\sin (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} a+\sin (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) a-\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\text { Legendre }}\)

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
=-\frac{\sec (\lambda x)\left(\sin (\lambda x) \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} a+\sin (\lambda x) \operatorname{LegendreQ}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) a-\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\text { Legendre }}
\]

Verification of solutions
\(y=\)
\[
-\frac{\sec (\lambda x)\left(\sin (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} a+\sin (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) a-\right.}{c_{3} \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\text { Legendre }}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2*tan(lambda*x)^2-a*tan(lam
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach4
<- heuristic approach successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 205
dsolve(diff $(y(x), x)=y(x) \wedge 2+a * l a m b d a+a *(l a m b d a-a) * \tan (l a m b d a * x) \wedge 2, y(x)$, singsol $=a l l)$

```
\(y(x)=\)
    \(-\frac{\left(\sin (x \lambda) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) a+\operatorname{LegendreQ}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) c_{1} a \sin (x \lambda)-\lambda(\text { Leg })\right.}{}\)
                        LegendreQ \(\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) c_{1}+\) Legendre
```

\checkmark Solution by Mathematica
Time used: 2.982 (sec). Leaf size: 259
DSolve $[y$ ' $[x]==y[x] \sim 2+a * \backslash[$ Lambda] $+a *(\backslash[$ Lambda] $-a) * T a n[\backslash[$ Lambda] $* x] \sim 2, y[x], x$, IncludeSingularSo
$y(x)$
$\rightarrow \frac{2\left(a c_{1} \sin ^{2}(\lambda x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{1}{2}-\frac{a}{\lambda}, \frac{3}{2}-\frac{a}{\lambda}, \cos ^{2}(x \lambda)\right)+(2 a-\lambda) \sqrt{\sin ^{2}(\lambda x)}\left(a \sin (\lambda x) \cos \frac{2 a}{\lambda}-1\right.\right.}{2(2 a-\lambda) \sqrt{\sin ^{2}(\lambda x)} \cos \frac{2 a}{\lambda}(\lambda x)+c_{1} \sin (2 \lambda x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{1}{2}-\frac{a}{\lambda}, \frac{3}{2}-\frac{a}{\lambda}, \cos ^{2}(x \lambda)\right.}$ $y(x)$

$$
\rightarrow \frac{\tan (\lambda x)\left(a \sqrt{\sin ^{2}(\lambda x)} \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{1}{2}-\frac{a}{\lambda}, \frac{3}{2}-\frac{a}{\lambda}, \cos ^{2}(x \lambda)\right)-2 a+\lambda\right)}{\sqrt{\sin ^{2}(\lambda x)} \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{1}{2}-\frac{a}{\lambda}, \frac{3}{2}-\frac{a}{\lambda}, \cos ^{2}(x \lambda)\right)}
$$

11.2 problem 28

11.2.1 Solving as riccati ode

Internal problem ID [10526]
Internal file name [OUTPUT/9473_Monday_June_06_2022_02_47_13_PM_89469444/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=3 \lambda a+\lambda^{2}+a(\lambda-a) \tan (\lambda x)^{2}
$$

11.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\sqrt{\cos (\lambda x)}\left(c_{1} \text { LegendreP }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)\right. \\
&\left.+c_{2} \text { LegendreQ }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)\right)
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{1} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{2} \lambda+\sin (\lambda x)\left(c_{1} \text { Legen }\right.}{\sqrt{\cos (\lambda x)}}$
Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
&-\frac{-2 \operatorname{LegendreP}\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{1} \lambda-2 \operatorname{LegendreQ}\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{2} \lambda+\sin (\lambda x)\left(c_{1} \operatorname{Leg}\right.}{\cos (\lambda x)\left(c_{1} \operatorname{LegendreP}\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+c_{2} \operatorname{Leg} \epsilon\right.} \\
& \text { Dividing both numerator and denominator by } c_{1} \text { gives, after renaming the constant } \\
& \frac{c_{2}}{c_{1}}=c_{3} \text { the following solution } \\
& y= \\
&-\frac{\sec (\lambda x)\left(-2 \operatorname{LegendreP}\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} \lambda-2 \operatorname{LegendreQ}\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) \lambda+\sin (\lambda x)\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\operatorname{Legenc}}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
-\frac{\sec (\lambda x)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) \lambda+\sin (\lambda x)\right.}{c_{3} \text { LegendreP }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\text { Legenc }}
$$

Verification of solutions
$y=$

$$
-\frac{\sec (\lambda x)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) c_{3} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right) \lambda+\sin (\lambda x)\right.}{c_{3} \text { LegendreP }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (\lambda x)\right)+\text { Legend }}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2*tan(lambda*x)^2-a*tan(lam
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Reducible group (found an exponential solution)
            Group is reducible, not completely reducible
            Solution has integrals. Trying a special function solution free of integrals...
            -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
                -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                -> heuristic approad39
                <- heuristic approach successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 200
dsolve \((\operatorname{diff}(y(x), x)=y(x) \wedge 2+l a m b d a \wedge 2+3 * a * \operatorname{lambda}+a *(\operatorname{lambda}-a) * \tan (\operatorname{lambda} * x) \wedge 2, y(x)\), singsol \(=a l\)
\[
\begin{aligned}
& y(x)= \\
& -\frac{\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) c_{1} \lambda+\sin (x \lambda)\right. \text { (Legenc }}{\text { LegendreQ }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \sin (x \lambda)\right) c_{1}+\text { Legen }}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 76.241 (sec). Leaf size: 319
DSolve \([y\) ' \([x]==y[x] \sim 2+\backslash[\) Lambda] \(\sim 2+3 * a * \backslash[\) Lambda \(]+a *(\backslash[\) Lambda] \(-a) * T a n[\backslash[\) Lambda] \(* x] \wedge 2, y[x], x\), Inc
\(y(x) \rightarrow\) \(-\frac{\sin ^{-\frac{a+\lambda}{\lambda}}(2 \lambda x) e^{-\frac{a \operatorname{arctanh}(\cos (2 \lambda x))}{\lambda}}\left(c_{1} \sin ^{\frac{a}{\lambda}}(2 \lambda x)((a+\lambda) \cos (2 \lambda x)-a+\lambda) e^{\frac{a \operatorname{arctanh}(\cos (2 \lambda x))}{\lambda}} \int_{1}^{x} e^{-\frac{(a-\lambda) \operatorname{arctanh}}{\lambda}}\right.}{1+c_{1} \int_{1}^{x} e^{-\frac{(a-\lambda) \operatorname{arctanh}(a)}{\lambda}}}\)
\(y(x) \rightarrow \csc (2 \lambda x)\left(-\frac{\sin ^{-\frac{a}{\lambda}}(2 \lambda x) e^{-\frac{(a-\lambda) \operatorname{arctanh}(\cos (2 \lambda x))}{\lambda}}}{\int_{1}^{x} e^{-\frac{(a-\lambda) \operatorname{arctanh}(\cos (2 \lambda K[1]))}{\lambda}} \sin ^{-\frac{a+\lambda}{\lambda}}(2 \lambda K[1]) d K[1]}-(a+\lambda) \cos (2 \lambda x)\right.\) \(+a-\lambda)\)

\section*{11.3 problem 29}
11.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1041

Internal problem ID [10527]
Internal file name [OUTPUT/9474_Monday_June_06_2022_02_47_15_PM_7792648/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a y^{2}-b \tan (x) y=c
\]

\subsection*{11.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a y^{2}+b \tan (x) y+c
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a y^{2}+b \tan (x) y+c
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=c, f_{1}(x)=b \tan (x)\) and \(f_{2}(x)=a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =b \tan (x) a \\
f_{2}^{2} f_{0} & =a^{2} c
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a u^{\prime \prime}(x)-b \tan (x) a u^{\prime}(x)+a^{2} c u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{array}{r}
u(x)=\cos (x)^{-\frac{b}{2}+\frac{1}{2}}\left(c_{1} \text { LegendreP }\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)\right. \\
\left.+c_{2} \text { LegendreQ }\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)\right)
\end{array}
\]

The above shows that
\(u^{\prime}(x)=\)
\[
-1 c_{1}\left(\cos (x) \sin (x) \sqrt{4 c a+b^{2}}+\cos (x) \sin (x)-\tan (x)(\sin (x)-1)(\sin (x)+1)(b-1)\right) \text { LegendreP }
\]

Using the above in (1) gives the solution
\(y\)
\(=\underline{c_{1}\left(\cos (x) \sin (x) \sqrt{4 c a+b^{2}}+\cos (x) \sin (x)-\tan (x)(\sin (x)-1)(\sin (x)+1)(b-1)\right) \text { LegendreP }(\sqrt{4}}\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\left(-\left(c_{3} \operatorname{LegendreP}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)+\operatorname{LegendreQ}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)\right)\left(\sqrt{4 c a+b^{2}}\right.\right.}{2\left(c_{3} \operatorname{LegendreP}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2},\right.\right.}\)

Summary
The solution(s) found are the following
\[
\begin{equation*}
=\frac{\left(-\left(c_{3} \operatorname{LegendreP}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)+\operatorname{LegendreQ}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)\right)\left(\sqrt{4 c a+b^{2}}\right.\right.}{2\left(c _ { 3 } \operatorname { L e g e n d r e P } \left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2},\right.\right.} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
=\frac{\left(-\left(c_{3} \text { LegendreP }\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)+\operatorname{LegendreQ}\left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2}, \frac{b}{2}-\frac{1}{2}, \sin (x)\right)\right)\left(\sqrt{4 c a+b^{2}}\right.\right.}{2\left(c _ { 3 } \operatorname { L e g e n d r e P } \left(\frac{\sqrt{4 c a+b^{2}}}{2}-\frac{1}{2},\right.\right.}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = b*tan(x)*(diff(y(x), x))-a*c*y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
Change of variables used:
[x = arcsin(t)]
Linear ODE actually solved:
a*c*u(t)+(-b*t-t)*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successfulu4
<- Riccati to 2nd Order successful

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 187
dsolve(diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{b} * \tan (\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{c}, \mathrm{y}(\mathrm{x})\), singsol=all)
\(y(x)\)
\(=\frac{\sec (x)\left(-\left(\text { LegendreQ }\left(\frac{\sqrt{4 a c+b^{2}}}{2}-\frac{1}{2},-\frac{1}{2}+\frac{b}{2}, \sin (x)\right) c_{1}+\operatorname{LegendreP}\left(\frac{\sqrt{4 a c+b^{2}}}{2}-\frac{1}{2},-\frac{1}{2}+\frac{b}{2}, \sin (x)\right)\right)\right.}{2\left(\operatorname{LegendreQ}\left(\frac{\sqrt{4 a c+b^{2}}}{2}-\frac{1}{2},-\right.\right.}\)
Solution by Mathematica
Time used: 2.211 (sec). Leaf size: 608
```

DSolve[y'[x]==a*y[x]^2+b*Tan[x]*y[x]+c,y[x],x,IncludeSingularSolutions -> True]

```
\(y(x)\)
\(\rightarrow \frac{\sin (x)\left(\left(-b^{3}+3 b^{2}+b-3\right) \text { Hypergeometric2F1 }\left(\frac{1}{4}\left(-b-\sqrt{b^{2}+4 a c}+2\right), \frac{1}{4}\left(-b+\sqrt{b^{2}+4 a c}+2\right), \frac{3-b}{2}\right.\right.}{a(b-3)(b+1)(\cos (x) \text { Hyperg }}\)
\(y(x) \rightarrow\)
\(-\frac{c \sin (x) \cos (x) \text { Hypergeometric2F1 }\left(\frac{1}{4}\left(b-\sqrt{b^{2}+4 a c}+4\right), \frac{1}{4}\left(b+\sqrt{b^{2}+4 a c}+4\right), \frac{b+3}{2}, \cos ^{2}(x)\right)}{(b+1) \text { Hypergeometric2F1 }\left(\frac{1}{4}\left(b-\sqrt{b^{2}+4 a c}\right), \frac{1}{4}\left(b+\sqrt{b^{2}+4 a c}\right), \frac{b+1}{2}, \cos ^{2}(x)\right)}\)
\(y(x) \rightarrow\)
\[
-\frac{c \sin (x) \cos (x) \text { Hypergeometric2F1 }\left(\frac{1}{4}\left(b-\sqrt{b^{2}+4 a c}+4\right), \frac{1}{4}\left(b+\sqrt{b^{2}+4 a c}+4\right), \frac{b+3}{2}, \cos ^{2}(x)\right)}{(b+1) \text { Hypergeometric2F1 }\left(\frac{1}{4}\left(b-\sqrt{b^{2}+4 a c}\right), \frac{1}{4}\left(b+\sqrt{b^{2}+4 a c}\right), \frac{b+1}{2}, \cos ^{2}(x)\right)}
\]

\section*{11.4 problem 30}
11.4.1 Solving as riccati ode

Internal problem ID [10528]
Internal file name [OUTPUT/9475_Monday_June_06_2022_02_47_17_PM_43109865/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 30 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_1st_order, - _with_symmetry_[F(x), G(x)]`], _Riccati]
\[
y^{\prime}-a y^{2}-2 a b \tan (x) y=b(a b-1) \tan (x)^{2}
\]

\subsection*{11.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\tan (x)^{2} a b^{2}+2 a b \tan (x) y-b \tan (x)^{2}+a y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\tan (x)^{2} a b^{2}+2 a b \tan (x) y-b \tan (x)^{2}+a y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\tan (x)^{2} a b^{2}-b \tan (x)^{2}, f_{1}(x)=2 b \tan (x) a\) and \(f_{2}(x)=a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =2 b \tan (x) a^{2} \\
f_{2}^{2} f_{0} & =a^{2}\left(\tan (x)^{2} a b^{2}-b \tan (x)^{2}\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a u^{\prime \prime}(x)-2 b \tan (x) a^{2} u^{\prime}(x)+a^{2}\left(\tan (x)^{2} a b^{2}-b \tan (x)^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\cos (x)^{-a b}\left(c_{1} \sinh (\sqrt{-a b} x)+c_{2} \cosh (\sqrt{-a b} x)\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\left(\left(a c_{2} b \tan (x)+c_{1} \sqrt{-a b}\right) \cosh (\sqrt{-a b} x)\right. \\
& \left.\quad+\sinh (\sqrt{-a b} x)\left(a b c_{1} \tan (x)+c_{2} \sqrt{-a b}\right)\right) \cos (x)^{-a b}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=-\frac{\left(a c_{2} b \tan (x)+c_{1} \sqrt{-a b}\right) \cosh (\sqrt{-a b} x)+\sinh (\sqrt{-a b} x)\left(a b c_{1} \tan (x)+c_{2} \sqrt{-a b}\right)}{a\left(c_{1} \sinh (\sqrt{-a b} x)+c_{2} \cosh (\sqrt{-a b} x)\right)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{\left(-a b c_{3} \tan (x)-\sqrt{-a b}\right) \sinh (\sqrt{-a b} x)-\left(b \tan (x) a+c_{3} \sqrt{-a b}\right) \cosh (\sqrt{-a b} x)}{\left(c_{3} \sinh (\sqrt{-a b} x)+\cosh (\sqrt{-a b} x)\right) a}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(-a b c_{3} \tan (x)-\sqrt{-a b}\right) \sinh (\sqrt{-a b} x)-\left(b \tan (x) a+c_{3} \sqrt{-a b}\right) \cosh (\sqrt{-a b} x)}{\left(c_{3} \sinh (\sqrt{-a b} x)+\cosh (\sqrt{-a b} x)\right) a} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\left(-a b c_{3} \tan (x)-\sqrt{-a b}\right) \sinh (\sqrt{-a b} x)-\left(b \tan (x) a+c_{3} \sqrt{-a b}\right) \cosh (\sqrt{-a b} x)}{\left(c_{3} \sinh (\sqrt{-a b} x)+\cosh (\sqrt{-a b} x)\right) a}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
<- Riccati particular polynomial solution successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 87
dsolve(diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x})^{\wedge} 2+2 * \mathrm{a} * \mathrm{~b} * \tan (\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{b} *(\mathrm{a} * \mathrm{~b}-1) * \tan (\mathrm{x})^{\wedge} 2, \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=\frac{2 c_{1} a b-2 i \tan (x) a^{\frac{3}{2}} b^{\frac{3}{2}} c_{1}+i \sqrt{a} \sqrt{b} \mathrm{e}^{-2 i \sqrt{a} \sqrt{b} x}-\tan (x) \mathrm{e}^{-2 i \sqrt{a} \sqrt{b} x} a b}{a\left(2 i c_{1} \sqrt{a} \sqrt{b}+\mathrm{e}^{-2 i \sqrt{a} \sqrt{b} x}\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 12.833 (sec). Leaf size: 37
DSolve \([y\) ' \([x]==a * y[x] \sim 2+2 * a * b * \operatorname{Tan}[x] * y[x]+b *(a * b-1) * \operatorname{Tan}[x] \sim 2, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow-b \tan (x)+\sqrt{\frac{b}{a}} \tan \left(a x \sqrt{\frac{b}{a}}+c_{1}\right)
\]

\section*{11.5 problem 31}
11.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1050

Internal problem ID [10529]
Internal file name [OUTPUT/9476_Monday_June_06_2022_02_47_18_PM_75210480/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a \tan (\beta x) y=a b \tan (\beta x)-b^{2}
\]

\subsection*{11.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \tan (\beta x) y+a b \tan (\beta x)-b^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a \tan (\beta x) y+a b \tan (\beta x)-b^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b \tan (\beta x)-b^{2}, f_{1}(x)=\tan (\beta x) a\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\tan (\beta x) a \\
f_{2}^{2} f_{0} & =a b \tan (\beta x)-b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\tan (\beta x) a u^{\prime}(x)+\left(a b \tan (\beta x)-b^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)= c_{1}(\tan (\beta x)+i)^{\frac{i b}{2 \beta}}(\tan (\beta x)-i)^{-\frac{i b}{2 \beta}} \\
&+c_{2}(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} \text { hypergeom }\left(\left[1, \frac{a}{\beta}\right],\left[\frac{-2 i b+a+2 \beta}{2 \beta}\right], \frac{1}{2}\right. \\
&\left.-\frac{i \tan (\beta x)}{2}\right)(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}}
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x) \\
&=\left(\frac{c_{1} b(\tan (\beta x)-i)^{-\frac{i b}{2 \beta}}(\tan (\beta x)+i)^{\frac{i b}{2 \beta}}}{2-2 i \tan (\beta x)}-\frac{i(\tan (\beta x)-i)^{-\frac{i b+2 \beta}{2 \beta}} c_{1} b(\tan (\beta x)+i)^{\frac{i b}{2 \beta}}}{2}\right. \\
&+\frac{(-i b+a) c_{2}(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}}(\tan (\beta x)+i)^{\frac{-i b+a-2 \beta}{2 \beta}} \operatorname{hypergeom}\left(\left[1, \frac{a}{\beta}\right],\left[\frac{-2 i b+a+2 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan (\beta x)}{2}\right)}{2} \\
&+\frac{c_{2}(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} a \operatorname{hypergeom}\left(\left[2, \frac{a+\beta}{\beta}\right],\left[\frac{-2 i b+a+4 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan (\beta x)}{2}\right) \beta(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}}}{i a+2 i \beta+2 b} \\
&\left.+\frac{(\tan (\beta x)-i)^{\frac{i b+a-2 \beta}{2 \beta}} c_{2}(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} \operatorname{hypergeom}\left(\left[1, \frac{a}{\beta}\right],\left[\frac{-2 i b+a+2 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan (\beta x)}{2}\right)(i b+a)}{2}\right) \\
&\left.+\tan (\beta x)^{2}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
\frac{\left(\frac{c_{1} b(\tan (\beta x)-i)^{-\frac{i b}{2 p}}}{2-2 i \tan (\beta x)}(\beta x)+i\right)^{\frac{i b}{2 \beta}}}{-\frac{i(\tan (\beta x)-i)^{-\frac{i b+2 \beta}{2 \beta}} c_{1} b(\tan (\beta x)+i)^{\frac{i b}{2 \beta}}}{2}+\frac{(-i b+a) c_{2}(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}}(\tan (\beta x)+i)^{\frac{-i b+a-2 \beta}{2 \beta}}}{2}} c_{1}(\tan (\beta x)+i)
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\left(1+\tan (\beta x)^{2}\right)\left(2 \beta(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}} a(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} \text { hypergeom }\left(\left[2, \frac{a+\beta}{\beta}\right],\left[\frac{-2 i b+a+4 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan ( }{2}\right.\right.}{(2)}\)

Summary
The solution(s) found are the following
\(y\)
\(=\frac{\left(1+\tan (\beta x)^{2}\right)\left(2 \beta(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}} a(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} \text { hypergeom }\left(\left[2, \frac{a+\beta}{\beta}\right],\left[\frac{-2 i b+a+4 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan ( }{2}\right.\right.}{}\)

Verification of solutions
\(y\)
\(=\frac{\left(1+\tan (\beta x)^{2}\right)\left(2 \beta(\tan (\beta x)-i)^{\frac{i b+a}{2 \beta}} a(\tan (\beta x)+i)^{\frac{-i b+a}{2 \beta}} \text { hypergeom }\left(\left[2, \frac{a+\beta}{\beta}\right],\left[\frac{-2 i b+a+4 \beta}{2 \beta}\right], \frac{1}{2}-\frac{i \tan ( }{2}\right.\right.}{2}\)

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 81
```

dsolve(diff(y(x),x)=y(x)^2+a*tan(beta*x)*y(x)+a*b*\operatorname{tan}(beta*x)-b^2,y(x), singsol=all)

```
\[
y(x)=\frac{-\left(\sec (x \beta)^{2}\right)^{\frac{a}{2 \beta}} \mathrm{e}^{-2 b x}-b\left(\int\left(\sec (x \beta)^{2}\right)^{\frac{a}{2 \beta}} \mathrm{e}^{-2 b x} d x-c_{1}\right)}{\int\left(\sec (x \beta)^{2}\right)^{\frac{a}{2 \beta}} \mathrm{e}^{-2 b x} d x-c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 25.611 (sec). Leaf size: 408
DSolve \([y\) ' \([x]==y[x] \sim 2+a * T a n[\backslash[B e t a] * x] * y[x]+a * b * T a n[\backslash[\) Beta \(] * x]-b \wedge 2, y[x], x\), IncludeSingularSolu
\(y(x)\)
\(\rightarrow \frac{2^{-\frac{a}{\beta}} \cos ^{-\frac{a}{\beta}}(\beta x)\left(i b(a+2 i b+2 \beta) \text { Hypergeometric } 2 \mathrm{~F} 1\left(1,-\frac{a-2 i b}{2 \beta}, \frac{a+2 i b+2 \beta}{2 \beta},-e^{2 i x \beta}\right)(\sin (2 \beta x) \csc (\beta x))^{a}\right.}{(a+2 i b)\left(a \beta c_{1} e^{2 b x}(a+2 i b+2 \beta) \cos ^{\frac{a}{\beta}}(\beta x)-i e^{2 i \beta x} \text { Hype }\right.}\)
\(y(x) \rightarrow-b\)

\section*{11.6 problem 32}
11.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1054

Internal problem ID [10530]
Internal file name [OUTPUT/9477_Monday_June_06_2022_02_47_20_PM_47973751/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \tan (b x)^{m} y=a \tan (b x)^{m}
\]

\subsection*{11.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \tan (b x)^{m} y+a \tan (b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \tan (b x)^{m} y+a \tan (b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \tan (b x)^{m}, f_{1}(x)=\tan (b x)^{m} a x\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\tan (b x)^{m} a x \\
f_{2}^{2} f_{0} & =a \tan (b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\tan (b x)^{m} a x u^{\prime}(x)+a \tan (b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-\frac{x\left(c_{2}\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right)-c_{1} b\right)}{b}
\]

The above shows that
\[
u^{\prime}(x)=\frac{-c_{2} \mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)-\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right) c_{2} x+c_{1} b x}{b x}
\]

Using the above in (1) gives the solution
\[
y=\frac{-c_{2} \mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)-\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right) c_{2} x+c_{1} b x}{x^{2}\left(c_{2}\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right)-c_{1} b\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)-\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right) x+c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x-b c_{3}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)-\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right) x+c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x-b c_{3}\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)-\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x\right) x+c_{3} b x}{x^{2}\left(\int \frac{\mathrm{e}^{\int\left(\tan (b x)^{m} a x-\cot (b x) b\right) d x} \sin (b x)}{x^{2}} d x-b c_{3}\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 85
```

dsolve(diff(y(x),x)=y(x)^2+a*x*tan(b*x)^m*y(x)+a*tan(b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{a \tan (b x)^{m} x^{2}-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{a \tan (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{a \tan (b x)^{m} x^{2}-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 8.199 (sec). Leaf size: 126
DSolve \([y\) ' \([x]==y[x] \wedge 2+a * x * \operatorname{Tan}[b * x] \wedge m * y[x]+a * \operatorname{Tan}[b * x] \wedge m, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{\exp \left(-\int_{1}^{x}-a K[1] \tan ^{m}(b K[1]) d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a K[1] \tan ^{m}(b K[1]) d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a K[1] \tan ^{m}(b K[1]) d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)} \\
& y(x) \rightarrow-\frac{1}{x}
\end{aligned}
\]

\section*{11.7 problem 33}
11.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1058

Internal problem ID [10531]
Internal file name [OUTPUT/9478_Monday_June_06_2022_02_47_58_PM_52864866/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+(k+1) x^{k} y^{2}-a x^{k+1} \tan (x)^{m} y=-a \tan (x)^{m}
\]

\subsection*{11.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{k+1} \tan (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \tan (x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{k} x \tan (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \tan (x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \tan (x)^{m}, f_{1}(x)=x^{k+1} \tan (x)^{m} a\) and \(f_{2}(x)=-x^{k} k-x^{k}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \tan (x)^{m} a\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} a \tan (x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives \(\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \tan (x)^{m} a\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} a \tan (x)^{m} u\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x^{k+1}\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=x^{k}\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x}\right. \\
& \left.\quad+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
& -\frac{x^{k}\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)\right)}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \tan (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(\left.=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \tan (x)^{m}+k}{x}} d x\right.} x^{-2 k-2} d x\right)\)
Verification of solutions
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \tan (x)^{m} a+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \tan (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)
Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(1+k)*tan(x)`m*a*x+k)*(diff
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful cha\etagef1 of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 174
```

dsolve(diff(y(x),x)=-(k+1)*x^k*y(x)^2+a*x^(k+1)*\operatorname{tan}(\textrm{x}\mp@subsup{)}{}{\wedge}m*y(x)-a*\operatorname{tan}(\textrm{x})^

```
\(y(x)\)
\(\left.=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \tan (x)^{m} a x-2 k-2}{x} d x}+\left(\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \tan (x)^{m} a x-2 k-2}{x}} d x\right.\right.}{x} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \tan (x)^{m} a x-2 k-2}{x}} d x d x-c_{1}\)
\(\checkmark\) Solution by Mathematica
Time used: 19.083 (sec). Leaf size: 248
DSolve \(\left[y\right.\) ' \([x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+a * x^{\wedge}(k+1) * \operatorname{Tan}[x] \wedge m * y[x]-a * T a n[x] \wedge m, y[x], x\), IncludeSingularSol
\(y(x)\)
\(\rightarrow \frac{x^{-k-1}\left(c_{1} x \exp \left(\int_{1}^{x}-\frac{-a \tan ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right)+c_{1}(k+1) \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \tan ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d\right.\right.}{(k+1)\left(1+c_{1} \int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{-a \tan ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]\right)}\)
\(y(x) \rightarrow \frac{x^{-k}\left(\frac{\exp \left(\int_{1}^{x}-\frac{-a \tan ^{m}(K[1]) K[1]^{k+2}+k+2}{K[1]} d K[1]\right.}{\int_{1}^{x} \exp \left(\int_{1}^{K[2]}-\frac{\left.-a \tan ^{m}(K[1])[1]\right]^{k+2}+k+2}{K[1]} d K[1]\right) d K[2]}+\frac{k+1}{x}\right)}{k+1}\)

\section*{11.8 problem 34}
11.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1063

Internal problem ID [10532]
Internal file name [OUTPUT/9479_Monday_June_06_2022_02_48_09_PM_7980074/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-a \tan (\lambda x)^{n} y^{2}=-a b^{2} \tan (\lambda x)^{2+n}+b \lambda \tan (\lambda x)^{2}+b \lambda
\]

\subsection*{11.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a \tan (\lambda x)^{n} y^{2}-a b^{2} \tan (\lambda x)^{2+n}+b \lambda \tan (\lambda x)^{2}+b \lambda
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a \tan (\lambda x)^{n} y^{2}-a b^{2} \tan (\lambda x)^{2} \tan (\lambda x)^{n}+b \lambda \tan (\lambda x)^{2}+b \lambda
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a b^{2} \tan (\lambda x)^{2+n}+b \lambda \tan (\lambda x)^{2}+b \lambda, f_{1}(x)=0\) and \(f_{2}(x)=\) \(\tan (\lambda x)^{n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\tan (\lambda x)^{n} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{\tan (\lambda x)^{n} n \lambda\left(1+\tan (\lambda x)^{2}\right) a}{\tan (\lambda x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\tan (\lambda x)^{2 n} a^{2}\left(-a b^{2} \tan (\lambda x)^{2+n}+b \lambda \tan (\lambda x)^{2}+b \lambda\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\tan (\lambda x)^{n} a u^{\prime \prime}(x)-\frac{\tan (\lambda x)^{n} n \lambda\left(1+\tan (\lambda x)^{2}\right) a u^{\prime}(x)}{\tan (\lambda x)}+\tan (\lambda x)^{2 n} a^{2}\left(-a b^{2} \tan (\lambda x)^{2+n}+b \lambda \tan (\lambda x)^{2}-\right.\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)


The above shows that
\(u^{\prime}(x)\)
\(=\frac{\tan (\lambda x)^{n+1}\left(-a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d x} d x\right) b+c_{1} b+\mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda\right.}\right.}{a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int \cot (\lambda x)(2 \tan }\right.}\)
Using the above in (1) gives the solution
\(y=\)
\[
-\underline{\tan (\lambda x)^{n+1}\left(-a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d x} d x\right) b+c_{1} b+\mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \mathrm{c}\right.} .\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(=\frac{\tan (\lambda x)\left(a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d x} d x\right) b-b c_{3}-\mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d}\right.}{a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int \cot (\lambda x)\left(2 \tan (\lambda x)^{2+n} a b-\lambda \tan (\lambda x)^{2}-\lambda\right) d x} d x\right)-c_{3}}\)
Summary
The solution(s) found are the following
\(y\)
\(=\frac{\tan (\lambda x)\left(a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d x} d x\right) b-b c_{3}-\mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d}\right.}{a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int \cot (\lambda x)\left(2 \tan (\lambda x)^{2+n} a b-\lambda \tan (\lambda x)^{2}-\lambda\right) d x} d x\right)-c_{3}}\)

\section*{Verification of solutions}
\(y\)
\(=\frac{\tan (\lambda x)\left(a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d x} d x\right) b-b c_{3}-\mathrm{e}^{\int\left(2 a b \tan (\lambda x)^{n+1}-\sec (\lambda x) \csc (\lambda x) \lambda\right) d}\right.}{a\left(\int \tan (\lambda x)^{n+1} \mathrm{e}^{\int \cot (\lambda x)\left(2 \tan (\lambda x)^{2+n} a b-\lambda \tan (\lambda x)^{2}-\lambda\right) d x} d x\right)-c_{3}}\)

\section*{Verified OK.}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*lambda*(1+tan(lambda*x)^2)*(
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in }x\mathrm{ and }y(x
trying to convert to a linear ODE with constant coefficients

```

X Solution by Maple


No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]==a * \operatorname{Tan}[\backslash[\) Lambda \(] * x] \wedge n * y[x] \wedge 2-a * b^{\wedge} 2 * T a n[\backslash[\) Lambda \(] * x] \wedge(n+2)+b * \backslash[\) Lambda \(] * T a n[\backslash[L a m\)

Not solved

\section*{11.9 problem 35}
11.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1068

Internal problem ID [10533]
Internal file name [OUTPUT/9480_Monday_June_06_2022_02_48_23_PM_47763726/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 35.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]

```

Unable to solve or complete the solution.
\[
y^{\prime}-a \tan (\lambda x+\mu)^{k}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
\]

\subsection*{11.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} \tan (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \tan (\lambda x+\mu)^{k} a b c-2 x^{n} \tan (\lambda x+\mu)^{k} a b y+\tan (\lambda x+\mu)^{k} a c^{2}-2 \tan ()
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=x^{2 n}\left(\frac{\tan (\mu)}{1-\tan (\mu) \tan (\lambda x)}+\frac{\tan (\lambda x)}{1-\tan (\mu) \tan (\lambda x)}\right)^{k} a b^{2}+2 x^{n}\left(\frac{\tan (\mu)}{1-\tan (\mu) \tan (\lambda x)}+\frac{\tan (\lambda x)}{1-\tan (\mu) \tan }\right.
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=x^{2 n} \tan (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \tan (\lambda x+\mu)^{k} a b c+\tan (\lambda x+\mu)^{k} a c^{2}+\) \(b x^{n-1} n, f_{1}(x)=-2 \tan (\lambda x+\mu)^{k} a x^{n} b-2 \tan (\lambda x+\mu)^{k} a c\) and \(f_{2}(x)=\tan (\lambda x+\mu)^{k} a\).

Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\tan (\lambda x+\mu)^{k} a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{\tan (\lambda x+\mu)^{k} k \lambda\left(1+\tan (\lambda x+\mu)^{2}\right) a}{\tan (\lambda x+\mu)} \\
f_{1} f_{2} & =\left(-2 \tan (\lambda x+\mu)^{k} a x^{n} b-2 \tan (\lambda x+\mu)^{k} a c\right) \tan (\lambda x+\mu)^{k} a \\
f_{2}^{2} f_{0} & =\tan (\lambda x+\mu)^{2 k} a^{2}\left(x^{2 n} \tan (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \tan (\lambda x+\mu)^{k} a b c+\tan (\lambda x+\mu)^{k} a c^{2}+b x^{n-1} n\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\tan (\lambda x+\mu)^{k} a u^{\prime \prime}(x)-\left(\frac{\tan (\lambda x+\mu)^{k} k \lambda\left(1+\tan (\lambda x+\mu)^{2}\right) a}{\tan (\lambda x+\mu)}+\left(-2 \tan (\lambda x+\mu)^{k} a x^{n} b-2 \tan (\lambda x+\right.\right.
\]

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (d) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 42
dsolve( \(\operatorname{diff}(y(x), x)=a * \tan (\operatorname{lambda} * x+m u)^{\wedge} k *\left(y(x)-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y(x)\), singsol=all)
\[
y(x)=b x^{n}+c+\frac{1}{c_{1}-a\left(\int\left(-\frac{\tan (\mu)+\tan (x \lambda)}{\tan (\mu) \tan (x \lambda)-1}\right)^{k} d x\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 6.024 (sec). Leaf size: 75
DSolve \(\left[y\right.\) ' \([x]==a * \operatorname{Tan}[\backslash[\text { Lambda }] * x+m u]^{\wedge} k *\left(y[x]-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y[x], x\), IncludeSingularSol
\[
\begin{aligned}
& y(x) \rightarrow \frac{1}{-\frac{a \tan ^{k+1}(\mu+\lambda x) \text { Hypergeometric2F1 }\left(1, \frac{k+1}{2}, \frac{k+3}{2},-\tan ^{2}(\mu+x \lambda)\right)}{(k+1) \lambda}+c_{1}}+b x^{n}+c \\
& y(x) \rightarrow b x^{n}+c
\end{aligned}
\]

\subsection*{11.10 problem 36}
11.10.1 Solving as riccati ode

1071
Internal problem ID [10534]
Internal file name [OUTPUT/9481_Monday_June_06_2022_02_49_19_PM_25084523/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime} x-a \tan (\lambda x)^{m} y^{2}-k y=a b^{2} x^{2 k} \tan (\lambda x)^{m}
\]

\subsection*{11.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a \tan (\lambda x)^{m} y^{2}+k y+a b^{2} x^{2 k} \tan (\lambda x)^{m}}{x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a b^{2} x^{2 k} \tan (\lambda x)^{m}}{x}+\frac{a \tan (\lambda x)^{m} y^{2}}{x}+\frac{k y}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a b^{2} x^{2 k} \tan (\lambda x)^{m}}{x}, f_{1}(x)=\frac{k}{x}\) and \(f_{2}(x)=\frac{a \tan (\lambda x)^{m}}{x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \tan (\lambda x)^{m} u}{x}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{a \tan (\lambda x)^{m} m \lambda\left(1+\tan (\lambda x)^{2}\right)}{\tan (\lambda x) x}-\frac{a \tan (\lambda x)^{m}}{x^{2}} \\
f_{1} f_{2} & =\frac{k a \tan (\lambda x)^{m}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \tan (\lambda x)^{3 m} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{a \tan (\lambda x)^{m} u^{\prime \prime}(x)}{x}-\left(\frac{a \tan (\lambda x)^{m} m \lambda\left(1+\tan (\lambda x)^{2}\right)}{\tan (\lambda x) x}-\frac{a \tan (\lambda x)^{m}}{x^{2}}+\frac{k a \tan (\lambda x)^{m}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \tan (\lambda x}{}
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}
\]

The above shows that
\[
u^{\prime}(x)=i a b x^{k-1} \tan (\lambda x)^{m}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{i b x^{k-1}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}\right) x}{c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \tan (\lambda x)^{m} d x\right)}}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 31
dsolve \(\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \tan (\operatorname{lambda} \mathrm{x})^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{k} * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \tan (\operatorname{lambda} * \mathrm{x})^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\right.\), si
\[
y(x)=-\tan \left(-a b\left(\int x^{-1+k} \tan (x \lambda)^{m} d x\right)+c_{1}\right) b x^{k}
\]

Solution by Mathematica
Time used: 1.817 (sec). Leaf size: 50
DSolve \(\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Tan}[\backslash[\right.\) Lambda \(] * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{Tan}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\[
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} a K[1]^{k-1} \tan ^{m}(\lambda K[1]) d K[1]+c_{1}\right)
\]

\subsection*{11.11 problem 37}
11.11.1 Solving as riccati ode
. 1074
Internal problem ID [10535]
Internal file name [OUTPUT/9482_Monday_June_06_2022_02_49_22_PM_50388009/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \tan (\lambda x)+b) y^{\prime}-y^{2}-k \tan (x \mu) y=-d^{2}+k d \tan (x \mu)
\]

\subsection*{11.11.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+k \tan (x \mu) y-d^{2}+k d \tan (x \mu)}{a \tan (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{k d \tan (x \mu)}{a \tan (\lambda x)+b}+\frac{k \tan (x \mu) y}{a \tan (\lambda x)+b}-\frac{d^{2}}{a \tan (\lambda x)+b}+\frac{y^{2}}{a \tan (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+k d \tan (x \mu)}{a \tan (\lambda x)+b}, f_{1}(x)=\frac{k \tan (x \mu)}{a \tan (\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \tan (\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\overline{a \tan (\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{a \lambda\left(1+\tan (\lambda x)^{2}\right)}{(a \tan (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{k \tan (x \mu)}{(a \tan (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+k d \tan (x \mu)}{(a \tan (\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{a \tan (\lambda x)+b}-\left(-\frac{a \lambda\left(1+\tan (\lambda x)^{2}\right)}{(a \tan (\lambda x)+b)^{2}}+\frac{k \tan (x \mu)}{(a \tan (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+k d \tan (x \mu)\right) u(x)}{(a \tan (\lambda x)+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 351
dsolve \(\left((a * \tan (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+k * \tan (m u * x) * y(x)-d^{\wedge} 2+k * d * \tan (m u * x), y(x)\right.\), sing
\(y(x)\)
\[
=\frac{-\left(\sec (x \lambda)^{2}\right)^{\frac{a d}{\lambda\left(a^{2}+b^{2}\right)}}(a \tan (x \lambda)+b)^{-\frac{2 a d}{\lambda\left(a^{2}+b^{2}\right)}} \mathrm{e}^{\frac{\lambda k\left(a^{2}+b^{2}\right)\left(\int \frac{\tan (x \mu)}{a \tan (x \lambda)+b} d x\right)-2 \arctan (\tan (x \lambda)) b d}{\lambda\left(a^{2}+b^{2}\right)}}-d\left(\int(a \tan (x \lambda)+\right.}{\int(a \tan (x \lambda)+b)^{\frac{\left(-a^{2}-b^{2}\right) \lambda-2 a d}{\lambda\left(a^{2}+b^{2}\right)}}\left(\sec (x \lambda)^{2}\right)^{\frac{a d}{\lambda\left(a^{2}+b^{2}\right)}} \mathrm{e}^{\frac{\lambda k\left(a^{2}+b^{2}\right)}{}}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 130.719 (sec). Leaf size: 800
DSolve \(\left[\left(a * \operatorname{Tan}[\backslash[\operatorname{Lambda]} * x]+b) * y '[x]==y[x]{ }^{\wedge} 2+k * T a n[\backslash[M u] * x] * y[x]-d^{\wedge} 2+k * d * T a n[\backslash[M u] * x], y[x], x\right.\right.\),
\[
\begin{aligned}
& +\int_{1}^{y(x)}\left(\frac{e^{-\int_{1}^{x} \sec (\mu K[1])(2 d \cos (\lambda K[1]-\mu K[1])+2 d \cos (\lambda K[1]+\mu K[1])+\sin (\lambda(\lambda[1])-\mu K[1])-k \sin (\lambda K[1]+\mu K[1]))} d K[1]}{2(\operatorname{coses}(\lambda K 1])+\operatorname{cosin}(\lambda K[1])}\right.
\end{aligned}
\]
12 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
12.1 problem 38 ..... 1079
12.2 problem 39 ..... 
12.3 problem 40 ..... 1089
12.4 problem 41 ..... 1094
12.5 problem 42 ..... 1098
12.6 problem 43 ..... 1102
12.7 problem 44 ..... 1107
12.8 problem 45 ..... 1110
12.9 problem 46 ..... 1113

\section*{12.1 problem 38}
12.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1079

Internal problem ID [10536]
Internal file name [OUTPUT/9483_Monday_June_06_2022_02_50_30_PM_22071506/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=\lambda a+a(\lambda-a) \cot (\lambda x)^{2}
\]

\subsection*{12.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+\lambda a+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+\lambda a+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+\lambda a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\sqrt{\sin (\lambda x)}\left(c_{1} \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)\right. \\
&+\left.c_{2} \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{\cos (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{1} a+\cos (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{2} a-\lambda\left(c_{1}\right.}{\sqrt{\sin (\lambda x)}}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
y=\frac{\cos (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{1} a+\cos (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{2} a-\lambda\left(c_{1}\right. \text { Le }}{\sin (\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+c_{2}\right. \text { Legendr }}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\left(\cos (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} a+\cos (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) a-\lambda\left(c_{3} \text { Leg }\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { LegendreQ }}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\left(\cos (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} a+\cos (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) a-\lambda\left(c_{3} \text { Leg }\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { LegendreQ }}\)
Verification of solutions
\(y\)
\(=\frac{\left(\cos (\lambda x) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} a+\cos (\lambda x) \text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) a-\lambda\left(c_{3} \text { Leg }\right.\right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { LegendreQ }}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=\left(a^{\wedge} 2 * \cot (\operatorname{lambda*x}) \wedge 2-a * \cot (\operatorname{lam}\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is \(\frac{1082}{102}\) straightforward to achieve - returning special func <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 204
dsolve(diff \((y(x), x)=y(x) \wedge 2+a * l a m b d a+a *(l a m b d a-a) * \cot (l a m b d a * x) \wedge 2, y(x)\), singsol \(=a l l)\)
\(y(x)\)
\(=\frac{\left(\cos (x \lambda) \text { LegendreP }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) a+\text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) \cos (x \lambda) c_{1} a-\lambda(\text { Legen }\right.}{\text { LegendreQ }\left(\frac{2 a-\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) c_{1}+\text { LegendreP }}\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' \([\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\mathrm{a} * \backslash[\) Lambda] \(+\mathrm{a} *(\backslash[\) Lambda] -a\() * \operatorname{Cot}[\backslash\) LLambda] \(* \mathrm{x}] \sim 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSo
Not solved

\section*{12.2 problem 39}
12.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1084

Internal problem ID [10537]
Internal file name [OUTPUT/9484_Monday_June_06_2022_02_50_33_PM_71867773/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=3 \lambda a+\lambda^{2}+a(\lambda-a) \cot (\lambda x)^{2}
\]

\subsection*{12.2.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-a^{2} \cot (\lambda x)^{2}+a \cot (\lambda x)^{2} \lambda+3 \lambda a+\lambda^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\sqrt{\sin (\lambda x)}\left(c_{1} \text { LegendreP }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)\right. \\
&\left.+c_{2} \text { LegendreQ }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{1} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{2} \lambda+\cos (\lambda x)\left(c_{1} \operatorname{Le}\right.}{\sqrt{\sin (\lambda x)}}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\(=\frac{-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{1} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{2} \lambda+\cos (\lambda x)\left(c_{1} \text { Leger }\right.}{\sin (\lambda x)\left(c_{1} \text { LegendreP }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+c_{2} \text { Legen }\right.}\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\csc (\lambda x)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) \lambda+\cos (\lambda x)( \right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { Legendr }}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\csc (\lambda x)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) \lambda+\cos (\lambda x)( \right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { Legendr }}\)
Verification of solutions
\(y\)
\(=\frac{\csc (\lambda x)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) c_{3} \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right) \lambda+\cos (\lambda x)( \right.}{c_{3} \operatorname{LegendreP}\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (\lambda x)\right)+\text { Legendr }}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=\left(a^{\wedge} 2 * \cot (\operatorname{lambda*x}) \wedge 2-a * \cot (\operatorname{lam}\right.\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is \(\frac{1087}{1087}\) straightforward to achieve - returning special func <- Kovacics algorithm successful
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 199

\(y(x)\)
\(=\frac{\csc (x \lambda)\left(-2 \text { LegendreP }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) \lambda-2 \text { LegendreQ }\left(\frac{2 a+3 \lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) c_{1} \lambda+\cos (x \lambda)( \right.}{\text { LegendreQ }\left(\frac{2 a+\lambda}{2 \lambda}, \frac{2 a-\lambda}{2 \lambda}, \cos (x \lambda)\right) c_{1}+\text { Legendr }}\)
\(\checkmark\) Solution by Mathematica
Time used: 67.099 (sec). Leaf size: 306
DSolve \(\left[y '[x]==y[x] \wedge 2+\backslash\left[\right.\right.\) Lambda] \({ }^{\wedge} 2+3 * a * \backslash[\) Lambda \(]+a *(\backslash[\) Lambda] \(-a) * \operatorname{Cot}[\backslash[\) Lambda] \(* x] \curvearrowright 2, y[x], x\), Inc
\(y(x) \rightarrow\)
\(-\frac{\sin ^{-\frac{a+\lambda}{\lambda}}(2 \lambda x) e^{-\operatorname{arctanh}(\cos (2 \lambda x))}\left(c_{1} \sin \frac{a}{\lambda}(2 \lambda x)((a+\lambda) \cos (2 \lambda x)+a-\lambda) e^{\operatorname{arctanh}(\cos (2 \lambda x))} \int_{1}^{x} e^{\frac{(a-\lambda) \operatorname{arctanh}(c a}{\lambda}}\right.}{1+c_{1} \int_{1}^{x} e^{\frac{(a-\lambda) \operatorname{arctanh} \lambda}{\lambda}}}\)
\(y(x) \rightarrow \csc (2 \lambda x)\left(-\frac{\sin ^{-\frac{a}{\lambda}(2 \lambda x) e^{(a-\lambda) \operatorname{arctanh} \cos (2 \lambda x))}}}{\int_{1}^{x} e^{\frac{(a-\lambda) \operatorname{arctanh} \frac{\cos (2 \lambda K(1))}{\lambda}}{\sin } \sin ^{-\frac{a+\lambda}{\lambda}}(2 \lambda K[1]) d K[1]}}-(a+\lambda) \cos (2 \lambda x)\right.\) \(-a+\lambda)\)

\section*{12.3 problem 40}
12.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1089

Internal problem ID [10538]
Internal file name [OUTPUT/9485_Monday_June_06_2022_02_50_37_PM_8560361/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}+2 a b \cot (x a) y=-a^{2}+b^{2}
\]

\subsection*{12.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-2 a b \cot (x a) y+b^{2}-a^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-2 a b \cot (x a) y+b^{2}-a^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2}+b^{2}, f_{1}(x)=-2 \cot (x a) a b\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-2 \cot (x a) a b \\
f_{2}^{2} f_{0} & =-a^{2}+b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+2 \cot (x a) a b u^{\prime}(x)+\left(-a^{2}+b^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
u(x)=\sin (x a)^{-b+\frac{1}{2}} & \left(c_{1} \text { LegendreP }\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (x a)\right)\right. \\
& \left.+c_{2} \text { LegendreQ }\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (x a)\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad-\frac{2\left(c _ { 1 } \left(-\cos (x a) \sin (x a) \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}+a\left(-\frac{\cos (x a) \sin (x a)}{2}+(\cos (x a)-1)\left(b-\frac{1}{2}\right) \cot (x a)(\cos (x\right.\right.\right.}{}
\end{aligned}
\]

Using the above in (1) gives the solution
\(y\)
\(=\underline{2 c_{1}\left(-\cos (x a) \sin (x a) \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}+a\left(-\frac{\cos (x a) \sin (x a)}{2}+(\cos (x a)-1)\left(b-\frac{1}{2}\right) \cot (x a)(\cos (x a) .\right.\right.}\)

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\underline{\left(\cos (x a) c_{3}\left(a b+\sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}\right) \operatorname{LegendreP}\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (x a)\right)+\cos (x a)(a b+\sqrt{ })\right.}\)

Summary
The solution(s) found are the following
\(y\)
\(=\underline{\left(\cos (x a) c_{3}\left(a b+\sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}\right) \text { LegendreP }\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (x a)\right)+\cos (x a)(a b+\sqrt{ }\right.}\)

Verification of solutions
\(y\)
\(=\underline{\left(\cos (x a) c_{3}\left(a b+\sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}\right) \text { LegendreP }\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (x a)\right)+\cos (x a)(a b+\sqrt{ })\right.}\)

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -2*a*b*\operatorname{cot}(a*x)*(diff(y(x), x)
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
<- heuristic approach successful
<- hypergeometric successful
<- special function solution sugccessful
Change of variables used:
[x = 1/a*arcsin(t)]

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 291
dsolve(diff \((y(x), x)=y(x)^{\wedge} 2-2 * a * b * \cot (a * x) * y(x)+b \sim 2-a^{\wedge} 2, y(x)\), singsol=all)
\(y(x)\)
\(=\underline{\left(\cos (a x)\left(a b+\sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}\right) \text { LegendreP }\left(\frac{-a+2 \sqrt{\left(b^{2}-1\right) a^{2}+b^{2}}}{2 a}, b-\frac{1}{2}, \cos (a x)\right)+c_{1} \cos (a x)(a b+1\right.}\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y'[x]==y[x]^2-2*a*b*Cot[a*x]*y[x]+b^2-a^2,y[x],x,IncludeSingularSolutions -> True]

```

Not solved

\section*{12.4 problem 41}
12.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1094

Internal problem ID [10539]
Internal file name [OUTPUT/9486_Monday_June_06_2022_02_50_49_PM_24821107/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a \cot (\beta x) y=a b \cot (\beta x)-b^{2}
\]

\subsection*{12.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a \cot (\beta x) y+a b \cot (\beta x)-b^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a \cot (\beta x) y+a b \cot (\beta x)-b^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a b \cot (\beta x)-b^{2}, f_{1}(x)=\cot (\beta x) a\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\cot (\beta x) a \\
f_{2}^{2} f_{0} & =a b \cot (\beta x)-b^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\cot (\beta x) a u^{\prime}(x)+\left(a b \cot (\beta x)-b^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-\frac{\mathrm{e}^{b x}\left(i c_{2} \beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right)-2 c_{1}\right)}{2}
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)= & -\frac{i\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right) c_{2} b \beta \mathrm{e}^{b x}}{2} \\
& -\frac{i \cos (\beta x) \sin (\beta x)^{\frac{a}{\beta}} \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \beta c_{2} \mathrm{e}^{-b x}}{2}+c_{1} b \mathrm{e}^{b x}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
=\frac{2\left(-\frac{i\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right) c_{2} b \beta \mathrm{e}^{b x}}{2}-\frac{i \cos (\beta x) \sin (\beta x)^{\frac{a}{\beta}} \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \beta c_{2} \mathrm{e}^{-b x}}{2}+c_{1} b \mathrm{e}^{2}\right.}{i c_{2} \beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right)-2 c_{1}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{-\beta \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x}-2 i b c_{3}-\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{\rho}{f}}\right.}{\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right)+2 i c_{3}}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{-\beta \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x}-2 i b c_{3}-\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{\sigma}{\epsilon}}\right.}{\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right)+2 i c_{3}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
=\frac{-\beta \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x}-2 i b c_{3}-\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{\rho}{6}}\right.}{\beta\left(\int \sec \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \csc \left(\frac{\pi}{4}+\frac{\beta x}{2}\right) \sin (\beta x)^{\frac{a}{\beta}} \cos (\beta x) \mathrm{e}^{-2 b x} d x\right)+2 i c_{3}}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 81
dsolve (diff \((y(x), x)=y(x) \wedge 2+a * \cot (\operatorname{beta} * x) * y(x)+a * b * \cot (b e t a * x)-b \wedge 2, y(x)\), singsol=all)
\[
y(x)=\frac{-\left(\csc (x \beta)^{2}\right)^{-\frac{a}{2 \beta}} \mathrm{e}^{-2 b x}-b\left(\int\left(\csc (x \beta)^{2}\right)^{-\frac{a}{2 \beta}} \mathrm{e}^{-2 b x} d x-c_{1}\right)}{\int\left(\csc (x \beta)^{2}\right)^{-\frac{a}{2 \beta}} \mathrm{e}^{-2 b x} d x-c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 26.26 (sec). Leaf size: 462
DSolve \([y\) ' \([x]==y[x] \sim 2+a * \operatorname{Cot}[\backslash[\operatorname{Beta}] * x] * y[x]+a * b * \operatorname{Cot}[\backslash[\operatorname{Beta}] * x]-b \wedge 2, y[x], x\), IncludeSingularSolu
\(y(x)\)
\(\rightarrow \frac{b(i a+2 b-2 i \beta)\left(-i e^{-i \beta x}\left(-1+e^{2 i \beta x}\right)\right)^{a / \beta} \text { Hypergeometric2F1 }\left(1, \frac{a+2 i b}{2 \beta},-\frac{a-2 i b-2 \beta}{2 \beta}, e^{2 i x \beta}\right)+(a-2 i b)}{i(-a+2 i b+2 \beta)\left(-i e^{-i \beta x}\left(-1+e^{2 i \beta x}\right)\right)^{a / \beta} \text { Hypergeometric2F1 }\left(1, \frac{a+2 i b}{2 \beta},-\frac{a-2 i b-2 \beta}{2 \beta}, e^{2}\right.}\)
\(y(x) \rightarrow-b\)

\section*{12.5 problem 42}
12.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1098

Internal problem ID [10540]
Internal file name [OUTPUT/9487_Monday_June_06_2022_02_51_45_PM_23649721/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-a x \cot (b x)^{m} y=a \cot (b x)^{m}
\]

\subsection*{12.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a x \cot (b x)^{m} y+a \cot (b x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+a x \cot (b x)^{m} y+a \cot (b x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=a \cot (b x)^{m}, f_{1}(x)=x a \cot (b x)^{m}\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x a \cot (b x)^{m} \\
f_{2}^{2} f_{0} & =a \cot (b x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-x a \cot (b x)^{m} u^{\prime}(x)+a \cot (b x)^{m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} a x^{2}-2}{x} d x} d x\right)+c_{2}\right)
\]

The above shows that
\[
u^{\prime}(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m_{a}} x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\cot (b x)^{m_{a x} x^{2}-2}}{x} d x}
\]

Using the above in (1) gives the solution
\[
y=-\frac{c_{1}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\frac{\cot (b x)^{m} x^{2}-2}{x} d x}}{x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{2}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m_{a} x^{2}-2}}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cot (b x)^{m} a x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x_{a} x^{2}-2}{x} d x} d x\right)+1\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cot (b x)^{m} x_{a} x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2}-2}{x} d x} d x\right)+1\right)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\cot (b x)^{m_{a} x^{2}-2}}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\cot (b x)^{m} x^{2} x^{2}-2}{x} d x} d x\right)+1\right)}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 85
```

dsolve(diff(y(x),x)=y(x)^2+a*x*\operatorname{cot}(b*x)^m*y(x)+a*\operatorname{cot}(b*x)^m,y(x), singsol=all)

```
\[
y(x)=\frac{-\mathrm{e}^{\int \frac{a \cot (b x)^{m} x^{2}-2}{x} d x} x-\left(\int \mathrm{e}^{\int \frac{a \cot (b x)^{m} x^{2}-2}{x} d x} d x\right)+c_{1}}{\left(-c_{1}+\int \mathrm{e}^{\int \frac{a \cot (b x)^{m} x^{2}-2}{x} d x} d x\right) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 8.36 (sec). Leaf size: 126
DSolve \([y\) ' \([x]==y[x] \wedge 2+a * x * \operatorname{Cot}[b * x] \wedge m * y[x]+a * \operatorname{Cot}[b * x] \wedge m, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{\exp \left(-\int_{1}^{x}-a \cot ^{m}(b K[1]) K[1] d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a \cot ^{m}(b K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-a \cot ^{m}(b K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)} \\
& y(x) \rightarrow-\frac{1}{x}
\end{aligned}
\]

\section*{12.6 problem 43}
12.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1102

Internal problem ID [10541]
Internal file name [OUTPUT/9488_Monday_June_06_2022_02_51_48_PM_37851356/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}+(k+1) x^{k} y^{2}-a x^{k+1} \cot (x)^{m} y=-a \cot (x)^{m}
\]

\subsection*{12.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x^{k+1} \cot (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \cot (x)^{m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=a x^{k} x \cot (x)^{m} y-x^{k} y^{2} k-x^{k} y^{2}-a \cot (x)^{m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \cot (x)^{m}, f_{1}(x)=a \cot (x)^{m} x^{k+1}\) and \(f_{2}(x)=-x^{k} k-x^{k}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =a \cot (x)^{m} x^{k+1}\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} a \cot (x)^{m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives \(\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+a \cot (x)^{m} x^{k+1}\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} a \cot (x)^{m} u\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=x^{k+1}\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)=\left(c_{2} x^{-2 k-1}\right. & \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} \\
& \left.+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{k}
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y=\frac{\left(c_{2} x^{-2 k-1} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)(k+1)\right) x^{k} x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(c_{1}+c_{2}\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)\right)}
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cot (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cot (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)

Verification of solutions
\(y=\frac{x^{-k-1}\left(x^{-2 k-1} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x}+\left(c_{3}+\int x^{-2 k-2} \mathrm{e}^{\int\left(a \cot (x)^{m} x^{k+1}+\frac{k}{x}\right) d x} d x\right)(k+1)\right)}{(k+1)\left(c_{3}+\int \mathrm{e}^{\int \frac{a x^{k+2} \cot (x)^{m}+k}{x} d x} x^{-2 k-2} d x\right)}\)
Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(1+k)*\operatorname{cot}(x)`m*a*x+k)*(diff
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 170
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{k}+1) * \cot (\mathrm{x})^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})-\mathrm{a} * \cot (\mathrm{x})^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\), singsol=all)
\(y(x)\)
\(\left.=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \cot (x)^{m} a_{a x-2 k-2}}{x} d x}+\left(\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \cot (x)^{m} m_{a x-2 k-2}}{x} d x} d x\right) k+\int x^{k} \mathrm{e}^{\int \frac{x^{1+k} \cot (x)^{m}{ }_{a x-2 k-2}}{x} d x} d x+c_{1}\right.}{\left(\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \cot (x)^{m}-2 k-2}{x}} d x\right.} d x\right) k+c_{1}+\int x^{k} \mathrm{e}^{\int \frac{a x^{k+2} \cot (x)^{m}-2 k-2}{x} d x} d x\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]==-(k+1) * x^{\wedge} k * y[x] \sim 2+a * x^{\wedge}(k+1) * \operatorname{Cot}[x] \curvearrowright m * y[x]-a * \operatorname{Cot}[x] \sim m, y[x], x\), IncludeSingularSol
Not solved

\section*{12.7 problem 44}
12.7.1 Solving as riccati ode
. 1107
Internal problem ID [10542]
Internal file name [OUTPUT/9489_Monday_June_06_2022_02_51_58_PM_60994990/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]

```

Unable to solve or complete the solution.
\[
y^{\prime}-a \cot (\lambda x+\mu)^{k}\left(y-b x^{n}-c\right)^{2}=b x^{n-1} n
\]

\subsection*{12.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2 n} \cot (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cot (\lambda x+\mu)^{k} a b c-2 x^{n} \cot (\lambda x+\mu)^{k} a b y+\cot (\lambda x+\mu)^{k} a c^{2}-2 \cot (\lambda x
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=x^{2 n}\left(-\frac{1}{\cot (\mu)+\cot (\lambda x)}+\frac{\cot (\mu) \cot (\lambda x)}{\cot (\mu)+\cot (\lambda x)}\right)^{k} a b^{2}+2 x^{n}\left(-\frac{1}{\cot (\mu)+\cot (\lambda x)}+\frac{\cot (\mu) \cot (\lambda x)}{\cot (\mu)+\cot (\lambda x}\right.
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=x^{2 n} \cot (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cot (\lambda x+\mu)^{k} a b c+\cot (\lambda x+\mu)^{k} a c^{2}+\) \(b x^{n-1} n, f_{1}(x)=-2 a x^{n} b \cot (\lambda x+\mu)^{k}-2 a \cot (\lambda x+\mu)^{k} c\) and \(f_{2}(x)=a \cot (\lambda x+\mu)^{k}\).

Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \cot (\lambda x+\mu)^{k} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{a \cot (\lambda x+\mu)^{k} k \lambda\left(-1-\cot (\lambda x+\mu)^{2}\right)}{\cot (\lambda x+\mu)} \\
f_{1} f_{2} & =\left(-2 a x^{n} b \cot (\lambda x+\mu)^{k}-2 a \cot (\lambda x+\mu)^{k} c\right) a \cot (\lambda x+\mu)^{k} \\
f_{2}^{2} f_{0} & =a^{2} \cot (\lambda x+\mu)^{2 k}\left(x^{2 n} \cot (\lambda x+\mu)^{k} a b^{2}+2 x^{n} \cot (\lambda x+\mu)^{k} a b c+\cot (\lambda x+\mu)^{k} a c^{2}+b x^{n-1} n\right)
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(a \cot (\lambda x+\mu)^{k} u^{\prime \prime}(x)-\left(\frac{a \cot (\lambda x+\mu)^{k} k \lambda\left(-1-\cot (\lambda x+\mu)^{2}\right)}{\cot (\lambda x+\mu)}+\left(-2 a x^{n} b \cot (\lambda x+\mu)^{k}-2 a \cot (\lambda x\right.\right.\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (d) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve (diff \((y(x), x)=a * \cot (\operatorname{lambda} * x+m u)^{\wedge} k *\left(y(x)-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y(x)\), singsol=all)
\[
y(x)=b x^{n}+c+\frac{1}{c_{1}-a\left(\int\left(\frac{-1+\cot (\mu) \cot (x \lambda)}{\cot (\mu)+\cot (x \lambda)}\right)^{k} d x\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 5.758 (sec). Leaf size: 74
DSolve \(\left[y y^{\prime}[x]==a * \operatorname{Cot}[\backslash[\text { Lambda }] * x+m u]^{\wedge} k *\left(y[x]-b * x^{\wedge} n-c\right)^{\wedge} 2+b * n * x^{\wedge}(n-1), y[x], x\right.\), IncludeSingularSol
\[
\begin{aligned}
& y(x) \rightarrow \frac{1}{\frac{a \cot ^{k+1}(\mu+\lambda x) \text { Hypergeometric } 2 \mathrm{~F} 1\left(1, \frac{k+1}{2}, \frac{k+3}{2},-\cot ^{2}(\mu+x \lambda)\right)}{(k+1) \lambda}+c_{1}}+b x^{n}+c \\
& y(x) \rightarrow b x^{n}+c
\end{aligned}
\]

\section*{12.8 problem 45}
12.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1110

Internal problem ID [10543]
Internal file name [OUTPUT/9490_Monday_June_06_2022_02_53_05_PM_83446516/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime} x-a \cot (\lambda x)^{m} y^{2}-k y=a b^{2} x^{2 k} \cot (\lambda x)^{m}
\]

\subsection*{12.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a \cot (\lambda x)^{m} y^{2}+k y+a b^{2} x^{2 k} \cot (\lambda x)^{m}}{x}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a b^{2} x^{2 k} \cot (\lambda x)^{m}}{x}+\frac{a \cot (\lambda x)^{m} y^{2}}{x}+\frac{k y}{x}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{a b^{2} x^{2 k} \cot (\lambda x)^{m}}{x}, f_{1}(x)=\frac{k}{x}\) and \(f_{2}(x)=\frac{a \cot (\lambda x)^{m}}{x}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{a \cot (\lambda x)^{m} u}{x}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{a \cot (\lambda x)^{m} m \lambda\left(-1-\cot (\lambda x)^{2}\right)}{\cot (\lambda x) x}-\frac{a \cot (\lambda x)^{m}}{x^{2}} \\
f_{1} f_{2} & =\frac{k a \cot (\lambda x)^{m}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{a^{3} \cot (\lambda x)^{3 m} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\frac{a \cot (\lambda x)^{m} u^{\prime \prime}(x)}{x}-\left(\frac{a \cot (\lambda x)^{m} m \lambda\left(-1-\cot (\lambda x)^{2}\right)}{\cot (\lambda x) x}-\frac{a \cot (\lambda x)^{m}}{x^{2}}+\frac{k a \cot (\lambda x)^{m}}{x^{2}}\right) u^{\prime}(x)+\frac{a^{3} \cot (\lambda 2}{}
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}
\]

The above shows that
\[
u^{\prime}(x)=i a b x^{k-1} \cot (\lambda x)^{m}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{i b x^{k-1}\left(c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}-c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}\right) x}{c_{1} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}+c_{2} \mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}-\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}\right)}{c_{3} \mathrm{e}^{i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}+\mathrm{e}^{-i a b\left(\int x^{k-1} \cot (\lambda x)^{m} d x\right)}}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini <- Chini successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 31
dsolve \(\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \cot (\operatorname{lambda} \mathrm{x})^{\wedge} \mathrm{m} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{k} * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \cot (\operatorname{lambda} * \mathrm{x})^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\right.\), si
\[
y(x)=-\tan \left(-a b\left(\int x^{-1+k} \cot (x \lambda)^{m} d x\right)+c_{1}\right) b x^{k}
\]

Solution by Mathematica
Time used: 1.805 (sec). Leaf size: 50
DSolve \(\left[\mathrm{x} * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]==\mathrm{a} * \operatorname{Cot}[\backslash[\right.\) Lambda \(] * \mathrm{x}]{ }^{\wedge} \mathrm{m} * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{Cot}[\backslash[\) Lambda \(] * \mathrm{x}] \wedge \mathrm{m}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\[
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} a \cot ^{m}(\lambda K[1]) K[1]^{k-1} d K[1]+c_{1}\right)
\]

\section*{12.9 problem 46}
12.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1113

Internal problem ID [10544]
Internal file name [OUTPUT/9491_Monday_June_06_2022_02_53_25_PM_4136660/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-4. Equations with cotangent.
Problem number: 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.
\[
(a \cot (\lambda x)+b) y^{\prime}-y^{2}-c \cot (x \mu) y=-d^{2}+c d \cot (x \mu)
\]

\subsection*{12.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+c \cot (x \mu) y-d^{2}+c d \cot (x \mu)}{a \cot (\lambda x)+b}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{c d \cot (x \mu)}{a \cot (\lambda x)+b}+\frac{c \cot (x \mu) y}{a \cot (\lambda x)+b}-\frac{d^{2}}{a \cot (\lambda x)+b}+\frac{y^{2}}{a \cot (\lambda x)+b}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\frac{-d^{2}+c d \cot (x \mu)}{a \cot (\lambda x)+b}, f_{1}(x)=\frac{c \cot (x \mu)}{a \cot (\lambda x)+b}\) and \(f_{2}(x)=\frac{1}{a \cot (\lambda x)+b}\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{a \cot (\lambda x)+b}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-\frac{\lambda\left(-1-\cot (\lambda x)^{2}\right) a}{(a \cot (\lambda x)+b)^{2}} \\
f_{1} f_{2} & =\frac{c \cot (x \mu)}{(a \cot (\lambda x)+b)^{2}} \\
f_{2}^{2} f_{0} & =\frac{-d^{2}+c d \cot (x \mu)}{(a \cot (\lambda x)+b)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\frac{u^{\prime \prime}(x)}{a \cot (\lambda x)+b}-\left(-\frac{\lambda\left(-1-\cot (\lambda x)^{2}\right) a}{(a \cot (\lambda x)+b)^{2}}+\frac{c \cot (x \mu)}{(a \cot (\lambda x)+b)^{2}}\right) u^{\prime}(x)+\frac{\left(-d^{2}+c d \cot (x \mu)\right) u(x)}{(a \cot (\lambda x)+b)^{3}}=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: <- Riccati particular case Kamke (b) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 366
dsolve \(\left((a * \cot (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+c * \cot (m u * x) * y(x)-d^{\wedge} 2+c * d * \cot (m u * x), y(x)\right.\), sing
\(y(x)\)
\(=\frac{-\mathrm{e}^{\frac{\lambda c\left(a^{2}+b^{2}\right)\left(\int \frac{\cot (x \mu)}{a \cot (x \lambda)+b} d x\right)-2 d\left(\operatorname{arccot}(\cot (x \lambda))-\frac{\pi}{2}\right) b}{\lambda\left(a^{2}+b^{2}\right)}}\left(\csc (x \lambda)^{2}\right)^{-\frac{a d}{\lambda\left(a^{2}+b^{2}\right)}}(a \cot (x \lambda)+b)^{\frac{2 a d}{\lambda\left(a^{2}+b^{2}\right)}}-d\left(\int(a \cot (x \lambda)\right.}{\int(a \cot (x \lambda)+b)^{\frac{\left(-a^{2}-b^{2}\right) \lambda+2 a d}{\lambda\left(a^{2}+b^{2}\right)}} \mathrm{e}^{\frac{\lambda c\left(a^{2}+b^{2}\right)\left(\int \frac{\cot (x \mu)}{a \cot (x \lambda)+b} d x\right)-2 d(\operatorname{arc}}{\lambda\left(a^{2}+b^{2}\right)}}}\)
\(\checkmark\) Solution by Mathematica
Time used: 87.594 (sec). Leaf size: 799
DSolve \(\left[\left(a * \operatorname{Cot}[\backslash[\operatorname{Lambda]} * x]+b) * y '[x]==y[x] \_2+c * \operatorname{Cot}[\backslash[M u] * x] * y[x]-d^{\wedge} 2+c * d * \operatorname{Cot}[\backslash[M u] * x], y[x], x\right.\right.\),



13 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
13.1 problem 47 ..... 1118
13.2 problem 48 ..... 1123
13.3 problem 49 ..... 1128
13.4 problem 50 ..... 1133
13.5 problem 51 ..... 1138
13.6 problem 52 ..... 1143
13.7 problem 53 ..... 1148
13.8 problem 54 ..... 1153
13.9 problem 55 ..... 1158
13.10problem 56 ..... 1163
13.11 problem 57 ..... 1165
13.12problem 58 ..... 1170
13.13problem 59 ..... 1175

\section*{13.1 problem 47}
13.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1118

Internal problem ID [10545]
Internal file name [OUTPUT/9492_Monday_June_06_2022_02_54_38_PM_68260555/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=\lambda^{2}+c \sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}
\]

\subsection*{13.1.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda^{2}+c \sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+\lambda^{2}+\frac{c \sin (\lambda x)^{n} \cos (\lambda x)^{-n}}{\cos (\lambda x)^{4}}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\lambda^{2}+c \sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\lambda^{2}+c \sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(\lambda^{2}+c \sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\operatorname{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{\_} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\]

The above shows that
\[
u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}-Y(x) c+_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{\_} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}-Y(x) c+_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{\_} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4}-Y(x) c+_{-} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{\_} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \_Y(x) c+_{-} Y(x) \lambda^{2}+_{\not} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\sin (\lambda x)^{n} \cos (\lambda x)^{-n-4} \__{-} Y(x) c+_{\_} Y(x) \lambda^{2}+_{\_} Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-lambda^2-c*sin(lambda*x)^n*c
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in }\textrm{x}\mathrm{ and }\textrm{y}(\textrm{x}

```

X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2+l a m b d a \wedge 2+c * \sin (\operatorname{lambda} * x) \wedge n * \cos (\operatorname{lambda} * x)^{\wedge}(-n-4), y(x)\right.\), singsol=all

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([y\) ' \([x]==y[x] \sim 2+\backslash[\) Lambda] \(\sim 2+c * \operatorname{Sin}[\backslash[\) Lambda \(] * x] \wedge n * \operatorname{Cos}[\backslash[\) Lambda] \(* x] \sim(-n-4), y[x], x\), Include

Not solved

\section*{13.2 problem 48}
13.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1123

Internal problem ID [10546]
Internal file name [OUTPUT/9493_Monday_June_06_2022_02_55_37_PM_29498587/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2} \sin (\lambda x) a=b \sin (\lambda x) \cos (\lambda x)^{n}
\]

\subsection*{13.2.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2} \sin (\lambda x) a+b \sin (\lambda x) \cos (\lambda x)^{n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2} \sin (\lambda x) a+b \sin (\lambda x) \cos (\lambda x)^{n}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \sin (\lambda x) \cos (\lambda x)^{n}, f_{1}(x)=0\) and \(f_{2}(x)=a \sin (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{a \sin (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =a \lambda \cos (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2} \sin (\lambda x)^{3} b \cos (\lambda x)^{n}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
a \sin (\lambda x) u^{\prime \prime}(x)-a \lambda \cos (\lambda x) u^{\prime}(x)+a^{2} \sin (\lambda x)^{3} b \cos (\lambda x)^{n} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\sqrt{\cos (\lambda x)}\left(c_{1} \text { BesselJ }\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)\right. \\
&\left.+c_{2} \operatorname{BesselY}\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{\sin (\lambda x) \lambda\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} c_{1}+\cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} \operatorname{Bessel} Y\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}}}{\sqrt{\cos (\lambda x)}}\right.\right.}{\sqrt{2}}\)

Using the above in (1) gives the solution
\(y=\)
\(-\frac{\lambda\left(\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} c_{1}+\cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} \operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{2}}{2+n}\right.\right.}{\cos (\lambda x) a\left(c_{1} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)+c_{2} \mathrm{I}\right.}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
=\frac{\left(-\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} c_{3}-\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)+\operatorname{Bessel}\right)}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\left(-\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} c_{3}-\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)+\operatorname{Bessel}\right)}\)

\section*{Verification of solutions}
\[
=\frac{\left(-\operatorname{BesselJ}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \cos (\lambda x)^{1+\frac{n}{2}} \sqrt{\frac{a b}{\lambda^{2}}} c_{3}-\operatorname{BesselY}\left(\frac{n+3}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right) \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)\right.}{\left(c_{3} \operatorname{BesselJ}\left(\frac{1}{2+n}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (\lambda x)^{1+\frac{n}{2}}}{2+n}\right)+\operatorname{Bessel}\right)}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*cos(lambda*x)*(diff(y(x
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
Change of variables used:
[x = arccos(t)/lambda]
Linear ODE actually solved:
4*a*b*t^n*(-t^2+1)^(3/2)*u(t)+4*(-t^2+1)^(3/2)*lambda^2*diff(diff(u(t),t),t) =
<- change of variables successful
<- Riccati to 2nd Order successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 256
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \sin (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge}{ }^{2}+\mathrm{b} * \sin (\operatorname{lambda} \mathrm{x}) * \cos (\operatorname{lambda} * \mathrm{x}) \wedge \mathrm{n}, \mathrm{y}(\mathrm{x})\right.\), singsol=all
\(y(x)\)
\(=\frac{\left(-\sqrt{\frac{a b}{\lambda^{2}}} \operatorname{BesselY}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (x \lambda)^{\frac{n}{2}+1}}{n+2}\right) \cos (x \lambda)^{\frac{n}{2}+1} c_{1}-\operatorname{BesselJ}\left(\frac{3+n}{n+2}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (x \lambda)^{\frac{n}{2}+1}}{n+2}\right) \sqrt{\frac{a b}{\lambda^{2}}} \cos (x \lambda)\right.}{\left(\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{\frac{a b}{\lambda^{2}}} \cos (x \lambda)^{\frac{n}{2}+1}}{n+2}\right) c_{1}+\operatorname{Bessel} .\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.409 (sec). Leaf size: 695
DSolve [y' \([x]==a * \operatorname{Sin}[\backslash[\) Lambda] \(* x] * y[x] \sim 2+b * \operatorname{Sin}[\backslash[\) Lambda \(] * x] * \operatorname{Cos}[\backslash[\) Lambda \(] * x] \sim n, y[x], x\), Include
\(y(x)\)
\(\rightarrow \underline{\sqrt{a} \sqrt{b} \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \cos ^{\frac{n}{2}}(\lambda x) \operatorname{BesselJ}\left(\frac{1}{n+2}-1, \frac{2 \sqrt{a} \sqrt{b} \cos ^{\frac{n}{2}+1}(x \lambda)}{n \lambda+2 \lambda}\right)-\sqrt{a} \sqrt{b} \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \cos ^{\frac{n}{2}}}\)
\(y(x) \rightarrow \frac{\left.\frac{\sqrt{a} \sqrt{b} \cos ^{\frac{n}{2}}(\lambda x)\left(\operatorname{BesselJ}\left(-\frac{n+3}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cos \frac{n}{2}+1}{n \lambda+2 \lambda}\right)-\operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cos \frac{n}{2}+1}{n \lambda+2 \lambda}(x \lambda)\right.\right.}{2 \lambda+2}\right)}{\operatorname{BesselJ}\left(-\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \cos \frac{n}{2}+1}{n \lambda+2 \lambda}\right)}+\lambda \sec (\lambda x)\)

\section*{13.3 problem 49}
13.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1128

Internal problem ID [10547]
Internal file name [OUTPUT/9494_Monday_June_06_2022_02_55_40_PM_10899333/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\lambda \sin (\lambda x) y^{2}-a \cos (\lambda x)^{n} y=-a \cos (\lambda x)^{n-1}
\]

\subsection*{13.3.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \sin (\lambda x) y^{2}+a \cos (\lambda x)^{n} y-a \cos (\lambda x)^{n-1}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\lambda \sin (\lambda x) y^{2}+a \cos (\lambda x)^{n} y-\frac{a \cos (\lambda x)^{n}}{\cos (\lambda x)}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a \cos (\lambda x)^{n-1}, f_{1}(x)=a \cos (\lambda x)^{n}\) and \(f_{2}(x)=\lambda \sin (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sin (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cos (\lambda x) \\
f_{1} f_{2} & =a \cos (\lambda x)^{n} \lambda \sin (\lambda x) \\
f_{2}^{2} f_{0} & =-\lambda^{2} \sin (\lambda x)^{2} a \cos (\lambda x)^{n-1}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\lambda \sin (\lambda x) u^{\prime \prime}(x)-\left(\lambda^{2} \cos (\lambda x)+a \cos (\lambda x)^{n} \lambda \sin (\lambda x)\right) u^{\prime}(x)-\lambda^{2} \sin (\lambda x)^{2} a \cos (\lambda x)^{n-1} u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=\operatorname{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a\right.\right. \\
&\left.\left.-\cot (\lambda x) \_Y^{\prime}(x) \lambda+Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a\right.\right. \\
&\left.\left.\quad-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\},\left\{\_Y(x)\right\}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x)_{-} Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right.\right.}{\lambda \sin (\lambda x) \operatorname{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_Y^{\prime}\right.\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\)
\[
-\frac{\csc (\lambda x)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_\right)\right.\right.}{\operatorname{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\}\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y=\)
\[
-\frac{\csc (\lambda x)\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda_{\_} Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x)_{\_} Y^{\prime}(x) \lambda+\__{-}\right)\right.\right.}{\operatorname{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n}-Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\}\right.}
\]

Verification of solutions
\[
\begin{aligned}
& y= \\
& -\frac{\csc (\lambda x)\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_\right)\right.\right.}{\operatorname{DESol}\left(\left\{-\sin (\lambda x) \cos (\lambda x)^{n-1} a \lambda \_Y(x)-\cos (\lambda x)^{n} \_Y^{\prime}(x) a-\cot (\lambda x) \_Y^{\prime}(x) \lambda+\_Y^{\prime \prime}(x)\right\}\right.}
\end{aligned}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (cos(lambda*x)^n*sin(lambda*x)
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in }x\mathrm{ and }y(x
trying to convert to a linear ODE with constant coefficients

```

X Solution by Maple


No solution found
\(\checkmark\) Solution by Mathematica
Time used: 150.623 (sec). Leaf size: 467
DSolve \([y\) ' \([x]==\backslash[\) Lambda] \(* \operatorname{Sin}[\backslash[\) Lambda] \(* x] * y[x] \wedge 2+a * \operatorname{Cos}[\backslash[\) Lambda] \(* x] \wedge n * y[x]-a * \operatorname{Cos}[\backslash[\) Lambda] \(* x]\)

Solve \(\left[\int_{1}^{x}\right.\)
\(-\frac{\exp \left(-\frac{a \cos ^{n+1}(\lambda K[1]) \csc (\lambda K[1]) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{n+1}{2}, \frac{n+3}{2}, \cos ^{2}(\lambda K[1])\right) \sqrt{\sin ^{2}(\lambda K[1])}}{(n+1) \lambda}\right) \tan (\lambda K[1])(-a \csc (\lambda K[1]) \operatorname{cc} 0 .}{}\) \((\cos (\lambda K[1]) y(x)-1)^{2}\)
\(+\int_{1}^{y(x)}\left(\frac{\exp \left(-\frac{a \cos ^{n+1}(x \lambda) \csc (x \lambda) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{n+1}{2}, \frac{n+3}{2}, \cos ^{2}(x \lambda)\right) \sqrt{\sin ^{2}(x \lambda)}}{(n+1) \lambda}\right)}{(\cos (x \lambda) K[2]-1)^{2}}\right.\)
\(-\int_{1}^{x}\left(\frac{2 \exp \left(-\frac{a \cos ^{n+1}(\lambda K[1]) \csc (\lambda K[1]) \text { Hypergeometric2F } 1\left(\frac{1}{2}, \frac{n+1}{2}, \frac{n+3}{2}, \cos ^{2}(\lambda K[1])\right) \sqrt{\sin ^{2}(\lambda K[1])}}{(n+1) \lambda}\right)\left(-a \csc (\lambda K[1]) \cos ^{n}(\lambda\right.}{(\cos (\lambda K[1]) K[2]-1)^{3}}\right.\)

\section*{13.4 problem 50}
13.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1133

Internal problem ID [10548]
Internal file name [OUTPUT/9495_Monday_June_06_2022_02_56_33_PM_78479147/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2} \cos (\lambda x) a=b \cos (\lambda x) \sin (\lambda x)^{n}
\]

\subsection*{13.4.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2} \cos (\lambda x) a+b \cos (\lambda x) \sin (\lambda x)^{n}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2} \cos (\lambda x) a+b \cos (\lambda x) \sin (\lambda x)^{n}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b \cos (\lambda x) \sin (\lambda x)^{n}, f_{1}(x)=0\) and \(f_{2}(x)=\cos (\lambda x) a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\cos (\lambda x) a u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =-a \lambda \sin (\lambda x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\cos (\lambda x)^{3} a^{2} b \sin (\lambda x)^{n}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\cos (\lambda x) a u^{\prime \prime}(x)+a \lambda \sin (\lambda x) u^{\prime}(x)+\cos (\lambda x)^{3} a^{2} b \sin (\lambda x)^{n} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\(u(x)\)
\(=\frac{-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \text { BesselI }\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{1}{4+2 n}}+c_{2} \sin (\lambda x) \operatorname{BesselI}\left(\frac{1}{2+n}, 2 \sqrt{-} .(2+n) \Gamma\left(\frac{n+3}{2+n}\right)\right.}{(2+1}\)
The above shows that
\(u^{\prime}(x)\)
\(=\underline{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cos (\lambda x)(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\cos (\lambda x) c_{2} \operatorname{BesselI}( \right.}\)

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cos (\lambda x)(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+\cos (\lambda x) c_{2} \operatorname{Bessel}\right.}{\cos (\lambda x) a\left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)\right.}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
\begin{aligned}
& y= \\
& -\frac{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\csc (\lambda x) \pi c_{3} \csc \left(\frac{\pi(n+3)}{2+n}\right)(-\right.}{\left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right.\right.}
\end{aligned}
\]

Summary
The solution(s) found are the following
\(y=\)
\[
\begin{equation*}
-\frac{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\csc (\lambda x) \pi c_{3} \csc \left(\frac{\pi(n+3)}{2+n}\right)(-\right.}{\left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right.\right.} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y=\)
\[
-\frac{\left(\Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}}(2+n) \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)-\csc (\lambda x) \pi c_{3} \csc \left(\frac{\pi(n+3)}{2+n}\right)(-\right.}{\left(-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{3} \operatorname{BesselI}\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a b \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right.\right.}
\]

Verified OK.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -lambda*sin(lambda*x)*(diff(y
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the OF1 ODE
<- Kummer successful
<- special function solution successful
Change of variables used:
[x = arccos(t)/lambda]
Linear ODE actually solved:
4*a*b*(-t^2+1)^(1/2*n)*t^3*u(t)-4*lambda^2*diff (u(t) ,t)+(-4*lambda^2*t^3+4*lambd
<- change of variables successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 949
dsolve \(\left(\operatorname{diff}(y(x), x)=a * \cos (\operatorname{lambda} * x) * y(x)^{\wedge} 2+b * \cos (\operatorname{lambda} * x) * \sin (\operatorname{lambda} * x)^{\wedge} n, y(x)\right.\), singsol=all

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 1.376 (sec). Leaf size: 633
DSolve [y' \([\mathrm{x}]==\mathrm{a} * \operatorname{Cos}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2+\mathrm{b} * \operatorname{Cos}[\backslash[\) Lambda \(] * \mathrm{x}] * \operatorname{Sin}[\backslash[\) Lambda] \(* \mathrm{x}] \sim \mathrm{n}, \mathrm{y}[\mathrm{x}], \mathrm{x}\), Include
\(y(x)\)
\(\rightarrow \xrightarrow{\csc (\lambda x)\left(-\lambda \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sin ^{\frac{n}{2}+1}(x \lambda)}{n \lambda+2 \lambda}\right)+\sqrt{a} \sqrt{b} \sin ^{\frac{n}{2}+1}(\lambda x)\left(\operatorname{Gamma}\left(1+\frac{1}{n+2}\right)\right.\right.}\)
\(\left.y(x) \rightarrow \frac{\left.\frac{\sqrt{a} \sqrt{b} \sin ^{\frac{n}{2}}(\lambda x)\left(\operatorname{BesselJ}\left(\frac{n+1}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sin }{n \lambda+2 \lambda}(x \lambda)\right.\right.}{n \lambda}\right)-\operatorname{BesselJ}\left(-\frac{n+3}{n+2}, \frac{2 \sqrt{a} \sqrt{b} \sin }{n \lambda+2 \lambda}(x \lambda)\right.}{n \lambda+2}\right)-\lambda \csc (\lambda x)\)

\section*{13.5 problem 51}
13.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1138

Internal problem ID [10549]
Internal file name [OUTPUT/9496_Monday_June_06_2022_02_57_09_PM_54105406/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-\lambda \sin (\lambda x) y^{2}-a x^{n} \cos (\lambda x) y=-x^{n} a
\]

\subsection*{13.5.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \sin (\lambda x) y^{2}+a x^{n} \cos (\lambda x) y-x^{n} a
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\lambda \sin (\lambda x) y^{2}+a x^{n} \cos (\lambda x) y-x^{n} a
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-x^{n} a, f_{1}(x)=x^{n} \cos (\lambda x) a\) and \(f_{2}(x)=\lambda \sin (\lambda x)\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sin (\lambda x) u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cos (\lambda x) \\
f_{1} f_{2} & =x^{n} \cos (\lambda x) a \lambda \sin (\lambda x) \\
f_{2}^{2} f_{0} & =-x^{n} a \lambda^{2} \sin (\lambda x)^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(\lambda \sin (\lambda x) u^{\prime \prime}(x)-\left(x^{n} \cos (\lambda x) a \lambda \sin (\lambda x)+\lambda^{2} \cos (\lambda x)\right) u^{\prime}(x)-x^{n} a \lambda^{2} \sin (\lambda x)^{2} u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=-\cos (\lambda x)\left(c_{2} \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-c_{1}\right)
\]

The above shows that
\[
\begin{aligned}
u^{\prime}(x)=-\lambda \sin (\lambda x)( & \cos (\lambda x) c_{2} \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \\
& \left.-c_{2} \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)+c_{1}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\(y=-\frac{\cos (\lambda x) c_{2} \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x}-c_{2} \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)+c_{1}}{\cos (\lambda x)\left(c_{2} \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-c_{1}\right)}\)
Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x}}{\lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-c_{3}}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x}}{\lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-c_{3}}\)
Verification of solutions
\(y=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x}}{\lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (\lambda x) a+2 \tan (\lambda x) \lambda\right) d x} \sin (\lambda x) d x\right)-c_{3}}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = cos(lambda*x)*(a*x^n*sin(lambd
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
<- linear symmetries successful
Change of variables used:
[x = arccos(t)/lambda]
Linear ODE actually solved:
(2*(-t^2+1)^(1/2)*a*(arccos(t)/lambda)^n*t^2-2*(-t^2+1)^(1/2)*a*(arccos(t)/lambd
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 103
dsolve \(\left(\operatorname{diff}(y(x), x)=l a m b d a * \sin (\operatorname{lambda} a x) * y(x)^{\wedge} 2+a * x^{\wedge} n * \cos (\operatorname{lambda} * x) * y(x)-a * x^{\wedge} n, y(x)\right.\), singsol
\(y(x)\)
\(=\frac{-c_{1} \mathrm{e}^{\int\left(x^{n} \cos (x \lambda) a+2 \tan (x \lambda) \lambda\right) d x}+\sec (x \lambda) \lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (x \lambda) a+2 \tan (x \lambda) \lambda\right) d x} \sin (x \lambda) d x\right) c_{1}-\sec (x \lambda)}{\lambda\left(\int \mathrm{e}^{\int\left(x^{n} \cos (x \lambda) a+2 \tan (x \lambda) \lambda\right) d x} \sin (x \lambda) d x\right) c_{1}-1}\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y^{\prime}[x]==\backslash[\right.\) Lambda \(] * \operatorname{Sin}[\backslash[\operatorname{Lambda}] * x] * y[x] \sim 2+a * x^{\wedge} n * \operatorname{Cos}[\backslash[\) Lambda] \(* x] * y[x]-a * x \wedge n, y[x], x\), Inc
Not solved

\section*{13.6 problem 52}
13.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1143

Internal problem ID [10550]
Internal file name [OUTPUT/9497_Monday_June_06_2022_02_57_18_PM_24345774/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 52 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
\sin (2 x)^{n+1} y^{\prime}-a y^{2} \sin (x)^{2 n}=b \cos (x)^{2 n}
\]

\subsection*{13.6.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\left(a y^{2} \sin (x)^{2 n}+b \cos (x)^{2 n}\right) \sin (2 x)^{-n-1}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=\frac{a y^{2} \sin (x)^{2 n}\left(\frac{\sin (2 x)}{2}\right)^{-n} 2^{-n}}{2 \cos (x) \sin (x)}+\frac{b \cos (x)^{2 n}\left(\frac{\sin (2 x)}{2}\right)^{-n} 2^{-n}}{2 \cos (x) \sin (x)}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=\sin (2 x)^{-n-1} \cos (x)^{2 n} b, f_{1}(x)=0\) and \(f_{2}(x)=\sin (2 x)^{-n-1} \sin (x)^{2 n} a\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\sin (x)^{2 n} a \sin (2 x)^{-n-1} u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{2 \sin (2 x)^{-n-1} \sin (x)^{2 n} n \cos (x) a}{\sin (x)}-\frac{2 \sin (x)^{2 n} a \sin (2 x)^{-n-1}(n+1) \cos (2 x)}{\sin (2 x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\sin (x)^{4 n} a^{2} \sin (2 x)^{-3-3 n} b \cos (x)^{2 n}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
\sin (x)^{2 n} a \sin (2 x)^{-n-1} u^{\prime \prime}(x)-\left(\frac{2 \sin (2 x)^{-n-1} \sin (x)^{2 n} n \cos (x) a}{\sin (x)}-\frac{2 \sin (x)^{2 n} a \sin (2 x)^{-n-1}(n+1) \cos }{\sin (2 x)}\right.
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=\cot (x)^{-\frac{n}{2}}\left(c_{1} \cot (x)^{\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}}+c_{2} \cot (x)^{-\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}}\right)
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{(\cot (x)+\tan (x))\left(c_{2}\left(n+\sqrt{-b 4^{-n} a+n^{2}}\right) \cot (x)^{-\frac{\sqrt{-b 4-n} a+n^{2}}{2}}-\cot (x)^{\frac{\sqrt{-b 4-n} a+n^{2}}{2}} c_{1}\left(-n+\sqrt{-b 4^{-n} a} .\right.\right.}{2}\)
Using the above in (1) gives the solution
\(y=\)
\[
-\frac{(\cot (x)+\tan (x))\left(c_{2}\left(n+\sqrt{-b 4^{-n} a+n^{2}}\right) \cot (x)^{-\frac{\sqrt{-b 4^{-n} a+n^{2}}}{2}}-\cot (x)^{\frac{\sqrt{-b 4^{-n} a+n^{2}}}{2}} c_{1}\left(-n+\sqrt{-b 4^{-n}}\right.\right.}{2 a\left(c_{1} \cot (x)^{\frac{\sqrt{-b 4-n} a+n^{2}}{2}}+c_{2} \cot (x)^{-\frac{\sqrt{-b 4^{-n} n_{a+n^{2}}}}{2}}\right)}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
\begin{aligned}
& y= \\
& -\frac{\sin (x)^{-2 n} \sec (x) \csc (x) \sin (2 x)^{n+1}\left(\left(n+\sqrt{-b 4^{-n} a+n^{2}}\right) \cot (x)^{-\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}}-\cot (x)^{\frac{\sqrt{-b 4-n_{a+n^{2}}^{2}}}{2}} c_{3}( \right.}{2\left(c_{3} \cot (x)^{\frac{\sqrt{-b 4-n} a+n^{2}}{2}}+\cot (x)^{-\frac{\sqrt{-b 4-n} a+n^{2}}{2}}\right) a}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
y=
\]
\[
-\frac{\sin (x)^{-2 n} \sec (x) \csc (x) \sin (2 x)^{n+1}\left(\left(n+\sqrt{-b 4^{-n} a+n^{2}}\right) \cot (x)^{-\frac{\sqrt{-b 4^{-n} a+n^{2}}}{2}}-\cot (x)^{\frac{\sqrt{-b 4}-n_{a+n^{2}}^{2}}{2}} c_{3}( \right.}{2\left(c_{3} \cot (x)^{\frac{\sqrt{-b 4-n} a+n^{2}}{2}}+\cot (x)^{-\frac{\sqrt{-b 4^{-n} a+n^{2}}}{2}}\right) a}
\]

\section*{Verification of solutions}
\(y=\)
\[
-\frac{\sin (x)^{-2 n} \sec (x) \csc (x) \sin (2 x)^{n+1}\left(\left(n+\sqrt{-b 4^{-n} a+n^{2}}\right) \cot (x)^{-\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}}-\cot (x)^{\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}} c_{3}\left(\frac{\cot }{}(x)^{-\frac{\sqrt{-b 4-n_{a+n^{2}}}}{2}}\right) a\right.}{2\left(c_{3} \cot (x)^{\frac{\sqrt{-b 4-n} a+n^{2}}{2}}+\cos \right.}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (sin(x)^2*n+\operatorname{cos}(x)^2*n+\operatorname{sin}(x)^
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
b*a*(-t^2+1)^n*t^(2*n)*u(t)+2^(2*n+2)*t^(2*n+1)*(-t^2+1)^(n+1)*(-3*t^2+n+1)*diff
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 232
dsolve \(\left(\sin (2 * x)^{\wedge}(n+1) * \operatorname{diff}(y(x), x)=a * y(x)^{\wedge} 2 * \sin (x)^{\wedge}(2 * n)+b * \cos (x)^{\wedge}(2 * n), y(x), \operatorname{singsol}=a l l\right)\)
\(y(x)=\)
\(-\frac{\csc (x) \sin (2 x)^{n}\left(\sin (x)^{\frac{\sqrt{n^{2}-4^{-n} a b}}{2}}\left(n+\sqrt{n^{2}-4^{-n} a b}\right) \cos (x)^{-\frac{\sqrt{n^{2}-4^{-n} a b}}{2}}\right.}{l} \cos (x)^{\frac{\sqrt{n^{2}-4^{-n} a b}}{2}} \sin (x)^{-\frac{\sqrt{n}}{}}\)
\(\checkmark\) Solution by Mathematica
Time used: 33.745 (sec). Leaf size: 132
DSolve \(\left[\operatorname{Sin}[2 * x]^{\wedge}(n+1) * y^{\prime}[x]==a * y[x]^{\wedge} 2 * \operatorname{Sin}[x]^{\wedge}(2 * n)+b * \operatorname{Cos}[x]^{\wedge}(2 * n), y[x], x\right.\), IncludeSingularSolu

Solve \(\left[\int_{1}^{\sqrt{\frac{a \cos ^{-2 n}(x) \sin ^{2 n}(x)}{b}} y(x)} \frac{1}{K[1]^{2}-\sqrt{\frac{2^{2 n+2} n^{2}}{a b}} K[1]+1} d K[1]=\frac{1}{2} b \sin ^{-n}(2 x) \cos ^{2 n}(x)\left(\log \left(\tan \left(\frac{x}{2}\right)\right)\right.\right.\)
\(\left.\left.-\log \left(\cos (x) \sec ^{2}\left(\frac{x}{2}\right)\right)\right) \sqrt{\frac{a \sin ^{2 n}(x) \cos ^{-2 n}(x)}{b}}+c_{1}, y(x)\right]\)

\section*{13.7 problem 53}
13.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1148

Internal problem ID [10551]
Internal file name [OUTPUT/9498_Monday_June_06_2022_02_58_18_PM_50440844/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 53 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}+\tan (x) y=a(1-a) \cot (x)^{2}
\]

\subsection*{13.7.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a^{2} \cot (x)^{2}+\cot (x)^{2} a-\tan (x) y+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-a^{2} \cot (x)^{2}+\cot (x)^{2} a-\tan (x) y+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-a^{2} \cot (x)^{2}+\cot (x)^{2} a, f_{1}(x)=-\tan (x)\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\tan (x) \\
f_{2}^{2} f_{0} & =-a^{2} \cot (x)^{2}+\cot (x)^{2} a
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\tan (x) u^{\prime}(x)+\left(-a^{2} \cot (x)^{2}+\cot (x)^{2} a\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
u(x)=c_{1} \sin (x)^{a}+c_{2} \sin (x)^{1-a}
\]

The above shows that
\[
u^{\prime}(x)=\cot (x)\left(-c_{2}(-1+a) \sin (x)^{1-a}+c_{1} \sin (x)^{a} a\right)
\]

Using the above in (1) gives the solution
\[
y=-\frac{\cot (x)\left(-c_{2}(-1+a) \sin (x)^{1-a}+c_{1} \sin (x)^{a} a\right)}{c_{1} \sin (x)^{a}+c_{2} \sin (x)^{1-a}}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
y=\frac{-\cot (x) c_{3} \sin (x)^{2 a} a+\cos (x)(-1+a)}{c_{3} \sin (x)^{2 a}+\sin (x)}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\cot (x) c_{3} \sin (x)^{2 a} a+\cos (x)(-1+a)}{c_{3} \sin (x)^{2 a}+\sin (x)} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{-\cot (x) c_{3} \sin (x)^{2 a} a+\cos (x)(-1+a)}{c_{3} \sin (x)^{2 a}+\sin (x)}
\]

Verified OK.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -tan(x)*(diff(y(x), x))+(a^2*c
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
Change of variables used:
[x = arcsin(t)]
Linear ODE actually solved:
(a^2-a)*u(t)-t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful
<- Riccati to 2nd Order successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{y}(\mathrm{x}) \sim 2-\mathrm{y}(\mathrm{x}) * \tan (\mathrm{x})+\mathrm{a} *(1-\mathrm{a}) * \cot (\mathrm{x}) \wedge 2, \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=\frac{-\cot (x) \sin (x)^{2 a} a+c_{1} \cos (x)(a-1)}{c_{1} \sin (x)+\sin (x)^{2 a}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 7.444 (sec). Leaf size: 230
DSolve \(\left[y^{\prime}[x]==y[x] \sim 2-y[x] * \operatorname{Tan}[x]+a *(1-a) * \operatorname{Cot}[x] \sim 2, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x) \rightarrow\)
\[
\begin{aligned}
& -\frac{i \cot (x)\left(\left(\sqrt{a-1} \sqrt{a} \sqrt{-\frac{(2 a-1)^{2}}{(a-1) a}}-i\right)\left(-\sin ^{2}(x)\right)^{\frac{1}{2} i \sqrt{a-1} \sqrt{a} \sqrt{-\frac{(2 a-1)^{2}}{(a-1) a}}-\left(\sqrt{a-1} \sqrt{a} \sqrt{-\frac{(2 a-1)^{2}}{(a-1) a}}+i\right) c_{1}} 2^{2\left(\left(-\sin ^{2}(x)\right)^{\frac{1}{2} i \sqrt{a-1} \sqrt{a} \sqrt{\frac{1}{a-a^{2}}-4}}+c_{1}\right)}\right.}{y(x) \rightarrow \frac{1}{2} i\left(\sqrt{a-1} \sqrt{a} \sqrt{\frac{1}{a-a^{2}}-4}+i\right) \cot (x)}
\end{aligned}
\]

\section*{13.8 problem 54}
13.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1153

Internal problem ID [10552]
Internal file name [OUTPUT/9499_Monday_June_06_2022_02_58_20_PM_18999849/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}+m y \tan (x)=b^{2} \cos (x)^{2 m}
\]

\subsection*{13.8.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-m y \tan (x)+b^{2} \cos (x)^{2 m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-m y \tan (x)+b^{2} \cos (x)^{2 m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b^{2} \cos (x)^{2 m}, f_{1}(x)=-m \tan (x)\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-m \tan (x) \\
f_{2}^{2} f_{0} & =b^{2} \cos (x)^{2 m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+m \tan (x) u^{\prime}(x)+b^{2} \cos (x)^{2 m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=c_{1} \sin \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right) \\
& \quad+c_{2} \cos \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+1} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)=b \cos (x)^{-m+1}\left(-\frac{\sin (x)^{2}(m-1) \text { hypergeom }\left(\left[\frac{3}{2}, \frac{3}{2}-\frac{m}{2}\right],\left[\frac{5}{2}\right], \sin (x)^{2}\right)}{3}\right. \\
& \left.\quad+\text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)\left(-\cos (x) \sqrt{\cos (x)^{2 m-2}} \sin \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+}\right.\right. \\
& \left.\quad+\cos \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right) \sqrt{\cos (x)^{2 m}} c_{1}\right)
\end{aligned}
\]

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
& -\frac{b \cos (x)^{-m+1}\left(-\frac{\sin (x)^{2}(m-1) \text { hypergeom }\left(\left[\frac{3}{2}, \frac{3}{2}-\frac{m}{2}\right],\left[\frac{5}{2}\right], \sin (x)^{2}\right)}{3}+\operatorname{hypergeom}\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)(-}{c_{1} \sin \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m}\right.} .
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\[
=\frac{\left(\cos (x) \sqrt{\cos (x)^{2 m-2}} \sin \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+1} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)\right.}{c_{3} \sin \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m} \sin (x\right.}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=\frac{\left(\cos (x) \sqrt{\cos (x)^{2 m-2}} \sin \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+1} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)\right.}{c_{3} \sin \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m} \sin ( \right.}\)
Verification of solutions
\(y\)
\(=\frac{\left(\cos (x) \sqrt{\cos (x)^{2 m-2}} \sin \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+1} \sin (x) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right)\right.}{c_{3} \sin \left(b \sqrt{\cos (x)^{2 m}} \cos (x)^{-m} \sin (x\right.}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -m*tan(x)*(diff(y(x), x))-b^2*
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Change of variables used:
[x = arcsin(t)]
Linear ODE actually solved:
b^2*(-t^2+1)^m*u(t)+(m*t-t)*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 222
dsolve (diff \((y(x), x)=y(x) \wedge 2-m * y(x) * \tan (x)+b \_2 * \cos (x) \wedge(2 * m), y(x)\), singsol=all)
\(y(x)\)
\(=\frac{\left(-\frac{\sin (x)^{2}(m-1) \text { hypergeom }\left(\left[\frac{3}{2},-\frac{m}{2}+\frac{3}{2}\right],\left[\frac{5}{2}\right], \sin (x)^{2}\right)}{3}+\operatorname{hypergeom}\left(\left[\frac{1}{2},-\frac{m}{2}+\frac{1}{2}\right],\left[\frac{3}{2}\right], \sin (x)^{2}\right)\right) b \cos (x)^{-m+1}( }{c_{1} \cos \left(b \sqrt{\cos (x)^{2 m-2}} \cos (x)^{-m+}\right.}\)
\(\sqrt{ }\) Solution by Mathematica
Time used: 4.179 (sec). Leaf size: 73
DSolve \(\left[y\right.\) ' \([x]==y[x] \sim 2-m * y[x] * \operatorname{Tan}[x]+b^{\wedge} 2 * \operatorname{Cos}[x] \sim(2 * m), y[x], x\), IncludeSingularSolutions \(->\) True]
\(y(x)\)
\(\rightarrow \sqrt{b^{2}} \cos ^{m}(x) \tan \left(-\frac{\sqrt{b^{2}} \sqrt{\sin ^{2}(x)} \csc (x) \cos ^{m+1}(x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{m+1}{2}, \frac{m+3}{2}, \cos ^{2}(x)\right)}{m+1}\right.\) \(\left.+c_{1}\right)\)

\section*{13.9 problem 55}
13.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1158

Internal problem ID [10553]
Internal file name [OUTPUT/9500_Monday_June_06_2022_02_58_37_PM_44320937/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 55.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}-m y \cot (x)=b^{2} \sin (x)^{2 m}
\]

\subsection*{13.9.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+m y \cot (x)+b^{2} \sin (x)^{2 m}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}+m y \cot (x)+b^{2} \sin (x)^{2 m}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=b^{2} \sin (x)^{2 m}, f_{1}(x)=\cot (x) m\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\cot (x) m \\
f_{2}^{2} f_{0} & =b^{2} \sin (x)^{2 m}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)-\cot (x) m u^{\prime}(x)+b^{2} \sin (x)^{2 m} u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x) \\
& \begin{aligned}
&=c_{1} \sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hypergeom }( \right. {\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right] } \\
&\left.\left.-\cot (x)^{2}\right) b\right) \\
&+c_{2} \cos \left(\sqrt { ( \operatorname { c s c } ( x ) ^ { 2 } ) ^ { - m } \operatorname { s i n } ( x ) ^ { 4 } } \operatorname { c s c } ( x ) ^ { 2 } ( \operatorname { c s c } ( x ) ^ { 2 } ) ^ { \frac { m } { 2 } } \operatorname { c o t } ( x ) \text { hypergeom } \left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],\right.\right. \\
&\left.\left.-\cot (x)^{2}\right) b\right)
\end{aligned}
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=\frac{b\left(\csc (x)^{2}\right)^{-\frac{m}{2}}\left(-\frac{\cot (x)^{2}(2+m) \text { hypergeom }\left(\left[\frac{3}{2}, 2+\frac{m}{2}\right],\left[\frac{5}{2}\right],-\cot (x)^{2}\right)}{3}+\operatorname{hypergeom}\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],-\cot (x)^{2}\right)\right)}{}\)

Using the above in (1) gives the solution
\(y=\)
\[
-\frac{b\left(\csc (x)^{2}\right)^{-\frac{m}{2}}\left(-\frac{\cot (x)^{2}(2+m) \operatorname{hypergeom}\left(\left[\frac{3}{2}, 2+\frac{m}{2}\right],\left[\frac{5}{2}\right],-\cot (x)^{2}\right)}{3}+\operatorname{hypergeom}\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],-\cot (x)^{2}\right)\right.}{\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}}\left(c _ { 1 } \operatorname { s i n } \left(\sqrt{\left(\csc (x)^{2}\right)^{-m}} \sin (x)^{4}\right.\right.} \csc (.
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{\left(-\sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],-\cot (x)^{2}\right) b\right)\right.}{\left(c_{3} \sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m}} \sin (x)^{4}\right.\right.} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x)\) hy \()\)
Summary
The solution(s) found are the following
\(y\)
\(=\frac{\left(-\sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],-\cot (x)^{2}\right) b\right)\right.}{\left(c_{3} \sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m}} \sin (x)^{4}\right.\right.} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x)\) hy \()\)

\section*{Verification of solutions}
\(y\)
\(=\frac{\left(-\sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}\right],-\cot (x)^{2}\right) b\right)\right.}{\left(c_{3} \sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hy }\right.\right.}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = m*cot(x)*(diff(y(x), x))-b^2*s
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Change of variables used:
[x = arccot(t)]
Linear ODE actually solved:
b^2*u(t)+t*(m*t^2+2*t^2+m+2)*(t^2+1)^m*diff(u(t),t)+(t^4+2*t^2+1)*(t^2+1)^m*diff
<- change of variables successful
<- Riccati to 2nd Order successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 281
dsolve (diff \((y(x), x)=y(x) \wedge 2+m * y(x) * \cot (x)+b \_2 * \sin (x) \wedge(2 * m), y(x)\), singsol=all)
\(y(x)\)
\(=\frac{\sqrt{\left(\csc (x)^{2}\right)^{-m}} \sin (x)^{4}}{\left(-c_{1} \sin \left(\sqrt{\left(\csc (x)^{2}\right)^{-m} \sin (x)^{4}} \csc (x)^{2}\left(\csc (x)^{2}\right)^{\frac{m}{2}} \cot (x) \text { hypergeom }\left(\left[\frac{1}{2}, 1\right.\right.\right.\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 5.352 (sec). Leaf size: 72
DSolve \(\left[y{ }^{\prime}[x]==y[x] \wedge 2+m * y[x] * \operatorname{Cot}[x]+b^{\wedge} 2 * \operatorname{Sin}[x] \wedge(2 * m), y[x], x\right.\), IncludeSingularSolutions \(->\) True]
\(y(x)\)
\(\rightarrow \sqrt{b^{2}} \sin ^{m}(x) \tan \left(\frac{\sqrt{b^{2}} \sqrt{\cos ^{2}(x)} \sec (x) \sin ^{m+1}(x) \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{m+1}{2}, \frac{m+3}{2}, \sin ^{2}(x)\right)}{m+1}\right.\) \(\left.+c_{1}\right)\)

\subsection*{13.10 problem 56}
13.10.1 Solving as riccati ode \(\qquad\)
Internal problem ID [10554]
Internal file name [OUTPUT/9501_Monday_June_06_2022_02_59_13_PM_29078961/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
```

[_Riccati]

```

Unable to solve or complete the solution.
\[
y^{\prime}-y^{2}=-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}
\]

\subsection*{13.10.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=y^{2}-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime}(x)+\left(-2 \lambda^{2} \tan (x)^{2}-2 \lambda^{2} \cot (\lambda x)^{2}\right) u(x)=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.
X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2-2 * \operatorname{lambda} \wedge 2 * \tan (x) \wedge 2-2 * \operatorname{lambda}{ }^{\wedge} 2 * \cot (\operatorname{lambda} * x) \wedge 2, y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]==y[x] \sim 2-2 * \backslash\left[\right.\) Lambda \({ }^{\wedge} 2 * \operatorname{Tan}[x] \sim 2-2 * \backslash\left[\right.\) Lambda \({ }^{\wedge} 2 * \operatorname{Cot}[\backslash[\) Lambda \(] * x] \wedge 2, y[x], x\), IncludeS

Not solved

\subsection*{13.11 problem 57}
13.11.1 Solving as riccati ode

1165
Internal problem ID [10555]
Internal file name [OUTPUT/9502_Monday_June_06_2022_02_59_50_PM_45559588/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 57.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
\[
y^{\prime}-y^{2}=2 a b+\lambda a+b \lambda+a(\lambda-a) \tan (\lambda x)^{2}+b(\lambda-b) \cot (\lambda x)^{2}
\]

\subsection*{13.11.1 Solving as riccati ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-b^{2} \cot (\lambda x)^{2}+b \cot (\lambda x)^{2} \lambda-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+2 a b+\lambda a+b \lambda+y^{2}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
y^{\prime}=-b^{2} \cot (\lambda x)^{2}+b \cot (\lambda x)^{2} \lambda-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+2 a b+\lambda a+b \lambda+y^{2}
\]

With Riccati ODE standard form
\[
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
\]

Shows that \(f_{0}(x)=-b^{2} \cot (\lambda x)^{2}+b \cot (\lambda x)^{2} \lambda-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+2 a b+\) \(\lambda a+b \lambda, f_{1}(x)=0\) and \(f_{2}(x)=1\). Let
\[
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-b^{2} \cot (\lambda x)^{2}+b \cot (\lambda x)^{2} \lambda-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+2 a b+\lambda a+b \lambda
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\(u^{\prime \prime}(x)+\left(-b^{2} \cot (\lambda x)^{2}+b \cot (\lambda x)^{2} \lambda-a^{2} \tan (\lambda x)^{2}+a \tan (\lambda x)^{2} \lambda+2 a b+\lambda a+b \lambda\right) u(x)=0\)
Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{aligned}
& u(x)=c_{1} \cos (\lambda x)^{\frac{a}{\lambda}} \sin (\lambda x)^{\frac{b}{\lambda}} \\
& \quad+c_{2} \cos (\lambda x)^{\frac{\lambda-a}{\lambda}} \sin (\lambda x)^{\frac{\lambda-b}{\lambda}} \text { hypergeom }\left(\left[1, \frac{-b+\lambda-a}{\lambda}\right],\left[-\frac{-3 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)
\end{aligned}
\]

The above shows that
\(u^{\prime}(x)\)
\(=-4 \cos (\lambda x)^{\frac{2 \lambda-a}{\lambda}} \sin (\lambda x)^{\frac{2 \lambda-b}{\lambda}} c_{2} \lambda(a+b-\lambda)\) hypergeom \(\left(\left[2, \frac{2 \lambda-a-b}{\lambda}\right],\left[-\frac{-5 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)-2\left(-\frac{3 \lambda}{2}+\right.\)

Using the above in (1) gives the solution
\[
\begin{aligned}
& y= \\
&--4 \cos (\lambda x)^{\frac{2 \lambda-a}{\lambda}} \sin (\lambda x)^{\frac{2 \lambda-b}{\lambda}} c_{2} \lambda(a+b-\lambda) \text { hypergeom }\left(\left[2, \frac{2 \lambda-a-b}{\lambda}\right],\left[-\frac{-5 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)-2\left(-\frac{3 \lambda}{2} .\right. \\
&(-3 \lambda+2 a)\left(c_{1} \cos (\lambda\right.
\end{aligned}
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(y\)
\(=\frac{4 \lambda \cos (\lambda x)^{2} \sin (\lambda x)^{2}(a+b-\lambda) \text { hypergeom }\left(\left[2, \frac{2 \lambda-a-b}{\lambda}\right],\left[-\frac{-5 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)+\left(\left(6 \lambda^{2}+(-7 a-3 b)\right.\right.}{(-3 \lambda+2 a)\left(c_{3} \cos (\lambda x)\right.}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{4 \lambda \cos (\lambda x)^{2} \sin (\lambda x)^{2}(a+b-\lambda) \text { hypergeom }\left(\left[2, \frac{2 \lambda-a-b}{\lambda}\right],\left[-\frac{-5 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)+\left(\left(6 \lambda^{2}+(-7 a-3 b)\right.\right.}{(-3 \lambda+2 a)\left(c_{3} \cos (\lambda x)\right.}\)
Verification of solutions
\(y\)
\(=\frac{4 \lambda \cos (\lambda x)^{2} \sin (\lambda x)^{2}(a+b-\lambda) \text { hypergeom }\left(\left[2, \frac{2 \lambda-a-b}{\lambda}\right],\left[-\frac{-5 \lambda+2 a}{2 \lambda}\right], \cos (\lambda x)^{2}\right)+\left(\left(6 \lambda^{2}+(-7 a-3 b)\right.\right.}{(-3 \lambda+2 a)\left(c_{3} \cos (\lambda x)\right.}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati Special trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a^2*tan(lambda*x)^2-a*tan(lam
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approadh8
<- heuristic approach successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 268
dsolve (diff $(y(x), x)=y(x) \sim 2+l a m b d a * a+l a m b d a * b+2 * a * b+a *(l a m b d a-a) * \tan (l a m b d a * x) ~ ค 2+b *(l a m b d a-b)$
$y(x)$
$=\frac{4 c_{1} \lambda \cos (x \lambda)^{2} \sin (x \lambda)^{2}(b-\lambda+a) \text { hypergeom }\left(\left[2, \frac{2 \lambda-b-a}{\lambda}\right],\left[-\frac{2 a-5 \lambda}{2 \lambda}\right], \cos (x \lambda)^{2}\right)-2 c_{1}\left(\left(-3 \lambda^{2}+\left(\frac{7 a}{2}-\right.\right.\right.}{(2 a-3 \lambda)\left(c_{1} \cos (x \lambda) \sin \right.}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2+\backslash[$ Lambda] $* \mathrm{a}+\backslash[$ Lambda] $* \mathrm{~b}+2 * \mathrm{a} * \mathrm{~b}+\mathrm{a} *(\backslash[$ Lambda] -a$) * T a n[\backslash[$ Lambda] $* \mathrm{x}] \wedge 2+\mathrm{b} *(\backslash[\mathrm{~L}$

Not solved

13.12 problem 58

13.12.1 Solving as riccati ode 1170

Internal problem ID [10556]
Internal file name [OUTPUT/9503_Monday_June_06_2022_02_59_53_PM_14938955/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 58.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}
$$

13.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-\frac{\lambda^{2}}{2}-\frac{3 \lambda^{2} \tan (\lambda x)^{2}}{4}+a \cos (\lambda x)^{2} \sin (\lambda x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\frac{-\csc \left(\frac{\pi(n+3)}{2+n}\right) c_{1} \text { BesselI }\left(-\frac{1}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right) \pi\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{1}{4+2 n}}+c_{2} \sin (\lambda x) \operatorname{BesselI}\left(\frac{1}{2+n}, 2 \sqrt{-}\right.}{\sqrt{\cos (\lambda x)}(2+n) \Gamma\left(\frac{n+3}{2+n}\right)}$
The above shows that
$u^{\prime}(x)$
$=\underline{\left(2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cos (\lambda x)^{2}(2+n)^{2} \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+c_{2} \operatorname{BesselI}\left(\frac{1}{2+n}, 2\right.\right.}$

Using the above in (1) gives the solution
$y=$
$-\frac{\left(2 \Gamma\left(\frac{n+3}{2+n}\right)^{2}\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} c_{2} \cos (\lambda x)^{2}(2+n)^{2} \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+c_{2} \operatorname{BesselI}\left(\frac{1}{2+n},\right.\right.}{2 \cos (\lambda x)(-\operatorname{cs}}$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y
$=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2} \sin \left(\frac{\pi(n+3)}{2+n}\right)\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} \cos (\lambda x)(2+n)^{2} \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+2\left(-\frac{a \sin }{\lambda^{2}}\right.\right.}{-2 c_{3} \mathrm{Be}}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2} \sin \left(\frac{\pi(n+3)}{2+n}\right)\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} \cos (\lambda x)(2+n)^{2} \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+2\left(-\frac{a \sin }{\lambda^{2}}\right.\right.}{-2 c_{3} \mathrm{Be}}$

Verification of solutions

y

$$
=\frac{\left(-2 \Gamma\left(\frac{n+3}{2+n}\right)^{2} \sin \left(\frac{\pi(n+3)}{2+n}\right)\left(-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}\right)^{\frac{n+1}{4+2 n}} \cos (\lambda x)(2+n)^{2} \operatorname{BesselI}\left(\frac{n+3}{2+n}, 2 \sqrt{-\frac{a \sin (\lambda x)^{2+n}}{\lambda^{2}(2+n)^{2}}}\right)+2\left(-\frac{a \sin }{\lambda^{2}}\right.\right.}{-2 c_{3} \mathrm{Be}}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = ((1/2)*lambda^2+(3/4)*lambda^2
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
        -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the OF1 ODE
        <- Whittaker successful
        <- special function solution successful
        Change of variables used:
        [x = arccos(t)/lambda]
            1173
        Linear ODE actually solved:
        (4*a*(-t^2+1)^(1/2*n)*t^4+lambda^2*t^2-3*lambda^2)*u(t)-4*t^3*lambda^2*diff(u(t)
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 1194

> Expression too large to display
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve [y'[x]==y[x]^2-1/2*\[Lambda] 2-3/4*\[Lambda]^2*Tan[\[Lambda]*x]^2+a*Cos[\ [Lambda]*x]^2
```

Not solved

13.13 problem 59

13.13.1 Solving as riccati ode

Internal problem ID [10557]
Internal file name [OUTPUT/9504_Monday_June_06_2022_03_00_31_PM_30962163/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-5. Equations containing combinations of trigonometric functions.
Problem number: 59.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \sin (\lambda x) y^{2}-a \sin (\lambda x) y=-a \tan (\lambda x)
$$

13.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \sin (\lambda x) y^{2}+a \sin (\lambda x) y-a \tan (\lambda x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \sin (\lambda x) y^{2}+a \sin (\lambda x) y-a \tan (\lambda x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a \tan (\lambda x), f_{1}(x)=a \sin (\lambda x)$ and $f_{2}(x)=\lambda \sin (\lambda x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sin (\lambda x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cos (\lambda x) \\
f_{1} f_{2} & =a \sin (\lambda x)^{2} \lambda \\
f_{2}^{2} f_{0} & =-a \tan (\lambda x) \lambda^{2} \sin (\lambda x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\lambda \sin (\lambda x) u^{\prime \prime}(x)-\left(a \sin (\lambda x)^{2} \lambda+\lambda^{2} \cos (\lambda x)\right) u^{\prime}(x)-a \tan (\lambda x) \lambda^{2} \sin (\lambda x)^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=-\mathrm{e}^{-\frac{a \cos (\lambda x)}{\lambda}} c_{2} \lambda+\cos (\lambda x)\left(a \operatorname{expIntegral}{ }_{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) c_{2}+c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=-\lambda \sin (\lambda x)\left(a \exp \operatorname{Integral}_{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) c_{2}+c_{1}\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{a \exp \text { Integral }_{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) c_{2}+c_{1}}{-\mathrm{e}^{-\frac{a \cos (\lambda x)}{\lambda}} c_{2} \lambda+\cos (\lambda x)\left(a \operatorname{expIntegral}_{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) c_{2}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\left.y=\frac{\operatorname{expIntegral}}{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) a+c_{3}{ }_{-\mathrm{e}^{-\frac{a \cos (\lambda x)}{\lambda}} \lambda+\cos (\lambda x)(\operatorname{expIntegral}}^{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) a+c_{3}\right) \quad
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{expIntegral}}{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) a+c_{3}-\mathrm{e}^{-\frac{a \cos (\lambda x)}{\lambda}} \lambda+\cos (\lambda x)\left(\operatorname{expIntegral}{ }_{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) a+c_{3}\right) \quad . \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\operatorname{expIntegral}}{1}\left(\frac{a \cos (\lambda x)}{\lambda}\right) a+c_{3} .
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (sin(lambda*x)^2*a+lambda*cos(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a quadrature
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
        Change of variables used:
            [x = arccos(t)/lambda]
        Linear ODE actually solved:
            (-2*a*t^4+4*a*t^2-2*a)*u(t)+(2*a*t^5-4*a*t^3+2*a*t)*diff (u(t) ,t)+(2*lambda*t^5-4
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 61

$$
y(x)=\frac{\operatorname{expIntegral}}{1}\left(\frac{a \cos (x \lambda)}{\lambda}\right) c_{1} a+1
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{y}^{\prime}[\mathrm{x}]==\backslash[\right.$ Lambda $] \operatorname{Sin}[\backslash[$ Lambda $] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\mathrm{a} * \operatorname{Sin}[\backslash[$ Lambda] $* \mathrm{x}] * \mathrm{y}[\mathrm{x}]-\mathrm{a} * \operatorname{Tan}[\backslash[$ Lambda] $* \mathrm{x}], \mathrm{y}$

Not solved

14 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.

14.1 problem 1 1181
14.2 problem 2 1186
14.3 problem 3 1190
14.4 problem 4 1195
14.5 problem 5 1200
14.6 problem 6 1205
14.7 problem 7 1210
14.8 problem 8 1214
14.9 problem 9 1217

14.1 problem 1

14.1.1 Solving as riccati ode

1181
Internal problem ID [10558]
Internal file name [OUTPUT/9505_Monday_June_06_2022_03_00_33_PM_57882991/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda \arcsin (x)^{n} y=-a^{2}+a \lambda \arcsin (x)^{n}
$$

14.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda \arcsin (x)^{n} y-a^{2}+a \lambda \arcsin (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda \arcsin (x)^{n} y-a^{2}+a \lambda \arcsin (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \arcsin (x)^{n}, f_{1}(x)=\arcsin (x)^{n} \lambda$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arcsin (x)^{n} \lambda \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \arcsin (x)^{n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arcsin (x)^{n} \lambda u^{\prime}(x)+\left(-a^{2}+a \lambda \arcsin (x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\int \frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x} d x} c_{2}
$$

The above shows that

$$
u^{\prime}(x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arcsin (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = lambda*arcsin(x)^n*(diff(y(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+lambda*arcsin(x)^n*y(x)*x+x
    Methods for first order ODEs:
    --- Trying classification methqds84---
    trying a quadrature
    trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 71
dsolve(diff $(y(x), x)=y(x)^{\wedge} 2+\operatorname{lambda*arcsin}(x)^{\wedge} n * y(x)-a^{\wedge} 2+a * \operatorname{lambda*} \arcsin (x)^{\wedge} n, y(x)$, singsol=al

$$
y(x)=\frac{-c_{1} a-a\left(\int \mathrm{e}^{-\left(\int\left(-\lambda \arcsin (x)^{n}+2 a\right) d x\right)} d x\right)-\mathrm{e}^{-\left(\int\left(-\lambda \arcsin (x)^{n}+2 a\right) d x\right)}}{c_{1}+\int \mathrm{e}^{-\left(\int\left(-\lambda \arcsin (x)^{n}+2 a\right) d x\right)} d x}
$$

\checkmark Solution by Mathematica
Time used: 6.556 (sec). Leaf size: 398
DSolve $\left[y\right.$ ' $[x]==y[x]^{\wedge} 2+\backslash[$ Lambda $] * \operatorname{ArcSin}[x]^{\wedge} n * y[x]-a^{\wedge} 2+a * \backslash[$ Lambda $] * \operatorname{ArcSin}[x] \wedge n, y[x], x$, IncludeSi

Solve $\left[\int_{1}^{x}\right.$

$$
\begin{aligned}
& -\frac{\exp \left(\frac { 1 } { 2 } i \lambda \operatorname { a r c s i n } (K [1]) ^ { n } (\operatorname { a r c s i n } (K [1]) ^ { 2 }) ^ { - n } \left((-i \arcsin (K[1]))^{n} \Gamma(n+1, i \arcsin (K[1]))-(i \arcsin (K[1]))^{\prime}\right.\right.}{n \lambda(a+y(x))} \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(\frac { 1 } { 2 } i \lambda \operatorname { a r c s i n } (x) ^ { n } (\operatorname { a r c s i n } (x) ^ { 2 }) ^ { - n } \left((-i \arcsin (x))^{n} \Gamma(n+1, i \arcsin (x))-(i \arcsin (x))^{n} \Gamma(n+1\right.\right.}{n \lambda(a+K[2])^{2}}\right. \\
& -\int_{1}^{x}\left(\frac{\exp \left(\frac { 1 } { 2 } i \lambda \operatorname { a r c s i n } (K [1]) ^ { n } (\operatorname { a r c s i n } (K [1]) ^ { 2 }) ^ { - n } \left((-i \arcsin (K[1]))^{n} \Gamma(n+1, i \arcsin (K[1]))-(i \arcsin (l\right.\right.}{n \lambda(a+K[2])^{2}}\right.
\end{aligned}
$$

14.2 problem 2

14.2.1 Solving as riccati ode . 1186

Internal problem ID [10559]
Internal file name [OUTPUT/9506_Monday_June_06_2022_03_00_35_PM_80242153/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda x \arcsin (x)^{n} y=\arcsin (x)^{n} \lambda
$$

14.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\arcsin (x)^{n} \lambda x y+\arcsin (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\arcsin (x)^{n} \lambda x y+\arcsin (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\arcsin (x)^{n} \lambda, f_{1}(x)=\arcsin (x)^{n} \lambda x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arcsin (x)^{n} \lambda x \\
f_{2}^{2} f_{0} & =\arcsin (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arcsin (x)^{n} \lambda x u^{\prime}(x)+\arcsin (x)^{n} \lambda u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1}\left(\int \mathrm{e}^{\frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+c_{2}+x c_{1} \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x}}{x\left(c_{1}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+1\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)-1-x c_{3} \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x}}{x\left(c_{3}\left(\int \mathrm{e}^{\int \frac{\arcsin (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)+1\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 78

```
dsolve(diff(y(x),x)=y(x)^2+lambda*x*arcsin(x)^n*y(x)+lambda*arcsin(x)^n,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\int \frac{\lambda \arcsin \left(x^{n} x^{2}-2\right.}{x} d x} x+\int \mathrm{e}^{\frac{\lambda \arcsin (x)^{n} x^{2}-2}{x} d x} d x-c_{1}}{\left(c_{1}-\left(\int \mathrm{e}^{\frac{\lambda \arcsin \left(x x^{n} x^{2}-2\right.}{x} d x} d x\right)\right) x}
$$

\checkmark Solution by Mathematica
Time used: 4.147 (sec). Leaf size: 256
DSolve $[y$ ' $[x]==y[x] \sim 2+\backslash[$ Lambda $] * x * \operatorname{ArcSin}[x] \sim n * y[x]+\backslash[\operatorname{Lambda}] * \operatorname{ArcSin}[x] \wedge n, y[x], x$, IncludeSingul
$y(x) \rightarrow$
$-\frac{\int_{1}^{x} \frac{\exp \left(-2^{-n-3} \lambda \arcsin (K[1])^{n}\left(\arcsin (K[1])^{2}\right)^{-n}\left(\Gamma(n+1,2 i \arcsin (K[1]))(-i \arcsin (K[1]))^{n}+(i \arcsin (K[1]))^{n} \Gamma(n+1,-2 i \arcsin (K[1]))\right.\right.}{K[1]^{2}}}{x\left(\int_{1}^{x} \frac{\exp \left(-2^{-n-3} \lambda \arcsin (K[1])^{n}\left(\arcsin (K[1])^{2}\right)^{-n}(\Gamma(n+1,2 \arcsin (K[1])\right.}{K[1]^{2}}\right.}$
$y(x) \rightarrow-\frac{1}{x}$

14.3 problem 3

14.3.1 Solving as riccati ode 1190

Internal problem ID [10560]
Internal file name [OUTPUT/9507_Monday_June_06_2022_03_00_41_PM_35430875/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(k+1) x^{k} y^{2}-\lambda \arcsin (x)^{n}\left(x^{k+1} y-1\right)=0
$$

14.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{k+1} \arcsin (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arcsin (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{k} x \arcsin (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arcsin (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\arcsin (x)^{n} \lambda, f_{1}(x)=x^{k+1} \arcsin (x)^{n} \lambda$ and $f_{2}(x)=-x^{k} k-x^{k}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \arcsin (x)^{n} \lambda\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} \arcsin (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \arcsin (x)^{n} \lambda\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} \arcsin (x)
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{k+1}\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x}} d x \\
& x+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y=-\frac{\left(c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin ()^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Summary

The solution(s) found are the following
y
$=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$
Verification of solutions
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arcsin (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arcsin (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (arcsin(x)^n*x^(1+k)*lambda*x+
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-((-x^k*k-x^k)*y(x)^2+y(x)+arcsin(x)^n*x^(
        Methods for first order ODEs:
    --- Trying classification methqd{93---
    trying a quadrature
    trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 180
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\operatorname{lambda*arcsin}(\mathrm{x})^{\wedge} \mathrm{n} *\left(\mathrm{x}^{\wedge}(\mathrm{k}+1) * \mathrm{y}(\mathrm{x})-1\right), \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)$
$=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{\arcsin (x)^{n} x^{1+k} \lambda x-2 k-2}{x} d x}+\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arcsin (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int \arcsin (x)^{n} x^{1+k} d\right.}\right.}{\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arcsin (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int \arcsin (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+\backslash[$ Lambda $] * \operatorname{ArcSin}[x] \wedge n *\left(x^{\wedge}(k+1) * y[x]-1\right), y[x], x$, IncludeSingula
Not solved

14.4 problem 4

14.4.1 Solving as riccati ode

1195
Internal problem ID [10561]
Internal file name [OUTPUT/9508_Monday_June_06_2022_03_00_49_PM_11041830/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arcsin (x)^{n} y^{2}-a y=a b-b^{2} \lambda \arcsin (x)^{n}
$$

14.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arcsin (x)^{n} y^{2}+y a+a b-b^{2} \lambda \arcsin (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \arcsin (x)^{n} y^{2}+y a+a b-b^{2} \lambda \arcsin (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b-b^{2} \lambda \arcsin (x)^{n}, f_{1}(x)=a$ and $f_{2}(x)=\arcsin (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arcsin (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)} \\
f_{1} f_{2} & =a \lambda \arcsin (x)^{n} \\
f_{2}^{2} f_{0} & =\arcsin (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arcsin (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arcsin (x)^{n} \lambda u^{\prime \prime}(x)-\left(\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)}+a \lambda \arcsin (x)^{n}\right) u^{\prime}(x)+\arcsin (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arcsin (x)^{n}\right.$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\left.\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.
\end{array}-a _Y^{\prime}(x)-\arcsin (x)^{2 n} b^{2} \lambda^{2} _Y(x)\right\}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol } & \left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}-a _Y^{\prime}(x)\right.\right. \\
& \left.\left.-\arcsin (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arcsin (x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\sqrt{-x^{2}+1} \operatorname{racsin}(x)}-a _Y^{\prime}(x)-\arcsin (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arcsin (x)^{n} a b \lambda _Y(x)\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}-Y_{-} Y^{\prime}(x)-\arcsin (x)^{2 n} b^{2} \lambda^{2}-Y(x)+\arcsin (x)^{n} a b \lambda
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-_Y(x) a b \lambda-\arcsin (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-Y(x) a b \lambda-\arcsin (x)\left(a-Y^{\prime}(x)--Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}-n-Y}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-Y(x) a b \lambda-\arcsin (x)\left(a-Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1-n _Y^{\prime}(x)}}{\sqrt{-x^{2}+1} \arcsin (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-Y(x) a b \lambda-\arcsin (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}-n-Y}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-Y(x) a b \lambda-\arcsin (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arcsin (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arcsin (x)^{n+1}-Y(x) a b \lambda-\arcsin (x)\left(a-Y^{\prime}(x)--Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}-n-Y}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a} *\left(-\mathrm{x}^{\wedge} 2+1\right)^{\wedge}(1 / 2) * \arcsin (\mathrm{x})+\mathrm{n}\right)\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})$-(lambda*arcsin(x$)^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+\mathrm{y}(\mathrm{x}) * a * \mathrm{x}+$ Methods for first order ODEs:
--- Trying classification method!98 ${ }^{---}$
trying a quadrature
trying 1st order linear
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 87
dsolve $\left(\operatorname{diff}(y(x), x)=l \operatorname{ambda} \arcsin (x)^{\wedge} n * y(x)^{\wedge} 2+a * y(x)+a * b-b^{\wedge} 2 * \operatorname{lambda} * \arcsin (x) \uparrow n, y(x)\right.$, singso

$$
y(x)=\frac{-b \lambda\left(\int \arcsin (x)^{n} \mathrm{e}^{-\left(\int\left(2 \arcsin (x)^{n} \lambda b-a\right) d x\right)} d x\right)-c_{1} b-\mathrm{e}^{-\left(\int\left(2 \arcsin (x)^{n} \lambda b-a\right) d x\right)}}{c_{1}+\lambda\left(\int \arcsin (x)^{n} \mathrm{e}^{-\left(\int\left(2 \arcsin (x)^{n} \lambda b-a\right) d x\right)} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 7.093 (sec). Leaf size: 428
DSolve $\left[y^{\prime}[x]==\backslash[\right.$ Lambda $] * \operatorname{ArcSin}[x] \wedge n * y[x] \sim 2+a * y[x]+a * b-b^{\wedge} 2 * \backslash[$ Lambda $] * \operatorname{ArcSin}[x]\lceil n, y[x], x$, Inclu

Solve $\left[\int_{1}^{x} \frac{i \exp \left(a K[1]-i b \lambda \arcsin (K[1])^{n}\left(\arcsin (K[1])^{2}\right)^{-n}\left((-i \arcsin (K[1]))^{n} \Gamma(n+1, i \arcsin (K[1]))\right.\right.}{\operatorname{an\lambda }(b-1}\right.$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{i \exp \left(a K[1]-i b \lambda \arcsin (K[1])^{n}\left(\arcsin (K[1])^{2}\right)^{-n}\left((-i \arcsin (K[1]))^{n} \Gamma(n+1, i \arcsin (\right.\right.}{a n(b+K[2])}\right.\right.$
$-\frac{i \exp \left(a x-i b \lambda \arcsin (x)^{n}\left(\arcsin (x)^{2}\right)^{-n}\left((-i \arcsin (x))^{n} \Gamma(n+1, i \arcsin (x))-(i \arcsin (x))^{n} \Gamma(n+1,-\right.\right.}{a n \lambda(b+K[2])^{2}}$

14.5 problem 5

14.5.1 Solving as riccati ode 1200

Internal problem ID [10562]
Internal file name [OUTPUT/9509_Monday_June_06_2022_03_00_54_PM_61372346/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arcsin (x)^{n} y^{2}+b \lambda x^{m} \arcsin (x)^{n} y=b m x^{m-1}
$$

14.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arcsin (x)^{n} y^{2}-b \lambda x^{m} \arcsin (x)^{n} y+b m x^{m-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \arcsin (x)^{n} y^{2}-b \lambda x^{m} \arcsin (x)^{n} y+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}, f_{1}(x)=-b \lambda x^{m} \arcsin (x)^{n}$ and $f_{2}(x)=\arcsin (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arcsin (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)} \\
f_{1} f_{2} & =-b \lambda^{2} x^{m} \arcsin (x)^{2 n} \\
f_{2}^{2} f_{0} & =\arcsin (x)^{2 n} \lambda^{2} b m x^{m-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arcsin (x)^{n} \lambda u^{\prime \prime}(x)-\left(-b \lambda^{2} x^{m} \arcsin (x)^{2 n}+\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)}\right) u^{\prime}(x)+\arcsin (x)^{2 n} \lambda^{2} b m x^{m-1} u(x)$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arcsin (x)^{n}-Y^{\prime}(x)-\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right. \\
& \left.\left.\quad+b m x^{m-1} \lambda _Y(x) \arcsin (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arcsin (x)^{n} _Y^{\prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right. \\
&\left.\left.+b m x^{m-1} \lambda _Y(x) \arcsin (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arcsin (x)^{n} _Y^{\prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}+b m x^{m-1} \lambda _Y(x) \arcsin (x)^{n}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arcsin (x)^{n}-Y^{\prime}(x)-\frac{n}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}+b m x^{m-1} \lambda _Y(x) \arcsin (x
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& \quad-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\left\{_Y(x)\right\}\right)\right) \text { a }}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m}-Y(x)+_Y^{\prime}(x) x^{m+1}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}-_Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arcsin (x)}\right\},\left\{_Y(x)\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{a}}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m} _Y(x)+_Y^{\prime}(x) x^{m+1}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}-_Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arcsin (x)}\right\},\{-Y(x)\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{al}}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m} _Y(x)+_Y^{\prime}(x) x^{m+1}\right) \arcsin (x)^{n+1}+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}-_Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arcsin (x)}\right\},\{-Y(x)\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -( }\mp@subsup{x}{}{\wedge}m*(-\mp@subsup{x}{}{\wedge}2+1)^(1/2)*arcsin(x
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(lambda*arcsin(x)^n*y(x)^2+y(x)-b*lambda*
        Methods for first order ODEs:
    --- Trying classification methqdsf3---
    trying a quadrature
    trying 1st order linear
```

X Solution by Maple
dsolve (diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{ambda*arcsin}(\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{b} * \operatorname{lambda} * \mathrm{x}^{\wedge} \mathrm{m} * \arcsin (\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{b} * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1), \mathrm{y}(\mathrm{x})$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcSin}[x] \wedge n * y[x] \wedge 2-b * \backslash\left[\right.$ Lambda $* * x^{\wedge} m * \operatorname{ArcSin}[x] \wedge n * y[x]+b * m * x^{\wedge}(m-1), y[x]$

Not solved

14.6 problem 6

14.6.1 Solving as riccati ode

1205
Internal problem ID [10563]
Internal file name [OUTPUT/9510_Monday_June_06_2022_03_01_01_PM_44105884/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arcsin (x)^{n} y^{2}=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}
$$

14.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arcsin (x)^{n} y^{2}+\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}+\lambda \arcsin (x)^{n} y^{2}+\frac{\beta m x^{m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=\arcsin (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arcsin (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\arcsin (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arcsin (x)^{n} \lambda u^{\prime \prime}(x)-\frac{\arcsin (x)^{n} n \lambda u^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}+\arcsin (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arcsin (x)^{n}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arcsin (x)^{2 n}\right.\right. \\
\left.\left.+m \beta x^{m-1} \lambda _Y(x) \arcsin (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arcsin (x)^{2 n}\right.\right. \\
\left.\left.+m \beta x^{m-1} \lambda _Y(x) \arcsin (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y=-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arcsin (x)^{2 n}+m \beta x^{m-1} \lambda^{\prime} _Y(x) \arcsin (x)^{n}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arcsin (x)^{2 n}+m \beta x^{m-1} \lambda _Y(x) \operatorname{arcsi}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-x^{2 m} \arcsin (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arcsin (x)^{n+1}-Y(x) \beta \lambda m+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\{ \right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-x^{1+2 m} \beta^{2} \lambda^{2} \arcsin (x)^{1+2 n}-Y(x)+m \beta x^{m} \lambda \arcsin (x)^{n+1}-Y(x)+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}-_Y^{\prime}(x}{\sqrt{-x^{2}+1} x \arcsin (x)}\right.\right.},
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-x^{2 m} \arcsin (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arcsin (x)^{n+1}-Y(x) \beta \lambda m+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-x^{1+2 m} \beta^{2} \lambda^{2} \arcsin (x)^{1+2 n}-Y(x)+m \beta x^{m} \lambda \arcsin (x)^{n+1}-Y(x)+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}--Y^{\prime}(x)}{\sqrt{-x^{2}+1} x \arcsin (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(-x^{2 m} \arcsin (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arcsin (x)^{n+1}-Y(x) \beta \lambda m+\arcsin (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}-n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arcsin (x)}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-x^{1+2 m} \beta^{2} \lambda^{2} \arcsin (x)^{1+2 n}-Y(x)+m \beta x^{m} \lambda \arcsin (x)^{n+1}-Y(x)+\arcsin (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}--Y^{\prime}(x)}{\sqrt{-x^{2}+1} x \arcsin (x)},\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=n *(\operatorname{diff}(y(x), x)) /\left(\left(-x^{\wedge} 2+1\right)^{\wedge}(1\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> trying with_periodic_functions in the coefficients -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, diff($\mathrm{y}(\mathrm{x}), \mathrm{x}$) - (lambda*arcsin $(\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+\mathrm{x}^{\wedge} 2 *$ (beta Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{lambda} \arcsin (\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{beta} * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-1 \operatorname{ambda} * \operatorname{beta}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \arcsin (\mathrm{x})\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\backslash[$ Lambda $] * \operatorname{ArcSin}[\mathrm{x}] \wedge \mathrm{n} * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[$ Beta $] * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-\backslash[$ Lambda $] * \backslash$ Beta] $\wedge 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \operatorname{Arc}$

Not solved

14.7 problem 7

14.7.1 Solving as riccati ode

1210
Internal problem ID [10564]
Internal file name [OUTPUT/9511_Monday_June_06_2022_03_01_08_PM_99759205/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]
```

$$
y^{\prime}-\lambda \arcsin (x)^{n}\left(y-a x^{m}-b\right)^{2}=a m x^{m-1}
$$

14.7.1 Solving as riccati ode

In canonical form the ODE is
$y^{\prime}=F(x, y)$
$=x^{2 m} \arcsin (x)^{n} a^{2} \lambda+2 x^{m} \arcsin (x)^{n} a b \lambda-2 x^{m} \arcsin (x)^{n} a \lambda y+b^{2} \lambda \arcsin (x)^{n}-2 \arcsin (x)^{n} b \lambda y$
This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 m} \arcsin (x)^{n} a^{2} \lambda+2 x^{m} \arcsin (x)^{n} a b \lambda-2 x^{m} \arcsin (x)^{n} a \lambda y+b^{2} \lambda \arcsin (x)^{n}-2 \arcsin (x)^{n} b \lambda y+\lambda \mathrm{a}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 m} \arcsin (x)^{n} a^{2} \lambda+2 x^{m} \arcsin (x)^{n} a b \lambda+b^{2} \lambda \arcsin (x)^{n}+a m x^{m-1}$, $f_{1}(x)=-2 a \lambda x^{m} \arcsin (x)^{n}-2 \arcsin (x)^{n} \lambda b$ and $f_{2}(x)=\arcsin (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arcsin (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
f_{2}^{\prime}=\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)}
$$

$$
f_{1} f_{2}=\left(-2 a \lambda x^{m} \arcsin (x)^{n}-2 \arcsin (x)^{n} \lambda b\right) \arcsin (x)^{n} \lambda
$$

$$
f_{2}^{2} f_{0}=\arcsin (x)^{2 n} \lambda^{2}\left(x^{2 m} \arcsin (x)^{n} a^{2} \lambda+2 x^{m} \arcsin (x)^{n} a b \lambda+b^{2} \lambda \arcsin (x)^{n}+a m x^{m-1}\right)
$$

Substituting the above terms back in equation (2) gives

$$
\arcsin (x)^{n} \lambda u^{\prime \prime}(x)-\left(\frac{\arcsin (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arcsin (x)}+\left(-2 a \lambda x^{m} \arcsin (x)^{n}-2 \arcsin (x)^{n} \lambda b\right) \arcsin (x)^{n} \lambda\right) u^{\prime}(x
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=$ DESol $\left(\left\{\frac{-\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1}}+\arcsin (x)\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{2 n}+\ldots Y^{\prime \prime}(x)+\arcsin (x)^{n}\right.}{\arcsin (x)}\right.\right.$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x}$ DESol $\left(\left\{\frac{-\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1}}+\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\right.}{\arcsin (x)}\right.\right.$
Using the above in (1) gives the solution
$y=$

$$
\left.-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{-\frac{n}{\sqrt{-x^{2}+1}}+\lambda^{\prime}}{}(x) Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n}\right.\right.\right.}{\arcsin (x)}\right)
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(\lambda^{2}-Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _-Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\arcsin (x)\right.}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(\lambda^{2}-Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m\right.\right.}{Y} Y_{(x)+2} Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\operatorname{ar}\right.} \sqrt{\sqrt{-x^{2}+1} \arcsin (x)}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\arcsin (x)\right.}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\operatorname{ar}\right.}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\arcsin (x)\right.}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(\lambda^{2}-Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arcsin (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arcsin (x)^{n+1}+\operatorname{ar}\right.}{\sqrt{-x^{2}+1} \arcsin (x)}\right.\right.}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve(diff $(y(x), x)=l a m b d a * \arcsin (x) \wedge n *\left(y(x)-a * x^{\wedge} m-b\right)^{\wedge} 2+a * m * x^{\wedge}(m-1), y(x)$, singsol=all)

$$
y(x)=a x^{m}+b+\frac{1}{c_{1}-\lambda\left(\int \arcsin (x)^{n} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 4.054 (sec). Leaf size: 87
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcSin}[x] \wedge n *\left(y[x]-a * x^{\wedge} m-b\right)^{\wedge} 2+a * m * x^{\wedge}(m-1), y[x], x$, IncludeSingularSolut
$y(x) \rightarrow a x^{m}$
$+\frac{1}{\frac{1}{2} i \lambda \arcsin (x)^{n}\left(\arcsin (x)^{2}\right)^{-n}\left((i \arcsin (x))^{n} \Gamma(n+1,-i \arcsin (x))-(-i \arcsin (x))^{n} \Gamma(n+1, i \arcsin (\right.}$ $+b$
$y(x) \rightarrow a x^{m}+b$

14.8 problem 8

14.8.1 Solving as riccati ode . 1214

Internal problem ID [10565]
Internal file name [OUTPUT/9512_Monday_June_06_2022_03_01_23_PM_37025169/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\lambda \arcsin (x)^{n} y^{2}-k y=\lambda b^{2} x^{2 k} \arcsin (x)^{n}
$$

14.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\lambda \arcsin (x)^{n} y^{2}+k y+\lambda b^{2} x^{2 k} \arcsin (x)^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\lambda b^{2} x^{2 k} \arcsin (x)^{n}}{x}+\frac{\lambda \arcsin (x)^{n} y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda b^{2} x^{2 k} \arcsin (x)^{n}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{\lambda \arcsin (x)^{n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\lambda \arcsin (x)^{n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\lambda \arcsin (x)^{n}}{x^{2}}+\frac{\lambda \arcsin (x)^{n} n}{x \sqrt{-x^{2}+1} \arcsin (x)} \\
f_{1} f_{2} & =\frac{k \lambda \arcsin (x)^{n}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\lambda^{3} \arcsin (x)^{3 n} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{\lambda \arcsin (x)^{n} u^{\prime \prime}(x)}{x}-\left(-\frac{\lambda \arcsin (x)^{n}}{x^{2}}+\frac{\lambda \arcsin (x)^{n} n}{x \sqrt{-x^{2}+1} \arcsin (x)}+\frac{k \lambda \arcsin (x)^{n}}{x^{2}}\right) u^{\prime}(x)+\frac{\lambda^{3} \arcsin (x)^{3 n}}{x^{3}}$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i b x^{k-1} \lambda \arcsin (x)^{n} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}\left(c_{1} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}\left(c_{1} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}-c_{2}\right) x}{c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arcsin (x)^{n} d x\right)}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29

$$
y(x)=-\tan \left(-\lambda b\left(\int x^{-1+k} \arcsin (x)^{n} d x\right)+c_{1}\right) b x^{k}
$$

Solution by Mathematica
Time used: 1.716 (sec). Leaf size: 48
DSolve $\left[x * y^{\prime}[x]==\backslash[\right.$ Lambda $] * \operatorname{ArcSin}[x] \wedge n * y[x] \wedge 2+k * y[x]+\backslash[$ Lambda $] * b^{\wedge} 2 * x^{\wedge}(2 * k) * \operatorname{ArcSin}[x] \wedge n, y[x], x$

$$
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} \lambda \arcsin (K[1])^{n} K[1]^{k-1} d K[1]+c_{1}\right)
$$

14.9 problem 9

14.9.1 Solving as riccati ode . 1217

Internal problem ID [10566]
Internal file name [OUTPUT/9513_Monday_June_06_2022_03_01_26_PM_22323186/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-1. Equations containing arcsine.
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\left(a x^{2 m} y^{2}+y x^{n} b+c\right) \arcsin (x)^{m}+y n=0
$$

14.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\arcsin (x)^{m} x^{2 m} a y^{2}+\arcsin (x)^{m} x^{n} b y+\arcsin (x)^{m} c-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\arcsin (x)^{m} x^{2 m} a y^{2}}{x}+\frac{\arcsin (x)^{m} x^{n} b y}{x}+\frac{\arcsin (x)^{m} c}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\arcsin (x)^{m} c}{x}, f_{1}(x)=\frac{\arcsin (x)^{m} x^{n} b-n}{x}$ and $f_{2}(x)=\frac{\arcsin (x)^{m} x^{2 m} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\arcsin (x)^{m} x^{2 m a u}}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arcsin (x)^{m} m x^{2 m} a}{\sqrt{-x^{2}+1} \arcsin (x) x}+\frac{2 \arcsin (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arcsin (x)^{m} x^{2 m} a}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(\arcsin (x)^{m} x^{n} b-n\right) \arcsin (x)^{m} x^{2 m} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\arcsin (x)^{3 m} x^{4 m} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\arcsin (x)^{m} x^{2 m} a u^{\prime \prime}(x)}{x}-\left(\frac{\arcsin (x)^{m} m x^{2 m} a}{\sqrt{-x^{2}+1} \arcsin (x) x}+\frac{2 \arcsin (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arcsin (x)^{m} x^{2 m} a}{x^{2}}+\frac{(\arcsin (}{}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{2 m-Y^{\prime}(x)}{x}+\frac{n-Y^{\prime}(x)}{x}-b x^{n-1} \arcsin (x)^{m}-Y^{\prime}(x)+\frac{Y^{\prime}(x)}{x}\right.\right. \\
&\left.\left.-\frac{m-Y^{\prime}(x)}{\arcsin (x) \sqrt{-x^{2}+1}}+a c x^{2 m-2}-Y(x) \arcsin (x)^{2 m}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)= & \frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{2 m_{-} Y^{\prime}(x)}{x}+\frac{n-Y^{\prime}(x)}{x}-b x^{n-1} \arcsin (x)^{m}-Y^{\prime}(x)\right.\right. \\
& \left.\left.+\frac{-Y^{\prime}(x)}{x}-\frac{m-Y^{\prime}(x)}{\arcsin (x) \sqrt{-x^{2}+1}}+a c x^{2 m-2}-Y(x) \arcsin (x)^{2 m}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{2 m-Y^{\prime}(x)}{x}+\frac{n-Y^{\prime}(x)}{x}-b x^{n-1} \arcsin (x)^{m}-Y^{\prime}(x)+=\frac{Y^{\prime}(x)}{x}-\frac{m-Y^{\prime}(x)}{\arcsin (x) \sqrt{-x^{2}+1}}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{2 m-Y^{\prime}(x)}{x}+\frac{n-Y^{\prime}(x)}{x}-b x^{n-1} \arcsin (x)^{m}-Y^{\prime}(x)+=\frac{Y^{\prime}(x)}{x}-\frac{m}{\arcsin (x}\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{x^{-2 m+1} \arcsin (x)^{-m}\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{\left(\arcsin (x)^{1+2 m} x^{2 m-1}-Y(x) a c-x^{n} \arcsin (x)^{m+1}-Y^{\prime}(x) b-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+\right.\right.}{\sqrt{-x^{2}+1} \arcsin (x) x} Y^{\prime}(,\right.\right.\right.}{a \text { DESol }\left(\left\{\frac{\left(a x^{2 m} c \arcsin (x)^{1+2 m}-Y_{(x)-b x^{n+1} \arcsin (x)^{m+1}}-Y^{\prime}(x)-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+Y^{\prime}(x)\left(m-\frac{n}{2}-\frac{1}{2}\right)\right)\right.}{\sqrt{-x^{2}+1} x^{2} \arcsin (x)}\right.\right.}
$$

Summary

The solution(s) found are the following
$y=$
(1)

$$
-\frac{x^{-2 m+1} \arcsin (x)^{-m}\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{\left(\arcsin (x)^{1+2 m} x^{2 m-1}-Y(x) a c-x^{n} \arcsin (x)^{m+1}-Y^{\prime}(x) b-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+\right.\right.}{\sqrt{-x^{2}+1} \arcsin (x) x} Y^{\prime}(,\right.\right.\right.}{a \text { DESol }\left(\left\{\frac{\left(a x^{2 m} c \arcsin (x)^{1+2 m}-Y_{(x)-b x^{n+1} \arcsin (x)^{m+1}}-Y^{\prime}(x)-2\left(-\frac{Y^{\prime \prime}(x) x}{2}+Y^{\prime}(x)\left(m-\frac{n}{2}-\frac{1}{2}\right)\right)\right.}{\sqrt{-x^{2}+1} x^{2} \arcsin (x)}\right.\right.}
$$

Verification of solutions

$y=$

$$
-\frac{x^{-2 m+1} \arcsin (x)^{-m}\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(\arcsin (x)^{1+2 m} x^{2 m-1}-Y(x) a c-x^{n} \arcsin (x)^{m+1}-Y^{\prime}(x) b-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+_Y^{\prime}(,\right.\right.}{\sqrt{-x^{2}+1} \arcsin (x) x}\right.\right.\right.}{a \text { DESol }\left(\left\{\frac{\left(a x^{2 m} c \arcsin (x)^{1+2 m}-Y(x)-b x^{n+1} \arcsin (x)^{m+1}-Y^{\prime}(x)-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+-Y^{\prime}(x)\left(m-\frac{n}{2}-\frac{1}{2}\right)\right)\right.}{\sqrt{-x^{2}+1} x^{2} \arcsin (x)}\right)\right.}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \arcsin (\mathrm{x})^{\wedge} \mathrm{m} * \mathrm{x} *\left(-\mathrm{x}^{\wedge} 2\right.\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{x}^{\wedge}(-1+2 * \mathrm{~m}) * \arcsin (\mathrm{x})^{\wedge} \mathrm{m} * \mathrm{a} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+(\mathrm{b} *\right.$
Methods for first order ODEs:
--- Trying classification methgds ${ }^{2} 0^{---}$
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{c}\right) * \arcsin (\mathrm{x})^{\wedge} \mathrm{m}-\mathrm{n} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==\left(a * x^{\wedge}(2 * m) * y[x]^{\wedge} 2+b * x \wedge n * y[x]+c\right) * \operatorname{ArcSin}[x]^{\wedge} m-n * y[x], y[x], x\right.$, IncludeSingularSol

Not solved
15 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
15.1 problem 10 1223
15.2 problem 11 1227
15.3 problem 12 1231
15.4 problem 13 1236
15.5 problem 14 1241
15.6 problem 15 1246
15.7 problem 16 1251
15.8 problem 17 1255
15.9 problem 18 1258

15.1 problem 10

15.1.1 Solving as riccati ode . 1223

Internal problem ID [10567]
Internal file name [OUTPUT/9514_Monday_June_06_2022_03_01_38_PM_72944279/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda \arccos (x)^{n} y=-a^{2}+a \lambda \arccos (x)^{n}
$$

15.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda \arccos (x)^{n} y-a^{2}+a \lambda \arccos (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda \arccos (x)^{n} y-a^{2}+a \lambda \arccos (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \arccos (x)^{n}, f_{1}(x)=\arccos (x)^{n} \lambda$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arccos (x)^{n} \lambda \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \arccos (x)^{n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arccos (x)^{n} \lambda u^{\prime}(x)+\left(-a^{2}+a \lambda \arccos (x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

Expression too large to display

The above shows that
Expression too large to display

Using the above in (1) gives the solution
Expression too large to display

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

> Expression too large to display

Summary
The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = arccos(x)^n*lambda*(diff(y(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+arccos(x)^n*lambda*y(x)*x+x
    Methods for first order ODEs:
    --- Trying classification methqds }
    trying a quadrature
    trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 386
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2+l \operatorname{ambda*arccos}(x) \wedge n * y(x)-a \wedge 2+a * l a m b d a * \arccos (x)^{\wedge} n, y(x)\right.$, singsol $=a l$

> Expression too large to display
$\sqrt{ }$ Solution by Mathematica
Time used: 8.046 (sec). Leaf size: 404

```
DSolve[y'[x]==y[x]^2+\ [Lambda]*ArcCos[x]^n*y[x]-a^2+a*\[Lambda]*ArcCos[x]^n,y[x],x, IncludeSi
```

Solve $\left[\int_{1}^{x} \frac{i \exp \left(\frac{1}{2} \lambda \arccos (K[1])^{n} \Gamma(n+1,-i \arccos (K[1]))(-i \arccos (K[1]))^{-n}+\frac{1}{2} \lambda(i \arccos (K[1]))^{-n} \mathrm{a}\right.}{n \lambda(a+y(x))}\right.$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{i \exp \left(\frac{1}{2} \lambda \arccos (K[1])^{n} \Gamma(n+1,-i \arccos (K[1]))(-i \arccos (K[1]))^{-n}+\frac{1}{2} \lambda(i \arccos (K[1\right.}{n \lambda(a+K[2])}\right.\right.$
$-\frac{i \exp \left(\frac{1}{2} \lambda \arccos (x)^{n} \Gamma(n+1,-i \arccos (x))(-i \arccos (x))^{-n}-2 a x+\frac{1}{2} \lambda(i \arccos (x))^{-n} \arccos (x)^{n} \Gamma(n+\right.}{n \lambda(a+K[2])^{2}}$

15.2 problem 11

15.2.1 Solving as riccati ode . 1227

Internal problem ID [10568]
Internal file name [OUTPUT/9515_Monday_June_06_2022_03_02_52_PM_27537007/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda x \arccos (x)^{n} y=\arccos (x)^{n} \lambda
$$

15.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\arccos (x)^{n} \lambda x y+\arccos (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\arccos (x)^{n} \lambda x y+\arccos (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\arccos (x)^{n} \lambda, f_{1}(x)=\arccos (x)^{n} \lambda x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arccos (x)^{n} \lambda x \\
f_{2}^{2} f_{0} & =\arccos (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arccos (x)^{n} \lambda x u^{\prime}(x)+\arccos (x)^{n} \lambda u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} c_{1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} c_{1}}{x\left(\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\arccos \left(x x^{n} \lambda x^{2}-2\right.}{x} d x} d x\right) c_{3}+1\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 78

```
dsolve(diff(y(x),x)=y(x)^2+lambda*x*arccos(x)^n*y(x)+lambda*arccos(x)^n,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} x+\int \mathrm{e}^{\int \frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x-c_{1}}{\left(c_{1}-\left(\int \mathrm{e}^{\frac{\arccos (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)\right) x}
$$

\checkmark Solution by Mathematica
Time used: 5.617 (sec). Leaf size: 253
DSolve $[y$ ' $[x]==y[x] \sim 2+\backslash[L a m b d a] * x * \operatorname{ArcCos}[x] \sim n * y[x]+\backslash[\operatorname{Lambda}] * \operatorname{ArcCos}[x] \wedge n, y[x], x$, IncludeSingul
$y(x) \rightarrow$ $-\frac{x \int_{1}^{x} \frac{\exp \left(2^{-n-3} \lambda \arccos (K[1])^{n}\left(\arccos (K[1])^{2}\right)^{-n}\left(\Gamma(n+1,2 i \arccos (K[1]))(-i \arccos (K[1]))^{n}+(i \arccos (K[1]))^{n} \Gamma(n+1,-2 i \arccos (K[1\right.\right.}{K[1]^{2}}}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(2^{-n-3} \lambda \arccos (K[1])^{n}\left(\arccos (K[1])^{2}\right)^{-n}\right.}{}\right.}$
$y(x) \rightarrow-\frac{1}{x}$

15.3 problem 12

15.3.1 Solving as riccati ode

1231
Internal problem ID [10569]
Internal file name [OUTPUT/9516_Monday_June_06_2022_03_02_55_PM_9309576/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(k+1) x^{k} y^{2}-\lambda \arccos (x)^{n}\left(x^{k+1} y-1\right)=0
$$

15.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{k+1} \arccos (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arccos (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{k} x \arccos (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arccos (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\arccos (x)^{n} \lambda, f_{1}(x)=x^{k+1} \arccos (x)^{n} \lambda$ and $f_{2}(x)=-x^{k} k-x^{k}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \arccos (x)^{n} \lambda\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} \arccos (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \arccos (x)^{n} \lambda\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} \arccos (x)
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{k+1}\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that
$u^{\prime}(x)=c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Summary

The solution(s) found are the following
y

$$
\begin{equation*}
=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2 \lambda} \arccos (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arccos (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arccos (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (arccos(x)^n*x^(1+k)*lambda*x+
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-((-x^k*k-x^k)*y(x)^2+y(x)+arccos(x)^n*x^(
        Methods for first order ODEs:
    --- Trying classification methqds 
    trying a quadrature
    trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 180
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\operatorname{lambda} \arccos (\mathrm{x})^{\wedge} \mathrm{n} *\left(\mathrm{x}^{\wedge}(\mathrm{k}+1) * \mathrm{y}(\mathrm{x})-1\right), \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)$
$=\frac{x^{-1-k}\left(x^{1+k} \mathrm{e}^{\int \frac{\arccos (x)^{n} x^{1+k} \lambda x-2 k-2}{x} d x}+\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arccos (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int \arccos (x)^{n} x^{1+k}\right.}\right.}{\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arccos (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int \arccos (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+\backslash[$ Lambda $] * \operatorname{ArcCos}[x] \wedge n *\left(x^{\wedge}(k+1) * y[x]-1\right), y[x], x$, IncludeSingula
Not solved

15.4 problem 13

15.4.1 Solving as riccati ode

1236
Internal problem ID [10570]
Internal file name [OUTPUT/9517_Monday_June_06_2022_03_03_02_PM_51106550/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arccos (x)^{n} y^{2}-a y=a b-b^{2} \lambda \arccos (x)^{n}
$$

15.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\arccos (x)^{n} \lambda y^{2}+y a+a b-b^{2} \lambda \arccos (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\arccos (x)^{n} \lambda y^{2}+y a+a b-b^{2} \lambda \arccos (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b-b^{2} \lambda \arccos (x)^{n}, f_{1}(x)=a$ and $f_{2}(x)=\arccos (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arccos (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)} \\
f_{1} f_{2} & =a \lambda \arccos (x)^{n} \\
f_{2}^{2} f_{0} & =\arccos (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arccos (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arccos (x)^{n} \lambda u^{\prime \prime}(x)-\left(-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)}+a \lambda \arccos (x)^{n}\right) u^{\prime}(x)+\arccos (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arccos (\right.$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\left.\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}\right.\right.
\end{array}-a _Y^{\prime}(x)-\arccos (x)^{2 n} b^{2} \lambda^{2} _Y(x)\right\}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol } & \left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-a _Y^{\prime}(x)\right.\right. \\
& \left.\left.-\arccos (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arccos (x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-a _Y^{\prime}(x)-\arccos (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arccos (x)^{n} a b \lambda _Y(x)\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-a _Y^{\prime}(x)-\arccos (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arccos (x)^{n} a b \lambda\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arccos (x)^{n+1}-Y(x) a b \lambda-\arccos (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arccos (x)^{n+1}-Y(x) a b \lambda-\arccos (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _}{\sqrt{-x^{2}+1} \arccos (x)}\right)\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$
$-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arccos (x)^{n+1} _Y(x) a b \lambda-\arccos (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arccos (x)^{n+1}-Y(x) a b \lambda-\arccos (x)\left(a-Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _}{\sqrt{-x^{2}+1} \arccos (x)}\right)\right.}$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y(x) b^{2} \lambda^{2}+\arccos (x)^{n+1}-Y(x) a b \lambda-\arccos (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n}-Y_{\left.(x) b^{2} \lambda^{2}+\arccos (x)^{n+1}-Y(x) a b \lambda-\arccos (x)\left(a _Y^{\prime}(x)-_Y^{\prime \prime}(x)\right)\right) \sqrt{-x^{2}+1}+n _}^{\sqrt{-x^{2}+1} \arccos (x)}\right)}{}, \frac{V^{\prime}}{}\right)\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{a} *\left(-\mathrm{x}^{\wedge} 2+1\right)^{\wedge}(1 / 2) * \arccos (\mathrm{x})-\mathrm{n}\right)\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\arccos (\mathrm{x})^{\wedge} \mathrm{n} * \operatorname{lambda} \mathrm{y}(\mathrm{x})^{\wedge} 2+y(\mathrm{x})+\mathrm{y}(\mathrm{x}) * a * \mathrm{x}+\right.$ Methods for first order ODEs:
--- Trying classification methqds ${ }_{2} 9^{---}$
trying a quadrature
trying 1st order linear
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 382
dsolve (diff $(y(x), x)=l a m b d a * \arccos (x) \wedge n * y(x) \wedge 2+a * y(x)+a * b-b \wedge 2 * \operatorname{lambda*arccos}(x) \uparrow n, y(x)$, singso

> Expression too large to display
\checkmark Solution by Mathematica
Time used: 9.288 (sec). Leaf size: 420
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCos}[x] \wedge n * y[x] \sim 2+a * y[x]+a * b-b^{\wedge} 2 * \backslash[$ Lambda $] * \operatorname{ArcCos}[x]\lceil n, y[x], x$, Inclu

Solve $\left[\int_{1}^{x}\right.$
$-\frac{i \exp \left(-b \lambda \arccos (K[1])^{n} \Gamma(n+1,-i \arccos (K[1]))(-i \arccos (K[1]))^{-n}-b \lambda(i \arccos (K[1]))^{-n} \arccos (K\right.}{\operatorname{an\lambda }(b+y(x))}$
$+\int_{1}^{y(x)}\left(\frac{i \exp \left(-b \lambda \arccos (x)^{n} \Gamma(n+1,-i \arccos (x))(-i \arccos (x))^{-n}+a x-b \lambda(i \arccos (x))^{-n} \arccos (x)\right.}{a n \lambda(b+K[2])^{2}}\right.$
$-\int_{1}^{x}\left(\frac{i \exp \left(-b \lambda \arccos (K[1])^{n} \Gamma(n+1,-i \arccos (K[1]))(-i \arccos (K[1]))^{-n}-b \lambda(i \arccos (K[1]))^{-n} \operatorname{arc}\right.}{a n \lambda(b+K}\right.$

15.5 problem 14

15.5.1 Solving as riccati ode . 1241

Internal problem ID [10571]
Internal file name [OUTPUT/9518_Monday_June_06_2022_03_03_13_PM_87171803/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arccos (x)^{n} y^{2}+b \lambda x^{m} \arccos (x)^{n} y=b m x^{m-1}
$$

15.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\arccos (x)^{n} \lambda y^{2}-b \lambda x^{m} \arccos (x)^{n} y+b m x^{m-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\arccos (x)^{n} \lambda y^{2}-b \lambda x^{m} \arccos (x)^{n} y+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}, f_{1}(x)=-b \lambda x^{m} \arccos (x)^{n}$ and $f_{2}(x)=\arccos (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arccos (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)} \\
f_{1} f_{2} & =-b \lambda^{2} x^{m} \arccos (x)^{2 n} \\
f_{2}^{2} f_{0} & =\arccos (x)^{2 n} \lambda^{2} b m x^{m-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arccos (x)^{n} \lambda u^{\prime \prime}(x)-\left(-b \lambda^{2} x^{m} \arccos (x)^{2 n}-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)}\right) u^{\prime}(x)+\arccos (x)^{2 n} \lambda^{2} b m x^{m-1} u(x)$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arccos (x)^{n}-Y^{\prime}(x)\right.\right. & +\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}} \\
& \left.\left.+b m x^{m-1} \lambda_{_} Y(x) \arccos (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arccos (x)^{n} _Y^{\prime}(x)+\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}\right.\right. \\
&\left.\left.+b m x^{m-1} \lambda_{_} Y(x) \arccos (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arccos (x)^{n}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}+b m x^{m-1} \lambda _Y(x) \arccos (x)^{n}\right\},\right.\right.}{\lambda \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+b x^{m} \lambda \arccos (x)^{n} _Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}+b m x^{m-1} \lambda _Y(x) \arccos (\right.\right.},
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{a}}{\lambda \mathrm{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m} _Y(x)+_Y^{\prime}(x) x^{m+1}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+_Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arccos (x)}\right\},\left\{_Y(x)\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{a}}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m} _Y(x)+Y^{\prime}(x) x^{m+1}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arccos (x)}\right\},\{-Y(x)\right.}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{\left(b \lambda\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\left\{_Y(x)\right\}\right)\right) \mathrm{a}}{\lambda \mathrm{DESol}\left(\left\{\frac{\left(b \lambda\left(m x^{m} _Y(x)+_Y^{\prime}(x) x^{m+1}\right) \arccos (x)^{n+1}+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+_Y^{\prime}(x) x n}{\sqrt{-x^{2}+1} x \arccos (x)}\right\},\left\{_Y(x)\right.\right.}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=-\left(\left(-x^{\wedge} 2+1\right)^{\wedge}(1 / 2) * x^{\wedge} m * \arccos (x)\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, diff($\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\arccos (\mathrm{x})^{\wedge} \mathrm{n} * \operatorname{lambda} \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})-\mathrm{b} * \operatorname{lambda*}\right.$ Methods for first order ODEs:
--- Trying classification methqds 44^{---}
trying a quadrature
trying 1st order linear

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCos}[x] \wedge n * y[x] \wedge 2-b * \backslash\left[\right.$ Lambda $* * x^{\wedge} m * \operatorname{ArcCos}[x] \wedge n * y[x]+b * m * x^{\wedge}(m-1), y[x]$

Not solved

15.6 problem 15

15.6.1 Solving as riccati ode

Internal problem ID [10572]
Internal file name [OUTPUT/9519_Monday_June_06_2022_03_03_20_PM_88076586/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arccos (x)^{n} y^{2}=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}
$$

15.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\arccos (x)^{n} \lambda y^{2}+\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}+\arccos (x)^{n} \lambda y^{2}+\frac{\beta m x^{m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=\arccos (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arccos (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\arccos (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arccos (x)^{n} \lambda u^{\prime \prime}(x)+\frac{\arccos (x)^{n} n \lambda u^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}+\arccos (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arccos (x)^{n}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arccos (x)^{2 n}\right.\right. \\
\left.\left.+m \beta x^{m-1} \lambda _Y(x) \arccos (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arccos (x)^{2 n}\right.\right. \\
\left.\left.+m \beta x^{m-1} \lambda_{-} Y(x) \arccos (x)^{n}\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arccos (x)^{2 n}+m \beta x^{m-1} \lambda_{_} Y(x) \arccos (x)^{n}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-x^{2 m} \beta^{2} _Y(x) \lambda^{2} \arccos (x)^{2 n}+m \beta x^{m-1} \lambda_{_} Y(x) \operatorname{arcc}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-x^{2 m} \arccos (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arccos (x)^{n+1}-Y(x) \beta \lambda m+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n} \lambda^{2} \beta^{2} x^{1+2 m}-Y(x)+\arccos (x)^{n+1} \beta \lambda m x^{m}-Y(x)+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+_Y^{\prime}(a}{\sqrt{-x^{2}+1} x \arccos (x)}\right.\right.},
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-x^{2 m} \arccos (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arccos (x)^{n+1}-Y(x) \beta \lambda m+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n} \lambda^{2} \beta^{2} x^{1+2 m}-Y(x)+\arccos (x)^{n+1} \beta \lambda m x^{m}-Y(x)+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+-Y^{\prime}(x)}{\sqrt{-x^{2}+1} x \arccos (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(-x^{2 m} \arccos (x)^{1+2 n}-Y(x) \beta^{2} \lambda^{2}+x^{m-1} \arccos (x)^{n+1}-Y(x) \beta \lambda m+\arccos (x) _Y^{\prime \prime}(x)\right) \sqrt{-x^{2}+1}+n _Y^{\prime}(x)}{\sqrt{-x^{2}+1} \arccos (x)}\right\},\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(-\arccos (x)^{1+2 n} \lambda^{2} \beta^{2} x^{1+2 m}-Y(x)+\arccos (x)^{n+1} \beta \lambda m x^{m}-Y(x)+\arccos (x) _Y^{\prime \prime}(x) x\right) \sqrt{-x^{2}+1}+_Y^{\prime}(x)}{\sqrt{-x^{2}+1} x \arccos (x)}\right.\right.}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=-\mathrm{n} *(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})) /\left(\left(-\mathrm{x}^{\wedge} 2+1\right)^{\wedge}(\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> trying with_periodic_functions in the coefficients -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, diff($\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\arccos (\mathrm{x})^{\wedge} \mathrm{n} * \operatorname{lambda} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+\mathrm{x}^{\wedge} 2 *\right.$ (beta Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

X Solution by Maple
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{lambda} \arccos (\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{beta} * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-1 \operatorname{ambda} * \operatorname{beta}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \arccos (\mathrm{x})$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\backslash[$ Lambda $] * \operatorname{ArcCos}[\mathrm{x}] \wedge \mathrm{n} * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[$ Beta $] * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-\backslash[$ Lambda $] * \backslash$ Beta] $\wedge 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) *$ Arc

Not solved

15.7 problem 16

15.7.1 Solving as riccati ode . 1251

Internal problem ID [10573]
Internal file name [OUTPUT/9520_Monday_June_06_2022_03_03_27_PM_85306196/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]
```

$$
y^{\prime}-\lambda \arccos (x)^{n}\left(y-a x^{m}-b\right)^{2}=a m x^{m-1}
$$

15.7.1 Solving as riccati ode

In canonical form the ODE is

$$
y^{\prime}=F(x, y)
$$

$$
=x^{2 m} \arccos (x)^{n} a^{2} \lambda+2 x^{m} \arccos (x)^{n} a b \lambda-2 x^{m} \arccos (x)^{n} a \lambda y+b^{2} \lambda \arccos (x)^{n}-2 \arccos (x)^{n} b \lambda ?
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 m} \arccos (x)^{n} a^{2} \lambda+2 x^{m} \arccos (x)^{n} a b \lambda-2 x^{m} \arccos (x)^{n} a \lambda y+b^{2} \lambda \arccos (x)^{n}-2 \arccos (x)^{n} b \lambda y+\operatorname{ar}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 m} \arccos (x)^{n} a^{2} \lambda+2 x^{m} \arccos (x)^{n} a b \lambda+b^{2} \lambda \arccos (x)^{n}+a m x^{m-1}$, $f_{1}(x)=-2 a \lambda x^{m} \arccos (x)^{n}-2 \arccos (x)^{n} \lambda b$ and $f_{2}(x)=\arccos (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arccos (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)} \\
f_{1} f_{2} & =\left(-2 a \lambda x^{m} \arccos (x)^{n}-2 \arccos (x)^{n} \lambda b\right) \arccos (x)^{n} \lambda \\
f_{2}^{2} f_{0} & =\arccos (x)^{2 n} \lambda^{2}\left(x^{2 m} \arccos (x)^{n} a^{2} \lambda+2 x^{m} \arccos (x)^{n} a b \lambda+b^{2} \lambda \arccos (x)^{n}+a m x^{m-1}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\arccos (x)^{n} \lambda u^{\prime \prime}(x)-\left(-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x)}+\left(-2 a \lambda x^{m} \arccos (x)^{n}-2 \arccos (x)^{n} \lambda b\right) \arccos (x)^{n} \lambda\right)
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1}}+\arccos (x)\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{2 n}+Y^{\prime \prime}(x)+x^{m-1} \arccos \right.}{\arccos (x)}\right.\right.$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x}$ DESol $\left(\left\{\frac{\frac{n-Y^{\prime}(x)}{\sqrt{-x^{2}+1}}+\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\right.}{\arccos (x)}\right.\right.$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{\frac{n}{\sqrt{-}-x^{2}+1}+\lambda^{\prime} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+}}{\arccos (x)}\right.\right.\right.}{\lambda \text { DESol }\left(\left\{\frac{\frac{n}{\sqrt{~}-x^{2}+1}+\operatorname{rarccos}(x)\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{2 n}+_Y^{\prime \prime}(x)+x^{m-1} \arccos (x)^{n} a m \lambda _Y(x)+\right.}{\arccos (x)}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\arccos (x)\right.}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(\lambda^{2}-Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m-Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\mathrm{a}\right.}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\arccos (x)\right.}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\mathrm{a}}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\left(\lambda^{2} _Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\arccos (x)\right.}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{\left(\lambda^{2}-Y(x)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arccos (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)\left(a x^{m}+b\right)\right) \lambda \arccos (x)^{n+1}+\mathrm{a}\right.}{\sqrt{-x^{2}+1} \arccos (x)}\right.\right.}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 165

$y(x)$
$=\frac{\lambda\left(a x^{m}+b\right)\left((n+2) \operatorname{LommelS} 1\left(n+\frac{1}{2}, \frac{1}{2}, \arccos (x)\right)-\operatorname{LommelS} 1\left(n+\frac{3}{2}, \frac{3}{2}, \arccos (x)\right) \arccos (x)+\mathrm{a}\right.}{\lambda\left((n+2) \operatorname{LommelS} 1\left(n+\frac{1}{2}, \frac{1}{2}, \arccos (x)\right)-\operatorname{LommelS} 1\left(n+\frac{3}{2}, \frac{3}{2}, \arccos (x)\right) \operatorname{arcco}\right.}$
\checkmark Solution by Mathematica
Time used: 4.776 (sec). Leaf size: 86
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCos}[x] \wedge n *\left(y[x]-a * x^{\wedge} m-b\right)^{\wedge} 2+a * m * x^{\wedge}(m-1), y[x], x$, IncludeSingularSolut

$$
\begin{aligned}
& y(x) \rightarrow a x^{m} \\
& \quad+\frac{1}{-\frac{1}{2} \lambda \arccos (x)^{n}(-i \arccos (x))^{-n} \Gamma(n+1,-i \arccos (x))-\frac{1}{2} \lambda(i \arccos (x))^{-n} \arccos (x)^{n} \Gamma(n+1, i \operatorname{arcc}} \\
& \quad+b \\
& y(x) \rightarrow a x^{m}+b
\end{aligned}
$$

15.8 problem 17

15.8.1 Solving as riccati ode

Internal problem ID [10574]
Internal file name [OUTPUT/9521_Monday_June_06_2022_03_03_44_PM_79556931/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\lambda \arccos (x)^{n} y^{2}-k y=\lambda b^{2} x^{2 k} \arccos (x)^{n}
$$

15.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\arccos (x)^{n} \lambda y^{2}+k y+\lambda b^{2} x^{2 k} \arccos (x)^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\lambda b^{2} x^{2 k} \arccos (x)^{n}}{x}+\frac{\arccos (x)^{n} \lambda y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda b^{2} x^{2 k} \arccos (x)^{n}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{\arccos (x)^{n} \lambda}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\arccos (x)^{n} \lambda u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x) x}-\frac{\arccos (x)^{n} \lambda}{x^{2}} \\
f_{1} f_{2} & =\frac{k \arccos (x)^{n} \lambda}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\arccos (x)^{3 n} \lambda^{3} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\arccos (x)^{n} \lambda u^{\prime \prime}(x)}{x}-\left(-\frac{\arccos (x)^{n} n \lambda}{\sqrt{-x^{2}+1} \arccos (x) x}-\frac{\arccos (x)^{n} \lambda}{x^{2}}+\frac{k \arccos (x)^{n} \lambda}{x^{2}}\right) u^{\prime}(x)+\frac{\left.\arccos (x)^{3 n}\right)}{x^{3}}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i b x^{k-1} \lambda \arccos (x)^{n} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{1}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{1}-c_{2}\right) x}{c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arccos (x)^{n} d x\right)} c_{3}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 29

$$
y(x)=-\tan \left(-\lambda b\left(\int x^{-1+k} \arccos (x)^{n} d x\right)+c_{1}\right) b x^{k}
$$

Solution by Mathematica
Time used: 2.128 (sec). Leaf size: 48
DSolve $\left[x * y^{\prime}[x]==\backslash[\right.$ Lambda $] * \operatorname{ArcCos}[x] \wedge n * y[x] \wedge 2+k * y[x]+\backslash[$ Lambda $] * b^{\wedge} 2 * x^{\wedge}(2 * k) * \operatorname{ArcCos}[x] \wedge n, y[x], x$

$$
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} \lambda \arccos (K[1])^{n} K[1]^{k-1} d K[1]+c_{1}\right)
$$

15.9 problem 18

15.9.1 Solving as riccati ode . 1258

Internal problem ID [10575]
Internal file name [OUTPUT/9522_Monday_June_06_2022_03_03_46_PM_39589339/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-2. Equations containing arccosine.
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\left(a x^{2 m} y^{2}+y x^{n} b+c\right) \arccos (x)^{m}+y n=0
$$

15.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\arccos (x)^{m} x^{2 m} a y^{2}+\arccos (x)^{m} x^{n} b y+\arccos (x)^{m} c-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\arccos (x)^{m} x^{2 m} a y^{2}}{x}+\frac{\arccos (x)^{m} x^{n} b y}{x}+\frac{\arccos (x)^{m} c}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\arccos (x)^{m} c}{x}, f_{1}(x)=\frac{\arccos (x)^{m} x^{n} b-n}{x}$ and $f_{2}(x)=\frac{\arccos (x)^{m} x^{2 m} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\arccos (x)^{m} x^{2 m} a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\arccos (x)^{m} m x^{2 m} a}{\sqrt{-x^{2}+1} \arccos (x) x}+\frac{2 \arccos (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arccos (x)^{m} x^{2 m} a}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(\arccos (x)^{m} x^{n} b-n\right) \arccos (x)^{m} x^{2 m} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\arccos (x)^{3 m} x^{4 m} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\arccos (x)^{m} x^{2 m} a u^{\prime \prime}(x)}{x}-\left(-\frac{\arccos (x)^{m} m x^{2 m} a}{\sqrt{-x^{2}+1} \arccos (x) x}+\frac{2 \arccos (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arccos (x)^{m} x^{2 m} a}{x^{2}}+\frac{(\operatorname{arccc}(}{}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)= & \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{m-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-b x^{n-1} \arccos (x)^{m}-Y^{\prime}(x)\right.\right. \\
& \left.\left.+a c x^{2 m-2}-Y(x) \arccos (x)^{2 m}+\frac{n-Y^{\prime}(x)}{x}-\frac{2 m-Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)= & \frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{m-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-b x^{n-1} \arccos (x)^{m}-Y^{\prime}(x)\right.\right. \\
& \left.\left.+a c x^{2 m-2}-Y(x) \arccos (x)^{2 m}+\frac{n-Y^{\prime}(x)}{x}-\frac{2 m-Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{-Y^{\prime \prime}(x)+\frac{m-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-b x^{n-1} \arccos (x)^{m}-Y^{\prime}(x)+a c x^{2 m-2}-Y(x) \arccos (x)^{2 m}+\right.\right.\right.}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{m-Y^{\prime}(x)}{\arccos (x) \sqrt{-x^{2}+1}}-b x^{n-1} \arccos (x)^{m}-Y^{\prime}(x)+a c x^{2 m-2}-Y(x) \operatorname{arcco}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left.-\frac{x^{-2 m+1} \arccos (x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(a c x^{2 m-1}-Y(x) \arccos (x)^{1+2 m}-b x^{n} \arccos (x)^{m+1}-\right.}{}-Y^{\prime}(x)-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+_Y\right.\right.\right.\right.}{\sqrt{-x^{2}+1} \arccos (x) x}\right)
$$

Summary

The solution(s) found are the following
$y=$
(1)
$-\frac{x^{-2 m+1} \arccos (x)^{-m}\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{\left(a c x^{2 m-1}-Y(x) \arccos (x)^{1+2 m}-b x^{n} \arccos (x)^{m+1}-Y^{\prime}(x)-2\left(-=\frac{Y^{\prime \prime}(x) x}{2}+_Y\right.\right.}{\sqrt{-x^{2}+1} \arccos (x) x}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{\left(x^{2 m} \arccos (x)^{1+2 m}-Y(x) a c-\arccos (x)^{m+1} x^{n+1}-Y^{\prime}(x) b-2\left(-\frac{Y^{\prime \prime}(x) x}{2}+-Y^{\prime}(x)\left(m-\frac{n}{2}-\frac{1}{2}\right)\right)\right.}{\sqrt{-x^{2}+1} \arccos (x) x^{2}}\right.\right.}$

Verification of solutions

$y=$

$$
-\frac{x^{-2 m+1} \arccos (x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\left(a c x^{2 m-1}-Y(x) \arccos (x)^{1+2 m}-b x^{n} \arccos (x)^{m+1}-Y^{\prime}(x)-2\left(--\frac{Y^{\prime \prime}(x) x}{2}+_Y\right.\right.}{\sqrt{-x^{2}+1} \arccos (x) x}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{\left(x^{2 m} \arccos (x)^{1+2 m}-Y(x) a c-\arccos (x)^{m+1} x^{n+1}-Y^{\prime}(x) b-2\left(-\frac{Y^{\prime \prime}(x) x}{2}+_Y^{\prime}(x)\left(m-\frac{n}{2}-\frac{1}{2}\right)\right)\right.}{\sqrt{-x^{2}+1} \arccos (x) x^{2}}\right)\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{x}^{\wedge}(\mathrm{n}-1) *\left(-\mathrm{x}^{\wedge} 2+1\right)^{\wedge}(1 / 2) * \arccos \right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{x}^{\wedge}(-1+2 * m) * a * \arccos (\mathrm{x})^{\wedge} \mathrm{m} * y(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+(\mathrm{x}\right.$
Methods for first order ODEs:
--- Trying classification methqds ${ }^{26} 1^{---}$
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{c}\right) * \arccos (\mathrm{x})^{\wedge} \mathrm{m}-\mathrm{n} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==\left(a * x^{\wedge}(2 * m) * y[x] \sim 2+b * x \wedge n * y[x]+c\right) * \operatorname{ArcCos}[x]^{\wedge} m-n * y[x], y[x], x\right.$, IncludeSingularSol

Not solved
16 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
16.1 problem 19 1264
16.2 problem 20 1269
16.3 problem 21 1273
16.4 problem 22 1278
16.5 problem 23 1283
16.6 problem 24 1288
16.7 problem 25 1293
16.8 problem 26 1297
16.9 problem 27 1300

16.1 problem 19

16.1.1 Solving as riccati ode

Internal problem ID [10576]
Internal file name [OUTPUT/9523_Monday_June_06_2022_03_04_01_PM_31783764/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda \arctan (x)^{n} y=-a^{2}+a \lambda \arctan (x)^{n}
$$

16.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda \arctan (x)^{n} y-a^{2}+a \lambda \arctan (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda \arctan (x)^{n} y-a^{2}+a \lambda \arctan (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \arctan (x)^{n}, f_{1}(x)=\arctan (x)^{n} \lambda$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arctan (x)^{n} \lambda \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \arctan (x)^{n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arctan (x)^{n} \lambda u^{\prime}(x)+\left(-a^{2}+a \lambda \arctan (x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\int \frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x} d x} c_{2}
$$

The above shows that

$$
u^{\prime}(x)
$$

$$
=\frac{\left(a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}\right) \mathrm{e}^{\int \frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int(-\mathrm{a}\right.}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(y(x), x), x)=\arctan (x)^{\wedge} n * \operatorname{lambda*}(\operatorname{diff}(y(x)$, Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and $y(x)$ trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the 12 CHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) -> Trying changes of variables to rationalize or make the ODE simplef
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 71
dsolve $\left(\operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+\operatorname{lambda} * \arctan (x) \wedge n * y(x)-a \wedge 2+a * \operatorname{lambda*arctan}(x) \wedge n, y(x)\right.$, singsol=al

$$
y(x)=\frac{-c_{1} a-a\left(\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x\right)-\mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)}}{c_{1}+\int \mathrm{e}^{-\left(\int\left(-\arctan (x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

\checkmark Solution by Mathematica
Time used: 7.862 (sec). Leaf size: 210
DSolve $[y$ ' $[x]==y[x] \sim 2+\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n * y[x]-a \wedge 2+a * \backslash[$ Lambda] $* \operatorname{ArcTan}[x] \wedge n, y[x], x$, IncludeSi

Solve $\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}\left(2 a-\lambda \arctan (K[1])^{n}\right) d K[1]\right)\left(-\lambda \arctan (K[2])^{n}+a-y(x)\right)}{n \lambda(a+y(x))} d K[2]\right.$
$+\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}\left(2 a-\lambda \arctan (K[1])^{n}\right) d K[1]\right)}{n \lambda(a+K[3])^{2}}\right.$
$-\int_{1}^{x}\left(-\frac{\exp \left(-\int_{1}^{K[2]}\left(2 a-\lambda \arctan (K[1])^{n}\right) d K[1]\right)\left(-\lambda \arctan (K[2])^{n}+a-K[3]\right)}{n \lambda(a+K[3])^{2}}-\frac{\exp \left(-\int_{1}^{K[2]}(2 a\right.}{n}\right.$

16.2 problem 20

16.2.1 Solving as riccati ode . 1269

Internal problem ID [10577]
Internal file name [OUTPUT/9524_Monday_June_06_2022_03_04_08_PM_65810070/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda x \arctan (x)^{n} y=\arctan (x)^{n} \lambda
$$

16.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\arctan (x)^{n} \lambda x y+\arctan (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\arctan (x)^{n} \lambda x y+\arctan (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\arctan (x)^{n} \lambda, f_{1}(x)=\arctan (x)^{n} \lambda x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\arctan (x)^{n} \lambda x \\
f_{2}^{2} f_{0} & =\arctan (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\arctan (x)^{n} \lambda x u^{\prime}(x)+\arctan (x)^{n} \lambda u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\left(x^{2}+1\right) x c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)+c_{2} \mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}+c_{1} x\left(x^{2}+1\right)}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Using the above in (1) gives the solution
$y=-\frac{\left(x^{2}+1\right) x c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)+c_{2} \mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}+c_{1} x\left(x^{2}+1\right)}{x^{2}\left(x^{2}+1\right)\left(c_{1}+c_{2}\left(\int \frac{\frac{\mathrm{e}}{}_{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1}}^{x^{2}\left(x^{2}+1\right)}}{} d x\right)\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-x^{3}-x\right)\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{3} x^{3}-c_{3} x-\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-x^{3}-x\right)\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{3} x^{3}-c_{3} x-\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-x^{3}-x\right)\left(\int \frac{\frac{\mathrm{e}}{}_{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1}}^{x^{2}\left(x^{2}+1\right)}}{} d x\right)-c_{3} x^{3}-c_{3} x-\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \arctan (x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 78

```
dsolve(diff (y (x),x)=y(x)^2+lambda*x*arctan(x)^n*y(x)+lambda*arctan(x)^n,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\int \frac{\arctan (x)^{n} \lambda x^{2}-2}{x} d x} x+\int \mathrm{e}^{\int \frac{\arctan (x)^{n} \lambda x^{2}-2}{x} d x} d x-c_{1}}{\left(c_{1}-\left(\int \mathrm{e}^{\int \frac{\arctan (x)^{n} \lambda x^{2}-2}{x} d x} d x\right)\right) x}
$$

\checkmark Solution by Mathematica
Time used: 7.063 (sec). Leaf size: 120
DSolve $[y$ ' $[x]==y[x] \sim 2+\backslash[$ Lambda $] * x * \operatorname{ArcTan}[x] \wedge n * y[x]+\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n, y[x], x$, IncludeSingul
$y(x) \rightarrow$
$-\frac{\exp \left(-\int_{1}^{x}-\lambda \arctan (K[1])^{n} K[1] d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\lambda \arctan (K[1])^{n} K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\lambda \arctan (K[1])^{n} K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)}$
$y(x) \rightarrow-\frac{1}{x}$

16.3 problem 21

16.3.1 Solving as riccati ode . 1273

Internal problem ID [10578]
Internal file name [OUTPUT/9525_Monday_June_06_2022_03_04_13_PM_78552728/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(k+1) x^{k} y^{2}-\lambda \arctan (x)^{n}\left(x^{k+1} y-1\right)=0
$$

16.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{k+1} \arctan (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arctan (x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{k} x \arctan (x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\arctan (x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\arctan (x)^{n} \lambda, f_{1}(x)=x^{k+1} \arctan (x)^{n} \lambda$ and $f_{2}(x)=-x^{k} k-x^{k}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \arctan (x)^{n} \lambda\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} \arctan (x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \arctan (x)^{n} \lambda\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} \arctan (x
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{k+1}\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)= & c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} \\
& +(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y=\frac{\left(c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Summary

The solution(s) found are the following
y
$=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$
Verification of solutions
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \arctan (x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \arctan (x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{x}^{\wedge}(1+\mathrm{k}) * \arctan (\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{x} * \operatorname{lambdat}\right.$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and $y(x)$ trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the 12 GF or one of its 4 confluent cases undef a power © Moe -> trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (i n t(r(x), d x))$
-> Trying changes of variables to rationalize or make the ODE simplef
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 180
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+$ lambda*arctan $(\mathrm{x})^{\wedge} \mathrm{n} *\left(\mathrm{x}^{\wedge}(\mathrm{k}+1) * \mathrm{y}(\mathrm{x})-1\right), \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)$
$=\frac{x^{-1-k}\left(\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arctan (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \arctan (x)^{n} x \lambda-2 k-2}{x} d x}+\int x^{k} \mathrm{e}^{\lambda\left(\int \arctan (x)^{n} x^{1+k}\right.}\right.}{\left(\int x^{k} \mathrm{e}^{\lambda\left(\int \arctan (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int \arctan (x)^{n} x^{1+k} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n *\left(x^{\wedge}(k+1) * y[x]-1\right), y[x], x$, IncludeSingula
Not solved

16.4 problem 22

16.4.1 Solving as riccati ode . 1278

Internal problem ID [10579]
Internal file name [OUTPUT/9526_Monday_June_06_2022_03_04_23_PM_74571615/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arctan (x)^{n} y^{2}-a y=a b-b^{2} \lambda \arctan (x)^{n}
$$

16.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arctan (x)^{n} y^{2}+y a+a b-b^{2} \lambda \arctan (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \arctan (x)^{n} y^{2}+y a+a b-b^{2} \lambda \arctan (x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b-b^{2} \lambda \arctan (x)^{n}, f_{1}(x)=a$ and $f_{2}(x)=\arctan (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arctan (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)} \\
f_{1} f_{2} & =a \lambda \arctan (x)^{n} \\
f_{2}^{2} f_{0} & =\arctan (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arctan (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives $\arctan (x)^{n} \lambda u^{\prime \prime}(x)-\left(\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)}+a \lambda \arctan (x)^{n}\right) u^{\prime}(x)+\arctan (x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \arctan (x)^{n}\right.$ Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}\right.\right. & -a _Y^{\prime}(x)-\arctan (x)^{2 n} b^{2} \lambda^{2} _Y(x) \\
& \left.\left.+\arctan (x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}-a _Y^{\prime}(x)\right.\right. \\
&\left.\left.-\arctan (x)^{2 n} b^{2} \lambda^{2} _Y(x)+\arctan (x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+1\right) \operatorname{Yarctan}(x)}-a _Y^{\prime}(x)-\arctan (x)^{2 n} b^{2} \lambda^{2}-Y(x)+\arctan (x)^{n} a b \lambda _Y(x)\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+1\right) \operatorname{Yrctan}(x)}-a _Y^{\prime}(x)-\arctan (x)^{2 n} b^{2} \lambda^{2}-Y(x)+\arctan (x)^{n} a b \lambda\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

Verification of solutions

$$
\begin{aligned}
& y=
\end{aligned}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (arctan(x)*a*x^2+a*arctan(x)+n
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 1281 or one of its 4 confluent cases undef a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 87
dsolve $(\operatorname{diff}(y(x), x)=l \operatorname{lambda} \arctan (x) \wedge n * y(x) \wedge 2+a * y(x)+a * b-b \wedge 2 * \operatorname{lambda} * \arctan (x) \uparrow n, y(x)$, singso

$$
y(x)=\frac{-b \lambda\left(\int \arctan (x)^{n} \mathrm{e}^{-\left(\int\left(2 \arctan (x)^{n} \lambda b-a\right) d x\right)} d x\right)-c_{1} b-\mathrm{e}^{-\left(\int\left(2 \arctan (x)^{n} \lambda b-a\right) d x\right)}}{c_{1}+\lambda\left(\int \arctan (x)^{n} \mathrm{e}^{-\left(\int\left(2 \arctan (x)^{n} \lambda b-a\right) d x\right)} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 10.998 (sec). Leaf size: 240
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n * y[x]^{\wedge} 2+a * y[x]+a * b-b^{\wedge} 2 * \backslash[$ Lambda $] * \operatorname{ArcTan}[x]\lceil n, y[x], x$, Inclu

$$
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}\left(2 b \lambda \arctan (K[1])^{n}-a\right) d K[1]\right)\left(-b \lambda \arctan (K[2])^{n}+\lambda y(x) \arctan (K[2])^{n}+a\right)}{a n \lambda(b+y(x))} a\right. \\
& +\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]}\left(2 b \lambda \arctan (K[1])^{n}-a\right) d K[1]\right) \arctan (K[2])^{n}}{a n(b+K[3])}-\frac{\exp \left(-\int_{1}^{K[2]}(2 b \lambda \arctan (\right.}{a n \lambda(b+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]
\end{aligned}
$$

16.5 problem 23

16.5.1 Solving as riccati ode . 1283

Internal problem ID [10580]
Internal file name [OUTPUT/9527_Monday_June_06_2022_03_04_28_PM_46831198/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arctan (x)^{n} y^{2}+b \lambda x^{m} \arctan (x)^{n} y=b m x^{m-1}
$$

16.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arctan (x)^{n} y^{2}-b \lambda x^{m} \arctan (x)^{n} y+b m x^{m-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \arctan (x)^{n} y^{2}-b \lambda x^{m} \arctan (x)^{n} y+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}, f_{1}(x)=-b \lambda x^{m} \arctan (x)^{n}$ and $f_{2}(x)=\arctan (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arctan (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)} \\
f_{1} f_{2} & =-b \lambda^{2} x^{m} \arctan (x)^{2 n} \\
f_{2}^{2} f_{0} & =\arctan (x)^{2 n} \lambda^{2} b m x^{m-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives $\arctan (x)^{n} \lambda u^{\prime \prime}(x)-\left(\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)}-b \lambda^{2} x^{m} \arctan (x)^{2 n}\right) u^{\prime}(x)+\arctan (x)^{2 n} \lambda^{2} b m x^{m-1} u(x)=$ Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+\arctan (x)^{n} b \lambda x^{m}-Y^{\prime}(x)\right.\right. \\
&\left.\left.+\arctan (x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+\arctan (x)^{n} b \lambda x^{m}-Y^{\prime}(x)\right.\right. \\
\left.\left.+\arctan (x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{-Y(x)\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& \left.-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+\overline{1}\right)} \operatorname{Y^{\prime }(x)} \arctan (x)\right.\right.\right.}{}+\arctan (x)^{n} b \lambda x^{m}-Y^{\prime}(x)+\arctan (x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{ \\
& \lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+\overline{1}\right) \operatorname{ractan}(x)}+\operatorname{Yrctan}(x)^{\prime} b \lambda x^{m}-Y^{\prime}(x)+\arctan (x)^{n} \lambda b m x^{m-1}-Y(\right.\right.
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y= & \left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arctan (x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \arctan (x)-n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}\right\},\{-Y(x)\right.\right. \\
& \lambda \operatorname{DESol}\left(\left\{\frac{b \lambda\left(m x^{m} _Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \arctan (x)^{n+1}-x\left(\left(-x^{2}-1\right) \arctan (x) _Y^{\prime \prime}(x)+n\right.}{\left(x^{2}+1\right) \arctan (x) x}\right.\right.
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arctan (x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \arctan (x)-n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}\right\},\left\{_Y(x)\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{b \lambda\left(m x^{m}-Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \arctan (x)^{n+1}-x\left(\left(-x^{2}-1\right) \arctan (x) _Y^{\prime \prime}(x)+n-n\right.}{\left(x^{2}+1\right) \arctan (x) x}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \arctan (x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \arctan (x)-n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}\right\},\left\{_Y(x)\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{b \lambda\left(m x^{m} _Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \arctan (x)^{n+1}-x\left(\left(-x^{2}-1\right) \arctan (x) _Y^{\prime \prime}(x)+n-\right.}{\left(x^{2}+1\right) \arctan (x) x}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(x^m*arctan(x)`n*arctan(x)*b*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 12886 or one of its 4 confluent cases undef a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=l a m b d a * \arctan (x)^{\wedge} n * y(x)^{\wedge} 2-b * \operatorname{lambda} * x^{\wedge} m * \arctan (x)^{\wedge} n * y(x)+b * m * x^{\wedge}(m-1), y(x)\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n * y[x] \wedge 2-b * \backslash\left[\right.$ Lambda $* * x^{\wedge} m * \operatorname{ArcTan}[x] \wedge n * y[x]+b * m * x^{\wedge}(m-1), y[x]$

Not solved

16.6 problem 24

16.6.1 Solving as riccati ode . 1288

Internal problem ID [10581]
Internal file name [OUTPUT/9528_Monday_June_06_2022_03_04_39_PM_60608499/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \arctan (x)^{n} y^{2}=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}
$$

16.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \arctan (x)^{n} y^{2}+\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}+\lambda \arctan (x)^{n} y^{2}+\frac{\beta m x^{m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=\arctan (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arctan (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\arctan (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\arctan (x)^{n} \lambda u^{\prime \prime}(x)-\frac{\arctan (x)^{n} n \lambda u^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+\arctan (x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \arctan (x)^{n}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}-\arctan (x)^{2 n} x^{2 m} \beta^{2} \lambda^{2} _Y(x)\right.\right. \\
\left.\left.+\arctan (x)^{n} \beta m x^{m-1} \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}-\arctan (x)^{2 n} x^{2 m} \beta^{2} \lambda^{2} _Y(x)\right.\right. \\
\left.\left.+\arctan (x)^{n} \beta m x^{m-1} \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+1\right)} \operatorname{Y^{\prime }(x)}\right.\right.\right.}{\arctan (x)}-\arctan (x)^{2 n} x^{2 m} \beta^{2} \lambda^{2} _Y(x)+\arctan (x)^{n} \beta m x^{m-1} \lambda _Y(x) \\
\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n}{\left(x^{2}+1\right) \operatorname{lrctan}(x)}-\arctan (x)^{2 n} x^{2 m} \beta^{2} \lambda^{2} _Y(x)+\arctan (x)^{n} \beta m x^{m-1} \lambda\right.\right.
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \arctan (x)-n _Y^{\prime}(x)-\beta^{2} _\frac{Y(x) x^{2 m} \lambda^{2} \arctan (x)^{1+2 n}\left(x^{2}+1\right)+m \beta \lambda _Y(x) \arctan (x)^{n+1} x^{m-1}(x)}{\left(x^{2}+1\right) \arctan (x)}}{\lambda \operatorname{DESol}\left(\left\{\frac{-\beta^{2} \lambda^{2} _Y(x)\left(x^{3+2 m}+x^{1+2 m}\right) \arctan (x)^{1+2 n}+m \beta \lambda _Y(x)\left(x^{m}+x^{2+m}\right) \arctan (x)^{n+1}-x\left(\left(-x^{2}-1\right) \arctan (x) _\right.}{x\left(x^{2}+1\right) \arctan (x)}\right.\right.},\right.\right.\right.}{\frac{Y(1)}{}}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \arctan (x)-n _Y^{\prime}(x)-\beta^{2} _\frac{Y(x) x^{2 m} \lambda^{2} \arctan (x)^{1+2 n}\left(x^{2}+1\right)+m \beta \lambda _Y(x) \arctan (x)^{n+1} x^{m-1}(x)}{\left(x^{2}+1\right) \arctan (x)}}{\lambda \mathrm{DESol}\left(\left\{\frac{-\beta^{2} \lambda^{2} _Y(x)\left(x^{3+2 m}+x^{1+2 m}\right) \arctan (x)^{1+2 n}+m \beta \lambda _Y(x)\left(x^{m}+x^{2+m}\right) \arctan (x)^{n+1}-x\left(\left(-x^{2}-1\right) \arctan (x) _\right.}{x\left(x^{2}+1\right) \arctan (x)}\right)\right.}\right.\right.\right.}{} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\mathrm{n} *(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})) /\left(\left(\mathrm{x}^{\wedge} 2+1\right) * \operatorname{arc}\right.$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and $y(x)$ trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the 129 CH or one of its 4 confluent cases undef a power © Moe -> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) -> Trying changes of variables to rationalize or make the ODE simplef

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{lambda} \arctan (\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{beta} * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-1 \operatorname{ambda} * \operatorname{beta}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \arctan (\mathrm{x})\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\backslash[$ Lambda $] * \operatorname{ArcTan}[\mathrm{x}] \wedge \mathrm{n} * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[$ Beta $] * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-\backslash[$ Lambda $] * \backslash$ Beta] $\wedge 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \operatorname{Arc}$

Not solved

16.7 problem 25

16.7.1 Solving as riccati ode . 1293

Internal problem ID [10582]
Internal file name [OUTPUT/9529_Monday_June_06_2022_03_04_55_PM_64490874/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]
```

$$
y^{\prime}-\lambda \arctan (x)^{n}\left(y-a x^{m}-b\right)^{2}=a m x^{m-1}
$$

16.7.1 Solving as riccati ode

In canonical form the ODE is

$$
y^{\prime}=F(x, y)
$$

$$
\left.=x^{2 m} \arctan (x)^{n} a^{2} \lambda+2 x^{m} \arctan (x)^{n} a b \lambda-2 x^{m} \arctan (x)^{n} a \lambda y+b^{2} \lambda \arctan (x)^{n}-2 \arctan (x)^{n} b\right)
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 m} \arctan (x)^{n} a^{2} \lambda+2 x^{m} \arctan (x)^{n} a b \lambda-2 x^{m} \arctan (x)^{n} a \lambda y+b^{2} \lambda \arctan (x)^{n}-2 \arctan (x)^{n} b \lambda y+$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 m} \arctan (x)^{n} a^{2} \lambda+2 x^{m} \arctan (x)^{n} a b \lambda+b^{2} \lambda \arctan (x)^{n}+a m x^{m-1}$, $f_{1}(x)=-2 a \lambda x^{m} \arctan (x)^{n}-2 \arctan (x)^{n} \lambda b$ and $f_{2}(x)=\arctan (x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\arctan (x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)} \\
f_{1} f_{2} & =\left(-2 a \lambda x^{m} \arctan (x)^{n}-2 \arctan (x)^{n} \lambda b\right) \arctan (x)^{n} \lambda \\
f_{2}^{2} f_{0} & =\arctan (x)^{2 n} \lambda^{2}\left(x^{2 m} \arctan (x)^{n} a^{2} \lambda+2 x^{m} \arctan (x)^{n} a b \lambda+b^{2} \lambda \arctan (x)^{n}+a m x^{m-1}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives $\arctan (x)^{n} \lambda u^{\prime \prime}(x)-\left(\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x)}+\left(-2 a \lambda x^{m} \arctan (x)^{n}-2 \arctan (x)^{n} \lambda b\right) \arctan (x)^{n} \lambda\right) u^{\prime}(x$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+2 \arctan (x)^{n} \lambda x^{m} a _Y^{\prime}(x)\right.\right. \\
+2 \arctan (x)^{n} b \lambda _Y^{\prime}(x)+\arctan (x)^{2 n} x^{2 m} a^{2} \lambda^{2}-Y(x) \\
+2 \arctan (x)^{2 n} x^{m} a b \lambda^{2} _Y(x)+\arctan (x)^{2 n} b^{2} \lambda^{2}-Y(x) \\
\left.\left.+\arctan (x)^{n} a m x^{m-1} \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{n _Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+2 \arctan (x)^{n} \lambda x^{m} a _Y^{\prime}(x)\right.\right. \\
+2 \arctan (x)^{n} b \lambda_{-} Y^{\prime}(x)+\arctan (x)^{2 n} x^{2 m} a^{2} \lambda^{2}-Y(x) \\
+2 \arctan (x)^{2 n} x^{m} a b \lambda^{2} _Y(x)+\arctan (x)^{2 n} b^{2} \lambda^{2}-Y(x) \\
\left.\left.+\arctan (x)^{n} a m x^{m-1} \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+2 \arctan (x)^{n} \lambda x^{m} a _Y^{\prime}(x)+2 \arctan (x)^{n} b \lambda _Y^{\prime}(x)+\operatorname{arcta}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{n-Y^{\prime}(x)}{\left(x^{2}+1\right) \arctan (x)}+2 \arctan (x)^{n} \lambda x^{m} a _Y^{\prime}(x)+2 \arctan (x)^{n} b \lambda _Y^{\prime}(x)+\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\lambda^{2}-Y(x)\left(x^{2}+1\right)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arctan (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)(9\right.}{\left(x^{2}+1\right) \arctan (x}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-\frac{Y(x)\left(a^{2} x^{1+2 m}+a^{2} x^{3+2 m}+2 a x^{3+m} b+2 a x^{m+1} b+b^{2} x\left(x^{2}+1\right)\right) \lambda^{2} \arctan (x)^{1+2 n}+\left(2 a x^{3+m}-Y^{\prime}(x)+2 a x^{m+1}-Y^{\prime}(x\right.}{x\left(x^{2}+1\right)}\right.\right.}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

$$
\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{\lambda^{2}-Y(x)\left(x^{2}+1\right)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arctan (x)^{1+2 n}+\left(a x^{m-1} m _-Y(x)+2 _Y^{\prime}(x)(6)\right.}{\left(x^{2}+1\right) \arctan (x}\right.\right.\right.}{\left.{ }^{2} x^{1+2 m}+a^{2} x^{3+2 m}+2 a x^{3+m} b+2 a x^{m+1} b+b^{2} x\left(x^{2}+1\right)\right) \lambda^{2} \arctan (x)^{1+2 n}+\left(2 a x^{3+m}-Y_{(x)+2 a x^{m+1}-}^{\prime}-Y^{\prime}(x)\right.} x\left(x^{2}+1\right) .
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\lambda^{2} _Y(x)\left(x^{2}+1\right)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \arctan (x)^{1+2 n}+\left(a x^{m-1} m _Y(x)+2 _Y^{\prime}(x)()\right.}{\left(x^{2}+1\right) \arctan (x}\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{-\frac{Y(x)\left(a^{2} x^{1+2 m}+a^{2} x^{3+2 m}+2 a x^{3+m} b+2 a x^{m+1} b+b^{2} x\left(x^{2}+1\right)\right) \lambda^{2} \arctan (x)^{1+2 n}+\left(2 a x^{3+m}-Y^{\prime}(x)+2 a x^{m+1}-Y^{\prime}(x)\right.}{x\left(x^{2}+1\right)}\right.\right.}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve(diff(y(x),x)=lambda*arctan(x)^n*(y(x)-a*x^m-b)^2+a*m*x^(m-1),y(x), singsol=all)
```

$$
y(x)=a x^{m}+b+\frac{1}{c_{1}-\lambda\left(\int \arctan (x)^{n} d x\right)}
$$

Solution by Mathematica
Time used: 2.089 (sec). Leaf size: 44
DSolve [y' $[x]==\backslash[$ Lambda $] * \operatorname{ArcTan}[x] \wedge n *\left(y[x]-a * x^{\wedge} m-b\right)^{\wedge} 2+a * m * x^{\wedge}(m-1), y[x], x$, IncludeSingularSolut

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{-\int_{1}^{x} \lambda \arctan (K[2])^{n} d K[2]+c_{1}}+a x^{m}+b \\
& y(x) \rightarrow a x^{m}+b
\end{aligned}
$$

16.8 problem 26

16.8.1 Solving as riccati ode . 1297

Internal problem ID [10583]
Internal file name [OUTPUT/9530_Monday_June_06_2022_03_05_10_PM_55650788/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\lambda \arctan (x)^{n} y^{2}-k y=\lambda b^{2} x^{2 k} \arctan (x)^{n}
$$

16.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\lambda \arctan (x)^{n} y^{2}+k y+\lambda b^{2} x^{2 k} \arctan (x)^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\lambda b^{2} x^{2 k} \arctan (x)^{n}}{x}+\frac{\lambda \arctan (x)^{n} y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda b^{2} x^{2 k} \arctan (x)^{n}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{\arctan (x)^{n} \lambda}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\arctan (x)^{n} \lambda u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x) x}-\frac{\lambda \arctan (x)^{n}}{x^{2}} \\
f_{1} f_{2} & =\frac{k \arctan (x)^{n} \lambda}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\arctan (x)^{3 n} \lambda^{3} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\arctan (x)^{n} \lambda u^{\prime \prime}(x)}{x}-\left(\frac{\arctan (x)^{n} n \lambda}{\left(x^{2}+1\right) \arctan (x) x}-\frac{\lambda \arctan (x)^{n}}{x^{2}}+\frac{k \arctan (x)^{n} \lambda}{x^{2}}\right) u^{\prime}(x)+\frac{\arctan (x)^{3 n} \lambda^{3} b^{3}}{x^{3}}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i b x^{k-1} \lambda \arctan (x)^{n} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}\left(c_{1} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}\left(c_{1} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}-c_{2}\right) x}{c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \arctan (x)^{n} d x\right)}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29

$$
y(x)=-\tan \left(-\lambda b\left(\int x^{-1+k} \arctan (x)^{n} d x\right)+c_{1}\right) b x^{k}
$$

Solution by Mathematica
Time used: 1.992 (sec). Leaf size: 48
DSolve $\left[\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==\backslash[\right.$ Lambda $] * \operatorname{ArcTan}[\mathrm{x}] \wedge \mathrm{n} * \mathrm{y}[\mathrm{x}] \wedge 2+\mathrm{k} * \mathrm{y}[\mathrm{x}]+\backslash[$ Lambda $] * \mathrm{~b}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{ArcTan}[\mathrm{x}] \wedge \mathrm{n}, \mathrm{y}[\mathrm{x}], \mathrm{x}$

$$
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} \lambda \arctan (K[1])^{n} K[1]^{k-1} d K[1]+c_{1}\right)
$$

16.9 problem 27

16.9.1 Solving as riccati ode . 1300

Internal problem ID [10584]
Internal file name [OUTPUT/9531_Monday_June_06_2022_03_05_13_PM_92844768/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\left(a x^{2 m} y^{2}+y x^{n} b+c\right) \arctan (x)^{m}+y n=0
$$

16.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\arctan (x)^{m} x^{2 m} a y^{2}+\arctan (x)^{m} x^{n} b y+\arctan (x)^{m} c-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\arctan (x)^{m} x^{2 m} a y^{2}}{x}+\frac{\arctan (x)^{m} x^{n} b y}{x}+\frac{\arctan (x)^{m} c}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\arctan (x)^{m} c}{x}, f_{1}(x)=\frac{\arctan (x)^{m} x^{n} b-n}{x}$ and $f_{2}(x)=\frac{\arctan (x)^{m} x^{2 m} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\arctan (x)^{m} x^{2 m} a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{\arctan (x)^{m} m x^{2 m} a}{\left(x^{2}+1\right) \arctan (x) x}+\frac{2 \arctan (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arctan (x)^{m} x^{2 m} a}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(\arctan (x)^{m} x^{n} b-n\right) \arctan (x)^{m} x^{2 m} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\arctan (x)^{3 m} x^{4 m} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\arctan (x)^{m} x^{2 m} a u^{\prime \prime}(x)}{x}-\left(\frac{\arctan (x)^{m} m x^{2 m} a}{\left(x^{2}+1\right) \arctan (x) x}+\frac{2 \arctan (x)^{m} x^{2 m} m a}{x^{2}}-\frac{\arctan (x)^{m} x^{2 m} a}{x^{2}}+\frac{(\arctan (:}{x}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{m-Y^{\prime}(x)}{\arctan (x)\left(x^{2}+1\right)}-\frac{2 m _Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}\right.\right. \\
& \quad-b x^{n-1} \arctan (x)^{m}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{x} \\
&+a c x^{2 m-2}-\left.\left.Y(x) \arctan (x)^{2 m}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{m-Y^{\prime}(x)}{\arctan (x)\left(x^{2}+1\right)}-\frac{2 m _Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}\right.\right. \\
\quad-b x^{n-1} \arctan (x)^{m}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{x} \\
\left.\left.+a c x^{2 m-2}-Y(x) \arctan (x)^{2 m}\right\},\{-Y(x)\}\right)
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{-Y^{\prime \prime}(x)-\frac{m-Y^{\prime}(x)}{\arctan (x)\left(x^{2}+1\right)}-\frac{2 m-Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}-b x^{n-1} \arctan (x)^{m}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{x}+\right.\right.\right.}{a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{m-Y^{\prime}(x)}{\arctan (x)\left(x^{2}+1\right)}-\frac{2 m-Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}-b x^{n-1} \arctan (x)^{m}-Y^{\prime}(x)+\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{x^{-2 m+1} \arctan (x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{a c x^{2 m-1}}{}-Y(x) \arctan (x)^{1+2 m}\left(x^{2}+1\right)-b x^{n} \arctan (x)^{m+1}\left(x^{2}+1\right) \frac{Y^{\prime}(x)+\ldots}{x\left(x^{2}+1\right) \arctan (x)} Y^{\prime \prime}(x)\right.\right.\right.}{a \text { DESol }\left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \arctan (x)^{1+2 m}-Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \arctan (x)^{m+1}-2\left(--\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcta}}{2}\right.}{\left(x^{2}+1\right) x^{2} \arctan (x)}\right.\right.}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{x^{-2 m+1} \arctan (x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{a c x^{2 m-1}}{}-Y_{(x) \arctan (x)^{1+2 m}\left(x^{2}+1\right)-b x^{n} \arctan (x)^{m+1}\left(x^{2}+1\right)}^{x\left(Y^{\prime}+1\right) \arctan (x)}{ }^{\prime}(x)+Y^{\prime \prime}(x)\right.\right.\right.}{a \text { DESol }\left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \arctan (x)^{1+2 m} _Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \arctan (x)^{m+1}-2\left(--\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcta}}{2}\right.}{\left(x^{2}+1\right) x^{2} \arctan (x)}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{x^{-2 m+1} \arctan (x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{a c x^{2 m-1} _Y_{(x) \arctan (x)^{1+2 m}\left(x^{2}+1\right)-b x^{n} \arctan (x)^{m+1}\left(x^{2}+1\right)}^{-Y^{\prime}(x)+_Y^{\prime \prime}(x)}}{x\left(x^{2}+1\right) \arctan (x)}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \arctan (x)^{1+2 m}-_Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \arctan (x)^{m+1}-2\left(--\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcta}}{2}\right.}{\left(x^{2}+1\right) x^{2} \arctan (x)}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\arctan (\mathrm{x})^{\wedge} \mathrm{m} * \arctan (\mathrm{x}) * \mathrm{x}^{\wedge}(\mathrm{n}-1)\right.$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and $y(x)$ trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the 1303 or one of its 4 confluent cases undef a power © Moe \rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ -> Trying changes of variables to rationalize or make the ODE simplef

X Solution by Maple
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{c}\right) * \arctan (\mathrm{x})^{\wedge} \mathrm{m}-\mathrm{n} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==\left(a * x^{\wedge}(2 * m) * y[x]^{\wedge} 2+b * x \wedge n * y[x]+c\right) * \operatorname{ArcTan}[x]^{\wedge} m-n * y[x], y[x], x\right.$, IncludeSingularSol

Not solved

17 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-4. Equations containing arccotangent.

17.1 problem 28 . 1306

17.1 problem 28

17.1.1 Solving as riccati ode . 1306

Internal problem ID [10585]
Internal file name [OUTPUT/9532_Monday_June_06_2022_03_05_30_PM_38612860/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-4. Equations containing arccotangent.
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda \operatorname{arccot}(x)^{n} y=-a^{2}+a \lambda \operatorname{arccot}(x)^{n}
$$

17.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\lambda \operatorname{arccot}(x)^{n} y-a^{2}+a \lambda \operatorname{arccot}(x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda \operatorname{arccot}(x)^{n} y-a^{2}+a \lambda \operatorname{arccot}(x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}+a \lambda \operatorname{arccot}(x)^{n}, f_{1}(x)=\operatorname{arccot}(x)^{n} \lambda$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\operatorname{arccot}(x)^{n} \lambda \\
f_{2}^{2} f_{0} & =-a^{2}+a \lambda \operatorname{arccot}(x)^{n}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\operatorname{arccot}(x)^{n} \lambda u^{\prime}(x)+\left(-a^{2}+a \lambda \operatorname{arccot}(x)^{n}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\int \frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x} d x} c_{2}
$$

The above shows that

$$
u^{\prime}(x)
$$

$$
=\frac{\left(a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}\right) \mathrm{e}^{\int \frac{a\left(\int \mathrm{e}^{\left.-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right) d x\right)-c_{1} a+\mathrm{e}^{-\left(\int(-\operatorname{ar}\right.}}\right.}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d}}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)-c_{1} a+\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{-c_{1}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)+c_{3} a-\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{-c_{3}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = arccot(x)^n*lambda*(diff(y(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 1GH09 or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 71
dsolve(diff $(y(x), x)=y(x)^{\wedge} 2+\operatorname{lambda*arccot}(x)^{\wedge} n * y(x)-a^{\wedge} 2+a * \operatorname{lambda*} \operatorname{arccot}(x)^{\wedge} n, y(x)$, singsol=al

$$
y(x)=\frac{-c_{1} a-a\left(\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x\right)-\mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)}}{c_{1}+\int \mathrm{e}^{-\left(\int\left(-\operatorname{arccot}(x)^{n} \lambda+2 a\right) d x\right)} d x}
$$

\checkmark Solution by Mathematica
Time used: 8.548 (sec). Leaf size: 210
DSolve $\left[y\right.$ ' $[x]==y[x]^{\wedge} 2+\backslash[$ Lambda $] * \operatorname{ArcCot}[x]^{\wedge} n * y[x]-a^{\wedge} 2+a * \backslash[$ Lambda $] * \operatorname{Arc} \operatorname{Cot}[x] \wedge n, y[x], x$, IncludeSi

Solve $\left[\int_{1}^{x}\right.$
$-\frac{\exp \left(-\int_{1}^{K[2]}\left(2 a-\lambda \cot ^{-1}(K[1])^{n}\right) d K[1]\right)\left(-\lambda \cot ^{-1}(K[2])^{n}+a-y(x)\right)}{n \lambda(a+y(x))} d K[2]$
$+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]}\left(2 a-\lambda \cot ^{-1}(K[1])^{n}\right) d K[1]\right)\left(-\lambda \cot ^{-1}(K[2])^{n}+a-K[3]\right)}{n \lambda(a+K[3])^{2}}+\frac{\exp \left(-\int_{1}^{K[}\right.}{}\right.\right.$
$\left.\left.-\frac{\exp \left(-\int_{1}^{x}\left(2 a-\lambda \cot ^{-1}(K[1])^{n}\right) d K[1]\right)}{n \lambda(a+K[3])^{2}}\right) d K[3]=c_{1}, y(x)\right]$
18 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
18.1 problem 29 1312
18.2 problem 30 1316
18.3 problem 31 1321
18.4 problem 32 1326
18.5 problem 33 1331
18.6 problem 34 1336
18.7 problem 35 1340
18.8 problem 36 1343

18.1 problem 29

18.1.1 Solving as riccati ode . 1312

Internal problem ID [10586]
Internal file name [OUTPUT/9533_Monday_June_06_2022_03_05_36_PM_11542127/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-\lambda x \operatorname{arccot}(x)^{n} y=\operatorname{arccot}(x)^{n} \lambda
$$

18.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\operatorname{arccot}(x)^{n} \lambda x y+\operatorname{arccot}(x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\operatorname{arccot}(x)^{n} \lambda x y+\operatorname{arccot}(x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\operatorname{arccot}(x)^{n} \lambda, f_{1}(x)=\operatorname{arccot}(x)^{n} \lambda x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\operatorname{arccot}(x)^{n} \lambda x \\
f_{2}^{2} f_{0} & =\operatorname{arccot}(x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\operatorname{arccot}(x)^{n} \lambda x u^{\prime}(x)+\operatorname{arccot}(x)^{n} \lambda u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(c_{1}-c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{-\left(x^{2}+1\right) x c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{2} \mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}+c_{1} x\left(x^{2}+1\right)}{x\left(x^{2}+1\right)}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{-\left(x^{2}+1\right) x c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{2} \mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}+c_{1} x\left(x^{2}+1\right)}{x^{2}\left(x^{2}+1\right)\left(c_{1}-c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(x^{3}+x\right)\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{3} x^{3}-c_{3} x+\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)\left(c_{3}-\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left.\left.y=\frac{\left(x^{3}+x\right)\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{3} x^{3}-c_{3} x+\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)\left(c_{3}-\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1}}}{x^{2}\left(x^{2}+1\right)}\right.\right.} d x\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(x^{3}+x\right)\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)} d x\right)-c_{3} x^{3}-c_{3} x+\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1} d x}}{x^{2}\left(x^{2}+1\right)\left(c_{3}-\left(\int \frac{\mathrm{e}^{\int \frac{x\left(2+\left(x^{2}+1\right) \operatorname{arccot}(x)^{n} \lambda\right)}{x^{2}+1}} d x}{x^{2}\left(x^{2}+1\right)} d x\right)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 78

```
dsolve(diff(y(x),x)=y(x)^^2+lambda*x*arccot(x)^n*y(x)+lambda*arccot (x ( ^ n, y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\int \frac{x^{2} \operatorname{arccot}(x)^{n} \lambda-2}{x} d x} x+\int \mathrm{e}^{\int \frac{x^{2} \operatorname{arccot}(x)^{n} \lambda-2}{x}} d x}{\left(c_{1}-\left(\int \mathrm{e}^{\int \frac{x^{2} \operatorname{arccot}(x)^{n} \lambda-2}{x} d x} d x\right)\right) x}
$$

\checkmark Solution by Mathematica
Time used: 7.258 (sec). Leaf size: 120
DSolve $[y$ ' $[x]==y[x] \sim 2+\backslash[$ Lambda $] * x * \operatorname{ArcCot}[x] \sim n * y[x]+\backslash[\operatorname{Lambda}] * \operatorname{ArcCot}[x] \wedge n, y[x], x$, IncludeSingul
$y(x) \rightarrow$
$-\frac{\exp \left(-\int_{1}^{x}-\lambda \cot ^{-1}(K[1])^{n} K[1] d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\lambda \cot ^{-1}(K[1])^{n} K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-\lambda \cot ^{-1}(K[1])^{n} K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)}$
$y(x) \rightarrow-\frac{1}{x}$

18.2 problem 30

18.2.1 Solving as riccati ode . 1316

Internal problem ID [10587]
Internal file name [OUTPUT/9534_Monday_June_06_2022_03_05_40_PM_62741443/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(k+1) x^{k} y^{2}-\lambda \operatorname{arccot}(x)^{n}\left(x^{k+1} y-1\right)=0
$$

18.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{k+1} \operatorname{arccot}(x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\operatorname{arccot}(x)^{n} \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{k} x \operatorname{arccot}(x)^{n} \lambda y-x^{k} y^{2} k-x^{k} y^{2}-\operatorname{arccot}(x)^{n} \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\operatorname{arccot}(x)^{n} \lambda, f_{1}(x)=x^{k+1} \operatorname{arccot}(x)^{n} \lambda$ and $f_{2}(x)=-x^{k} k-x^{k}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-x^{k} k-x^{k}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x} \\
f_{1} f_{2} & =x^{k+1} \operatorname{arccot}(x)^{n} \lambda\left(-x^{k} k-x^{k}\right) \\
f_{2}^{2} f_{0} & =-\left(-x^{k} k-x^{k}\right)^{2} \operatorname{arccot}(x)^{n} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-x^{k} k-x^{k}\right) u^{\prime \prime}(x)-\left(-\frac{k^{2} x^{k}}{x}-\frac{k x^{k}}{x}+x^{k+1} \operatorname{arccot}(x)^{n} \lambda\left(-x^{k} k-x^{k}\right)\right) u^{\prime}(x)-\left(-x^{k} k-x^{k}\right)^{2} \operatorname{arccot}(x)
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{k+1}\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that
$u^{\prime}(x)=c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(c_{2} x^{-k-1} \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x}+(k+1)\left(\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x} x^{-2 k-2} d x\right) c_{2}+c_{1}\right) x^{k}\right) x^{-k-1}}{\left(-x^{k} k-x^{k}\right)\left(\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Summary

The solution(s) found are the following
y

$$
\begin{equation*}
=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=\frac{(k+1)\left(\int x^{-2 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x} d x+c_{3}\right) x^{-k-1}+x^{-3 k-2} \mathrm{e}^{\int\left(x^{k+1} \operatorname{arccot}(x)^{n} \lambda+\frac{k}{x}\right) d x}}{(k+1)\left(\int \mathrm{e}^{\int \frac{x^{k+2} \lambda \operatorname{arccot}(x)^{n}+k}{x} d x} x^{-2 k-2} d x+c_{3}\right)}$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(\mathrm{x}^{\wedge}(1+\mathrm{k}) * \operatorname{arccot}(\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{x} * \operatorname{lambdat}\right.$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and $y(x)$ trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the 13 胢 or one of its 4 confluent cases undef a power @ Moe -> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) -> Trying changes of variables to rationalize or make the ODE simplef
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 184
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=-(\mathrm{k}+1) * \mathrm{x}^{\wedge} \mathrm{k} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\operatorname{lambda} * \operatorname{arccot}(\mathrm{x})^{\wedge} \mathrm{n} *\left(\mathrm{x}^{\wedge}(\mathrm{k}+1) * \mathrm{y}(\mathrm{x})-1\right), \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)$
$=\frac{x^{-1-k}\left(\left(\int x^{k} \mathrm{e}^{\lambda\left(\int x^{1+k} \operatorname{arccot}(x)^{n} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+x^{1+k} \mathrm{e}^{\int \frac{x^{1+k} \operatorname{arccot}(x)^{n} x \lambda-2 k-2}{x} d x}+\int x^{k} \mathrm{e}^{\lambda\left(\int x^{1+k} \operatorname{arccot}(x)^{n}\right.}\right.}{\left(\int x^{k} \mathrm{e}^{\lambda\left(\int x^{1+k} \operatorname{arccot}(x)^{n} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x\right) k+\int x^{k} \mathrm{e}^{\lambda\left(\int x^{1+k} \operatorname{arccot}(x)^{n} d x\right)-2\left(\int \frac{1}{x} d x\right)(1+k)} d x}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==-(k+1) * x^{\wedge} k * y[x] \wedge 2+\backslash[$ Lambda $] * \operatorname{ArcCot}[x] \wedge n *\left(x^{\wedge}(k+1) * y[x]-1\right), y[x], x$, IncludeSingula
Not solved

18.3 problem 31

18.3.1 Solving as riccati ode . 1321

Internal problem ID [10588]
Internal file name [OUTPUT/9535_Monday_June_06_2022_03_05_51_PM_82945462/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 31 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \operatorname{arccot}(x)^{n} y^{2}-a y=a b-b^{2} \lambda \operatorname{arccot}(x)^{n}
$$

18.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \operatorname{arccot}(x)^{n} y^{2}+y a+a b-b^{2} \lambda \operatorname{arccot}(x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \operatorname{arccot}(x)^{n} y^{2}+y a+a b-b^{2} \lambda \operatorname{arccot}(x)^{n}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a b-b^{2} \lambda \operatorname{arccot}(x)^{n}, f_{1}(x)=a$ and $f_{2}(x)=\operatorname{arccot}(x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\operatorname{arccot}(x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)} \\
f_{1} f_{2} & =a \lambda \operatorname{arccot}(x)^{n} \\
f_{2}^{2} f_{0} & =\operatorname{arccot}(x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \operatorname{arccot}(x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives $\operatorname{arccot}(x)^{n} \lambda u^{\prime \prime}(x)-\left(-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)}+a \lambda \operatorname{arccot}(x)^{n}\right) u^{\prime}(x)+\operatorname{arccot}(x)^{2 n} \lambda^{2}\left(a b-b^{2} \lambda \operatorname{arccot}(x)^{2}\right.$ Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right.\right. & -a _Y^{\prime}(x)-\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x) \\
& \left.\left.+\operatorname{arccot}(x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-a _Y^{\prime}(x)-\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x)\right.\right. \\
\left.\left.+\operatorname{arccot}(x)^{n} a b \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-a _Y^{\prime}(x)-\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x)+\operatorname{arccot}(x)^{n} a b \lambda _Y(x)\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-a _Y^{\prime}(x)-\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x)+\operatorname{arccot}(x)^{n} a b \lambda\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y= & \frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda _=\frac{Y(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+\ldots}{\operatorname{arccot}(x)\left(x^{2}+1\right)} Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a\left(x^{2}+1\right) \operatorname{arcco}\right.}{}\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda __}{} Y_{(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+\ldots}^{\operatorname{arccot}(x)\left(x^{2}+1\right)} Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a \left(x^{2}+1\right.\right.\right.\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda __\frac{Y(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+\ldots Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a\left(x^{2}+1\right) \operatorname{arcco}\right.}{\operatorname{arccot}(x)\left(x^{2}+1\right)}}{\lambda \mathrm{DESol}\left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda _Y(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+}{\operatorname{arccot}(x)\left(x^{2}+1\right)} Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a \left(x^{2}+1\right.\right.\right.\right.}\right.\right.\right.}{} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda __\frac{Y(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+}{\operatorname{arccot}(x)\left(x^{2}+1\right)} Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a\left(x^{2}+1\right) \operatorname{arcco}\right.}{}\right.\right.\right.}{\lambda \operatorname{DESol}\left(\left\{\frac{-b^{2} _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+a b \lambda __}{Y(x) \operatorname{arccot}(x)^{n+1}\left(x^{2}+1\right)+-}{\operatorname{Yrccot}(x)\left(x^{2}+1\right)}^{\operatorname{arc}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)-\left(a \left(x^{2}+1\right.\right.}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (arccot(x)*a*x^2+a*arccot(x)-n
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 1 }132
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 87
dsolve $\left(\operatorname{diff}(y(x), x)=l a m b d a * \operatorname{arccot}(x) \wedge n * y(x)^{\wedge} 2+a * y(x)+a * b-b \wedge 2 * \operatorname{lambda} * \operatorname{arccot}(x) \uparrow n, y(x)\right.$, singso

$$
y(x)=\frac{-b \lambda\left(\int \operatorname{arccot}(x)^{n} \mathrm{e}^{-\left(\int\left(2 \operatorname{arccot}(x)^{n} \lambda b-a\right) d x\right)} d x\right)-c_{1} b-\mathrm{e}^{-\left(\int\left(2 \operatorname{arccot}(x)^{n} \lambda b-a\right) d x\right)}}{c_{1}+\lambda\left(\int \operatorname{arccot}(x)^{n} \mathrm{e}^{-\left(\int\left(2 \operatorname{arccot}(x)^{n} \lambda b-a\right) d x\right)} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 11.807 (sec). Leaf size: 240
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCot}[x] \wedge n * y[x] \wedge 2+a * y[x]+a * b-b^{\wedge} 2 * \backslash[$ Lambda $] * \operatorname{ArcCot}[x]\lceil n, y[x], x$, Inclu

Solve $\left[\int_{1}^{x}\right.$

$$
-\frac{\exp \left(-\int_{1}^{K[2]}\left(2 b \lambda \cot ^{-1}(K[1])^{n}-a\right) d K[1]\right)\left(-b \lambda \cot ^{-1}(K[2])^{n}+\lambda y(x) \cot ^{-1}(K[2])^{n}+a\right)}{a n \lambda(b+y(x))} d K[2]
$$

$$
+\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}\left(2 b \lambda \cot ^{-1}(K[1])^{n}-a\right) d K[1]\right)}{a n \lambda(b+K[3])^{2}}\right.
$$

18.4 problem 32

18.4.1 Solving as riccati ode

1326
Internal problem ID [10589]
Internal file name [OUTPUT/9536_Monday_June_06_2022_03_05_59_PM_97148518/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \operatorname{arccot}(x)^{n} y^{2}+b \lambda x^{m} \operatorname{arccot}(x)^{n} y=b m x^{m-1}
$$

18.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \operatorname{arccot}(x)^{n} y^{2}-b \lambda x^{m} \operatorname{arccot}(x)^{n} y+b m x^{m-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \operatorname{arccot}(x)^{n} y^{2}-b \lambda x^{m} \operatorname{arccot}(x)^{n} y+\frac{b x^{m} m}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b m x^{m-1}, f_{1}(x)=-b \lambda x^{m} \operatorname{arccot}(x)^{n}$ and $f_{2}(x)=\operatorname{arccot}(x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\operatorname{arccot}(x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)} \\
f_{1} f_{2} & =-b \lambda^{2} x^{m} \operatorname{arccot}(x)^{2 n} \\
f_{2}^{2} f_{0} & =\operatorname{arccot}(x)^{2 n} \lambda^{2} b m x^{m-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives $\operatorname{arccot}(x)^{n} \lambda u^{\prime \prime}(x)-\left(-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)}-b \lambda^{2} x^{m} \operatorname{arccot}(x)^{2 n}\right) u^{\prime}(x)+\operatorname{arccot}(x)^{2 n} \lambda^{2} b m x^{m-1} u(x)=$ Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+\operatorname{arccot}(x)^{n} b \lambda x^{m}-Y^{\prime}(x)\right.\right. \\
\left.\left.+\operatorname{arccot}(x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{-Y(x)\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+\operatorname{arccot}(x)^{n} b \lambda x^{m}-Y^{\prime}(x)\right.\right. \\
\left.\left.+\operatorname{arccot}(x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{-Y(x)\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+\operatorname{arccot}(x)^{n} b \lambda x^{m}-Y^{\prime}(x)+\operatorname{arccot}(x)^{n} \lambda b m x^{m-1}-Y(x)\right\},\{-\right.\right.}{\lambda \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+\operatorname{arccot}(x)^{n} b \lambda x^{m}-Y^{\prime}(x)+\operatorname{arccot}(x)^{n} \lambda b m x^{m-1}-Y(x\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \operatorname{arccot}(x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right\},\left\{_Y(x)\right\}\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{b \lambda\left(m x^{m} _Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \operatorname{arccot}(x)^{n+1}+x\left(Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}\right.\right.}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \operatorname{arccot}(x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right\},\left\{_Y(x)\right\}\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{b \lambda\left(m x^{m}-Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \operatorname{arccot}(x)^{n+1}+x\left(_Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{b \lambda\left(x^{2}+1\right)\left(m _Y(x) x^{m-1}+_Y^{\prime}(x) x^{m}\right) \operatorname{arccot}(x)^{n+1}+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right\},\left\{_Y(x)\right\}\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{b \lambda\left(m x^{m} _Y(x)+m _Y(x) x^{2+m}+_Y^{\prime}(x) x^{3+m}+_Y^{\prime}(x) x^{m+1}\right) \operatorname{arccot}(x)^{n+1}+x\left(Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(x^m*arccot(x)*arccot(x)^n*b*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 1329 or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

X Solution by Maple
dsolve (diff $(y(x), x)=l \operatorname{lambda*arccot}(x)^{\wedge} n * y(x)^{\wedge} 2-b * \operatorname{lambda*} x^{\wedge} m * \operatorname{arccot}(x) \wedge n * y(x)+b * m * x^{\wedge}(m-1), y(x)$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCot}[x] \wedge n * y[x] \wedge 2-b * \backslash\left[\right.$ Lambda $* * x^{\wedge} m * \operatorname{ArcCot}[x] \wedge n * y[x]+b * m * x^{\wedge}(m-1), y[x]$

Not solved

18.5 problem 33

18.5.1 Solving as riccati ode . 1331

Internal problem ID [10590]
Internal file name [OUTPUT/9537_Monday_June_06_2022_03_06_10_PM_51668749/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 33 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \operatorname{arccot}(x)^{n} y^{2}=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}
$$

18.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \operatorname{arccot}(x)^{n} y^{2}+\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}+\lambda \operatorname{arccot}(x)^{n} y^{2}+\frac{\beta m x^{m}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}, f_{1}(x)=0$ and $f_{2}(x)=\operatorname{arccot}(x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\operatorname{arccot}(x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\operatorname{arccot}(x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\operatorname{arccot}(x)^{n} \lambda u^{\prime \prime}(x)+\frac{\operatorname{arccot}(x)^{n} n \lambda u^{\prime}(x)}{\left(x^{2}+1\right) \operatorname{arccot}(x)}+\operatorname{arccot}(x)^{2 n} \lambda^{2}\left(\beta m x^{m-1}-\lambda \beta^{2} x^{2 m} \operatorname{arccot}(x)^{n}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-x^{2 m} \operatorname{arccot}(x)^{2 n} \beta^{2} \lambda^{2} _Y(x)\right.\right. \\
\left.\left.+x^{m-1} \operatorname{arccot}(x)^{n} \beta m \lambda _Y(x)\right\},\{-Y(x)\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-x^{2 m} \operatorname{arccot}(x)^{2 n} \beta^{2} \lambda^{2} _Y(x)\right.\right. \\
\left.\left.+x^{m-1} \operatorname{arccot}(x)^{n} \beta m \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{n Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-x^{2 m} \operatorname{arccot}(x)^{2 n} \beta^{2} \lambda^{2} _Y(x)+x^{m-1} \operatorname{arccot}(x)^{n} \beta m \lambda _Y(x)\right\}\right.\right.}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n-Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}-x^{2 m} \operatorname{arccot}(x)^{2 n} \beta^{2} \lambda^{2} _Y(x)+x^{m-1} \operatorname{arccot}(x)^{n} \beta m \lambda\right.\right.}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)-\beta^{2} _\frac{Y(x) x^{2 m} \lambda^{2} \operatorname{arccot}(x){ }^{1+2 n}\left(x^{2}+1\right)+m \beta \lambda _Y(x) \operatorname{arccot}(x)^{n+1} x^{m-1}\left(x^{2}\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x)}}{\lambda \mathrm{DESol}\left(\left\{\frac{-\beta^{2} \lambda^{2} _Y(x)\left(x^{3+2 m}+x^{1+2 m}\right) \operatorname{arccot}(x)^{1+2 n}+m \beta \lambda _Y(x)\left(x^{m}+x^{2+m}\right) \operatorname{arccot}(x)^{n+1}+x}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}\right.\right.}, Y^{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccoo}}\right.\right.\right.}{}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)-\beta^{2} _\frac{Y(x) x^{2 m} \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+m \beta \lambda _Y(x) \operatorname{arccot}(x)^{n+1} x^{m-1}\left(x^{2}\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x)}}{\lambda \operatorname{DESol}\left(\left\{\frac{-\beta^{2} \lambda^{2}-Y(x)\left(x^{3+2 m}+x^{1+2 m}\right) \operatorname{arccot}(x)^{1+2 n}+m \beta \lambda _Y_{(x)\left(x^{m}+x^{2+m}\right) \operatorname{arccot}(x)^{n+1}+x}^{\left(x^{2}+1\right) \operatorname{arccot}(x) x}}{}\right.\right.} \frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcco}}{}\right.\right.\right.}{} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)+n _Y^{\prime}(x)-\beta^{2} _\frac{Y(x) x^{2 m} \lambda^{2} \operatorname{arccot}(x)^{1+2 n}\left(x^{2}+1\right)+m \beta \lambda _Y(x) \operatorname{arccot}(x)^{n+1} x^{m-1}\left(x^{2}\right.}{\left(x^{2}+1\right) \operatorname{arccot}(x)}}{\lambda \operatorname{DESol}\left(\left\{\frac{-\beta^{2} \lambda^{2} _Y(x)\left(x^{3+2 m}+x^{1+2 m}\right) \operatorname{arccot}(x)^{1+2 n}+m \beta \lambda _Y(x)\left(x^{m}+x^{2+m}\right) \operatorname{arccot}(x)^{n+1}+x}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}\right.\right.}, Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcco}\right.\right.\right.}{}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -n*(diff (y(x), x))/((x^2+1)*ar
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 13H4 or one of its 4 confluent cases undef a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{lambda} \operatorname{arccot}(\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\operatorname{beta} * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-1 \operatorname{ambda} * \operatorname{beta}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \operatorname{arccot}(\mathrm{x})\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\backslash[$ Lambda $] * \operatorname{ArcCot}[\mathrm{x}] \wedge \mathrm{n} * \mathrm{y}[\mathrm{x}] \wedge 2+\backslash[$ Beta $] * \mathrm{~m} * \mathrm{x}^{\wedge}(\mathrm{m}-1)-\backslash[$ Lambda $] * \backslash$ Beta] $\wedge 2 * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \operatorname{Arc}$

Not solved

18.6 problem 34

18.6.1 Solving as riccati ode

1336
Internal problem ID [10591]
Internal file name [OUTPUT/9538_Monday_June_06_2022_03_06_31_PM_7594206/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[[_1st_order, ` _with_symmetry_[F(x),G(x)]`], _Riccati]
```

$$
y^{\prime}-\lambda \operatorname{arccot}(x)^{n}\left(y-a x^{m}-b\right)^{2}=a m x^{m-1}
$$

18.6.1 Solving as riccati ode

In canonical form the ODE is

$$
y^{\prime}=F(x, y)
$$

$$
=x^{2 m} \operatorname{arccot}(x)^{n} a^{2} \lambda+2 x^{m} \operatorname{arccot}(x)^{n} a b \lambda-2 x^{m} \operatorname{arccot}(x)^{n} a \lambda y+b^{2} \lambda \operatorname{arccot}(x)^{n}-2 \operatorname{arccot}(x)^{n} b \lambda_{2}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=x^{2 m} \operatorname{arccot}(x)^{n} a^{2} \lambda+2 x^{m} \operatorname{arccot}(x)^{n} a b \lambda-2 x^{m} \operatorname{arccot}(x)^{n} a \lambda y+b^{2} \lambda \operatorname{arccot}(x)^{n}-2 \operatorname{arccot}(x)^{n} b \lambda y+\lambda$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2 m} \operatorname{arccot}(x)^{n} a^{2} \lambda+2 x^{m} \operatorname{arccot}(x)^{n} a b \lambda+b^{2} \lambda \operatorname{arccot}(x)^{n}+a m x^{m-1}$, $f_{1}(x)=-2 a \lambda x^{m} \operatorname{arccot}(x)^{n}-2 \operatorname{arccot}(x)^{n} \lambda b$ and $f_{2}(x)=\operatorname{arccot}(x)^{n} \lambda$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\operatorname{arccot}(x)^{n} \lambda u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)} \\
f_{1} f_{2} & =\left(-2 a \lambda x^{m} \operatorname{arccot}(x)^{n}-2 \operatorname{arccot}(x)^{n} \lambda b\right) \operatorname{arccot}(x)^{n} \lambda \\
f_{2}^{2} f_{0} & =\operatorname{arccot}(x)^{2 n} \lambda^{2}\left(x^{2 m} \operatorname{arccot}(x)^{n} a^{2} \lambda+2 x^{m} \operatorname{arccot}(x)^{n} a b \lambda+b^{2} \lambda \operatorname{arccot}(x)^{n}+a m x^{m-1}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\operatorname{arccot}(x)^{n} \lambda u^{\prime \prime}(x)-\left(-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x)}+\left(-2 a \lambda x^{m} \operatorname{arccot}(x)^{n}-2 \operatorname{arccot}(x)^{n} \lambda b\right) \operatorname{arccot}(x)^{n} \lambda\right) u^{\prime}(
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+2 \operatorname{arccot}(x)^{n} x^{m} a \lambda _Y^{\prime}(x)\right.\right. \\
& +2 \operatorname{arccot}(x)^{n} b \lambda _Y^{\prime}(x)+x^{2 m} \operatorname{arccot}(x)^{2 n} a^{2} \lambda^{2} _Y(x) \\
& +2 x^{m} \operatorname{arccot}(x)^{2 n} a b \lambda^{2} _Y(x)+\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x) \\
& \left.\left.+x^{m-1} \operatorname{arccot}(x)^{n} a m \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{_Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+2 \operatorname{arccot}(x)^{n} x^{m} a \lambda _Y^{\prime}(x)\right.\right. \\
+2 \operatorname{arccot}(x)^{n} b \lambda _Y^{\prime}(x)+x^{2 m} \operatorname{arccot}(x)^{2 n} a^{2} \lambda^{2} _Y(x) \\
+2 x^{m} \operatorname{arccot}(x)^{2 n} a b \lambda^{2} _Y(x)+\operatorname{arccot}(x)^{2 n} b^{2} \lambda^{2} _Y(x) \\
\left.\left.+x^{m-1} \operatorname{arccot}(x)^{n} a m \lambda _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{-Y^{\prime \prime}(x)+\frac{n _Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}+2 \operatorname{arccot}(x)^{n} x^{m} a \lambda _Y^{\prime}(x)+2 \operatorname{arccot}(x)^{n} b \lambda _Y^{\prime}(x)+x^{2 m}\right.\right.\right. \text { ar }}{\lambda \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{n \frac{Y^{\prime}(x)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}}{}+2 \operatorname{arccot}(x)^{n} x^{m} a \lambda _Y^{\prime}(x)+2 \operatorname{arccot}(x)^{n} b \lambda _Y^{\prime}(x)+x\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left.\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{\frac{\lambda^{2} _Y(x)\left(x^{2}+1\right)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \operatorname{arccot}(x)^{1+2 n}+\left(x^{2}+1\right)\left(a x^{m-1} m _Y(x)+2 _\right)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right.\right.\right.}{\left.+a^{2} x^{3+2 m}+2 a x^{3+m} b+2 a x^{m+1} b+b^{2} x\left(x^{2}+1\right)\right)-Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}+\left(2 a x^{3+m}-Y^{\prime}(x)+2 a x^{m+1}-Y^{\prime}(x\right.} x\left(x^{2}+1\right) \mathrm{a}\right)
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{\lambda^{2} _Y(x)\left(x^{2}+1\right)\left(a^{2} x^{2 m}+2 a b x^{m}+b^{2}\right) \operatorname{arccot}(x)^{1+2 n}+\left(x^{2}+1\right)\left(a x^{m-1} m _Y(x)+2 _\right)}{\operatorname{arccot}(x)\left(x^{2}+1\right)}\right.\right.\right.}{\lambda \mathrm{DESol}\left(\left\{\frac{\left(a^{2} x^{1+2 m}+a^{2} x^{3+2 m}+2 a x^{3+m} b+2 a x^{m+1} b+b^{2} x\left(x^{2}+1\right)\right) _Y(x) \lambda^{2} \operatorname{arccot}(x)^{1+2 n}+\left(2 a x^{3+m} _Y^{\prime}(x)+2 a x^{m+1}-Y^{\prime}(x\right.}{x\left(x^{2}+1\right) \mathrm{a}}\right.\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x)=lambda*arccot(x)^n*(y(x)-a*x^m-b)^2+a*m*x^(m-1),y(x), singsol=all)
```

$$
y(x)=a x^{m}+b+\frac{1}{c_{1}-\lambda\left(\int \operatorname{arccot}(x)^{n} d x\right)}
$$

Solution by Mathematica
Time used: 2.259 (sec). Leaf size: 44
DSolve $\left[y\right.$ ' $[x]==\backslash[$ Lambda $] * \operatorname{ArcCot}[x] \wedge n *\left(y[x]-a * x^{\wedge} m-b\right)^{\wedge} 2+a * m * x^{\wedge}(m-1), y[x], x$, IncludeSingularSolut

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{-\int_{1}^{x} \lambda \cot ^{-1}(K[2])^{n} d K[2]+c_{1}}+a x^{m}+b \\
& y(x) \rightarrow a x^{m}+b
\end{aligned}
$$

18.7 problem 35

18.7.1 Solving as riccati ode . 1340

Internal problem ID [10592]
Internal file name [OUTPUT/9539_Monday_June_06_2022_03_06_51_PM_86672655/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\lambda \operatorname{arccot}(x)^{n} y^{2}-k y=\lambda b^{2} x^{2 k} \operatorname{arccot}(x)^{n}
$$

18.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\lambda \operatorname{arccot}(x)^{n} y^{2}+k y+\lambda b^{2} x^{2 k} \operatorname{arccot}(x)^{n}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\lambda b^{2} x^{2 k} \operatorname{arccot}(x)^{n}}{x}+\frac{\lambda \operatorname{arccot}(x)^{n} y^{2}}{x}+\frac{k y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda b^{2} x^{2 k} \operatorname{arccot}(x)^{n}}{x}, f_{1}(x)=\frac{k}{x}$ and $f_{2}(x)=\frac{\operatorname{arccot}(x)^{n} \lambda}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\operatorname{arccot}(x)^{n} \lambda u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}-\frac{\operatorname{arccot}(x)^{n} \lambda}{x^{2}} \\
f_{1} f_{2} & =\frac{k \operatorname{arccot}(x)^{n} \lambda}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\operatorname{arccot}(x)^{3 n} \lambda^{3} b^{2} x^{2 k}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\operatorname{arccot}(x)^{n} \lambda u^{\prime \prime}(x)}{x}-\left(-\frac{\operatorname{arccot}(x)^{n} n \lambda}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}-\frac{\operatorname{arccot}(x)^{n} \lambda}{x^{2}}+\frac{k \operatorname{arccot}(x)^{n} \lambda}{x^{2}}\right) u^{\prime}(x)+\frac{\operatorname{arccot}(x)^{3 n} \lambda^{3} b}{x^{3}}
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i b x^{k-1} \lambda \operatorname{arccot}(x)^{n} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{1}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i b x^{k-1} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{1}-c_{2}\right) x}{c_{1} \mathrm{e}^{i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}+c_{2} \mathrm{e}^{-i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i b x^{k}\left(\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}-1\right)}{\mathrm{e}^{2 i b \lambda\left(\int x^{k-1} \operatorname{arccot}(x)^{n} d x\right)} c_{3}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=1 \operatorname{ambda*arccot}(\mathrm{x})^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{k} * \mathrm{y}(\mathrm{x})+1 \operatorname{ambda} \mathrm{~b}^{\wedge} \mathrm{n}^{2} * \mathrm{x}^{\wedge}(2 * \mathrm{k}) * \operatorname{arccot}(\mathrm{x})^{\wedge} \mathrm{n}, \mathrm{y}(\mathrm{x})$,

$$
y(x)=-\tan \left(-\lambda b\left(\int x^{-1+k} \operatorname{arccot}(x)^{n} d x\right)+c_{1}\right) b x^{k}
$$

Solution by Mathematica
Time used: 2.591 (sec). Leaf size: 48
DSolve $\left[x * y^{\prime}[x]==\backslash[\right.$ Lambda $] * \operatorname{ArcCot}[x] \wedge n * y[x] \wedge 2+k * y[x]+\backslash[$ Lambda $] * b^{\wedge} 2 * x^{\wedge}(2 * k) * \operatorname{Arc} \operatorname{Cot}[x] \wedge n, y[x], x$

$$
y(x) \rightarrow \sqrt{b^{2}} x^{k} \tan \left(\sqrt{b^{2}} \int_{1}^{x} \lambda \cot ^{-1}(K[1])^{n} K[1]^{k-1} d K[1]+c_{1}\right)
$$

18.8 problem 36

18.8.1 Solving as riccati ode . 1343

Internal problem ID [10593]
Internal file name [OUTPUT/9540_Monday_June_06_2022_03_06_54_PM_87619199/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-\left(a x^{2 m} y^{2}+y x^{n} b+c\right) \operatorname{arccot}(x)^{m}+y n=0
$$

18.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\operatorname{arccot}(x)^{m} x^{2 m} a y^{2}+\operatorname{arccot}(x)^{m} x^{n} b y+\operatorname{arccot}(x)^{m} c-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{\operatorname{arccot}(x)^{m} x^{2 m} a y^{2}}{x}+\frac{\operatorname{arccot}(x)^{m} x^{n} b y}{x}+\frac{\operatorname{arccot}(x)^{m} c}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\operatorname{arccot}(x)^{m} c}{x}, f_{1}(x)=\frac{\operatorname{arccot}(x)^{m} x^{n} b-n}{x}$ and $f_{2}(x)=\frac{\operatorname{arccot}(x)^{m} x^{2 m} a}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\operatorname{arccot}(x)^{m} x^{2 m} a u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\operatorname{arccot}(x)^{m} m x^{2 m} a}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}+\frac{2 \operatorname{arccot}(x)^{m} x^{2 m} m a}{x^{2}}-\frac{\operatorname{arccot}(x)^{m} x^{2 m} a}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(\operatorname{arccot}(x)^{m} x^{n} b-n\right) \operatorname{arccot}(x)^{m} x^{2 m} a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{\operatorname{arccot}(x)^{3 m} x^{4 m} a^{2} c}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\operatorname{arccot}(x)^{m} x^{2 m} a u^{\prime \prime}(x)}{x}-\left(-\frac{\operatorname{arccot}(x)^{m} m x^{2 m} a}{\left(x^{2}+1\right) \operatorname{arccot}(x) x}+\frac{2 \operatorname{arccot}(x)^{m} x^{2 m} m a}{x^{2}}-\frac{\operatorname{arccot}(x)^{m} x^{2 m} a}{x^{2}}+\frac{(\operatorname{arccot}(}{}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{m_{-} Y^{\prime}(x)}{\left(x^{2}+1\right) \operatorname{arccot}(x)}\right.\right.-\frac{2 m_{-} Y^{\prime}(x)}{x}+ \\
& \quad-b x^{n-1} \operatorname{arccot}(x)^{m}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{x} \\
&\left.\left.+a c x^{2 m-2}-Y(x) \operatorname{arccot}(x)^{2 m}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)+\frac{m_{-} Y^{\prime}(x)}{\left(x^{2}+1\right) \operatorname{arccot}(x)}-\frac{2 m_{-} Y^{\prime}(x)}{x}+=\frac{Y^{\prime}(x)}{x}\right.\right. \\
\quad-b x^{n-1} \operatorname{arccot}(x)^{m}-Y^{\prime}(x)+\frac{n-Y^{\prime}(x)}{x} \\
\left.\left.+a c x^{2 m-2}-Y(x) \operatorname{arccot}(x)^{2 m}\right\},\{-Y(x)\}\right)
\end{array}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
y= \\
-\frac{\left(\frac { \partial } { \partial x } \mathrm { DESol } \left(\left\{-Y^{\prime \prime}(x)+\frac{m}{\left(x^{2}+\overline{1}\right) \operatorname{Y^{\prime }(x)}} \operatorname{arcot}(x)\right.\right.\right.}{}-\frac{2 m_{-} Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}-b x^{n-1} \operatorname{arccot}(x)^{m}-Y^{\prime}(x)+\frac{n-\frac{Y^{\prime}(x)}{x}}{x}+ \\
a \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)+\frac{m-Y^{\prime}(x)}{\left(x^{2}+1\right) \operatorname{arccot}(x)}-\frac{2 m_{-} Y^{\prime}(x)}{x}+\frac{Y^{\prime}(x)}{x}-b x^{n-1} \operatorname{arccot}(x)^{m}-Y^{\prime}(x)+\right.\right.
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{x^{-2 m+1} \operatorname{arccot}(x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{a c x^{2 m-1}-Y(x) \operatorname{arccot}(x)^{1+2 m}\left(x^{2}+1\right)-b x^{n} \operatorname{arccot}(x)^{m+1}\left(x^{2}+1\right) _Y^{\prime}(x)+_Y^{\prime \prime}(x)}{x\left(x^{2}+1\right) \operatorname{arccot}(x)}\right.\right.\right.}{} \quad a \operatorname{DESol}\left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \operatorname{arccot}(x)^{1+2 m}-_Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \operatorname{arccot}(x)^{m+1}-2\left(--\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccoo}}{2}\right.}{\left(x^{2+1) x^{2} \operatorname{arccot}(x)}\right.}\right.\right.
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{x^{-2 m+1} \operatorname{arccot}(x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac { a c x ^ { 2 m - 1 } _ Y (x) \operatorname { a r c c o t } (x) ^ { 1 + 2 m } (x ^ { 2 } + 1) - b x ^ { n } \operatorname { a r c c o t } (x) ^ { m + 1 } (x ^ { 2 } + 1) _ \frac { Y ^ { \prime } (x) + _ Y ^ { \prime \prime } (x) } { x (x ^ { 2 } + 1) \operatorname { a r c c o t } (x) } } { } \quad a \operatorname { D E S o l } \left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \operatorname{arccot}(x)^{1+2 m}-_Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \operatorname{arccot}(x)^{m+1}-2\left(--\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcco}}{2}\right.}{\left(x^{2}+1\right) x^{2} \operatorname{arccot}(x)}\right.\right.\right.\right.\right.}{} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=$

$$
-\frac{x^{-2 m+1} \operatorname{arccot}(x)^{-m}\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{\frac{a c x^{2 m-1} _Y(x) \operatorname{arccot}(x)^{1+2 m}\left(x^{2}+1\right)-b x^{n} \operatorname{arccot}(x)^{m+1}\left(x^{2}+1\right)-Y^{\prime}(x)+_Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arccot}(x)}{}\right.\right.\right.}{a \operatorname{DESol}\left(\left\{\frac{a c _Y(x)\left(x^{2 m}+x^{2+2 m}\right) \operatorname{arccot}(x)^{1+2 m}-_Y^{\prime}(x) b\left(x^{n+1}+x^{n+3}\right) \operatorname{arccot}(x)^{m+1}-2\left(-=\frac{Y^{\prime \prime}(x)\left(x^{2}+1\right) \operatorname{arcco}}{2}\right.}{\left(x^{2}+1\right) x^{2} \operatorname{arccot}(x)}\right.\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (arccot(x)*x^(n-1)*arccot(x)^n
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the 13HE or one of its 4 confluent cases undef a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
```

X Solution by Maple
dsolve $\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{~m}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{c}\right) * \operatorname{arccot}(\mathrm{x})^{\wedge} \mathrm{m}-\mathrm{n} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x * y y^{\prime}[x]==\left(a * x^{\wedge}(2 * m) * y[x] \sim 2+b * x \wedge n * y[x]+c\right) * \operatorname{ArcCot}[x]^{\wedge} m-n * y[x], y[x], x\right.$, IncludeSingularSol

Not solved
19 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
19.1 problem 1 1349
19.2 problem 2 1353
19.3 problem 3 1358
19.4 problem 4 1362
19.5 problem 5 1367
19.6 problem 6 1372
19.7 problem 7 1377
19.8 problem 8 1380
19.9 problem 9 1384
19.10problem 10 1388
19.11problem 11 1393
19.12problem 12 1398
19.13problem 13 1402
19.14problem 14 1407
19.15problem 15 1412
19.16problem 16 1415
19.17problem 17 1420
19.18problem 18 1424
19.19problem 19 1429
19.20problem 20 1434
19.21problem 21 1439
19.22problem 22 1444
19.23problem 23 1448
19.24problem 24 1452
19.25problem 25 1457
19.26problem 26 1462
19.27problem 27 1466
19.28problem 28 1471
19.29problem 29 1476
19.30problem 30 1481
19.31 problem 31 1486
19.32problem 32 1491
19.33problem 33 1495

19.1 problem 1

19.1.1 Solving as riccati ode . 1349

Internal problem ID [10594]
Internal file name [OUTPUT/9541_Monday_June_06_2022_03_07_16_PM_10349265/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-f(x) y=-a^{2}-f(x) a
$$

19.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+f(x) y-a^{2}-f(x) a
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+f(x) y-a^{2}-f(x) a
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2}-f(x) a, f_{1}(x)=f(x)$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =f(x) \\
f_{2}^{2} f_{0} & =-a^{2}-f(x) a
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-f(x) u^{\prime}(x)+\left(-a^{2}-f(x) a\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{-x a}
$$

The above shows that

$$
u^{\prime}(x)=-\mathrm{e}^{-x a}\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{1} a-\mathrm{e}^{-x a} c_{2} a+c_{1} \mathrm{e}^{x a+\int f(x) d x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-\mathrm{e}^{-x a}\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{1} a-\mathrm{e}^{-x a} c_{2} a+c_{1} \mathrm{e}^{x a+\int f(x) d x}\right) \mathrm{e}^{x a}}{\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{1}+c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \mathrm{e}^{2 x a+\int f(x) d x}+a\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+a}{\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} \mathrm{e}^{2 x a+\int f(x) d x}+a\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+a}{\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-c_{3} \mathrm{e}^{2 x a+\int f(x) d x}+a\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+a}{\left(\int \mathrm{e}^{2 x a+\int f(x) d x} d x\right) c_{3}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 52

```
dsolve(diff(y(x),x)=y(x)^2+f(x)*y(x)-a^2-a*f(x),y(x), singsol=all)
```

$$
y(x)=\frac{-a\left(\int \mathrm{e}^{\int f(x) d x+2 a x} d x\right)+c_{1} a+\mathrm{e}^{\int f(x) d x+2 a x}}{-\left(\int \mathrm{e}^{\int f(x) d x+2 a x} d x\right)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.719 (sec). Leaf size: 166
DSolve[y'[x]==y[x]^2+f[x]*y[x]-a^2-a*f[x],y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}(-2 a-f(K[1])) d K[1]\right)(a+f(K[2])+y(x))}{a-y(x)} d K[2]\right.$
$+\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}(-2 a-f(K[1])) d K[1]\right)}{(K[3]-a)^{2}}\right.$
$-\int_{1}^{x}\left(\frac{\exp \left(-\int_{1}^{K[2]}(-2 a-f(K[1])) d K[1]\right)(a+f(K[2])+K[3])}{(a-K[3])^{2}}+\frac{\exp \left(-\int_{1}^{K[2]}(-2 a-f(K[1])) d K[1]\right.}{a-K[3]}\right.$

19.2 problem 2

19.2.1 Solving as riccati ode . 1353

Internal problem ID [10595]
Internal file name [OUTPUT/9542_Monday_June_06_2022_03_07_17_PM_47552009/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a y=-a b-b^{2} f(x)
$$

19.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-y a-a b-b^{2} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-y a-a b-b^{2} f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a b-b^{2} f(x), f_{1}(x)=-a$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-f(x) a \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-a b-b^{2} f(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)-f(x) a\right) u^{\prime}(x)+f(x)^{2}\left(-a b-b^{2} f(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\int \frac{f(x)\left(b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-c_{1} b+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}\right)}{-c_{1}+\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x} d x} c_{2}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{f(x)\left(b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-c_{1} b+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}\right) \mathrm{e}^{\int \frac{f(x)\left(b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-c_{1} b+\mathrm{e}^{-\left(\int(2 f(x) b+a\right.}\right.}{-c_{1}+\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x}}}{-c_{1}+\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
y=-\frac{b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-c_{1} b+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}}{-c_{1}+\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-b c_{3}+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}}{c_{3}-\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-b c_{3}+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}}{c_{3}-\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-b c_{3}+\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}}{c_{3}-\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (a*f(x)-(\operatorname{diff}(f(x), x)))*(dif
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the fform r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65
dsolve($\operatorname{diff}(y(x), x)=f(x) * y(x)^{\wedge} 2-a * y(x)-a * b-b^{\wedge} 2 * f(x), y(x)$, singsol=all)

$$
y(x)=\frac{-c_{1} b-b\left(\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x\right)-\mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)}}{c_{1}+\int f(x) \mathrm{e}^{-\left(\int(2 f(x) b+a) d x\right)} d x}
$$

\checkmark Solution by Mathematica
Time used: 0.955 (sec). Leaf size: 185
DSolve [y' $[x]==f[x] * y[x] \sim 2-a * y[x]-a * b-b \wedge 2 * f[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}(a+2 b f(K[1])) d K[1]\right)(a+b f(K[2])-f(K[2]) y(x))}{a(b+y(x))} d K[2]\right. \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}(a+2 b f(K[1])) d K[1]\right)}{a(b+K[3])^{2}}\right. \\
& -\int_{1}^{x}\left(-\frac{\exp \left(-\int_{1}^{K[2]}(a+2 b f(K[1])) d K[1]\right) f(K[2])}{a(b+K[3])}-\frac{\exp \left(-\int_{1}^{K[2]}(a+2 b f(K[1])) d K[1]\right)(a+b f(K[2}{a(b+K[3])^{2}}\right.
\end{aligned}
$$

19.3 problem 3

19.3.1 Solving as riccati ode . 1358

Internal problem ID [10596]
Internal file name [OUTPUT/9543_Monday_June_06_2022_03_07_19_PM_13365483/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}-x f(x) y=f(x)
$$

19.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+f(x) x y+f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+f(x) x y+f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=f(x), f_{1}(x)=x f(x)$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =x f(x) \\
f_{2}^{2} f_{0} & =f(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-x f(x) u^{\prime}(x)+f(x) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} c_{1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}+x \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} c_{1}}{x\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{1}+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}+1\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}-1-x \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} c_{3}}{x\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right) c_{3}+1\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 69

```
dsolve(diff(y(x),x)=y(x)^2+x*f(x)*y(x)+f(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} x+\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x-c_{1}}{\left(c_{1}-\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right)\right) x}
$$

\checkmark Solution by Mathematica
Time used: 1.074 (sec). Leaf size: 111
DSolve $[y$ ' $[x]==y[x] \sim 2+x * f[x] * y[x]+f[x], y[x], x$, IncludeSingularSolutions \rightarrow True $]$
$y(x) \rightarrow-\frac{\exp \left(-\int_{1}^{x}-f(K[1]) K[1] d K[1]\right)+x \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-f(K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1} x}{x^{2}\left(\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-f(K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)}$
$y(x) \rightarrow-\frac{1}{x}$

19.4 problem 4

$$
\text { 19.4.1 Solving as riccati ode . } 1362
$$

Internal problem ID [10597]
Internal file name [OUTPUT/9544_Monday_June_06_2022_03_07_20_PM_89866051/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a x^{n} f(x) y=a n x^{n-1}
$$

19.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-a x^{n} f(x) y+a n x^{n-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-a x^{n} f(x) y+\frac{x^{n} n a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a n x^{n-1}, f_{1}(x)=-f(x) a x^{n}$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-f(x)^{2} a x^{n} \\
f_{2}^{2} f_{0} & =f(x)^{2} \text { an } x^{n-1}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(-f(x)^{2} a x^{n}+f^{\prime}(x)\right) u^{\prime}(x)+f(x)^{2} a n x^{n-1} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-a\left(\int f(x) x^{n} d x\right)}\left(c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=f(x)\left(-x^{n} \mathrm{e}^{-a\left(\int f(x) x^{n} d x\right)}\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) c_{2} a-x^{n} \mathrm{e}^{-a\left(\int f(x) x^{n} d x\right)} c_{1} a+c_{2}\right)
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y=-\frac{\left(-x^{n} \mathrm{e}^{-a\left(\int f(x) x^{n} d x\right)}\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) c_{2} a-x^{n} \mathrm{e}^{-a\left(\int f(x) x^{n} d x\right)} c_{1} a+c_{2}\right) \mathrm{e}^{\int f(x) a x^{n} d x}}{c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) c_{2}}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{a c_{3} x^{n}+a\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) x^{n}-\mathrm{e}^{a\left(\int f(x) x^{n} d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{a c_{3} x^{n}+a\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) x^{n}-\mathrm{e}^{a\left(\int f(x) x^{n} d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{a c_{3} x^{n}+a\left(\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x\right) x^{n}-\mathrm{e}^{a\left(\int f(x) x^{n} d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int f(x) x^{n} d x\right)} d x}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=-\left(a * x^{\wedge} n * f(x)^{\wedge} 2-(\operatorname{diff}(f(x), x))\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) * \mathrm{x}+\mathrm{x}^{\wedge} 2 * 2\right.$ Methods for first order ODEs:
--- Trying classification methqḑ ${ }_{365} 5^{---}$
trying a quadrature
trying 1st order linear

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y^{\prime}[x]==f[x] * y[x] \sim 2-a * x^{\wedge} n * f[x] * y[x]+a * n * x^{\wedge}(n-1), y[x], x\right.$, IncludeSingularSolutions \rightarrow Tr

Not solved

19.5 problem 5

$$
\text { 19.5.1 Solving as riccati ode . } 1367
$$

Internal problem ID [10598]
Internal file name [OUTPUT/9545_Monday_June_06_2022_03_07_22_PM_12930354/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)=a n x^{n-1}-a^{2} x^{2 n} f(x)
$$

19.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+a n x^{n-1}-a^{2} x^{2 n} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} x^{2 n} f(x)+f(x) y^{2}+\frac{x^{n} n a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a n x^{n-1}-a^{2} x^{2 n} f(x), f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(\text { an } x^{n-1}-a^{2} x^{2 n} f(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.\quad+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}(\{ & -Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)} \\
& \left.\left.+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\overline{Y^{\prime}}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\overline{Y^{\prime}}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left.\left.\left.-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-}{f(x)} Y^{\prime}(x)\right.\right.}{}+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& \left.\left.-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-}{\overline{f(x)}} Y^{\prime}(x)\right.\right.}{}+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\left\{_Y(x)\right\}\right) \\
& f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} x^{1+2 n} _Y(x) a^{2}+f(x)^{2} x^{n}-Y(x) a n+_Y^{\prime \prime}(x) x f(x)-f^{\prime}(x) _Y^{\prime}(x) x}{x f(x)}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Verification of solutions
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\frac{Y^{\prime}}{}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} x^{1+2 n}-Y(x) a^{2}+f(x)^{2} x^{n}-Y(x) a n+\ldots Y^{\prime \prime}(x) x f(x)-f^{\prime}(x) _Y^{\prime}(x) x}{x f(x)}\right\},\{-Y(x)\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*a*x^(2*n)*n*f(x)+a*x^(2*n)*(diff(
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve (diff $(y(x), x)=f(x) * y(x)^{\wedge} 2+a * n * x^{\wedge}(n-1)-a^{\wedge} 2 * x^{\wedge}(2 * n) * f(x), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y y^{\prime}[x]==f[x] * y[x] \sim 2+a * n * x^{\wedge}(n-1)-a^{\wedge} 2 * x^{\wedge}(2 * n) * f[x], y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

Not solved

19.6 problem 6

$$
\text { 19.6.1 Solving as riccati ode . } 1372
$$

Internal problem ID [10599]
Internal file name [OUTPUT/9546_Monday_June_06_2022_03_07_28_PM_86558589/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+(n+1) x^{n} y^{2}-x^{n+1} f(x) y=-f(x)
$$

19.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{n} y^{2} n+x^{n+1} f(x) y-x^{n} y^{2}-f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-x^{n} y^{2} n+x^{n} x f(x) y-x^{n} y^{2}-f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x), f_{1}(x)=f(x) x^{n+1}$ and $f_{2}(x)=-n x^{n}-x^{n}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(-n x^{n}-x^{n}\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x} \\
f_{1} f_{2} & =f(x) x^{n+1}\left(-n x^{n}-x^{n}\right) \\
f_{2}^{2} f_{0} & =-\left(-n x^{n}-x^{n}\right)^{2} f(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(-n x^{n}-x^{n}\right) u^{\prime \prime}(x)-\left(-\frac{n^{2} x^{n}}{x}-\frac{x^{n} n}{x}+f(x) x^{n+1}\left(-n x^{n}-x^{n}\right)\right) u^{\prime}(x)-\left(-n x^{n}-x^{n}\right)^{2} f(x) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x^{n+1}\left(\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x} d x\right) c_{2}+c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=x^{n}(n+1)\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x} x^{-2 n-2} d x\right) c_{2}+c_{1}\right)+c_{2} x^{-n-1} \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(x^{n}(n+1)\left(\left(\int \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x} x^{-2 n-2} d x\right) c_{2}+c_{1}\right)+c_{2} x^{-n-1} \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x}\right) x^{-n-1}}{\left(-n x^{n}-x^{n}\right)\left(\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x} d x\right) c_{2}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{(n+1)\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(n+1)\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(n+1)\left(\int x^{-2 n-2} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x} d x+c_{3}\right) x^{-n-1}+x^{-2-3 n} \mathrm{e}^{\int\left(f(x) x^{n+1}+\frac{n}{x}\right) d x}}{(n+1)\left(\int \mathrm{e}^{\int \frac{f(x) x^{2+n}+n}{x} d x} x^{-2 n-2} d x+c_{3}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^(n+1)*f(x)*x+n)*(diff(y(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        <- unable to find a useful change of variables
            trying a symmetry of the form [xi=0, eta=F(x)]
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-((-x^n*n-x^n)*y(x)^2+y(x)+x^(n+1)*f(x)*y
    Methods for first order ODEs:
    --- Trying classification methqds 
    trying a quadrature
    trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 169
dsolve (diff $(y(x), x)=-(n+1) * x^{\wedge} n * y(x) \wedge 2+x^{\wedge}(n+1) * f(x) * y(x)-f(x), y(x)$, singsol=all)
$y(x)$
$=\frac{x^{-n-1}\left(x^{n+1} \mathrm{e}^{\int \frac{x^{n+1} f(x) x-2 n-2}{x} d x}+\left(\int x^{n} \mathrm{e}^{\int x^{n+1} f(x) d x+(-2 n-2)\left(\int \frac{1}{x} d x\right)} d x\right) n+\int x^{n} \mathrm{e}^{\int x^{n+1} f(x) d x+(-2 n-2)\left(\int \frac{1}{x} d x\right)}\right.}{\left(\int x^{n} \mathrm{e}^{\int x^{n+1} f(x) d x+(-2 n-2)\left(\int \frac{1}{x} d x\right)} d x\right) n+\int x^{n} \mathrm{e}^{\int x^{n+1} f(x) d x+(-2 n-2)\left(\int \frac{1}{x} d x\right)} d x-c_{1}}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y^{\prime}[x]==-(n+1) * x^{\wedge} n * y[x] \sim 2+x^{\wedge}(n+1) * f[x] * y[x]-f[x], y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$
Not solved

19.7 problem 7

19.7.1 Solving as riccati ode . 1377

Internal problem ID [10600]
Internal file name [OUTPUT/9547_Monday_June_06_2022_03_07_31_PM_8322341/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-y^{2} f(x)-y n=f(x) x^{2 n} a
$$

19.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{f(x) y^{2}+n y+f(x) x^{2 n} a}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{f(x) a x^{2 n}}{x}+\frac{f(x) y^{2}}{x}+\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{f(x) a x^{2 n}}{x}, f_{1}(x)=\frac{n}{x}$ and $f_{2}(x)=\frac{f(x)}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f(x) u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}} \\
f_{1} f_{2} & =\frac{n f(x)}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{f(x)^{3} a x^{2 n}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{f(x) u^{\prime \prime}(x)}{x}-\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{n f(x)}{x^{2}}\right) u^{\prime}(x)+\frac{f(x)^{3} a x^{2 n} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}+c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i x^{n-1} f(x) \sqrt{a} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}\left(c_{1} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}-c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i x^{n-1} \sqrt{a} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}\left(c_{1} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}-c_{2}\right) x}{c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}+c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i x^{n} \sqrt{a}\left(c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i x^{n} \sqrt{a}\left(c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i x^{n} \sqrt{a}\left(c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}-1\right)}{c_{3} \mathrm{e}^{2 i \sqrt{a}\left(\int f(x) x^{n-1} d x\right)}+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 30
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{n} * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) * \mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=-\tan \left(-\sqrt{a}\left(\int f(x) x^{n-1} d x\right)+c_{1}\right) \sqrt{a} x^{n}
$$

Solution by Mathematica
Time used: 0.577 (sec). Leaf size: 41
DSolve $\left[x * y y^{\prime}[x]==f[x] * y[x] \sim 2+n * y[x]+a * x^{\wedge}(2 * n) * f[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{a} x^{n} \tan \left(\sqrt{a} \int_{1}^{x} f(K[1]) K[1]^{n-1} d K[1]+c_{1}\right)
$$

19.8 problem 8

19.8.1 Solving as riccati ode

Internal problem ID [10601]
Internal file name [OUTPUT/9548_Monday_June_06_2022_03_07_32_PM_96364581/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-x^{2 n} f(x) y^{2}-\left(f(x) a x^{n}-n\right) y=f(x) b
$$

19.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a x^{n} f(x) y+x^{2 n} f(x) y^{2}+f(x) b-n y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{n} f(x) a y}{x}+\frac{x^{2 n} f(x) y^{2}}{x}+\frac{f(x) b}{x}-\frac{n y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{f(x) b}{x}, f_{1}(x)=\frac{f(x) a x^{n}-n}{x}$ and $f_{2}(x)=\frac{f(x) x^{2 n}}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f(x) x^{2 n} u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{f^{\prime}(x) x^{2 n}}{x}+\frac{2 f(x) x^{2 n} n}{x^{2}}-\frac{f(x) x^{2 n}}{x^{2}} \\
f_{1} f_{2} & =\frac{\left(f(x) a x^{n}-n\right) f(x) x^{2 n}}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{f(x)^{3} x^{4 n} b}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{f(x) x^{2 n} u^{\prime \prime}(x)}{x}-\left(\frac{f^{\prime}(x) x^{2 n}}{x}+\frac{2 f(x) x^{2 n} n}{x^{2}}-\frac{f(x) x^{2 n}}{x^{2}}+\frac{\left(f(x) a x^{n}-n\right) f(x) x^{2 n}}{x^{2}}\right) u^{\prime}(x)+\frac{f(x)^{3} x^{4 n} b u(x}{x^{3}}$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\left(c_{1} \operatorname{BesselJ}\left(\frac{\sqrt{3} \sqrt{-b}}{8 a}, \frac{\sqrt{3} \sqrt{2} \sqrt{b x^{2 n}} x^{-n}}{8 a}\right)\right. \\
&\left.+c_{2} \operatorname{BesselY}\left(\frac{\sqrt{3} \sqrt{-b}}{8 a}, \frac{\sqrt{3} \sqrt{2} \sqrt{b x^{2 n}} x^{-n}}{8 a}\right)\right) \mathrm{e}^{\frac{\left(f\left(\frac{a x^{n} f(x)}{x}+\frac{f^{\prime}(x)}{f(x)}+\frac{3 n}{x}\right) d x\right)}{2}}
\end{aligned}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(c_{1} \operatorname{BesselJ}\left(\frac{\sqrt{3} \sqrt{-b}}{8 a}, \frac{\sqrt{3} \sqrt{2} \sqrt{b x^{2 n}} x^{-n}}{8 a}\right)+c_{2} \operatorname{BesselY}\left(\frac{\sqrt{3} \sqrt{-b}}{8 a}, \frac{\sqrt{3} \sqrt{2} \sqrt{b x^{2 n}} x^{-n}}{8 a}\right)\right)\left(f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n .\right.}{2 x f(x)}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n f(x)\right) \mathrm{e}^{\frac{\left(\int \frac{f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n f(x)}{f(x) x} d x\right.}{2}} x^{-2 n} \mathrm{e}^{\int\left(-\frac{a x^{n-1} f(x)}{2}-\frac{f^{\prime}(x)}{2 f(x)}-\frac{3 n}{2 x}\right) d x}}{2 f(x)^{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n f(x)\right) x^{-2 n}}{2 f(x)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n f(x)\right) x^{-2 n}}{2 f(x)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(f(x)^{2} a x^{n}+f^{\prime}(x) x+3 n f(x)\right) x^{-2 n}}{2 f(x)^{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 65
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}^{\wedge}(2 * \mathrm{n}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{f}(\mathrm{x})-\mathrm{n}\right) * \mathrm{y}(\mathrm{x})+\mathrm{b} * \mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=-\frac{\left(a^{2}+\tanh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) x^{n-1} d x\right)+c_{1}\right)}{2 a^{2}}\right) \sqrt{a^{2}\left(a^{2}-4 b\right)}\right) x^{-n}}{2 a}
$$

\checkmark Solution by Mathematica
Time used: 2.272 (sec). Leaf size: 82
DSolve $\left[x * y y^{\prime}[x]==x^{\wedge}(2 * n) * f[x] * y[x] \wedge 2+\left(a * x^{\wedge} n * f[x]-n\right) * y[x]+b * f[x], y[x], x\right.$, IncludeSingularSolutio

Solve $\left[\int_{1}^{\sqrt{\frac{x^{2 n}}{b}} y(x)} \frac{1}{K[1]^{2}-\sqrt{\frac{a^{2}}{b}}} K[1]+1 \quad d K[1]=\int_{1}^{x} \frac{b f(K[2]) \sqrt{\frac{K[2]^{2 n}}{b}}}{K[2]} d K[2]+c_{1}, y(x)\right]$

19.9 problem 9

19.9.1 Solving as riccati ode . 1384

Internal problem ID [10602]
Internal file name [OUTPUT/9549_Monday_June_06_2022_03_07_35_PM_92126063/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)-g(x) y=-f(x) a^{2}-a g(x)
$$

19.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+g(x) y-f(x) a^{2}-a g(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+g(x) y-f(x) a^{2}-a g(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x) a^{2}-a g(x), f_{1}(x)=g(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =g(x) f(x) \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-f(x) a^{2}-a g(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)+g(x) f(x)\right) u^{\prime}(x)+f(x)^{2}\left(-f(x) a^{2}-a g(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=-\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{1}\right) \mathrm{e}^{-a\left(\int f(x) d x\right)} c_{2}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=c_{2} f(x)\left(-\mathrm{e}^{\int(2 f(x) a+g(x)) d x-a\left(\int f(x) d x\right)}\right. \\
& \left.\quad+a \mathrm{e}^{-a\left(\int f(x) d x\right)}\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{1}\right)\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=\frac{\left(-\mathrm{e}^{\int(2 f(x) a+g(x)) d x-a\left(\int f(x) d x\right)}+a \mathrm{e}^{-a\left(\int f(x) d x\right)}\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{1}\right)\right) \mathrm{e}^{\int f(x) a d x}}{\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{1}}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\mathrm{e}^{\int(2 f(x) a+g(x)) d x}+c_{3} a+\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x\right) a}{\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{\int(2 f(x) a+g(x)) d x}+c_{3} a+\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x\right) a}{\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\mathrm{e}^{\int(2 f(x) a+g(x)) d x}+c_{3} a+\left(\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x\right) a}{\int \mathrm{e}^{\int(2 f(x) a+g(x)) d x} f(x) d x+c_{3}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (b) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 67

```
dsolve(diff (y(x),x)=f(x)*y(x)^2+g(x)*y(x)-a^2*f(x)-a*g(x),y(x), singsol=all)
```

$$
y(x)=\frac{-a\left(\int \mathrm{e}^{\int g(x) d x+2 a\left(\int f(x) d x\right)} f(x) d x\right)+c_{1} a+\mathrm{e}^{\int g(x) d x+2 a\left(\int f(x) d x\right)}}{-\left(\int \mathrm{e}^{\int g(x) d x+2 a\left(\int f(x) d x\right)} f(x) d x\right)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 1.122 (sec). Leaf size: 201

```
DSolve[y'[x]==f[x]*y[x]^2+g[x]*y[x]-a^2*f[x]-a*g[x],y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[\int_{1}^{x}\right.$

$$
-\frac{\exp \left(-\int_{1}^{K[2]}(-2 a f(K[1])-g(K[1])) d K[1]\right)(a f(K[2])+y(x) f(K[2])+g(K[2]))}{a-y(x)} d K[2]
$$

$$
+\int_{1}^{y(x)}\left(-\int_{1}^{x}\left(-\frac{\exp \left(-\int_{1}^{K[2]}(-2 a f(K[1])-g(K[1])) d K[1]\right) f(K[2])}{a-K[3]}-\frac{\exp \left(-\int_{1}^{K[2]}(-2 a f(K[1])-g\right.}{}\right.\right.
$$

$$
\left.\left.-\frac{\exp \left(-\int_{1}^{x}(-2 a f(K[1])-g(K[1])) d K[1]\right)}{(K[3]-a)^{2}}\right) d K[3]=c_{1}, y(x)\right]
$$

19.10 problem 10

19.10.1 Solving as riccati ode

1388
Internal problem ID [10603]
Internal file name [OUTPUT/9550_Monday_June_06_2022_03_07_36_PM_81058003/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)-g(x) y=a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)
$$

19.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+g(x) y+a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a^{2} x^{2 n} f(x)-a x^{n} g(x)+f(x) y^{2}+\frac{x^{n} n a}{x}+g(x) y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x), f_{1}(x)=g(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =g(x) f(x) \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)+g(x) f(x)\right) u^{\prime}(x)+f(x)^{2}\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{DESol}(& \left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}\right. \\
& \left.\left.+f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right)-Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol } & \left(\left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
+ & \left.\left.f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right)-Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{-\right.}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{ \right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{ \right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} x^{1+2 n} _Y(x) a^{2}+\ldots Y^{\prime \prime}(x) x f(x)-f(x)^{2} g(x) x^{n+1} \overline{Y(x) a-\left(f^{\prime}(x)+g(x) f(x)\right)} Y^{\prime}(x) x+f(x)^{2} x^{n}-Y(x) a r}{x f(x)}\right.\right.}
$$

Summary

The solution(s) found are the following
$y=$

Verification of solutions
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a n x^{n-1}-a x^{n} g(x)-a^{2} x^{2 n} f(x)\right) _Y(x)\right\},\{ \right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} x^{1+2 n} _Y(x) a^{2}+\ldots Y^{\prime \prime}(x) x f(x)-f(x)^{2} g(x) x^{n+1}-Y(x) a-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x) x+f(x)^{2} x^{n} _Y(x) a r}{x f(x)}\right.\right.}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=(\mathrm{g}(\mathrm{x}) * \mathrm{f}(\mathrm{x})+\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})) *(\operatorname{dif}\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+\mathrm{g}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) * \mathrm{x}+\mathrm{x}^{\wedge} 2 *\left(\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge}\right.\right.$
Methods for first order ODEs:
--- Trying classification methqds ${ }^{3} 1^{---}$
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{g}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{~g}(\mathrm{x})-\mathrm{a}^{\wedge} 2 * \mathrm{f}(\mathrm{x}) * \mathrm{x}^{\wedge}(2 * \mathrm{n}), \mathrm{y}(\mathrm{x})\right.$, sing

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \wedge 2+g[x] * y[x]+a * n * x^{\wedge}(n-1)-a * x^{\wedge} n * g[x]-a^{\wedge} 2 * f[x] * x^{\wedge}(2 * n), y[x], x$, IncludeSi

Not solved

19.11 problem 11

19.11.1 Solving as riccati ode

1393
Internal problem ID [10604]
Internal file name [OUTPUT/9551_Monday_June_06_2022_03_08_07_PM_96640301/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a x^{n} g(x) y=a n x^{n-1}+a^{2} x^{2 n}(g(x)-f(x))
$$

19.11.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)-x^{n} g(x) a y+a n x^{n-1}+f(x) y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)-x^{n} g(x) a y+\frac{x^{n} n a}{x}+f(x) y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}, f_{1}(x)=-a x^{n} g(x)$ and $f_{2}(x)=$ $f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-x^{n} f(x) g(x) a \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$f(x) u^{\prime \prime}(x)-\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) u^{\prime}(x)+f(x)^{2}\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\mathrm{DESol} & \left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x)\right.\right.}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

Summary

The solution(s) found are the following
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x)\right\}\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{2} _Y(x) a^{2}(f(x)-g(x)) x^{1+2 n}+f(x)^{2} x^{n} _\frac{Y(x) a n+a x^{n+1} f(x) g(x) _Y^{\prime}(x)-f^{\prime}(x) _Y^{\prime}(x) x+_Y^{\prime \prime}(x) x f(x)}{f(x) x}}{}, \frac{Y}{x}\right)\right.}
$$

Verification of solutions
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x^{n} f(x) g(x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+f(x)\left(a^{2} x^{2 n} g(x)-a^{2} x^{2 n} f(x)+a n x^{n-1}\right) _Y(x)\right\}\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{2} _Y(x) a^{2}(f(x)-g(x)) x^{1+2 n}+f(x)^{2} x^{n} _Y(x) a n+a x^{n+1} f(x) g(x) _Y^{\prime}(x)-f^{\prime}(x) _Y^{\prime}(x) x+_Y^{\prime \prime}(x) x f(x)}{f(x) x}\right.\right.}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=-\left(f(x) * x^{\wedge} n * g(x) * a-(\operatorname{diff}(f(x)\right.\), Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{~g}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) * \mathrm{x}+\mathrm{x}^{\wedge} 2 *(\right.$ Methods for first order ODEs:
--- Trying classification methqds 396
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{~g}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)+\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{n}) *(\mathrm{~g}(\mathrm{x})-\mathrm{f}(\mathrm{x})), \mathrm{y}(\mathrm{x})$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x]{ }^{\wedge} 2-a * x^{\wedge} n * g[x] * y[x]+a * n * x^{\wedge}(n-1)+a^{\wedge} 2 * x^{\wedge}(2 * n) *(g[x]-f[x]), y[x], x$, Include

Not solved

19.12 problem 12

19.12.1 Solving as riccati ode

1398
Internal problem ID [10605]
Internal file name [OUTPUT/9552_Monday_June_06_2022_03_08_37_PM_49442143/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-a \mathrm{e}^{\lambda x} y^{2}-a \mathrm{e}^{\lambda x} f(x) y=\lambda f(x)
$$

19.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} a y^{2}+a \mathrm{e}^{\lambda x} f(x) y+\lambda f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\mathrm{e}^{\lambda x} a y^{2}+a \mathrm{e}^{\lambda x} f(x) y+\lambda f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\lambda f(x), f_{1}(x)=a \mathrm{e}^{\lambda x} f(x)$ and $f_{2}(x)=\mathrm{e}^{\lambda x} a$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} a u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =a \lambda \mathrm{e}^{\lambda x} \\
f_{1} f_{2} & =a^{2} \mathrm{e}^{2 \lambda x} f(x) \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} f(x) a^{2} \lambda
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\mathrm{e}^{\lambda x} a u^{\prime \prime}(x)-\left(a^{2} \mathrm{e}^{2 \lambda x} f(x)+a \lambda \mathrm{e}^{\lambda x}\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} f(x) a^{2} \lambda u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{\mathrm{e}^{\lambda x}\left(\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2}+c_{1} \lambda\right)}{\lambda}
$$

The above shows that

$$
u^{\prime}(x)=\frac{\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2} \lambda+\mathrm{e}^{\lambda x} c_{1} \lambda^{2}+c_{2} \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}{\lambda}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2} \lambda+\mathrm{e}^{\lambda x} c_{1} \lambda^{2}+c_{2} \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{a\left(\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2}+c_{1} \lambda\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{a\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x+\lambda c_{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{a\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x+\lambda c_{3}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(\mathrm{e}^{\lambda x}\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x\right) \lambda+\mathrm{e}^{\lambda x} c_{3} \lambda^{2}+\mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right) \mathrm{e}^{-2 \lambda x}}{a\left(\int \mathrm{e}^{-\lambda x+a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x+\lambda c_{3}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*exp(lambda*x)*f(x)+lambda)*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
        Change of variables used:
            [x = ln(t)/lambda]
        Linear ODE actually solved:
            a*f(ln(t)/lambda)*u(t)-a*t*f(ln(t)/lambda)*diff(u(t),t)+t*lambda*diff(diff(u(t),
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 92
dsolve $\left(\operatorname{diff}(y(x), x)=a * \exp (\operatorname{lambda} * x) * y(x)^{\wedge} 2+a * \exp (\operatorname{lambda} * x) * f(x) * y(x)+l a m b d a * f(x), y(x)\right.$, sings

$$
y(x)=\frac{-c_{1} \mathrm{e}^{-2 x \lambda+a\left(\int \mathrm{e}^{x \lambda} f(x) d x\right)}-\mathrm{e}^{-x \lambda}\left(\int \mathrm{e}^{-x \lambda+a\left(\int \mathrm{e}^{x \lambda} f(x) d x\right)} d x\right) c_{1} \lambda-\lambda^{2} \mathrm{e}^{-x \lambda}}{a\left(\left(\int \mathrm{e}^{-x \lambda+a\left(\int \mathrm{e}^{x \lambda} f(x) d x\right)} d x\right) c_{1}+\lambda\right)}
$$

\checkmark Solution by Mathematica
Time used: 4.45 (sec). Leaf size: 166
DSolve $[y$ ' $[x]==a * \operatorname{Exp}[\backslash[$ Lambda $] * x] * y[x] \sim 2+a * \operatorname{Exp}[\backslash[$ Lambda $] * x] * f[x] * y[x]+\backslash[$ Lambda $] *[x], y[x], x, I$
$y(x) \rightarrow$
$\left.-\frac{\lambda e^{-2 \lambda x}\left(\exp \left(-\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right)+e^{\lambda x} \int_{1}^{e^{x \lambda}} \frac{\exp \left(-\int_{1}^{K[2]}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right.}{\lambda}\right)}{K[2]^{2}} d K[2]+c_{1} e^{\lambda x}\right)$
$y(x) \rightarrow-\frac{\lambda e^{\lambda(-x)}}{a}$

19.13 problem 13

19.13.1 Solving as riccati ode

Internal problem ID [10606]
Internal file name [OUTPUT/9553_Monday_June_06_2022_03_08_39_PM_4505664/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a \mathrm{e}^{\lambda x} f(x) y=a \lambda \mathrm{e}^{\lambda x}
$$

19.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-a \mathrm{e}^{\lambda x} f(x) y+a \lambda \mathrm{e}^{\lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-a \mathrm{e}^{\lambda x} f(x) y+a \lambda \mathrm{e}^{\lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=-a \mathrm{e}^{\lambda x} f(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-f(x)^{2} \mathrm{e}^{\lambda x} a \\
f_{2}^{2} f_{0} & =\lambda f(x)^{2} a \mathrm{e}^{\lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(-f(x)^{2} \mathrm{e}^{\lambda x} a+f^{\prime}(x)\right) u^{\prime}(x)+\lambda f(x)^{2} a \mathrm{e}^{\lambda x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\left(c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=-\left(a\left(c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2}\right) \mathrm{e}^{\lambda x-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-c_{2}\right) f(x)
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(a\left(c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x\right) c_{2}\right) \mathrm{e}^{\lambda x-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-c_{2}\right) \mathrm{e}^{\int a \mathrm{e}^{\lambda x} f(x) d x}}{c_{1}+\left(\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(a\left(c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x\right) \mathrm{e}^{\lambda x-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-1\right) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(a\left(c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x\right) \mathrm{e}^{\lambda x-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-1\right) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(a\left(c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right.} d x\right) \mathrm{e}^{\lambda x-a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-1\right) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}{c_{3}+\int f(x) \mathrm{e}^{a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)} d x}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(exp(lambda*x)*f(x)^2*a-(diff
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the fform r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
```

X Solution by Maple
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2-\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \operatorname{lambda} * \exp (\operatorname{lambda} * \mathrm{x}), \mathrm{y}(\mathrm{x})$, sings

No solution found
\checkmark Solution by Mathematica
Time used: 48.456 (sec). Leaf size: 207
DSolve $[\mathrm{y}$ ' $[\mathrm{x}]==\mathrm{f}[\mathrm{x}] * \mathrm{y}[\mathrm{x}] \sim 2-\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}] * \mathrm{f}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \backslash[$ Lambda] $* \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}$
$y(x)$
$\rightarrow \frac{a \exp \left(\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]+2 \lambda x\right)\left(\int_{1}^{e^{x \lambda}} \frac{\exp \left(-\int_{1}^{K[2]}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right.}{\exp \left(\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]+\lambda x\right) \int_{1}^{e^{x \lambda}} \frac{\exp \left(-\int_{1}^{K[2]}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right.}{K[2]^{2}} d K[2]+c_{1} \exp \left(\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right.}{\lambda}\right.}$ $y(x) \rightarrow a e^{\lambda x}$

19.14 problem 14

19.14.1 Solving as riccati ode

Internal problem ID [10607]
Internal file name [OUTPUT/9554_Monday_June_06_2022_03_08_42_PM_50840373/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)=a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

19.14.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x), f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(a \lambda \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{2 \lambda x} f(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+_{\not} Y^{\prime \prime}(x) f(x)-f^{\prime}(x) \not Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+{ }_{-} Y^{\prime \prime}(x) f(x)-f^{\prime}(x) Y^{\prime}(x)}{f(x)}\right\},\{-Y(x)\}\right)$
Using the above in (1) gives the solution
$y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x} _Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{\left.\left.-f(x)^{3} \mathrm{e}^{2 \lambda x} _Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-\frac{Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{} \quad-\frac{11)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x} _Y(x) a^{2}+f(x)^{2} \mathrm{e}^{\lambda x}-Y(x) a \lambda+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}\right.\right.
\end{aligned}
$$

Verification of solutions

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```


X Solution by Maple

dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+a * \operatorname{lambda} * \exp (\operatorname{lambda} * \mathrm{x})-\mathrm{a}^{\wedge} 2 * \exp (2 * \operatorname{lambda} * \mathrm{x}) * \mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singso

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \sim 2+a * \backslash[$ Lambda $] * \operatorname{Exp}\left[\backslash[\right.$ Lambda] $* x]-a^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[$ Lambda] $* x] * f[x], y[x], x$, In

Not solved

19.15 problem 15

19.15.1 Solving as riccati ode . 1412

Internal problem ID [10608]
Internal file name [OUTPUT/9555_Monday_June_06_2022_03_08_45_PM_80987473/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)-\lambda y=a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

19.15.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+\lambda y+a^{2} \mathrm{e}^{2 \lambda x} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+\lambda y+a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a^{2} \mathrm{e}^{2 \lambda x} f(x), f_{1}(x)=\lambda$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =\lambda f(x) \\
f_{2}^{2} f_{0} & =f(x)^{3} \mathrm{e}^{2 \lambda x} a^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)+\lambda f(x)\right) u^{\prime}(x)+f(x)^{3} \mathrm{e}^{2 \lambda x} a^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}+c_{2} \mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i a \mathrm{e}^{\lambda x} f(x)\left(c_{1} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-c_{2} \mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i a \mathrm{e}^{\lambda x}\left(c_{1} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-c_{2} \mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right)}{c_{1} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}+c_{2} \mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i a \mathrm{e}^{\lambda x}\left(c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right)}{c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}+\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i a \mathrm{e}^{\lambda x}\left(c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right)}{c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}+\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i a \mathrm{e}^{\lambda x}\left(c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}-\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}\right)}{c_{3} \mathrm{e}^{i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}+\mathrm{e}^{-i a\left(\int \mathrm{e}^{\lambda x} f(x) d x\right)}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

Solution by Maple
Time used: 0.032 (sec). Leaf size: 26
dsolve $\left(\operatorname{diff}(y(x), x)=f(x) * y(x)^{\wedge} 2+\operatorname{lambda} * y(x)+a^{\wedge} 2 * \exp (2 * \operatorname{lambda} * x) * f(x), y(x), \quad\right.$ singsol $\left.=a l l\right)$

$$
y(x)=-\tan \left(-a\left(\int \mathrm{e}^{x \lambda} f(x) d x\right)+c_{1}\right) a \mathrm{e}^{x \lambda}
$$

\checkmark Solution by Mathematica
Time used: 0.615 (sec). Leaf size: 47
DSolve $[y$ ' $[x]==f[x] * y[x] \wedge 2+\backslash[$ Lambda $] * y[x]+a \wedge 2 * \operatorname{Exp}[2 * \backslash[$ Lambda $] * x] * f[x], y[x], x$, IncludeSingulars

$$
y(x) \rightarrow \sqrt{a^{2}} e^{\lambda x} \tan \left(\sqrt{a^{2}} \int_{1}^{x} e^{\lambda K[1]} f(K[1]) d K[1]+c_{1}\right)
$$

19.16 problem 16

19.16.1 Solving as riccati ode

Internal problem ID [10609]
Internal file name [OUTPUT/9556_Monday_June_06_2022_03_08_46_PM_10138442/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+f(x)\left(\mathrm{e}^{\lambda x} a+b\right) y=a \lambda \mathrm{e}^{\lambda x}
$$

19.16.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-a \mathrm{e}^{\lambda x} f(x) y+a \lambda \mathrm{e}^{\lambda x}-f(x) b y+f(x) y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-a \mathrm{e}^{\lambda x} f(x) y+a \lambda \mathrm{e}^{\lambda x}-f(x) b y+f(x) y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=-a \mathrm{e}^{\lambda x} f(x)-f(x) b$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =\left(-a \mathrm{e}^{\lambda x} f(x)-f(x) b\right) f(x) \\
f_{2}^{2} f_{0} & =\lambda f(x)^{2} a \mathrm{e}^{\lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(\left(-a \mathrm{e}^{\lambda x} f(x)-f(x) b\right) f(x)+f^{\prime}(x)\right) u^{\prime}(x)+\lambda f(x)^{2} a \mathrm{e}^{\lambda x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)}\left(c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right) c_{2}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=-\left(a\left(c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right) c_{2}\right) \mathrm{e}^{\lambda x-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)}\right. \\
&+\mathrm{e}^{-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)}\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right) c_{2} b+\mathrm{e}^{-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)} c_{1} b \\
&\left.-c_{2}\right) f(x)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\left(a\left(c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right) c_{2}\right) \mathrm{e}^{\lambda x-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)}+\mathrm{e}^{-\left(\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x\right)}\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x}\right.\right.}{c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\mathrm{e}^{\lambda x} a+b\right)\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right)+\mathrm{e}^{\lambda x} c_{3} a+b c_{3}-\mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{\lambda x} a+b\right)\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right)+\mathrm{e}^{\lambda x} c_{3} a+b c_{3}-\mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{\lambda x} a+b\right)\left(\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x\right)+\mathrm{e}^{\lambda x} c_{3} a+b c_{3}-\mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x)\left(\mathrm{e}^{\lambda x} a+b\right) d x} d x}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-exp(lambda*x)*f(x)^2*a-f(x)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the ff418m r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{f}(\mathrm{x}) *(\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x})+\mathrm{b}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{l}\right.$ ambda*exp$(\mathrm{lambda} \mathrm{x}), \mathrm{y}(\mathrm{x})$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \sim 2-f[x] *(a * E x p[\backslash[L a m b d a] * x]+b) * y[x]+a * \backslash[$ Lambda $] * \operatorname{Exp}[\backslash[L a m b d a] * x], y[x]$

Not solved

19.17 problem 17

19.17.1 Solving as riccati ode 1420

Internal problem ID [10610]
Internal file name [OUTPUT/9557_Monday_June_06_2022_03_08_52_PM_9131604/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\mathrm{e}^{\lambda x} f(x) y^{2}-(f(x) a-\lambda) y=b \mathrm{e}^{-\lambda x} f(x)
$$

19.17.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\mathrm{e}^{\lambda x} f(x) y^{2}+b \mathrm{e}^{-\lambda x} f(x)+f(x) a y-\lambda y
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\mathrm{e}^{\lambda x} f(x) y^{2}+b \mathrm{e}^{-\lambda x} f(x)+f(x) a y-\lambda y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=b \mathrm{e}^{-\lambda x} f(x), f_{1}(x)=f(x) a-\lambda$ and $f_{2}(x)=\mathrm{e}^{\lambda x} f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\mathrm{e}^{\lambda x} f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f(x) \mathrm{e}^{\lambda x} \lambda+\mathrm{e}^{\lambda x} f^{\prime}(x) \\
f_{1} f_{2} & =(f(x) a-\lambda) \mathrm{e}^{\lambda x} f(x) \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} f(x)^{3} b \mathrm{e}^{-\lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\mathrm{e}^{\lambda x} f(x) u^{\prime \prime}(x)-\left(f(x) \mathrm{e}^{\lambda x} \lambda+\mathrm{e}^{\lambda x} f^{\prime}(x)+(f(x) a-\lambda) \mathrm{e}^{\lambda x} f(x)\right) u^{\prime}(x)+\mathrm{e}^{2 \lambda x} f(x)^{3} b \mathrm{e}^{-\lambda x} u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{a\left(\int f(x) d x\right)}{2}} \cosh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right) c_{2}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{c_{2} \mathrm{e}^{\frac{a\left(\int f(x) d x\right)}{2}} f(x)\left(a^{2} \cosh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right)+\sqrt{a^{2}\left(a^{2}-4 b\right)} \sinh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right)\right)}{2 a}$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(a^{2} \cosh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right)+\sqrt{a^{2}\left(a^{2}-4 b\right)} \sinh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right)\right) \mathrm{e}^{-\lambda x}}{2 a \cosh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(a^{2}+\tanh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{3}\right)}{2 a^{2}}\right) \sqrt{a^{2}\left(a^{2}-4 b\right)}\right) \mathrm{e}^{-\lambda x}}{2 a}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(a^{2}+\tanh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{3}\right)}{2 a^{2}}\right) \sqrt{a^{2}\left(a^{2}-4 b\right)}\right) \mathrm{e}^{-\lambda x}}{2 a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(a^{2}+\tanh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{3}\right)}{2 a^{2}}\right) \sqrt{a^{2}\left(a^{2}-4 b\right)}\right) \mathrm{e}^{-\lambda x}}{2 a}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 59
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+(\mathrm{a} * \mathrm{f}(\mathrm{x})-\operatorname{lambda}) * \mathrm{y}(\mathrm{x})+\mathrm{b} * \exp (-1 \mathrm{ambda} \mathrm{x}) * \mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x}\right.$

$$
y(x)=-\frac{\left(a^{2}+\tanh \left(\frac{\sqrt{a^{2}\left(a^{2}-4 b\right)}\left(a\left(\int f(x) d x\right)+c_{1}\right)}{2 a^{2}}\right) \sqrt{a^{2}\left(a^{2}-4 b\right)}\right) \mathrm{e}^{-x \lambda}}{2 a}
$$

\checkmark Solution by Mathematica
Time used: 1.392 (sec). Leaf size: 87
DSolve $[y$ ' $[x]==\operatorname{Exp}[\backslash[$ Lambda $] * x] * f[x] * y[x] \sim 2+(a * f[x]-\backslash[$ Lambda $]) * y[x]+b * E x p[-\backslash[L a m b d a] * x] * f[x]$,

Solve $\left[\int_{1}^{\sqrt{\frac{e^{2 x \lambda}}{b}} y(x)} \frac{1}{K[1]^{2}-\sqrt{\frac{a^{2}}{b}} K[1]+1} d K[1]=\int_{1}^{x} b e^{-\lambda K[2]} \sqrt{\frac{e^{2 \lambda K[2]}}{b}} f(K[2]) d K[2]\right.$
$\left.+c_{1}, y(x)\right]$

19.18 problem 18

19.18.1 Solving as riccati ode

Internal problem ID [10611]
Internal file name [OUTPUT/9558_Monday_June_06_2022_03_08_54_PM_11539278/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)-g(x) y=a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

19.18.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+g(x) y+a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+g(x) y+a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x), f_{1}(x)=g(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =g(x) f(x) \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)+g(x) f(x)\right) u^{\prime}(x)+f(x)^{2}\left(a \lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{\lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+Y^{\prime \prime}(x) f(x)+a f(x)^{2}-Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right)-}{f(x)}\right.\right.$
The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}-Y(x) a^{2}+_{_} Y^{\prime \prime}(x) f(x)+a f(x)^{2}-Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right.}{f(x)}\right.\right.
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& \left.\left.-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}=Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2} \overline{-} Y(x)\left(\lambda-g(x) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)\right.}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x} _Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2}}{f(x)} Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)\right.\right.}\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left.\left.\left.-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}}{}=Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2} \overline{\bar{c}} \overline{f(x)} Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)\right.\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x} _Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2}}{f(x)} Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)\right.\right.}\right\},\left\{_Y(x)\right\}\right)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=
\end{aligned}
$$

Verification of solutions
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}=Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2} \overline{(x)} Y(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x}=Y(x) a^{2}+\ldots Y^{\prime \prime}(x) f(x)+a f(x)^{2} \bar{\prime} \overline{f(x)(\lambda-g(x)) \mathrm{e}^{\lambda x}-\left(f^{\prime}(x)+g(x) f(x)\right) _Y^{\prime}(x)}}{f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=(\mathrm{g}(\mathrm{x}) * \mathrm{f}(\mathrm{x})+\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})) *(\operatorname{dif}$ Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ *
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe \rightarrow trying a solution of the form $\mathrm{rO}(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe \rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients
<- unable to find a useful changê ${ }^{2}$ f variables trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear

X Solution by Maple
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) \wedge 2+\mathrm{g}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \operatorname{lambda*exp}(\operatorname{lambda*x})-\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x}) * \mathrm{~g}(\mathrm{x})-\mathrm{a} \wedge 2 * e x$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\mathrm{f}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2+\mathrm{g}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \backslash[$ Lambda $] * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]-\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}] * \mathrm{~g}[\mathrm{x}]-\mathrm{a}^{\wedge} 2$

Not solved

19.19 problem 19

19.19.1 Solving as riccati ode

Internal problem ID [10612]
Internal file name [OUTPUT/9559_Monday_June_06_2022_03_08_58_PM_23846366/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a \mathrm{e}^{\lambda x} g(x) y=a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{2 \lambda x}(g(x)-f(x))
$$

19.19.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a^{2} \mathrm{e}^{2 \lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)-g(x) \mathrm{e}^{\lambda x} a y+a \lambda \mathrm{e}^{\lambda x}+f(x) y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a^{2} \mathrm{e}^{2 \lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)-g(x) \mathrm{e}^{\lambda x} a y+a \lambda \mathrm{e}^{\lambda x}+f(x) y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a^{2} \mathrm{e}^{2 \lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)+a \lambda \mathrm{e}^{\lambda x}, f_{1}(x)=-a \mathrm{e}^{\lambda x} g(x)$ and $f_{2}(x)=$ $f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-f(x) g(x) \mathrm{e}^{\lambda x} a \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(a^{2} \mathrm{e}^{2 \lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)+a \lambda \mathrm{e}^{\lambda x}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$f(x) u^{\prime \prime}(x)-\left(-f(x) g(x) \mathrm{e}^{\lambda x} a+f^{\prime}(x)\right) u^{\prime}(x)+f(x)^{2}\left(a^{2} \mathrm{e}^{2 \lambda x} g(x)-a^{2} \mathrm{e}^{2 \lambda x} f(x)+a \lambda \mathrm{e}^{\lambda x}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{\left.-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_{_} Y^{\prime \prime}(x) f(x)+f(x) a(\lambda f(x))_{-} Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda_{2}}}{f(x)}\right.\right.$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x}$ DESol $\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_{_} Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) __{-} Y(x)+g(x) Y^{\prime}(x)\right.}{f(x)}\right.\right.$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}{f(x) \mathrm{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.} \tag{1}
\end{equation*}
$$

Verification of solutions

$y=$

$$
-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}{f(x) \mathrm{DESol}\left(\left\{\frac{-a^{2} f(x)^{2} _Y(x)(f(x)-g(x)) \mathrm{e}^{2 \lambda x}+_Y^{\prime \prime}(x) f(x)+f(x) a\left(\lambda f(x) _Y(x)+g(x) _Y^{\prime}(x)\right) \mathrm{e}^{\lambda x}-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-\right.}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-exp(lambda*x)*f(x)*g(x)*a+di
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form }1432[xi=0, eta=F(x)
        trying 2nd order exact linear
        trying symmetries linear in }\textrm{x}\mathrm{ and }\textrm{y}(\textrm{x}
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a * \exp (\operatorname{lambda} * x) * g(x) * y(x)+a * l a m b d a * \exp (\operatorname{lambda} * x)+a \wedge 2 * \exp (2 * 1$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\mathrm{f}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]{ }^{\wedge} 2-\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}] * \mathrm{~g}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]+\mathrm{a} * \backslash\left[\right.$ Lambda] $* \operatorname{Exp}\left[\backslash[\right.$ Lambda] $* \mathrm{x}]+\mathrm{a}^{\wedge} 2 * \operatorname{Exp}[$

Not solved

19.20 problem 20

19.20.1 Solving as riccati ode

Internal problem ID [10613]
Internal file name [OUTPUT/9560_Monday_June_06_2022_03_09_05_PM_90585740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)=2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}
$$

19.20.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(2 a \lambda x \mathrm{e}^{\lambda x^{2}}-a^{2} f(x) \mathrm{e}^{2 \lambda x^{2}}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda x^{2}}-Y(x) a \lambda x-f^{\prime}(x) _^{\prime}(x)+_{-} Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\{-Y(x)\}\right)$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda x^{2}} _Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_{-} Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\left\{_Y(x\right.\right.$
Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-f(x)^{3} \mathrm{e}^{2 \lambda} x^{2} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2} \frac{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2}}{\frac{Y}{f}(x)} \overline{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda} x^{2}}{} \quad Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda x^{2}} \frac{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2}}{f(x)} \frac{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& -\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2}}{\frac{Y(x) a \lambda x-f^{\prime}(x) _}{f(x)} Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)}\right\},\{-Y(x)\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2}}{f(x)} \frac{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)}{f(x)},\{-Y(x)\}\right)\right.}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& \quad-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda x^{2}} \frac{Y(x) a \lambda x-f^{\prime}(x) _}{f(x)} Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}{f(x) \operatorname{DESol}\left(\left\{-f(x)^{3} \mathrm{e}^{2 \lambda x^{2}} _Y(x) a^{2}+2 f(x)^{2} \mathrm{e}^{\lambda} x^{2}\right.\right.} \frac{Y(x) a \lambda x-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*((diff(f(x), x))*exp(2*x^2*lambda)*a
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2+2 * a * l a m b d a * x * \exp \left(l a m b d a * x^{\wedge} 2\right)-a^{\wedge} 2 * f(x) * \exp \left(2 * \operatorname{lambda} x^{\wedge} 2\right), y(x)\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \wedge 2+2 * a * \backslash[$ Lambda $] * x * \operatorname{Exp}\left[\backslash[\right.$ Lambda $\left.] * x^{\wedge} 2\right]-a^{\wedge} 2 * f[x] * \operatorname{Exp}\left[2 * \backslash[\right.$ Lambda $\left.] * x^{\wedge} 2\right], y$

Not solved

19.21 problem 21

19.21.1 Solving as riccati ode 1439

Internal problem ID [10614]
Internal file name [OUTPUT/9561_Monday_June_06_2022_03_09_08_PM_29123275/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)-y \lambda x=a \mathrm{e}^{\lambda x} f(x)
$$

19.21.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+\lambda x y+a \mathrm{e}^{\lambda x} f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+\lambda x y+a \mathrm{e}^{\lambda x} f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \mathrm{e}^{\lambda x} f(x), f_{1}(x)=\lambda x$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =f(x) \lambda x \\
f_{2}^{2} f_{0} & =f(x)^{3} \mathrm{e}^{\lambda x} a
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) u^{\prime}(x)+f(x)^{3} \mathrm{e}^{\lambda x} a u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a-Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right)-Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a _Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right)-Y^{\prime}(x)}{f(x)}\right\},\{-Y(x)\}\right)$
Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a _Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a-Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a-Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \mathrm{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a-Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a_{-} Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a_{-} Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a _Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) f(x)+f(x)^{3} \mathrm{e}^{\lambda x} a-Y(x)-\left(f(x) \lambda x+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (f(x)*lambda*x+diff(f(x), x))*
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the flfyrm r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[x]==f[x] * y[x] \sim 2+\backslash[$ Lambda $] * x * y[x]+a * f[x] * \operatorname{Exp}[\backslash[$ Lambda $] * x], y[x], x$, IncludeSingularSol

Not solved

19.22 problem 22

19.22.1 Solving as riccati ode

Internal problem ID [10615]
Internal file name [OUTPUT/9562_Monday_June_06_2022_03_09_10_PM_16193780/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.

$$
y^{\prime}-y^{2} f(x)=-a \tanh (\lambda x)^{2}(f(x) a+\lambda)+\lambda a
$$

19.22.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\tanh (\lambda x)^{2} f(x) a^{2}-a \tanh (\lambda x)^{2} \lambda+f(x) y^{2}+\lambda a
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\tanh (\lambda x)^{2} f(x) a^{2}-a \tanh (\lambda x)^{2} \lambda+f(x) y^{2}+\lambda a
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\tanh (\lambda x)^{2} f(x) a^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0$ and $f_{2}(x)=$ $f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-\tanh (\lambda x)^{2} f(x) a^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-\tanh (\lambda x)^{2} f(x) a^{2}-a \tanh (\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*tanh(lambda*x)*(-2*f(x)*tanh(lambda*
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a * \tanh (\operatorname{lambda} a x) \wedge 2 *(a * f(x)+l a m b d a)+a * l a m b d a, y(x), \quad$ singsol $=a l$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \sim 2-a * T a n h[\backslash[$ Lambda $] * x] \sim 2 *(a * f[x]+\backslash[$ Lambda $])+a * \backslash[$ Lambda] $, y[x], x$, Includ

Not solved

19.23 problem 23

19.23.1 Solving as riccati ode . 1448

Internal problem ID [10616]
Internal file name [OUTPUT/9563_Monday_June_06_2022_03_09_18_PM_28124635/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.

$$
y^{\prime}-y^{2} f(x)=-a \operatorname{coth}(\lambda x)^{2}(f(x) a+\lambda)+\lambda a
$$

19.23.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\operatorname{coth}(\lambda x)^{2} f(x) a^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+f(x) y^{2}+\lambda a
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\operatorname{coth}(\lambda x)^{2} f(x) a^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+f(x) y^{2}+\lambda a
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\operatorname{coth}(\lambda x)^{2} f(x) a^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a, f_{1}(x)=0$ and $f_{2}(x)=$ $f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-\operatorname{coth}(\lambda x)^{2} f(x) a^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-\operatorname{coth}(\lambda x)^{2} f(x) a^{2}-a \operatorname{coth}(\lambda x)^{2} \lambda+\lambda a\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+coth(lambda*x)*y(x)*(-2*f(x)*coth(lambda*
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a * \operatorname{coth}(\operatorname{lambda} a x) \wedge 2 *(a * f(x)+l a m b d a)+a * l a m b d a, y(x), \quad$ singsol $=a l$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \sim 2-a * \operatorname{Coth}[\backslash[L a m b d a] * x] \sim 2 *(a * f[x]+\backslash[$ Lambda $])+a * \backslash[$ Lambda] , $y[x], x$, Includ

Not solved

19.24 problem 24

19.24.1 Solving as riccati ode . 1452

Internal problem ID [10617]
Internal file name [OUTPUT/9564_Monday_June_06_2022_03_09_30_PM_15801037/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)=-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}
$$

19.24.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}, f_{1}(x)=0$ and $f_{2}(x)=$ $f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \\
& \left.\left.\quad+\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right) f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)= & \frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.+\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right) f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) \widetilde{Y^{\prime}}(x)}{f(x)}+\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right) f(x) _Y(x)\right\}\right.}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-Y^{\prime}(x)}{f(x)}+\left(-f(x) a^{2}+a \lambda \sinh (\lambda x)-\sinh (\lambda x)^{2} f(x) a^{2}\right) f(x) _Y(x)\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$
$-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2} _\frac{Y(x) a^{2}+f(x)^{2} \sinh (\lambda x) _}{f(x)} Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2} _Y(x) a^{2}+f(x)^{2} \sinh (\lambda x) _Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right) f(x)}$

Summary

The solution(s) found are the following
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2} _Y(x) a^{2}+f(x)^{2} \sinh (\lambda x) _Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2}-Y_{(x) a^{2}+f(x)^{2} \sinh (\lambda x)-}^{f(x)} Y(x) a \lambda+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-Y(x)\}\right) f(x)}
$$

Verification of solutions
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2} _Y(x) a^{2}+f(x)^{2} \sinh (\lambda x) _Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \cosh (\lambda x)^{2} _Y(x) a^{2}+f(x)^{2} \sinh (\lambda x) _Y(x) a \lambda+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\{-Y(x)\}\right) f(x)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = -4*y(x)*x/(a^2-2*x^2), y(x)`
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*sinh(2*lambda*x)*f(x)*a*lambda+co
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+4*y(x)*x/(a^2-2*x^2), y(x)` *** Subl
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
```

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \wedge 2-a^{\wedge} 2 * f[x]+a * \backslash[$ Lambda $] * \operatorname{Sinh}[\backslash[$ Lambda $] * x]-a^{\wedge} 2 * f[x] * \operatorname{Sinh}[\backslash[$ Lambda $* x]$

Not solved

19.25 problem 25

19.25.1 Solving as riccati ode 1457

Internal problem ID [10618]
Internal file name [OUTPUT/9565_Monday_June_06_2022_03_09_39_PM_54305745/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime} x-y^{2} f(x)=a-a^{2} f(x) \ln (x)^{2}
$$

19.25.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{a^{2} f(x) \ln (x)^{2}-f(x) y^{2}-a}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{a^{2} f(x) \ln (x)^{2}}{x}+\frac{f(x) y^{2}}{x}+\frac{a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{-a+a^{2} f(x) \ln (x)^{2}}{x}, f_{1}(x)=0$ and $f_{2}(x)=\frac{f(x)}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f(x) u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{f(x)^{2}\left(-a+a^{2} f(x) \ln (x)^{2}\right)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{f(x) u^{\prime \prime}(x)}{x}-\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}\right) u^{\prime}(x)-\frac{f(x)^{2}\left(-a+a^{2} f(x) \ln (x)^{2}\right) u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}\right) x _Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.-\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}\right) x _Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.-\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}\right) x-Y^{\prime}(x)}{f(x)}-\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)\right) x}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}\right) x-Y^{\prime}(x)}{f(x)}-\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y= \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { \partial } { \partial x } \operatorname { D E S o l } \left(\left\{-\frac{\left.\left.\left.f(x)^{3} \ln (x)^{2} _Y(x) a^{2}-f(x)^{2} a _Y(x)-\frac{Y^{\prime \prime}(x) x^{2} f(x)+f^{\prime}(x) _Y^{\prime}(x) x^{2}-f(x) _Y^{\prime}(x) x}{x^{2} f(x)}\right\},\left\{_Y(x)\right\}\right)\right) x}{f(x) \operatorname{DESol}\left(\left\{-\frac{f(x)^{3} \ln (x)^{2}}{}{ }^{2} Y(x) a^{2}-f(x)^{2} a _Y(x)-\frac{Y^{\prime \prime}(x) x^{2} f(x)+f^{\prime}(x) _Y^{\prime}(x) x^{2}-f(x) _Y^{\prime}(x) x}{x^{2} f(x)}\right\},\{-Y(x)\}\right)}, ~\right.\right.\right.}{x}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(x*diff (y(x),x)=f(x)*y(x)^2+a-a^2*f(x)*(ln(x))^2,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[x*y'[x]==f[x]*y[x]^2+a-a^2*f[x]*(Log[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]

Not solved

19.26 problem 26

19.26.1 Solving as riccati ode . 1462

Internal problem ID [10619]
Internal file name [OUTPUT/9566_Monday_June_06_2022_03_09_41_PM_20497896/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_1st_order, ` _with_symmetry_[F(x), G(x)]`], _Riccati]

$$
y^{\prime} x-f(x)(y+a \ln (x))^{2}=-a
$$

19.26.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a^{2} f(x) \ln (x)^{2}+2 \ln (x) f(x) a y+f(x) y^{2}-a}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{a^{2} f(x) \ln (x)^{2}}{x}+\frac{2 \ln (x) f(x) a y}{x}+\frac{f(x) y^{2}}{x}-\frac{a}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-a+a^{2} f(x) \ln (x)^{2}}{x}, f_{1}(x)=\frac{2 a f(x) \ln (x)}{x}$ and $f_{2}(x)=\frac{f(x)}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f(x) u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}} \\
f_{1} f_{2} & =\frac{2 a f(x)^{2} \ln (x)}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{f(x)^{2}\left(-a+a^{2} f(x) \ln (x)^{2}\right)}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\frac{f(x) u^{\prime \prime}(x)}{x}-\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{2 a f(x)^{2} \ln (x)}{x^{2}}\right) u^{\prime}(x)+\frac{f(x)^{2}\left(-a+a^{2} f(x) \ln (x)^{2}\right) u(x)}{x^{3}}=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)\right.\right. & -\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{2 a f(x)^{2} \ln (x)}{x^{2}}\right) x _Y^{\prime}(x)}{f(x)} \\
& \left.\left.+\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{2 a f(x)^{2} \ln (x)}{x^{2}}\right) x_{-} Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.+\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{2 a f(x)^{2} \ln (x)}{x^{2}}\right) x _Y^{\prime}(x)}{f(x)}+\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y_{(x)}}{x^{2}}\right\},\{-Y(x)\}\right)\right) x}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(\frac{f^{\prime}(x)}{x}-\frac{f(x)}{x^{2}}+\frac{2 a f(x)^{2} \ln (x)}{x^{2}}\right) x-Y^{\prime}(x)}{f(x)}+\frac{f(x)\left(-a+a^{2} f(x) \ln (x)^{2}\right)-Y(x)}{x^{2}}\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x-Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right) _Y(x)}{x^{2} f(x)}\right\},\left\{_Y(x)\right\}\right)\right) \\
& f(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x-Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right)-Y(x)}{x^{2} f(x)}\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\left(\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x _Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right) _Y(x)}{x^{2} f(x)}\right\},\left\{_Y(x)\right\}\right)\right)}{f(x) \mathrm{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x _Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right) _Y(x)}{x^{2} f(x)}\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$\begin{aligned} y= & \left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x _Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right) _Y(x)}{x^{2} f(x)}\right\},\{-Y(x)\}\right)\right), \\ & f(x) \operatorname{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) x^{2} f(x)-2\left(f(x)^{2} \ln (x) a+\frac{f^{\prime}(x) x}{2}-\frac{f(x)}{2}\right) x _Y^{\prime}(x)+f(x)^{2} a\left(f(x) \ln (x)^{2} a-1\right) _Y(x)}{x^{2} f(x)}\right\},\{-Y(x)\}\right)\end{aligned}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x*diff(y(x),x)=f(x)*(y(x)+a*ln(x))^2-a,y(x), singsol=all)
```

$$
y(x)=-a \ln (x)+\frac{1}{c_{1}-\left(\int \frac{f(x)}{x} d x\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.48 (sec). Leaf size: 42
DSolve $\left[x * y y^{\prime}[x]==f[x] *(y[x]+a * \log [x]) \sim 2-a, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-a \log (x)+\frac{1}{-\int_{1}^{x} \frac{f(K[2])}{K[2]} d K[2]+c_{1}} \\
& y(x) \rightarrow-a \log (x)
\end{aligned}
$$

19.27 problem 27

19.27.1 Solving as riccati ode . 1466

Internal problem ID [10620]
Internal file name [OUTPUT/9567_Monday_June_06_2022_03_09_43_PM_63722438/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)+a x \ln (x) f(x) y=a \ln (x)+a
$$

19.27.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-a x \ln (x) f(x) y+a \ln (x)+a
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-a x \ln (x) f(x) y+a \ln (x)+a
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \ln (x)+a, f_{1}(x)=-f(x) \ln (x) a x$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-x f(x)^{2} \ln (x) a \\
f_{2}^{2} f_{0} & =f(x)^{2}(a \ln (x)+a)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(-x f(x)^{2} \ln (x) a+f^{\prime}(x)\right) u^{\prime}(x)+f(x)^{2}(a \ln (x)+a) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x f(x)^{2} \ln (x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
\left.\left.+a(1+\ln (x)) f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{array}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x f(x)^{2} \ln (x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.+a(1+\ln (x)) f(x)_{-} Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x f(x)^{2} \ln (x) a+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+a(1+\ln (x)) f(x) _Y(x)\right\},\{-Y(x)\}\right)}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-x f(x)^{2} \ln (x) a+f^{\prime}(x)\right)-Y^{\prime}(x)}{f(x)}+a(1+\ln (x)) f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right)-Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right)-Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}$
Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right) _Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right)-Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right) _Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\{-Y(x)\}\right)}{f(x) \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) f(x)+\left(x f(x)^{2} \ln (x) a-f^{\prime}(x)\right)-Y^{\prime}(x)+a(1+\ln (x)) f(x)^{2} _Y(x)}{f(x)}\right\},\{-Y(x)\}\right)}$
Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-f(x)^2*\operatorname{ln}(x)*a*x+diff(f(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the ff469m r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

X Solution by Maple
dsolve($\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2-\mathrm{a} * \mathrm{x} * \ln (\mathrm{x}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\mathrm{a} * \ln (\mathrm{x})+\mathrm{a}, \mathrm{y}(\mathrm{x})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0 DSolve $[y$ ' $[x]==f[x] * y[x] \sim 2-a * x * \log [x] * f[x] * y[x]+a * \log [x]+a, y[x], x$, IncludeSingularSolutions

Not solved

19.28 problem 28

19.28.1 Solving as riccati ode . 1471

Internal problem ID [10621]
Internal file name [OUTPUT/9568_Monday_June_06_2022_03_09_45_PM_32821835/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+a \ln (x) y^{2}-a f(x)(\ln (x) x-x) y=-f(x)
$$

19.28.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =a x \ln (x) f(x) y-f(x) a x y-a \ln (x) y^{2}-f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=a x \ln (x) f(x) y-f(x) a x y-a \ln (x) y^{2}-f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x), f_{1}(x)=f(x) \ln (x) a x-a x f(x)$ and $f_{2}(x)=-a \ln (x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-a \ln (x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x} \\
f_{1} f_{2} & =-(f(x) \ln (x) a x-a x f(x)) a \ln (x) \\
f_{2}^{2} f_{0} & =-a^{2} f(x) \ln (x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$-a \ln (x) u^{\prime \prime}(x)-\left(-(f(x) \ln (x) a x-a x f(x)) a \ln (x)-\frac{a}{x}\right) u^{\prime}(x)-a^{2} f(x) \ln (x)^{2} u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x(\ln (x)-1)\left(c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{1}\right)
$$

The above shows that
$u^{\prime}(x)$
$=\frac{x c_{2} \ln (x)(\ln (x)-1)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{2} \mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}+c_{1} x \ln (x)(\ln }{x(\ln (x)-1)}$

Using the above in (1) gives the solution
y
$=\frac{x c_{2} \ln (x)(\ln (x)-1)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{2} \mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}+c_{1} x \ln (x)(\ln }{x^{2}(\ln (x)-1)^{2} a \ln (x)\left(c_{2}\left(\int \frac{\mathrm{e}^{f \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{1}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
y

$$
=\frac{x \ln (x)(\ln (x)-1)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{\ln } d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{3} x \ln (x)^{2}-\ln (x) c_{3} x+\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) c}{x \ln (x)}}}{x^{2}(\ln (x)-1)^{2} a \ln (x)\left(\int \frac{\mathrm{e}^{f \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x+c_{3}\right)}
$$

Summary
The solution(s) found are the following
y
(1)
$=\frac{x \ln (x)(\ln (x)-1)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln } d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{3} x \ln (x)^{2}-\ln (x) c_{3} x+\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) ؛}{x \ln (x)}}}{x^{2}(\ln (x)-1)^{2} a \ln (x)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x+c_{3}\right)}$

Verification of solutions

y

$$
=\frac{x \ln (x)(\ln (x)-1)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{\ln } d x}}{x^{2}(\ln (x)-1)^{2}} d x\right)+c_{3} x \ln (x)^{2}-\ln (x) c_{3} x+\mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a}{x \ln (x)}}}{x^{2}(\ln (x)-1)^{2} a \ln (x)\left(\int \frac{\mathrm{e}^{f \frac{f(x) \ln (x)^{2} a x^{2}-f(x) \ln (x) a x^{2}+1}{x \ln (x)} d x}}{x^{2}(\ln (x)-1)^{2}} d x+c_{3}\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (ln(x)^ 2*f(x)*a*x^2-ln(x)*f(x)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the fform r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 227
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-\mathrm{a} * \ln (\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{a} * \mathrm{f}(\mathrm{x}) *(\mathrm{x} * \ln (\mathrm{x})-\mathrm{x}) * \mathrm{y}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol=all)
$y(x)$

$$
=\frac{-x(\ln (x)-1) \mathrm{e}^{\int \frac{f(x) \ln (x)^{2} a x^{2}+\left(-2 x^{2} a f(x)-2\right) \ln (x)+x^{2} a f(x)}{x(\ln (x)-1)} d x}+c_{1} a-\left(\int \ln (x) \mathrm{e}^{a\left(\int \frac{x f(x) \ln (x)^{2}}{\ln (x)-1} d x\right)-2 a\left(\int \frac{x f(x) \ln (x)}{\ln (x)-1} d x\right)}\right.}{a x(\ln (x)-1)\left(c_{1} a-\left(\int \ln (x) \mathrm{e}^{a\left(\int \frac{x f(x) \ln (x))^{2}}{\ln (x)-1} d x\right)-2 a\left(\int \frac{x f(x) \ln (x)}{\ln (x)-1} d x\right)+a\left(\int \frac{x f(x)}{\ln (x)-1} d x\right)-2\left(\int \frac{1}{x(\ln }\right.}\right.\right.}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==-a * \log [x] * y[x] \sim 2+a * f[x] *(x * \log [x]-x) * y[x]-f[x], y[x], x$, IncludeSingularSolutions
Not solved

19.29 problem 29

19.29.1 Solving as riccati ode

Internal problem ID [10622]
Internal file name [OUTPUT/9569_Monday_June_06_2022_03_09_51_PM_66941966/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\lambda \sin (\lambda x) y^{2}-f(x) \cos (\lambda x) y=-f(x)
$$

19.29.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\lambda \sin (\lambda x) y^{2}+f(x) \cos (\lambda x) y-f(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\lambda \sin (\lambda x) y^{2}+f(x) \cos (\lambda x) y-f(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x), f_{1}(x)=\cos (\lambda x) f(x)$ and $f_{2}(x)=\lambda \sin (\lambda x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\lambda \sin (\lambda x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\lambda^{2} \cos (\lambda x) \\
f_{1} f_{2} & =\cos (\lambda x) f(x) \lambda \sin (\lambda x) \\
f_{2}^{2} f_{0} & =-\lambda^{2} \sin (\lambda x)^{2} f(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives
$\lambda \sin (\lambda x) u^{\prime \prime}(x)-\left(\cos (\lambda x) f(x) \lambda \sin (\lambda x)+\lambda^{2} \cos (\lambda x)\right) u^{\prime}(x)-\lambda^{2} \sin (\lambda x)^{2} f(x) u(x)=0$
Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=-\cos (\lambda x)\left(c_{2} \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-c_{1}\right)
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=-\lambda \sin (\lambda x)(& \cos (\lambda x) c_{2} \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \\
& \left.-c_{2} \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)+c_{1}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=-\frac{\cos (\lambda x) c_{2} \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x}-c_{2} \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)+c_{1}}{\cos (\lambda x)\left(c_{2} \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-c_{1}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x}}{\lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-c_{3}}$

Summary

The solution(s) found are the following
y
$=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x}}{\lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-c_{3}}$
Verification of solutions
y
$=\frac{\sec (\lambda x) \lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-\sec (\lambda x) c_{3}-\mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x}}{\lambda\left(\int \mathrm{e}^{\int(\cos (\lambda x) f(x)+2 \tan (\lambda x) \lambda) d x} \sin (\lambda x) d x\right)-c_{3}}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = cos(lambda*x)*(sin(lambda*x)*f
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            <- linear symmetries successful
        Change of variables used:
            [x = arccos(t)/lambda]
        Linear ODE actually solved:
            (2*(-t^2+1)^(1/2)*f(arccos(t)/lambda)*t^2-2*(-t^2+1)^(1/2) *f(arccos(t)/lambda))*
    <- change of variables successful
<- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 97
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\operatorname{lambda} * \sin (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{f}(\mathrm{x}) * \cos (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{y}(\mathrm{x})\right.$, singsol $=a$
$y(x)$
$=\frac{\sec (x \lambda) \lambda\left(\int \mathrm{e}^{\int(f(x) \cos (x \lambda)+2 \tan (x \lambda) \lambda) d x} \sin (x \lambda) d x\right) c_{1}-c_{1} \mathrm{e}^{\int(f(x) \cos (x \lambda)+2 \tan (x \lambda) \lambda) d x}-\sec (x \lambda)}{\lambda\left(\int \mathrm{e}^{\int(f(x) \cos (x \lambda)+2 \tan (x \lambda) \lambda) d x} \sin (x \lambda) d x\right) c_{1}-1}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==\backslash[$ Lambda $] * \operatorname{Sin}[\backslash[$ Lambda $] * x] * y[x] \sim 2+f[x] * \operatorname{Cos}[\backslash[$ Lambda $] * x] *[x]-f[x], y[x], x$, Inclu

Not solved

19.30 problem 30

19.30.1 Solving as riccati ode

Internal problem ID [10623]
Internal file name [OUTPUT/9570_Monday_June_06_2022_03_09_54_PM_68250168/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2} f(x)=-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}
$$

19.30.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}, f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& + \\
& \left.\left.+f(x)\left(-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}\right) _Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} & \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.+f(x)\left(-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}\right) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-}{f(x)} Y^{\prime}(x)\right.\right.}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\overline{Y^{\prime}}(x)}{f(x)}+f(x)\left(-f(x) a^{2}+a \lambda \sin (\lambda x)+a^{2} f(x) \sin (\lambda x)^{2}\right)-Y(x)\right\}\right.},
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{\frac{f(x)^{2} \sin (\lambda x) _Y(x) a \lambda-f(x)^{3} _Y(x) a^{2} \cos (\lambda x)^{2}+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{f(x)^{2} \sin (\lambda x) _Y(x) a \lambda-f(x)^{3} _Y(x) a^{2} \cos (\lambda x)^{2}+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right) f(x)}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f(x)^{2} \sin (\lambda x) _Y(x) a \lambda-f(x)^{3} _\frac{Y(x) a^{2} \cos (\lambda x)^{2}+_Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _}{f(x)} Y^{\prime}(x)}{}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{f(x)^{2} \sin (\lambda x) _Y(x) a \lambda-f(x)^{3}-Y(x) a^{2} \cos (\lambda x)^{2}+\ldots Y^{\prime \prime}(x) f(x)-f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right\},\left\{_Y(x)\right\}\right) f(x)}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) -y(x)*(-2*\operatorname{sin}(2*lambda*x)*f(x)*a*lambda+co
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \wedge 2-a^{\wedge} 2 * f[x]+a * \backslash[$ Lambda $] * \operatorname{Sin}[\backslash[$ Lambda $] * x]+a^{\wedge} 2 * f[x] * \operatorname{Sin}[\backslash[$ Lambda $] * x] \wedge 2$,

Not solved

19.31 problem 31

19.31.1 Solving as riccati ode 1486

Internal problem ID [10624]
Internal file name [OUTPUT/9571_Monday_June_06_2022_03_10_03_PM_24124929/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-f(x) y^{2}=-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}
$$

19.31.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}, f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.+\quad f(x)\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right) _Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{d}{d x} & \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x) _Y^{\prime}(x)}{f(x)}\right.\right. \\
& \left.\left.+f(x)\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right) _Y(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\overline{Y^{\prime}(x)}}{f(x)}+f(x)\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right) _Y(x)\right\},\{-\right.}{f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{f^{\prime}(x)-\overline{Y^{\prime}}(x)}{f(x)}+f(x)\left(-a^{2} f(x)+a \lambda \cos (\lambda x)+a^{2} f(x) \cos (\lambda x)^{2}\right)-Y(x)\right\},\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
\left.\left.-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \sin (\lambda x)^{2} _Y(x) a^{2}+\cos (\lambda x) f(x)^{2}}{f(x)} Y(x) a \lambda-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)\right.\right.}{}\right\},\left\{_Y(x)\right\}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y= \\
& \left.\left.\left.-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \sin (\lambda x)^{2} _Y(x) a^{2}+\cos (\lambda x) f(x)^{2}-}{f(x)} Y(x) a \lambda-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)\right.\right.}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \sin (\lambda x)^{2} _Y(x) a^{2}+\cos (\lambda x) f(x)^{2}}{f(x)} Y(x) a \lambda-f^{\prime}(x) _Y^{\prime}(x)+_Y^{\prime \prime}(x) f(x)\right.\right.}\right\},\left\{_Y(x)\right\}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \sin (\lambda x)^{2} \sum_{2} Y_{(x) a^{2}+\cos (\lambda x) f(x)^{2}}^{f(x)} Y(x) a \lambda-f^{\prime}(x) _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)}{f(x) \operatorname{DESol}\left(\left\{\frac{-f(x)^{3} \sin (\lambda x)^{2}}{}=Y_{(x) a^{2}+\cos (\lambda x) f(x)^{2}}^{f(x)} Y(x) a \lambda-f^{\prime}(x) _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)\right.\right.}\right\},\{-Y(x)\}\right)}{f}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(2*sin(2*lambda*x)*f(x)*a*lambda+2*l
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a^{\wedge} 2 * f(x)+a * \operatorname{lambda} * \cos (l a m b d a * x)+a^{\wedge} 2 * f(x) * \cos (l a m b d a * x) \wedge 2, y(x\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==f[x] * y[x] \wedge 2-a^{\wedge} 2 * f[x]+a * \backslash[$ Lambda $] * \cos [\backslash[$ Lambda $] * x]+a^{\wedge} 2 * f[x] * \operatorname{Cos}[\backslash[$ Lambda $] * x] \wedge 2$,

Not solved

19.32 problem 32

19.32.1 Solving as riccati ode . 1491

Internal problem ID [10625]
Internal file name [OUTPUT/9572_Monday_June_06_2022_03_10_12_PM_82219677/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.

$$
y^{\prime}-f(x) y^{2}=-a \tan (\lambda x)^{2}(a f(x)-\lambda)+a \lambda
$$

19.32.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-f(x) \tan (\lambda x)^{2} a^{2}+\tan (\lambda x)^{2} a \lambda+f(x) y^{2}+a \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-f(x) \tan (\lambda x)^{2} a^{2}+\tan (\lambda x)^{2} a \lambda+f(x) y^{2}+a \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x) \tan (\lambda x)^{2} a^{2}+\tan (\lambda x)^{2} a \lambda+a \lambda, f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-f(x) \tan (\lambda x)^{2} a^{2}+\tan (\lambda x)^{2} a \lambda+a \lambda\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-f(x) \tan (\lambda x)^{2} a^{2}+\tan (\lambda x)^{2} a \lambda+a \lambda\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+tan(lambda*x)*y(x)*(2*f(x)*tan(lambda*x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a * \tan (\operatorname{lambda} * x) \wedge 2 *(a * f(x)-l a m b d a)+a * l a m b d a, y(x)$, singsol=all

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \wedge 2-a * T a n[\backslash[L a m b d a] * x] \wedge 2 *(a * f[x]-\backslash[$ Lambda $])+a * \backslash[$ Lambda $], y[x], x$, Include

Not solved

19.33 problem 33

19.33.1 Solving as riccati ode

Internal problem ID [10626]
Internal file name [OUTPUT/9573_Monday_June_06_2022_03_10_25_PM_94623270/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.

$$
y^{\prime}-f(x) y^{2}=-a \cot (\lambda x)^{2}(a f(x)-\lambda)+a \lambda
$$

19.33.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-f(x) \cot (\lambda x)^{2} a^{2}+\cot (\lambda x)^{2} a \lambda+f(x) y^{2}+a \lambda
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-f(x) \cot (\lambda x)^{2} a^{2}+\cot (\lambda x)^{2} a \lambda+f(x) y^{2}+a \lambda
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x) \cot (\lambda x)^{2} a^{2}+\cot (\lambda x)^{2} a \lambda+a \lambda, f_{1}(x)=0$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =f(x)^{2}\left(-f(x) \cot (\lambda x)^{2} a^{2}+\cot (\lambda x)^{2} a \lambda+a \lambda\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-f^{\prime}(x) u^{\prime}(x)+f(x)^{2}\left(-f(x) \cot (\lambda x)^{2} a^{2}+\cot (\lambda x)^{2} a \lambda+a \lambda\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) - cot(lambda*x)*y(x)*(2*\operatorname{cot}(lambda*x)^2*f(x
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2-a * \cot (\operatorname{lambda} * x) \wedge 2 *(a * f(x)-l a m b d a)+a * l a m b d a, y(x)$, singsol=all

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \wedge 2-a * \operatorname{Cot}[\backslash[$ Lambda $] * x] \wedge 2 *(a * f[x]-\backslash[$ Lambda $])+a * \backslash[$ Lambda $], y[x], x$, Include

Not solved
20 Chapter 1, section 1.2. Riccati Equation.subsection 1.2.8-2. Equations containingarbitrary functions and their derivatives.
20.1 problem 34 1500
20.2 problem 35 1505
20.3 problem 36 1510
20.4 problem 37 1515
20.5 problem 38 1518
20.6 problem 39 1523
20.7 problem 40 1528
20.8 problem 41 1533
20.9 problem 42 1536

20.1 problem 34

20.1.1 Solving as riccati ode . 1500

Internal problem ID [10627]
Internal file name [OUTPUT/9574_Monday_June_06_2022_03_10_37_PM_73313790/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-f(x)^{2}+f^{\prime}(x)
$$

20.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}-f(x)^{2}+f^{\prime}(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-f(x)^{2}+f^{\prime}(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-f(x)^{2}+f^{\prime}(x), f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-f(x)^{2}+f^{\prime}(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(-f(x)^{2}+f^{\prime}(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x+c_{1}\right) \mathrm{e}^{-\left(\int f(x) d x\right)} c_{2}
$$

The above shows that

$$
u^{\prime}(x)=c_{2}\left(\mathrm{e}^{\int f(x) d x}-f(x) c_{1} \mathrm{e}^{-\left(\int f(x) d x\right)}-f(x)\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right) \mathrm{e}^{-\left(\int f(x) d x\right)}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\mathrm{e}^{\int f(x) d x}-f(x) c_{1} \mathrm{e}^{-\left(\int f(x) d x\right)}-f(x)\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right) \mathrm{e}^{-\left(\int f(x) d x\right)}\right) \mathrm{e}^{\int f(x) d x}}{\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\mathrm{e}^{2\left(\int f(x) d x\right)}+c_{3} f(x)+\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right) f(x)}{\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{2\left(\int f(x) d x\right)}+c_{3} f(x)+\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right) f(x)}{\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x+c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\mathrm{e}^{2\left(\int f(x) d x\right)}+c_{3} f(x)+\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right) f(x)}{\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x+c_{3}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (f(x)^2-(diff(f(x), x)))*y(x),
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
        <- unable to find a useful change of variables
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE of Bessel type
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(-f(x)^2+diff(f(x), x)))
        Methods for first order ODEs:
        --- Trying classification methqds03---
        trying a quadrature
        trying 1st order linear
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45
dsolve($\operatorname{diff}(y(x), x)=y(x)^{\wedge} 2-f(x)^{\wedge} 2+\operatorname{diff}(f(x), x), y(x)$, singsol=all)

$$
y(x)=\frac{-f(x)\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right)+f(x) c_{1}+\mathrm{e}^{2\left(\int f(x) d x\right)}}{c_{1}-\left(\int \mathrm{e}^{2\left(\int f(x) d x\right)} d x\right)}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

DSolve $\left[y^{\prime}[x]==y[x]^{\sim} 2-f[x] \sim 2+f '[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved

20.2 problem 35

20.2.1 Solving as riccati ode . 1505

Internal problem ID [10628]
Internal file name [OUTPUT/9575_Monday_June_06_2022_03_10_38_PM_90443355/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-f(x) y^{2}+f(x) g(x) y=g^{\prime}(x)
$$

20.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}-f(x) g(x) y+g^{\prime}(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}-f(x) g(x) y+g^{\prime}(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=g^{\prime}(x), f_{1}(x)=-f(x) g(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =-f(x)^{2} g(x) \\
f_{2}^{2} f_{0} & =f(x)^{2} g^{\prime}(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)-f(x)^{2} g(x)\right) u^{\prime}(x)+f(x)^{2} g^{\prime}(x) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{-\left(\int f(x) g(x) d x\right)}\left(c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) c_{2}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x) \\
& =f(x)\left(-g(x) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)}\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) c_{2}-g(x) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)} c_{1}+c_{2}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(-g(x) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)}\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) c_{2}-g(x) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)} c_{1}+c_{2}\right) \mathrm{e}^{\int f(x) g(x) d x}}{c_{1}+\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) c_{2}}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) g(x)+c_{3} g(x)-\mathrm{e}^{\int f(x) g(x) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) g(x)+c_{3} g(x)-\mathrm{e}^{\int f(x) g(x) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x\right) g(x)+c_{3} g(x)-\mathrm{e}^{\int f(x) g(x) d x}}{c_{3}+\int f(x) \mathrm{e}^{\int f(x) g(x) d x} d x}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=-(f(x) \wedge 2 * g(x)-(\operatorname{diff}(f(x), x)))\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})-\mathrm{g}(\mathrm{x}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) * \mathrm{x}+(\operatorname{diff}(\right.$
Methods for first order ODEs:
--- Trying classification methqds ${ }_{5}{ }^{---}$
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve($\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{y}(\mathrm{x}) \sim 2-\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) * \mathrm{y}(\mathrm{x})+\operatorname{diff}(\mathrm{g}(\mathrm{x}), \mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==f[x] * y[x] \sim 2-f[x] * g[x] * y[x]+g '[x], y[x], x$, IncludeSingularSolutions \rightarrow True]
Not solved

20.3 problem 36

20.3.1 Solving as riccati ode . 1510

Internal problem ID [10629]
Internal file name [OUTPUT/9576_Monday_June_06_2022_03_10_40_PM_92412809/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+f^{\prime}(x) y^{2}-f(x) g(x) y=-g(x)
$$

20.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-f^{\prime}(x) y^{2}+f(x) g(x) y-g(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-f^{\prime}(x) y^{2}+f(x) g(x) y-g(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-g(x), f_{1}(x)=f(x) g(x)$ and $f_{2}(x)=-f^{\prime}(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-f^{\prime}(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-f^{\prime \prime}(x) \\
f_{1} f_{2} & =-f(x) g(x) f^{\prime}(x) \\
f_{2}^{2} f_{0} & =-f^{\prime}(x)^{2} g(x)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-f^{\prime}(x) u^{\prime \prime}(x)-\left(-f^{\prime \prime}(x)-f(x) g(x) f^{\prime}(x)\right) u^{\prime}(x)-f^{\prime}(x)^{2} g(x) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=f(x)\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right)\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{f^{\prime}(x) f(x)\left(\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) c_{2}+f^{\prime}(x) f(x) c_{1}+c_{2} \mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)}
$$

Using the above in (1) gives the solution

$$
\left.\left.y=\frac{f^{\prime}(x) f(x)\left(\int \frac{e^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) c_{2}+f^{\prime}(x) f(x) c_{1}+c_{2} \mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{1}+c_{2}\left(\int \frac{e^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.\right.} d x\right)\right)
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\left.y=\frac{\left(\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)+f^{\prime}(x) f(x) c_{3}+\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.} d x\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\left.y=\frac{\left(\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)+f^{\prime}(x) f(x) c_{3}+\mathrm{e}^{\int \frac{f(x) g(x)^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.} d x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.y=\frac{\left(\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)+f^{\prime}(x) f(x) c_{3}+\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{f(x) g(x) f^{\prime}(x)+f^{\prime \prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.} d x\right)
$$

Verified OK.

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=(\mathrm{g}(\mathrm{x}) * \mathrm{f}(\mathrm{x}) *(\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x}))+\operatorname{dif}\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(-(\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})) * \mathrm{y}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})+\mathrm{g}(\mathrm{x}) * \mathrm{f}(\mathrm{x}) * \mathrm{y}\right.$ Methods for first order ODEs:
--- Trying classification methgds 13
trying a quadrature
trying 1st order linear
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 102
dsolve (diff $(y(x), x)=-\operatorname{diff}(f(x), x) * y(x) \wedge 2+f(x) * g(x) * y(x)-g(x), y(x)$, singsol=all)

$$
y(x)=\frac{f(x) \mathrm{e}^{\int \frac{g(x) f(x)^{2}-2 \frac{d}{d x} f(x)}{f(x)} d x}+\int\left(\frac{d}{d x} f(x)\right) \mathrm{e}^{\int g(x) f(x) d x-2\left(\int \frac{\frac{d}{d x} f(x)}{f(x)} d x\right)} d x-c_{1}}{f(x)\left(\int\left(\frac{d}{d x} f(x)\right) \mathrm{e}^{\int g(x) f(x) d x-2\left(\int \frac{\frac{d}{d x} f(x)}{f(x)} d x\right)} d x-c_{1}\right)}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==-f^{\prime}[x] * y[x] \sim 2+f[x] * g[x] * y[x]-g[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved

20.4 problem 37

20.4.1 Solving as riccati ode
. 1515
Internal problem ID [10630]
Internal file name [OUTPUT/9577_Monday_June_06_2022_03_10_45_PM_76170662/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_1st_order, - _with_symmetry_[F(x), G(x)]`], _Riccati]

$$
y^{\prime}-g(x)(y-f(x))^{2}=f^{\prime}(x)
$$

20.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x)^{2} g(x)-2 f(x) g(x) y+g(x) y^{2}+f^{\prime}(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x)^{2} g(x)-2 f(x) g(x) y+g(x) y^{2}+f^{\prime}(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=f(x)^{2} g(x)+f^{\prime}(x), f_{1}(x)=-2 f(x) g(x)$ and $f_{2}(x)=g(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{g(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =g^{\prime}(x) \\
f_{1} f_{2} & =-2 f(x) g(x)^{2} \\
f_{2}^{2} f_{0} & =g(x)^{2}\left(f(x)^{2} g(x)+f^{\prime}(x)\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
g(x) u^{\prime \prime}(x)-\left(g^{\prime}(x)-2 f(x) g(x)^{2}\right) u^{\prime}(x)+g(x)^{2}\left(f(x)^{2} g(x)+f^{\prime}(x)\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(c_{1}+\int g(x) d x\right) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)} c_{2}
$$

The above shows that

$$
u^{\prime}(x)=g(x) \mathrm{e}^{-\left(\int f(x) g(x) d x\right)} c_{2}\left(1-f(x)\left(\int g(x) d x\right)-c_{1} f(x)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{1-f(x)\left(\int g(x) d x\right)-c_{1} f(x)}{c_{1}+\int g(x) d x}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-1+f(x)\left(\int g(x) d x\right)+c_{3} f(x)}{c_{3}+\int g(x) d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-1+f(x)\left(\int g(x) d x\right)+c_{3} f(x)}{c_{3}+\int g(x) d x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-1+f(x)\left(\int g(x) d x\right)+c_{3} f(x)}{c_{3}+\int g(x) d x}
$$

Verified OK.
Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (d) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x)=g(x)*(y(x)-f(x))^2+diff(f(x),x),y(x), singsol=all)
```

$$
y(x)=f(x)+\frac{1}{c_{1}-\left(\int g(x) d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 31
DSolve[y' $[x]==g[x] *(y[x]-f[x])^{\wedge} 2+f f^{\prime}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow f(x)+\frac{1}{-\int_{1}^{x} g(K[2]) d K[2]+c_{1}} \\
& y(x) \rightarrow f(x)
\end{aligned}
$$

20.5 problem 38

20.5.1 Solving as riccati ode . 1518

Internal problem ID [10631]
Internal file name [OUTPUT/9578_Monday_June_06_2022_03_10_47_PM_6587525/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\frac{f^{\prime}(x) y^{2}}{g(x)}=-\frac{g^{\prime}(x)}{f(x)}
$$

20.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{f^{\prime}(x) y^{2} f(x)-g(x) g^{\prime}(x)}{g(x) f(x)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{f^{\prime}(x) y^{2}}{g(x)}-\frac{g^{\prime}(x)}{f(x)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{g^{\prime}(x)}{f(x)}, f_{1}(x)=0$ and $f_{2}(x)=\frac{f^{\prime}(x)}{g(x)}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f^{\prime}(x) u}{g(x)}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{f^{\prime}(x)^{2} g^{\prime}(x)}{g(x)^{2} f(x)}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{f^{\prime}(x) u^{\prime \prime}(x)}{g(x)}-\left(-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)}\right) u^{\prime}(x)-\frac{f^{\prime}(x)^{2} g^{\prime}(x) u(x)}{g(x)^{2} f(x)}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{array}{r}
u(x)=\mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)}\right) g(x)_{-} Y^{\prime}(x)}{f^{\prime}(x)}\right.\right. \\
\left.\left.-\frac{f^{\prime}(x) g^{\prime}(x) _Y(x)}{g(x) f(x)}\right\},\{-Y(x)\}\right)
\end{array}
$$

The above shows that

$$
\begin{array}{r}
u^{\prime}(x)=\frac{d}{d x} \text { DESol }\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)}\right) g(x) _Y^{\prime}(x)}{f^{\prime}(x)}\right.\right. \\
\left.\left.-\frac{f^{\prime}(x) g^{\prime}(x) _Y(x)}{g(x) f(x)}\right\},\{-Y(x)\}\right)
\end{array}
$$

Using the above in (1) gives the solution
$y=$

$$
\left.\left.-\frac{\left(\frac{d}{d x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)}\right) g(x) _Y^{\prime}(x)}{f^{\prime}(x)}-\frac{f^{\prime}(x) g^{\prime}(x) _Y(x)}{g(x) f(x)}\right\},\left\{_Y(x)\right\}\right)\right) g(x)}{f^{\prime}(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(-\frac{f^{\prime}(x) g^{\prime}(x)}{g(x)^{2}}+\frac{f^{\prime \prime}(x)}{g(x)}\right) g(x)-Y^{\prime}(x)}{f^{\prime}(x)}-\frac{f^{\prime}(x) g^{\prime}(x)-}{g(x) f(x)} Y(x)\right.\right.}\right\},\left\{_Y(x)\right\}\right)
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y= & -\frac{\left(\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(_Y^{\prime}(x) f(x)-_Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\left\{_Y(x)\right\}\right)\right) g(}{f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(-Y^{\prime}(x) f(x)-_Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\{-Y(x)\}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(_Y^{\prime}(x) f(x)-_Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\left\{_Y(x)\right\}\right)\right) g(\tag{1}
\end{align*} f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(_Y^{\prime}(x) f(x)-_Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\{-Y(x)\}\right)
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{d}{d x} \mathrm{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(_Y^{\prime}(x) f(x)-_Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\left\{_Y(x)\right\}\right)\right) g(}{f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{-Y^{\prime \prime}(x) g(x) f(x) f^{\prime}(x)-f(x) g(x) f^{\prime \prime}(x)-Y^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)\left(-Y^{\prime}(x) f(x)--\quad Y(x) f^{\prime}(x)\right)}{g(x) f^{\prime}(x) f(x)}\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(y(x), x), x)=((\operatorname{diff}(\operatorname{diff}(f(x), x), x)) * g(x)\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left((\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})) * \mathrm{y}(\mathrm{x})^{\wedge} 2 / \mathrm{g}(\mathrm{x})+\mathrm{y}(\mathrm{x})-\mathrm{x}^{\wedge} 2 *(\operatorname{di}\right.$ Methods for first order ODEs:
--- Trying classification methqds ${ }^{2} 1^{---}$
trying a quadrature
trying 1st order linear
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 58
dsolve(diff $(y(x), x)=\operatorname{diff}(f(x), x) / g(x) * y(x) \sim 2-\operatorname{diff}(g(x), x) / f(x), y(x)$, singsol=all)

$$
y(x)=\frac{-\left(\int \frac{\frac{d}{d x} f(x)}{g(x) f(x)^{2}} d x\right) g(x) f(x)-c_{1} f(x) g(x)-1}{f(x)^{2}\left(\int \frac{\frac{d}{d x} f(x)}{g(x) f(x)^{2}} d x+c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 160

```
DSolve[y'[x]==f'[x]/g[x]*y[x] 2-g'[x]/f[x],y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[\int_{1}^{y(x)}\left(\frac{1}{(g(x)+f(x) K[2])^{2}}\right.\right.$
$\left.-\int_{1}^{x}\left(\frac{2\left(f(K[1]) K[2]^{2} f^{\prime}(K[1])-g(K[1]) g^{\prime}(K[1])\right)}{g(K[1])(g(K[1])+f(K[1]) K[2])^{3}}-\frac{2 K[2] f^{\prime}(K[1])}{g(K[1])(g(K[1])+f(K[1]) K[2])^{2}}\right) d K[1]\right) d K[2]$
$\left.+\int_{1}^{x}-\frac{f(K[1]) y(x)^{2} f^{\prime}(K[1])-g(K[1]) g^{\prime}(K[1])}{f(K[1]) g(K[1])(g(K[1])+f(K[1]) y(x))^{2}} d K[1]=c_{1}, y(x)\right]$

20.6 problem 39

20.6.1 Solving as riccati ode 1523

Internal problem ID [10632]
Internal file name [OUTPUT/9579_Monday_June_06_2022_03_10_49_PM_7500533/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
f(x)^{2} y^{\prime}-f^{\prime}(x) y^{2}+g(x)(y-f(x))=0
$$

20.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{f^{\prime}(x) y^{2}+f(x) g(x)-y g(x)}{f(x)^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{f^{\prime}(x) y^{2}}{f(x)^{2}}+\frac{g(x)}{f(x)}-\frac{g(x) y}{f(x)^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{g(x)}{f(x)}, f_{1}(x)=-\frac{g(x)}{f(x)^{2}}$ and $f_{2}(x)=\frac{f^{\prime}(x)}{f(x)^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{f^{\prime}(x) u}{f(x)^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2 f^{\prime}(x)^{2}}{f(x)^{3}}+\frac{f^{\prime \prime}(x)}{f(x)^{2}} \\
f_{1} f_{2} & =-\frac{g(x) f^{\prime}(x)}{f(x)^{4}} \\
f_{2}^{2} f_{0} & =\frac{f^{\prime}(x)^{2} g(x)}{f(x)^{5}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{f^{\prime}(x) u^{\prime \prime}(x)}{f(x)^{2}}-\left(-\frac{2 f^{\prime}(x)^{2}}{f(x)^{3}}+\frac{f^{\prime \prime}(x)}{f(x)^{2}}-\frac{g(x) f^{\prime}(x)}{f(x)^{4}}\right) u^{\prime}(x)+\frac{f^{\prime}(x)^{2} g(x) u(x)}{f(x)^{5}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=\mathrm{DESol}\left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right.\right.$
The above shows that
$u^{\prime}(x)$
$=\frac{d}{d x} \mathrm{DESol}\left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+_{_} Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x)^{2} g(x)-Y(x)+f}{f(x)^{3} f^{\prime}(x)}\right.\right.$
Using the above in (1) gives the solution
$y=$

$$
\left.-\frac{\left(\frac { d } { d x } \operatorname { D E S o l } \left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right\},\{-\right.\right.}{f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2}}{} \quad Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) \ldots Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)\right.\right.}\right\}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
& y=
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$
(1)

$$
-\frac{\left(\frac { d } { d x } \operatorname { D E S o l } \left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right\},\{-\right.\right.}{f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) \ldots Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right\}\right.}
$$

Verification of solutions

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac { d } { d x } \text { DESol } \left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) _Y^{\prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right\},\{-\right.\right.}{f^{\prime}(x) \operatorname{DESol}\left(\left\{\frac{2 f^{\prime}(x)^{2} f(x)^{2} _Y^{\prime}(x)+\ldots Y^{\prime \prime}(x) f(x)^{3} f^{\prime}(x)-f(x)^{3} f^{\prime \prime}(x) _Y^{\prime \prime}(x)+f^{\prime}(x)^{2} g(x) _Y(x)+f^{\prime}(x) f(x) g(x) _Y^{\prime}(x)}{f(x)^{3} f^{\prime}(x)}\right\}\right.}
\end{aligned}
$$

Verified OK.

```
-Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=-(-(\operatorname{diff}(\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x}), \mathrm{x})) * \mathrm{f}(\) Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in \(x\) and \(y(x)\) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing \(y\) \(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases undef a power @ Moe -> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) -> Trying changes of variables to rationalize or make the ODE simpler <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left((\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})) * \mathrm{y}(\mathrm{x})^{\wedge} 2 / \mathrm{f}(\mathrm{x})^{\wedge} 2+\mathrm{y}(\mathrm{x})-\mathrm{g}(\mathrm{x}) *\right.$ Methods for first order ODEs:
--- Trying classification methqds ${ }^{-1} 6^{--}$
trying a quadrature
trying 1st order linear

X Solution by Maple
dsolve ($f(x) \wedge 2 * \operatorname{diff}(y(x), x)-\operatorname{diff}(f(x), x) * y(x) \wedge 2+g(x) *(y(x)-f(x))=0, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[f[x] \sim 2 * y '[x]-f f^{\prime}[x] * y[x] \sim 2+g[x] *(y[x]-f[x])==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

Not solved

20.7 problem 40

20.7.1 Solving as riccati ode

1528
Internal problem ID [10633]
Internal file name [OUTPUT/9580_Monday_June_06_2022_03_10_52_PM_112628/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-f^{\prime}(x) y^{2}-a \mathrm{e}^{\lambda x} f(x) y=a \mathrm{e}^{\lambda x}
$$

20.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f^{\prime}(x) y^{2}+a \mathrm{e}^{\lambda x} f(x) y+a \mathrm{e}^{\lambda x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f^{\prime}(x) y^{2}+a \mathrm{e}^{\lambda x} f(x) y+a \mathrm{e}^{\lambda x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a \mathrm{e}^{\lambda x}, f_{1}(x)=a \mathrm{e}^{\lambda x} f(x)$ and $f_{2}(x)=f^{\prime}(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f^{\prime}(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime \prime}(x) \\
f_{1} f_{2} & =a \mathrm{e}^{\lambda x} f(x) f^{\prime}(x) \\
f_{2}^{2} f_{0} & =f^{\prime}(x)^{2} a \mathrm{e}^{\lambda x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f^{\prime}(x) u^{\prime \prime}(x)-\left(f^{\prime \prime}(x)+a \mathrm{e}^{\lambda x} f(x) f^{\prime}(x)\right) u^{\prime}(x)+f^{\prime}(x)^{2} a \mathrm{e}^{\lambda x} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=f(x)\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right)\right)
$$

The above shows that
$u^{\prime}(x)=\frac{f^{\prime}(x) f(x)\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{}} \underset{f x}{f^{\prime}(x)}}{f(x)^{2}} d x\right) c_{2}+f^{\prime}(x) f(x) c_{1}+c_{2} \mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)}$
Using the above in (1) gives the solution

$$
\left.\left.y=-\frac{f^{\prime}(x) f(x)\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a \mathrm{e}^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) c_{2}+f^{\prime}(x) f(x) c_{1}+c_{2} \mathrm{e}^{\int \frac{f^{\prime \prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda} x f(x) f^{\prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.\right.} d x\right)\right)
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)-f^{\prime}(x) f(x) c_{3}-\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime \prime}(x)+a a^{\lambda x} x(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\left(\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)-f^{\prime}(x) f(x) c_{3}-\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a \mathrm{e}^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)} d x}}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{f^{\frac{f^{\prime \prime}(x)+a}{} \lambda x} \frac{f^{\prime}(x) f^{\prime}(x)}{} d x}}{f(x)^{2}} d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.y=\frac{-\left(\int \frac{\mathrm{e}^{\frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}} d x\right) f(x) f^{\prime}(x)-f^{\prime}(x) f(x) c_{3}-\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)}} d x}{f(x)^{2} f^{\prime}(x)\left(c_{3}+\int \frac{\mathrm{e}^{\int \frac{f^{\prime \prime}(x)+a e^{\lambda x} f(x) f^{\prime}(x)}{f^{\prime}(x)}}}{f(x)^{2}}\right.} d x\right)
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (exp(lambda*x)*f(x)*a*(diff(f
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying 2nd order exact linear
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
        -> Trying changes of variables to rationalize or make the ODE simplef
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 114
dsolve $(\operatorname{diff}(y(x), x)=\operatorname{diff}(f(x), x) * y(x) \wedge 2+a * \exp (\operatorname{lambda} *) * f(x) * y(x)+a * \exp (\operatorname{lambda} a x), y(x), \quad$ sing

$$
y(x)=\frac{-f(x) \mathrm{e}^{\int \frac{\mathrm{e}^{x \lambda} f(x)^{2} a-2}{} \frac{d}{d x} f(x)} d x}{f(x)}-\left(\int\left(\frac{d}{d x} f(x)\right) \mathrm{e}^{a\left(\int \mathrm{e}^{x \lambda} f(x) d x\right)-2\left(\int \frac{\frac{d}{d x} f(x)}{f(x)} d x\right)} d x\right)-c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 84.356 (sec). Leaf size: 167
DSolve $\left[y\right.$ ' $[x]==f f^{\prime}[x] * y[x] \sim 2+a * \operatorname{Exp}[\backslash[$ Lambda $] * x] * f[x] * y[x]+a * \operatorname{Exp}[\backslash[$ Lambda $] * x], y[x], x$, IncludeSin

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{a \exp \left(\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right)\left(1+c_{1} \int_{1}^{e^{x \lambda}} \exp \left(-\int_{1}^{K[2]}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right) d K[2]\right)}{a f\left(\frac{\log \left(e^{\lambda x}\right)}{\lambda}\right) \exp \left(\int_{1}^{e^{x \lambda}}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right)\left(1+c_{1} \int_{1}^{e^{x \lambda}} \exp \left(-\int_{1}^{K[2]}-\frac{a f\left(\frac{\log (K[1])}{\lambda}\right)}{\lambda} d K[1]\right) d K[2]\right)-}
\end{aligned}
$$

20.8 problem 41

20.8.1 Solving as riccati ode . 1533

Internal problem ID [10634]
Internal file name [OUTPUT/9581_Monday_June_06_2022_03_10_54_PM_90496217/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-f(x) y^{2}-g^{\prime}(x) y=a f(x) \mathrm{e}^{2 g(x)}
$$

20.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+g^{\prime}(x) y+a f(x) \mathrm{e}^{2 g(x)}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+g^{\prime}(x) y+a f(x) \mathrm{e}^{2 g(x)}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a f(x) \mathrm{e}^{2 g(x)}, f_{1}(x)=g^{\prime}(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =f(x) g^{\prime}(x) \\
f_{2}^{2} f_{0} & =f(x)^{3} a \mathrm{e}^{2 g(x)}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f^{\prime}(x)+f(x) g^{\prime}(x)\right) u^{\prime}(x)+f(x)^{3} a \mathrm{e}^{2 g(x)} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}+c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}
$$

The above shows that

$$
u^{\prime}(x)=i \sqrt{a} f(x) \mathrm{e}^{g(x)}\left(c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}-c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{i \sqrt{a} \mathrm{e}^{g(x)}\left(c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}-c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}\right)}{c_{1} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}+c_{2} \mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{i \sqrt{a} \mathrm{e}^{g(x)}\left(c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}-\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}\right)}{c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}+\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \sqrt{a} \mathrm{e}^{g(x)}\left(c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}-\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}\right)}{c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}+\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \sqrt{a} \mathrm{e}^{g(x)}\left(c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}-\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}\right)}{c_{3} \mathrm{e}^{i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}+\mathrm{e}^{-i \sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 28

```
dsolve(diff (y(x), x)=f(x)*y(x)^2+diff (g(x),x)*y(x)+a*f(x)*exp(2*g(x)),y(x), singsol=all)
```

$$
y(x)=-\tan \left(-\sqrt{a}\left(\int f(x) \mathrm{e}^{g(x)} d x\right)+c_{1}\right) \sqrt{a} \mathrm{e}^{g(x)}
$$

\checkmark Solution by Mathematica
Time used: 0.635 (sec). Leaf size: 41
DSolve[y'[x]==f[x]*y[x]~2+g'[x]*y[x]+a*f[x]*Exp[2*g[x]],y[x],x,IncludeSingularSolutions \rightarrow T

$$
y(x) \rightarrow \sqrt{a} e^{g(x)} \tan \left(\sqrt{a} \int_{1}^{x} e^{g(K[1])} f(K[1]) d K[1]+c_{1}\right)
$$

20.9 problem 42

Internal problem ID [10635]
Internal file name [OUTPUT/9582_Monday_June_06_2022_03_10_56_PM_41579351/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-2. Equations containing arbitrary functions and their derivatives.
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Riccati]
Unable to solve or complete the solution.

$$
y^{\prime}-y^{2}=-\frac{f^{\prime \prime}(x)}{f(x)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(diff(f(x), x), x))*y(x)/
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        <- linear_1 successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
dsolve(diff(y(x),x)=y(x)^2-diff(f(x),x$2)/f(x),y(x), singsol=all)
```

$$
y(x)=\frac{-\left(\int \frac{1}{f(x)^{2}} d x\right)\left(\frac{d}{d x} f(x)\right) f(x)-\left(\frac{d}{d x} f(x)\right) c_{1} f(x)-1}{\left(\int \frac{1}{f(x)^{2}} d x+c_{1}\right) f(x)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.365 (sec). Leaf size: 132
DSolve[y'[x]==y[x]~2-f''[x]/f[x],y[x],x,IncludeSingularSolutions -> True]

Solve $\left[\int_{1}^{y(x)}\left(\frac{1}{\left(f(x) K[2]+f^{\prime}(x)\right)^{2}}\right.\right.$
$\left.-\int_{1}^{x}\left(\frac{2\left(f(K[1]) K[2]^{2}-f^{\prime \prime}(K[1])\right)}{\left(f(K[1]) K[2]+f^{\prime}(K[1])\right)^{3}}-\frac{2 K[2]}{\left(f(K[1]) K[2]+f^{\prime}(K[1])\right)^{2}}\right) d K[1]\right) d K[2]$
$\left.+\int_{1}^{x}-\frac{f(K[1]) y(x)^{2}-f^{\prime \prime}(K[1])}{f(K[1])\left(f(K[1]) y(x)+f^{\prime}(K[1])\right)^{2}} d K[1]=c_{1}, y(x)\right]$
21 Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
21.1 problem 1 1540
21.2 problem 2 1544
21.3 problem 3 1549
21.4 problem 4 1554
21.5 problem 5 1559
21.6 problem 6 1564
21.7 problem 7 1569
21.8 problem 8 1574
21.9 problem 9 1580
21.10problem 10 1585
21.11problem 11 1590
21.12problem 12 1595
21.13problem 13 1600
21.14problem 14 1605

21.1 problem 1

21.1.1 Solving as riccati ode

Internal problem ID [10636]
Internal file name [OUTPUT/9583_Monday_June_06_2022_03_10_56_PM_78843346/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=a^{2} f(a x+b)
$$

21.1.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+a^{2} f(a x+b)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+a^{2} f(a x+b)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=a^{2} f(a x+b), f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =a^{2} f(a x+b)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+a^{2} f(a x+b) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{a^{2} f(a x+b) _Y(x)+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve(diff $(y(x), x)=y(x) \wedge 2+a \wedge 2 * f(a * x+b), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y'[x]==y[x]~2+a^2*f[a*x+b],y[x],x,IncludeSingularSolutions -> True]
Not solved

21.2 problem 2

21.2.1 Solving as riccati ode . 1544

Internal problem ID [10637]
Internal file name [OUTPUT/9584_Monday_June_06_2022_03_10_58_PM_85596946/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=\frac{f\left(\frac{1}{x}\right)}{x^{4}}
$$

21.2.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} x^{4}+f\left(\frac{1}{x}\right)}{x^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{f\left(\frac{1}{x}\right)}{x^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{f\left(\frac{1}{x}\right)}{x^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{f\left(\frac{1}{x}\right)}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{f\left(\frac{1}{x}\right) u(x)}{x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{DESol}\left(\left\{\frac{f\left(\frac{1}{x}\right) _Y(x)}{x^{4}}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{1}{x}\right) _Y(x)}{x^{4}}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
\left.\left.y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{1}{x}\right)}{\overline{x^{4}} Y(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{f\left(\frac{1}{x}\right)}{x^{4}} Y(x)\right.\right.}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right),
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{4}+f\left(\frac{1}{x}\right)}{x^{4}} _Y(x)\right.\right.}{\operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{4}+f\left(\frac{1}{x}\right) _Y(x)}{x^{4}}\right\},\{-Y(x)\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{4}+f\left(\frac{1}{x}\right)}{x^{4}} _Y(x)\right.\right.}{\operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x^{4}+f\left(\frac{1}{x}\right)-Y(x)}{x^{4}}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(diff(y(x),x)=y(x)^2+1/x^4*f(1/x),y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[x]==y[x] \sim 2+1 / x^{\wedge} 4 * f[1 / x], y[x], x$, IncludeSingularSolutions $->$ True $]$

Not solved

21.3 problem 3

21.3.1 Solving as riccati ode

Internal problem ID [10638]
Internal file name [OUTPUT/9585_Monday_June_06_2022_03_10_59_PM_98380475/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=\frac{f\left(\frac{a x+b}{c x+d}\right)}{(c x+d)^{4}}
$$

21.3.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{c^{4} x^{4} y^{2}+4 c^{3} d x^{3} y^{2}+6 c^{2} d^{2} x^{2} y^{2}+4 c d^{3} x y^{2}+d^{4} y^{2}+f\left(\frac{a x+b}{c x+d}\right)}{(c x+d)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{c^{4} x^{4} y^{2}}{(c x+d)^{4}}+\frac{4 c^{3} d x^{3} y^{2}}{(c x+d)^{4}}+\frac{6 c^{2} d^{2} x^{2} y^{2}}{(c x+d)^{4}}+\frac{4 c d^{3} x y^{2}}{(c x+d)^{4}}+\frac{d^{4} y^{2}}{(c x+d)^{4}}+\frac{f\left(\frac{a x+b}{c x+d}\right)}{(c x+d)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{f\left(\frac{a x+b}{c x+d}\right)}{(c x+d)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=\frac{c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}}{(c x+d)^{4}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\left(c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}\right) u}{(c x+d)^{4}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{4 c^{4} x^{3}+12 c^{3} d x^{2}+12 c^{2} d^{2} x+4 c d^{3}}{(c x+d)^{4}}-\frac{4\left(c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}\right) c}{(c x+d)^{5}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{\left(c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}\right)^{2} f\left(\frac{a x+b}{c x+d}\right)}{(c x+d)^{12}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\left(c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}\right) u^{\prime \prime}(x)}{(c x+d)^{4}}-\left(\frac{4 c^{4} x^{3}+12 c^{3} d x^{2}+12 c^{2} d^{2} x+4 c d^{3}}{(c x+d)^{4}}-\frac{4\left(c^{4} x^{4}+4 c^{3} d x\right.}{}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\left\{_Y(x)\right\}\right)\right)(c x+d)^{4}}{\left(c^{4} x^{4}+4 c^{3} d x^{3}+6 c^{2} d^{2} x^{2}+4 c d^{3} x+d^{4}\right) \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+-Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+-Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\{-Y(x)\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+-Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\{-Y(x)\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{f\left(\frac{a x+b}{c x+d}\right)-Y(x)+_Y^{\prime \prime}(x)(c x+d)^{4}}{(c x+d)^{4}}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*(2*c*d^3*x+y(x))/x, y(x)
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*(70*c*d^3*x+y(x))/x, y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-(35*c*d^3*x+2*y(x))/x, y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
        -> Calling odsolve with the ODE`, diff(y(x), x)-(7*c*d^3*x+2*y(x))/x, y(x)
```

 Methods for first order ODEs:
 X Solution by Maple
dsolve(diff($y(x), x)=y(x) \wedge 2+1 /(c * x+d) \wedge 4 * f((a * x+b) /(c * x+d)), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==y[x] \sim 2+1 /(c * x+d) \wedge 4 * f[(a * x+b) /(c * x+d)], y[x], x$, IncludeSingularSolutions $->$ True $]$

Not solved

21.4 problem 4

21.4.1 Solving as riccati ode

1554
Internal problem ID [10639]
Internal file name [OUTPUT/9586_Monday_June_06_2022_03_11_01_PM_74540310/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-x^{4} f(x) y^{2}=1
$$

21.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{4} f(x) y^{2}+1}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2} f(x) y^{2}+\frac{1}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=x^{2} f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2} f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 f(x) x+x^{2} f^{\prime}(x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2} f(x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{2} f(x) u^{\prime \prime}(x)-\left(2 f(x) x+x^{2} f^{\prime}(x)\right) u^{\prime}(x)+x^{2} f(x)^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(2 f(x) x+x^{2} f^{\prime}(x)\right)-Y^{\prime}(x)}{x^{2} f(x)}+f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{d}{d x} \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(2 f(x) x+x^{2} f^{\prime}(x)\right) _Y^{\prime}(x)}{x^{2} f(x)}+f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{d}{d x} \mathrm{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(2 f(x) x+x^{2} f^{\prime}(x)\right) _Y^{\prime}(x)}{x^{2} f(x)}+f(x) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{x^{2} f(x) \operatorname{DESol}\left(\left\{-Y^{\prime \prime}(x)-\frac{\left(2 f(x) x+x^{2} f^{\prime}(x)\right) _Y^{\prime}(x)}{x^{2} f(x)}+f(x) _Y(x)\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2} _Y(x) x}{x f(x)}\right\},\{-Y(x)\}\right)}{x^{2} f(x) \operatorname{DESol}\left(\left\{-\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2} _Y(x) x}{x f(x)}\right\},\{-Y(x)\}\right)}
$$

Summary

The solution(s) found are the following

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2}}{x f(x)} Y_{(x) x}\right\},\left\{_Y(x)\right\}\right)}{x^{2} f(x) \operatorname{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2} _Y(x) x}{x f(x)}\right\},\left\{_Y(x)\right\}\right)}(1)
$$

Verification of solutions

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{=\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2} _Y(x) x}{x f(x)}\right\},\{-Y(x)\}\right)}{x^{2} f(x) \mathrm{DESol}\left(\left\{\frac{Y^{\prime \prime}(x) x f(x)+\left(-x f^{\prime}(x)-2 f(x)\right) _Y^{\prime}(x)+f(x)^{2} _Y(x) x}{x f(x)}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(x^2*diff(y(x),x)=x^4*f(x)*y(x)^2+1,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x \wedge 2 * y '[x]==x^{\wedge} 4 * f[x] * y[x] \sim 2+1, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

Not solved

21.5 problem 5

21.5.1 Solving as riccati ode 1559

Internal problem ID [10640]
Internal file name [OUTPUT/9587_Monday_June_06_2022_03_11_03_PM_91047867/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
x^{2} y^{\prime}-y^{2} x^{4}=x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}
$$

21.5.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{4 y^{2} x^{4}+4 x^{2 n} f\left(a x^{n}+b\right)-n^{2}+1}{4 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2} y^{2}+\frac{x^{2 n} f\left(a x^{n}+b\right)}{x^{2}}-\frac{n^{2}}{4 x^{2}}+\frac{1}{4 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{4 x^{2 n} f\left(a x^{n}+b\right)-n^{2}+1}{4 x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=x^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 x \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{x^{2}\left(4 x^{2 n} f\left(a x^{n}+b\right)-n^{2}+1\right)}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{2} u^{\prime \prime}(x)-2 x u^{\prime}(x)+\frac{x^{2}\left(4 x^{2 n} f\left(a x^{n}+b\right)-n^{2}+1\right) u(x)}{4}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{\left(x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}\right)-Y(x)-\frac{2 _Y^{\prime}(x)}{x}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
\begin{aligned}
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\left(x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}\right)-Y(x)\right.\right. & -\frac{2 _Y^{\prime}(x)}{x} \\
& \left.\left.+_Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution
$y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\left(x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}\right)-Y(x)-\frac{2-Y^{\prime}(x)}{x}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{x^{2} \operatorname{DESol}\left(\left\{\left(x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}\right)-Y(x)-\frac{2 _Y^{\prime}(x)}{x}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}$
Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

Summary

The solution(s) found are the following

Verification of solutions
$y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\left(x^{2 n} f\left(a x^{n}+b\right)-\frac{n^{2}}{4}+\frac{1}{4}\right)-Y(x)-\frac{2-Y^{\prime}(x)}{x}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{x^{2} \operatorname{DESol}\left(\left\{\frac{4 x^{2 n+1}-Y(x) f\left(a x^{n}+b\right)+4 _Y^{\prime \prime}(x) x-8 _Y^{\prime}(x)+x\left(-n^{2}+1\right) _Y(x)}{4 x}\right\},\left\{_Y(x)\right\}\right)}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(x^2*diff(y(x),x)=x^4*y(x)^2+x^(2*n)*f(a*x^n+b)+1/4*(1-n^2),y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==x^{\wedge} 4 * y[x] \wedge 2+x^{\wedge}(2 * n) * f\left[a * x^{\wedge} n+b\right]+1 / 4 *\left(1-n^{\wedge} 2\right), y[x], x\right.$, IncludeSingularSolutions

Not solved

21.6 problem 6

21.6.1 Solving as riccati ode . 1564

Internal problem ID [10641]
Internal file name [OUTPUT/9588_Monday_June_06_2022_03_11_05_PM_78843544/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-f(x) y^{2}-g(x) y=h(x)
$$

21.6.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) y^{2}+y g(x)+h(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=f(x) y^{2}+y g(x)+h(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=h(x), f_{1}(x)=g(x)$ and $f_{2}(x)=f(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{f(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =f^{\prime}(x) \\
f_{1} f_{2} & =f(x) g(x) \\
f_{2}^{2} f_{0} & =h(x) f(x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
f(x) u^{\prime \prime}(x)-\left(f(x) g(x)+f^{\prime}(x)\right) u^{\prime}(x)+h(x) f(x)^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{h(x) f(x)-Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{d}{d x} \text { DESol }\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}\right.\right. \\
&\left.\left.+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=-\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{f(x) \operatorname{DESol}\left(\left\{h(x) f(x) _Y(x)-\frac{\left(f(x) g(x)+f^{\prime}(x)\right) _Y^{\prime}(x)}{f(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}$
Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (g(x)*f(x)+diff(f(x), x))*(dif
        Methods for second order ODEs:
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(f(x)*y(x)^2+y(x)+g(x)*y(x)*x+x^2*h(x))/x
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        trying Bernoulli
        trying separable
        trying inverse linear
        trying homogeneous types:
        trying Chini
        differential order: 1; looking for linear symmetries
        trying exact
        Looking for potential symmetries
        trying Riccati
        trying Riccati sub-methods:
            trying Riccati_symmetries
            trying inverse_Riccati
            trying 1st order ODE linearizable_by_differentiation
    -> trying a symmetry pattern of the form [F(x)*G(y), 0]
    -> trying a symmetry pattern of the form [0, F(x)*G(y)]
    -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, `-> Computing symmetries using: way = 4
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=f(x) * y(x) \wedge 2+g(x) * y(x)+h(x), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y y^{\prime}[x]==f[x] * y[x] \sim 2+g[x] * y[x]+h[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved

21.7 problem 7

21.7.1 Solving as riccati ode

Internal problem ID [10642]
Internal file name [OUTPUT/9589_Monday_June_06_2022_03_11_07_PM_128411/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type

```
[_Riccati]
```

$$
y^{\prime}-y^{2}=\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}
$$

21.7.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2}+\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(\mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{\lambda^{2}}{4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{_Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y_{(x) \lambda^{2}}^{4}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{-Y(x) \mathrm{e}^{2 \lambda x} f\left(\mathrm{e}^{\lambda x}\right)-\frac{Y(x) \lambda^{2}}{4}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = -8*y(x)*x/((lambda-2*x)*(2*x+lambda)),
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+4*y(x)*lambda*(2*exp(2*lambda*x)*f(exp(la
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*lambda*K[1], y(x)` *** Sublevel 2
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+8*y(x)*x/((lambda-2*x)*(2*x+lambda)), y(x
    Methods for first order ODEs:
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2+\exp (2 * l a m b d a * x) * f(\exp (\operatorname{lambda} * x))-1 / 4 * \operatorname{lambda}{ }^{\wedge} 2, y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==y[x] \sim 2+\operatorname{Exp}[2 * \backslash[$ Lambda $] * x] * f[\operatorname{Exp}[\backslash[$ Lambda $] * x]]-1 / 4 * \backslash[$ Lambda] $\sim 2, y[x], x$, IncludeSi

Not solved

21.8 problem 8

21.8.1 Solving as riccati ode . 1574

Internal problem ID [10643]
Internal file name [OUTPUT/9590_Monday_June_06_2022_03_11_12_PM_76019185/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-\frac{\lambda^{2}}{4}+\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a \mathrm{e}^{\lambda x}+b}{c^{\lambda x}+d}\right)}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}
$$

21.8.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\mathrm{e}^{4 \lambda x} c^{4} \lambda^{2}+4 \mathrm{e}^{4 \lambda x} c^{4} y^{2}-4 \mathrm{e}^{3 \lambda x} c^{3} d \lambda^{2}+16 \mathrm{e}^{3 \lambda x} c^{3} d y^{2}-6 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda^{2}+24 \mathrm{e}^{2 \lambda x} c^{2} d^{2} y^{2}-4 \mathrm{e}^{\lambda x} c d^{3} \lambda^{2}+1}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=-\frac{3 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda^{2}}{2\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}+\frac{6 \mathrm{e}^{2 \lambda x} c^{2} d^{2} y^{2}}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-\frac{\mathrm{e}^{\lambda x} c d^{3} \lambda^{2}}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}+\frac{4 \mathrm{e}^{\lambda x} c d^{3} y^{2}}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-\frac{\mathrm{e}^{4 \lambda x} c^{4} \lambda^{2}}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}+\frac{\mathrm{e}^{4 \lambda x} c^{4} y^{2}}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-\frac{\mathrm{e}^{3 \lambda x} c^{3} d \lambda^{2}}{\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\mathrm{e}^{4 \lambda x} c^{4} \lambda^{2}-4 \mathrm{e}^{3 \lambda x} c^{3} d \lambda^{2}-6 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda^{2}-4 \mathrm{e}^{\lambda x} c d^{3} \lambda^{2}-d^{4} \lambda^{2}+4 \mathrm{e}^{2 \lambda x} f\left(\frac{a e^{\lambda x}+b}{c e^{x x}+d}\right)}{4\left(\mathrm{e}^{\lambda x}+d\right)^{4}}, f_{1}(x)=$ 0 and $f_{2}(x)=\frac{16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 x} x c^{3} d+24 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 d^{4}}{4\left(c e^{\lambda x}+d\right)^{4}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\left(16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 \lambda x} c^{3} d+24 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 d^{4}\right) u}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
f_{2}^{\prime}=\frac{16 \mathrm{e}^{4 \lambda x} c^{4} \lambda+48 \mathrm{e}^{3 \lambda x} c^{3} d \lambda+48 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda+16 c \mathrm{e}^{\lambda x} d^{3} \lambda}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-\frac{\left(16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 \lambda x} c^{3} d+24 c^{2} d\right.}{\left(c \mathrm{e}^{\lambda x}+d\right)^{5}}
$$

$f_{1} f_{2}=0$
$f_{2}^{2} f_{0}=\frac{\left(16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 \lambda x} c^{3} d+24 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 d^{4}\right)^{2}\left(-\mathrm{e}^{4 \lambda x} c^{4} \lambda^{2}-4 \mathrm{e}^{3 \lambda x} c^{3} d \lambda^{2}-6 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda^{2}-\right.}{64\left(c \mathrm{e}^{\lambda x}+d\right)^{12}}$
Substituting the above terms back in equation (2) gives

$$
\frac{\left(16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 \lambda x} c^{3} d+24 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 d^{4}\right) u^{\prime \prime}(x)}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}-\left(\frac{16 \mathrm{e}^{4 \lambda x} c^{4} \lambda+48 \mathrm{e}^{3 \lambda x} c^{3} d \lambda+48 \mathrm{e}^{2 \lambda x} c^{2} d^{2} \lambda}{4\left(c \mathrm{e}^{\lambda x}+d\right)^{4}}\right.
$$

Solving the above ODE (this ode solved using Maple, not this program), gives
$u(x)$
$=$ DESol $\left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a \mathrm{e}^{\lambda x}+b}{c \mathrm{e} \mathrm{e}^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 \mathrm{e}^{3 \lambda \lambda} c^{3} d}{3}+\frac{\mathrm{e}^{4 \lambda x} c^{4}}{6}+\frac{2 d^{3}\left(c \mathrm{e}^{\lambda x}+\frac{d}{4}\right)}{3}\right)\left(--\frac{Y(x) \lambda^{2}}{4}+-Y^{\prime \prime}(x)\right.}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d+6 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 c \mathrm{e}^{\lambda x} d^{3}+d^{4}}\right.\right.$
The above shows that
$u^{\prime}(x)$
$=\frac{\partial}{\partial x}$ DESol $\left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a a^{\lambda x}+b}{c \mathrm{e}^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 e^{3 \lambda x} c^{3} d}{3}+\frac{\mathrm{e}^{4 \lambda x} c^{4}}{6}+\frac{2 d^{3}\left(c e^{\lambda x}+\frac{d}{4}\right)}{3}\right)\left(--\frac{Y(x) \lambda^{2}}{4}+Y^{\prime}\right.}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d+6 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 c \mathrm{e}^{\lambda x} d^{3}+d^{4}}\right.\right.$

Using the above in (1) gives the solution
$y=$

$$
-\frac{4\left(\frac { \partial } { \partial x } \text { DESol } \left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a e^{\lambda x}+b}{c \mathrm{e}^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 \mathrm{e}^{3 \lambda x} c^{3} d}{3}+\frac{\mathrm{e}^{4 \lambda x} c^{4}}{6}+\frac{2 d^{3}\left(c \mathrm{e}^{\lambda x}+\frac{d}{4}\right)}{3}\right)\left(--\frac{Y_{(x) \lambda^{2}}}{4}\right.}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d+6 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 c \mathrm{e}^{\lambda x} d^{3}+d^{4}}\right.\right.\right.}{\left(16 c \mathrm{e}^{\lambda x} d^{3}+4 \mathrm{e}^{4 \lambda x} c^{4}+16 \mathrm{e}^{3 \lambda x} c^{3} d+24 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 d^{4}\right) \text { DESol }\left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a \mathrm{e}^{\lambda x}+b}{c \mathrm{e}^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 \mathrm{e}^{3 \lambda x} c^{3}}{3}\right.}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d-}\right.\right.}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y=$

$$
-\frac{\frac{\partial}{\partial x} \text { DESol }\left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a \mathrm{e}^{\lambda x}+b}{c c^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 \mathrm{e}^{3 \lambda x} \mathrm{e}^{3} d}{c}+\frac{\mathrm{e}^{4 \lambda x} c^{4}}{6}+\frac{2 d^{3}\left(c \mathrm{e}^{\lambda x}+\frac{d}{4}\right)}{3}\right)\left(--\frac{Y_{(x) \lambda^{2}}^{4}}{4}+Y^{\prime \prime}(x)\right)}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d+6 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 c \mathrm{e}^{\lambda x} d^{3}+d^{4}}\right\},\{-Y(x\right.}{} \quad \text { DESol }\left(\left\{\frac{\mathrm{e}^{2 \lambda x} f\left(\frac{a e^{\lambda x}+b}{c e^{\lambda x}+d}\right)-Y(x)+6\left(c^{2} d^{2} \mathrm{e}^{2 \lambda x}+\frac{2 \mathrm{e}^{3 \lambda x} c^{3} d}{3}+\frac{\mathrm{e}^{4 \lambda x} c^{4}}{6}+\frac{2 d^{3}\left(c \mathrm{e}^{\lambda x}+\frac{d}{4}\right)}{3}\right)\left(--\frac{Y_{(x) \lambda^{2}}^{4}}{4}+Y^{\prime \prime}(x)\right)}{\mathrm{e}^{4 \lambda x} c^{4}+4 \mathrm{e}^{3 \lambda x} c^{3} d+6 c^{2} d^{2} \mathrm{e}^{2 \lambda x}+4 c \mathrm{e}^{\lambda x} d^{3}+d^{4}}\right\},\{-Y(x) .\right.
$$

Summary
The solution(s) found are the following
$y=$

Verification of solutions

$y=$

Verified OK.

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*lambda*K[1], y(x)` *** Sublevel 2
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+2*lambda*K[1], y(x)` *** Sublevel 2
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+4*y(x)*lambda*(2*f((exp(lambda*x)*a+b)/(e
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful }157
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*lambda*d^4, y(x)` *** Sublevel 2
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2-l a m b d a \wedge 2 / 4+\exp (2 * l a m b d a * x) /(c * \exp (l a m b d a * x)+d) \wedge 4 * f((a * \exp (l a m b d a *$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}] \sim 2-\backslash[$ Lambda] $\sim 2 / 4+\operatorname{Exp}[2 * \backslash[$ Lambda $] * \mathrm{x}] /(\mathrm{c} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{d}) \wedge 4 * f[(\mathrm{a} * \operatorname{Exp}[\backslash[\mathrm{La}$

Not solved

21.9 problem 9

21.9.1 Solving as riccati ode . 1580

Internal problem ID [10644]
Internal file name [OUTPUT/9591_Monday_June_06_2022_03_11_19_PM_91442332/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-\lambda^{2}+\frac{f(\operatorname{coth}(\lambda x))}{\sinh (\lambda x)^{4}}
$$

21.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\lambda^{2} \sinh (\lambda x)^{4}+y^{2} \sinh (\lambda x)^{4}+f(\operatorname{coth}(\lambda x))}{\sinh (\lambda x)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-\lambda^{2}+\frac{f(\operatorname{coth}(\lambda x))}{\sinh (\lambda x)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\lambda^{2} \sinh (\lambda x)^{4}+f(\operatorname{coth}(\lambda x))}{\sinh (\lambda x)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{-\lambda^{2} \sinh (\lambda x)^{4}+f(\operatorname{coth}(\lambda x))}{\sinh (\lambda x)^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(-\lambda^{2} \sinh (\lambda x)^{4}+f(\operatorname{coth}(\lambda x))\right) u(x)}{\sinh (\lambda x)^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4}-Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4}-Y(x)-_{-} Y(x) \lambda^{2}+Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} __{-} Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4}-Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{f(\operatorname{coth}(\lambda x)) \operatorname{csch}(\lambda x)^{4} _Y(x)-_{_} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
    , `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+2*y(x)*x/((lambda-x)*(lambda+x)), y(x)`
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x) = -2*y(x)*x/((lambda-x)*(lambda+x)), y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*lambda*(sinh(lambda*x)*(D(f))(coth(l
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
    <- 1st order linear successful }158
,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2-l a m b d a \wedge 2+\sinh (l a m b d a * x) \wedge(-4) * f(\operatorname{coth}(l a m b d a * x)), y(x), \quad$ singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y$ ' $[x]==y[x] \sim 2-\backslash[$ Lambda] $\sim 2+\operatorname{Sinh}[\backslash[\operatorname{Lambda}] * x] \sim(-4) * f[\operatorname{Coth}[\backslash[$ Lambda $] * x]], y[x], x$, Include S
Not solved

21.10 problem 10

21.10.1 Solving as riccati ode

1585
Internal problem ID [10645]
Internal file name [OUTPUT/9592_Monday_June_06_2022_03_11_25_PM_41454593/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-\lambda^{2}+\frac{f(\tanh (\lambda x))}{\cosh (\lambda x)^{4}}
$$

21.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-\cosh (\lambda x)^{4} \lambda^{2}+\cosh (\lambda x)^{4} y^{2}+f(\tanh (\lambda x))}{\cosh (\lambda x)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-\lambda^{2}+\frac{f(\tanh (\lambda x))}{\cosh (\lambda x)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{-\cosh (\lambda x)^{4} \lambda^{2}+f(\tanh (\lambda x))}{\cosh (\lambda x)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{-\cosh (\lambda x)^{4} \lambda^{2}+f(\tanh (\lambda x))}{\cosh (\lambda x)^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(-\cosh (\lambda x)^{4} \lambda^{2}+f(\tanh (\lambda x))\right) u(x)}{\cosh (\lambda x)^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4}-Y(x)--Y(x) \lambda^{2}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x)-_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{\not} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} __{-} Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x)-_{-} Y(x) \lambda^{2}+_{\not} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4} _Y(x) __{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4}-Y(x)-_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\tanh (\lambda x)) \operatorname{sech}(\lambda x)^{4}-Y(x)-_{-} Y(x) \lambda^{2}+Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*lambda*(cosh(lambda*x)*(D(f))(tanh(l
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $\left(\operatorname{diff}(y(x), x)=y(x) \wedge 2-l a m b d a _2+\cosh (\operatorname{lambda} * x) \wedge(-4) * f(\tanh (\operatorname{lambda} * x)), y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2-\backslash\left[\right.$ Lambda $\wedge^{\wedge} 2+\operatorname{Cosh}[\backslash[\operatorname{Lambda}] * x] \wedge(-4) * f[\operatorname{Tanh}[\backslash[$ Lambda $] * x]], y[x], x$, Include S
Not solved

21.11 problem 11

21.11.1 Solving as riccati ode

Internal problem ID [10646]
Internal file name [OUTPUT/9593_Monday_June_06_2022_03_11_31_PM_11209688/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
x^{2} y^{\prime}-x^{2} y^{2}=f(a \ln (x)+b)+\frac{1}{4}
$$

21.11.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{4 x^{2} y^{2}+4 f(a \ln (x)+b)+1}{4 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{f(a \ln (x)+b)}{x^{2}}+\frac{1}{4 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{4 f(a \ln (x)+b)+1}{4 x^{2}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{4 f(a \ln (x)+b)+1}{4 x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{(4 f(a \ln (x)+b)+1) u(x)}{4 x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{\frac{(4 f(a \ln (x)+b)+1) _Y(x)}{4 x^{2}}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{(4 f(a \ln (x)+b)+1) _Y(x)}{4 x^{2}}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{(4 f(a \ln (x)+b)+1) _Y(x)}{4 x^{2}}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{(4 f(a \ln (x)+b)+1) _Y(x)}{4 x^{2}}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\{-Y(x)\}\right)}{\operatorname{DESol}\left(\left\{\frac{4-Y^{\prime \prime}(x) x^{2}+4 _Y(x) f(a \ln (x)+b)+_Y(x)}{4 x^{2}}\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(x^2*diff(y(x),x)=x^2*y(x)^2+f(a*ln(x)+b)+1/4,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x \wedge 2 * y^{\prime}[x]==x \wedge 2 * y[x] \sim 2+f[a * \log [x]+b]+1 / 4, y[x], x\right.$, IncludeSingularSolutions $->$ True]

Not solved

21.12 problem 12

21.12.1 Solving as riccati ode

1595
Internal problem ID [10647]
Internal file name [OUTPUT/9594_Monday_June_06_2022_03_11_32_PM_45494961/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=\lambda^{2}+\frac{f(\cot (\lambda x))}{\sin (\lambda x)^{4}}
$$

21.12.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\lambda^{2} \sin (\lambda x)^{4}+y^{2} \sin (\lambda x)^{4}+f(\cot (\lambda x))}{\sin (\lambda x)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda^{2}+\frac{f(\cot (\lambda x))}{\sin (\lambda x)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda^{2} \sin (\lambda x)^{4}+f(\cot (\lambda x))}{\sin (\lambda x)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{\lambda^{2} \sin (\lambda x)^{4}+f(\cot (\lambda x))}{\sin (\lambda x)^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(\lambda^{2} \sin (\lambda x)^{4}+f(\cot (\lambda x))\right) u(x)}{\sin (\lambda x)^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) __{-} Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) __{-} Y(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x))_{-} Y(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+\not Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}(\tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+Y^{\prime \prime}(x)+\csc (\lambda x)^{4} f(\cot (\lambda x)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
    , `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) -2*y(x)*x/(lambda^2+x^2), y(x)`
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x) = 2*y(x)*x/(lambda^2+x^2), y(x)`
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*lambda*((D(f))(cot(lambda*x))*cot(la
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful }159
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2+l a m b d a \wedge 2+\sin (\operatorname{lambda} * x) \wedge(-4) * f(\cot (\operatorname{lambda} * x)), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y\right.$ ' $[x]==y[x] \sim 2+\backslash\left[\right.$ Lambda ${ }^{\wedge} 2+\operatorname{Sin}[\backslash[\operatorname{Lambda}] * x] \sim(-4) * f[\operatorname{Cot}[\backslash[$ Lambda $] * x]], y[x], x$, IncludeSin

Not solved

21.13 problem 13

21.13.1 Solving as riccati ode 1600

Internal problem ID [10648]
Internal file name [OUTPUT/9595_Monday_June_06_2022_03_11_40_PM_48937354/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=\lambda^{2}+\frac{f(\tan (\lambda x))}{\cos (\lambda x)^{4}}
$$

21.13.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\cos (\lambda x)^{4} \lambda^{2}+\cos (\lambda x)^{4} y^{2}+f(\tan (\lambda x))}{\cos (\lambda x)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\lambda^{2}+\frac{f(\tan (\lambda x))}{\cos (\lambda x)^{4}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\cos (\lambda x)^{4} \lambda^{2}+f(\tan (\lambda x))}{\cos (\lambda x)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{\cos (\lambda x)^{4} \lambda^{2}+f(\tan (\lambda x))}{\cos (\lambda x)^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(\cos (\lambda x)^{4} \lambda^{2}+f(\tan (\lambda x))\right) u(x)}{\cos (\lambda x)^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{_} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{_} Y(x) \lambda^{2}+Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary
The solution(s) found are the following

$$
y=-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{-} Y(x) \lambda^{2}+_{-} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}(1)
$$

Verification of solutions

$$
y=-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4} _Y(x)+_{_} Y(x) \lambda^{2}+_{\neq} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{f(\tan (\lambda x)) \sec (\lambda x)^{4}{ }_{-} Y(x)+_{_} Y(x) \lambda^{2}+_{_} Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*lambda*(cos(lambda*x)*(D(f))(tan(lam
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
    <- 1st order linear successful }160
,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2+l a m b d a \wedge 2+\cos (\operatorname{lambda} * x) \wedge(-4) * f(\tan (\operatorname{lambda} * x)), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

Not solved

21.14 problem 14

21.14.1 Solving as riccati ode \qquad
Internal problem ID [10649]
Internal file name [OUTPUT/9596_Monday_June_06_2022_03_11_50_PM_77761706/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=\lambda^{2}+\frac{f\left(\frac{\sin (\lambda x+a)}{\sin (\lambda x+b)}\right)}{\sin (\lambda x+b)^{4}}
$$

21.14.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\lambda^{2} \sin (\lambda x+b)^{4}+y^{2} \sin (\lambda x+b)^{4}+f\left(\frac{\sin (\lambda x+a)}{\sin (\lambda x+b)}\right)}{\sin (\lambda x+b)^{4}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve
$y^{\prime}=\frac{\lambda^{2} \sin (\lambda x)^{4} \cos (b)^{4}}{(\sin (\lambda x) \cos (b)+\cos (\lambda x) \sin (b))^{4}}+\frac{4 \lambda^{2} \sin (\lambda x)^{3} \cos (b)^{3} \cos (\lambda x) \sin (b)}{(\sin (\lambda x) \cos (b)+\cos (\lambda x) \sin (b))^{4}}+\frac{6 \lambda^{2} \sin (\lambda x)^{2} \cos (b)^{2} \cos (.}{(\sin (\lambda x) \cos (b)+\cos (\lambda}$
With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{\lambda^{2} \sin (\lambda x+b)^{4}+f\left(\frac{\sin (\lambda x+a)}{\sin (\lambda x+b)}\right)}{\sin (\lambda x+b)^{4}}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{\lambda^{2} \sin (\lambda x+b)^{4}+f\left(\frac{\sin (\lambda x+a)}{\sin (\lambda x+b)}\right)}{\sin (\lambda x+b)^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{\left(\lambda^{2} \sin (\lambda x+b)^{4}+f\left(\frac{\sin (\lambda x+a)}{\sin (\lambda x+b)}\right)\right) u(x)}{\sin (\lambda x+b)^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
u(x)=\operatorname{DESol}(& \left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)\right. \\
& \left.\left.+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{\partial}{\partial x} \text { DESol }\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)\right.\right. \\
& \left.\left.\quad+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& \quad-\frac{\frac{\partial}{\partial x} \mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\mathrm{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
\begin{aligned}
y= & \\
& -\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+\ldots Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+\ldots Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a))_{_} Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \\
& -\frac{\frac{\partial}{\partial x} \operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+\ldots Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}{\operatorname{DESol}\left(\left\{_Y(x) \lambda^{2}+_Y^{\prime \prime}(x)+\csc (\lambda x+b)^{4} f(\csc (\lambda x+b) \sin (\lambda x+a)) _Y(x)\right\},\left\{_Y(x)\right\}\right)}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*lambda*(sin(lambda*x+a)*cos(lambda*x
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=y(x) \wedge 2+l a m b d a \wedge 2+\sin (l a m b d a * x+b) \wedge(-4) * f(\sin (l a m b d a * x+a) / \sin (l a m b d a * x+b))$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

Not solved

22 Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions

22.1 problem 1161322.2 problem 2 1616
22.3 problem 3 1623
22.4 problem 4 1625
22.5 problem 5 1627
22.6 problem 6 1629
22.7 problem 7 1632
22.8 problem 8 1634
22.9 problem 9 1636
22.10problem 10 1638
22.11 problem 11 1641
22.12problem 12 1643
22.13problem 13 1646
22.14problem 14 1648
22.15problem 15 1650
22.16problem 16 1651
22.17 problem 17 1653
22.18problem 18 1655
22.19problem 19 1657
22.20problem 20 1659
22.21 problem 21 1662
22.22problem 22 1665
22.23problem 23 1667
22.24problem 24 1669
22.25problem 25 1671
22.26problem 26 1673
22.27problem 27 1675
22.28problem 28 1678
22.29problem 29 1681
22.30problem 30 1684
22.31 problem 31 1685
22.32problem 32 1688
22.33problem 33 1690
22.34problem 34 1692
22.35problem 35 1694
22.36problem 36 1696
22.37problem 37 1698
22.38problem 38 1700
22.39problem 39 1703
22.40 problem 40 1706
22.41 problem 41 1708
22.42 problem 42 1711
22.43problem 43 1714
22.44 problem 44 1717
22.45 problem 45 1719
22.46problem 46 1721
22.47 problem 47 1723
22.48problem 48 1725
22.49problem 49 1728
22.50 problem 50 1730
22.51 problem 51 1733
22.52problem 52 1736
22.53problem 53 1738
22.54 problem 54 1740
22.55 problem 55 1743
22.56problem 56 1746
22.57 problem 57 1749
22.58problem 58 1751
22.59 problem 59 1753
22.60problem 60 1756
22.61problem 61 1759
22.62problem 62 1760
22.63problem 63 1763
22.64 problem 64 1766
22.65 problem 65 1769
22.66problem 66 1771
22.67problem 67 1774
22.68problem 68 1777
22.69problem 69 1780
22.70problem 70 1783
22.71problem 71 1786
22.72problem 72 1789
22.73problem 73 1792
22.74problem 74 . 1795
22.75problem 75 . 1798
22.76problem 76 . 1801

22.1 problem 1

22.1.1 Solving as quadrature ode
22.1.2 Maple step by step solution 1614

Internal problem ID [10650]
Internal file name [OUTPUT/9597_Monday_June_06_2022_03_13_08_PM_16682338/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y y^{\prime}-y=A
$$

22.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{y}{y+A} d y & =x+c_{1} \\
y-A \ln (y+A) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
y_{1} & =-A\left(\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-\frac{A+c_{1}+x}{A}}}{A}\right)+1\right) \\
& =-A\left(\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{-A-x}{A}}}{c_{1} A}\right)+1\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-A\left(\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{-A-x}{A}}}{c_{1} A}\right)+1\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-A\left(\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{-A-x}{A}}}{c_{1} A}\right)+1\right)
$$

Verified OK.

22.1.2 Maple step by step solution

Let's solve
$y y^{\prime}-y=A$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y}{y+A}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} y}{y+A} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
y-A \ln (y+A)=x+c_{1}
$$

- \quad Solve for y

$$
y=-A\left(\operatorname{Lambert} W\left(-\frac{\mathrm{e}^{-\frac{A+c_{1}+x}{A}}}{A}\right)+1\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 30
dsolve $(y(x) * \operatorname{diff}(y(x), x)-y(x)=A, y(x)$, singsol=all)

$$
y(x)=-A\left(\text { LambertW }\left(-\frac{\mathrm{e}^{\frac{-A-c_{1}-x}{A}}}{A}\right)+1\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 60.032 (sec). Leaf size: 28
DSolve $[y[x] * y$ ' $[x]-y[x]==A, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-A\left(1+W\left(-\frac{e^{-\frac{A+x+c_{1}}{A}}}{A}\right)\right)
$$

22.2 problem 2

22.2.1 Solving as first order ode lie symmetry calculated ode 1616

Internal problem ID [10651]
Internal file name [OUTPUT/9598_Monday_June_06_2022_03_13_09_PM_4007698/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y y^{\prime}-y=A x+B
$$

22.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{A x+B+y}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(A x+B+y)\left(b_{3}-a_{2}\right)}{y}-\frac{(A x+B+y)^{2} a_{3}}{y^{2}} \tag{5E}\\
& -\frac{A\left(x a_{2}+y a_{3}+a_{1}\right)}{y}-\left(\frac{1}{y}-\frac{A x+B+y}{y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{A^{2} x^{2} a_{3}+2 A B x a_{3}-A x^{2} b_{2}+2 A x y a_{2}+2 A x y a_{3}-2 A x y b_{3}+A y^{2} a_{3}-A x b_{1}+A y a_{1}+B^{2} a_{3}-B x b_{2}+}{y^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -A^{2} x^{2} a_{3}-2 A B x a_{3}+A x^{2} b_{2}-2 A x y a_{2}-2 A x y a_{3}+2 A x y b_{3} \tag{6E}\\
& \quad-A y^{2} a_{3}+A x b_{1}-A y a_{1}-B^{2} a_{3}+B x b_{2}-B y a_{2} \\
& \quad-2 B y a_{3}+2 B y b_{3}-y^{2} a_{2}-y^{2} a_{3}+b_{2} y^{2}+y^{2} b_{3}+B b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -A^{2} a_{3} v_{1}^{2}-2 A B a_{3} v_{1}-2 A a_{2} v_{1} v_{2}-2 A a_{3} v_{1} v_{2}-A a_{3} v_{2}^{2}+A b_{2} v_{1}^{2} \tag{7E}\\
& +2 A b_{3} v_{1} v_{2}-A a_{1} v_{2}+A b_{1} v_{1}-B^{2} a_{3}-B a_{2} v_{2}-2 B a_{3} v_{2} \\
& +B b_{2} v_{1}+2 B b_{3} v_{2}-a_{2} v_{2}^{2}-a_{3} v_{2}^{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}+B b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{aligned}
& \left(-A^{2} a_{3}+A b_{2}\right) v_{1}^{2}+\left(-2 A a_{2}-2 A a_{3}+2 A b_{3}\right) v_{1} v_{2} \\
& \quad+\left(-2 A B a_{3}+A b_{1}+B b_{2}\right) v_{1}+\left(-A a_{3}-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{2}^{2} \\
& \quad+\left(-A a_{1}-B a_{2}-2 B a_{3}+2 B b_{3}\right) v_{2}-B^{2} a_{3}+B b_{1}=0
\end{aligned}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-A^{2} a_{3}+A b_{2} & =0 \\
-B^{2} a_{3}+B b_{1} & =0 \\
-2 A a_{2}-2 A a_{3}+2 A b_{3} & =0 \\
-2 A B a_{3}+A b_{1}+B b_{2} & =0 \\
-A a_{1}-B a_{2}-2 B a_{3}+2 B b_{3} & =0 \\
-A a_{3}-a_{2}-a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =\frac{A a_{1}}{B} \\
a_{3} & =a_{3} \\
b_{1} & =B a_{3} \\
b_{2} & =A a_{3} \\
b_{3} & =\frac{A a_{1}+B a_{3}}{B}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=\frac{A x+B}{B} \\
& \eta=\frac{A y}{B}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{A y}{B}-\left(\frac{A x+B+y}{y}\right)\left(\frac{A x+B}{B}\right) \\
& =\frac{-A^{2} x^{2}-2 A B x-A x y+A y^{2}-B^{2}-B y}{B y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-A^{2} x^{2}-2 A B x-A x y+A y^{2}-B^{2}-B y}{B y}} d y
\end{aligned}
$$

Which results in

$$
S=B\left(\frac{\ln \left(A^{2} x^{2}+2 A B x+A x y-A y^{2}+B^{2}+B y\right)}{2 A}+\frac{(A x+B) \operatorname{arctanh}\left(\frac{A x-2 A y+B}{\sqrt{4 A^{3} x^{2}+8 A^{2} B x+A^{2} x^{2}+4 A B^{2}+2 A B}}\right.}{A \sqrt{4 A^{3} x^{2}+8 A^{2} B x+A^{2} x^{2}+4 A B^{2}+2 A B x}}\right.
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{A x+B+y}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{B(A x+B+y)}{A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)} \\
S_{y} & =-\frac{B y}{A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{B\left(\ln \left(A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)\right) \sqrt{4 A+1}+2 \operatorname{arctanh}\left(\frac{(x-2 y) A+B}{\sqrt{4 A+1(A x+B)}}\right)\right)}{2 \sqrt{4 A+1} A}=c_{1}
$$

Which simplifies to

$$
\frac{B\left(\ln \left(A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)\right) \sqrt{4 A+1}+2 \operatorname{arctanh}\left(\frac{(x-2 y) A+B}{\sqrt{4 A+1}(A x+B)}\right)\right)}{2 \sqrt{4 A+1} A}=c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{B\left(\ln \left(A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)\right) \sqrt{4 A+1}+2 \operatorname{arctanh}\left(\frac{(x-2 y) A+B}{\sqrt{4 A+1}(A x+B)}\right)\right)}{2 \sqrt{4 A+1} A} \\
& =c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{B\left(\ln \left(A^{2} x^{2}+(2 B x+y(x-y)) A+B(B+y)\right) \sqrt{4 A+1}+2 \operatorname{arctanh}\left(\frac{(x-2 y) A+B}{\sqrt{4 A+1}(A x+B)}\right)\right)}{2 \sqrt{4 A+1} A} \\
& =c_{1}
\end{aligned}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`

Solution by Maple
Time used: 4.266 (sec). Leaf size: 68

```
dsolve(y(x)*diff(y(x),x)-y(x)=A*x+B,y(x), singsol=all)
```

$y(x)=$

$$
-(x A+B) \operatorname{RootOf}\left(-Z^{2}-A+\ldots Z+\mathrm{e}^{\operatorname{RootOf}\left((x A+B)^{2}\left(-2 \mathrm{e}^{Z} \cosh \left(\left(Z+2 \ln (x A+B)+2 c_{1}\right) \sqrt{4 A+1}\right)+4 A-2 \mathrm{e}^{Z}+1\right)\right)}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 88
DSolve[y[x]*y'[x]-y[x]==A*x+B,y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[-\frac{\left.\frac{2 \arctan \left(\frac{2 A y(x)}{A x+B}-1\right.}{\sqrt{-4 A-1}}\right)}{\sqrt{-4 A-1}}+\log \left(-\frac{A y(x)^{2}}{(A x+B)^{2}}+\frac{y(x)}{A x+B}+1\right)-\log (A x+B)\right]$

22.3 problem 3

Internal problem ID [10652]
Internal file name [OUTPUT/9599_Monday_June_06_2022_03_13_14_PM_3277166/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{2 x}{9}+A+\frac{B}{\sqrt{x}}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 90

```
dsolve(y(x)*diff (y (x),x)-y(x)=-2/9*x+A+B*\mp@subsup{x}{}{~}(-1/2),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)= \\
& -\frac{9\left(A \sqrt{x}+B-\frac{2 x^{\frac{3}{2}}}{9}\right) A}{3 A \sqrt{x}+3 \text { RootOf }\left(18 A^{3}\left(\int^{-} \frac{1}{-2 _a^{3} B^{2}+9 _a A^{3}-9 A^{3}} d _a\right)-9 A\left(\int \frac{1}{9 x A-2 x^{2}+9 B \sqrt{x}} d x\right)+2 c_{1}\right) B}
\end{aligned}
$$

Solution by Mathematica
Time used: 8.154 (sec). Leaf size: 415

```
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-2 / 9 * x+A+B * x^{\wedge}(-1 / 2), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
```

$$
\begin{aligned}
& \text { Solve }\left[6 \operatorname { R o o t S u m } \left[8 \# 1^{6}-72 \# 1^{4} A-36 \# 1^{4} y(x)-72 \# 1^{3} B+162 \# 1^{2} A^{2}\right.\right. \\
& +162 \# 1^{2} A y(x)+54 \# 1^{2} y(x)^{2}+324 \# 1 A B+162 \# 1 B y(x)-81 A y(x)^{2}+162 B^{2} \\
& -27 y(x)^{3} \&, \frac{-2 \# 1^{3} \log (\sqrt{x}-\# 1)+9 \# 1 A \log (\sqrt{x}-\# 1)+9 B \log (\sqrt{x}-\# 1)+9 \# 1 y(x) \log (\sqrt{x}-}{8 \# 1^{5}-48 \# 1^{3} A-24 \# 1^{3} y(x)-36 \# 1^{2} B+54 \# 1 A^{2}+54 \# 1 A y(x)+18 \# 1 y(x)^{2}+54 A B+} \\
& +\int_{1}^{y(x)}\left(\frac{162 K[1]}{8 x^{3}-72 A x^{2}-36 K[1] x^{2}-72 B x^{3 / 2}+162 A^{2} x+54 K[1]^{2} x+162 A K[1] x+324 A B \sqrt{x}+162 B F}\right. \\
& +\frac{162 K[1]}{-8 x^{3}+72 A x^{2}+36 K[1] x^{2}+72 B x^{3 / 2}-162 A^{2} x-54 K[1]^{2} x-162 A K[1] x-324 A B \sqrt{x}-162 B K[1] \sqrt{2}}
\end{aligned}
$$

22.4 problem 4

Internal problem ID [10653]
Internal file name [OUTPUT/9600_Monday_June_06_2022_03_13_15_PM_16949097/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=2 A\left(\sqrt{x}+4 A+\frac{3 A^{2}}{\sqrt{x}}\right)
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 120
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 * A *\left(x^{\wedge}(1 / 2)+4 * A+3 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.$, singsol=all)
$-\sqrt{\frac{-6 A^{2}-8 A \sqrt{x}-2 x+2 y(x)}{y(x)}} \sqrt{2}+4 \sqrt{-\frac{A^{2}}{y(x)}} \operatorname{arctanh}\left(\frac{\sqrt{-\frac{A^{2}}{y(x)}}(3 A+\sqrt{x})}{\sqrt{\frac{-3 A^{2}-4 A \sqrt{x}-x+y(x)}{y(x)}} A}\right)+c_{1} \sqrt{-\frac{A^{2}}{y(x)}}$
$=0 \quad \sqrt{-\frac{A^{2}}{y(x)}}$
$=0$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==2 * A *\left(x^{\wedge}(1 / 2)+4 * A+3 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.$, IncludeSingularSolutions $->$
Not solved

22.5 problem 5

Internal problem ID [10654]
Internal file name [OUTPUT/9601_Monday_June_06_2022_03_13_16_PM_16781380/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=A x+\frac{B}{x}-\frac{B^{2}}{x^{3}}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step
<- Abel successful
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 179

```
dsolve(y(x)*diff (y(x),x)-y(x)=A*x+B/x-B^2*x^(-3),y(x), singsol=all)
```

$$
\begin{aligned}
& \left(-y(x) x^{2} B-B^{2} x\right)\left(\int^{-\frac{x^{2}}{2 y(x) x+2 B}} \frac{\mathrm{e}^{\frac{2 \operatorname{arctanh}\left(\frac{4 A-a-1}{\sqrt{4 A+1})}\right.}{\sqrt{4 A+1}}}\left(4 A _a^{2}-2 _a-1\right)}{-^{a^{2}}} d _a\right)+2 y(x)\left(-y(x)^{2} x^{2}+\left(x^{3}-2 B x\right)\right. \\
& =0
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==A * x+B / x-B^{\wedge} 2 * x^{\wedge}(-3), y[x], x\right.$, IncludeSingularSolutions $->$ True]
Not solved

22.6 problem 6

Internal problem ID [10655]
Internal file name [OUTPUT/9602_Monday_June_06_2022_03_13_18_PM_90018615/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=A x^{k-1}-k B x^{k}+k B^{2} x^{2 k-1}
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*\mp@subsup{k}{}{\wedge}2*\mp@subsup{\textrm{B}}{}{\wedge}2*\mp@subsup{x}{}{\wedge}(-1+2*\textrm{k})-\textrm{k}*\mp@subsup{\textrm{B}}{}{\wedge}2*\mp@subsup{x}{}{\wedge}(-1+2*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear1630
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)/x, y(x)` *** Sublevel 2 ***
```

X Solution by Maple
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=A * x^{\wedge}(k-1)-k * B * x^{\wedge} k+k * B^{\wedge} 2 * x^{\wedge}(2 * k-1), y(x)\right.$, singsol $=$ all $)$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==A * x^{\wedge}(k-1)-k * B * x^{\wedge} k+k * B^{\wedge} 2 * x^{\wedge}(2 * k-1), y[x], x\right.$, IncludeSingularSolutions

Not solved

22.7 problem 7

Internal problem ID [10656]
Internal file name [OUTPUT/9603_Monday_June_06_2022_03_13_21_PM_1762640/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

$\underline{\text { Unable to solve or complete the solution. }}$

$$
y y^{\prime}-y=\frac{A}{x}-\frac{A^{2}}{x^{3}}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 118
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=A * x^{\wedge}(-1)-A^{\wedge} 2 * x^{\wedge}(-3), y(x)\right.$, singsol=all)
$y(x)=$

$$
-\frac{\left(-c_{1} x^{2}+A \mathrm{e}^{\operatorname{RootOf}\left(2 _Z A \mathrm{e}^{2}-Z_{-x^{2}} \mathrm{e}^{2} _Z+2 c_{1} x^{2} \mathrm{e}^{Z}-c_{1}^{2} x^{2}-2 A \mathrm{e}^{2} _Z+2 A c_{1} \mathrm{e}^{Z}\right)}\right) \mathrm{e}^{-\operatorname{RootOf}\left(2 _Z A \mathrm{e}^{2} _Z_{-} x^{2} \mathrm{e}^{2} _Z+2 c_{1} x^{2} \mathrm{e}^{Z}-c_{1}^{2}\right.}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.569 (sec). Leaf size: 63
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==A * x^{\wedge}(-1)-A^{\wedge} 2 * x^{\wedge}(-3), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x^{2}\left(-\frac{1}{A}+\frac{2 x^{2} \log \left(\frac{x^{2}}{A+x y(x)}\right)+2 A-c_{1} x^{2}+2 x y(x)}{\left(A-x^{2}+x y(x)\right)^{2}}\right)=0, y(x)\right]
$$

22.8 problem 8

Internal problem ID [10657]
Internal file name [OUTPUT/9604_Monday_June_06_2022_03_13_22_PM_9151881/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=A+B \mathrm{e}^{-\frac{2 x}{A}}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 76
dsolve($y(x) * \operatorname{diff}(y(x), x)-y(x)=A+B * \exp (-2 * x / A), y(x), \quad$ singsol=all)
$c_{1}-2 \arctan \left(\frac{y(x)+A}{y(x) \sqrt{\frac{-A B \mathrm{e}^{-\frac{2 x}{A}}-(y(x)+A)^{2}}{y(x)^{2}}}}\right) A-2 \sqrt{\frac{-A B \mathrm{e}^{-\frac{2 x}{A}}-(y(x)+A)^{2}}{y(x)^{2}}} y(x)=0$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y[x] * y '[x]-y[x]==A+B * E x p[-2 * x / A], y[x], x$, IncludeSingularSolutions \rightarrow True]
Not solved

22.9 problem 9

Internal problem ID [10658]
Internal file name [OUTPUT/9605_Monday_June_06_2022_03_13_23_PM_32679015/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_Abel, `2nd type`, `class A`]]
```

$\underline{\text { Unable to solve or complete the solution. }}$

$$
y y^{\prime}-y=A\left(\mathrm{e}^{\frac{2 x}{A}}-1\right)
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 82
dsolve($y(x) * \operatorname{diff}(y(x), x)-y(x)=A *(\exp (2 * x / A)-1), y(x), \quad$ singsol=all)

$$
c_{1}+2 A \arctan \left(\frac{A-y(x)}{y(x) \sqrt{\frac{\mathrm{e}^{\frac{2 x}{A}} A^{2}-(A-y(x))^{2}}{y(x)^{2}}}}\right)+2 y(x) \sqrt{\frac{\mathrm{e}^{\frac{2 x}{A}} A^{2}-(A-y(x))^{2}}{y(x)^{2}}}=0
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==A *(\operatorname{Exp}[2 * x / A]-1), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]
\{\}

22.10 problem 10

Internal problem ID [10659]
Internal file name [OUTPUT/9606_Monday_June_06_2022_03_13_24_PM_76864051/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition

Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{2(m+1)}{(m+3)^{2}}+A x^{m}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*A*x^m*m*(m+3)^2/(x*(A*x^m*m^2+6*A*x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = 2*(1+m)*y(x)/((m^2*x+6*m*x-2*m+9*x-2)*x
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*A*x^m*m*(m+3)^2/(x*(A*x^m*m^2+6*A
```

X Solution by Maple
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-(2 *(m+1)) /(m+3) \wedge 2+A * x^{\wedge} m, y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y '[x]-y[x]==-(2 *(m+1)) /(m+3) \wedge 2+A * x^{\wedge} m, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved

22.11 problem 11

Internal problem ID [10660]
Internal file name [OUTPUT/9607_Monday_June_06_2022_03_13_26_PM_78895175/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]
Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{2 x}{9}+6 A^{2}\left(1+\frac{2 A}{\sqrt{x}}\right)
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 354
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-2 / 9 * x+6 * A^{\wedge} 2 *\left(1+2 * A * x^{\wedge}(-1 / 2)\right), y(x)\right.$, singsol=all)
$y(x)$
$=\frac{}{3 \mathrm{e}^{\operatorname{RootOf}\left(36 A^{2} \mathrm{e}-{ }^{Z} \ln (2)+18 A^{2} \mathrm{e}-{ }^{Z} \ln \left(\frac{(3 A-\sqrt{x})(6 A-\sqrt{x})\left(36 A^{2}-x\right)}{\left(9 A^{2}-x\right)(6 A+\sqrt{x})(3 A+\sqrt{x})\left(\mathrm{e}-Z^{Z}+9\right)^{2}}\right)+108 A^{2} c_{1} \mathrm{e}-{ }^{Z}+36 A^{2} \mathrm{e}-{ }^{Z}-Z+6 A \sqrt{x} \mathrm{e}-{ }^{Z} \ln (2)+3 A \sqrt{x} \mathrm{e}-{ }^{Z} \ln \right.}}$
\checkmark Solution by Mathematica
Time used: 12.331 (sec). Leaf size: 488
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==-2 / 9 * x+6 * A^{\wedge} 2 *\left(1+2 * A * x^{\wedge}(-1 / 2)\right), y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

22.12 problem 12

Internal problem ID [10661]
Internal file name [OUTPUT/9608_Monday_June_06_2022_03_13_31_PM_8547601/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{2 m-2}{(m-3)^{2}}+\frac{2 A\left(m(m+3) \sqrt{x}+\left(4 m^{2}+3 m+9\right) A+\frac{3 m(m+3) A^{2}}{\sqrt{x}}\right)}{(m-3)^{2}}
$$

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables $\{x$-> $y(x), y(x)$-> $x\}$
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way $=4$
, `-> Computing symmetries using: way \(=2\) trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\) \(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\) \(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\) -, --> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{y}(\mathrm{x})^{`} \quad$ *** Sublevel 2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-(1 / 2) * \mathrm{~A} * \mathrm{y}(\mathrm{x}) * \mathrm{~m} *\left(3 * \mathrm{~A}^{\wedge} 2-\mathrm{x}\right) *(\mathrm{~m}+3) /\left(4 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(\right.\) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful 1644 , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 12) *\left(12 * \mathrm{~A}^{\wedge} 3 * y(\mathrm{x}) * \mathrm{~m}^{\wedge} 2+36 * \mathrm{~A}^{\wedge} 3 * \mathrm{y}(\mathrm{x}) * \mathrm{~m}-8 * \mathrm{~A}\right.$

X Solution by Maple
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 *(m-1) /(m-3) \wedge 2+2 * A /(m-3) \wedge 2 *\left(m *(m+3) * x^{\wedge}(1 / 2)+\left(4 * m^{\wedge} 2+3 * m+9\right) * A+3\right.\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y '[x]-y[x]==2 *(m-1) /(m-3) \wedge 2+2 * A /(m-3) \wedge 2 *\left(m *(m+3) * x^{\wedge}(1 / 2)+\left(4 * \mathrm{~m}^{\wedge} \wedge 2+3 * \mathrm{~m}+9\right) * \mathrm{~A}+3 * \mathrm{~m} *(\mathrm{~m}+\right.\right.$

Not solved

22.13 problem 13

Internal problem ID [10662]
Internal file name [OUTPUT/9609_Monday_June_06_2022_03_13_33_PM_8713158/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{(2 m+1) x}{4 m^{2}}+\frac{A}{x}-\frac{A^{2}}{x^{3}}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step
<- Abel successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 166

```
dsolve(y(x)*diff (y (x),x)-y(x)=(2*m+1)/(4*m^2)*x+A*1/x-A^2*1/(x^3),y(x), singsol=all)
```

$$
\begin{aligned}
& 2^{-\frac{m}{1+m}} y(x)\left(\frac{-2 y(x) m x-2 A m-x^{2}}{2 y(x) x+2 A}\right)^{\frac{1}{1+m}}(y(x) x+A)\left(\frac{(-1-2 m) x^{2}+2 y(x) m x+2 A m}{y(x) x+A}\right)^{\frac{1+2 m}{1+m}}-x\left(A \left(\int^{-\frac{x^{2}}{2 y(x) x+2 A}} \frac{(-m+}{} 0\right.\right. \\
& =0
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==(2 * m+1) /\left(4 * m^{\wedge} 2\right) * x+A * 1 / x-A^{\wedge} 2 * 1 /\left(x^{\wedge} 3\right), y[x], x\right.$, IncludeSingularSolutions

Not solved

22.14 problem 14

Internal problem ID [10663]
Internal file name [OUTPUT/9610_Monday_June_06_2022_03_13_35_PM_29052279/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{4}{9} x+2 A x^{2}+2 A^{2} x^{3}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 177

```
dsolve(y(x)*diff(y(x),x)-y(x)=4/9*x+2*A*x^2+2*A^2*x^3,y(x), singsol=all)
```


\checkmark Solution by Mathematica
Time used: 3.439 (sec). Leaf size: 170
DSolve [y $[\mathrm{x}] * \mathrm{y}^{\prime}[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==4 / 9 * \mathrm{x}+2 * \mathrm{~A} * \mathrm{x}^{\wedge} 2+2 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge} 3, \mathrm{y}[\mathrm{x}]$, x , IncludeSingularSolutions \rightarrow True]

Solve $\left[\sqrt[4]{\frac{(-9 A y(x)+3 A x+1)^{2}}{(3 A x+1)^{4}}-1}\left(\frac{(-9 A y(x)+3 A x+1) \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}, \frac{3}{4}, \frac{3}{2}, \frac{(3 A x}{}\right.}{2 \sqrt[4]{3}(3 A x+1) \sqrt{(3 A x+1)^{2}} \sqrt[4]{\frac{A\left(6(3 A x+1) y(x)-27 A y(x)^{2}+x\right.}{(3 A x+1)^{4}}}}\right.\right.$
$\left.\left.+\sqrt{(3 A x+1)^{2}}\right]+c_{1}=0, y(x)\right]$

22.15 problem 15

Internal problem ID [10664]
Internal file name [OUTPUT/9611_Monday_June_06_2022_03_13_36_PM_76543715/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{3 x}{16}+\frac{5 A}{x^{\frac{1}{3}}}-\frac{12 A^{2}}{x^{\frac{5}{3}}}
$$

Unable to determine ODE type.
X Solution by Maple

```
dsolve(y(x)*diff (y (x),x)-y(x)=-3/16*x+5*A*x^(-1/3)-12*A^2*x^(-5/3),y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[y[x]*y'[x]-y[x]==-3/16*x+5*A*x^(-1/3)-12*A^2*x^(-5/3),y[x],x, IncludeSingularSolutions
```

Not solved

22.16 problem 16

Internal problem ID [10665]
Internal file name [OUTPUT/9612_Monday_June_06_2022_03_15_48_PM_62995207/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{A}{x}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 57
dsolve($y(x) * \operatorname{diff}(y(x), x)-y(x)=A * 1 / x, y(x), \quad$ singsol=all)

$$
\frac{\operatorname{erf}\left(\frac{(y(x)-x) \sqrt{2}}{2 \sqrt{-A}}\right) \sqrt{2} \sqrt{\pi} x-2 \mathrm{e}^{\frac{(y(x)-x)^{2}}{2 A}} \sqrt{-A}+c_{1} x}{x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.827 (sec). Leaf size: 64
DSolve[y[x]*y'[x]-y[x]==A*1/x,y[x],x,IncludeSingularSolutions $->$ True]

$$
\text { Solve }\left[-\frac{x}{\sqrt{A}}=\frac{2 e^{\frac{(x-y(x))^{2}}{2 A}}}{\sqrt{2 \pi} \operatorname{erfi}\left(\frac{y(x)-x}{\sqrt{2} \sqrt{A}}\right)+2 c_{1}}, y(x)\right]
$$

22.17 problem 17

Internal problem ID [10666]
Internal file name [OUTPUT/9613_Monday_June_06_2022_03_15_49_PM_99424666/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{x}{4}+\frac{A\left(\sqrt{x}+5 A+\frac{3 A^{2}}{\sqrt{x}}\right)}{4}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
    Looking for potential symmetries
    found: 2 potential symmetries. Proceeding with integration step
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 257

```
dsolve(y(x)*diff (y(x),x)-y(x)=-1/4*x+1/4*A*(x^(1/2)+5*A+3*A^2*x^(-1/2)),y(x), singsol=all)
```


X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y{ }^{\prime}[x]-y[x]==-1 / 4 * x+1 / 4 * A *\left(x^{\wedge}(1 / 2)+5 * A+3 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.$, IncludeSingularSolu

Not solved

22.18 problem 18

Internal problem ID [10667]
Internal file name [OUTPUT/9614_Monday_June_06_2022_03_15_50_PM_41390442/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 18 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{2 a^{2}}{\sqrt{8 a^{2}+x^{2}}}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 715
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 * a^{\wedge} 2 / \operatorname{sqrt}\left(x^{\wedge} 2+8 * a^{\wedge} 2\right), y(x)\right.$, singsol $\left.=a l l\right)$
$512\left(-\frac{33\left(a^{4}+\frac{23}{66} a^{2} x^{2}+\frac{1}{66} x^{4}\right) x \sqrt{8 a^{2}+x^{2}}}{64}+a^{6}+\frac{75 a^{4} x^{2}}{64}+\frac{27 a^{2} x^{4}}{128}+\frac{x^{6}}{128}\right) e^{-\frac{(-y(x)+x)^{2}\left(-64 \sqrt{8 a^{2}+x^{2}} a^{6}-108 \sqrt{8 a^{2}+x^{2}} a^{4} x^{2}-25 \sqrt{8 a^{2}+}\right.}{2\left(128 a^{6}+150 a^{4} x^{2}-66 \sqrt{8 a^{2}+x^{2}} a^{4} x+27 a^{2} x^{4}-23 \sqrt{8 a^{2}+x^{2}}\right.}}$
$=0$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y\right.$ ' $[x]-y[x]==2 * a^{\wedge} 2 /$ Sqrt $\left[x^{\wedge} 2+8 * a^{\wedge} 2\right], y[x], x$, IncludeSingularSolutions \rightarrow True]
Not solved

22.19 problem 19

Internal problem ID [10668]
Internal file name [OUTPUT/9615_Monday_June_06_2022_03_15_54_PM_62818123/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=2 x+\frac{A}{x^{2}}
$$

Unable to determine ODE type.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 170
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 * x+A * x^{\wedge}(-2), y(x), \quad\right.$ singsol=all)
$6\left(\sqrt{3} \operatorname{arctanh}\left(\frac{\sqrt{\frac{x\left(A^{2}\right)^{\frac{1}{3}}}{A}}(-2 x+y(x))}{\sqrt{\frac{\left(4 x^{3}-4 y(x) x^{2}+y(x)^{2} x+2 A\right)\left(A^{2}\right)^{\frac{1}{3}}}{y(x)^{2} A}} y(x)}\right) A+\frac{c_{1}}{6}\right) x \sqrt{\frac{x\left(A^{2}\right)^{\frac{1}{3}}}{A}}+2 \sqrt{3} y(x)\left(-x^{3}-\frac{y(x) x^{2}}{2}+\frac{y(x)^{2} x}{2}-\right.$

$$
\sqrt{\frac{x\left(A^{2}\right)^{\frac{1}{3}}}{A}} x
$$

$=0$
\checkmark Solution by Mathematica
Time used: 2.08 (sec). Leaf size: 233

```
DSolve[y[x]*y'[x]-y[x]==2*x+A*x^(-2),y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[c_{1}=\right.$
$-\frac{i \sqrt{-\frac{2 A+4 x^{3}-4 x^{2} y(x)+x y(x)^{2}}{A}}\left(-6 \sqrt{A} x^{3 / 2} \operatorname{arcsinh}\left(\frac{\sqrt{x}(2 x-y(x))}{\sqrt{2} \sqrt{A}}\right)+x^{2}(-y(x)) \sqrt{\frac{2 A+4 x^{3}-4 x^{2} y(x)+x y(x)^{2}}{A}}+x y(x)^{2}\right.}{4 \sqrt{A} x^{3 / 2} \sqrt{\frac{2 A+4 x^{3}-4 x^{2} y(x)+x y(x)^{2}}{A}}}$

22.20 problem 20

Internal problem ID [10669]
Internal file name [OUTPUT/9616_Monday_June_06_2022_03_15_55_PM_70549492/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=-\frac{6 X}{25}+\frac{2 A\left(2 \sqrt{x}+19 A+\frac{6 A^{2}}{\sqrt{x}}\right)}{25}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
    Looking for potential symmetries
    Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-A*y(x)*(3*A^2-x)/(19*A^2*x^(3/2)+6*A^3*x-
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }166
, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/24)*(24*A^3*y(x)-38*A^2*x+6*X*x-25*x^2
```

X Solution by Maple
dsolve $\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-6 / 25 * x+2 / 25 * A *\left(2 * x^{\wedge}(1 / 2)+19 * A+6 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.$, singsol $=a$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * y\right.$ ' $[x]-y[x]==-6 / 25 * X+2 / 25 * A *\left(2 * x^{\wedge}(1 / 2)+19 * A+6 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x$, IncludeSingula

Not solved

22.21 problem 21

Internal problem ID [10670]
Internal file name [OUTPUT/9617_Monday_June_06_2022_03_16_03_PM_37437657/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form $y y^{\prime}-y=f(x)$. subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type

```
[[_Abel, `2nd type`, `class B`]]
```

Unable to solve or complete the solution.

$$
y y^{\prime}-y=\frac{3 x}{8}+\frac{3 \sqrt{a^{2}+x^{2}}}{8}-\frac{a^{2}}{16 \sqrt{a^{2}+x^{2}}}
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(6*(a^2+x^2)^(1/2)*a^2+6*(a^2+x^2)^(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)-2*x)/x, y(x)` *** Sublevel 2 *
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1663
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*(5*y(x)-6*x)/x, y(x)\dagger *** Subl

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=3 / 8 * x+3 / 8 * \operatorname{sqrt}\left(x^{\wedge} 2+a^{\wedge} 2\right)-a^{\wedge} 2 /\left(16 * \operatorname{sqrt}\left(x^{\wedge} 2+a^{\wedge} 2\right)\right), y(x), \quad\right.\) singsol \(=a\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==3 / 8 * x+3 / 8 * \operatorname{Sqrt}\left[x^{\wedge} 2+a^{\wedge} 2\right]-a^{\wedge} 2 /\left(16 * \operatorname{Sqrt}\left[x^{\wedge} 2+a^{\wedge} 2\right]\right), y[x], x\right.\), IncludeSingula

Not solved

\subsection*{22.22 problem 22}

Internal problem ID [10671]
Internal file name [OUTPUT/9618_Monday_June_06_2022_03_16_06_PM_10022587/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{4 x}{25}+\frac{A}{\sqrt{x}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 270
```

dsolve(y(x)*diff(y(x),x)-y(x)=-4/25*x+A*x^(-1/2),y(x), singsol=all)

```
\(625 \sqrt{A x^{\frac{3}{2}}} c_{1}\left(-\frac{A y(x)^{2} \sqrt{x}}{2}+\frac{16 x^{4}}{625}-\frac{16 x^{3} y(x)}{125}+\frac{6 y(x)^{2} x^{2}}{25}-\frac{x y(x)^{3}}{5}+\frac{y(x)^{4}}{16}+A^{2} x+\frac{4 A y(x) x^{\frac{3}{2}}}{5}-\frac{8 A x^{\frac{5}{2}}}{25}\right) \sqrt{\frac{A \sqrt{x}-\frac{4}{}}{\sqrt{2}}}\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-4 / 25 * x+A * x^{\wedge}(-1 / 2), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{22.23 problem 23}

Internal problem ID [10672]
Internal file name [OUTPUT/9619_Monday_June_06_2022_03_16_07_PM_474942/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{9 x}{100}+\frac{A}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 581
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-9 / 100 * x+A * x^{\wedge}(-5 / 3), y(x)\right.\), singsol=all)

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 60.566 (sec). Leaf size: 7909
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-9 / 100 * x+A * x^{\wedge}(-5 / 3), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
Too large to display

\subsection*{22.24 problem 24}

Internal problem ID [10673]
Internal file name [OUTPUT/9620_Monday_June_06_2022_03_16_08_PM_55707895/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{2 A\left(5 \sqrt{x}+34 A+\frac{15 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 270
```

dsolve(y(x)*diff (y(x),x)-y(x)=-12/49*x+2/49*A*(5*x^(1/2)+34*A+15*A^ 2*x^(-1/2)),y(x), singsol

```
\[
\frac{(3 A-\sqrt{x})\left(36 A^{4}+120 A^{3} \sqrt{x}-80 A x^{\frac{3}{2}}+52 A^{2} x+84 A^{2} y(x)+140 A \sqrt{x} y(x)+16 x^{2}-56 y(x) x+49 y( \right.}{8 \sqrt{-\frac{(3 A-\sqrt{x})^{2}}{6 A^{2}-2 A \sqrt{x}+y(x)}}\left(\frac{15 A^{2}+4 A \sqrt{x}-3 x+7 y(x)}{6 A^{2}-2 A \sqrt{x}+y(x)}\right)^{\frac{3}{2}}\left(6 A^{2}-2 A \sqrt{x}+y(x)\right)^{3} A}
\]
\[
+\frac{\left(-54 A^{2}-6 A \sqrt{x}+8 x-21 y(x)\right) \sqrt{-\frac{(3 A-\sqrt{x})^{2}}{6 A^{2}-2 A \sqrt{x}+y(x)}}}{\sqrt{\frac{15 A^{2}+4 A \sqrt{x}-3 x+7 y(x)}{6 A^{2}-2 A \sqrt{x}+y(x)}}\left(36 A^{2}-12 A \sqrt{x}+6 y(x)\right)}+c_{1}=0
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-12 / 49 * x+2 / 49 * A *\left(5 * x^{\wedge}(1 / 2)+34 * A+15 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\), IncludeSingu

Not solved

\subsection*{22.25 problem 25}

Internal problem ID [10674]
Internal file name [OUTPUT/9621_Monday_June_06_2022_03_16_10_PM_91589618/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{A\left(25 \sqrt{x}+41 A+\frac{10 A^{2}}{\sqrt{x}}\right)}{98}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 1531
```

dsolve(y(x)*diff (y(x),x)-y(x)=-12/49*x+1/98*A*(25*x^(1/2)+41*A+10*A^2*x^(-1/2)),y(x), singso

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==-12 / 49 * x+1 / 98 * A *\left(25 * x^{\wedge}(1 / 2)+41 * A+10 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSing

Not solved

\subsection*{22.26 problem 26}

Internal problem ID [10675]
Internal file name [OUTPUT/9622_Monday_June_06_2022_03_16_12_PM_56059788/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{2 x}{9}+\frac{A}{\sqrt{x}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 134
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-2 / 9 * x+A * x^{\wedge}(-1 / 2), y(x)\right.\), singsol=all)
\(y(x)\)
\(=\frac{\sqrt{x}\left(\left(27 \tan \left(\operatorname{RootOf}\left(183^{\frac{5}{6}} 2^{\frac{1}{3}}\left(\int \frac{\left(\frac{A}{x^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{x}}{-2 x^{\frac{3}{2}}+9 A} d x\right)+\ln \left(-8 \sqrt{3} \sin \left(\_Z\right) \cos \left(\_Z\right)^{3}-8 \cos \left(\_Z\right)^{4}-4\right.\right.\right.\right.\right.}{23^{\frac{5}{6}} 2^{\frac{1}{3}}\left(-2 x^{\frac{3}{2}}\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.355 (sec). Leaf size: 282
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-2 / 9 * x+A * x^{\wedge}(-1 / 2), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]

Solve \(\left[\log \left(9 A^{2 / 3}+3 \sqrt[3]{6} \sqrt[3]{A} \sqrt{x}\right.\right.\)
\(\left.+6^{2 / 3} x\right)+2 \sqrt{3} \arctan \left(\frac{-\frac{6 \sqrt[3]{6}\left(9 A-2 x^{3 / 2}+3 \sqrt{x} y(x)\right)}{\sqrt[3]{A} y(x)}-27}{27 \sqrt{3}}\right)+2 \sqrt{3} \arctan \left(\frac{\frac{2 \sqrt[3]{6} \sqrt{x}}{\sqrt[3]{A}}+3}{3 \sqrt{3}}\right)+2 \log \left(\frac{1}{27}\left(27-\frac{3}{}\right.\right.\)

\subsection*{22.27 problem 27}

Internal problem ID [10676]
Internal file name [OUTPUT/9623_Monday_June_06_2022_03_16_17_PM_43567883/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{5 x}{36}+\frac{A}{x^{\frac{7}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(25*x^(12/5)+252*A)/(-5*x^(17)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-5 / 36 * \mathrm{x}+\mathrm{A} * \mathrm{x}^{\wedge}(-7 / 5), \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-5 / 36 * x+A * x^{\wedge}(-7 / 5), y[x], x\), IncludeSingularSolutions \(->\) True]

Not solved

\subsection*{22.28 problem 28}

Internal problem ID [10677]
Internal file name [OUTPUT/9624_Monday_June_06_2022_03_16_20_PM_40767146/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{6 A\left(-3 \sqrt{x}+23 A+\frac{12 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(12*A^3+3*A*x+4*x^(3/2))/(23*A
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(A*y(x)-x)/(A*x), y(x)` *** Sublevel Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear1679 <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+(1/144)*(144*A^3*y(x)-138*A^2*x-49*x^2)/(

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-12 / 49 * \mathrm{x}+6 / 49 * \mathrm{~A} *\left(-3 * \mathrm{x}^{\wedge}(1 / 2)+23 * \mathrm{~A}+12 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(-1 / 2)\right), \mathrm{y}(\mathrm{x})\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-12 / 49 * x+6 / 49 * A *\left(-3 * x^{\wedge}(1 / 2)+23 * A+12 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSing

Not solved

\subsection*{22.29 problem 29}

Internal problem ID [10678]
Internal file name [OUTPUT/9625_Monday_June_06_2022_03_16_24_PM_71158636/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{30 x}{121}+\frac{3 A\left(21 \sqrt{x}+35 A+\frac{6 A^{2}}{\sqrt{x}}\right)}{242}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(6*A^3-21*A*x+40*x^(3/2))/(35*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*(7*A*y(x)+10*x)/(A*x), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1682
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/36)*(36*A^3*y(x)-105*A^2*x-242*x^2)/(A

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-30 / 121 * \mathrm{x}+3 / 242 * \mathrm{~A} *\left(21 * \mathrm{x}^{\wedge}(1 / 2)+35 * \mathrm{~A}+6 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(-1 / 2)\right), \mathrm{y}(\mathrm{x})\right.\), sings

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y \([\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==-30 / 121 * \mathrm{x}+3 / 242 * \mathrm{~A} *\left(21 * \mathrm{x}^{\wedge}(1 / 2)+35 * \mathrm{~A}+6 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(-1 / 2)\right), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSin

Not solved

\subsection*{22.30 problem 30}

Internal problem ID [10679]
Internal file name [OUTPUT/9626_Monday_June_06_2022_03_16_31_PM_19939040/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{3 x}{16}+\frac{A}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff(y(x),x)-y(x)=-3/16*x+A*x^(-5/3),y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-3 / 16 * x+A * x^{\wedge}(-5 / 3), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{22.31 problem 31}

Internal problem ID [10680]
Internal file name [OUTPUT/9627_Monday_June_06_2022_03_16_41_PM_51445858/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{4 A\left(-10 \sqrt{x}+27 A+\frac{10 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x) -y(x)*(5*A^3+5*A*x+3*x^(3/2))/(10*A^3*x+27
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }168
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/20)*(20*A*y(x)-9*x)/(A*x), y(x)`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-12 / 49 * x+4 / 49 * A *\left(-10 * x^{\wedge}(1 / 2)+27 * A+10 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), sings

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-12 / 49 * x+4 / 49 * A *\left(-10 * x^{\wedge}(1 / 2)+27 * A+10 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSin

Not solved

\subsection*{22.32 problem 32}

Internal problem ID [10681]
Internal file name [OUTPUT/9628_Monday_June_06_2022_03_16_45_PM_69846556/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{A}{\sqrt{x}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 222
```

dsolve(y(x)*diff(y(x),x)-y(x)=A*x^(-1/2),y(x), singsol=all)

```
\[
\frac{\left(\operatorname{AiryBi}\left(-\frac{2^{\frac{1}{3}}\left(-A^{2} x^{\frac{3}{2}}\right)^{\frac{2}{3}}(y(x)-x)}{2 A^{2} x}\right) c_{1}-\operatorname{AiryAi}\left(-\frac{2^{\frac{1}{3}}\left(-A^{2} x^{\frac{3}{2}}\right)^{\frac{2}{3}}(y(x)-x)}{2 A^{2} x}\right)\right) 2^{\frac{2}{3}}\left(-A^{2} x^{\frac{3}{2}}\right)^{\frac{1}{3}}-2 A(-\operatorname{AiryBi}}{2^{\frac{2}{3}}\left(-A^{2} x^{\frac{3}{2}}\right)^{\frac{1}{3}} \operatorname{AiryBi}\left(-\frac{2^{\frac{1}{3}}\left(-A^{2} x^{\frac{3}{2}}\right)^{\frac{2}{3}}(y(x)-x)}{2 A^{2} x}\right)+2 \operatorname{AiryBi}(1,}
\]
\[
=0
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.566 (sec). Leaf size: 139
DSolve \(\left[y[x] * y^{\prime}[x]-y[x]==A * x^{\wedge}(-1 / 2), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& \text { Solve }\left[\frac{\sqrt[3]{-1} 2^{2 / 3} \sqrt{x} \operatorname{AiryAi}\left(\frac{\left(-\frac{1}{2}\right)^{2 / 3}(x-y(x))}{A^{2 / 3}}\right)+2 \sqrt[3]{A} \operatorname{AiryAiPrime}\left(\frac{\left(-\frac{1}{2}\right)^{2 / 3}(x-y(x))}{A^{2 / 3}}\right)}{\sqrt[3]{-1} 2^{2 / 3} \sqrt{x} \operatorname{AiryBi}\left(\frac{\left(-\frac{1}{2}\right)^{2 / 3}(x-y(x))}{A^{2 / 3}}\right)+2 \sqrt[3]{A} \operatorname{AiryBiPrime}\left(\frac{\left(-\frac{1}{2}\right)^{2 / 3}(x-y(x))}{A^{2 / 3}}\right)}\right. \\
& +c_{1}=0, y(x)
\end{aligned}
\]

\subsection*{22.33 problem 33}

Internal problem ID [10682]
Internal file name [OUTPUT/9629_Monday_June_06_2022_03_16_46_PM_8383073/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{A}{x^{2}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 279
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=A * x^{\wedge}(-2), y(x)\right.\), singsol=all)
\(-\left(\operatorname{AiryBi}\left(-\frac{\left(x^{3}-2 y(x) x^{2}+y(x)^{2} x+2 A\right) 2^{\frac{2}{3}}}{4\left(-A^{2}\right)^{\frac{1}{3}} x}\right) c_{1}-\operatorname{AiryAi}\left(-\frac{\left(x^{3}-2 y(x) x^{2}+y(x)^{2} x+2 A\right) 2^{\frac{2}{3}}}{4\left(-A^{2}\right)^{\frac{1}{3}} x}\right)\right) A(-y(x)+x) 2^{\frac{1}{3}}+2(\) \(-A 2^{\frac{1}{3}}(-y(x)+x) \operatorname{AiryBi}\left(-\frac{\left(x^{3}-2 y(x) x^{2}+y(x)^{2} x+2 A\right) 2^{\frac{2}{3}}}{4\left(-A^{2}\right)^{\frac{1}{3}} x}\right)+2\)
\(=0\)
Solution by Mathematica
Time used: 1.053 (sec). Leaf size: 201
DSolve[y[x]*y'[x]-y[x]==A*x-(-2),y[x],x,IncludeSingularSolutions -> True]

\(\left.+c_{1}=0, y(x)\right]\)

\subsection*{22.34 problem 34}

Internal problem ID [10683]
Internal file name [OUTPUT/9630_Monday_June_06_2022_03_16_47_PM_24109604/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=A(2+n)\left(\sqrt{x}+2(2+n) A+\frac{(1+n)(n+3) A^{2}}{\sqrt{x}}\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 410
```

dsolve(y(x)*diff(y(x),x)-y(x)=A*(n+2)*(x^(1/2)+2*(n+2)*A+(n+1)*(n+3)*A^2*x^(-1/2)),y(x), sin

```

\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==A *(n+2) *\left(x^{\wedge}(1 / 2)+2 *(n+2) * A+(n+1) *(n+3) * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), Include \(:\)

Not solved

\subsection*{22.35 problem 35}

Internal problem ID [10684]
Internal file name [OUTPUT/9631_Monday_June_06_2022_03_16_49_PM_20236254/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=A(2+n)\left(\sqrt{x}+2(2+n) A+\frac{(3+2 n) A^{2}}{\sqrt{x}}\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 474
```

dsolve(y(x)*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})-\textrm{y}(\textrm{x})=\textrm{A}*(\textrm{n}+2)*(\mp@subsup{x}{}{\wedge}(1/2)+2*(n+2)*A+(2*n+3)*\mp@subsup{A}{}{\wedge}2*\mp@subsup{x}{}{\wedge}(-1/2)),y(x), singsol

```
\[
\frac{-(n+2)\left(\operatorname{BesselI}\left(\sqrt{\frac{(n+1)^{2}}{(n+2)^{2}}}+1,-\sqrt{\frac{2(n+2) A \sqrt{x}+(2 n+3) A^{2}+x-y(x)}{(n+2)^{2} A^{2}}}\right) c_{1}+\operatorname{BesselK}\left(\sqrt{\frac{(n+1)^{2}}{(n+2)^{2}}}+1,-\sqrt{\frac{2(n+2) A \sqrt{ }}{}}\right.\right.}{-A \sqrt{\frac{2(n+2) A \sqrt{x}+(2 n+3) A^{2}+x-y(x)}{(n+2)^{2} A^{2}}}(n+2) \operatorname{Besse}}
\]
\(=0\)
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==\mathrm{A} *(\mathrm{n}+2) *\left(\mathrm{x}^{\wedge}(1 / 2)+2 *(\mathrm{n}+2) * \mathrm{~A}+(2 * \mathrm{n}+3) * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(-1 / 2)\right), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingu

Not solved

\subsection*{22.36 problem 36}

Internal problem ID [10685]
Internal file name [OUTPUT/9632_Monday_June_06_2022_03_16_55_PM_1338498/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=A \sqrt{x}+2 A^{2}+\frac{B}{\sqrt{x}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 407
```

dsolve(y(x)*diff(y(x),x)-y(x)=A*x^(1/2)+2*A^2+B*x^(-1/2),y(x), singsol=all)

```
\(-c_{1}\left(\sqrt{\frac{A^{3}-B}{A^{3}}} A-A-\sqrt{x}\right) \operatorname{BesselI}\left(\sqrt{\frac{A^{3}-B}{A^{3}}},-\sqrt{\frac{2 A^{2} \sqrt{x}-y(x) A+x A+B}{A^{3}}}\right)+A \sqrt{\frac{2 A^{2} \sqrt{x}-y(x) A+x A+B}{A^{3}}}\) BesselI \((\)
                                    \(A \sqrt{\frac{2 A^{2} \sqrt{x}-y(x) A+x A+B}{A^{3}}}\) BesselI \((\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]-y[x]==A*x^(1/2)+2*A^2+B*x^(-1/2),y[x],x,IncludeSingularSolutions -> True]

```

Not solved

\subsection*{22.37 problem 37}

Internal problem ID [10686]
Internal file name [OUTPUT/9633_Monday_June_06_2022_03_16_58_PM_33792140/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=2 A^{2}-A \sqrt{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 228
```

dsolve(y(x)*diff(y(x),x)-y(x)=2*A^2-A*x^(1/2),y(x), singsol=all)

```
\((-2 A+\sqrt{x}) \operatorname{BesselK}\left(1,-\sqrt{-\frac{2 A \sqrt{x}-x+y(x)}{A^{2}}}\right)+\operatorname{BesselK}\left(0,-\sqrt{-\frac{2 A \sqrt{x}-x+y(x)}{A^{2}}}\right) \sqrt{-\frac{2 A \sqrt{x}-x+y(x)}{A^{2}}} A+c_{1}(\) \(A\) BesselI \(\left(0, \sqrt{-\frac{2 A \sqrt{x}-x+y(x)}{A^{2}}}\right) \sqrt{-\frac{2 A \sqrt{x}-x+y(x)}{A^{2}}}+\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]-y[x]==2*A^2-A*x^(1/2),y[x],x,IncludeSingularSolutions -> True]

```

Not solved

\subsection*{22.38 problem 38}

Internal problem ID [10687]
Internal file name [OUTPUT/9634_Monday_June_06_2022_03_16_59_PM_96412727/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{x}{4}+\frac{6 A\left(\sqrt{x}+8 A+\frac{5 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(60*A^3-12*A*x+49*x^(3/2))/(120*A^3* Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/16)*(16*A*y(x)+49*x)/(A*x), y(x)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1701
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/60)*(60*A^3*y(x)-48*A^2*x-49*x^2)/(x*A

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-12 / 48 * x+6 / 49 * A *\left(x^{\wedge}(1 / 2)+8 * A+5 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), singsol=all

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-12 / 48 * x+6 / 49 * A *\left(x^{\wedge}(1 / 2)+8 * A+5 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingulars

Not solved

\subsection*{22.39 problem 39}

Internal problem ID [10688]
Internal file name [OUTPUT/9635_Monday_June_06_2022_03_17_03_PM_29636547/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{6 x}{25}+\frac{6 A\left(2 \sqrt{x}+7 A+\frac{4 A^{2}}{\sqrt{x}}\right)}{25}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{y}(\mathrm{x})^{`} \quad\) *** Sublevel 2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x}) *\left(2 * \mathrm{~A}^{\wedge} 3-\mathrm{A} * \mathrm{x}+\mathrm{x}^{\wedge}(3 / 2)\right) /\left(7 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(3 / 2)-\mathrm{x}\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1704
, --> Computing symmetries using: way = HINT
\(\rightarrow\) Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 4) *(4 * \mathrm{~A} * \mathrm{y}(\mathrm{x})+3 * \mathrm{x}) /(\mathrm{A} * \mathrm{x}), \mathrm{y}(\mathrm{x})^{-}\)

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-6 / 25 * x+6 / 25 * A *\left(2 * x^{\wedge}(1 / 2)+7 * A+4 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), singsol \(=a l\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-6 / 25 * x+6 / 25 * A *\left(2 * x^{\wedge}(1 / 2)+7 * A+4 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\), IncludeSingular

Not solved

\subsection*{22.40 problem 40}

Internal problem ID [10689]
Internal file name [OUTPUT/9636_Monday_June_06_2022_03_17_06_PM_3102030/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{3 x}{16}+\frac{3 A}{x^{\frac{1}{3}}}-\frac{12 A^{2}}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(4*x-3)*(diff(y(x), x))/(x*(x-1)
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- Riccati to 2nd Order successful
<- Abel successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 1488
```

dsolve(y(x)*diff(y(x),x)-y(x)=-3/16*x+3*A*x^(-1/3)-12*A^2*x^(-5/3),y(x), singsol=all)

```

\section*{Expression too large to display}
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-3 / 16 * x+3 * A * x^{\wedge}(-1 / 3)-12 * A^{\wedge} 2 * x^{\wedge}(-5 / 3), y[x], x\), IncludeSingularSolutions

Not solved

\subsection*{22.41 problem 41}

Internal problem ID [10690]
Internal file name [OUTPUT/9637_Monday_June_06_2022_03_17_13_PM_36887324/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{3 x}{8}+\frac{3 \sqrt{b^{2}+x^{2}}}{8}+\frac{3 b^{2}}{16 \sqrt{b^{2}+x^{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*(b^2+x^2)^(1/2)*b^2+2*(b^2+x^2)^(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/3)*(3*y(x)-2*x)/x, y(x)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1709
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=3 / 8 * x+3 / 8 *\right.\) sqrt \(\left(x^{\wedge} 2+b^{\wedge} 2\right)+3 * b^{\wedge} 2 /\left(16 *\right.\) sqrt \(\left.\left(x^{\wedge} 2+b^{\wedge} 2\right)\right), y(x)\), singsol

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==3 / 8 * x+3 / 8 * S q r t\left[x^{\wedge} 2+b^{\wedge} 2\right]+3 * b^{\wedge} 2 /\left(16 * \operatorname{Sqrt}\left[x^{\wedge} 2+b^{\wedge} 2\right]\right), y[x], x\right.\), IncludeSingu

Not solved

\subsection*{22.42 problem 42}

Internal problem ID [10691]
Internal file name [OUTPUT/9638_Monday_June_06_2022_03_17_16_PM_88301991/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{9 x}{32}+\frac{15 \sqrt{b^{2}+x^{2}}}{32}+\frac{3 b^{2}}{64 \sqrt{b^{2}+x^{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(6*(b^2+x^2)^(1/2)*b^2+6*(b^2+x^2)^(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/3)*(3*y(x)-10*x)/x, y(x)` *** Sub Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+(1/11)*(11*y(x)-6*x)/x, y(x)

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=9 / 32 * x+15 / 32 * \operatorname{sqrt}\left(x^{\wedge} 2+b^{\wedge} 2\right)+3 * b^{\wedge} 2 /\left(64 * \operatorname{sqrt}\left(x^{\wedge} 2+b{ }^{-} 2\right)\right), y(x)\right.\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==9 / 32 * x+15 / 32 * \operatorname{Sqrt}\left[x^{\wedge} 2+b^{\wedge} 2\right]+3 * b \wedge 2 /\left(64 * \operatorname{Sqrt}\left[x^{\wedge} 2+b^{\wedge} 2\right]\right), y[x], x\right.\), IncludeSi

Not solved

\subsection*{22.43 problem 43}

Internal problem ID [10692]
Internal file name [OUTPUT/9639_Monday_June_06_2022_03_17_22_PM_54791991/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 43.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{3 x}{32}-\frac{3 \sqrt{a^{2}+x^{2}}}{32}+\frac{15 a^{2}}{64 \sqrt{a^{2}+x^{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*(a^2+x^2)^(1/2)*a^2+2*(a^2+x^2)^(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/3)*(3*y(x)+2*x)/x, y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1715
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-3 / 32 * x-3 / 32 * \operatorname{sqrt}\left(x^{\wedge} 2+a^{\wedge} 2\right)+15 * a \wedge 2 /\left(64 * \operatorname{sqrt}\left(x^{\wedge} 2+a^{\wedge} 2\right)\right), y(x)\right.\), sin

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==-3 / 32 * x-3 / 32 * \operatorname{Sqrt}\left[x^{\wedge} 2+a^{\wedge} 2\right]+15 * a^{\wedge} 2 /\left(64 * \operatorname{Sqrt}\left[x^{\wedge} 2+a^{\wedge} 2\right]\right), y[x], x\right.\), IncludeS
Not solved

\subsection*{22.44 problem 44}

Internal problem ID [10693]
Internal file name [OUTPUT/9640_Monday_June_06_2022_03_17_25_PM_32058918/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=A x^{2}-\frac{9}{625 A}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 186
```

dsolve(y(x)*diff(y(x),x)-y(x)=A*x^2-9/625*A^(-1),y(x), singsol=all)

```
\(-\frac{1252^{\frac{5}{6}}\left(\frac{-46875 A^{2} y(x)^{2}+\left(37500 A^{2} x+4500 A\right) y(x)+31250\left(x A-\frac{3}{25}\right)\left(x A+\frac{3}{25}\right)^{2}}{(50 x A-125 y(x) A+6)^{2}}\right)^{\frac{1}{6}} A y(x) \sqrt{25 x A+3}}{2}+50\left(x A-\frac{5 y(x) A}{2}+\frac{3}{25}\right)\left(\frac{(25 x A}{50 x A-125}\right.\)
\[
\left(\frac{(25 x A+3)^{\frac{3}{2}}}{50 x A-125 y(x) A+6}\right)^{\frac{1}{3}}(50 x A-125 y(x) A+6)
\]
\[
=0
\]

Solution by Mathematica
Time used: 2.438 (sec). Leaf size: 198
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==A * x^{\wedge} 2-9 / 625 * A^{\wedge}(-1), y[x], x\right.\), IncludeSingularSolutions \(->\) True]


\subsection*{22.45 problem 45}

Internal problem ID [10694]
Internal file name [OUTPUT/9641_Monday_June_06_2022_03_17_26_PM_14824341/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{6}{25} x-A x^{2}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 132
```

dsolve(y(x)*diff(y(x),x)-y(x)=-6/25*x-A*x^2,y(x), singsol=all)

```
\(c_{1}\)
\[
\begin{aligned}
& +\frac{(2 x-5 y(x))\left(\int^{-\frac{10 \sqrt{-x A} x}{-2 x+5 y(x)}} \frac{\left(-a^{2}-6\right)^{\frac{1}{6}}}{-^{\frac{1}{3}}} d \_a\right)-\frac{5^{\frac{5}{6}}\left(\frac{-50 A x^{3}-12 x^{2}+60 y(x) x-75 y(x)^{2}}{(-2 x+5 y(x))^{2}}\right)^{\frac{1}{6}} 5^{\frac{2}{3}} \sqrt{-x A} y(x)}{2\left(-\frac{-x A x}{-2 x+5 y(x)}\right)^{\frac{1}{3}}}}{2 x-5 y(x)} \\
& =0
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.139 (sec). Leaf size: 162
DSolve[y[x]*y'[x]-y[x]==-6/25*x-A*x^2,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Solve \(\left[c_{1}=\frac{i \sqrt[6]{\frac{-2 x^{2}(25 A x+6)+60 x y(x)-75 y(x)^{2}}{A x^{3}}}\left(25 A x^{2}-\frac{\sqrt[6]{2} \sqrt[3]{5}(2 x-5 y(x)) \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}, \frac{5}{6}, \frac{3}{2},-\frac{3(2}{}\right.}{\sqrt[6]{\frac{2 x^{2}(25 A x+6)-60 x y(x)+75 y}{A x^{3}}}}\right.}{52^{2 / 3} \sqrt{3} \sqrt[3]{5} \sqrt{A} x^{3 / 2}}\right.\)

\subsection*{22.46 problem 46}

Internal problem ID [10695]
Internal file name [OUTPUT/9642_Monday_June_06_2022_03_17_27_PM_31935674/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{6}{25} x-A x^{2}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 180
dsolve( \(y(x) * \operatorname{diff}(y(x), x)-y(x)=6 / 25 * x-A * x^{\wedge} 2, y(x)\), singsol=all)
\[
\begin{aligned}
& 125\left(5^{\frac{1}{3}} 2^{\frac{5}{6}}\left(-\frac{1250\left(\frac{3 y(x)^{2} A}{2}+\left(-\frac{6 x A}{5}+\frac{36}{125}\right) y(x)+\left(x A-\frac{6}{25}\right)^{2} x\right) A}{(50 x A-125 y(x) A-12)^{2}}\right)^{\frac{1}{6}} A y(x) \sqrt{-25 x A+6}-\frac{4\left(x A-\frac{5 y(x) A}{2}-\frac{6}{25}\right)\left(\int^{\frac{2(-25}{-50 x A+1}}\right.}{-\left(\frac{(-25 x A+6)^{\frac{3}{2}}}{-50 x A+125 y(x) A+12}\right)^{\frac{1}{3}}(100 x A-250 y(x) A-24)}\right. \\
& =0 \\
& \boldsymbol{J} \text { Solution by Mathematica }
\end{aligned}
\]

Time used: 3.324 (sec). Leaf size: 189
```

DSolve[y[x]*y'[x]-y[x]==6/25*x-A*x^2,y[x],x,IncludeSingularSolutions -> True]

```


\subsection*{22.47 problem 47}

Internal problem ID [10696]
Internal file name [OUTPUT/9643_Monday_June_06_2022_03_17_27_PM_31172118/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=12 x+\frac{A}{x^{\frac{5}{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 110
```

dsolve(y(x)*diff(y(x),x)-y(x)=12*x+A*x^(-5/2),y(x), singsol=all)

```
\(c_{1}\)

\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

DSolve \(\left[y[x] * y '[x]-y[x]==12 * x+A * x^{\wedge}(-5 / 2), y[x], x\right.\), IncludeSingularSolutions \(->\) True]

Not solved

\subsection*{22.48 problem 48}

Internal problem ID [10697]
Internal file name [OUTPUT/9644_Monday_June_06_2022_03_17_29_PM_17392824/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{63 x}{4}+\frac{A}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/3)*y(x)*(-189*x^(8/3)+20*A)/(63*x^(11/
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=63 / 4 * x+A * x^{\wedge}(-5 / 3), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==63 / 4 * x+A * x^{\wedge}(-5 / 3), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{22.49 problem 49}

Internal problem ID [10698]
Internal file name [OUTPUT/9645_Monday_June_06_2022_03_17_32_PM_34499080/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=2 x+2 A\left(10 \sqrt{x}+31 A+\frac{30 A^{2}}{\sqrt{x}}\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 196
```

dsolve(y(x)*diff(y(x),x)-y(x)=2*x+2*A*(10*x^

```
\[
\begin{aligned}
& c_{1}- \frac{(3 A+\sqrt{x}) 2^{\frac{1}{3}}\left(\frac{12 A^{2}+10 A \sqrt{x}+2 x-y(x)}{6 A^{2}+2 A \sqrt{x}+y(x)}\right)^{\frac{1}{3}}\left(\frac{15 A^{2}+8 A \sqrt{x}+x+y(x)}{6 A^{2}+2 A \sqrt{x}+y(x)}\right)^{\frac{1}{6}} y(x)}{4 \sqrt{\frac{(3 A+\sqrt{x})^{2}}{6 A^{2}+2 A \sqrt{x}+y(x)}}\left(6 A^{2}+2 A \sqrt{x}+y(x)\right) A} \\
&-\left(\int^{\frac{6 A \sqrt{x}+2 x-3 y(x)}{12 A^{2}+4 A \sqrt{x}+2 y(x)}} \frac{(-a+1)^{\frac{1}{3}}\left(2 \_a+5\right)^{\frac{1}{6}}}{\sqrt{2 \_a+3}} d \_a\right)=0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y^{\prime}[x]-y[x]==2 * x+2 * A *\left(10 * x^{\wedge}(1 / 2)+31 * A+30 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingularSolu

Not solved

\subsection*{22.50 problem 50}

Internal problem ID [10699]
Internal file name [OUTPUT/9646_Monday_June_06_2022_03_17_33_PM_58193520/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=2 x+2 A\left(-10 \sqrt{x}+19 A+\frac{30 A^{2}}{\sqrt{x}}\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(15*A^3+5*A*x-x^(3/2))/(30*A^3*x+19*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/20)*(20*A*y(x)+3*x)/(A*x), y(x)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear1731 <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+(1/120)*(120*A^3*y(x) -38*A`2*x-x^2)/(A^3*

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 * x+2 * A *\left(-10 * x^{\wedge}(1 / 2)+19 * A+30 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==2 * x+2 * A *\left(-10 * x^{\wedge}(1 / 2)+19 * A+30 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingularSol

Not solved

\subsection*{22.51 problem 51}

Internal problem ID [10700]
Internal file name [OUTPUT/9647_Monday_June_06_2022_03_17_37_PM_70045049/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{28 x}{121}+\frac{2 A\left(5 \sqrt{x}+106 A+\frac{65 A^{2}}{\sqrt{x}}\right)}{121}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(65*A^3-5*A*x+28*x^(3/2))/(106
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }173
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*(5*A*y(x)+21*x)/(A*x), y(x)

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-28 / 121 * x+2 / 121 * A *\left(5 * x^{\wedge}(1 / 2)+106 * A+65 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-28 / 121 * x+2 / 121 * A *\left(5 * x^{\wedge}(1 / 2)+106 * A+65 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSi

Not solved

\subsection*{22.52 problem 52}

Internal problem ID [10701]
Internal file name [OUTPUT/9648_Monday_June_06_2022_03_17_41_PM_60740551/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 52.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{A\left(5 \sqrt{x}+262 A+\frac{65 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 4129
```

dsolve(y(x)*diff (y(x),x)-y(x)=-12/49*x+1/49*A*(5*x^(1/2)+262*A+65*A^2*x^(-1/2)),y(x), singso

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-28 / 121 * x+2 / 121 * A *\left(5 * x^{\wedge}(1 / 2)+262 * A+65 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\), IncludeSi
Not solved

\subsection*{22.53 problem 53}

Internal problem ID [10702]
Internal file name [OUTPUT/9649_Monday_June_06_2022_03_17_48_PM_70219559/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 53.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+A \sqrt{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 133
```

dsolve(y(x)*diff(y(x),x)-y(x)=-12/49*x+A*x^(1/2),y(x), singsol=all)

```
\(196^{\frac{5}{6}}\left(\left(\frac{4\left(x-\frac{7 y(x)}{4}\right) \sqrt{3} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{7}{6}\right],\left[\frac{3}{2}\right], \frac{3(-4 x+7 y(x))^{2}}{196 x^{\frac{3}{2}} A}\right)}{7}+\sqrt{x} \sqrt{A \sqrt{x}} c_{1}\right) 196^{\frac{1}{6}}\left(\frac{\left.\left.A x^{\frac{3}{2}}-\frac{12\left(x-\frac{7 y(x)}{4}\right)^{2}}{x^{\frac{3}{2}} A}\right)^{\frac{1}{6}}-714^{\frac{1}{3}}\right) .}{}\right.\right.\)
\[
196\left(\frac{A x^{\frac{3}{2}}-\frac{12\left(x-\frac{7 y(x)}{4}\right)^{2}}{49}}{x^{\frac{3}{2}} A}\right)^{\frac{1}{6}} \sqrt{A \sqrt{x}} \sqrt{x}
\]
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-12 / 49 * x+A * x^{\wedge}(1 / 2), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow>\) True]

Not solved

\subsection*{22.54 problem 54}

Internal problem ID [10703]
Internal file name [OUTPUT/9650_Monday_June_06_2022_03_17_50_PM_13823638/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=6 x+\frac{A}{x^{4}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 217
```

dsolve(y(x)*diff(y(x),x)-y(x)=6*x+A*x^(-4),y(x), singsol=all)

```
\(c_{1}\)

\(=0\)
\(\checkmark\) Solution by Mathematica
Time used: 2.079 (sec). Leaf size: 213
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==6 * x+A * x^{\wedge}(-4), y[x], x\), IncludeSingularSolutions \(->\) True]

Solve \(\left[c_{1}=\frac{i\left(-\frac{2 A+12 x^{5}+12 x^{4} y(x)+3 x^{3} y(x)^{2}}{A}\right)^{5 / 6}\left(-102^{5 / 6} x^{5} \text { Hypergeometric2F1 }\left(\frac{1}{6}, \frac{1}{2}, \frac{3}{2},-\frac{3 x^{3}(2 x+y(x))^{2}}{2 A}\right)-5\right.}{2 \sqrt[3]{2} \sqrt{3} \sqrt{A} x^{5 / 2}\left(\frac{2 A+12 x^{2}}{2}\right.}\right.\)

\subsection*{22.55 problem 55}

Internal problem ID [10704]
Internal file name [OUTPUT/9651_Monday_June_06_2022_03_17_51_PM_68427508/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 55.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=20 x+\frac{A}{\sqrt{x}}
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(-40*x^(3/2)+A)/(20*x^(5/2)+A*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/2)*(2*A*y(x)-x^2)/(A*x), y(x)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=20 * x+A * x^{\wedge}(-1 / 2), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x]*y'[x]-y[x]==20*x+A*x(-1/2),y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{22.56 problem 56}

Internal problem ID [10705]
Internal file name [OUTPUT/9652_Monday_June_06_2022_03_17_53_PM_60286823/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{15 x}{4}+\frac{A}{x^{7}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=15 / 4 * x+A * x^{\wedge}(-7), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x]*y'[x]-y[x]==15/4*x+A*x^(-7),y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{22.57 problem 57}

Internal problem ID [10706]
Internal file name [OUTPUT/9653_Monday_June_06_2022_03_17_55_PM_19715917/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 57.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{10 x}{49}+\frac{2 A\left(4 \sqrt{x}+61 A+\frac{12 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 200
```

dsolve(y(x)*diff (y(x),x)-y(x)=-10/49*x+2/49*A*(4*x^(1/2)+61*A+12*A^2*x^

```
\[
\begin{aligned}
c_{1} & -\frac{(3 A+\sqrt{x}) 2^{\frac{2}{3}}\left(\frac{3 A^{2}+16 A \sqrt{x}+5 x-7 y(x)}{6 A^{2}+2 A \sqrt{x}+y(x)}\right)^{\frac{5}{6}} y(x)}{2 \sqrt{\frac{(3 A+\sqrt{x})^{2}}{6 A^{2}+2 A \sqrt{x}+y(x)}}\left(\frac{-24 A^{2}-2 A \sqrt{x}+2 x-7 y(x)}{6 A^{2}+2 A \sqrt{x}+y(x)}\right)^{\frac{1}{3}}\left(6 A^{2}+2 A \sqrt{x}+y(x)\right) A} \\
& -\left(\int^{\frac{6 A \sqrt{x}+2 x-3 y(x)}{12 A^{2}+4 A \sqrt{x}+2 y(x)}} \frac{\left(10 \_a+1\right)^{\frac{5}{6}}}{\sqrt{2 \_a+3}\left(\_a-2\right)^{\frac{1}{3}}} d \_a\right)=0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==-10 / 49 * x+2 / 49 * A *\left(4 * x^{\wedge}(1 / 2)+61 * A+12 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingu

Not solved

\subsection*{22.58 problem 58}

Internal problem ID [10707]
Internal file name [OUTPUT/9654_Monday_June_06_2022_03_17_57_PM_56089828/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 58.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+\frac{2 A\left(\sqrt{x}+166 A+\frac{55 A^{2}}{\sqrt{x}}\right)}{49}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 686
```

dsolve(y(x)*diff(y(x),x)-y(x)=-12/49*x+2/49*A*(x^(1/2)+166*A+55*A^2*x^(-1/2)),y(x), singsol=

```
\(c_{1}\)
\[
\begin{aligned}
& 3 \sqrt{6} 4^{\frac{2}{3}}\left(\left(\sqrt{-35 A^{2}-7 A \sqrt{x}}(A(3+\right.\right. \\
& x)) \sqrt{-35 A^{2}-7 A \sqrt{x}}+350\left(-\frac{\sqrt{6} x}{25}+\right.
\end{aligned}
\]
\[
=0
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]-y[x]==-12 / 49 * x+2 / 49 * A *\left(x^{\wedge}(1 / 2)+166 * A+55 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingul

Not solved

\subsection*{22.59 problem 59}

Internal problem ID [10708]
Internal file name [OUTPUT/9655_Monday_June_06_2022_03_18_01_PM_51997936/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{4 x}{25}+\frac{A\left(7 \sqrt{x}+49 A+\frac{6 A^{2}}{\sqrt{x}}\right)}{50}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(6*A^3-7*A*x+16*x^(3/2))/(49*A
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }175
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*(7*A*y(x)+12*x)/(A*x), y(x)`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-4 / 25 * x+1 / 50 * A *\left(7 * x^{\wedge}(1 / 2)+49 * A+6 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y(x)\right.\), singsol \(=a\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-4 / 25 * x+1 / 50 * A *\left(7 * x^{\wedge}(1 / 2)+49 * A+6 * A^{\wedge} 2 * x^{\wedge}(-1 / 2)\right), y[x], x\right.\), IncludeSingula

Not solved

\subsection*{22.60 problem 60}

Internal problem ID [10709]
Internal file name [OUTPUT/9656_Monday_June_06_2022_03_18_05_PM_56043275/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 60.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{15 x}{4}+\frac{6 A}{x^{\frac{1}{3}}}-\frac{3 A^{2}}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/3)*y(x)*(15*x^(8/3)-8*A*x^(4/3)+20*A^2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful , `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=15 / 4 * x+6 * A * x^{\wedge}(-1 / 3)-3 * A^{\wedge} 2 * x^{\wedge}(-5 / 3), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==15 / 4 * x+6 * A * x^{\wedge}(-1 / 3)-3 * A^{\wedge} 2 * x^{\wedge}(-5 / 3), y[x], x\), IncludeSingularSolutions
Not solved

\subsection*{22.61 problem 61}

Internal problem ID [10710]
Internal file name [OUTPUT/9657_Monday_June_06_2022_03_18_13_PM_97476693/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 61.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{3 x}{16}+\frac{A}{x^{\frac{1}{3}}}+\frac{B}{x^{\frac{5}{3}}}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff(y(x),x)-y(x)=-3/16*x+A*x^}(-1/3)+B*\mp@subsup{x}{}{\wedge}(-5/3),y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]-y[x]==-3/16*x+A*x^(-1/3)+B*x^(-5/3),y[x],x, IncludeSingularSolutions -> Tru

```

Not solved

\subsection*{22.62 problem 62}

Internal problem ID [10711]
Internal file name [OUTPUT/9658_Monday_June_06_2022_03_20_15_PM_11874362/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 62.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{5 x}{36}+\frac{A}{x^{\frac{3}{5}}}-\frac{B}{x^{\frac{7}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(25*x^(12/5)+108*A*x^(4/5)-252 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful , `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-5 / 36 * x+A * x^{\wedge}(-3 / 5)-B * x^{\wedge}(-7 / 5), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-5 / 36 * x+A * x^{\wedge}(-3 / 5)-B * x^{\wedge}(-7 / 5), y[x], x\), IncludeSingularSolutions \(->\operatorname{Tr}\)

Timed out

\subsection*{22.63 problem 63}

Internal problem ID [10712]
Internal file name [OUTPUT/9659_Monday_June_06_2022_03_20_24_PM_10202307/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 63.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{k}{\sqrt{A x^{2}+B x+c}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(2*A*x+B)/(A*x^2+B*x+c), y(x)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x), y(x)`*** Sublevel 2 *** Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }176 ,`-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*(B*x^2-2*k*y(x))/(k*x), y(x)`

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=\mathrm{k} *\left(\mathrm{~A} * \mathrm{x}^{\wedge} 2+\mathrm{B} * \mathrm{x}+\mathrm{c}\right)^{\wedge}(-1 / 2), \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==k *\left(A * x^{\wedge} 2+B * x+c\right)^{\wedge}(-1 / 2), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
Timed out

\subsection*{22.64 problem 64}

Internal problem ID [10713]
Internal file name [OUTPUT/9660_Monday_June_06_2022_03_20_26_PM_79963363/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 64.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{12 x}{49}+3 A\left(\frac{1}{49}+B\right) \sqrt{x}+3 A^{2}\left(\frac{4}{49}-\frac{5 B}{2}\right)+\frac{15 A^{3}\left(\frac{1}{49}-\frac{5 B}{4}\right)}{4 \sqrt{x}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(1225*A^3*B+784*x*B*A-20*A^}3+
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(49*A*B*y(x)+A*y(x)+6*x)/(A*(1+49*B)*x),
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1767
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/15)*(3675*A^3*B*y(x)-60*A^3*y(x)-2940*

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-12 / 49 * \mathrm{x}+3 * \mathrm{~A} *(1 / 49+\mathrm{B}) * \mathrm{x}^{\wedge}(1 / 2)+3 * \mathrm{~A}^{\wedge} 2 *(4 / 49-5 / 2 * \mathrm{~B})+15 / 4 * \mathrm{~A}^{\wedge} 3 *(1 / 4\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-12 / 49 * x+3 * A *(1 / 49+B) * x^{\wedge}(1 / 2)+3 * A^{\wedge} 2 *(4 / 49-5 / 2 * B)+15 / 4 * A^{\wedge} 3 *(1 / 49-5 / 4 *\right.\)

Not solved

\subsection*{22.65 problem 65}

Internal problem ID [10714]
Internal file name [OUTPUT/9661_Monday_June_06_2022_03_20_32_PM_46669422/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 65.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{6 x}{25}+\frac{4 B^{2}\left((2-A) x^{\frac{1}{3}}-\frac{3 B(2 A+1)}{2}+\frac{B^{2}(1-3 A)}{x^{\frac{1}{3}}}-\frac{A B^{3}}{x^{\frac{2}{3}}}\right)}{75}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 3187
```

dsolve(y(x)*diff (y (x), x) - y (x)=-6/25*x+4/75*B^2*((2-A)*x^(1/3)-3/2*B*(2*A+1)+B`2*(1-3*A)*x^(-

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y^{\prime}[x]-y[x]==-6 / 25 * x+4 / 75 * B^{\wedge} 2 *\left((2-A) * x^{\wedge}(1 / 3)-3 / 2 * B *(2 * A+1)+B^{\wedge} 2 *(1-3 * A) * x^{\wedge}(-1 / 3)-A\right.\right.\)

Not solved

\subsection*{22.66 problem 66}

Internal problem ID [10715]
Internal file name [OUTPUT/9662_Monday_June_06_2022_03_20_40_PM_45829850/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 66.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=\frac{3 x}{4}-\frac{3 A x^{\frac{1}{3}}}{2}+\frac{3 A^{2}}{4 x^{\frac{1}{3}}}-\frac{27 A^{4}}{625 x^{\frac{5}{3}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(5/3)*y(x)*(375*x^(8/3)-250*x^2*A-125*A^2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(4*A*x+y(x))/x, y(x)` *** Sublevel Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear1772 <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+(1/3)*(2*A*x+3*y(x))/x, y(x)

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=3 / 4 * x-3 / 2 * A * x^{\wedge}(1 / 3)+3 / 4 * A^{\wedge} 2 * x^{\wedge}(-1 / 3)-27 / 625 * A^{\wedge} 4 * x^{\wedge}(-5 / 3), y(x)\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==3 / 4 * x-3 / 2 * A * x^{\wedge}(1 / 3)+3 / 4 * A^{\wedge} 2 * x^{\wedge}(-1 / 3)-27 / 625 * A^{\wedge} 4 * x^{\wedge}(-5 / 3), y[x], x, \operatorname{Incl}\right.\)

Not solved

\subsection*{22.67 problem 67}

Internal problem ID [10716]
Internal file name [OUTPUT/9663_Monday_June_06_2022_03_20_46_PM_36629386/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 67.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{6 x}{25}+\frac{7 A x^{\frac{1}{3}}}{5}+\frac{31 A^{2}}{3 x^{\frac{1}{3}}}-\frac{100 A^{4}}{3 x^{\frac{5}{3}}}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})\), \(\mathrm{y}(\mathrm{x})^{`} \quad\) *** Sublevel 2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-(1 / 3) * \mathrm{y}(\mathrm{x}) *\left(-54 * \mathrm{x}^{\wedge}(8 / 3)+105 * \mathrm{x}^{\wedge} 2 * \mathrm{~A}-775 * \mathrm{~A}^{\wedge} 2\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1775
, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 3) *(35 * \mathrm{~A} * \mathrm{x}+3 * \mathrm{y}(\mathrm{x})) / \mathrm{x}, \mathrm{y}(\mathrm{x})^{`}\)

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-6 / 25 * x+7 / 5 * A^{2} x^{\wedge}(1 / 3)+31 / 3 * A^{\wedge} 2 * x^{\wedge}(-1 / 3)-100 / 3 * A^{\wedge} 4 * x^{\wedge}(-5 / 3), y(x\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-6 / 25 * x+7 / 5 * A * x^{\wedge}(1 / 3)+31 / 3 * A^{\wedge} 2 * x^{\wedge}(-1 / 3)-100 / 3 * A^{\wedge} 4 * x^{\wedge}(-5 / 3), y[x], x\right.\), In

Not solved

\subsection*{22.68 problem 68}

Internal problem ID [10717]
Internal file name [OUTPUT/9664_Monday_June_06_2022_03_20_56_PM_3960468/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 68.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{10 x}{49}+\frac{13 A^{2}}{5 x^{\frac{1}{5}}}-\frac{7 A^{3}}{20 x^{\frac{4}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(4/5)*y(x)*(-250*x^(9/5)-637*A^2*x^(3/5)+
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(1/13)*(13*A^2*y(x)-4*x^2)/(A^2*x), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1778
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-10 / 49 * x+13 / 5 * A^{\wedge} 2 * x^{\wedge}(-1 / 5)-7 / 20 * A^{\wedge} 3 * x^{\wedge}(-4 / 5), y(x)\right.\), singsol=all

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-y[x]==-10 / 49 * x+13 / 5 * A^{\wedge} 2 * x^{\wedge}(-1 / 5)-7 / 20 * A^{\wedge} 3 * x^{\wedge}(-4 / 5), y[x], x\), IncludeSingulars

Not solved

\subsection*{22.69 problem 69}

Internal problem ID [10718]
Internal file name [OUTPUT/9665_Monday_June_06_2022_03_21_00_PM_67032086/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 69.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{33 x}{169}+\frac{286 A^{2}}{3 x^{\frac{5}{11}}}-\frac{770 A^{3}}{9 x^{\frac{13}{11}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/11)*y(x)*(-297*x^(24/11)-65910*A^2*x^(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=-33 / 169 * x+286 / 3 * A^{\wedge} 2 * x^{\wedge}(-5 / 11)-770 / 9 * A^{\wedge} 3 * x^{\wedge}(-13 / 11), y(x)\right.\), sings

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y \([\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==-33 / 169 * \mathrm{x}+286 / 3 * \mathrm{~A}^{\wedge} 2 * \mathrm{x}^{\wedge}(-5 / 11)-770 / 9 * \mathrm{~A}^{\wedge} 3 * \mathrm{x}^{\wedge}(-13 / 11), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSin

Timed out

\subsection*{22.70 problem 70}

Internal problem ID [10719]
Internal file name [OUTPUT/9666_Monday_June_06_2022_03_21_05_PM_82138169/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 70.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{21 x}{100}+\frac{7 A^{2}\left(\frac{123}{x^{\frac{1}{7}}}+\frac{280 A}{x^{\frac{5}{7}}}-\frac{400 A^{2}}{x^{\frac{9}{7}}}\right)}{9}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/7)*y(x)*(-189*x^(16/7)-12300*A^2*x^(8/
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-21 / 100 * \mathrm{x}+7 / 9 * \mathrm{~A}^{\wedge} 2 *\left(123 * x^{\wedge}(-1 / 7)+280 * \mathrm{~A}^{-} \mathrm{x}^{\wedge}(-5 / 7)-400 * \mathrm{~A}^{\wedge} 2 * x^{\wedge}(-9 / 7\right.\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-21 / 100 * x+7 / 9 * A^{\wedge} 2 *\left(123 * x^{\wedge}(-1 / 7)+280 * A^{\wedge} x^{\wedge}(-5 / 7)-400 * A^{\wedge} 2 * x^{\wedge}(-9 / 7)\right), y[x\right.\)

Not solved

\subsection*{22.71 problem 71}

Internal problem ID [10720]
Internal file name [OUTPUT/9667_Monday_June_06_2022_03_21_15_PM_67997614/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 71.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=a x+b x^{m}
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(b*m*x^m+a*x)/(x*(a*x+b*x^m)), y(x) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*(b*m*x^m+a*x)/(x*(a*x+b*x^m)), y Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear1787 <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)-a*K[1]/x, y(x)` *** Sublevel 2 ***

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=\mathrm{a} * \mathrm{x}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x]*y'[x]-y[x]==a*x+b*x^m,y[x],x,IncludeSingularSolutions -> True]

Not solved

\subsection*{22.72 problem 72}

Internal problem ID [10721]
Internal file name [OUTPUT/9668_Monday_June_06_2022_03_21_16_PM_27444372/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 72 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=-\frac{(m+1) x}{(m+2)^{2}}+A x^{2 m+1}+B x^{3 m+1}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*A*x^(1+2*m)*m^3+3*B*x^(1+3*m)*m^3
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+K[1]*(1+m)/(x*(m+2)^2), y(x)` *** Su
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
1790
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=-(\mathrm{m}+1) /(\mathrm{m}+2)^{\wedge} 2 * \mathrm{x}+\mathrm{A} * \mathrm{x}^{\wedge}(2 * \mathrm{~m}+1)+\mathrm{B} * \mathrm{x}^{\wedge}(3 * \mathrm{~m}+1), \mathrm{y}(\mathrm{x})\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-y[x]==-(m+1) /(m+2)^{\wedge} 2 * x+A * x^{\wedge}(2 * m+1)+B * x^{\wedge}(3 * m+1), y[x], x\right.\), IncludeSingularSolut

Not solved

\subsection*{22.73 problem 73}

Internal problem ID [10722]
Internal file name [OUTPUT/9669_Monday_June_06_2022_03_21_23_PM_99331213/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 73 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-y=a^{2} \lambda \mathrm{e}^{2 \lambda x}-a(b \lambda+1) \mathrm{e}^{\lambda x}+b
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*a*lambda*(2*exp(2*lambda*x)*a*lambda
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*b/(x*(b+x)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1793
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*b/(x*(b+x)), y(x)`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 * \operatorname{lambda*exp}(2 * \operatorname{lambda} * \mathrm{x})-\mathrm{a} *(\mathrm{~b} * \operatorname{lambda}+1) * \exp (\mathrm{l} \operatorname{ambda} \mathrm{x})+\mathrm{b}, \mathrm{y}(\mathrm{x})\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==\mathrm{a}^{\wedge} 2 * \backslash[\) Lambda \(] * \operatorname{Exp}[2 * \backslash[\) Lambda \(] * \mathrm{x}]-\mathrm{a} *(\mathrm{~b} * \backslash[\) Lambda \(]+1) * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}]+\)

Not solved

\subsection*{22.74 problem 74}

Internal problem ID [10723]
Internal file name [OUTPUT/9670_Monday_June_06_2022_03_21_25_PM_61614408/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 74 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, `class A`]]
Unable to solve or complete the solution.
\[
y y^{\prime}-y=a^{2} \lambda \mathrm{e}^{2 \lambda x}+a \lambda x \mathrm{e}^{\lambda x}+b \mathrm{e}^{\lambda x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*lambda*(2*a^2*lambda*exp(2*lambda*x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(-lambda*K[1]*x+y(x))/x, y(x)` *** S Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear1796 <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+(-a*lambda*x*K[1]-b*lambda*x*K[1]+y(x)*b)

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=a^{\wedge} 2 * l a m b d a * \exp (2 * l a m b d a * x)+a * l a m b d a * x * \exp (l a m b d a * x)+b * \exp (l a m b\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==\mathrm{a}^{\wedge} 2 * \backslash[\) Lambda \(] * \operatorname{Exp}[2 * \backslash[\) Lambda \(] * \mathrm{x}]+\mathrm{a} * \backslash[\) Lambda \(] * \mathrm{x} * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}]+\mathrm{b} * E x\)

Not solved

\subsection*{22.75 problem 75}

Internal problem ID [10724]
Internal file name [OUTPUT/9671_Monday_June_06_2022_03_21_27_PM_94139464/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 75.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, `class A`]]
Unable to solve or complete the solution.
\[
y y^{\prime}-y=2 a^{2} \lambda \sin (2 \lambda x)+2 a \sin (\lambda x)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*lambda*(2*a*lambda*cos(2*lambda*x)+c
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*lambda*(2*a*lambda*cos(2*lambda*x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear1799
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```
\(X\) Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=2 * a \_2 *\right.\) lambda*sin \((2 * \operatorname{lambda} * x)+2 * a * \sin (\operatorname{lambda} a x), y(x), \quad\) singsol \(=a\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==2 * \mathrm{a}^{\wedge} 2 * \backslash[\) Lambda \(] * \operatorname{Sin}[2 * \backslash[\) Lambda \(] * \mathrm{x}]+2 * \mathrm{a} * \operatorname{Sin}[\backslash[\) Lambda \(] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), Inclu

Not solved

\subsection*{22.76 problem 76}

Internal problem ID [10725]
Internal file name [OUTPUT/9672_Monday_June_06_2022_03_21_31_PM_37296922/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y^{\prime}-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 76.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, `class B`]]
Unable to solve or complete the solution.
\[
y y^{\prime}-y=a^{2} f^{\prime}(x) f^{\prime \prime}(x)-\frac{(f(x)+b)^{2} f^{\prime \prime}(x)}{f^{\prime}(x)^{3}}
\]

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(a^2*(diff(f(x), x))^5*(diff(diff(di Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*a^2+2*x*b)/(a^2*x), y(x)` ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-y(x)=a^{\wedge} 2 * \operatorname{diff}(f(x), x) * \operatorname{diff}(f(x), x \$ 2)-(f(x)+b) \wedge 2 /(\operatorname{diff}(f(x), x) \wedge 3) * 0\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0


Timed out
23 Chapter 1, section 1.3. Abel Equations of theSecond Kind. subsection 1.3.2. Equations of theform \(y y^{\prime}=f(x) y+1\)
23.1 problem 1 ..... 1805
23.2 problem 2 ..... 1807
23.3 problem 3 ..... 1809
23.4 problem 4 ..... 1811
23.5 problem 5 ..... 1820
23.6 problem 6 ..... 1822
23.7 problem 7 ..... 1824
23.8 problem 8 ..... 1826
23.9 problem 9 ..... 1829
23.10problem 10 ..... 1832
23.11 problem 11 ..... 1835
23.12problem 12 ..... 1838

\section*{23.1 problem 1}

Internal problem ID [10726]
Internal file name [OUTPUT/9673_Monday_June_06_2022_03_21_32_PM_48237524/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-(a x+b) y=1
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 215
dsolve \((y(x) * \operatorname{diff}(y(x), x)=(a * x+b) * y(x)+1, y(x)\), singsol=all)
\[
\frac{(a x+b)\left(\operatorname{AiryBi}\left(-\frac{\left(-2 a y(x)+(a x+b)^{2}\right) 2^{\frac{2}{3}}}{4\left(-a^{2}\right)^{\frac{1}{3}}}\right) c_{1}-\operatorname{AiryAi}\left(-\frac{\left(-2 a y(x)+(a x+b)^{2}\right) 2^{\frac{2}{3}}}{4\left(-a^{2}\right)^{\frac{1}{3}}}\right)\right)\left(-a^{2}\right)^{\frac{1}{3}} 2^{\frac{1}{3}}+2(\operatorname{AiryBi}( }{2^{\frac{1}{3}}\left(-a^{2}\right)^{\frac{1}{3}}(a x+b) \operatorname{AiryBi}\left(-\frac{\left(-2 a y(x)+(a x+b)^{2}\right) 2^{\frac{2}{3}}}{4\left(-a^{2}\right)^{\frac{1}{3}}}\right)+2 \operatorname{AiryBi}( }
\]
\(=0\)
Solution by Mathematica
Time used: 0.901 (sec). Leaf size: 161
DSolve \(\left[y[x] * y{ }^{\prime}[x]==(a * x+b) * y[x]+1, y[x], x\right.\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& \text { Solve }\left[\frac{\sqrt[3]{2}(a x+b) \operatorname{AiryAi}\left(\frac{(b+a x)^{2}-2 a y(x)}{2 \sqrt[3]{2} a^{2 / 3}}\right)-2 \sqrt[3]{a} \operatorname{AiryAiPrime}\left(\frac{(b+a x)^{2}-2 a y(x)}{2 \sqrt[3]{2} a^{2 / 3}}\right)}{\sqrt[3]{2}(a x+b) \operatorname{AiryBi}\left(\frac{(b+a x)^{2}-2 a y(x)}{2 \sqrt[3]{2} a^{2 / 3}}\right)-2 \sqrt[3]{a} \operatorname{AiryBiPrime}\left(\frac{(b+a x)^{2}-2 a y(x)}{2 \sqrt[3]{2} a^{2 / 3}}\right)}\right. \\
& +c_{1}=0, y(x)
\end{aligned}
\]

\section*{23.2 problem 2}

Internal problem ID [10727]
Internal file name [OUTPUT/9674_Monday_June_06_2022_03_21_33_PM_94051857/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{y}{(a x+b)^{2}}=1
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 557
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)=(a * x+b)^{\wedge}(-2) * y(x)+1, y(x), \quad\right.\) singsol=all)
\(\frac{-a\left(-\operatorname{AiryBi}\left(-\frac{2^{\frac{2}{3}}\left(-\frac{a^{2}(a x+b)^{2} y(x)^{2}}{2}+\left(-a^{2} x-a b\right) y(x)+a^{4} x^{3}+3 a^{3} b x^{2}+3 a^{2} b^{2} x+a b^{3}-\frac{1}{2}\right)}{2\left(a^{2}\right)^{\frac{1}{3}}(a x+b)^{2}}\right) c_{1}+\operatorname{AiryAi}\left(-\frac{2^{\frac{2}{3}}\left(-\frac{a^{2}(a x+b)^{2} y}{2}\right.}{a 2^{\frac{1}{3}}(1+a(a x+b) y(x)}, ~\right.\right.}{a x}\)
\(=0\)
\(\checkmark\) Solution by Mathematica
Time used: 2.233 (sec). Leaf size: 561
DSolve \(\left[y[x] * y\right.\) ' \([x]==(a * x+b)^{\wedge}(-2) * y[x]+1, y[x], x\), IncludeSingularSolutions \(->\) True]

Solve \(\left[\frac{a y(x)(a x+b) \operatorname{AiryAi}\left(\frac{-2 x^{3} a^{4}-6 b x^{2} a^{3}+(b+a x)^{2} y(x)^{2} a^{2}-6 b^{2} x a^{2}-2 b^{3} a+2(b+a x) y(x) a+1}{2 \sqrt[3]{2}\left(a(b+a x)^{3}\right)^{2 / 3}}\right)+\operatorname{AiryAi}\left(\frac{-2 x^{3} a^{4}-6 b x^{2}}{a y(x)(a x+b) \operatorname{AiryBi}\left(\frac{-2 x^{3} a^{4}-6 b x^{2} a^{3}+(b+a x)^{2} y(x)^{2} a^{2}-6 b^{2} x a^{2}-2 b^{3} a+2(b+a x) y(x) a+1}{2 \sqrt[3]{2}\left(a(b+a x)^{3}\right)^{2 / 3}}\right)+\operatorname{AiryBi}\left(\frac{-2 x^{3} a^{4}-6 b x^{2}}{}\right.}, ~\right.}{2 \sqrt{2}}\right.\)
\(\left.+c_{1}=0, y(x)\right]\)

\section*{23.3 problem 3}

Internal problem ID [10728]
Internal file name [OUTPUT/9675_Monday_June_06_2022_03_21_35_PM_22910527/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a-\frac{1}{a x}\right) y=1
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
dsolve \((y(x) * \operatorname{diff}(y(x), x)=(a-1 /(a * x)) * y(x)+1, y(x)\), singsol=all)
\[
\left.y(x)=\frac{a^{2} x-\operatorname{RootOf}\left(-\mathrm{e}^{Z}-\operatorname{expIntegral}\right.}{1}\left(-\_Z\right) a^{2} x+c_{1} a^{2} x\right),
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.268 (sec). Leaf size: 37
DSolve [y \([\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]==(\mathrm{a}-1 /(\mathrm{a} * \mathrm{x})) * \mathrm{y}[\mathrm{x}]+1, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[\operatorname{ExpIntegralEi}(a(a x-y(x)))+c_{1}=\frac{e^{a(a x-y(x))}}{a^{2} x}, y(x)\right]
\]

\section*{23.4 problem 4}
23.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1811

Internal problem ID [10729]
Internal file name [OUTPUT/9676_Monday_June_06_2022_03_21_36_PM_48846722/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
```

[[_1st_order, _with_linear_symmetries], [_Abel, `2nd type`,
class B`]]

```
\[
y y^{\prime}-\frac{y}{\sqrt{a x+b}}=1
\]

\subsection*{23.4.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{y+\sqrt{a x+b}}{\sqrt{a x+b} y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{(y+\sqrt{a x+b})\left(b_{3}-a_{2}\right)}{\sqrt{a x+b} y}-\frac{(y+\sqrt{a x+b})^{2} a_{3}}{(a x+b) y^{2}} \\
& -\left(\frac{a}{2(a x+b) y}-\frac{(y+\sqrt{a x+b}) a}{2(a x+b)^{\frac{3}{2}} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\left(\frac{1}{y \sqrt{a x+b}}-\frac{y+\sqrt{a x+b}}{\sqrt{a x+b} y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{a^{2} x^{2} y^{2} a_{2}-a^{2} x y^{3} a_{3}-a^{2} x y^{2} a_{1}-a b y^{3} a_{3}-a b y^{2} a_{1}-2(a x+b)^{\frac{3}{2}} a x^{2} b_{2}+(a x+b)^{\frac{3}{2}} a y^{2} a_{3}-2(a x+b)^{\frac{3}{2}}}{=0}
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -a^{2} x^{2} y^{2} a_{2}+a^{2} x y^{3} a_{3}+a^{2} x y^{2} a_{1}+a b y^{3} a_{3}+a b y^{2} a_{1}+2(a x+b)^{\frac{3}{2}} a x^{2} b_{2} \\
& \quad-(a x+b)^{\frac{3}{2}} a y^{2} a_{3}+2(a x+b)^{\frac{3}{2}} b y^{2} b_{2}+2(a x+b)^{\frac{3}{2}} a x b_{1}-(a x+b)^{\frac{3}{2}} a y a_{1} \\
& +2(a x+b)^{\frac{3}{2}} b x b_{2}-2(a x+b)^{\frac{3}{2}} b y a_{2}+4(a x+b)^{\frac{3}{2}} b y b_{3}+2 a^{2} x^{2} y^{2} b_{3} \\
& \quad-4 a^{2} x^{2} y a_{3}+\sqrt{a x+b} a b x y a_{2}-2(a x+b)^{\frac{3}{2}} y^{2} a_{3}+2(a x+b)^{\frac{3}{2}} b b_{1}  \tag{6E}\\
& -2 b^{2} y^{2} a_{2}+2 b^{2} y^{2} b_{3}-4 b^{2} y a_{3}+4 a b x y^{2} b_{3}-8 a b x y a_{3}-3 a b x y^{2} a_{2} \\
& +2(a x+b)^{\frac{3}{2}} a x y^{2} b_{2}-3(a x+b)^{\frac{3}{2}} a x y a_{2}+4(a x+b)^{\frac{3}{2}} a x y b_{3} \\
& +\sqrt{a x+b} a^{2} x^{2} y a_{2}+\sqrt{a x+b} a^{2} x y^{2} a_{3}+\sqrt{a x+b} a^{2} x y a_{1} \\
& +\sqrt{a x+b} a b y^{2} a_{3}+\sqrt{a x+b} a b y a_{1}-2(a x+b)^{\frac{5}{2}} a_{3}=0
\end{align*}
\]

Simplifying the above gives
\[
\begin{align*}
& a^{2} x^{2} y^{2} a_{2}+a^{2} x y^{3} a_{3}+a^{2} x y^{2} a_{1}+a b y^{3} a_{3}+a b y^{2} a_{1}+2(a x+b)^{\frac{3}{2}} a x^{2} b_{2} \\
& \quad-(a x+b)^{\frac{3}{2}} a y^{2} a_{3}+2(a x+b)^{\frac{3}{2}} b y^{2} b_{2}+2(a x+b)^{\frac{3}{2}} a x b_{1}-(a x+b)^{\frac{3}{2}} a y a_{1} \\
& +2(a x+b)^{\frac{3}{2}} b x b_{2}-2(a x+b)^{\frac{3}{2}} b y a_{2}+4(a x+b)^{\frac{3}{2}} b y b_{3}-2(a x+b) b y^{2} a_{2} \\
& +2(a x+b) b y^{2} b_{3}+\sqrt{a x+b} a b x y a_{2}-4(a x+b)^{2} y a_{3}-2(a x+b)^{\frac{3}{2}} y^{2} a_{3}  \tag{6E}\\
& +2(a x+b)^{\frac{3}{2}} b b_{1}+a b x y^{2} a_{2}+2(a x+b)^{\frac{3}{2}} a x y^{2} b_{2}-3(a x+b)^{\frac{3}{2}} a x y a_{2} \\
& +4(a x+b)^{\frac{3}{2}} a x y b_{3}-2(a x+b) a x y^{2} a_{2}+2(a x+b) a x y^{2} b_{3} \\
& +\sqrt{a x+b} a^{2} x^{2} y a_{2}+\sqrt{a x+b} a^{2} x y^{2} a_{3}+\sqrt{a x+b} a^{2} x y a_{1} \\
& +\sqrt{a x+b} a b y^{2} a_{3}+\sqrt{a x+b} a b y a_{1}-2(a x+b)^{\frac{5}{2}} a_{3}=0
\end{align*}
\]

Since the PDE has radicals, simplifying gives
\[
\begin{aligned}
& -2 b^{2} \sqrt{a x+b} y a_{2}+4 b^{2} \sqrt{a x+b} y b_{3}-2 b \sqrt{a x+b} y^{2} a_{3}+2 a^{2} x^{3} \sqrt{a x+b} b_{2} \\
& -2 a^{2} x^{2} \sqrt{a x+b} a_{3}+2 a^{2} x^{2} \sqrt{a x+b} b_{1}+2 b^{2} \sqrt{a x+b} y^{2} b_{2} \\
& +2 b^{2} x \sqrt{a x+b} b_{2}-a^{2} x^{2} y^{2} a_{2}+a^{2} x y^{3} a_{3}+a^{2} x y^{2} a_{1}+a b y^{3} a_{3}+a b y^{2} a_{1} \\
& +2 a^{2} x^{2} y^{2} b_{3}-4 a^{2} x^{2} y a_{3}+4 a b x \sqrt{a x+b} y^{2} b_{2}+8 a b x \sqrt{a x+b} y b_{3} \\
& -4 \sqrt{a x+b} a b x y a_{2}-2 b^{2} y^{2} a_{2}+2 b^{2} y^{2} b_{3}-4 b^{2} y a_{3}+2 b^{2} \sqrt{a x+b} b_{1} \\
& -2 b^{2} \sqrt{a x+b} a_{3}+4 a b x y^{2} b_{3}-8 a b x y a_{3}-3 a b x y^{2} a_{2}-2 \sqrt{a x+b} a^{2} x^{2} y a_{2} \\
& +2 a^{2} x^{2} \sqrt{a x+b} y^{2} b_{2}+4 a^{2} x^{2} \sqrt{a x+b} y b_{3}+4 a b x^{2} \sqrt{a x+b} b_{2} \\
& -2 a x \sqrt{a x+b} y^{2} a_{3}-4 a b x \sqrt{a x+b} a_{3}+4 a b x \sqrt{a x+b} b_{1}=0
\end{aligned}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y, \sqrt{a x+b}\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}, \sqrt{a x+b}=v_{3}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& 2 a^{2} v_{1}^{2} v_{3} v_{2}^{2} b_{2}-a^{2} v_{1}^{2} v_{2}^{2} a_{2}-2 v_{3} a^{2} v_{1}^{2} v_{2} a_{2}+a^{2} v_{1} v_{2}^{3} a_{3}+2 a^{2} v_{1}^{3} v_{3} b_{2} \\
& \quad+2 a^{2} v_{1}^{2} v_{2}^{2} b_{3}+4 a^{2} v_{1}^{2} v_{3} v_{2} b_{3}+4 a b v_{1} v_{3} v_{2}^{2} b_{2}+a^{2} v_{1} v_{2}^{2} a_{1}-4 a^{2} v_{1}^{2} v_{2} a_{3} \\
& \quad-2 a^{2} v_{1}^{2} v_{3} a_{3}+2 a^{2} v_{1}^{2} v_{3} b_{1}-3 a b v_{1} v_{2}^{2} a_{2}-4 v_{3} a b v_{1} v_{2} a_{2}+a b v_{2}^{3} a_{3}  \tag{7E}\\
& \quad+4 a b v_{1}^{2} v_{3} b_{2}+4 a b v_{1} v_{2}^{2} b_{3}+8 a b v_{1} v_{3} v_{2} b_{3}-2 a v_{1} v_{3} v_{2}^{2} a_{3}+2 b^{2} v_{3} v_{2}^{2} b_{2}+a b v_{2}^{2} a_{1} \\
& \quad-8 a b v_{1} v_{2} a_{3}-4 a b v_{1} v_{3} a_{3}+4 a b v_{1} v_{3} b_{1}-2 b^{2} v_{2}^{2} a_{2}-2 b^{2} v_{3} v_{2} a_{2}+2 b^{2} v_{1} v_{3} b_{2} \\
& +2 b^{2} v_{2}^{2} b_{3}+4 b^{2} v_{3} v_{2} b_{3}-2 b v_{3} v_{2}^{2} a_{3}-4 b^{2} v_{2} a_{3}-2 b^{2} v_{3} a_{3}+2 b^{2} v_{3} b_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}, v_{3}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& 2 a^{2} v_{1}^{3} v_{3} b_{2}+2 a^{2} v_{1}^{2} v_{3} v_{2}^{2} b_{2}+\left(-a^{2} a_{2}+2 a^{2} b_{3}\right) v_{1}^{2} v_{2}^{2} \\
& +\left(-2 a^{2} a_{2}+4 a^{2} b_{3}\right) v_{1}^{2} v_{2} v_{3}-4 a^{2} v_{1}^{2} v_{2} a_{3}+\left(-2 a^{2} a_{3}+2 a^{2} b_{1}+4 a b b_{2}\right) v_{1}^{2} v_{3} \\
& +a^{2} v_{1} v_{2}^{3} a_{3}+\left(4 a b b_{2}-2 a a_{3}\right) v_{1} v_{2}^{2} v_{3}+\left(a^{2} a_{1}-3 a b a_{2}+4 a b b_{3}\right) v_{1} v_{2}^{2}  \tag{8E}\\
& +\left(-4 a b a_{2}+8 a b b_{3}\right) v_{1} v_{2} v_{3}-8 a b v_{1} v_{2} a_{3}+\left(-4 a b a_{3}+4 a b b_{1}+2 b^{2} b_{2}\right) v_{1} v_{3} \\
& +a b v_{2}^{3} a_{3}+\left(2 b^{2} b_{2}-2 b a_{3}\right) v_{2}^{2} v_{3}+\left(a b a_{1}-2 b^{2} a_{2}+2 b^{2} b_{3}\right) v_{2}^{2} \\
& +\left(-2 b^{2} a_{2}+4 b^{2} b_{3}\right) v_{2} v_{3}-4 b^{2} v_{2} a_{3}+\left(-2 b^{2} a_{3}+2 b^{2} b_{1}\right) v_{3}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
a^{2} a_{3} & =0 \\
a b a_{3} & =0 \\
-4 a^{2} a_{3} & =0 \\
2 a^{2} b_{2} & =0 \\
-4 b^{2} a_{3} & =0 \\
-8 a b a_{3} & =0 \\
-2 a^{2} a_{2}+4 a^{2} b_{3} & =0 \\
-a^{2} a_{2}+2 a^{2} b_{3} & =0 \\
-2 b^{2} a_{2}+4 b^{2} b_{3} & =0 \\
-2 b^{2} a_{3}+2 b^{2} b_{1} & =0 \\
2 b^{2} b_{2}-2 b a_{3} & =0 \\
-4 a b a_{2}+8 a b b_{3} & =0 \\
4 a b b_{2}-2 a a_{3} & =0 \\
a b a_{1}-2 b^{2} a_{2}+2 b^{2} b_{3} & =0 \\
a^{2} a_{1}-3 a b a_{2}+4 a b b_{3} & =0 \\
-4 a b a_{3}+4 a b b_{1}+2 b^{2} b_{2} & =0 \\
-2 a^{2} a_{3}+2 a^{2} b_{1}+4 a b b_{2} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =\frac{2 b b_{3}}{a} \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=\frac{2 a x+2 b}{a} \\
& \eta=y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+\sqrt{a x+b}}{\sqrt{a x+b} y}\right)\left(\frac{2 a x+2 b}{a}\right) \\
& =\frac{a y^{2}-2 a x-2 b-2 \sqrt{a x+b} y}{a y} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a y^{2}-2 a x-2 b-2 \sqrt{a x+b} y}{a y}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{\ln \left(-a y^{2}+2 a x+2 b+2 \sqrt{a x+b} y\right)}{2}+\frac{\sqrt{a x+b} \operatorname{arctanh}\left(\frac{-2 a y+2 \sqrt{a x+b}}{2 \sqrt{2 a^{2} x+2 a b+a x+b}}\right)}{\sqrt{2 a^{2} x+2 a b+a x+b}}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y+\sqrt{a x+b}}{\sqrt{a x+b} y}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{4 a\left(\frac{\left(\left(-\frac{y^{2}}{2}+x\right) a+y^{2}+b\right) \sqrt{a x+b}}{2}+\left(\left(-\frac{y^{2}}{4}+x\right) a+b\right) y\right)}{\sqrt{a x+b}\left(-a y^{2}+2 a x+2 b+2 \sqrt{a x+b} y\right)^{2}} \\
& S_{y}=-\frac{2\left(\left(\left(-\frac{y^{2}}{2}+x\right) a+b\right) \sqrt{a x+b}+(a x+b) y\right) a y}{\sqrt{a x+b}\left(-a y^{2}+2 a x+2 b+2 \sqrt{a x+b} y\right)^{2}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\sqrt{a x+b} \operatorname{arctanh}\left(\frac{-a y+\sqrt{a x+b}}{\sqrt{(2 a+1)(a x+b)}}\right)}{\sqrt{(2 a+1)(a x+b)}}+\frac{\ln \left(2 y \sqrt{a x+b}+\left(-y^{2}+2 x\right) a+2 b\right)}{2}=c_{1}
\]

Which simplifies to
\[
\frac{\sqrt{a x+b} \operatorname{arctanh}\left(\frac{-a y+\sqrt{a x+b}}{\sqrt{(2 a+1)(a x+b)}}\right)}{\sqrt{(2 a+1)(a x+b)}}+\frac{\ln \left(2 y \sqrt{a x+b}+\left(-y^{2}+2 x\right) a+2 b\right)}{2}=c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\sqrt{a x+b} \operatorname{arctanh}\left(\frac{-a y+\sqrt{a x+b}}{\sqrt{(2 a+1)(a x+b)}}\right)}{\sqrt{(2 a+1)(a x+b)}}+\frac{\ln \left(2 y \sqrt{a x+b}+\left(-y^{2}+2 x\right) a+2 b\right)}{2}=c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{\sqrt{a x+b} \operatorname{arctanh}\left(\frac{-a y+\sqrt{a x+b}}{\sqrt{(2 a+1)(a x+b)}}\right)}{\sqrt{(2 a+1)(a x+b)}}+\frac{\ln \left(2 y \sqrt{a x+b}+\left(-y^{2}+2 x\right) a+2 b\right)}{2}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries differential order: 1; found: 1 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group -> Calling odsolve with the ODE`, diff(y(x), x) = y(x)*a/(2*a*x+2*b), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful`

```

Solution by Maple
Time used: 0.203 (sec). Leaf size: 153
```

dsolve(y(x)*diff (y(x), x)=(a*x+b)^(-1/2)*y(x)+1,y(x), singsol=all)

```
\[
\begin{aligned}
& \frac{2 \operatorname{arctanh}\left(\frac{-\sqrt{a x+b} y(x) a+a x+b}{\sqrt{(1+2 a)(a x+b)^{2}}}\right) a x}{\sqrt{(1+2 a)(a x+b)^{2}}} \\
& +\ln \left(\left(a y(x)^{2}-2 a x-2 b\right) \sqrt{a x+b}-2(a x+b) y(x)\right) \\
& +\frac{2 \operatorname{arctanh}\left(\frac{-\sqrt{a x+b} y(x) a+a x+b}{\sqrt{(1+2 a)(a x+b)^{2}}}\right) b}{\sqrt{(1+2 a)(a x+b)^{2}}}-\frac{\ln (a x+b)}{2}-c_{1}=0
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 90
DSolve \(\left[y[x] * y{ }^{\prime}[x]==(a * x+b)^{\wedge}(-1 / 2) * y[x]+1, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]

Solve \(\left[-\frac{\frac{2 \arctan \left(\frac{a y(x)}{\sqrt{\sqrt{a x+b}-1}}\right)}{\sqrt{-2 a-1}}+\log \left(-\frac{a y(x)^{2}}{a x+b}+\frac{2 y(x)}{\sqrt{a x+b}}+2\right)}{a}=\frac{\log (a x+b)}{a}+c_{1}, y(x)\right]\)

\section*{23.5 problem 5}

Internal problem ID [10730]
Internal file name [OUTPUT/9677_Monday_June_06_2022_03_21_38_PM_47417038/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{3 y}{\sqrt{a x^{\frac{3}{2}}+8 x}}=1
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 293
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=3 *\left(\mathrm{a} * \mathrm{x}^{\wedge}(3 / 2)+8 * x\right)^{\wedge}(-1 / 2) * y(\mathrm{x})+1, \mathrm{y}(\mathrm{x})\right.\), singsol=all)
\[
\frac{\left(-\frac{a \sqrt{x}\left(-2 a x^{\frac{3}{2}}+\sqrt{x} a y(x)^{2}-8 \sqrt{x(8+\sqrt{x} a)} y(x)-16 x\right)}{(\sqrt{x} a y(x)-4 \sqrt{x(8+\sqrt{x} a)})^{2}}\right)^{\frac{1}{4}} \sqrt{2 \sqrt{x} a+16} a \sqrt{x} y(x)+4 \sqrt{-\frac{\sqrt{2 \sqrt{x} a+16} \sqrt{x(8+\sqrt{x} a)}}{\sqrt{x} a y(x)-4 \sqrt{x(8+\sqrt{x} a)}}(\sqrt{x} a}}{\sqrt{-\frac{\sqrt{2 \sqrt{x} a+16} \sqrt{x(8+\sqrt{x} a)}}{\sqrt{x} a y(x)-4 \sqrt{x(8+\sqrt{x} a)}}(\sqrt{x} a y(x)-4 \sqrt{x(8}}}
\]
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y y^{\prime}[x]==3 *\left(a * x^{\wedge}(3 / 2)+8 * x\right)^{\wedge}(-1 / 2) * y[x]+1, y[x], x\right.\), IncludeSingularSolutions \(->\) True]
Not solved

\section*{23.6 problem 6}

Internal problem ID [10731]
Internal file name [OUTPUT/9678_Monday_June_06_2022_03_21_43_PM_99671830/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(\frac{a}{x^{\frac{2}{3}}}-\frac{2}{3 a x^{\frac{1}{3}}}\right) y=1
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 187
```

dsolve(y(x)*diff (y(x),x)=(a*x^(-2/3)-2/3*a^(-1)*x^(-1/3))*y(x)+1,y(x), singsol=all)

```
\(\frac{-\sqrt{\frac{x^{\frac{2}{3}}+a y(x)}{a^{4}}} \operatorname{BesselI}\left(1, \frac{2 \sqrt{\frac{x^{\frac{2}{3}+a y(x)}}{a^{4}}}}{3}\right) c_{1} a^{2}+\operatorname{BesselK}\left(1,-\frac{2 \sqrt{\frac{x^{\frac{2}{3}}+a y(x)}{a^{4}}}}{3}\right) \sqrt{\frac{x^{\frac{2}{3}}+a y(x)}{a^{4}}} a^{2}+x^{\frac{1}{3}} \operatorname{BesselI}\left(0, \frac{{ }^{2}}{}\right.}{- \text { BesselI }\left(1, \frac{2 \sqrt{\frac{x^{\frac{2}{3}}+a y(x)}{a^{4}}}}{3}\right) \sqrt{\frac{x^{\frac{2}{3}}+a y(x)}{a^{4}}} a^{2}+x^{\frac{1}{3}} \operatorname{BesselI}\left(0, \frac{2 \sqrt{\frac{x^{\frac{2}{3}}+a}{a^{a}}}}{3}\right.}\) \(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]==\left(a * x^{\wedge}(-2 / 3)-2 / 3 * a^{\wedge}(-1) * x^{\wedge}(-1 / 3)\right) * y[x]+1, y[x], x\), IncludeSingularSolutions -

Not solved

\section*{23.7 problem 7}

Internal problem ID [10732]
Internal file name [OUTPUT/9679_Monday_June_06_2022_03_21_45_PM_42964674/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\mathrm{e}^{\lambda x} y a=1
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 83
dsolve \((y(x) * \operatorname{diff}(y(x), x)=a * \exp (\operatorname{lambda} * x) * y(x)+1, y(x)\), singsol=all)
\[
c_{1}+a \operatorname{erf}\left(\frac{\left(\lambda y(x)-\mathrm{e}^{x \lambda} a\right) \sqrt{2}}{2 \sqrt{-\lambda}}\right) \sqrt{2} \sqrt{\pi}-2 \sqrt{-\lambda} \mathrm{e}^{\frac{y(x)^{2} \lambda^{2}-2 y(x) \mathrm{e}^{x \lambda} a \lambda+a^{2} \mathrm{e}^{2 x \lambda}-2 x \lambda^{2}}{2 \lambda}}=0
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.687 (sec). Leaf size: 83
DSolve [y \([\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]==\mathrm{a} * \operatorname{Exp}[\backslash[\) Lambda] \(* \mathrm{x}] * \mathrm{y}[\mathrm{x}]+1, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[-\frac{a e^{\lambda x}}{\sqrt{\lambda}}=\frac{2 e^{\frac{\left(a e^{\lambda x}-\lambda y(x)\right)^{2}}{2 \lambda}}}{\sqrt{2 \pi} \operatorname{erfi}\left(\frac{\lambda y(x)-a e^{\lambda x}}{\sqrt{2} \sqrt{\lambda}}\right)+2 c_{1}}, y(x)\right]
\]

\section*{23.8 problem 8}

Internal problem ID [10733]
Internal file name [OUTPUT/9680_Monday_June_06_2022_03_21_47_PM_71577788/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a \mathrm{e}^{\lambda x}+b \mathrm{e}^{-\lambda x}\right) y=1
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = (x*exp(lambda*y(x))*lambda+(exp(lambda*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using
-> Calling odsolve with the ODE`, diff(f__1(x), x), f__1(x)` *** Subleve

```
                Methods for first order ODEs:

X Solution by Maple
dsolve \((\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(\mathrm{a} * \exp (\operatorname{lambda} \mathrm{x})+\mathrm{b} * \exp (-\operatorname{lambda} * \mathrm{x})) * \mathrm{y}(\mathrm{x})+1, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{y}^{\prime}[\mathrm{x}]==(\mathrm{a} * \operatorname{Exp}[\backslash[\right.\) Lambda \(] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[-\backslash[\) Lambda \(] * \mathrm{x}]) * \mathrm{y}[\mathrm{x}]+1, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSol

Not solved

\section*{23.9 problem 9}

Internal problem ID [10734]
Internal file name [OUTPUT/9681_Monday_June_06_2022_03_21_49_PM_97771181/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a y \cosh (x)=1
\]

Unable to determine ODE type.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = a*sinh(y(x))+x, y(x), implicit` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of %the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]

```

X Solution by Maple
dsolve ( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x}) * \cosh (\mathrm{x})+1, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([y[x] * y\) ' \([x]==a * y[x] * \operatorname{Cosh}[x]+1, y[x], x\), IncludeSingularSolutions \(->\) True]

Not solved

\subsection*{23.10 problem 10}

Internal problem ID [10735]
Internal file name [OUTPUT/9682_Monday_June_06_2022_03_21_52_PM_3984291/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a y \sinh (x)=1
\]

Unable to determine ODE type.
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = a*cosh(y(x))+x, y(x), implicit` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of %the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]

```

X Solution by Maple
dsolve \((\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{y}(\mathrm{x}) * \sinh (\mathrm{x})+1, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([y[x] * y\) ' \([x]==a * y[x] * \operatorname{Sinh}[x]+1, y[x], x\), IncludeSingularSolutions \(->\) True]

Not solved

\subsection*{23.11 problem 11}

Internal problem ID [10736]
Internal file name [OUTPUT/9683_Monday_June_06_2022_03_21_55_PM_71241704/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a \cos (\lambda x) y=1
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = (lambda*x+a*sin(lambda*y(x)))/lambda, y
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries usingib way = HINT
-> Calling odsolve with the ODE`, diff(f__1(y), y) = cos(lambda*y)*f__1(y)*lambda/s
Methods for first order ODEs:

```

X Solution by Maple
dsolve \((\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \cos (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})+1, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y \([\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]==\mathrm{a} * \operatorname{Cos}[\backslash[\) Lambda \(] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]+1, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{23.12 problem 12}

Internal problem ID [10737]
Internal file name [OUTPUT/9684_Monday_June_06_2022_03_21_58_PM_79559776/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.2. Equations of the form \(y y^{\prime}=f(x) y+1\)
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\sin (\lambda x) y a=1
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = -(a*cos(lambda*y(x))-lambda*x)/lambda,
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries usingjg way = HINT -> Calling odsolve with the ODE`, diff(f__1(y), y) = -f__1(y)*lambda*sin(lambda*y)/
Methods for first order ODEs:

```

X Solution by Maple
dsolve \((\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \sin (\operatorname{lambda} * \mathrm{x}) * \mathrm{y}(\mathrm{x})+1, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([y[x] * y '[x]==a * \operatorname{Sin}[\backslash[\) Lambda \(] * x] * y[x]+1, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True \(]\)
Not solved

\section*{24 Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2. Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)}
24.1 problem 1 ..... 1844
24.2 problem 2 ..... 1846
24.3 problem 3 ..... 1855
24.4 problem 4 ..... 1857
24.5 problem 5 ..... 1860
24.6 problem 6 ..... 1862
24.7 problem 7 ..... 1864
24.8 problem 8 ..... 1866
24.9 problem 9 ..... 1868
24.10problem 10 ..... 1870
24.11problem 11 ..... 1873
24.12problem 12 ..... 1874
24.13problem 13 ..... 1875
24.14problem 14 ..... 1876
24.15problem 15 ..... 1879
24.16problem 16 ..... 1881
24.17problem 17 ..... 1883
24.18problem 18 ..... 1885
24.19problem 19 ..... 1888
24.20problem 20 ..... 1890
24.21problem 21 ..... 1893
24.22problem 22 ..... 1894
24.23problem 23 ..... 1895
24.24problem 24 ..... 1898
24.25problem 25 ..... 1901
24.26problem 26 ..... 1902
24.27problem 27 ..... 1905
24.28problem 28 ..... 1908
24.29problem 29 ..... 1910
24.30problem 30 ..... 1913
24.31 problem 31 ..... 1916
24.32problem 32 ..... 1918
24.33problem 33 ..... 1921
24.34problem 34 ..... 1924
24.35problem 35 ..... 1927
24.36problem 36 ..... 1930
24.37problem 37 ..... 1932
24.38problem 38 ..... 1935
24.39problem 39 ..... 1938
24.40problem 40 ..... 1940
24.41 problem 41 ..... 1943
24.42problem 42 ..... 1946
24.43problem 43 ..... 1949
24.44problem 44 ..... 1951
24.45problem 45 ..... 1954
24.46problem 46 ..... 1957
24.47 problem 47 ..... 1960
24.48problem 48 ..... 1963
24.49problem 49 ..... 1966
24.50problem 50 ..... 1969
24.51 problem 51 ..... 1972
24.52problem 52 ..... 1974
24.53problem 53 ..... 1976
24.54problem 54 ..... 1978
24.55problem 55 ..... 1981
24.56problem 56 ..... 1982
24.57 problem 57 ..... 1984
24.58problem 58 ..... 1987
24.59problem 59 ..... 1990
24.60problem 60 ..... 1992
24.61 problem 61 ..... 1995
24.62problem 62 ..... 1998
24.63problem 63 ..... 2001
24.64problem 64 ..... 2004
24.65problem 65 ..... 2007
24.66problem 66 ..... 2010
24.67problem 67 ..... 2013
24.68problem 68 ..... 2015
24.69problem 69 ..... 2018
24.70problem 70 ..... 2020
24.71problem 71 ..... 2022
24.72problem 72 ..... 2025
24.73problem 73 ..... 2027
24.74problem 74 ..... 2029
24.75problem 75 ..... 2031
24.76problem 76 ..... 2034
24.77 problem 77 ..... 2037
24.78problem 78 ..... 2039
24.79problem 79 ..... 2042
24.80problem 80 ..... 2045

\section*{24.1 problem 1}

Internal problem ID [10738]
Internal file name [OUTPUT/9685_Monday_June_06_2022_03_22_01_PM_52889186/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-(a x+3 b) y=-a b x^{2}+c x^{3}-2 b^{2} x
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 224
```

dsolve(y(x)*diff (y(x),x)=(a*x+3*b)*y(x)+c*x^3-a*b*x^2-2*b^2*x,y(x), singsol=all)

```
\[
\begin{aligned}
& \sqrt{\frac{x^{2}}{-b x+y(x)}}(b x-y(x)) \\
& =0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]==(a * x+3 * b) * y[x]+c * x^{\wedge} 3-a * b * x^{\wedge} 2-2 * b^{\wedge} 2 * x, y[x], x\right.\), IncludeSingularSolutions \(->~ T\)

Not solved

\section*{24.2 problem 2}
24.2.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [10739]
Internal file name [OUTPUT/9686_Monday_June_06_2022_03_22_02_PM_81500461/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```
\[
y y^{\prime}-(3 a x+b) y=-x^{3} a^{2}-a b x^{2}+c x
\]

\subsection*{24.2.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives
\[
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& +\frac{\left(-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x\right)\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}\right.}{y} \\
& -\frac{\left(-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x\right)^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{y^{2}} \\
& -\frac{\left(-3 a^{2} x^{2}-2 a b x+3 a y+c\right)\left(x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)}{y} \\
& -\left(\frac{3 a x+b}{y}-\frac{-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x}{y^{2}}\right)\left(x^{3} b_{7}+x^{2} y b_{8}\right. \\
& \left.+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
\]

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{array}{r}
-a^{4} a_{5} \\
-6 a^{3} b a_{10} \\
-2 a^{4} a_{6}-4 a^{3} b a \\
-16 a b a_{10}-6 a a \\
24 a^{2} b a_{10}-14 a^{2} a_{9} \\
-a b b_{1}-c \\
2 a b a_{1}-2 b c a_{3}-2 c \\
-2 a^{3} b a_{5}-a^{2} b^{2} a_{8}+2 a^{2} c \\
2 a b c a_{3}-a^{2} b_{1}-a b b_{2}-c \\
-b^{2} a_{3}-3 a a_{1}-b a_{2}+b b_{3}- \\
-2 b^{2} a_{6}-3 a a_{3}-b a_{5}+2 b b_{6}- \\
-a^{4} a_{3} \\
-3 a^{2} b^{2} a_{10}+12 a^{3} a_{6}+16 a^{2} b a_{9}+6 a^{2} c a_{10}-4 a^{2} a \\
-3 b^{2} a_{10}-3 a a_{6}-b a_{9}+3 b b_{10}- \\
-a^{2} b^{2} a_{3}+2 a^{2} c a_{3}+2 a b c a_{5}-a^{2} b_{2}-a b b_{4}-c \\
-4 a^{3} b a_{6}-2 a^{2} b^{2} a_{9}+6 a^{3} a_{5}+8 a^{2} b a_{8}+4 a^{2} c a_{9}+6 a^{2} a \\
6 a b^{2} a_{10}-15 a^{2} a_{6}-9 a b a_{9}-4 a b b_{10}-18 a c a_{10}-9 a \\
4
\end{array}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{c b_{6}}{a} \\
a_{3} & =a_{3} \\
a_{4} & =-b b_{6} \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =-a b_{6} \\
a_{8} & =0 \\
a_{9} & =0 \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =c a_{3} \\
b_{3} & =\frac{a b a_{3}+c b_{6}}{a} \\
b_{4} & =-a b a_{3} \\
b_{5} & =3 a a_{3}-2 b b_{6} \\
b_{6} & =b_{6} \\
b_{7} & =-a^{2} a_{3} \\
b_{8} & =-3 a b_{6} \\
b_{9} & =0 \\
b_{10} & =0
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=-\frac{x\left(a^{2} x^{2}+a b x-c\right)}{a} \\
& \eta=-\frac{y\left(3 a^{2} x^{2}+2 a b x-a y-c\right)}{a}
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-\frac{y\left(3 a^{2} x^{2}+2 a b x-a y-c\right)}{a}-\left(\frac{-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x}{y}\right)\left(-\frac{x\left(a^{2} x^{2}+a b x-c\right)}{a}\right) \\
& =\frac{-a^{4} x^{6}-2 a^{3} b x^{5}+3 a^{3} x^{4} y-a^{2} b^{2} x^{4}+4 a^{2} b x^{3} y+2 a^{2} c x^{4}-3 a^{2} x^{2} y^{2}+a b^{2} x^{2} y+2 a b c x^{3}-2 a b x y^{2}-}{a y} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-a^{4} x^{6}-2 a^{3} b x^{5}+3 a^{3} x^{4} y-a^{2} b^{2} x^{4}+4 a^{2} b x^{3} y+2 a^{2} c x^{4}-3 a^{2} x^{2} y^{2}+a b^{2} x^{2} y+2 a b c x^{3}-2 a b x y^{2}-3 a c x^{2} y+a y^{3}-b c x y-c^{2} x^{2}+c y^{2}}{a y}} d y
\end{aligned}
\]

Which results in
\[
S=a\left(-\frac{\ln \left(-a^{2} x^{2}-a b x+a y+c\right)}{c}+\frac{\frac{\ln \left(a^{2} x^{4}+a b x^{3}-2 a x^{2} y-b x y-c x^{2}+y^{2}\right)}{2}-\frac{b x \operatorname{arctanh}\left(\frac{-2 a x^{2}-b x+2 y}{\sqrt{b^{2} x^{2}+4 c x^{2}}}\right)}{\sqrt{b^{2} x^{2}+4 c x^{2}}}}{c}\right)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{-x^{3} a^{2}-a b x^{2}+3 a x y+b y+c x}{y}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{a\left(x^{3} a^{2}+a b x^{2}+(-3 a y-c) x-b y\right)}{\left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}-b x y+y^{2}\right)\left(a^{2} x^{2}+a b x-a y-c\right)} \\
& S_{y}=-\frac{a y}{\left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}-b x y+y^{2}\right)\left(a^{2} x^{2}+a b x-a y-c\right)}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{a\left(2 b \operatorname{arctanh}\left(\frac{2 a x^{2}+b x-2 y}{x \sqrt{b^{2}+4 c}}\right)-2 \ln \left(-a^{2} x^{2}+(-b x+y) a+c\right) \sqrt{b^{2}+4 c}+\ln \left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}\right.\right.}{2 \sqrt{b^{2}+4 c} c}
\]

Which simplifies to
\[
\frac{a\left(2 b \operatorname{arctanh}\left(\frac{2 a x^{2}+b x-2 y}{x \sqrt{b^{2}+4 c}}\right)-2 \ln \left(-a^{2} x^{2}+(-b x+y) a+c\right) \sqrt{b^{2}+4 c}+\ln \left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}\right.\right.}{2 \sqrt{b^{2}+4 c} c}
\]

\section*{Summary}

The solution(s) found are the following
\(a\left(2 b \operatorname{arctanh}\left(\frac{2 a x^{2}+b x-2 y}{x \sqrt{b^{2}+4 c}}\right)-2 \ln \left(-a^{2} x^{2}+(-b x+y) a+c\right) \sqrt{b^{2}+4 c}+\ln \left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}\right.\right.\)
\[
2 \sqrt{b^{2}+4 c} c
\]
\(=c_{1}\)

\section*{Verification of solutions}
\(\frac{a\left(2 b \operatorname{arctanh}\left(\frac{2 a x^{2}+b x-2 y}{x \sqrt{b^{2}+4 c}}\right)-2 \ln \left(-a^{2} x^{2}+(-b x+y) a+c\right) \sqrt{b^{2}+4 c}+\ln \left(a^{2} x^{4}+a b x^{3}+(-2 a y-c) x^{2}\right.\right.}{2 \sqrt{b^{2}+4 c} c}\)
\(=c_{1}\)
Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 826
```

dsolve(y(x)*diff (y (x),x)=(3*a*x+b)*y(x)-a^2*x^3-a*b*x^2+c*x,y(x), singsol=all)
y(x)
= =

```
\(\checkmark\) Solution by Mathematica
Time used: 6.592 (sec). Leaf size: 194
DSolve \(\left[y[x] * y y^{\prime}[x]==(3 * a * x+b) * y[x]-a^{\wedge} 2 * x^{\wedge} 3-a * b * x^{\wedge} 2+c * x, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru

Solve \(\left[\frac{2 a b\left(\operatorname{RootSum}\left[\# 1^{4} a^{2}+\# 1^{3} a b-2 \# 1^{2} a y(x)-\# 1^{2} c-\# 1 b y(x)+y(x)^{2} \&, \frac{-2 \# 1^{3} a^{2} \log (x-\# 1)-\# 1^{2}}{c(3 a+b-}\right.\right.}{c}\right.\)

\section*{24.3 problem 3}

Internal problem ID [10740]
Internal file name [OUTPUT/9687_Monday_June_06_2022_03_22_05_PM_72048347/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
2 y y^{\prime}-(7 a x+5 b) y=-3 x^{3} a^{2}-3 b^{2} x-2 c x^{2}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 4589
```

dsolve(2*y(x)*diff (y(x),x)=(7*a*x+5*b)*y(x)-3*a^2**^ 3-2*c*x^2-3*b^2*x,y(x), singsol=all)

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[2 * y[x] * y\right.\) ' \([x]==(7 * a * x+5 * b) * y[x]-3 * a^{\wedge} 2 * x^{\wedge} 3-2 * c * x^{\wedge} 2-3 * b^{\wedge} 2 * x, y[x], x\), IncludeSingularSoluti

Not solved

\section*{24.4 problem 4}

Internal problem ID [10741]
Internal file name [OUTPUT/9688_Monday_June_06_2022_03_22_13_PM_18411353/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-((3-m) x-1) y=-(m-1) a x
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=((3-\mathrm{m}) * \mathrm{x}-1) * \mathrm{y}(\mathrm{x})+(\mathrm{m}-1) *\left(\mathrm{x}^{\wedge} 2-\mathrm{x}^{\wedge} 2-\mathrm{a} * \mathrm{x}\right), \mathrm{y}(\mathrm{x})\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]==((3-m) * x-1) * y[x]+(m-1) *\left(x^{\wedge} 2-x^{\wedge} 2-a * x\right), y[x], x\right.\), IncludeSingularSolutions \(->~ T\)

Not solved

\section*{24.5 problem 5}

Internal problem ID [10742]
Internal file name [OUTPUT/9689_Monday_June_06_2022_03_22_16_PM_26947723/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+x\left(a x^{2}+b\right) y=-x
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 179
```

dsolve(y(x)*diff(y(x),x)+x*(a*x^2+b)*y(x)+x=0,y(x), singsol=all)

```
\(\frac{2 \operatorname{AiryBi}\left(1, \frac{4 a y(x)+\left(a x^{2}+b\right)^{2}}{4 a^{\frac{2}{3}}}\right) a^{\frac{1}{3}} c_{1}+c_{1}\left(a x^{2}+b\right) \operatorname{AiryBi}\left(\frac{4 a y(x)+\left(a x^{2}+b\right)^{2}}{4 a^{\frac{2}{3}}}\right)-2 \operatorname{AiryAi}\left(1, \frac{4 a y(x)+\left(a x^{2}+b\right)^{2}}{4 a^{\frac{2}{3}}}\right) a}{2 \operatorname{AiryBi}\left(1, \frac{4 a y(x)+\left(a x^{2}+b\right)^{2}}{4 a^{\frac{2}{3}}}\right) a^{\frac{1}{3}}+\operatorname{AiryBi}\left(\frac{4 a y(x)+\left(a x^{2}+b\right)^{2}}{4 a^{\frac{2}{3}}}\right)\left(a x^{2}+b\right)}\)
\(=0\)
\(\checkmark\) Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 143
DSolve \(\mathrm{y}[\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{x} *\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b}\right) * \mathrm{y}[\mathrm{x}]+\mathrm{x}==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& \text { Solve }\left[\frac{\left(a x^{2}+b\right) \operatorname{AiryAi}\left(\frac{\left(a x^{2}+b\right)^{2}+4 a y(x)}{4 a^{2 / 3}}\right)+2 \sqrt[3]{a} \operatorname{AiryAiPrime}\left(\frac{\left(a x^{2}+b\right)^{2}+4 a y(x)}{4 a^{2 / 3}}\right)}{\left(a x^{2}+b\right) \operatorname{AiryBi}\left(\frac{\left(a x^{2}+b\right)^{2}+4 a y(x)}{4 a^{2 / 3}}\right)+2 \sqrt[3]{a} \operatorname{AiryBiPrime}\left(\frac{\left(a x^{2}+b\right)^{2}+4 a y(x)}{4 a^{2 / 3}}\right)}\right. \\
& +c_{1}=0, y(x)
\end{aligned}
\]

\section*{24.6 problem 6}

Internal problem ID [10743]
Internal file name [OUTPUT/9690_Monday_June_06_2022_03_22_17_PM_23437655/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+a\left(1-\frac{1}{x}\right) y=a^{2}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)+a *\left(1-x^{\wedge}(-1)\right) * y(x)=a^{\wedge} 2, y(x)\right.\), singsol=all)
\[
y(x)=a\left(-x+\operatorname{RootOf}\left(-\mathrm{e}^{-}{ }^{Z}-\exp \operatorname{Integral}_{1}(-\quad Z) x+c_{1} x\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 30
DSolve \(\left[y[x] * y^{\prime}[x]+a *\left(1-x^{\wedge}(-1)\right) * y[x]==a^{\wedge} 2, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow>\) True]
\[
\text { Solve }\left[\operatorname{ExpIntegralEi}\left(x+\frac{y(x)}{a}\right)+c_{1}=\frac{e^{\frac{y(x)}{a}+x}}{x}, y(x)\right]
\]

\section*{24.7 problem 7}

Internal problem ID [10744]
Internal file name [OUTPUT/9691_Monday_June_06_2022_03_22_18_PM_56791468/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a\left(1-\frac{b}{x}\right) y=a^{2} b
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-a *\left(1-b * x^{\wedge}(-1)\right) * y(x)=a^{\wedge} 2 * b, y(x)\right.\), singsol=all)
\[
y(x)=a\left(-\operatorname{RootOf}\left(-\mathrm{e}^{-}{ }^{Z} b-\exp \operatorname{Integral}_{1}\left(-\_Z\right) x+c_{1} x\right) b+x\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.293 (sec). Leaf size: 45
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}^{\prime}[\mathrm{x}]-\mathrm{a} *\left(1-\mathrm{b} * \mathrm{x}^{\wedge}(-1)\right) * \mathrm{y}[\mathrm{x}]==\mathrm{a}^{\wedge} 2 * \mathrm{~b}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(\rightarrow>\) True]
\[
\text { Solve }\left[\operatorname{ExpIntegralEi}\left(\frac{a x-y(x)}{a b}\right)+c_{1}=\frac{b e^{\frac{a x-y(x)}{a b}}}{x}, y(x)\right]
\]

\section*{24.8 problem 8}

Internal problem ID [10745]
Internal file name [OUTPUT/9692_Monday_June_06_2022_03_22_19_PM_7903388/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-x^{n-1}((2 n+1) x+a n) y=-n x^{2 n}(x+a)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 153
```

dsolve(y(x)*diff (y(x),x)=\mp@subsup{x}{}{\wedge}(n-1)*((1+2*n)*x+a*n)*y(x)-n*x^(2*n)*(x+a),y(x), singsol=all)

```
\[
y(x)=
\]

\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]=x^{\wedge}(n-1) *((1+2 * n) * x+a * n) * y[x]-n * x^{\wedge}(2 * n) *(x+a), y[x], x\right.\), IncludeSingularSoluti

Not solved

\section*{24.9 problem 9}

Internal problem ID [10746]
Internal file name [OUTPUT/9693_Monday_June_06_2022_03_22_23_PM_14690200/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a(-n b+x) x^{n-1} y=c\left(x^{2}-(2 n+1) b x+n(1+n) b^{2}\right) x^{-1+2 n}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 1972
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} *(\mathrm{x}-\mathrm{n} * \mathrm{~b}) * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}(\mathrm{x})+\mathrm{c} *\left(\mathrm{x}^{\wedge} 2-(2 * \mathrm{n}+1) * \mathrm{~b} * \mathrm{x}+\mathrm{n} *(\mathrm{n}+1) * \mathrm{~b}^{\wedge} 2\right) * \mathrm{x}^{\wedge}(2 * \mathrm{n}-1), \mathrm{y}\right.\)

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 0.744 (sec). Leaf size: 200
DSolve \(\left[y[x] * y y^{\prime}[x]==a *(x-n * b) * x^{\wedge}(n-1) * y[x]+c *\left(x^{\wedge} 2-(2 * n+1) * b * x+n *(n+1) * b^{\wedge} 2\right) * x^{\wedge}(2 * n-1), y[x], x, I\right.\)

Solve \(\left[\frac{a^{2}\left(-\frac{2 a \operatorname{arctanh}\left(\frac{a^{2}-\frac{2 a c(n+1) y(x)}{-b c x^{n}-b c n x^{n}+c x^{n+1}}}{a \sqrt{a^{2}+4 c(n+1)}}\right)}{\sqrt{a^{2}+4 c(n+1)}}-\log \left(a^{2}\left(\frac{a y(x)}{-b c x^{n}-b c n x^{n}+c x^{n+1}}+1\right)-\frac{a^{2} c(n+1) y(x)^{2}}{\left(-b c x^{n}-b c n x^{n}+c x^{n+1}\right)^{2}}\right)\right.}{2 c(n+1)}\right.\)

\(\left.+c_{1}, y(x)\right]\)

\subsection*{24.10 problem 10}

Internal problem ID [10747]
Internal file name [OUTPUT/9694_Monday_June_06_2022_03_22_25_PM_92796696/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a(2 n+k) x^{k}+b\right) x^{n-1} y=\left(-a^{2} n x^{2 k}-a b x^{k}+c\right) x^{-1+2 n}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(x^k*k^2*a+3*x^k*k*a*n+2*x^k*a*n^2-a
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*a^2*n*x^(2*k)*k+2*x^(2*k)*a^2*n^2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }187 , `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\mathrm{a} *(2 * \mathrm{n}+\mathrm{k}) * \mathrm{x}^{\wedge} \mathrm{k}+\mathrm{b}\right) * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}(\mathrm{x})+\left(-\mathrm{a}^{\wedge} 2 * \mathrm{n} * \mathrm{x}^{\wedge}(2 * \mathrm{k})-\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{k}+\mathrm{c}\right) * \mathrm{x}^{\wedge}(2 * \mathrm{n}-1)\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]==\left(a *(2 * n+k) * x^{\wedge} k+b\right) * x^{\wedge}(n-1) * y[x]+\left(-a^{\wedge} 2 * n * x^{\wedge}(2 * k)-a * b * x^{\wedge} k+c\right) * x^{\wedge}(2 * n-1), y[x]\right.\),

Not solved

\subsection*{24.11 problem 11}

Internal problem ID [10748]
Internal file name [OUTPUT/9695_Monday_June_06_2022_03_22_44_PM_84902151/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a(2 n+k) x^{2 k}+b(2 m-k)\right) x^{m-k-1} y=-\frac{a^{2} m x^{4 k}+c x^{2 k}+b^{2} m}{x}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve (y(x)*diff (y(x),x)=(a*(2*n+k)*x^(2*k)+b*(2*m-k))*x^(m-k-1)*y (x)-(a^2*m*x^(4*k)+c*x^(2*

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}^{\prime}[\mathrm{x}]==\left(\mathrm{a} *(2 * \mathrm{n}+\mathrm{k}) * \mathrm{x}^{\wedge}(2 * \mathrm{k})+\mathrm{b} *(2 * \mathrm{~m}-\mathrm{k})\right) * \mathrm{x}^{\wedge}(\mathrm{m}-\mathrm{k}-1) * \mathrm{y}[\mathrm{x}]-\left(\mathrm{a}^{\wedge} 2 * \mathrm{~m} * \mathrm{x}^{\wedge}(4 * \mathrm{k})+\mathrm{c} * \mathrm{x}^{\wedge}(2 * \mathrm{k})+\mathrm{b}^{\wedge} 2\right.\right.\)

Timed out

\subsection*{24.12 problem 12}

Internal problem ID [10749]
Internal file name [OUTPUT/9696_Monday_June_06_2022_03_24_54_PM_95434992/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{((m+2 L-3) x+n-2 L+3) y}{x}=\left((m-L-1) x^{2}+(n-m-2 L+3) x-n+L-2\right) x^{1-2 L}
\]

Unable to determine ODE type.
X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=((\mathrm{m}+2 * \mathrm{~L}-3) * \mathrm{x}+\mathrm{n}-2 * \mathrm{~L}+3) * 1 / \mathrm{x} * \mathrm{y}(\mathrm{x})+\left((\mathrm{m}-\mathrm{L}-1) * \mathrm{x}^{\wedge} 2+(\mathrm{n}-\mathrm{m}-2 * \mathrm{~L}+3) * \mathrm{x}-\mathrm{n}+\mathrm{L}-2\right) * \mathrm{x}^{\wedge}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]==((m+2 * L-3) * x+n-2 * L+3) * 1 / x * y[x]+\left((m-L-1) * x^{\wedge} 2+(n-m-2 * L+3) * x-n+L-2\right) * x^{\wedge}(1-2 * L\right.\)

Timed out

\subsection*{24.13 problem 13}

Internal problem ID [10750]
Internal file name [OUTPUT/9697_Monday_June_06_2022_03_26_59_PM_64549683/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a(2 n+1) x^{2}+c x+b(-1+2 n)\right) x^{n-2} y=-\left(n a^{2} x^{4}+a c x^{3}+n b^{2}+b c x+d x^{2}\right) x^{2 n-3}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff(y(x),x)=(a*(2*n+1)*x^2+c*x+b*(2*n-1))*x^(n-2)*y(x)-(n*a^2*x^4+a*c*x^3+d*x^2

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve [y[x]*y'[x]==(a*(2*n+1)*x^2+c*x+b*(2*n-1))*x^(n-2)*y[x]-(n*a^2*x^4+a*c*x^3+d*x^2+b*c*x

```

Timed out

\subsection*{24.14 problem 14}

Internal problem ID [10751]
Internal file name [OUTPUT/9698_Monday_June_06_2022_03_28_49_PM_67334612/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-(a(n-1) x+b(2 \lambda+n)) x^{\lambda-1}(a x+b)^{-\lambda-2} y=-(a n x+b(\lambda+n)) x^{2 \lambda-1}(a x+b)^{-2 \lambda-3}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(3*a^2*n*x^2-2*a*b*lambda*n*x+4*a*b*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(2*a^2*n*x^2-a*b*lambda*n*x-2*a^2*x^ Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }187 ,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(\mathrm{a} *(\mathrm{n}-1) * \mathrm{x}+\mathrm{b} *(2 * \operatorname{lambda}+\mathrm{n})) * \mathrm{x}^{\wedge}(\mathrm{l}\right.\) ambda -1\() *(\mathrm{a} * \mathrm{x}+\mathrm{b})^{\wedge}(-\mathrm{lambda}-2) * \mathrm{y}(\mathrm{x})-(\mathrm{a}\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]==(\mathrm{a} *(\mathrm{n}-1) * \mathrm{x}+\mathrm{b} *(2 * \backslash[\right.\) Lambda \(]+\mathrm{n})) * \mathrm{x}^{\wedge}(\backslash[\) Lambda \(]-1) *(\mathrm{a} * \mathrm{x}+\mathrm{b})^{\wedge} \wedge(-\backslash[\) Lambda \(]-2) * \mathrm{y}[\mathrm{x}]\)

Not solved

\subsection*{24.15 problem 15}

Internal problem ID [10752]
Internal file name [OUTPUT/9699_Monday_June_06_2022_03_29_10_PM_72950326/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a((m-1) x+1) y}{x}=\frac{a^{2}(m x+1)(x-1)}{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 279
```

dsolve(y(x)*diff (y(x),x)-a*((m-1)*x+1)*1/x*y(x)=a~2*1/x*(m*x+1)*(x-1),y(x), singsol=all)

```
\[
-\frac{27(m-1)\left(-54 m^{4} x a(m+2)\left(m+\frac{1}{2}\right)\left(\int^{\frac{9 m\left((m-1) y(x)+3\left(\frac{1}{3}+\left(x-\frac{1}{3}\right) m\right) a\right.}{(m-1)(1+2 m)(m+2)(-y(x)+a)}} \frac{-a\left(\left(m^{2}+m-2\right) \_a-9 m\right)^{\frac{1}{1+m}}\left(\left(2 m^{2}-1\right.\right.}{8\left(\left(m^{2}-\frac{1}{2} m-\frac{1}{2}\right) \_a+\frac{9 m}{2}\right)\left(\left(m^{2}+m-2\right) \_a-9 m\right.}\right.\right.}{m(2}
\]
\[
=0
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-a *((m-1) * x+1) * 1 / x * y[x]==a^{\wedge} 2 * 1 / x *(m * x+1) *(x-1), y[x], x\right.\), IncludeSingularSoluti

Not solved

\subsection*{24.16 problem 16}

Internal problem ID [10753]
Internal file name [OUTPUT/9700_Monday_June_06_2022_03_29_14_PM_62636486/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a\left(1-\frac{b}{\sqrt{x}}\right) y=\frac{a^{2} b}{\sqrt{x}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 269
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} *\left(1-\mathrm{b} * \mathrm{x}^{\wedge}(-1 / 2)\right) * \mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 * \mathrm{~b} * \mathrm{x}^{\wedge}(-1 / 2), \mathrm{y}(\mathrm{x})\right.\), singsol=all)
\(\frac{\left(b^{2}\right)^{\frac{1}{3}} c_{1} 2^{\frac{2}{3}}(-\sqrt{x}+b) \operatorname{AiryBi}\left(\frac{2^{\frac{1}{3}}\left(-2 \sqrt{x} a b+\left(b^{2}+x\right) a-y(x)\right)}{2\left(b^{2}\right)^{\frac{1}{3}} a}\right)+2 \operatorname{AiryBi}\left(1, \frac{2^{\frac{1}{3}}\left(-2 \sqrt{x} a b+\left(b^{2}+x\right) a-y(x)\right)}{2\left(b^{2}\right)^{\frac{1}{3}} a}\right) c_{1} b-2 \mathrm{~A}}{\left(b^{2}\right)^{\frac{1}{3}} 2^{\frac{2}{3}}(-\sqrt{x}+b) \operatorname{AiryBi}\left(\frac{2^{\frac{1}{3}}\left(-2 \sqrt{x} a b+\left(b^{2}+x\right) a-y(x)\right)}{2\left(b^{2}\right)^{\frac{1}{3}} a}\right)}\)
\(=0\)
\(\checkmark\) Solution by Mathematica
Time used: 1.905 (sec). Leaf size: 323
DSolve \(\left[y[x] * y{ }^{\prime}[x]-a *\left(1-b * x^{\wedge}(-1 / 2)\right) * y[x]==a^{\wedge} 2 * b * x^{\wedge}(-1 / 2), y[x], x\right.\), IncludeSingularSolutions \(->~ T\)

\(\left.+c_{1}=0, y(x)\right]\)

\subsection*{24.17 problem 17}

Internal problem ID [10754]
Internal file name [OUTPUT/9701_Monday_June_06_2022_03_29_16_PM_5596839/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{3 y}{(a x+b)^{\frac{1}{3}} x^{\frac{5}{3}}}=\frac{3}{(a x+b)^{\frac{2}{3}} x^{\frac{7}{3}}}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 143
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)=3 *(a * x+b)^{\wedge}(-1 / 3) * x^{\wedge}(-5 / 3) * y(x)+3 *(a * x+b)^{\wedge}(-2 / 3) * x^{\wedge}(-7 / 3), y(x)\right.\), sing
\(y(x)=\)
\(-\frac{6 \sqrt{3}}{(a x+b)^{\frac{1}{3}} x^{\frac{2}{3}}\left(\left((a x+b)^{\frac{1}{3}} x^{\frac{5}{3}}\left(\frac{a}{(a x+b)^{2} x^{4}}\right)^{\frac{1}{3}}+2\right) \sqrt{3}+3 x^{\frac{5}{3}}(a x+b)^{\frac{1}{3}}\left(\frac{a}{(a x+b)^{2} x^{4}}\right)^{\frac{1}{3}} \tan (\operatorname{RootOf}(\sqrt{3}\right.}\)
Solution by Mathematica
Time used: 1.769 (sec). Leaf size: 312
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]==3 *(\mathrm{a} * \mathrm{x}+\mathrm{b})^{\wedge}(-1 / 3) * \mathrm{x}^{\wedge}(-5 / 3) * \mathrm{y}[\mathrm{x}]+3 *(\mathrm{a} * \mathrm{x}+\mathrm{b})^{\wedge}(-2 / 3) * \mathrm{x}^{\wedge}(-7 / 3), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSi

Solve \(\left[\frac{1}{6}\left(2 \sqrt{3} \arctan \left(\frac{-\frac{2\left(x^{2 / 3} y(x) \sqrt[3]{a x+b}+3\right)}{\sqrt[3]{a x^{3}} y(x)}-1}{\sqrt{3}}\right)+2 \log \left(\frac{-x^{2 / 3} y(x) \sqrt[3]{a x+b}-3}{\left.\sqrt[3]{a x^{3} y} y\right)}+1\right)-\log \left(\frac{\left(x^{2 / 3} ?\right.}{?}\right.\right.\right.\)

\subsection*{24.18 problem 18}

Internal problem ID [10755]
Internal file name [OUTPUT/9702_Monday_June_06_2022_03_29_21_PM_54352336/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
3 y y^{\prime}-\frac{(-7 \lambda s(3 s+4 \lambda) x+6 s-2 \lambda) y}{x^{\frac{1}{3}}}=\frac{6 \lambda s x-6}{x^{\frac{2}{3}}}+2(\lambda s(3 s+4 \lambda) x+5 \lambda)(-\lambda s(3 s+4 \lambda) x+3 s+4 \lambda)
\]

Unable to determine ODE type.

Maple trace
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(2 / 3) * \mathrm{y}(\mathrm{x}) *\left(28 * \operatorname{lambda}{ }^{\wedge} 2 * \mathrm{~s}^{*} *+21 * \operatorname{lambda} \mathrm{~s}^{\wedge} 2\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 3) * \mathrm{y}(\mathrm{x}) *\left(112 * \operatorname{lambda}{ }^{\wedge} 4 * \mathrm{~s}^{`}{ }^{-} 2 * \mathrm{x}^{\wedge} 3+168 * \operatorname{lamb}\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1886
, --> Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 9) *\left(-\mathrm{x}^{\wedge} 2 * \operatorname{lambda+3*s*x^{\wedge }2+9*y(x))/x,y(x)}\right.\)

X Solution by Maple
dsolve \(\left(3 * y(x) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(-7 * \operatorname{lambda} \mathrm{~s}_{\mathrm{s}} *(3 * \mathrm{~s}+4 * \operatorname{lambda}) * \mathrm{x}+6 * \mathrm{~s}-2 * \operatorname{lambda}\right) * \mathrm{x}^{\wedge}(-1 / 3) * y(\mathrm{x})+6 *(\mathrm{lamb}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[3 * y[x] * y '[x]==\left(-7 * \backslash[\right.\right.\) Lambda \(] * s *\left(3 * s+4 * \backslash[\right.\) Lambda] \() * x+6 * s-2 * \backslash[\) Lambda] \() * x^{\wedge}(-1 / 3) * y[x]+6 *()\)

Timed out

\subsection*{24.19 problem 19}

Internal problem ID [10756]
Internal file name [OUTPUT/9703_Monday_June_06_2022_03_29_28_PM_56850454/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(6 x-1) y}{2 x}=-\frac{a^{2}(x-1)(4 x-1)}{2 x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 364
```

dsolve(y(x)*diff (y(x),x)+1/2*a*(6*x-1)*1/x*y(x)=-1/2*a^2*(x-1)*(4*x-1)*1/x,y(x), singsol=all

```
\(c_{1}\)
\(+\frac{\sqrt{2}\left(\frac{i(i \sqrt{-x} a+2 a x+y(x)-a) \sqrt{-x}}{x a}\right)^{\frac{3}{2}}\left(-\frac{i(i \sqrt{-x} a+2 a x+y(x)-a) \sqrt{-x} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{3}{2}\right],\left[\frac{7}{2}\right], \frac{i(i \sqrt{-x} a+2 a x+y(x)-a) \sqrt{-x}}{2 x a}\right)}{8 x a}+\frac{5(4 i \sqrt{2}}{2\left(\frac{3}{2}-\frac{4 i \sqrt{2} x-i \sqrt{2}-6 i \sqrt{-x}+4 x+2}{2(4 i \sqrt{2} x+i \sqrt{2}-2 i \sqrt{-x}-4 \sqrt{2} \sqrt{-x}+4 x-2)}\right) \text { hypergeom }\left([-2,-1],\left[-\frac{1}{2}\right], \frac{i(i \sqrt{-x} a+2 a x}{2 x}\right.}\right)}{2 x}\) \(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+1 / 2 * \mathrm{a} *(6 * \mathrm{x}-1) * 1 / \mathrm{x} * \mathrm{y}[\mathrm{x}]==-1 / 2 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(4 * \mathrm{x}-1) * 1 / \mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingulars

Not solved

\subsection*{24.20 problem 20}

Internal problem ID [10757]
Internal file name [OUTPUT/9704_Monday_June_06_2022_03_29_35_PM_3440477/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a\left(1+\frac{2 b}{x^{2}}\right) y}{2}=\frac{a^{2}\left(3 x+\frac{4 b}{x}\right)}{16}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 2 * \mathrm{a} *\left(1+2 * \mathrm{~b} * \mathrm{x}^{\wedge}(-2)\right) * \mathrm{y}(\mathrm{x})=1 / 16 * \mathrm{a}^{\wedge} 2 *(3 * \mathrm{x}+4 * \mathrm{~b} / \mathrm{x}), \mathrm{y}(\mathrm{x})\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-1 / 2 * a *\left(1+2 * b * x^{\wedge}(-2)\right) * y[x]==1 / 16 * a^{\wedge} 2 *(3 * x+4 * b / x), y[x], x\right.\), IncludeSingularSolu

Not solved

\subsection*{24.21 problem 21}

Internal problem ID [10758]
Internal file name [OUTPUT/9705_Monday_June_06_2022_03_29_39_PM_44919740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(13 x-20) y}{14 x^{\frac{9}{7}}}=-\frac{3 a^{2}(x-1)(x-8)}{14 x^{\frac{11}{17}}}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff (}\textrm{y}(\textrm{x}),\textrm{x})+1/14*a*(13*x-20)*\mp@subsup{x}{}{\wedge}(-9/7)*y(x)=-3/14*a^2*(x-1)*(x-8)*x^(-11/17),y(x

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]+1/14*a*(13*x-20)*x^(-9/7)*y[x]==-3/14*a^2*(x-1)*(x-8)*x^(-11/17),y[x],x,In

```

Timed out

\subsection*{24.22 problem 22}

Internal problem ID [10759]
Internal file name [OUTPUT/9706_Monday_June_06_2022_03_31_43_PM_93423319/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{5 a(23 x-16) y}{56 x^{\frac{9}{7}}}=-\frac{3 a^{2}(x-1)(25 x-32)}{56 x^{\frac{11}{17}}}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff (y (x), x)+5/56*a*(23*x-16)*x^(-9/7)*y(x)=-3/56*a^2*(x-1)*(25*x-32)*x^(-11/17)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve [y [x] *y'[x]+5/56*a*(23*x-16)*x^(-9/7)*y[x]==-3/56*a^2*(x-1)*(25*x-32)*x - (-11/17),y[x],

```

Timed out

\subsection*{24.23 problem 23}

Internal problem ID [10760]
Internal file name [OUTPUT/9707_Monday_June_06_2022_03_33_51_PM_26459903/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(19 x+85) y}{26 x^{\frac{18}{13}}}=-\frac{3 a^{2}(x-1)(x+25)}{26 x^{\frac{23}{13}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(5/13)*y(x)*(19*x+306)/(x*(19*x+85)), y(x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/13)*y(x)*(3*x^2-240*x+575)/((x-1)*x*(x Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }189 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 26 * a *(19 * \mathrm{x}+85) * \mathrm{x}^{\wedge}(-18 / 13) * \mathrm{y}(\mathrm{x})=-3 / 26 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+25) * \mathrm{x}^{\wedge}(-23 / 13)\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 26 * a *(19 * x+85) * x^{\wedge}(-18 / 13) * y[x]==-3 / 26 * a^{\wedge} 2 *(x-1) *(x+25) * x^{\wedge}(-23 / 13), y[x], x\right.\)

Timed out

\subsection*{24.24 problem 24}

Internal problem ID [10761]
Internal file name [OUTPUT/9708_Monday_June_06_2022_03_33_56_PM_57206178/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(13 x-18) y}{15 x^{\frac{7}{5}}}=-\frac{4 a^{2}(x-1)(x-6)}{15 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(2/5)*y(x)*(13*x-63)/(x*(13*x-18)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*y(x)*(x^2+28*x-54)/((x-1)*x*(x-6)), Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }189 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 15 * a *(13 * \mathrm{x}-18) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}(\mathrm{x})=-4 / 15 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}-6) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]+1 / 15 * \mathrm{a} *(13 * \mathrm{x}-18) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}[\mathrm{x}]==-4 / 15 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}-6) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{Incl}\)

Timed out

\subsection*{24.25 problem 25}

Internal problem ID [10762]
Internal file name [OUTPUT/9709_Monday_June_06_2022_03_34_00_PM_79407301/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(5 x+1) y}{2 \sqrt{x}}=a^{2}\left(-x^{2}+1\right)
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff(y(x),x)+1/2*a*(5*x+1)*x^(-1/2)*y(x)=a^2*(1-x^2),y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 2 * a *(5 * x+1) * x^{\wedge}(-1 / 2) * y[x]==a^{\wedge} 2 *\left(1-x^{\wedge} 2\right), y[x], x\right.\), IncludeSingularSolutions
Not solved

\subsection*{24.26 problem 26}

Internal problem ID [10763]
Internal file name [OUTPUT/9710_Monday_June_06_2022_04_47_16_PM_49734204/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{3 a(19 x-14) x^{\frac{7}{5}} y}{35}=-\frac{4 a^{2}(x-1)(9 x-14) x^{\frac{9}{5}}}{35}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(2 / 5) * \mathrm{y}(\mathrm{x}) *(114 * \mathrm{x}-49) /(\mathrm{x} *(19 * \mathrm{x}-14)), \mathrm{y}(\mathrm{x})\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 5) * \mathrm{y}(\mathrm{x}) *\left(171 * \mathrm{x}^{\wedge} 2-322 * \mathrm{x}+126\right) /(\mathrm{x} *(9 * \mathrm{x}-14\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1903
, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE', \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(72 / 35) * \mathrm{a} / \mathrm{x}, \mathrm{y}(\mathrm{x})^{-}\)

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 / 35 * a *(19 * \mathrm{x}-14) * \mathrm{x}^{\wedge}(7 / 5) * \mathrm{y}(\mathrm{x})=-4 / 35 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(9 * \mathrm{x}-14) * \mathrm{x}^{\wedge}(9 / 5), \mathrm{y}(\mathrm{x})\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+3 / 35 * a *(19 * x-14) * x^{\wedge}(7 / 5) * y[x]==-4 / 35 * a^{\wedge} 2 *(x-1) *(9 * x-14) * x^{\wedge}(9 / 5), y[x], x, \operatorname{Inc}\right.\)

Timed out

\subsection*{24.27 problem 27}

Internal problem ID [10764]
Internal file name [OUTPUT/9711_Monday_June_06_2022_04_47_19_PM_1175050/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{3 a(3 x+7) y}{10 x^{\frac{13}{10}}}=-\frac{a^{2}(x-1)(x+9)}{5 x^{\frac{8}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/10)*y(x)*(9*x+91)/(x*(3*x+7)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(2/5)*y(x)*(x-6)^2/(x*(x^(1/10)-1)*(x^(1) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }190 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 / 10 * \mathrm{a} *(3 * \mathrm{x}+7) * \mathrm{x}^{\wedge}(-13 / 10) * \mathrm{y}(\mathrm{x})=-1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+9) * \mathrm{x}^{\wedge}(-8 / 5), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]+3 / 10 * \mathrm{a} *(3 * \mathrm{x}+7) * \mathrm{x}^{\wedge}(-13 / 10) * \mathrm{y}[\mathrm{x}]==-1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+9) * \mathrm{x}^{\wedge}(-8 / 5), \mathrm{y}[\mathrm{x}], \mathrm{x}\), Inclu

Timed out

\subsection*{24.28 problem 28}

Internal problem ID [10765]
Internal file name [OUTPUT/9712_Monday_June_06_2022_04_47_22_PM_62025219/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(7 x-12) y}{10 x^{\frac{7}{5}}}=-\frac{a^{2}(x-1)(x-16)}{10 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 758
```

dsolve(y(x)*diff (y(x),x)+1/10*a*(7*x-12)*x^(-7/5)*y(x)=-1/10*a^2* (x-1)*(x-16)*x^(-9/5),y(x),

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 10 * a *(7 * x-12) * x^{\wedge}(-7 / 5) * y[x]==-1 / 10 * a^{\wedge} 2 *(x-1) *(x-16) * x^{\wedge}(-9 / 5), y[x], x\right.\), Incl

Timed out

\subsection*{24.29 problem 29}

Internal problem ID [10766]
Internal file name [OUTPUT/9713_Monday_June_06_2022_04_47_24_PM_53594480/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{3 a(13 x-8) y}{20 x^{7}}=-\frac{a^{2}(x-1)(27 x-32)}{20 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(2/5)*y(x)*(13*x-28)/(x*(13*x-8)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*y(x)*(27*x^2+236*x-288)/((x-1)*x*(2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful}191 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 / 20 * a *(13 * \mathrm{x}-8) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}(\mathrm{x})=-1 / 20 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(27 * \mathrm{x}-32) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+3 / 20 * a *(13 * x-8) * x^{\wedge}(-7 / 5) * y[x]==-1 / 20 * a^{\wedge} 2 *(x-1) *(27 * x-32) * x^{\wedge}(-9 / 5), y[x], x, I\right.\)

Timed out

\subsection*{24.30 problem 30}

Internal problem ID [10767]
Internal file name [OUTPUT/9714_Monday_June_06_2022_04_47_27_PM_70978277/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{3 a(3 x+11) y}{14 x^{\frac{10}{7}}}=-\frac{a^{2}(x-1)(x-27)}{14 x^{\frac{13}{7}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/7)*y(x)*(9*x+110)/(x*(3*x+11)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*y(x)*(x^2+168*x-351)/((x-1)*x*(x-27 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }191 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 / 14 * a *(3 * \mathrm{x}+11) * \mathrm{x}^{\wedge}(-10 / 7) * \mathrm{y}(\mathrm{x})=-1 / 14 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}-27) * \mathrm{x}^{\wedge}(-13 / 7), \mathrm{y}(\mathrm{x}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+3 / 14 * a *(3 * x+11) * x^{\wedge}(-10 / 7) * y[x]==-1 / 14 * a^{\wedge} 2 *(x-1) *(x-27) * x^{\wedge}(-13 / 7), y[x], x, \operatorname{In}\right.\)

Timed out

\subsection*{24.31 problem 31}

Internal problem ID [10768]
Internal file name [OUTPUT/9715_Monday_June_06_2022_04_47_30_PM_61373009/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(1+x) y}{2 x^{\frac{7}{4}}}=\frac{a^{2}(x-1)(3 x+5)}{4 x^{\frac{5}{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 187
```

dsolve(y(x)*diff (y(x),x)-1/2*a*(x+1)*\mp@subsup{x}{}{\wedge}(-7/4)*y(x)=1/4*a^2*(x-1)*(3*x+5)*x^(-5/2),y(x), sing

```
\[
\frac{\sqrt[36]{36} \begin{array}{l}
-\frac{(-1+x) a+x^{\frac{3}{4}} y(x)}{x^{\frac{3}{4}}\left(y(x)+x^{\frac{1}{4}} a\right)} \sqrt{13} 55^{\frac{1}{6}}\left(x-\frac{15}{2}\right)\left(\frac{(3 x+5) a+3 x^{\frac{3}{4}} y(x)}{x^{\frac{3}{4}}\left(y(x)+x^{\frac{1}{4}} a\right)}\right)^{\frac{5}{6}} \\
20449
\end{array} 1458000\left(\int^{143\left(x^{\frac{3}{4}} y(x)+a x\right)} \frac{{ }^{90\left(2 x^{\frac{3}{4}} y(x)+2 a x-15 a\right)}}{\left(143 \_a+180\right)^{\frac{4}{3}}\left(20449 \ldots a^{3}-119\right.}=a \sqrt{11 \_a-90(13}=\right.}{\left(\frac{a}{x^{\frac{3}{4}}\left(y(x)+x^{\frac{1}{4}} a\right)}\right)^{\frac{4}{3}} x}
\]
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-1 / 2 * a *(x+1) * x^{\wedge}(-7 / 4) * y[x]==1 / 4 * a^{\wedge} 2 *(x-1) *(3 * x+5) * x^{\wedge}(-5 / 2), y[x], x\right.\), IncludeSi

Timed out

\subsection*{24.32 problem 32}

Internal problem ID [10769]
Internal file name [OUTPUT/9716_Monday_June_06_2022_04_47_32_PM_87061287/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(1+x) y}{2 x^{\frac{7}{4}}}=\frac{a^{2}(x-1)(x+5)}{4 x^{\frac{5}{2}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(x^2+12*x-25)/(x*(x+5)*(x^(1/4
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 2 * \mathrm{a} *(\mathrm{x}+1) * \mathrm{x}^{\wedge}(-7 / 4) * \mathrm{y}(\mathrm{x})=1 / 4 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+5) * \mathrm{x}^{\wedge}(-5 / 2), \mathrm{y}(\mathrm{x})\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-1 / 2 * \mathrm{a} *(\mathrm{x}+1) * \mathrm{x}^{\wedge}(-7 / 4) * \mathrm{y}[\mathrm{x}]==1 / 4 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+5) * \mathrm{x}^{\wedge}(-5 / 2), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSing

Timed out

\subsection*{24.33 problem 33}

Internal problem ID [10770]
Internal file name [OUTPUT/9717_Monday_June_06_2022_04_47_35_PM_8570371/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(4 x+3) y}{14 x^{\frac{8}{7}}}=-\frac{a^{2}(x-1)(16 x+5)}{14 x^{\frac{9}{7}}}
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(4/7)*y(x)*(x+6)/(x*(4*x+3)), y(x)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*y(x)*(80*x^2+22*x+45)/((x-1)*x*(16* Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }192 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 14 * \mathrm{a} *(4 * \mathrm{x}+3) * \mathrm{x}^{\wedge}(-8 / 7) * \mathrm{y}(\mathrm{x})=-1 / 14 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(16 * \mathrm{x}+5) * \mathrm{x}^{\wedge}(-9 / 7), \mathrm{y}(\mathrm{x})\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]-1 / 14 * a *(4 * x+3) * x^{\wedge}(-8 / 7) * y[x]==-1 / 14 * a^{\wedge} 2 *(x-1) *(16 * x+5) * x^{\wedge}(-9 / 7), y[x], x, \operatorname{Inc}\)

Timed out

\subsection*{24.34 problem 34}

Internal problem ID [10771]
Internal file name [OUTPUT/9718_Monday_June_06_2022_04_47_38_PM_68775627/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 34.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(13 x-3) y}{6 x^{\frac{2}{3}}}=-\frac{a^{2}(x-1)(5 x-1)}{6 x^{\frac{1}{3}}}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 3) * \mathrm{y}(\mathrm{x}) *(13 * \mathrm{x}+6) /(\mathrm{x} *(13 * \mathrm{x}-3)), \mathrm{y}(\mathrm{x})\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 3) * \mathrm{y}(\mathrm{x}) *\left(25 * \mathrm{x}^{\wedge} 2-12 * \mathrm{x}-1\right) /\left(\mathrm{x} *\left(\mathrm{x}^{\wedge}(1 / 3)-1\right)\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1925
, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(8 / 13) * \mathrm{a} / \mathrm{x}, \mathrm{y}(\mathrm{x})^{`} \quad * * *\) Sublevel 2

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 6 * \mathrm{a} *(13 * \mathrm{x}-3) * \mathrm{x}^{\wedge}(-2 / 3) * \mathrm{y}(\mathrm{x})=-1 / 6 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(5 * \mathrm{x}-1) * \mathrm{x}^{\wedge}(-1 / 3), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]+1 / 6 * \mathrm{a} *(13 * \mathrm{x}-3) * \mathrm{x}^{\wedge}(-2 / 3) * \mathrm{y}[\mathrm{x}]==-1 / 6 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(5 * \mathrm{x}-1) * \mathrm{x}^{\wedge}(-1 / 3), \mathrm{y}[\mathrm{x}], \mathrm{x}\), Inclu

Not solved

\subsection*{24.35 problem 35}

Internal problem ID [10772]
Internal file name [OUTPUT/9719_Monday_June_06_2022_04_47_41_PM_49926942/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 35.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(8 x-1) y}{28 x^{\frac{8}{7}}}=\frac{a^{2}(x-1)(32 x+3)}{28 x^{\frac{9}{7}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(8/7)*y(x)*(x^(1/7)-1)*(x^(6/7)+\mp@subsup{x}{}{\wedge}(5/7)+x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*y(x)*(160*x^2+58*x+27)/((x-1)*x*(32 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }192 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 28 * a *(8 * x-1) * x^{\wedge}(-8 / 7) * y(x)=1 / 28 * a^{\wedge} 2 *(x-1) *(32 * x+3) * x^{\wedge}(-9 / 7), y(x)\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-1 / 28 * a *(8 * x-1) * x^{\wedge}(-8 / 7) * y[x]==1 / 28 * a^{\wedge} 2 *(x-1) *(32 * x+3) * x^{\wedge}(-9 / 7), y[x], x, \operatorname{Incl}\right.\)

Timed out

\subsection*{24.36 problem 36}

Internal problem ID [10773]
Internal file name [OUTPUT/9720_Monday_June_06_2022_04_47_44_PM_87836436/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 36.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(5 x-4) y}{x^{4}}=\frac{a^{2}(x-1)(3 x-1)}{x^{7}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 167
```

dsolve(y(x)*diff (y(x), x)-a*(5*x-4)*x^(-4)*y(x)=a^2*(x-1)*(3*x-1)*x^(-7),y(x), singsol=all)

```
\[
\begin{aligned}
& c_{1}- \frac{92^{\frac{2}{3}} \sqrt{\frac{x^{3} y(x)+a x-a}{\left(y(x) x^{2}+a\right) x}}\left(x-\frac{3}{4}\right) 5^{\frac{1}{6}}}{5 x\left(-\frac{a}{\left(y(x) x^{2}+a\right) x}\right)^{\frac{1}{3}}\left(\frac{3 x^{3} y(x)+3 a x-a}{\left(y(x) x^{2}+a\right) x}\right)^{\frac{1}{6}}} \\
& \quad-729\left(\int^{\frac{\frac{9 x^{3} y(x)}{5}+\frac{9 a x}{5}-\frac{27 a}{20}}{\left(y(x) x^{2}+a\right) x}} \frac{-a \sqrt{20 \_a-9}}{\left(5 \_a-9\right)^{\frac{1}{3}}\left(9+4 \_a\right)^{\frac{1}{6}}\left(400 \_a^{3}-1701 \_a+729\right)} d \_a\right) \\
&=0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]-a*(5*x-4)*x^(-4)*y[x]==a^2*(x-1)*(3*x-1)*x^(-7),y[x],x,IncludeSingularSolu

```

Not solved

\subsection*{24.37 problem 37}

Internal problem ID [10774]
Internal file name [OUTPUT/9721_Monday_June_06_2022_04_47_46_PM_92742251/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{2 a(3 x-10) y}{5 x^{4}}=\frac{a^{2}(x-1)(8 x-5)}{5 x^{7}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-2 / 5 * \mathrm{a} *(3 * \mathrm{x}-10) * \mathrm{x}^{\wedge}(-4) * \mathrm{y}(\mathrm{x})=1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(8 * \mathrm{x}-5) * \mathrm{x}^{\wedge}(-7), \mathrm{y}(\mathrm{x})\right.\), sings

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-2 / 5 * \mathrm{a} *(3 * \mathrm{x}-10) * \mathrm{x}^{\wedge}(-4) * \mathrm{y}[\mathrm{x}]==1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(8 * \mathrm{x}-5) * \mathrm{x}^{\wedge}(-7), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSin

Not solved

\subsection*{24.38 problem 38}

Internal problem ID [10775]
Internal file name [OUTPUT/9722_Monday_June_06_2022_04_47_48_PM_48890699/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(39 x-4) y}{42 x^{\frac{9}{7}}}=-\frac{a^{2}(x-1)(9 x-1)}{42 x^{\frac{11}{7}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(6/7)*y(x)*(13*x-6)/(x*(39*x-4)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/7)*y(x)*(27*x^2+40*x-11)/((x-1)*x*(9*x Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }193 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 42 * \mathrm{a} *(39 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-9 / 7) * \mathrm{y}(\mathrm{x})=-1 / 42 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(9 * \mathrm{x}-1) * \mathrm{x}^{\wedge}(-11 / 7), \mathrm{y}(\mathrm{x}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 42 * a *(39 * x-4) * x^{\wedge}(-9 / 7) * y[x]==-1 / 42 * a^{\wedge} 2 *(x-1) *(9 * x-1) * x^{\wedge}(-11 / 7), y[x], x, \operatorname{In}\right.\)

Timed out

\subsection*{24.39 problem 39}

Internal problem ID [10776]
Internal file name [OUTPUT/9723_Monday_June_06_2022_04_47_51_PM_99545307/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(x-2) y}{x}=\frac{2 a^{2}(x-1)}{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 116
```

dsolve(y(x)*diff(y(x),x)+a*(x-2)*x^(-1)*y(x)=2*a^2*(x-1)*x^(-1),y(x), singsol=all)

```
\[
\frac{\sqrt{\frac{(1-x) a-y(x)}{a x+y(x)}} \mathrm{e}^{\frac{a x+y(x)}{2 a}} y(x)+x\left(\int^{\frac{a}{a x+y(x)}} \frac{\sqrt{-a-1} \mathrm{e}^{2^{2}-a}}{\sqrt{-a}} d \_a+c_{1}\right) \sqrt{\frac{a}{a x+y(x)}}(a x+y(x))}{\sqrt{\frac{a}{a x+y(x)}} x(a x+y(x))}=0
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+a *(x-2) * x^{\wedge}(-1) * y[x]==2 * a^{\wedge} 2 *(x-1) * x^{\wedge}(-1), y[x], x\right.\), IncludeSingularSolutions \(->\)

Not solved

\subsection*{24.40 problem 40}

Internal problem ID [10777]
Internal file name [OUTPUT/9724_Monday_June_06_2022_04_47_52_PM_55668297/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(3 x-2) y}{x}=-\frac{2 a^{2}(x-1)^{2}}{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} *(3 * \mathrm{x}-2) * \mathrm{x}^{\wedge}(-1) * \mathrm{y}(\mathrm{x})=-2 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1)^{\wedge} 2 * \mathrm{x}^{\wedge}(-1), \mathrm{y}(\mathrm{x}), \quad\) singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+a *(3 * x-2) * x^{\wedge}(-1) * y[x]==-2 * a^{\wedge} 2 *(x-1)^{\wedge} 2 * x^{\wedge}(-1), y[x], x\right.\), IncludeSingularSolutio

Not solved

\subsection*{24.41 problem 41}

Internal problem ID [10778]
Internal file name [OUTPUT/9725_Monday_June_06_2022_04_47_55_PM_34886484/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a\left(1-\frac{b}{x^{2}}\right) y}{x}=\frac{a^{2} b}{x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)+a *\left(1-b * x^{\wedge}(-2)\right) * x^{\wedge}(-1) * y(x)=a^{\wedge} 2 * b * x^{\wedge}(-1), y(x)\right.\), singsol \(\left.=a 11\right)\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y\right.\) ' \([x]+a *\left(1-b * x^{\wedge}(-2)\right) * x^{\wedge}(-1) * y[x]==a^{\wedge} 2 * b * x^{\wedge}(-1), y[x], x\), IncludeSingularSolutions
Not solved

\subsection*{24.42 problem 42}

Internal problem ID [10779]
Internal file name [OUTPUT/9726_Monday_June_06_2022_04_47_57_PM_92274431/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(3 x-4) y}{4 x^{\frac{5}{2}}}=\frac{a^{2}(x-1)(x+2)}{4 x^{4}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(9*x-20)/(x*(3*x-4)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(2*x^2+3*x-8)/(x*(x+2)*(x^(1/2)-1)*(Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }194 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 4 * \mathrm{a} *(3 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}(\mathrm{x})=1 / 4 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+2) * \mathrm{x}^{\wedge}(-4), \mathrm{y}(\mathrm{x})\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-1 / 4 * \mathrm{a} *(3 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}[\mathrm{x}]==1 / 4 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+2) * \mathrm{x}^{\wedge}(-4), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSing

Not solved

\subsection*{24.43 problem 43}

Internal problem ID [10780]
Internal file name [OUTPUT/9727_Monday_June_06_2022_04_48_00_PM_3906511/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 43.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(33 x+2) y}{30 x^{\frac{6}{5}}}=-\frac{a^{2}(x-1)(9 x-4)}{30 x^{\frac{7}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 4330
```

dsolve(y(x)*diff (y(x),x)+1/30*a*(33*x+2)*x^(-6/5)*y(x)=-1/30*a^2*(x-1)*(9*x-4)*\mp@subsup{x}{}{\wedge}(-7/5),y(x)

```

Expression too large to display
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 30 * a *(33 * x+2) * x^{\wedge}(-6 / 5) * y[x]==-1 / 30 * a^{\wedge} 2 *(x-1) *(9 * x-4) * x^{\wedge}(-7 / 5), y[x], x\right.\), Inc
Timed out

\subsection*{24.44 problem 44}

Internal problem ID [10781]
Internal file name [OUTPUT/9728_Monday_June_06_2022_04_48_03_PM_71952739/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(x-8) y}{8 x^{\frac{5}{2}}}=-\frac{a^{2}(x-1)(3 x-4)}{8 x^{4}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(3*x-40)/(x*(x-8)), y(x)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(6*x^2-21*x+16)/(x*(3*x-4)*(x^(1/2)-
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }195
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 8 * a *(\mathrm{x}-8) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}(\mathrm{x})=-1 / 8 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(3 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-4), \mathrm{y}(\mathrm{x})\right.\), sings

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-1 / 8 * \mathrm{a} *(\mathrm{x}-8) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}[\mathrm{x}]==-1 / 8 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(3 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-4), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSin

Not solved

\subsection*{24.45 problem 45}

Internal problem ID [10782]
Internal file name [OUTPUT/9729_Monday_June_06_2022_04_48_06_PM_22405435/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(17 x+18) y}{30 x^{\frac{22}{15}}}=-\frac{a^{2}(x-1)(x+4)}{30 x^{\frac{29}{15}}}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way \(=4\)
`, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-(1 / 15) * \mathrm{y}(\mathrm{x}) *(119 * \mathrm{x}+396) /(\mathrm{x} *(17 * \mathrm{x}+18)), \mathrm{y}\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(1 / 15) * \mathrm{y}(\mathrm{x}) *\left(\mathrm{x}^{\wedge} 2-42 * \mathrm{x}+116\right) /((\mathrm{x}-1) * \mathrm{x} *(\mathrm{x}+4)\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1955
,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form \([F(x), G(x)]\)

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 30 * a *(17 * x+18) * x^{\wedge}(-22 / 15) * y(x)=-1 / 30 * a^{\wedge} 2 *(x-1) *(x+4) * x^{\wedge}(-29 / 15), y\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 30 * a *(17 * x+18) * x^{\wedge}(-22 / 15) * y[x]==-1 / 30 * a^{\wedge} 2 *(x-1) *(x+4) * x^{\wedge}(-29 / 15), y[x], x\right.\),

Timed out

\subsection*{24.46 problem 46}

Internal problem ID [10783]
Internal file name [OUTPUT/9730_Monday_June_06_2022_04_48_09_PM_74919152/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(6 x-13) y}{13 x^{\frac{5}{2}}}=-\frac{a^{2}(x-1)(x-13)}{26 x^{4}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(18*x-65)/(x*(6*x-13)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)-2*y(x)*(x^2-21*x+26)/(x*(x^(1/2)-1)*(x^(1 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }195 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 13 * \mathrm{a} *(6 * \mathrm{x}-13) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}(\mathrm{x})=-1 / 26 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}-13) * \mathrm{x}^{\wedge}(-4), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-1 / 13 * a *(6 * x-13) * x^{\wedge}(-5 / 2) * y[x]==-1 / 26 * a^{\wedge} 2 *(x-1) *(x-13) * x^{\wedge}(-4), y[x], x\right.\), Includ
Not solved

\subsection*{24.47 problem 47}

Internal problem ID [10784]
Internal file name [OUTPUT/9731_Monday_June_06_2022_04_48_13_PM_60336236/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(24 x+11) x^{\frac{27}{20}} y}{30}=-\frac{a^{2}(x-1)(9 x+1)}{60 x^{\frac{17}{10}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+(3/20)*y(x)*(376*x+99)/(x*(24*x+11)), y(x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/10)*y(x)*(27*x^2+56*x+17)/(x*(9*x+1)*(Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }196 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 30 * a *(24 * x+11) * x^{\wedge}(27 / 20) * y(x)=-1 / 60 * a^{\wedge} 2 *(x-1) *(9 * x+1) * x^{\wedge}(-17 / 10)\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+1 / 30 * a *(24 * x+11) * x^{\wedge}(27 / 20) * y[x]==-1 / 60 * a^{\wedge} 2 *(x-1) *(9 * x+1) * x^{\wedge}(-17 / 10), y[x], x\right.\)

Timed out

\subsection*{24.48 problem 48}

Internal problem ID [10785]
Internal file name [OUTPUT/9732_Monday_June_06_2022_04_48_19_PM_49754049/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{2 a(3 x+2) y}{5 x^{\frac{8}{5}}}=\frac{a^{2}(x-1)(8 x+1)}{5 x^{\frac{11}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(9*x+16)/(x*(3*x+2)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(4*x+1)*(2*x-11)/((x-1)*x*(8*x Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }196 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-2 / 5 * \mathrm{a} *(3 * \mathrm{x}+2) * \mathrm{x}^{\wedge}(-8 / 5) * \mathrm{y}(\mathrm{x})=1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(8 * \mathrm{x}+1) * \mathrm{x}^{\wedge}(-11 / 5), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-2 / 5 * a *(3 * x+2) * x^{\wedge}(-8 / 5) * y[x]==1 / 5 * a^{\wedge} 2 *(x-1) *(8 * x+1) * x^{\wedge}(-11 / 5), y[x], x\right.\), Includ

Timed out

\subsection*{24.49 problem 49}

Internal problem ID [10786]
Internal file name [OUTPUT/9733_Monday_June_06_2022_04_48_22_PM_38261084/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{6 a(4 x+1) y}{5 x^{\frac{7}{5}}}=\frac{a^{2}(x-1)(27 x+8)}{5 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(8*x+7)/(x*(4*x+1)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*y(x)*(27*x^2+76*x+72)/((x-1)*x*(27* Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }196 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-6 / 5 * \mathrm{a} *(4 * \mathrm{x}+1) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}(\mathrm{x})=1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(27 * \mathrm{x}+8) * \mathrm{x}^{-}(-9 / 5), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-6 / 5 * a *(4 * x+1) * x^{\wedge}(-7 / 5) * y[x]==1 / 5 * a^{\wedge} 2 *(x-1) *(27 * x+8) * x^{\wedge}(-9 / 5), y[x], x\right.\), Includ

Timed out

\subsection*{24.50 problem 50}

Internal problem ID [10787]
Internal file name [OUTPUT/9734_Monday_June_06_2022_04_48_25_PM_64664074/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(x+4) y}{5 x^{\frac{8}{5}}}=\frac{a^{2}(x-1)(3 x+7)}{5 x^{\frac{3}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/5)*y(x)*(3*x+32)/(x*(x+4)), y(x)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*y(x)*(21*x^2+8*x+21)/(x*(3*x+7)*(x- Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }197 , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+7*y(x)*a/(x*(7*a-x)), y(x)\dagger *** Subl

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 5 * \mathrm{a} *(\mathrm{x}+4) * \mathrm{x}^{\wedge}(-8 / 5) * \mathrm{y}(\mathrm{x})=1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(3 * \mathrm{x}+7) * \mathrm{x}^{\wedge}(-3 / 5), \mathrm{y}(\mathrm{x})\right.\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-1 / 5 * a *(x+4) * x^{\wedge}(-8 / 5) * y[x]==1 / 5 * a^{\wedge} 2 *(x-1) *(3 * x+7) * x^{\wedge}(-3 / 5), y[x], x\right.\), IncludeSi

Not solved

\subsection*{24.51 problem 51}

Internal problem ID [10788]
Internal file name [OUTPUT/9735_Monday_June_06_2022_04_48_29_PM_62088419/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(x+4) y}{5 x^{\frac{8}{5}}}=\frac{a^{2}(x-1)(3 x+7)}{5 x^{\frac{11}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 190
```

dsolve(y(x)*diff (y(x),x)-1/5*a*(x+4)*\mp@subsup{x}{}{\wedge}(-8/5)*y(x)=1/5*a^2*(x-1)*(3*x+7)*x^(-11/5),y(x), sin

```
\[
\begin{aligned}
& \frac{3602^{\frac{1}{3}} \sqrt{17} \sqrt{-\frac{(-1+x) a+y(x) x^{\frac{3}{5}}}{x^{\frac{3}{5}}\left(y(x)+a x^{\frac{2}{5}}\right)}} 91^{\frac{5}{6}}\left(x-\frac{21}{4}\right)\left(\frac{(3 x+7) a+3 y(x) x^{\frac{3}{5}}}{x^{\frac{3}{5}}\left(y(x)+a x^{\frac{2}{5}}\right)}\right)^{\frac{7}{6}}}{4444531}+31255875 x\left(\int^{-\frac{315\left(4 y(x) x x^{\frac{3}{5}}+4 a x-21 a\right.}{6}} \frac{884\left(y(x) x^{\frac{3}{5}}+a x\right)}{} \frac{\left.\sqrt{52 \_a-315(68}\right)}{\left(11492 \_a^{2}-53235 \_a-\right.}\right. \\
& x\left(\frac{a}{x^{\frac{3}{5}}\left(y(x)+a x^{\frac{2}{5}}\right)}\right)^{\frac{5}{3}} \\
& =0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]-1 / 5 * \mathrm{a} *(\mathrm{x}+4) * \mathrm{x}^{\wedge}(-8 / 5) * \mathrm{y}[\mathrm{x}]==1 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(3 * \mathrm{x}+7) * \mathrm{x}^{\wedge}(-11 / 5), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeS

Timed out

\subsection*{24.52 problem 52}

Internal problem ID [10789]
Internal file name [OUTPUT/9736_Monday_June_06_2022_04_48_31_PM_33126839/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 52.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a(2 x-1) y}{x^{\frac{5}{2}}}=\frac{a^{2}(x-1)(3 x+1)}{2 x^{4}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 189
```

dsolve(y(x)*diff (y(x),x)-a*(2*x-1)*x^(-5/2)*y(x)=1/2*a^2*(x-1)*(3*x+1)*x^(-4),y(x), singsol=

```

\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

\footnotetext{
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{a} *(2 * \mathrm{x}-1) * \mathrm{x}^{\wedge}(-5 / 2) * \mathrm{y}[\mathrm{x}]==1 / 2 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(3 * \mathrm{x}+1) * \mathrm{x}^{\wedge}(-4), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingul
}

Not solved

\subsection*{24.53 problem 53}

Internal problem ID [10790]
Internal file name [OUTPUT/9737_Monday_June_06_2022_04_48_34_PM_47478066/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 53.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(x-6) y}{5 x^{\frac{7}{5}}}=\frac{2 a^{2}(x-1)(x+4)}{5 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 156
```

dsolve(y(x)*diff (y(x),x)+1/5*a*(x-6)*x^(-7/5)*y(x)=2/5*a^2*(x-1)*(x+4)*x^(-9/5),y(x), singso

```
\(c_{1}\)
\[
-\frac{80 \sqrt{3}\left(a y(x) x^{\frac{2}{5}}+\frac{x^{\frac{4}{5}} y(x)^{2}}{8}+\frac{\left(y(x) x^{\frac{7}{5}}-2 a(x+24)(-1+x)\right) a}{24}\right)\left(a y(x) x^{\frac{2}{5}}+\frac{x^{\frac{4}{5}} y(x)^{2}}{8}+\frac{a\left(y(x)^{\frac{7}{5}}+\frac{a(x+4)^{2}}{2}\right)}{4}\right) \sqrt{\frac{-y(x)}{x^{\frac{2}{5}}(y}}}{9\left(\frac{a}{x^{\frac{2}{5}}\left(y(x)+x^{\frac{3}{5}} a\right)}\right)^{\frac{5}{2}}\left(a(x+4)+y(x) x^{\frac{2}{5}}\right)^{2}\left(y(x) x^{\frac{2}{5}}+a x\right)^{2} x}
\]
\[
=0
\]

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+1 / 5 * \mathrm{a} *(\mathrm{x}-6) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}[\mathrm{x}]==2 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(\mathrm{x}+4) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSing

Timed out

\subsection*{24.54 problem 54}

Internal problem ID [10791]
Internal file name [OUTPUT/9738_Monday_June_06_2022_04_48_36_PM_24600607/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a(21 x+19) y}{5 x^{\frac{7}{5}}}=-\frac{2 a^{2}(x-1)(9 x-4)}{5 x^{\frac{9}{5}}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-(7/5)*y(x)*(6*x+19)/(x*(21*x+19)), y(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/5)*y(x)*(9*x^2+52*x-36)/((x-1)*x*(9*x- Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }197 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+1 / 5 * \mathrm{a} *(21 * \mathrm{x}+19) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}(\mathrm{x})=-2 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(9 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]+1 / 5 * \mathrm{a} *(21 * \mathrm{x}+19) * \mathrm{x}^{\wedge}(-7 / 5) * \mathrm{y}[\mathrm{x}]==-2 / 5 * \mathrm{a}^{\wedge} 2 *(\mathrm{x}-1) *(9 * \mathrm{x}-4) * \mathrm{x}^{\wedge}(-9 / 5), \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{Incl}\)

Timed out

\subsection*{24.55 problem 55}

Internal problem ID [10792]
Internal file name [OUTPUT/9739_Monday_June_06_2022_04_48_39_PM_54450107/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 55.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{3 a y}{x^{\frac{7}{4}}}=\frac{a^{2}(x-1)(x-9)}{4 x^{\frac{5}{2}}}
\]

Unable to determine ODE type.
X Solution by Maple
```

dsolve(y(x)*diff (y (x),x)-3*a*x^(-7/4)*y(x)=1/4*a^2*(x-1)*(x-9)*x^(-5/2),y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]-3*a*x^(-7/4)*y[x]==1/4*a^2*(x-1)*(x-9)*x^(-5/2),y[x],x, IncludeSingularSolu

```

Not solved

\subsection*{24.56 problem 56}

Internal problem ID [10793]
Internal file name [OUTPUT/9740_Monday_June_06_2022_04_51_00_PM_3336046/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a((1+k) x-1) y}{x^{2}}=\frac{a^{2}(1+k)(x-1)}{x^{2}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step
<- Abel successful

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 143
```

dsolve(y(x)*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})-\textrm{a}*((\textrm{k}+1)*x-1)*\mp@subsup{x}{}{\wedge}(-2)*y(x)=\mp@subsup{a}{}{\wedge}2*(k+1)*(x-1)*x^(-2),y(x), singsol=all)

```
\(\frac{\left(\frac{a x}{-y(x) x+a}\right)^{-\frac{1}{1+k}} x^{2}\left(\frac{(-1+x) a+y(x) x}{-y(x) x+a}\right)^{\frac{1}{1+k}} \mathrm{e}^{\frac{-y(x) x+a}{a(1+k) x}} y(x)-\left(\int^{\frac{a x}{-y(x) x+a}}(-a-1)^{\frac{1}{1+k}} \mathrm{e}^{\frac{1}{1+k)}-a}-a^{-\frac{1}{1+k}} d \_a-c_{1}\right)(-}{-y(x) x+a}\)
\(=0\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{a} *((\mathrm{k}+1) * \mathrm{x}-1) * \mathrm{x}^{\wedge}(-2) * \mathrm{y}[\mathrm{x}]==\mathrm{a}^{\wedge} 2 *(\mathrm{k}+1) *(\mathrm{x}-1) * \mathrm{x}^{\wedge}(-2), \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSo

Not solved

\subsection*{24.57 problem 57}

Internal problem ID [10794]
Internal file name [OUTPUT/9741_Monday_June_06_2022_09_30_54_PM_9550685/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 57.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a((k-2) x+2 k-3) x^{-k} y=a^{2}(k-2)(x-1)^{2} x^{1-2 k}
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x}) *\left(\mathrm{k}^{\wedge} 2 * \mathrm{x}+2 * \mathrm{k} \wedge 2-3 * \mathrm{k} * \mathrm{x}-3 * \mathrm{k}+2 * \mathrm{x}\right) /(\mathrm{x} *(\mathrm{k} * \mathrm{x}+\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-(2 * \mathrm{k} * \mathrm{x}-2 * \mathrm{k}-3 * \mathrm{x}+1) * \mathrm{y}(\mathrm{x}) /(\mathrm{x} *(\mathrm{x}-1)), \mathrm{y}(\mathrm{x})^{-}\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1985
, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(2 * \mathrm{k} * \mathrm{x}-2 * \mathrm{k}-3 * \mathrm{x}+1) * \mathrm{y}(\mathrm{x}) /(\mathrm{x} *(\mathrm{x}-1)), \mathrm{y}(\mathrm{x})\)

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} *((\mathrm{k}-2) * \mathrm{x}+2 * \mathrm{k}-3) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 *(\mathrm{k}-2) *(\mathrm{x}-1)^{\wedge} 2 * \mathrm{x}^{\wedge}(1-2 * \mathrm{k}), \mathrm{y}(\mathrm{x})\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{a} *((\mathrm{k}-2) * \mathrm{x}+2 * \mathrm{k}-3) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}[\mathrm{x}]=\mathrm{a}^{\wedge} 2 *(\mathrm{k}-2) *(\mathrm{x}-1)^{\wedge} 2 * \mathrm{x}^{\wedge}(1-2 * \mathrm{k}), \mathrm{y}[\mathrm{x}], \mathrm{x}, \operatorname{Inc}\)

Not solved

\subsection*{24.58 problem 58}

Internal problem ID [10795]
Internal file name [OUTPUT/9742_Monday_June_06_2022_09_31_03_PM_18647736/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 58.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a((4 k-7) x-4 k+5) x^{-k} y}{2}=\frac{a^{2}(-3+2 k)(x-1)^{2} x^{1-2 k}}{2}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) - y(x)*(4*k^2*x-4*k^2-11*k*x+5*k+7*x)/(x*(4
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-1 / 2 * \mathrm{a} *((4 * \mathrm{k}-7) * \mathrm{x}-4 * \mathrm{k}+5) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}(\mathrm{x})=1 / 2 * \mathrm{a}^{\wedge} 2 *(2 * \mathrm{k}-3) *(\mathrm{x}-1)^{\wedge} 2 * \mathrm{x}^{\wedge}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-1 / 2 * \mathrm{a} *((4 * \mathrm{k}-7) * \mathrm{x}-4 * \mathrm{k}+5) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}[\mathrm{x}]==1 / 2 * \mathrm{a}^{\wedge} 2 *(2 * \mathrm{k}-3) *(\mathrm{x}-1)^{\wedge} 2 * \mathrm{x}^{\wedge}(1-2 * \mathrm{k}\)
Not solved

\subsection*{24.59 problem 59}

Internal problem ID [10796]
Internal file name [OUTPUT/9743_Monday_June_06_2022_09_31_13_PM_94900719/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-((-1+2 n) x-a n) x^{-n-1} y=n(x-a) x^{-2 n}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 151
```

dsolve(y(x)*diff(y(x),x)-((2*n-1)*x-a*n)*x^(-n-1)*y(x)=n*(x-a)*x^(-2*n),y(x), singsol=all)

```
\(y(x)\)

\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-((2 * n-1) * x-a * n) * x^{\wedge}(-n-1) * y[x]==n *(x-a) * x^{\wedge}(-2 * n), y[x], x\right.\), IncludeSingularSolu

Not solved

\subsection*{24.60 problem 60}

Internal problem ID [10797]
Internal file name [OUTPUT/9744_Monday_June_06_2022_09_31_16_PM_78988747/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 60.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-((1+n) x-a n) x^{n-1}(x-a)^{-2-n} y=n x^{2 n}(x-a)^{-2 n-3}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*a*n+3*x)/(x*(a-x)), y(x)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(a^2*n^2-a*n^2*x-a^2*n+2*a*n*x-2*n*x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }199
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*(2*a*n+3*x)/(x*(a-x)), y(x)

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-((\mathrm{n}+1) * \mathrm{x}-\mathrm{a} * \mathrm{n}) * \mathrm{x}^{\wedge}(\mathrm{n}-1) *(\mathrm{x}-\mathrm{a})^{\wedge}(-\mathrm{n}-2) * \mathrm{y}(\mathrm{x})=\mathrm{n} * \mathrm{x}^{\wedge}(2 * \mathrm{n}) *(\mathrm{x}-\mathrm{a})^{\wedge}(-2 * \mathrm{n}-3), \mathrm{y}\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-((n+1) * x-a * n) * x^{\wedge}(n-1) *(x-a)^{\wedge}(-n-2) * y[x]==n * x^{\wedge}(2 * n) *(x-a)^{\wedge}(-2 * n-3), y[x], x, I\right.\)

Not solved

\subsection*{24.61 problem 61}

Internal problem ID [10798]
Internal file name [OUTPUT/9745_Monday_June_06_2022_09_31_26_PM_14092097/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 61.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a((-3+2 k) x+1) x^{-k} y=a^{2}(k-2)((k-1) x+1) x^{2-2 k}
\]

Unable to determine ODE type.

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{y}(\mathrm{x}) *\left(2 * \mathrm{k}^{\wedge} 2 * \mathrm{x}-5 * \mathrm{k} * \mathrm{x}+\mathrm{k}+3 * \mathrm{x}\right) /(\mathrm{x} *(2 * \mathrm{k} * \mathrm{x}-3 * \mathrm{x}+\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-(-1+\mathrm{k}) *(2 * \mathrm{k} * \mathrm{x}-3 * \mathrm{x}+2) * \mathrm{y}(\mathrm{x}) /(\mathrm{x} *(\mathrm{k} * \mathrm{x}-\mathrm{x}+1))\),
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 1996
, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(-1+\mathrm{k}) *(2 * \mathrm{k} * \mathrm{x}-3 * \mathrm{x}+2) * \mathrm{y}(\mathrm{x}) /(\mathrm{x} *(\mathrm{k} * \mathrm{x}-\mathrm{x}+1))\)

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} *((2 * \mathrm{k}-3) * \mathrm{x}+1) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 *(\mathrm{k}-2) *((\mathrm{k}-1) * \mathrm{x}+1) * \mathrm{x}^{\wedge}(2 *(1-\mathrm{k})), \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{a} *((2 * \mathrm{k}-3) * \mathrm{x}+1) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}[\mathrm{x}]==\mathrm{a}^{\wedge} 2 *(\mathrm{k}-2) *((\mathrm{k}-1) * \mathrm{x}+1) * \mathrm{x}^{\wedge}(2 *(1-\mathrm{k})), \mathrm{y}[\mathrm{x}], \mathrm{x}, \operatorname{Incl}\)

Not solved

\subsection*{24.62 problem 62}

Internal problem ID [10799]
Internal file name [OUTPUT/9746_Monday_June_06_2022_09_31_34_PM_1142874/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 62.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a((n+2 k-3) x+3-2 k) x^{-k} y=a^{2}\left((k+n-1) x^{2}-(n+2 k-3) x+k-2\right) x^{1-2 k}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(2*k^2*x+k*n*x-2*k^2-5*k*x-n*x+3*k+3
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x) - y(x)*(2*k^2*x^2+2*k*n*x^2-4*k^2*x-2*k*n*x Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }199 ,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} *((\mathrm{n}+2 * \mathrm{k}-3) * \mathrm{x}+3-2 * \mathrm{k}) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 *\left((\mathrm{n}+\mathrm{k}-1) * \mathrm{x}^{\wedge} 2-(\mathrm{n}+2 * \mathrm{k}-3) * \mathrm{x}+\mathrm{k}-2\right)\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y}\right.\) ' \([\mathrm{x}]-\mathrm{a} *((\mathrm{n}+2 * \mathrm{k}-3) * \mathrm{x}+3-2 * \mathrm{k}) * \mathrm{x}^{\wedge}(-\mathrm{k}) * \mathrm{y}[\mathrm{x}]=\mathrm{a}^{\wedge} 2 *\left((\mathrm{n}+\mathrm{k}-1) * \mathrm{x}^{\wedge} 2-(\mathrm{n}+2 * \mathrm{k}-3) * \mathrm{x}+\mathrm{k}-2\right) * \mathrm{x}^{\wedge}(1-\)

Timed out

\subsection*{24.63 problem 63}

Internal problem ID [10800]
Internal file name [OUTPUT/9747_Wednesday_June_08_2022_05_53_12_PM_9550685/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 63.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a((2+n) x-2) x^{-\frac{2 n+1}{n}} y}{n}=\frac{a^{2}\left((1+n) x^{2}-2 x-n+1\right) x^{-\frac{2+3 n}{n}}}{n}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(n^2*x+3*n*x-4*n+2*x-2)/(n*x*(n*x+2*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x) -y(x)*(n^2*x^2+3*n*x^2-3*n^2-4*n*x+2*x^2+n Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }200 ,, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)-a / n *((n+2) * x-2) * x^{\wedge}(-(2 * n+1) / n) * y(x)=a^{\wedge} 2 / n *\left((n+1) * x^{\wedge} 2-2 * x-n+1\right) * x^{\wedge}(-(\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-a / n *((n+2) * x-2) * x^{\wedge}(-(2 * n+1) / n) * y[x]==a^{\wedge} 2 / n *\left((n+1) * x^{\wedge} 2-2 * x-n+1\right) * x^{\wedge}(-(3 * n+2)\right.\)

Not solved

\subsection*{24.64 problem 64}

Internal problem ID [10801]
Internal file name [OUTPUT/9748_Wednesday_June_08_2022_05_53_20_PM_36010500/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 64.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\frac{a\left(\frac{(n+4) x}{2+n}-2\right) x^{-\frac{2 n+1}{n}} y}{n}=\frac{a^{2}\left(2 x^{2}+\left(n^{2}+n-4\right) x-(n-1)(2+n)\right) x^{-\frac{2+3 n}{n}}}{n(2+n)}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) - y(x)*(n^2*x-4*n^2+5*n*x-10*n+4*x-4)/(n*x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x) -y(x)*(2*n^3*x-3*n^3+4*n^2*x+2*n*x^2-5*n^2 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }200 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} / \mathrm{n} *((\mathrm{n}+4) /(\mathrm{n}+2) * \mathrm{x}-2) * \mathrm{x}^{\wedge}(-(2 * \mathrm{n}+1) / \mathrm{n}) * \mathrm{y}(\mathrm{x})=\mathrm{a}^{\wedge} 2 /(\mathrm{n} *(\mathrm{n}+2)) *\left(2 * \mathrm{x}^{\wedge} 2+\left(\mathrm{n}^{\wedge} 2\right.\right.\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-a / n *((n+4) /(n+2) * x-2) * x^{\wedge}(-(2 * n+1) / n) * y[x]==a^{\wedge} 2 /(n *(n+2)) *\left(2 * x^{\wedge} 2+\left(n^{\wedge} 2+n-4\right) *\right.\right.\)

Not solved

\subsection*{24.65 problem 65}

Internal problem ID [10802]
Internal file name [OUTPUT/9749_Wednesday_June_08_2022_05_53_31_PM_98114476/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 65.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+\frac{a\left(\frac{(3 n+5) x}{2}+\frac{n-1}{1+n}\right) x^{-\frac{n+4}{n+3}} y}{n+3}=-\frac{a^{2}\left((1+n) x^{2}-\frac{\left(n^{2}+2 n+5\right) x}{1+n}+\frac{4}{1+n}\right) x^{-\frac{n+5}{n+3}}}{2 n+6}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x) -y(x)*(3*n^2*x+2*n^2+8*n*x+6*n+5*x-8)/(x*(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(n^3*x^2+3*n^2*x^2+2*n^2*x+3*n*x^2+4 Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful }200 `, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]

```

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} /(\mathrm{n}+3) *((3 * \mathrm{n}+5) /(2) * \mathrm{x}+(\mathrm{n}-1) /(\mathrm{n}+1)) * \mathrm{x}^{\wedge}(-(\mathrm{n}+4) /(\mathrm{n}+3)) * \mathrm{y}(\mathrm{x})=-\mathrm{a}^{\wedge} 2 /(2 *(\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]+a /(n+3) *((3 * n+5) /(2) * x+(n-1) /(n+1)) * x^{\wedge}(-(n+4) /(n+3)) * y[x]=-a^{\wedge} 2 /(2 *(n+3)) *\right.\)

Timed out

\subsection*{24.66 problem 66}

Internal problem ID [10803]
Internal file name [OUTPUT/9750_Wednesday_June_08_2022_05_54_02_PM_41902957/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 66.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a\left(\frac{2+n}{n}+b x^{n}\right) y=-\frac{a^{2} x\left(\frac{1+n}{n}+b x^{n}\right)}{n}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 192
```

dsolve(y(x)*diff(y(x),x)-a*((n+2)/n+b*x^n)*y(x)=-a^2/n*x*((n+1)/n+b*x^n),y(x), singsol=all)

```
\(-n \sqrt{-\frac{(n+1)^{2}}{n^{2}}}\left(\int^{\frac{2 \arctan \left(\frac{2 x^{n+1} a b n+(n+1)(a x-y(x) n)}{\sqrt{-\frac{(n+1)^{2}}{n^{2}} n(a x-y(x) n)}}\right)}{\sqrt{-\frac{(n+1)^{2}}{n^{2}}}}} \tan \left(\frac{-a \sqrt{-\frac{(n+1)^{2}}{n^{2}}}}{2}\right) \mathrm{e}^{\left.--a d \_a\right)}\right)\)
\(+\left(-2 b n x^{n}-n-1\right) e^{-\frac{\arctan ^{2}\left(\frac{2 x^{n+1}\left({ }_{a b n+(n+1)(a x-y(x) n)}\right.}{\sqrt{-\frac{\left.(n+1)^{2}\right)}{n^{2}} n(a x-y(x) n)}}\right)}{\sqrt{-\frac{(n+1)^{2}}{n^{2}}}}}+c_{1}=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-a *\left((n+2) / n+b * x^{\wedge} n\right) * y[x]==-a^{\wedge} 2 / n * x *\left((n+1) / n+b * x^{\wedge} n\right), y[x], x\right.\), IncludeSingularSol

Not solved

\subsection*{24.67 problem 67}

Internal problem ID [10804]
Internal file name [OUTPUT/9751_Wednesday_June_08_2022_05_54_05_PM_43706231/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 67.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, ‘class A`]]
Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a \mathrm{e}^{x}+b\right) y=c \mathrm{e}^{2 x}-a b \mathrm{e}^{x}-b^{2}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 153
```

dsolve(y(x)*diff (y(x), x)=(a*exp(x)+b)*y(x)+c*exp(2*x)-a*b*exp(x)-b^2,y(x), singsol=all)

```
\[
\begin{aligned}
& \sqrt{\frac{c \mathrm{e}^{2 x}-(b-y(x))\left(a \mathrm{e}^{x}+b-y(x)\right)}{(b-y(x))^{2}}} y(x) \mathrm{e}^{-\frac{a \operatorname{arctanh}\left(\frac{(b-y(x)) a-2 \mathrm{e}^{x} c}{\sqrt{a^{2}+4 c}(b-y(x))}\right)}{\sqrt{a^{2}+4 c}}} \\
& -b\left(\int^{\frac{\mathrm{e}^{x}}{b+y(x)}} \frac{\sqrt{-a^{2} c+a \_a-1} \mathrm{e}^{-\frac{a \operatorname{arctanh}\left(\frac{2 c-a+a}{\sqrt{a^{2}}+4 c}\right)}{\sqrt{a^{2}+4 c}}}}{-a} d \_a\right)+c_{1}=0
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y y^{\prime}[x]==(a * \operatorname{Exp}[x]+b) * y[x]+c * \operatorname{Exp}[2 * x]-a * b * \operatorname{Exp}[x]-b \sim 2, y[x], x\right.\), IncludeSingularSolutio

Not solved

\subsection*{24.68 problem 68}

Internal problem ID [10805]
Internal file name [OUTPUT/9752_Wednesday_June_08_2022_05_54_07_PM_90009543/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 68.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a(2 \mu+\lambda) \mathrm{e}^{\lambda x}+b\right) \mathrm{e}^{\mu x} y=\left(-a^{2} \mu \mathrm{e}^{2 \lambda x}-a b \mathrm{e}^{\lambda x}+c\right) \mathrm{e}^{2 \mu x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, -> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(a*lambda^2*exp(lambda*x+mu*x)+3*a*I Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*a^2*mu*exp(2*lambda*x+2*mu*x)*lam
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }201
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(a*lambda^2*exp(x*(lambda+mu))+3*a*!

```

X Solution by Maple
dsolve \((\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(\mathrm{a} *(2 * \mathrm{mu}+\mathrm{l}\) ambda \() * \exp (\mathrm{l} \operatorname{ambda} \mathrm{x})+\mathrm{b}) * \exp (\mathrm{mu} * \mathrm{x}) * \mathrm{y}(\mathrm{x})+(-\mathrm{a} \uparrow 2 * \operatorname{mu} * \exp (2 * \operatorname{lam}\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]==(\mathrm{a} *(2 * \backslash[\mathrm{Mu}]+\backslash[\right.\) Lambda \(]) * \operatorname{Exp}[\backslash[\) Lambda \(] * \mathrm{x}]+\mathrm{b}) * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] * \mathrm{y}[\mathrm{x}]+(-\mathrm{a} \wedge 2 * \backslash[\mathrm{Mu}] *\)

Not solved

\subsection*{24.69 problem 69}

Internal problem ID [10806]
Internal file name [OUTPUT/9753_Wednesday_June_08_2022_05_54_10_PM_38000994/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 69.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(a \mathrm{e}^{\lambda x}+b\right) y=c\left(a^{2} \mathrm{e}^{2 \lambda x}+a b(\lambda x+1) \mathrm{e}^{\lambda x}+b^{2} \lambda x\right)
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 257
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(\mathrm{a} * \exp (\mathrm{l} \operatorname{lambda} \mathrm{x})+\mathrm{b}) * \mathrm{y}(\mathrm{x})+\mathrm{c} *\left(\mathrm{a}^{\wedge} 2 * \exp (2 * \operatorname{lambda} * \mathrm{x})+\mathrm{a} * \mathrm{~b} *(\mathrm{lambda} \mathrm{x}+1) * \operatorname{ex}\right.\right.\)
\(\sqrt{(4 c \lambda+1)(3 c \lambda+1)^{2}}\left(\frac{c \lambda}{2}+\frac{1}{6}\right) \ln \left(\frac{(3 c \lambda+1)^{2}\left(b^{2} c \lambda^{2} x^{2}+2 \mathrm{e}^{x \lambda} a b c \lambda x+\mathrm{e}^{2 x \lambda} a^{2} c+b \lambda x y(x)+a \mathrm{e}^{x \lambda} y(x)-\lambda y(x)^{2}\right) c}{(9 c \lambda+2) y(x)^{2}}\right)-3\left(c \lambda+\frac{1}{3}\right)\)
\(=0\)
\(\checkmark\) Solution by Mathematica
Time used: 0.494 (sec). Leaf size: 134
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]==(\mathrm{a} * \operatorname{Exp}[\backslash[\right.\) Lambda \(] * \mathrm{x}]+\mathrm{b}) * \mathrm{y}[\mathrm{x}]+\mathrm{c} *\left(\mathrm{a}^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[\right.\) Lambda] \(* \mathrm{x}]+\mathrm{a} * \mathrm{~b} *(\backslash[\) Lambda] \(* \mathrm{x}+1)\)

Solve \(\left[\begin{array}{l}-\frac{\frac{2 \arctan \left(\frac{\frac{2 c \lambda y(x)}{a c c \lambda x+c ̧ x x}-1}{\sqrt{-4 c \lambda-1}}\right)}{\sqrt{-4 c \lambda-1}}+\log \left(-\frac{c \lambda y(x)^{2}}{\left(a c e^{\lambda x}+b c \lambda x\right)^{2}}+\frac{y(x)}{a c e^{\lambda x}+b c \lambda x}+1\right)}{2 c \lambda}=\frac{\log \left(a c e^{\lambda x}+b c \lambda x\right)}{c \lambda} \\ \\ +c_{1}, y(x)\end{array}\right]\)

\subsection*{24.70 problem 70}

Internal problem ID [10807]
Internal file name [OUTPUT/9754_Wednesday_June_08_2022_05_54_12_PM_60456762/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 70.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\mathrm{e}^{\lambda x}(2 a \lambda x+a+b) y=-\mathrm{e}^{2 \lambda x}\left(a^{2} \lambda x^{2}+a b x+c\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 118
```

dsolve(y(x)*diff (y(x),x)=exp(lambda*x)*(2*a*lambda*x+a+b)*y(x)-exp(2*lambda*x)*(a^2*lambda*x

```
\[
y(x)
\]

\section*{\(X\) Solution by Mathematica}

Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{y}[\mathrm{x}] * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]==\operatorname{Exp}[\backslash[\right.\) Lambda] \(* \mathrm{x}] *(2 * \mathrm{a} * \backslash[\) Lambda] \(* \mathrm{x}+\mathrm{a}+\mathrm{b}) * \mathrm{y}[\mathrm{x}]-\operatorname{Exp}[2 * \backslash[\) Lambda] \(* \mathrm{x}] *(\mathrm{a} \wedge 2 * \backslash[\) Lam

Not solved

\subsection*{24.71 problem 71}

Internal problem ID [10808]
Internal file name [OUTPUT/9755_Wednesday_June_08_2022_05_54_27_PM_62639740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 71.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\mathrm{e}^{a x}\left(2 a x^{2}+b+2 x\right) y=\mathrm{e}^{2 a x}\left(-a x^{4}-b x^{2}+c\right)
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
\(\rightarrow\) trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, \(->\) Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x}) *\left(2 * \mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 2+\mathrm{a} * \mathrm{~b}+6 * \mathrm{a} * \mathrm{x}+2\right) /\left(2 * \mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b}+2\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+2 * \mathrm{y}(\mathrm{x}) *\left(\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 4+\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} 2+2 * a * \mathrm{x}^{\wedge} 3-\mathrm{a} * \mathrm{c}+\mathrm{b} * \mathrm{x}\right) /\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 2023
, --> Computing symmetries using: way \(=\) HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-\mathrm{y}(\mathrm{x}) *\left(2 * \mathrm{a}^{\wedge} 2 * x^{\wedge} 2+a * b+6 * a * x+2\right) /\left(2 * a * x^{\wedge} 2+\right.\)

X Solution by Maple
dsolve \(\left(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\exp (\mathrm{a} * \mathrm{x}) *\left(2 * a * \mathrm{x}^{\wedge} 2+2 * \mathrm{x}+\mathrm{b}\right) * \mathrm{y}(\mathrm{x})+\exp (2 * \mathrm{a} * \mathrm{x}) *\left(-\mathrm{a} * \mathrm{x}^{\wedge} 4-\mathrm{b} * \mathrm{x}^{\wedge} 2+\mathrm{c}\right), \mathrm{y}(\mathrm{x}), \sin \right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y y^{\prime}[x]==\operatorname{Exp}[a * x] *\left(2 * a * x^{\wedge} 2+2 * x+b\right) * y[x]+\operatorname{Exp}[2 * a * x] *\left(-a * x^{\wedge} 4-b * x^{\wedge} 2+c\right), y[x], x\right.\), IncludeS
Not solved

\subsection*{24.72 problem 72}

Internal problem ID [10809]
Internal file name [OUTPUT/9756_Thursday_June_09_2022_12_57_29_AM_9550685/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 72 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+a(2 b x+1) \mathrm{e}^{b x} y=-a^{2} b x^{2} \mathrm{e}^{2 b x}
\]

Unable to determine ODE type.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 53
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x)+a *(1+2 * b * x) * \exp (b * x) * y(x)=-a^{\wedge} 2 * b * x^{\wedge} 2 * \exp (2 * b * x), y(x)\right.\), singsol=all)
\[
\left.y(x)=-\frac{\mathrm{e}^{b x} a\left(b x \operatorname{RootOf}\left(-\mathrm{e}^{Z} b x-\exp \operatorname{Integral}_{1}(--Z)+c_{1}\right)-1\right)}{\operatorname{RootOf}\left(-\mathrm{e}-{ }^{Z} b x-\operatorname{expIntegral}\right.}{ }_{1}(--Z)+c_{1}\right) b \quad
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.736 (sec). Leaf size: 59
DSolve \(\left[y[x] * y '[x]+a *(1+2 * b * x) * \operatorname{Exp}[b * x] * y[x]==-a^{\wedge} 2 * b * x^{\wedge} 2 * \operatorname{Exp}[2 * b * x], y[x], x\right.\), IncludeSingularSol

Solve \(\left[b x e^{\frac{a a^{b x}}{a b x e^{b x}+b y(x)}}=\operatorname{ExpIntegralEi}\left(\frac{a e^{b x}}{a b e^{b x} x+b y(x)}\right)+c_{1}, y(x)\right]\)

\subsection*{24.73 problem 73}

Internal problem ID [10810]
Internal file name [OUTPUT/9757_Thursday_June_09_2022_12_57_31_AM_11538751/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 73.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a(1+2 n+2 n(1+n) x) \mathrm{e}^{(1+n) x} y=-a^{2} n(1+n)(x n+1) x \mathrm{e}^{2(1+n) x}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 130
```

dsolve(y(x)*diff (y(x),x)-a*(1+2*n+2*n*(n+1)*x)*exp ((n+1)*x)*y(x)=-a^2*n*(n+1)*(1+n*x)*x*exp

```
\[
y(x)
\]

\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y '[x]-a *(1+2 * n+2 * n *(n+1) * x) * \operatorname{Exp}[(n+1) * x] * y[x]==-a^{\wedge} 2 * n *(n+1) *(1+n * x) * x * \operatorname{Exp}[2 *(n+1\right.\)

Not solved

\subsection*{24.74 problem 74}

Internal problem ID [10811]
Internal file name [OUTPUT/9758_Thursday_June_09_2022_12_57_33_AM_22585268/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 74 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}+a(1+2 b \sqrt{x}) \mathrm{e}^{2 b \sqrt{x}} y=-a^{2} b x^{\frac{3}{2}} \mathrm{e}^{4 b \sqrt{x}}
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 307
```

dsolve(y(x)*diff (y(x),x)+a*(1+2*b*x^(1/2))*exp (2*b*\mp@subsup{x}{}{\wedge}(1/2))*y(x)=-a^2*b*x^(3/2)*exp(4*b*x^(1

```
\(\sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}} \sqrt{x} \operatorname{BesselI}\left(1, \sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}}\right) c_{1} b-\operatorname{BesselK}\left(1,-\sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}}\right) \sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}}\) \(\operatorname{BesselI}\left(1, \sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}}\right) \sqrt{\frac{a \mathrm{e}^{2 b \sqrt{x}}}{b^{2}\left(\mathrm{e}^{2 b \sqrt{x}} a x+y(x)\right)}} b \sqrt{x}-\mathrm{Be}\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y^{\prime}[x]+a *\left(1+2 * b * x^{\wedge}(1 / 2)\right) * \operatorname{Exp}\left[2 * b * x^{\wedge}(1 / 2)\right] * y[x]==-a^{\wedge} 2 * b * x^{\wedge}(3 / 2) * \exp \left(4 * b * x^{\wedge}(1 / 2)\right), y\right.\)

Not solved

\subsection*{24.75 problem 75}

Internal problem ID [10812]
Internal file name [OUTPUT/9759_Thursday_June_09_2022_12_57_35_AM_77570412/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 75.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-(a \cosh (x)+b) y=-a b \sinh (x)+c
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y (x), x) = (sinh (y (x))*exp (-x*b)*a*b-exp (-x*b)*c-b
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries usingim way = HINT
-> Calling odsolve with the ODE`, diff(f__1(y), y)-\operatorname{cosh}(y)*f__1(y)/sinh(y), f__1(y)
Methods for first order ODEs:

```

X Solution by Maple
dsolve \((y(x) * \operatorname{diff}(y(x), x)=(a * \cosh (x)+b) * y(x)-a * b * \sinh (x)+c, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y y^{\prime}[x]==(a * \operatorname{Cosh}[x]+b) * y[x]-a * b * \operatorname{Sinh}[x]+c, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{24.76 problem 76}

Internal problem ID [10813]
Internal file name [OUTPUT/9760_Thursday_June_09_2022_12_57_43_AM_66301418/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 76.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, `class A`]]
Unable to solve or complete the solution.
\[
y y^{\prime}-(a \sinh (x)+b) y=-a b \cosh (x)+c
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries -> Calling odsolve with the ODE`, diff(y(x), x) = (}\operatorname{cosh}(y(x))*\operatorname{exp}(-x*b)*a*b-\operatorname{exp}(-x*b)*c-
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries usinf%i5 way = HINT
-> Calling odsolve with the ODE', diff(f__1(y), y)-\operatorname{sinh}(y)*f__1(y)/cosh(y), f__1(y)
Methods for first order ODEs:

```

X Solution by Maple
dsolve \((y(x) * \operatorname{diff}(y(x), x)=(a * \sinh (x)+b) * y(x)-a * b * \cosh (x)+c, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y y^{\prime}[x]==(a * \operatorname{Sinh}[x]+b) * y[x]-a * b * \operatorname{Cosh}[x]+c, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]

Not solved

\subsection*{24.77 problem 77}

Internal problem ID [10814]
Internal file name [OUTPUT/9761_Thursday_June_09_2022_12_57_50_AM_87747449/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 77.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-(2 \ln (x)+a+1) y=x\left(-\ln (x)^{2}-a \ln (x)+b\right)
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 163
```

dsolve(y(x)*diff (y(x),x)=(2* ln (x)+a+1)*y(x)+x*(-(ln(x))^2-a*ln(x)+b),y(x), singsol=all)
y(x)

```

\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y[x]*y'[x]==(2*Log[x]+a+1)*y[x]+x*(-(\operatorname{Log}[x])^2-a*\operatorname{Log}[x]+b),y[x],x,IncludeSingularSol

```

Not solved

\subsection*{24.78 problem 78}

Internal problem ID [10815]
Internal file name [OUTPUT/9762_Thursday_June_09_2022_12_57_51_AM_85664660/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 78.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-\left(2 \ln (x)^{2}+2 \ln (x)+a\right) y=x\left(-\ln (x)^{4}-\ln (x)^{2} a+b\right)
\]

Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\)
differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
,, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, `-> Computing symmetries using: way \(=2\)
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying symmetry patterns of the forms \([F(x), G(y)]\) and \([G(y), F(x)]\)
-, --> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+2 * \mathrm{y}(\mathrm{x}) *(2 * \ln (\mathrm{x})+1) /\left(\mathrm{x} *\left(2 * \ln (\mathrm{x})^{\wedge} 2+2 * \ln (\mathrm{x})+\right.\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x}) *\left(\ln (\mathrm{x})^{\wedge} 4+4 * \ln (\mathrm{x})^{\wedge} 3+\mathrm{a} * \ln (\mathrm{x})^{\wedge} 2+2 * \ln (\mathrm{x})\right.\)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful 2040
, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-2 * \mathrm{y}(\mathrm{x}) *(2 * \ln (\mathrm{x})+1) /\left(\mathrm{x} *\left(2 * \ln (\mathrm{x})^{\wedge} 2+2 * \ln (\right.\right.\)

X Solution by Maple
dsolve \((y(x) * \operatorname{diff}(y(x), x)=(2 *(\ln (x)) \wedge 2+2 * \ln (x)+a) * y(x)+x *(-(\ln (x)) \wedge 4-a *(\ln (x)) \wedge 2+b), y(x)\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y[x] * y{ }^{\prime}[x]==(2 *(\log [x]) \wedge 2+2 * \log [x]+a) * y[x]+x *(-(\log [x]) \wedge 4-a *(\log [x]) \sim 2+b), y[x], x, \operatorname{Inc}\right.\)

Not solved

\subsection*{24.79 problem 79}

Internal problem ID [10816]
Internal file name [OUTPUT/9763_Thursday_June_09_2022_12_57_53_AM_44345512/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 79.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a x \cos \left(\lambda x^{2}\right) y=x
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(-2*x^2*lambda*sin(x^2*lambda)+cos(x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{x} * \cos (\operatorname{lambda*x} 2) * \mathrm{y}(\mathrm{x})+\mathrm{x}, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x] \(\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{a} * \mathrm{x} * \operatorname{Cos}\left[\backslash\left[\right.\right.\) Lambda] \(\left.* \mathrm{x}^{\wedge} 2\right] * \mathrm{y}[\mathrm{x}]+\mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{24.80 problem 80}

Internal problem ID [10817]
Internal file name [OUTPUT/9764_Thursday_June_09_2022_12_57_54_AM_98898086/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.3-2.
Equations of the form \(y y^{\prime}=f_{1}(x) y+f_{0}(x)\)
Problem number: 80.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
y y^{\prime}-a x \sin \left(\lambda x^{2}\right) y=x
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] , `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(2*\operatorname{cos(x^2*lambda)*lambda*x^2+sin(x^}\mp@subsup{}{}{\wedge} Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful `, `-> Computing symmetries using: way = HINT -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve( \(\mathrm{y}(\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{a} * \mathrm{x} * \sin (\operatorname{lambda*x} 2) * \mathrm{y}(\mathrm{x})+\mathrm{x}, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x]*y'[x]==a*x*Sin[\[Lambda]*x^2]*y[x]+x,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Not solved
25 Chapter 1, section 1.3. Abel Equations of theSecond Kind. subsection 1.3.4-2. Equations ofthe form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
25.1 problem 1 ..... 2049
25.2 problem 2 ..... 2060
25.3 problem 3 ..... 2067
25.4 problem 4 ..... 2068
25.5 problem 5 ..... 2074
25.6 problem 6 ..... 2077
25.7 problem 7 ..... 2080

\section*{25.1 problem 1}
25.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2049
25.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2054
25.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2057

Internal problem ID [10818]
Internal file name [OUTPUT/9765_Thursday_June_09_2022_12_57_56_AM_13344031/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
```

[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

```
\[
(A y+B x+a) y^{\prime}+B y=-k x-b
\]

\subsection*{25.1.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{B y+k x+b}{A y+B x+a} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{(B y+k x+b)\left(b_{3}-a_{2}\right)}{A y+B x+a}-\frac{(B y+k x+b)^{2} a_{3}}{(A y+B x+a)^{2}} \\
& -\left(-\frac{k}{A y+B x+a}+\frac{(B y+k x+b) B}{(A y+B x+a)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\left(-\frac{B}{A y+B x+a}+\frac{(B y+k x+b) A}{(A y+B x+a)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& A^{2} y^{2} b_{2}+2 A B x y b_{2}+A B y^{2} a_{2}-A B y^{2} b_{3}-A k x^{2} b_{2}+2 A k x y a_{2}-2 A k x y b_{3}+A k y^{2} a_{3}+2 B^{2} x^{2} b_{2}-2 B^{2} ? \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& A^{2} y^{2} b_{2}+2 A B x y b_{2}+A B y^{2} a_{2}-A B y^{2} b_{3}-A k x^{2} b_{2}+2 A k x y a_{2}-2 A k x y b_{3} \\
& +A k y^{2} a_{3}+2 B^{2} x^{2} b_{2}-2 B^{2} y^{2} a_{3}+B k x^{2} a_{2}-B k x^{2} b_{3}-2 B k x y a_{3}-k^{2} x^{2} a_{3}  \tag{6E}\\
& +2 A a y b_{2}-A b x b_{2}+A b y a_{2}-2 A b y b_{3}-A k x b_{1}+A k y a_{1}+B^{2} x b_{1}-B^{2} y a_{1} \\
& +3 B a x b_{2}+B a y a_{2}-B b x b_{3}-3 B b y a_{3}+2 a k x a_{2}-a k x b_{3}+a k y a_{3} \\
& \quad-2 b k x a_{3}-A b b_{1}+B a b_{1}-B b a_{1}+a^{2} b_{2}+a b a_{2}-a b b_{3}+a k a_{1}-b^{2} a_{3}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& A^{2} b_{2} v_{2}^{2}+A B a_{2} v_{2}^{2}+2 A B b_{2} v_{1} v_{2}-A B b_{3} v_{2}^{2}+2 A k a_{2} v_{1} v_{2}+A k a_{3} v_{2}^{2} \\
& \quad-A k b_{2} v_{1}^{2}-2 A k b_{3} v_{1} v_{2}-2 B^{2} a_{3} v_{2}^{2}+2 B^{2} b_{2} v_{1}^{2}+B k a_{2} v_{1}^{2}-2 B k a_{3} v_{1} v_{2} \\
& \quad-B k b_{3} v_{1}^{2}-k^{2} a_{3} v_{1}^{2}+2 A a b_{2} v_{2}+A b a_{2} v_{2}-A b b_{2} v_{1}-2 A b b_{3} v_{2}  \tag{7E}\\
& +A k a_{1} v_{2}-A k b_{1} v_{1}-B^{2} a_{1} v_{2}+B^{2} b_{1} v_{1}+B a a_{2} v_{2}+3 B a b_{2} v_{1} \\
& \quad-3 B b a_{3} v_{2}-B b b_{3} v_{1}+2 a k a_{2} v_{1}+a k a_{3} v_{2}-a k b_{3} v_{1}-2 b k a_{3} v_{1} \\
& \quad-A b b_{1}+B a b_{1}-B b a_{1}+a^{2} b_{2}+a b a_{2}-a b b_{3}+a k a_{1}-b^{2} a_{3}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-A k b_{2}+2 B^{2} b_{2}+B k a_{2}-B k b_{3}-k^{2} a_{3}\right) v_{1}^{2} \\
& +\left(2 A B b_{2}+2 A k a_{2}-2 A k b_{3}-2 B k a_{3}\right) v_{1} v_{2} \\
& +\left(-A b b_{2}-A k b_{1}+B^{2} b_{1}+3 B a b_{2}-B b b_{3}+2 a k a_{2}-a k b_{3}-2 b k a_{3}\right) v_{1}  \tag{8E}\\
& +\left(A^{2} b_{2}+A B a_{2}-A B b_{3}+A k a_{3}-2 B^{2} a_{3}\right) v_{2}^{2} \\
& +\left(2 A a b_{2}+A b a_{2}-2 A b b_{3}+A k a_{1}-B^{2} a_{1}+B a a_{2}-3 B b a_{3}+a k a_{3}\right) v_{2} \\
& -A b b_{1}+B a b_{1}-B b a_{1}+a^{2} b_{2}+a b a_{2}-a b b_{3}+a k a_{1}-b^{2} a_{3}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
& 2 A B b_{2}+2 A k a_{2}-2 A k b_{3}-2 B k a_{3}=0 \\
&-A k b_{2}+2 B^{2} b_{2}+B k a_{2}-B k b_{3}-k^{2} a_{3}=0 \\
& A^{2} b_{2}+A B a_{2}-A B b_{3}+A k a_{3}-2 B^{2} a_{3}=0 \\
& 2 A a b_{2}+A b a_{2}-2 A b b_{3}+A k a_{1}-B^{2} a_{1}+B a a_{2}-3 B b a_{3}+a k a_{3}=0 \\
&-A b b_{2}-A k b_{1}+B^{2} b_{1}+3 B a b_{2}-B b b_{3}+2 a k a_{2}-a k b_{3}-2 b k a_{3}=0 \\
&-A b b_{1}+B a b_{1}-B b a_{1}+a^{2} b_{2}+a b a_{2}-a b b_{3}+a k a_{1}-b^{2} a_{3}=0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=-\frac{A B b b_{2}+A a k b_{2}-A b k b_{3}-2 B^{2} a b_{2}+B a k b_{3}}{k\left(A k-B^{2}\right)} \\
& a_{2}=-\frac{2 B b_{2}-k b_{3}}{k} \\
& a_{3}=-\frac{A b_{2}}{k} \\
& b_{1}=\frac{A b b_{2}-B a b_{2}-B b b_{3}+a k b_{3}}{A k-B^{2}} \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=\frac{A k x-B^{2} x+A b-B a}{A k-B^{2}} \\
& \eta=\frac{A k y-B^{2} y-B b+a k}{A k-B^{2}}
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{A k y-B^{2} y-B b+a k}{A k-B^{2}}-\left(-\frac{B y+k x+b}{A y+B x+a}\right)\left(\frac{A k x-B^{2} x+A b-B a}{A k-B^{2}}\right) \\
& =\frac{A^{2} k y^{2}-A B^{2} y^{2}+2 A B k x y+A k^{2} x^{2}-2 B^{3} x y-B^{2} k x^{2}+2 A a k y+2 A b k x-2 B^{2} a y-2 B^{2} b x+A b}{A^{2} k y-A B^{2} y+A B k x-x B^{3}+A a k-B^{2} a} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{A^{2} k y^{2}-A B^{2} y^{2}+2 A B k x y+A k^{2} x^{2}-2 B^{3} x y-B^{2} k x^{2}+2 A a k y+2 A b k x-2 B^{2} a y-2 B^{2} b x+A b^{2}-2 B a b+a^{2} k}{A^{2} k y-A B^{2} y+A B k x-x B^{3}+A a k-B^{2} a} d y}
\end{aligned}
\]

Which results in
\(S=\frac{\ln \left(A^{2} k y^{2}-A B^{2} y^{2}+2 A B k x y+A k^{2} x^{2}-2 B^{3} x y-B^{2} k x^{2}+2 A a k y+2 A b k x-2 B^{2} a y-2 B^{2} b x+\right.}{2}\)
Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{B y+k x+b}{A y+B x+a}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{(B y+k x+b)\left(A k-B^{2}\right)}{A^{2} k y^{2}+\left(-B^{2} y^{2}+2 B k x y+k^{2} x^{2}+(2 a y+2 b x) k+b^{2}\right) A-2\left(B^{2} y+\left(\frac{k x}{2}+b\right) B-\frac{a k}{2}\right)(B x+a)} \\
& S_{y}=\frac{\left(A k-B^{2}\right)(A y+B x+a)}{A^{2} k y^{2}+\left(-B^{2} y^{2}+2 B k x y+k^{2} x^{2}+(2 a y+2 b x) k+b^{2}\right) A-2\left(B^{2} y+\left(\frac{k x}{2}+b\right) B-\frac{a k}{2}\right)(B x+a)}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\(\frac{\ln \left(A k^{2} x^{2}+\left(-B^{2} x^{2}+2 A B x y+2 A b x+(A y+a)^{2}\right) k-(B y+b)\left(2 B^{2} x+(A y+2 a) B-A b\right)\right)}{2}=c_{1}\)
Which simplifies to
\(\frac{\ln \left(A k^{2} x^{2}+\left(-B^{2} x^{2}+2 A B x y+2 A b x+(A y+a)^{2}\right) k-(B y+b)\left(2 B^{2} x+(A y+2 a) B-A b\right)\right)}{2}=c_{1}\)
Summary
The solution(s) found are the following
\(\frac{\ln \left(A k^{2} x^{2}+\left(-B^{2} x^{2}+2 A B x y+2 A b x+(A y+a)^{2}\right) k-(B y+b)\left(2 B^{2} x+(A y+2 a)(1) B-A b\right)\right)}{2}\)
\(=c_{1}\)
Verification of solutions
\(\frac{\ln \left(A k^{2} x^{2}+\left(-B^{2} x^{2}+2 A B x y+2 A b x+(A y+a)^{2}\right) k-(B y+b)\left(2 B^{2} x+(A y+2 a) B-A b\right)\right)}{2}\)
\(=c_{1}\)
Verified OK.

\subsection*{25.1.2 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(A y+B x+a) \mathrm{d} y & =(-B y-k x-b) \mathrm{d} x \\
(B y+k x+b) \mathrm{d} x+(A y+B x+a) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =B y+k x+b \\
N(x, y) & =A y+B x+a
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(B y+k x+b) \\
& =B
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(A y+B x+a) \\
& =B
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int B y+k x+b \mathrm{~d} x \\
\phi & =\frac{k x^{2}}{2}+(B y+b) x+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=B x+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=A y+B x+a\). Therefore equation (4) becomes
\[
\begin{equation*}
A y+B x+a=B x+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=A y+a
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(A y+a) \mathrm{d} y \\
f(y) & =\frac{1}{2} A y^{2}+a y+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{k x^{2}}{2}+(B y+b) x+\frac{A y^{2}}{2}+a y+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{k x^{2}}{2}+(B y+b) x+\frac{A y^{2}}{2}+a y
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{k x^{2}}{2}+(B y+b) x+\frac{A y^{2}}{2}+a y=c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{k x^{2}}{2}+(B y+b) x+\frac{A y^{2}}{2}+a y=c_{1}
\]

Verified OK.

\subsection*{25.1.3 Maple step by step solution}

Let's solve
\[
(A y+B x+a) y^{\prime}+B y=-k x-b
\]
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a \(C^{2}\) function
\[
F^{\prime}(x, y)=0
\]
- Compute derivative of lhs
\[
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
\]
- Evaluate derivatives
\(B=B\)
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
\[
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
\]
- \(\quad\) Solve for \(F(x, y)\) by integrating \(M(x, y)\) with respect to \(x\)
\[
F(x, y)=\int(B y+k x+b) d x+f_{1}(y)
\]
- Evaluate integral
\(F(x, y)=B x y+\frac{k x^{2}}{2}+b x+f_{1}(y)\)
- \(\quad\) Take derivative of \(F(x, y)\) with respect to \(y\)
\[
N(x, y)=\frac{\partial}{\partial y} F(x, y)
\]
- Compute derivative
\[
A y+B x+a=B x+\frac{d}{d y} f_{1}(y)
\]
- \(\quad\) Isolate for \(\frac{d}{d y} f_{1}(y)\)
\[
\frac{d}{d y} f_{1}(y)=A y+a
\]
- \(\quad\) Solve for \(f_{1}(y)\)
\(f_{1}(y)=\frac{1}{2} A y^{2}+a y\)
- \(\quad\) Substitute \(f_{1}(y)\) into equation for \(F(x, y)\)
\(F(x, y)=B x y+\frac{1}{2} k x^{2}+b x+\frac{1}{2} A y^{2}+a y\)
- \(\quad\) Substitute \(F(x, y)\) into the solution of the ODE
\(B x y+\frac{1}{2} k x^{2}+b x+\frac{1}{2} A y^{2}+a y=c_{1}\)
- \(\quad\) Solve for \(y\)
\(\left\{y=-\frac{B x-\sqrt{-A k x^{2}+B^{2} x^{2}-2 A b x+2 B a x+2 A c_{1}+a^{2}}+a}{A}, y=-\frac{B x+\sqrt{-A k x^{2}+B^{2} x^{2}-2 A b x+2 B a x+2 A c_{1}+a^{2}}+a}{A}\right\}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C trying homogeneous types: trying homogeneous D <- homogeneous successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.344 (sec). Leaf size: 87
```

dsolve((A*y(x)+B*x+a)*diff (y (x), x)+B*y(x)+k*x+b=0,y(x), singsol=all)

```
\(y(x)\)
\[
=\frac{-\sqrt{-\left(A k-B^{2}\right)\left((k x+b) A-B^{2} x-B a\right)^{2} c_{1}^{2}+A}+\left(k(-B x-a) A+x B^{3}+a B^{2}\right) c_{1}}{A c_{1}\left(A k-B^{2}\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 18.19 (sec). Leaf size: 106
```

DSolve[(A*y[x]+B*x+a)*y'[x]+B*y[x]+k*x+b==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
y(x) & \rightarrow-\frac{\frac{\sqrt{\frac{(a+B x)^{2}}{A}+A c_{1}-x(2 b+k x)}}{\sqrt{\frac{1}{A}}}+a+B x}{A} \\
y(x) & \rightarrow-\frac{a+B x}{A}+\sqrt{\frac{1}{A}} \sqrt{\frac{(a+B x)^{2}}{A}+A c_{1}-x(2 b+k x)}
\end{aligned}
\]

\section*{25.2 problem 2}
25.2.1 Solving as first order ode lie symmetry calculated ode 2060

Internal problem ID [10819]
Internal file name [OUTPUT/9766_Thursday_June_09_2022_12_57_57_AM_92691934/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
```

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, ` class A`]]

```
\[
(y+a x+b) y^{\prime}-\alpha y=\beta x+\gamma
\]

\subsection*{25.2.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{\alpha y+\beta x+\gamma}{a x+b+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{(\alpha y+\beta x+\gamma)\left(b_{3}-a_{2}\right)}{a x+b+y}-\frac{(\alpha y+\beta x+\gamma)^{2} a_{3}}{(a x+b+y)^{2}} \\
& -\left(\frac{\beta}{a x+b+y}-\frac{(\alpha y+\beta x+\gamma) a}{(a x+b+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\left(\frac{\alpha}{a x+b+y}-\frac{\alpha y+\beta x+\gamma}{(a x+b+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& a^{2} x^{2} b_{2}-a \alpha x^{2} b_{2}+a \alpha y^{2} a_{3}-a \beta x^{2} a_{2}+a \beta x^{2} b_{3}-\alpha^{2} y^{2} a_{3}-2 \alpha \beta x y a_{3}-\beta^{2} x^{2} a_{3}-a \alpha x b_{1}+a \alpha y a_{1}+2 a b x i \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& a^{2} x^{2} b_{2}-a \alpha x^{2} b_{2}+a \alpha y^{2} a_{3}-a \beta x^{2} a_{2}+a \beta x^{2} b_{3}-\alpha^{2} y^{2} a_{3}-2 \alpha \beta x y a_{3} \\
& \quad-\beta^{2} x^{2} a_{3}-a \alpha x b_{1}+a \alpha y a_{1}+2 a b x b_{2}+a \gamma x b_{3}+a \gamma y a_{3}+2 a x y b_{2}-\alpha b x b_{2}  \tag{6E}\\
& -\alpha b y a_{2}-2 \alpha \gamma y a_{3}-\alpha y^{2} a_{2}+\alpha y^{2} b_{3}-2 b \beta x a_{2}+b \beta x b_{3}-b \beta y a_{3}-2 \beta \gamma x a_{3} \\
& +\beta x^{2} b_{2}-2 \beta x y a_{2}+2 \beta x y b_{3}-\beta y^{2} a_{3}+a \gamma a_{1}-\alpha b b_{1}+b^{2} b_{2}-b \beta a_{1}-b \gamma a_{2} \\
& +b \gamma b_{3}+2 b y b_{2}+\beta x b_{1}-\beta y a_{1}-\gamma^{2} a_{3}+\gamma x b_{2}-\gamma y a_{2}+2 \gamma y b_{3}+y^{2} b_{2}+\gamma b_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{aligned}
& a^{2} b_{2} v_{1}^{2}+a \alpha a_{3} v_{2}^{2}-a \alpha b_{2} v_{1}^{2}-a \beta a_{2} v_{1}^{2}+a \beta b_{3} v_{1}^{2}-\alpha^{2} a_{3} v_{2}^{2}-2 \alpha \beta a_{3} v_{1} v_{2} \\
& \quad-\beta^{2} a_{3} v_{1}^{2}+a \alpha a_{1} v_{2}-a \alpha b_{1} v_{1}+2 a b b_{2} v_{1}+a \gamma a_{3} v_{2}+a \gamma b_{3} v_{1}+2 a b_{2} v_{1} v_{2} \\
& \quad-\alpha b a_{2} v_{2}-\alpha b b_{2} v_{1}-2 \alpha \gamma a_{3} v_{2}-\alpha a_{2} v_{2}^{2}+\alpha b_{3} v_{2}^{2}-2 b \beta a_{2} v_{1}-b \beta a_{3} v_{2} \\
& +b \beta b_{3} v_{1}-2 \beta \gamma a_{3} v_{1}-2 \beta a_{2} v_{1} v_{2}-\beta a_{3} v_{2}^{2}+\beta b_{2} v_{1}^{2}+2 \beta b_{3} v_{1} v_{2} \\
& +a \gamma a_{1}-\alpha b b_{1}+b^{2} b_{2}-b \beta a_{1}-b \gamma a_{2}+b \gamma b_{3}+2 b b_{2} v_{2}-\beta a_{1} v_{2} \\
& +\beta b_{1} v_{1}-\gamma^{2} a_{3}-\gamma a_{2} v_{2}+\gamma b_{2} v_{1}+2 \gamma b_{3} v_{2}+b_{2} v_{2}^{2}+\gamma b_{1}=0
\end{aligned}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{aligned}
& \left(a^{2} b_{2}-a \alpha b_{2}-a \beta a_{2}+a \beta b_{3}-\beta^{2} a_{3}+\beta b_{2}\right) v_{1}^{2} \\
& +\left(-2 \alpha \beta a_{3}+2 a b_{2}-2 \beta a_{2}+2 \beta b_{3}\right) v_{1} v_{2} \\
& +\left(-a \alpha b_{1}+2 a b b_{2}+a \gamma b_{3}-\alpha b b_{2}-2 b \beta a_{2}+b \beta b_{3}-2 \beta \gamma a_{3}+\beta b_{1}+\gamma b_{2}\right) v_{1} \\
& +\left(a \alpha a_{3}-\alpha^{2} a_{3}-\alpha a_{2}+\alpha b_{3}-\beta a_{3}+b_{2}\right) v_{2}^{2} \\
& +\left(a \alpha a_{1}+a \gamma a_{3}-\alpha b a_{2}-2 \alpha \gamma a_{3}-b \beta a_{3}+2 b b_{2}-\beta a_{1}-\gamma a_{2}+2 \gamma b_{3}\right) v_{2} \\
& +a \gamma a_{1}-\alpha b b_{1}+b^{2} b_{2}-b \beta a_{1}-b \gamma a_{2}+b \gamma b_{3}-\gamma^{2} a_{3}+\gamma b_{1}=0
\end{aligned}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
&-2 \alpha \beta a_{3}+2 a b_{2}-2 \beta a_{2}+2 \beta b_{3}=0 \\
& a \alpha a_{3}-\alpha^{2} a_{3}-\alpha a_{2}+\alpha b_{3}-\beta a_{3}+b_{2}=0 \\
& a^{2} b_{2}-a \alpha b_{2}-a \beta a_{2}+a \beta b_{3}-\beta^{2} a_{3}+\beta b_{2}=0 \\
& a \gamma a_{1}-\alpha b b_{1}+b^{2} b_{2}-b \beta a_{1}-b \gamma a_{2}+b \gamma b_{3}-\gamma^{2} a_{3}+\gamma b_{1}=0 \\
& a \alpha a_{1}+a \gamma a_{3}-\alpha b a_{2}-2 \alpha \gamma a_{3}-b \beta a_{3}+2 b b_{2}-\beta a_{1}-\gamma a_{2}+2 \gamma b_{3}=0 \\
&-a \alpha b_{1}+2 a b b_{2}+a \gamma b_{3}-\alpha b b_{2}-2 b \beta a_{2}+b \beta b_{3}-2 \beta \gamma a_{3}+\beta b_{1}+\gamma b_{2}= 0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=\frac{a \alpha b a_{3}-\alpha^{2} b a_{3}+\alpha b b_{3}+\alpha \gamma a_{3}-b \beta a_{3}-\gamma b_{3}}{a \alpha-\beta} \\
& a_{2}=a a_{3}-\alpha a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=\frac{\alpha b \beta a_{3}+a \gamma b_{3}-b \beta b_{3}-\beta \gamma a_{3}}{a \alpha-\beta} \\
& b_{2}=\beta a_{3} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=\frac{a \alpha x+b \alpha-\beta x-\gamma}{a \alpha-\beta} \\
& \eta=\frac{a \alpha y+a \gamma-b \beta-\beta y}{a \alpha-\beta}
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{a \alpha y+a \gamma-b \beta-\beta y}{a \alpha-\beta}-\left(\frac{\alpha y+\beta x+\gamma}{a x+b+y}\right)\left(\frac{a \alpha x+b \alpha-\beta x-\gamma}{a \alpha-\beta}\right) \\
& =\frac{a^{2} \alpha x y-a \alpha^{2} x y-a \alpha \beta x^{2}+a^{2} \gamma x+a \alpha b y-a \alpha \gamma x+a \alpha y^{2}-a b \beta x-a \beta x y-\alpha^{2} b y-\alpha b \beta x+\alpha \beta x y+}{a^{2} \alpha x+a \alpha b+a \alpha y-a \beta x-b \beta-\beta}
\end{aligned}
\]
\[
\xi=0
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{a^{2} \alpha x y-a \alpha^{2} x y-a \alpha \beta x^{2}+a^{2} \gamma x+a \alpha b y-a \alpha \gamma x+a \alpha y^{2}-a b \beta x-a \beta x y-\alpha^{2} b y-\alpha b \beta x+\alpha \beta x y+\beta^{2} x^{2}+b \gamma a+a \gamma y-b \gamma \alpha+\alpha \gamma y-b^{2} \beta-2 b \beta y+2 \beta \gamma}
\end{aligned}
\]

Which results in
\(S=(a \alpha-\beta)\left(\frac{\ln \left(a^{2} \alpha x y-a \alpha^{2} x y-a \alpha \beta x^{2}+a^{2} \gamma x+a \alpha b y-a \alpha \gamma x+a \alpha y^{2}-a b \beta x-a \beta x y-\alpha^{2} b y-o\right.}{2 a \alpha-2}\right.\)
Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{\alpha y+\beta x+\gamma}{a x+b+y}
\]

Evaluating all the partial derivatives gives
\(R_{x}=1\)
\(R_{y}=0\)
\[
\begin{aligned}
& S_{x}=-\frac{(\alpha y+\beta x+\gamma)(a \alpha-\beta)}{-y(a x+b) \alpha^{2}+\left(a^{2} x y+\left(-x^{2} \beta-\gamma x+y(b+y)\right) a-(\beta x+\gamma)(b-y)\right) \alpha+a^{2} \gamma x-(\beta x-\gamma)(b} \\
& S_{y}=\frac{(a \alpha-\beta)(a x+b+y)}{-y(a x+b) \alpha^{2}+\left(a^{2} x y+\left(-x^{2} \beta-\gamma x+y(b+y)\right) a-(\beta x+\gamma)(b-y)\right) \alpha+a^{2} \gamma x-(\beta x-\gamma)(b+}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\frac{\ln \left(\left(-a \alpha \beta+\beta^{2}\right) x^{2}+(((-a+\alpha) y+2 \gamma+(-\alpha-a) b) \beta+a(\alpha y+\gamma)(a-\alpha)) x-(b+y)^{2} \beta+(a y+\gamma+b(a-\alpha))(\alpha y+\gamma)\right) \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}{2}+\arctan \left(\frac{( }{\sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}\right.}{\left.\frac{2}{2}\right)}
\]

Which simplifies to
\(\frac{\frac{\ln \left(\left(-a \alpha \beta+\beta^{2}\right) x^{2}+(((-a+\alpha) y+2 \gamma+(-\alpha-a) b) \beta+a(\alpha y+\gamma)(a-\alpha)) x-(b+y)^{2} \beta+(a y+\gamma+b(a-\alpha))(\alpha y+\gamma)\right) \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}{2}+\arctan \left(\frac{( }{\sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}\right.}{\sqrt{2}}\)

Summary
The solution(s) found are the following
\(\frac{\ln \left(\left(-a \alpha \beta+\beta^{2}\right) x^{2}+(((-a+\alpha) y+2 \gamma+(-\alpha-a) b) \beta+a(\alpha y+\gamma)(a-\alpha)) x-(b+y)^{2} \beta+(a y+\gamma+b(a-\alpha))(\alpha y+\gamma)\right) \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}{2}+\arctan \left(\frac{(1)}{2}\right)\)
\(=c_{1}\)
Verification of solutions
\(\frac{\ln \left(\left(-a \alpha \beta+\beta^{2}\right) x^{2}+(((-a+\alpha) y+2 \gamma+(-\alpha-a) b) \beta+a(\alpha y+\gamma)(a-\alpha)) x-(b+y)^{2} \beta+(a y+\gamma+b(a-\alpha))(\alpha y+\gamma)\right) \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}}{2}+\arctan \left(\frac{( }{2-a^{2}+2 a \alpha-\alpha^{2}-4 \beta}\right.\)
\(=c_{1}\)
Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C trying homogeneous types: trying homogeneous D <- homogeneous successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.219 (sec). Leaf size: 211
```

dsolve((y(x)+a*x+b)*diff (y (x), x)=alpha*y(x)+beta*x+gamma,y(x), singsol=all)

```
\(y(x)\)
\(=\underline{((a x+b) \alpha-x \beta-\gamma) \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta} \tan \left(\operatorname{RootOf}\left(-2 \sqrt{-a^{2}+2 a \alpha-\alpha^{2}-4 \beta} \ln (2)+\sqrt{-a^{2}}\right.\right.}\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([(\mathrm{y}[\mathrm{x}] * \mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}\) ' \([\mathrm{x}]==\backslash[\) Alpha \(] *[\mathrm{x}]+\backslash\) Beta \(] * \mathrm{x}+\backslash[\) Gamma \(], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions

Not solved

\section*{25.3 problem 3}

Internal problem ID [10820]
Internal file name [OUTPUT/9801_Sunday_June_19_2022_08_04_07_PM_9550685/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class A`]]

```

Unable to solve or complete the solution.
\[
\left(y+a k x^{2}+b x+c\right) y^{\prime}+y^{2} a-2 y a k x-y m=k(k+b-m) x+s
\]

Unable to determine ODE type.
X Solution by Maple
dsolve \(\left(\left(\mathrm{y}(\mathrm{x})+\mathrm{a} * \mathrm{k} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-\mathrm{a} * \mathrm{y}(\mathrm{x})^{\wedge} 2+2 * \mathrm{a} * \mathrm{k} * \mathrm{x} * \mathrm{y}(\mathrm{x})+\mathrm{m} * \mathrm{y}(\mathrm{x})+\mathrm{k} *(\mathrm{k}+\mathrm{b}-\mathrm{m}) * \mathrm{x}+\mathrm{s}, \mathrm{y}(\mathrm{x})\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[(y[x]+a*k*x^2+b*x+c)*y'[x]==-a*y[x] 2+2*a*k*x*y[x]+m*y[x]+k*(k+b-m)*x+s,y[x],x,Includ

```

Timed out

\section*{25.4 problem 4}
25.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2068
25.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2071

Internal problem ID [10821]
Internal file name [OUTPUT/9802_Sunday_June_19_2022_09_25_19_PM_24093222/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
```

[_exact, _rational, [_1st_order, ` _with_symmetry_[F(x),G(x)]`],
``` [_Abel, `2nd type`, `class A`]]

$$
\left(y+A x^{n}+a\right) y^{\prime}+n A x^{n-1} y=-k x^{m}-b
$$

### 25.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y+A x^{n}+a\right) \mathrm{d} y & =\left(-n A x^{n-1} y-k x^{m}-b\right) \mathrm{d} x \\
\left(n A x^{n-1} y+k x^{m}+b\right) \mathrm{d} x+\left(y+A x^{n}+a\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =n A x^{n-1} y+k x^{m}+b \\
N(x, y) & =y+A x^{n}+a
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(n A x^{n-1} y+k x^{m}+b\right) \\
& =A x^{n-1} n
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y+A x^{n}+a\right) \\
& =A x^{n-1} n
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int n A x^{n-1} y+k x^{m}+b \mathrm{~d} x \\
\phi & =b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=A x^{n}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y+A x^{n}+a$. Therefore equation (4) becomes

$$
\begin{equation*}
y+A x^{n}+a=A x^{n}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=a+y
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(a+y) \mathrm{d} y \\
f(y) & =a y+\frac{1}{2} y^{2}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

### 25.4.2 Maple step by step solution

Let's solve

$$
\left(y+A x^{n}+a\right) y^{\prime}+n A x^{n-1} y=-k x^{m}-b
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a $C^{2}$ function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
A x^{n-1} n=\frac{A x^{n} n}{x}
$$

- Simplify

$$
A x^{n-1} n=A x^{n-1} n
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- $\quad$ Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to $x$

$$
F(x, y)=\int\left(n A x^{n-1} y+k x^{m}+b\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+f_{1}(y)$
- $\quad$ Take derivative of $F(x, y)$ with respect to $y$

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
y+A x^{n}+a=A x^{n}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=a+y
$$

- $\quad$ Solve for $f_{1}(y)$

$$
f_{1}(y)=a y+\frac{1}{2} y^{2}
$$

- $\quad$ Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}
$$

- $\quad$ Substitute $F(x, y)$ into the solution of the ODE

$$
b x+\frac{k x^{m+1}}{m+1}+A y x^{n}+a y+\frac{y^{2}}{2}=c_{1}
$$

- $\quad$ Solve for $y$
$\left\{y=-\frac{A m x^{n}+A x^{n}+a m-\sqrt{A^{2}\left(x^{n}\right)^{2} m^{2}+2 A^{2}\left(x^{n}\right)^{2} m+2 A x^{n} a m^{2}+A^{2}\left(x^{n}\right)^{2}+4 A x^{n} a m+m^{2} a^{2}-2 b m^{2} x+2 A x^{n} a-2 x^{m+1} k m-}}{m+1}\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 149

```
dsolve((y(x)+A*x^n+a)*diff (y(x),x)+n*A*x^(n-1)*y(x)+k*x^m+b=0,y(x), singsol=all)
```

$y(x)$
$=\frac{\sqrt{\left(-2 x^{1+m} k+(1+m)\left(x^{2 n} A^{2}+2 A x^{n} a+a^{2}-2 b x-2 c_{1}\right)\right)(1+m)}+A(-m-1) x^{n}-a m-a}{1+m}$
$y(x)$
$=\frac{-\sqrt{\left(-2 x^{1+m} k+(1+m)\left(x^{2 n} A^{2}+2 A x^{n} a+a^{2}-2 b x-2 c_{1}\right)\right)(1+m)}+A(-m-1) x^{n}-a m-a}{1+m}$
$\checkmark$ Solution by Mathematica
Time used: 21.171 (sec). Leaf size: 118
DSolve $\left[\left(y[x]+A * x^{\wedge} n+a\right) * y^{\prime}[x]+n * A * x^{\wedge}(n-1) * y[x]+k * x^{\wedge} m+b==0, y[x], x\right.$, IncludeSingularSolutions $->$ I

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{\frac{1}{x}} \sqrt{x\left(\left(a+A x^{n}\right)^{2}-\frac{2 x\left(b m+b+k x^{m}\right)}{m+1}+c_{1}\right)}-a-A x^{n} \\
& y(x) \rightarrow \sqrt{\frac{1}{x}} \sqrt{x\left(\left(a+A x^{n}\right)^{2}-\frac{2 x\left(b m+b+k x^{m}\right)}{m+1}+c_{1}\right)}-a-A x^{n}
\end{aligned}
$$

## 25.5 problem 5

Internal problem ID [10822]
Internal file name [OUTPUT/9803_Sunday_June_19_2022_09_25_21_PM_56552507/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form $\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)$
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
\left(y+a x^{1+n}+b x^{n}\right) y^{\prime}-\left(x^{n} n a+c x^{n-1}\right) y=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
 -> Calling odsolve with the ODE`, diff(y(x), x)+(x^n*y(x)*a*n^2+x^(n-1)*y(x)*c*n-x^n*a*n*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
 -> Calling odsolve with the ODE`, diff(y(x), x) - y(x)*(x^(n+1)*x^n*a^2*n+2*x^(n+1)*x^(n-1)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful }207
, `-> Computing symmetries using: way = HINT
 -> Calling odsolve with the ODE`, diff(y(x), x), y(x)

X Solution by Maple
dsolve \(\left(\left(y(x)+a * x^{\wedge}(n+1)+b * x^{\wedge} n\right) * \operatorname{diff}(y(x), x)=\left(a * n * x^{\wedge} n+c * x^{\wedge}(n-1)\right) * y(x), y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\left(y[x]+a * x^{\wedge}(n+1)+b * x^{\wedge} n\right) * y{ }^{\prime}[x]==\left(a * n * x^{\wedge} n+c * x^{\wedge}(n-1)\right) * y[x], y[x], x\right.\), IncludeSingularSolution

Not solved

\section*{25.6 problem 6}

Internal problem ID [10823]
Internal file name [OUTPUT/9804_Sunday_June_19_2022_09_25_42_PM_60888452/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
x y y^{\prime}-y^{2} a-y b=x^{n} c+s
\]

Unable to determine ODE type.

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] `, `-> Computing symmetries using: way = HINT     -> Calling odsolve with the ODE`, diff(y(x), x)+(x^n*y(x)*c*n-x^n*y(x)*c-y(x)*s+2*a*x)/(x
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
, `-> Computing symmetries using: way = HINT     -> Calling odsolve with the ODE`, diff(y(x), x)+(-x*n+y(x))/x, y(x)` *** Sublevel 2         Methods for first order ODEs:         --- Trying classification methods ---         trying a quadrature         trying 1st order linear2078         <- 1st order linear successful     -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(a*x^2-s)/(x*(a*x^2+b*x+s)), y(x)`

```

X Solution by Maple
dsolve(\(x * y(x) * \operatorname{diff}(y(x), x)=a * y(x) \wedge 2+b * y(x)+c * x^{\wedge} n+s, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([x * y[x] * y '[x]==a * y[x] \sim 2+b * y[x]+c * x \wedge n+s, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\section*{25.7 problem 7}

Internal problem ID [10824]
Internal file name [OUTPUT/9805_Sunday_June_19_2022_09_25_56_PM_53983030/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Equations of the form \(\left(g_{1}(x)+g_{0}(x)\right) y^{\prime}=f_{2}(x) y^{2}+f_{1}(x) y+f_{0}(x)\)
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[_rational, [_Abel, `2nd type`, `class B`]]

```

Unable to solve or complete the solution.
\[
x y y^{\prime}+y^{2} n-a(2 n+1) x y-y b=-a^{2} n x^{2}-a b x+c
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries found: 2 potential symmetries. Proceeding with integration step <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 224
```

dsolve(x*y(x)*diff (y(x),x)=-n*y(x)^2+a*(2*n+1)*x*y(x)+b*y(x)-a^2*n*x^2-a*b*x+c,y(x), singsol

```
\(\frac{\left(\frac{-n y(x)^{2}+(2 a x n+b) y(x)-a^{2} n x^{2}-a b x+c}{(a x-y(x))^{2}}\right)^{-\frac{1}{2 n}}\left(\frac{1}{a x-y(x)}\right)^{\frac{1}{n}} y(x) \mathrm{e}^{\frac{b \operatorname{arctanh}\left(\frac{-a b x+b y(x)+2 c}{\sqrt{b^{2}+4 c n}(-a x+y(x))}\right)}{\sqrt{b^{2}+4 c n n}}}-\left(\left(\int^{\frac{1}{a x-y(x)}}\left(_a^{2} c--c\right.\right.\right.}{x(a x-y(x))}\)
\(=0\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y[x] * y{ }^{\prime}[x]==-n * y[x] \sim 2+a *(2 * n+1) * x * y[x]+b * y[x]-a^{\wedge} 2 * n * x^{\wedge} 2-a * b * x+c, y[x], x\right.\), IncludeSingu

Not solved
26 Chapter 2, Second-Order DifferentialEquations. section 2.1.2 Equations ContainingPower Functions. page 213
26.1 problem 1 2083
26.2 problem 2 2091
26.3 problem 3 2095
26.4 problem 4 2104
26.5 problem 5 2108
26.6 problem 6 2117
26.7 problem 7 2122
26.8 problem 8 2125
26.9 problem 9 2128
26.10problem 10 2131

\section*{26.1 problem 1}
26.1.1 Solving as second order linear constant coeff ode 2083
26.1.2 Solving as second order ode can be made integrable ode 2085
26.1.3 Solving using Kovacic algorithm 2086
26.1.4 Maple step by step solution . 2089

Internal problem ID [10825]
Internal file name [OUTPUT/9806_Sunday_June_19_2022_09_25_58_PM_6187875/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+a y=0
\]

\subsection*{26.1.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=a\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+a \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+a=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=a\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(a)} \\
& = \pm \sqrt{-a}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(\sqrt{-a}) x}+c_{2} e^{(-\sqrt{-a}) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\sqrt{-a} x}+c_{2} \mathrm{e}^{-\sqrt{-a} x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-a} x}+c_{2} \mathrm{e}^{-\sqrt{-a} x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-a} x}+c_{2} \mathrm{e}^{-\sqrt{-a} x}
\]

Verified OK.

\subsection*{26.1.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+a y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+a y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2} a}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-y^{2} a+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2} a+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-a y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}} & =x+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-a y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}} & =x+c_{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}} & =x+c_{2} \tag{1}\\
-\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}} & =x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}}=x+c_{2}
\]

Verified OK.
\[
-\frac{\arctan \left(\frac{\sqrt{a} y}{\sqrt{-y^{2} a+2 c_{1}}}\right)}{\sqrt{a}}=x+c_{3}
\]

Verified OK.

\subsection*{26.1.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-a}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-a \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=(-a) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is
\end{tabular} & no condition \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 17: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-a\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{-a} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-a} x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\sqrt{-a} x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{-a} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-a} x}} d x \\
& =\mathrm{e}^{\sqrt{-a} x}\left(-\frac{\mathrm{e}^{-2 \sqrt{-a} x}}{2 \sqrt{-a}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-a} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-a} x}\left(-\frac{\mathrm{e}^{-2 \sqrt{-a} x}}{2 \sqrt{-a}}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-a} x}-\frac{c_{2} \mathrm{e}^{-\sqrt{-a} x}}{2 \sqrt{-a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-a} x}-\frac{c_{2} \mathrm{e}^{-\sqrt{-a} x}}{2 \sqrt{-a}}
\]

Verified OK.

\subsection*{26.1.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+a=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4 a})}{2}\)
- Roots of the characteristic polynomial
\[
r=(\sqrt{-a},-\sqrt{-a})
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\sqrt{-a} x}\)
- 2 nd solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{-\sqrt{-a} x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-a} x}+c_{2} \mathrm{e}^{-\sqrt{-a} x}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(diff(y(x),x\$2)+a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (\sqrt{a} x)+c_{2} \cos (\sqrt{a} x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 28
```

DSolve[y''[x]+a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \cos (\sqrt{a} x)+c_{2} \sin (\sqrt{a} x)
\]

\section*{26.2 problem 2}
26.2.1 Solving as second order bessel ode ode 2091
26.2.2 Maple step by step solution . 2092

Internal problem ID [10826]
Internal file name [OUTPUT/9807_Sunday_June_19_2022_09_25_59_PM_19397890/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing
Power Functions. page 213
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-(a x+b) y=0
\]

\subsection*{26.2.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a x^{3}-b x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{26.2.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(-a x-b) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
-a_{0} b+2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k} b-a_{k-1} a\right) x^{k}\right)=0
\]
- \(\quad\) Each term must be 0
\(-a_{0} b+2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-1} a-a_{k} b=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k} a-a_{k+1} b=0
\]
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k} a+a_{k+1} b}{k^{2}+5 k+6},-a_{0} b+2 a_{2}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 33
dsolve(diff \((y(x), x \$ 2)-(a * x+b) * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=c_{1} \operatorname{AiryAi}\left(\frac{a x+b}{(-a)^{\frac{2}{3}}}\right)+c_{2} \operatorname{AiryBi}\left(\frac{a x+b}{(-a)^{\frac{2}{3}}}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 36
DSolve[y'' \([\mathrm{x}]-(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} \operatorname{AiryAi}\left(\frac{b+a x}{a^{2 / 3}}\right)+c_{2} \operatorname{AiryBi}\left(\frac{b+a x}{a^{2 / 3}}\right)
\]

\section*{26.3 problem 3}
26.3.1 Solving as second order bessel ode ode
26.3.2 Solving using Kovacic algorithm 2096
26.3.3 Maple step by step solution . 2102

Internal problem ID [10827]
Internal file name [OUTPUT/9808_Sunday_June_19_2022_09_25_59_PM_52272737/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-\left(a^{2} x^{2}+a\right) y=0
\]

\subsection*{26.3.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a^{2} x^{4}-a x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{26.3.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(-a^{2} x^{2}-a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-a^{2} x^{2}-a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a\left(a x^{2}+1\right)}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a\left(a x^{2}+1\right) \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(a\left(a x^{2}+1\right)\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 20: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx a x+\frac{1}{2 x}-\frac{1}{8 a x^{3}}+\frac{1}{16 a^{2} x^{5}}-\frac{5}{128 a^{3} x^{7}}+\frac{7}{256 a^{4} x^{9}}-\frac{21}{1024 a^{5} x^{11}}+\frac{33}{2048 a^{6} x^{13}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=a
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =a x \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=a^{2} x^{2}
\]

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a\left(a x^{2}+1\right)}{1} \\
& =Q+\frac{R}{1} \\
& =\left(a^{2} x^{2}+a\right)+(0) \\
& =a^{2} x^{2}+a
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(a)-(0) \\
& =a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =a x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{a}{a}-1\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{a}{a}-1\right)=-1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=a\left(a x^{2}+1\right)
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(a x\) & 0 & -1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=0\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+(a x) \\
& =a x \\
& =a x
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2(a x)(0)+\left((a)+(a x)^{2}-\left(a\left(a x^{2}+1\right)\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int a x d x} \\
& =\mathrm{e}^{\frac{a x^{2}}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\frac{a x^{2}}{2}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{a x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\frac{a x^{2}}{2}} \int \frac{1}{\mathrm{e}^{a x^{2}}} d x \\
& =\mathrm{e}^{\frac{a x^{2}}{2}}\left(\frac{\sqrt{\pi} \operatorname{erf}(\sqrt{a} x)}{2 \sqrt{a}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{a x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{a x^{2}}{2}}\left(\frac{\sqrt{\pi} \operatorname{erf}(\sqrt{a} x)}{2 \sqrt{a}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{a x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\frac{a x^{2}}{2}} \sqrt{\pi} \operatorname{erf}(\sqrt{a} x)}{2 \sqrt{a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{a x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\frac{a x^{2}}{2}} \sqrt{\pi} \operatorname{erf}(\sqrt{a} x)}{2 \sqrt{a}}
\]

Verified OK.

\subsection*{26.3.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(-a^{2} x^{2}-a\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
-a_{0} a+2 a_{2}+\left(6 a_{3}-a_{1} a\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-a a_{k}-a_{k-2} a^{2}\right) x^{k}\right)=0
\]
- The coefficients of each power of \(x\) must be 0
\(\left[2 a_{2}-a_{0} a=0,6 a_{3}-a_{1} a=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=\frac{a_{0} a}{2}, a_{3}=\frac{a_{1} a}{6}\right\}\)
- \(\quad\) Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-2} a^{2}-a a_{k}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k} a^{2}-a a_{k+2}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a\left(a a_{k}+a_{k+2}\right)}{k^{2}+7 k+12}, a_{2}=\frac{a_{0} a}{2}, a_{3}=\frac{a_{1} a}{6}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
```

dsolve(diff(y(x),x\$2)-(a^2*x^2+a)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{\frac{a x^{2}}{2}}\left(c_{1}+\operatorname{erf}(\sqrt{a} x) c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 43
```

DSolve[y''[x]-(a^2*x^2+a)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \text { ParabolicCylinderD }(-1, \sqrt{2} \sqrt{a} x)+c_{2} \text { ParabolicCylinderD }(0, i \sqrt{2} \sqrt{a} x)
\]

\section*{26.4 problem 4}
26.4.1 Solving as second order bessel ode ode 2104
26.4.2 Maple step by step solution . 2105

Internal problem ID [10828]
Internal file name [OUTPUT/9809_Sunday_June_19_2022_09_26_00_PM_50643366/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing
Power Functions. page 213
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-\left(a x^{2}+b\right) y=0
\]

\subsection*{26.4.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a x^{4}-b x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{26.4.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(-a x^{2}-b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(-a_{0} b+2 a_{2}+\left(6 a_{3}-a_{1} b\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k} b-a_{k-2} a\right) x^{k}\right)=0\)
- The coefficients of each power of \(x\) must be 0
\(\left[2 a_{2}-a_{0} b=0,6 a_{3}-a_{1} b=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=\frac{a_{0} b}{2}, a_{3}=\frac{a_{1} b}{6}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-2} a-a_{k} b=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k} a-a_{k+2} b=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a_{k} a+a_{k+2} b}{k^{2}+7 k+12}, a_{2}=\frac{a_{0} b}{2}, a_{3}=\frac{a_{1} b}{6}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 43
```

dsolve(diff(y(x),x\$2)-(a*x^2+b)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} \text { WhittakerM }\left(-\frac{b}{4 \sqrt{a}}, \frac{1}{4}, \sqrt{a} x^{2}\right)+c_{2} \text { WhittakerW }\left(-\frac{b}{4 \sqrt{a}}, \frac{1}{4}, \sqrt{a} x^{2}\right)}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 68
```

DSolve[y''[x]-(a*x^2+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \text { ParabolicCylinderD }\left(-\frac{b}{2 \sqrt{a}}-\frac{1}{2}, \sqrt{2} \sqrt[4]{a} x\right) \\
& +c_{2} \text { ParabolicCylinderD }\left(\frac{1}{2}\left(\frac{b}{\sqrt{a}}-1\right), i \sqrt{2} \sqrt[4]{a} x\right)
\end{aligned}
\]

\section*{26.5 problem 5}
26.5.1 Solving as second order bessel ode ode 2108
26.5.2 Solving using Kovacic algorithm 2109
26.5.3 Maple step by step solution . 2115

Internal problem ID [10829]
Internal file name [OUTPUT/9810_Sunday_June_19_2022_09_26_01_PM_87384003/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+a^{3} x(-a x+2) y=0
\]

\subsection*{26.5.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a^{4} x^{4}+2 a^{3} x^{3}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{26.5.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(-a^{4} x^{2}+2 a^{3} x\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-a^{4} x^{2}+2 a^{3} x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{3} x(a x-2)}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{3} x(a x-2) \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(a^{3} x(a x-2)\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 23: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx a^{2} x-a-\frac{1}{2 x}-\frac{1}{2 a x^{2}}-\frac{5}{8 a^{2} x^{3}}-\frac{7}{8 a^{3} x^{4}}-\frac{21}{16 a^{4} x^{5}}-\frac{33}{16 a^{5} x^{6}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=a^{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =a^{2} x-a \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=a^{4} x^{2}-2 a^{3} x+a^{2}
\]

This shows that the coefficient of 1 in the above is \(a^{2}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{3} x(a x-2)}{1} \\
& =Q+\frac{R}{1} \\
& =\left(a^{4} x^{2}-2 a^{3} x\right)+(0) \\
& =a^{4} x^{2}-2 a^{3} x
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is 0 . Now \(b\) can be found.
\[
\begin{aligned}
b & =(0)-\left(a^{2}\right) \\
& =-a^{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =a^{2} x-a \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-a^{2}}{a^{2}}-1\right)=-1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-a^{2}}{a^{2}}-1\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
\begin{aligned}
& r=a^{3} x(a x-2) \\
& \begin{array}{|c|c|c|c|}
\hline \text { Order of } r \text { at } \infty & {[\sqrt{r}]_{\infty}} & \alpha_{\infty}^{+} & \alpha_{\infty}^{-} \\
\hline-2 & a^{2} x-a & -1 & 0 \\
\hline
\end{array}
\end{aligned}
\]

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(a^{2} x-a\right) \\
& =-a^{2} x+a \\
& =-a^{2} x+a
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-a^{2} x+a\right)(0)+\left(\left(-a^{2}\right)+\left(-a^{2} x+a\right)^{2}-\left(a^{3} x(a x-2)\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-a^{2} x+a\right) d x} \\
& =\mathrm{e}^{-\frac{a x(a x-2)}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\frac{a x(a x-2)}{2}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{a x(a x-2)}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\frac{a x(a x-2)}{2}} \int \frac{1}{\mathrm{e}^{-a x(a x-2)}} d x \\
& =\mathrm{e}^{-\frac{a x(a x-2)}{2}}\left(-\frac{i \sqrt{\pi} \mathrm{e}^{-1} \operatorname{erf}(i a x-i)}{2 a}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{a x(a x-2)}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{a x(a x-2)}{2}}\left(-\frac{i \sqrt{\pi} \mathrm{e}^{-1} \operatorname{erf}(i a x-i)}{2 a}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{a x(a x-2)}{2}}-\frac{i c_{2} \mathrm{e}^{-1-\frac{1}{2} a^{2} x^{2}+a x} \sqrt{\pi} \operatorname{erf}(i a x-i)}{2 a} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{a x(a x-2)}{2}}-\frac{i c_{2} \mathrm{e}^{-1-\frac{1}{2} a^{2} x^{2}+a x} \sqrt{\pi} \operatorname{erf}(i a x-i)}{2 a}
\]

Verified OK.

\subsection*{26.5.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(-a^{4} x^{2}+2 a^{3} x\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}+\left(2 a_{0} a^{3}+6 a_{3}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a^{3} a_{k-1}-a_{k-2} a^{4}\right) x^{k}\right)=0
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\(\left[2 a_{2}=0,2 a_{0} a^{3}+6 a_{3}=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=0, a_{3}=-\frac{a_{0} a^{3}}{3}\right\}\)
- Each term in the series must be 0 , giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-2} a^{4}+2 a^{3} a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k} a^{4}+2 a^{3} a_{k+1}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a^{3}\left(a a_{k}-2 a_{k+1}\right)}{k^{2}+7 k+12}, a_{2}=0, a_{3}=-\frac{a_{0} a^{3}}{3}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
```

dsolve(diff(y(x),x\$2)+a^3*x*(2-a*x)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{a x(a x-2)}{2}}\left(c_{1}+\operatorname{erf}(i a x-i) c_{2}\right)
\]

Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 50
```

DSolve[y''[x]+a^3*x*(2-a*x)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \frac{e^{-\frac{1}{2} a x(a x-2)-1}\left(2 e a c_{1}-\sqrt{\pi} c_{2} \mathrm{erfi}(1-a x)\right)}{2 a}
\]

\section*{26.6 problem 6}
26.6.1 Solving as second order bessel ode ode 2117
26.6.2 Maple step by step solution . 2118

Internal problem ID [10830]
Internal file name [OUTPUT/9811_Sunday_June_19_2022_09_26_02_PM_61895003/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing
Power Functions. page 213
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-\left(a x^{2}+b c x\right) y=0
\]

\subsection*{26.6.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a x^{4}-b c x^{3}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{26.6.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(-a x^{2}-b c x\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(2 a_{2}+\left(6 a_{3}-a_{0} b c\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1} b c-a_{k-2} a\right) x^{k}\right)=0\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}=0,6 a_{3}-a_{0} b c=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=0, a_{3}=\frac{a_{0} b c}{6}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-1} b c-a_{k-2} a=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k+1} b c-a_{k} a=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a_{k+1} b c+a_{k} a}{k^{2}+7 k+12}, a_{2}=0, a_{3}=\frac{a_{0} b c}{6}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is resolve
<- hypergeometric successful
<- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.046 (sec). Leaf size: 142
dsolve(diff \((y(x), x \$ 2)-\left(a * x^{\wedge} 2+b * x * c\right) * y(x)=0, y(x)\), singsol=all)
\[
\begin{array}{r}
y(x)=\mathrm{e}^{-\frac{x(a x+b c)}{2 \sqrt{a}}}\left(2 x a c_{2} \text { hypergeom }\left(\left[-\frac{b^{2} c^{2}-12 a^{\frac{3}{2}}}{16 a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{(2 a x+b c)^{2}}{4 a^{\frac{3}{2}}}\right)\right. \\
+ \\
c b c_{2} \text { hypergeom }\left(\left[-\frac{b^{2} c^{2}-12 a^{\frac{3}{2}}}{16 a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{(2 a x+b c)^{2}}{4 a^{\frac{3}{2}}}\right) \\
+ \\
\left.+ \text { hypergeom }\left(\left[-\frac{b^{2} c^{2}-4 a^{\frac{3}{2}}}{16 a^{\frac{3}{2}}}\right],\left[\frac{1}{2}\right], \frac{(2 a x+b c)^{2}}{4 a^{\frac{3}{2}}}\right) c_{1}\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 92
DSolve[y''[x]-(a*x^2+b*x*c)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
\begin{aligned}
& y(x) \rightarrow c_{2} \text { ParabolicCylinderD }\left(-\frac{b^{2} c^{2}}{8 a^{3 / 2}}\right. \\
& \left.\quad-\frac{1}{2}, \frac{i(b c+2 a x)}{\sqrt{2} a^{3 / 4}}\right)+c_{1} \text { ParabolicCylinderD }\left(\frac{1}{8}\left(\frac{b^{2} c^{2}}{a^{3 / 2}}-4\right), \frac{b c+2 a x}{\sqrt{2} a^{3 / 4}}\right)
\end{aligned}
\]

\section*{26.7 problem 7}
26.7.1 Solving as second order bessel ode ode

2122
Internal problem ID [10831]
Internal file name [OUTPUT/9812_Sunday_June_19_2022_09_26_03_PM_88912945/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 7 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
y^{\prime \prime}-a x^{n} y=0
\]

\subsection*{26.7.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}-a x^{2} x^{n} y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 \sqrt{-a}}{2+n} \\
n & =-\frac{1}{2+n} \\
\gamma & =1+\frac{n}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-\frac{1}{2+n}, \frac{2 \sqrt{-a} x^{1+\frac{n}{2}}}{2+n}\right)
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.281 (sec). Leaf size: 63
dsolve(diff \((y(x), x \$ 2)-a * x^{\wedge} n * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\sqrt{x}\left(\operatorname{BesselY}\left(\frac{1}{n+2}, \frac{2 \sqrt{-a} x^{\frac{n}{2}+1}}{n+2}\right) c_{2}+\operatorname{BesselJ}\left(\frac{1}{n+2}, \frac{2 \sqrt{-a} x^{\frac{n}{2}+1}}{n+2}\right) c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 119
DSolve[y''[x]-a*x^n*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow(n+2)^{-\frac{1}{n+2}} \sqrt{x} a^{\frac{1}{2 n+4}}\left(c_{1} \operatorname{Gamma}\left(\frac{n+1}{n+2}\right) \operatorname{BesselI}\left(-\frac{1}{n+2}, \frac{2 \sqrt{a} x^{\frac{n}{2}+1}}{n+2}\right)\right. \\
\left.+c_{2}(-1)^{\frac{1}{n+2}} \operatorname{Gamma}\left(1+\frac{1}{n+2}\right) \operatorname{BesselI}\left(\frac{1}{n+2}, \frac{2 \sqrt{a} x^{\frac{n}{2}+1}}{n+2}\right)\right)
\end{aligned}
\]

\section*{26.8 problem 8}
26.8.1 Solving as second order bessel ode ode 2125

Internal problem ID [10832]
Internal file name [OUTPUT/9813_Sunday_June_19_2022_09_26_04_PM_77415254/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-a\left(a x^{2 n}+n x^{n-1}\right) y=0
\]

\subsection*{26.8.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{2} x^{2 n} a^{2}-x^{n} a n x\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.203 (sec). Leaf size: 136
```

dsolve(diff (y(x),x\$2)-a*(a*x^(2*n)+n*x^(n-1))*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)= \frac{c_{2} x^{-\frac{3 n}{2}-1}(n+2)^{2} \text { WhittakerM }\left(\frac{n+2}{2 n+2}, \frac{2 n+3}{2 n+2}, \frac{2 a x^{n+1}}{n+1}\right)}{2}+\left(\left(\frac{n}{2}+1\right) x^{-\frac{3 n}{2}-1}\right. \\
&\left.\quad+a x^{-\frac{n}{2}}\right)(n+1) c_{2} \text { WhittakerM }\left(-\frac{n}{2 n+2}, \frac{2 n+3}{2 n+2}, \frac{2 a x^{n+1}}{n+1}\right)+c_{1} \mathrm{e}^{\frac{a x^{n+1}}{n+1}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.596 (sec). Leaf size: 81
DSolve[y''[x]-a*(a*x^(2*n)+n*x^(n-1))*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{\frac{a x^{n+1}}{n+1}}\left(c_{2}-\frac{c_{1} 2^{-\frac{1}{n+1}} x\left(\frac{a x^{n+1}}{n+1}\right)^{-\frac{1}{n+1}} \Gamma\left(\frac{1}{n+1}, \frac{2 a x^{n+1}}{n+1}\right)}{n+1}\right)
\]

\section*{26.9 problem 9}
26.9.1 Solving as second order bessel ode ode 2128

Internal problem ID [10833]
Internal file name [OUTPUT/9814_Sunday_June_19_2022_09_26_05_PM_30632592/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-a x^{n-2}\left(a x^{n}+n+1\right) y=0
\]

\subsection*{26.9.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{2 n} a^{2}-x^{n} n a-a x^{n}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.187 (sec). Leaf size: 113
dsolve(diff \((y(x), x \$ 2)-a * x^{\wedge}(n-2) *\left(a * x^{\wedge} n+n+1\right) * y(x)=0, y(x)\), singsol \(\left.=a l l\right)\)
\[
\begin{aligned}
y(x)= & \frac{c_{2} x^{-\frac{3 n}{2}+\frac{1}{2}}(n-1)^{2} \operatorname{WhittakerM}\left(\frac{n-1}{2 n}, \frac{2 n-1}{2 n}, \frac{2 a x^{n}}{n}\right)}{2} \\
& +\left(\frac{(n-1) x^{-\frac{3 n}{2}+\frac{1}{2}}}{2}+x^{-\frac{n}{2}+\frac{1}{2}} a\right) n c_{2} \text { WhittakerM }\left(-\frac{n+1}{2 n}, \frac{2 n-1}{2 n}, \frac{2 a x^{n}}{n}\right) \\
& +c_{1} x \mathrm{e}^{\frac{a x^{n}}{n}}
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-a*x^(n-2)*(a*x^n+n+1)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{26.10 problem 10}
26.10.1 Solving as second order bessel ode ode

2131
Internal problem ID [10834]
Internal file name [OUTPUT/9815_Sunday_June_19_2022_09_26_07_PM_32066164/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a x^{2 n}+b x^{n-1}\right) y=0
\]

\subsection*{26.10.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(x^{2} a x^{2 n}+x^{n} b x\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.375 (sec). Leaf size: 89
dsolve(diff \((y(x), x \$ 2)+\left(a * x^{\wedge}(2 * n)+b * x^{\wedge}(n-1)\right) * y(x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
y(x)=x^{-\frac{n}{2}}\left(c_{1} \text { WhittakerM }\left(-\frac{i b}{\sqrt{a}(2 n+2)}, \frac{1}{2 n+2}, \frac{2 i \sqrt{a} x x^{n}}{n+1}\right)\right. \\
\left.+c_{2} \text { WhittakerW }\left(-\frac{i b}{\sqrt{a}(2 n+2)}, \frac{1}{2 n+2}, \frac{2 i \sqrt{a} x x^{n}}{n+1}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.399 (sec). Leaf size: 225
```

DSolve[y''[x]+(a*\mp@subsup{x}{}{\wedge}(2*n)+b*\mp@subsup{x}{}{\wedge}(n-1))*y[x]==0,y[x],x,IncludeSingularSolutions ->> True]

```
\(y(x)\)
\(\rightarrow 2^{\frac{n}{2 n+2}} x^{-n / 2}\left(x^{n+1}\right)^{\frac{n}{2 n+2}} e^{-\frac{\sqrt{a} x^{n+1}}{\sqrt{-(n+1)^{2}}}}\left(c_{1}\right.\) Hypergeometric \(U\left(-\frac{(n+1)\left(n b+b+\sqrt{a} n \sqrt{-(n+1)^{2}}\right)}{2 \sqrt{a}\left(-(n+1)^{2}\right)^{3 / 2}}, \frac{n}{n+1}\right.\)
27 Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form
\(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
27.1 problem 11 2136
27.2 problem 12 2143
27.3 problem 13 2146
27.4 problem 14 2150
27.5 problem 15 2159
27.6 problem 16 2168
27.7 problem 17 2170
27.8 problem 18 2173
27.9 problem 19 2176
27.10problem 20 2179
27.11problem 21 2182
27.12problem 22 2186
27.13problem 23 2190
27.14problem 24 2194
27.15problem 25 2206
27.16problem 26 2220
27.17problem 27 2229
27.18problem 28 2238
27.19problem 29 2242
27.20problem 30 2245
27.21problem 31 2254
27.22problem 32 2258
27.23problem 33 2261
27.24problem 34 2271
27.25problem 35 2281
27.26problem 36 2290
27.27problem 37 2299
27.28problem 38 2303
27.29problem 39 2314
27.30problem 40 2324
27.31 problem 41 2334
27.32problem 42 2343
27.33problem 43 2358
27.34problem 44 2369
27.35problem 45 2373
27.36problem 46 2376
27.37problem 47 2380
27.38problem 48 2383
27.39problem 49 2386
27.40problem 50 2389
27.41 problem 51 2392
27.42problem 52 2394
27.43problem 53 2397
27.44problem 54 2400
27.45problem 55 2403
27.46problem 56 2408
27.47problem 57 2415
27.48problem 58 2422
27.49problem 59 2425
27.50problem 60 2428

\section*{27.1 problem 11}
27.1.1 Solving as second order linear constant coeff ode 2136
27.1.2 Solving using Kovacic algorithm 2138
27.1.3 Maple step by step solution . 2141

Internal problem ID [10835]
Internal file name [OUTPUT/9816_Sunday_June_19_2022_09_26_08_PM_26525654/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+a y^{\prime}+y b=0
\]

\subsection*{27.1.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=a, C=b\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+a \lambda \mathrm{e}^{\lambda x}+b \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
a \lambda+\lambda^{2}+b=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=a, C=b\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-a}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{a^{2}-(4)(1)(b)} \\
& =-\frac{a}{2} \pm \frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2} \\
& \lambda_{2}=-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2} \\
& \lambda_{2}=-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} e^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}
\]

Verified OK.

\subsection*{27.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+a y^{\prime}+y b=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a \tag{3}\\
& C=b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2}-4 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =a^{2}-4 b \\
t & =4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2}}{4}-b\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 26: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{a^{2}}{4}-b\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]
\[
\begin{aligned}
& =z_{1} e^{-\int \frac{1}{2} \frac{a}{1} d x} \\
& =z_{1} e^{-\frac{a x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-x \sqrt{a^{2}-4 b}}}{\sqrt{a^{2}-4 b}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}\left(-\frac{\mathrm{e}^{-x \sqrt{a^{2}-4 b}}}{\sqrt{a^{2}-4 b}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{\left(a+\sqrt{a^{2}-4 b}\right) x}{2}}}{\sqrt{a^{2}-4 b}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{\left(a+\sqrt{a^{2}-4 b}\right) x}{2}}}{\sqrt{a^{2}-4 b}}
\]

Verified OK.

\subsection*{27.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y^{\prime}+y b=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(a r+r^{2}+b=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-a) \pm\left(\sqrt{a^{2}-4 b}\right)}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2},-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}\)
- \(\quad 2 \mathrm{nd}\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{\left(-\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve(diff \((y(x), x \$ 2)+a * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right) x}{2}}+c_{2} \mathrm{e}^{-\frac{\left(a+\sqrt{a^{2}-4 b}\right) x}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 47
DSolve[y''[x]+a*y'[x]+b*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-\frac{1}{2} x\left(\sqrt{a^{2}-4 b}+a\right)}\left(c_{2} e^{x \sqrt{a^{2}-4 b}}+c_{1}\right)
\]

\section*{27.2 problem 12}
27.2.1 Maple step by step solution . 2143

Internal problem ID [10836]
Internal file name [OUTPUT/9817_Sunday_June_19_2022_09_26_09_PM_36062604/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a y^{\prime}+(b x+c) y=0
\]

\subsection*{27.2.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y^{\prime}+(b x+c) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(a a_{1}+a_{0} c+2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a a_{k+1}(k+1)+a_{k} c+b a_{k-1}\right) x^{k}\right)=0\)
- Each term must be 0
\(a a_{1}+a_{0} c+2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}+a a_{k+1} k+a a_{k+1}+b a_{k-1}+a_{k} c=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a a_{k+2}(k+1)+a a_{k+2}+b a_{k}+a_{k+1} c=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+2}+2 a a_{k+2}+b a_{k}+a_{k+1} c}{k^{2}+5 k+6}, a a_{1}+a_{0} c+2 a_{2}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 49
```

dsolve(diff(y(x),x\$2)+a*diff(y(x),x)+(b*x+c)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{a x}{2}}\left(\operatorname{AiryAi}\left(\frac{a^{2}-4 b x-4 c}{4 b^{\frac{2}{3}}}\right) c_{1}+\operatorname{AiryBi}\left(\frac{a^{2}-4 b x-4 c}{4 b^{\frac{2}{3}}}\right) c_{2}\right)
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 67
DSolve[y''[x]+a*y'[x]+(b*x+c)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-\frac{a x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{a^{2}-4(c+b x)}{4(-b)^{2 / 3}}\right)+c_{2} \operatorname{AiryBi}\left(\frac{a^{2}-4(c+b x)}{4(-b)^{2 / 3}}\right)\right)
\]

\section*{27.3 problem 13}
27.3.1 Maple step by step solution
. 2146
Internal problem ID [10837]
Internal file name [OUTPUT/9818_Sunday_June_19_2022_09_26_10_PM_23841255/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a y^{\prime}-\left(b x^{2}+c\right) y=0
\]

\subsection*{27.3.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y^{\prime}+\left(-b x^{2}-c\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} a-a_{0} c+2 a_{2}+\left(2 a a_{2}-a_{1} c+6 a_{3}\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a a_{k+1}(k+1)-a_{k} c-b a_{k}\right.\right.
\]

The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} a-a_{0} c=0,2 a a_{2}-a_{1} c+6 a_{3}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} a}{2}+\frac{a_{0} c}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}-\frac{1}{6} a_{0} a c+\frac{1}{6} a_{1} c\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+a a_{k+1} k+a a_{k+1}-b a_{k-2}-a_{k} c=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}+a a_{k+3}(k+2)+a a_{k+3}-b a_{k}-a_{k+2} c=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a k a_{k+3}+3 a a_{k+3}-b a_{k}-a_{k+2} c}{k^{2}+7 k+12}, a_{2}=-\frac{a_{1} a}{2}+\frac{a_{0} c}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}-\frac{1}{6} a_{0} a c+\frac{1}{6} a_{1} c\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.079 (sec). Leaf size: 74
```

dsolve(diff (y (x),x\$2)+a*diff (y (x),x)-(b*x^2+c)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{x(\sqrt{b} x+a)}{2}} x\left(\text { KummerM }\left(\frac{a^{2}+12 \sqrt{b}+4 c}{16 \sqrt{b}}, \frac{3}{2}, \sqrt{b} x^{2}\right) c_{1}\right. \\
&\left.+\operatorname{KummerU}\left(\frac{a^{2}+12 \sqrt{b}+4 c}{16 \sqrt{b}}, \frac{3}{2}, \sqrt{b} x^{2}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 96
DSolve[y''[x]+a*y'[x]-(b*x^2+c)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
\left.y(x) \rightarrow e^{-\frac{1}{2} x(a+\sqrt{b} x}\right) & \left(c_{1} \text { HermiteH }\left(\frac{-a^{2}-4(c+\sqrt{b})}{8 \sqrt{b}}, \sqrt[4]{b} x\right)\right. \\
& \left.+c_{2} \text { Hypergeometric1F1 }\left(\frac{a^{2}+4(c+\sqrt{b})}{16 \sqrt{b}}, \frac{1}{2}, \sqrt{b} x^{2}\right)\right)
\end{aligned}
\]

\section*{27.4 problem 14}
27.4.1 Solving using Kovacic algorithm 2150
27.4.2 Maple step by step solution . 2156

Internal problem ID [10838]
Internal file name [OUTPUT/9819_Sunday_June_19_2022_09_26_13_PM_40437218/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `     _with_symmetry_[0,F(x)]`]]

```
\[
y^{\prime \prime}+a y^{\prime}+b\left(-b x^{2}+a x+1\right) y=0
\]

\subsection*{27.4.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+a y^{\prime}+\left(-b^{2} x^{2}+a b x+b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a \tag{3}\\
& C=-b^{2} x^{2}+a b x+b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4 b^{2} x^{2}-4 a b x+a^{2}-4 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 b^{2} x^{2}-4 a b x+a^{2}-4 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(b^{2} x^{2}-a b x+\frac{1}{4} a^{2}-b\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 30: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx b x-\frac{a}{2}-\frac{1}{2 x}-\frac{a}{4 b x^{2}}-\frac{a^{2}}{8 b^{2} x^{3}}-\frac{a^{3}}{16 b^{3} x^{4}}-\frac{1}{8 b x^{3}}-\frac{a^{4}}{32 b^{4} x^{5}}-\frac{3 a}{16 b^{2} x^{4}}-\frac{a^{5}}{64 b^{5} x^{6}}-\frac{3 a^{2}}{16 b^{3} x^{5}}-\frac{5 a^{3}}{32 b^{4} x^{6}}-\frac{1}{16 b^{2} x^{5}}-\frac{}{3}\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=b
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =-\frac{a}{2}+b x \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2}-a b x+b^{2} x^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{a^{2}}{4}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{4 b^{2} x^{2}-4 a b x+a^{2}-4 b}{4} \\
& =Q+\frac{R}{4} \\
& =\left(b^{2} x^{2}-a b x+\frac{1}{4} a^{2}-b\right)+(0) \\
& =b^{2} x^{2}-a b x+\frac{1}{4} a^{2}-b
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{a^{2}}{4}-b\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{a^{2}}{4}-b\right)-\left(\frac{a^{2}}{4}\right) \\
& =-b
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =-\frac{a}{2}+b x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-b}{b}-1\right)=-1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-b}{b}-1\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=b^{2} x^{2}-a b x+\frac{1}{4} a^{2}-b
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(-\frac{a}{2}+b x\) & -1 & 0 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(-\frac{a}{2}+b x\right) \\
& =\frac{a}{2}-b x \\
& =\frac{a}{2}-b x
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a}{2}-b x\right)(0)+\left((-b)+\left(\frac{a}{2}-b x\right)^{2}-\left(b^{2} x^{2}-a b x+\frac{1}{4} a^{2}-b\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{a}{2}-b x\right) d x} \\
& =\mathrm{e}^{\frac{x(-b x+a)}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{a}{1} d x} \\
& =z_{1} e^{-\frac{a x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{b x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{-2 b x+a}{2 \sqrt{-b}}\right)}{2 \sqrt{-b}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{b x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{b x^{2}}{2}}\left(\frac{\sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{-2 b x+a}{2 \sqrt{-b}}\right)}{2 \sqrt{-b}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{b x^{2}}{2}}+\frac{c_{2} \sqrt{\pi} \mathrm{e}^{-\frac{2 b^{2} x^{2}+a^{2}}{4 b}} \operatorname{erf}\left(\frac{-2 b x+a}{2 \sqrt{-b}}\right)}{2 \sqrt{-b}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{b x^{2}}{2}}+\frac{c_{2} \sqrt{\pi} \mathrm{e}^{-\frac{2 b^{2} x^{2}+a^{2}}{4 b}} \operatorname{erf}\left(\frac{-2 b x+a}{2 \sqrt{-b}}\right)}{2 \sqrt{-b}}
\]

Verified OK.

\subsection*{27.4.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y^{\prime}+\left(-b^{2} x^{2}+a b x+b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime}\) to series expansion \(y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} a+a_{0} b+2 a_{2}+\left(a_{0} a b+2 a a_{2}+a_{1} b+6 a_{3}\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a a_{k+1}(k+1)+a_{k} b\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} a+a_{0} b=0, a_{0} a b+2 a a_{2}+a_{1} b+6 a_{3}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} a}{2}-\frac{a_{0} b}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}-\frac{1}{6} a_{1} b\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+\left(b a_{k-1}+a_{k+1}(k+1)\right) a-a_{k-2} b^{2}+a_{k} b=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}+\left(b a_{k+1}+a_{k+3}(k+3)\right) a-a_{k} b^{2}+a_{k+2} b=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a b a_{k+1}+a k a_{k+3}-a_{k} b^{2}+3 a a_{k+3}+a_{k+2} b}{k^{2}+7 k+12}, a_{2}=-\frac{a_{1} a}{2}-\frac{a_{0} b}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}-\frac{1}{6} a_{1} b\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve(\(\operatorname{diff}(y(x), x \$ 2)+a * \operatorname{diff}(y(x), x)+b *\left(-b * x^{\wedge} 2+a * x+1\right) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-\frac{x^{2} b}{2}}\left(c_{1} \operatorname{erf}\left(\frac{-2 b x+a}{2 \sqrt{-b}}\right)+c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 67
DSolve[y''[x]+a*y'[x]+b*(-b*x^2+a*x+1)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2} e^{-\frac{b x^{2}}{2}}\left(\frac{\sqrt{\pi} c_{2} e^{-\frac{a^{2}}{4 b}} \operatorname{erfi}\left(\frac{2 b x-a}{2 \sqrt{b}}\right)}{\sqrt{b}}+2 c_{1}\right)
\]

\section*{27.5 problem 15}
27.5.1 Solving using Kovacic algorithm 2159
27.5.2 Maple step by step solution . 2165

Internal problem ID [10839]
Internal file name [OUTPUT/9820_Sunday_June_19_2022_09_26_14_PM_9090230/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `     _with_symmetry_[0,F(x)]`]]

```
\[
y^{\prime \prime}+a y^{\prime}+b x\left(-x^{3} b+a x+2\right) y=0
\]

\subsection*{27.5.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+a y^{\prime}+b x\left(-x^{3} b+a x+2\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a \tag{3}\\
& C=b x\left(-x^{3} b+a x+2\right)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4 b^{2} x^{4}-4 a b x^{2}+a^{2}-8 b x}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 b^{2} x^{4}-4 a b x^{2}+a^{2}-8 b x \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} a^{2}+b^{2} x^{4}-a b x^{2}-2 b x\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 32: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx b x^{2}-\frac{a}{2}-\frac{1}{x}-\frac{a}{2 b x^{3}}-\frac{a^{2}}{4 b^{2} x^{5}}-\frac{1}{2 b x^{4}}-\frac{a^{3}}{8 b^{3} x^{7}}-\frac{3 a}{4 b^{2} x^{6}}-\frac{1}{2 b^{2} x^{7}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=b
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =-\frac{a}{2}+b x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2}-a b x^{2}+b^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{4 b^{2} x^{4}-4 a b x^{2}+a^{2}-8 b x}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} a^{2}+b^{2} x^{4}-a b x^{2}-2 b x\right)+(0) \\
& =\frac{1}{4} a^{2}+b^{2} x^{4}-a b x^{2}-2 b x
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(-2 b\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(-2 b)-(0) \\
& =-2 b
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =-\frac{a}{2}+b x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-2 b}{b}-2\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-2 b}{b}-2\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{1}{4} a^{2}+b^{2} x^{4}-a b x^{2}-2 b x
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{ }]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(-\frac{a}{2}+b x^{2}\) & -2 & 0 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(-\frac{a}{2}+b x^{2}\right) \\
& =\frac{a}{2}-b x^{2} \\
& =\frac{a}{2}-b x^{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a}{2}-b x^{2}\right)(0)+\left((-2 b x)+\left(\frac{a}{2}-b x^{2}\right)^{2}-\left(\frac{1}{4} a^{2}+b^{2} x^{4}-a b x^{2}-2 b x\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{a}{2}-b x^{2}\right) d x} \\
& =\mathrm{e}^{\frac{1}{2} a x-\frac{1}{3} x^{3} b}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{a}{1} d x} \\
& =z_{1} e^{-\frac{a x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x^{3} b}{3}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \mathrm{e}^{-a x+\frac{2}{3} x^{3} b} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x^{3} b}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x^{3} b}{3}}\left(\int \mathrm{e}^{-a x+\frac{2}{3} x^{3} b} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{3} b}{3}}+c_{2} \mathrm{e}^{-\frac{x^{3} b}{3}}\left(\int \mathrm{e}^{-a x+\frac{2}{3} x^{3} b} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x^{3} b}{3}}+c_{2} \mathrm{e}^{-\frac{x^{3} b}{3}}\left(\int \mathrm{e}^{-a x+\frac{2}{3} x^{3} b} d x\right)
\]

Verified OK.

\subsection*{27.5.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a y^{\prime}+b x\left(-x^{3} b+a x+2\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .4\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}\)
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} a+2 a_{2}+\left(2 a a_{2}+2 a_{0} b+6 a_{3}\right) x+\left(a_{0} a b+3 a a_{3}+2 a_{1} b+12 a_{4}\right) x^{2}+\left(a_{1} a b+4 a a_{4}+2 b a_{2}+20\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} a=0,2 a a_{2}+2 a_{0} b+6 a_{3}=0, a_{0} a b+3 a a_{3}+2 a_{1} b+12 a_{4}=0, a_{1} a b+4 a a_{4}+2 b a_{2}+20 a\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} a}{2}, a_{3}=\frac{a_{1} a^{2}}{6}-\frac{a_{0} b}{3}, a_{4}=-\frac{1}{24} a_{1} a^{3}-\frac{1}{6} a_{1} b, a_{5}=\frac{1}{120} a_{1} a^{4}+\frac{1}{30} a_{1} a b\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+\left(b a_{k-2}+a_{k+1}(k+1)\right) a-a_{k-4} b^{2}+2 b a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+4\)
\[
\left((k+4)^{2}+3 k+14\right) a_{k+6}+\left(b a_{k+2}+a_{k+5}(k+5)\right) a-a_{k} b^{2}+2 b a_{k+3}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+6}=-\frac{a b a_{k+2}+a k a_{k+5}-a_{k} b^{2}+5 a a_{k+5}+2 b a_{k+3}}{k^{2}+11 k+30}, a_{2}=-\frac{a_{1} a}{2}, a_{3}=\frac{a_{1} a^{2}}{6}-\frac{a_{0} b}{3}, a_{4}=-\frac{1}{24} a_{1} a\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve(diff \((y(x), x \$ 2)+a * \operatorname{diff}(y(x), x)+b * x *\left(-b * x^{\wedge} 3+a * x+2\right) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\left(\left(\int \mathrm{e}^{-a x+\frac{2}{3} x^{3} b} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{-\frac{x^{3} b}{3}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.913 (sec). Leaf size: 46
DSolve[y''[x]+a*y'[x]+b*x*(-b*x^3+a*x+2)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-\frac{b x^{3}}{3}}\left(c_{2} \int_{1}^{x} e^{\frac{2}{3} b K[1]^{3}-a K[1]} d K[1]+c_{1}\right)
\]

\section*{27.6 problem 16}

Internal problem ID [10840]
Internal file name [OUTPUT/9821_Sunday_June_19_2022_09_26_15_PM_78099300/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '
_with_symmetry_[0,F(x)]`]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+a y^{\prime}+b\left(-b x^{2 n}+a x^{n}+n x^{n-1}\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 48
```

dsolve(diff(y(x),x\$2)+a*diff(y(x),x)+b*(-b*\mp@subsup{x}{}{\wedge}(2*n)+a*\mp@subsup{x}{}{\wedge}n+n*\mp@subsup{x}{}{\wedge}(n-1))*y(x)=0,y(x), singsol=all

```
\[
y(x)=\left(\left(\int \mathrm{e}^{\frac{2 b x^{n+1}-x a(n+1)}{n+1}} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{-\frac{b x^{n+1}}{n+1}}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]+a * y\) ' \([x]+b *\left(-b * x^{\wedge}(2 * n)+a * x^{\wedge} n+n * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), IncludeSingularSolutions

Not solved

\section*{27.7 problem 17}

Internal problem ID [10841]
Internal file name [OUTPUT/9822_Sunday_June_19_2022_09_26_17_PM_68406290/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 17 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a y^{\prime}+b\left(-b x^{2 n}-a x^{n}+n x^{n-1}\right) y=0
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- 2nd order, integrating factors of the form mu(x,y) successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.187 (sec). Leaf size: 51
```

dsolve(diff(y(x),x\$2)+a*diff(y(x),x)+b*(-b*\mp@subsup{x}{}{\wedge}(2*n)-a*\mp@subsup{x}{}{\wedge}n+n*\mp@subsup{x}{}{\wedge}(n-1))*y(x)=0,y(x), singsol=all

```
\[
y(x)=\mathrm{e}^{-\frac{x\left(b x^{n}+a(n+1)\right)}{n+1}}\left(c_{1}+\left(\int \mathrm{e}^{\frac{x\left(2 b x^{n}+a(n+1)\right)}{n+1}} d x\right) c_{2}\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]+a * y\) ' \([x]+b *\left(-b * x^{\wedge}(2 * n)-a * x^{\wedge} n+n * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), IncludeSingularSolutions

Not solved

\section*{27.8 problem 18}
27.8.1 Maple step by step solution . 2173

Internal problem ID [10842]
Internal file name [OUTPUT/9823_Sunday_June_19_2022_09_26_19_PM_9788249/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+y^{\prime} x+(n-1) y=0
\]

\subsection*{27.8.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime} x+(n-1) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+n-1)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(k+n-1)=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}(k+n-1)}{k^{2}+3 k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 104
```

dsolve(diff(y(x),x\$2)+x*\operatorname{diff}(y(x),x)+(n-1)*y(x)=0,y(x), singsol=all)

```
\(y(x)=\)
\[
-\frac{\left(-2\left(-\frac{x^{2}}{2}+n+\frac{1}{2}\right) c_{1} n \operatorname{KummerM}\left(-\frac{n}{2}+\frac{1}{2}, \frac{3}{2}, \frac{x^{2}}{2}\right)+2\left(-x^{2}+2 n+1\right) c_{2} \operatorname{KummerU}\left(-\frac{n}{2}+\frac{1}{2}, \frac{3}{2}, \frac{x^{2}}{2}\right)\right.}{n(n-1)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 51
DSolve[y''[x]+x*y'[x]+(n-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-\frac{x^{2}}{2}}\left(c_{1} \text { HermiteH }\left(n-2, \frac{x}{\sqrt{2}}\right)+c_{2} \text { Hypergeometric1F1 }\left(1-\frac{n}{2}, \frac{1}{2}, \frac{x^{2}}{2}\right)\right)
\]

\section*{27.9 problem 19}
27.9.1 Maple step by step solution . 2176

Internal problem ID [10843]
Internal file name [OUTPUT/9824_Sunday_June_19_2022_09_26_21_PM_41558290/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}-2 y^{\prime} x+2 y n=0
\]

\subsection*{27.9.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime} x+2 y n=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-2 a_{k}(k-n)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-n)=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}(k-n)}{k^{2}+3 k+2}\right]
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 31
dsolve(diff \((y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * n * y(x)=0, y(x)\), singsol=all)
\[
y(x)=x\left(\text { KummerU }\left(-\frac{n}{2}+\frac{1}{2}, \frac{3}{2}, x^{2}\right) c_{2}+\operatorname{KummerM}\left(-\frac{n}{2}+\frac{1}{2}, \frac{3}{2}, x^{2}\right) c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 27
DSolve[y''[x]-2*x*y'[x]+2*n*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{1} \operatorname{HermiteH}(n, x)+c_{2} \operatorname{Hypergeometric1F1}\left(-\frac{n}{2}, \frac{1}{2}, x^{2}\right)
\]

\subsection*{27.10 problem 20}
27.10.1 Maple step by step solution 2179

Internal problem ID [10844]
Internal file name [OUTPUT/9825_Sunday_June_19_2022_09_26_22_PM_2454462/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x y^{\prime}+y b=0
\]

\subsection*{27.10.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a x y^{\prime}+y b=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(a k+b)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(a k+b)=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}(a k+b)}{k^{2}+3 k+2}\right]
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 58
dsolve(diff \((y(x), x \$ 2)+a * x * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\), singsol=all)
\(y(x)=\mathrm{e}^{-\frac{a x^{2}}{2}} x\left(\operatorname{KummerM}\left(\frac{-b+2 a}{2 a}, \frac{3}{2}, \frac{a x^{2}}{2}\right) c_{1}+\operatorname{KummerU}\left(\frac{-b+2 a}{2 a}, \frac{3}{2}, \frac{a x^{2}}{2}\right) c_{2}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 67
DSolve[y''[x]+a*x*y'[x]+b*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\(y(x) \rightarrow e^{-\frac{a x^{2}}{2}}\left(c_{1} \operatorname{HermiteH}\left(\frac{b}{a}-1, \frac{\sqrt{a} x}{\sqrt{2}}\right)+c_{2} \operatorname{Hypergeometric} 1 F 1\left(\frac{a-b}{2 a}, \frac{1}{2}, \frac{a x^{2}}{2}\right)\right)\)

\subsection*{27.11 problem 21}
27.11.1 Maple step by step solution 2182

Internal problem ID [10845]
Internal file name [OUTPUT/9826_Sunday_June_19_2022_09_26_24_PM_7626222/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x y^{\prime}+b x y=0
\]

\subsection*{27.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a x y^{\prime}+b x y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
\]
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\[
2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a a_{k} k+b a_{k-1}\right) x^{k}\right)=0
\]
- \(\quad\) Each term must be 0
\(2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}+a a_{k} k+b a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a a_{k+1}(k+1)+b a_{k}=0\)
- Recursion relation that defines the series solution to the ODE \(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+1}+a a_{k+1}+b a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 70
```

dsolve(diff(y(x),x\$2)+a*x*diff(y(x),x)+b*x*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{b x}{a}}(\text { KummerM }(& \left(\frac{b^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) c_{1} \\
& \left.+\operatorname{KummerU}\left(\frac{b^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 96
DSolve[y''[x]+a*x*y'[x]+b*x*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow e^{\frac{b x}{a}-\frac{a x^{2}}{2}}\left(c_{2}\right. \text { Hypergeometric1F1 } & \left(\frac{1}{2}-\frac{b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) \\
& \left.+c_{1} \operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}-1, \frac{a^{2} x-2 b}{\sqrt{2} a^{3 / 2}}\right)\right)
\end{aligned}
\]

\subsection*{27.12 problem 22}
27.12.1 Maple step by step solution

Internal problem ID [10846]
Internal file name [OUTPUT/9827_Sunday_June_19_2022_09_26_25_PM_30342709/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x y^{\prime}+(b x+c) y=0
\]

\subsection*{27.12.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a x y^{\prime}+(b x+c) y=0
\]
- Highest derivative means the order of the ODE is 2

\section*{\(y^{\prime \prime}\)}
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(a_{0} c+2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(a k+c)+b a_{k-1}\right) x^{k}\right)=0\)
- \(\quad\) Each term must be 0
\(a_{0} c+2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}+a a_{k} k+b a_{k-1}+a_{k} c=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a a_{k+1}(k+1)+b a_{k}+a_{k+1} c=0\)
- Recursion relation that defines the series solution to the ODE \(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+1}+a a_{k+1}+b a_{k}+a_{k+1} c}{k^{2}+5 k+6}, a_{0} c+2 a_{2}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 82
```

dsolve(diff(y(x),x\$2)+a*x*diff(y(x),x)+(b*x+c)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{b x}{a}}(\text { KummerM } & \left(\frac{a^{2} c+b^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) c_{1} \\
& \left.+ \text { KummerU }\left(\frac{a^{2} c+b^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 108
DSolve[y'' \([\mathrm{x}]+\mathrm{a} * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{b} * \mathrm{x}+\mathrm{c}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
y(x) \rightarrow e^{\frac{b x}{a}-\frac{a x^{2}}{2}}\left(c_{2}\right. \text { Hypergeometric1F1 } & \left(-\frac{-a^{3}+c a^{2}+b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x-2 b\right)^{2}}{2 a^{3}}\right) \\
& \left.+c_{1} \operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}+\frac{c}{a}-1, \frac{a^{2} x-2 b}{\sqrt{2} a^{3 / 2}}\right)\right)
\end{aligned}
\]

\subsection*{27.13 problem 23}
27.13.1 Maple step by step solution 2190

Internal problem ID [10847]
Internal file name [OUTPUT/9828_Sunday_June_19_2022_09_26_27_PM_54499846/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+2 a x y^{\prime}+\left(b x^{4}+a^{2} x^{2}+c x+a\right) y=0
\]

\subsection*{27.13.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 a x y^{\prime}+\left(b x^{4}+a^{2} x^{2}+c x+a\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .4\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(a_{0} a+2 a_{2}+\left(6 a_{3}+3 a_{1} a+a_{0} c\right) x+\left(a_{0} a^{2}+5 a a_{2}+a_{1} c+12 a_{4}\right) x^{2}+\left(a_{1} a^{2}+7 a a_{3}+a_{2} c+20 a_{5}\right)\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} a=0,6 a_{3}+3 a_{1} a+a_{0} c=0, a_{0} a^{2}+5 a a_{2}+a_{1} c+12 a_{4}=0, a_{1} a^{2}+7 a a_{3}+a_{2} c+20 a_{5}=\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{0} a}{2}, a_{3}=-\frac{a_{1} a}{2}-\frac{a_{0} c}{6}, a_{4}=\frac{a_{0} a^{2}}{8}-\frac{a_{1} c}{12}, a_{5}=\frac{1}{8} a_{1} a^{2}+\frac{1}{12} a_{0} a c\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-2} a^{2}+a a_{k}(2 k+1)+a_{k-4} b+a_{k-1} c=0
\]
- \(\quad\) Shift index using \(k->k+4\)
\(\left((k+4)^{2}+3 k+14\right) a_{k+6}+a_{k+2} a^{2}+a a_{k+4}(2 k+9)+a_{k} b+a_{k+3} c=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+6}=-\frac{a_{k+2} a^{2}+2 a k a_{k+4}+9 a a_{k+4}+a_{k} b+a_{k+3} c}{k^{2}+11 k+30}, a_{2}=-\frac{a_{0} a}{2}, a_{3}=-\frac{a_{1} a}{2}-\frac{a_{0} c}{6}, a_{4}=\frac{a_{0} a^{2}}{8}-\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.14 (sec). Leaf size: 80
```

dsolve(diff (y (x),x\$2)+2*a*x*diff (y (x),x)+(b*x^4+a^2*x^2+c*x+a)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{\left(i \sqrt{b} x+\frac{3 a}{2}\right) x^{2}}{3}} x(\text { KummerM } & \left(\frac{i c+4 \sqrt{b}}{6 \sqrt{b}}, \frac{4}{3}, \frac{2 i \sqrt{b} x^{3}}{3}\right) c_{1} \\
& \left.+\operatorname{KummerU}\left(\frac{i c+4 \sqrt{b}}{6 \sqrt{b}}, \frac{4}{3}, \frac{2 i \sqrt{b} x^{3}}{3}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 121
DSolve \(\left[y{ }^{\prime \prime}[x]+2 * a * x * y y^{\prime}[x]+\left(b * x^{\wedge} 4+a^{\wedge} 2 * x^{\wedge} 2+c * x+a\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) T
\(y(x)\)
\(\left.\rightarrow \frac{\sqrt[3]{2} \sqrt[3]{x^{3}} e^{\frac{1}{6} i x^{2}(2 \sqrt{b} x+3 i a)}\left(c_{1} \text { HypergeometricU }\left(\frac{1}{3}-\frac{i c}{6 \sqrt{b}}, \frac{2}{3},-\frac{2}{3} i \sqrt{b} x^{3}\right)+c_{2} L_{\frac{i c}{-\frac{1}{3}}}^{-\frac{1}{b}}\left(-\frac{1}{3}\right.\right.}{}\left(-\frac{2}{3} i \sqrt{b} x^{3}\right)\right)(1)\)

\subsection*{27.14 problem 24}
27.14.1 Solving as second order ode non constant coeff transformation
on B ode . 2194]
27.14.2 Solving using Kovacic algorithm 2197
27.14.3 Maple step by step solution . 2203

Internal problem ID [10848]
Internal file name [OUTPUT/9829_Sunday_June_19_2022_09_26_29_PM_78344309/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_ode__non_constant_coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+(a x+b) y^{\prime}-a y=0
\]

\subsection*{27.14.1 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=1 \\
& B=a x+b \\
& C=-a \\
& F=0
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(1)(0)+(a x+b)(a)+(-a)(a x+b) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
a x+b v^{\prime \prime}+\left(2 a+(a x+b)^{2}\right) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
(a x+b) u^{\prime}(x)+\left(a^{2} x^{2}+2 a b x+b^{2}+2 a\right) u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(a^{2} x^{2}+2 a b x+b^{2}+2 a\right) u}{a x+b}
\end{aligned}
\]

Where \(f(x)=-\frac{a^{2} x^{2}+2 a b x+b^{2}+2 a}{a x+b}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{a^{2} x^{2}+2 a b x+b^{2}+2 a}{a x+b} d x \\
\int \frac{1}{u} d u & =\int-\frac{a^{2} x^{2}+2 a b x+b^{2}+2 a}{a x+b} d x \\
\ln (u) & =-\frac{a x^{2}}{2}-b x-2 \ln (a x+b)+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{2}}{2}-b x-2 \ln (a x+b)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}-b x-2 \ln (a x+b)}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}-b x-2 \ln (a x+b)}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}-b x-2 \ln (a x+b)} \mathrm{d} x \\
& =c_{1}\left(-\frac{\mathrm{e}^{-\frac{(a x+b)^{2}}{2 a}+\frac{b^{2}}{2 a}}}{a(a x+b)}-\frac{\sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)}{2 a^{\frac{3}{2}}}\right)+c_{2}
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y(x) & =B v \\
& =(a x+b)\left(c_{1}\left(-\frac{\mathrm{e}^{-\frac{(a x+b)^{2}}{2 a}+\frac{b^{2}}{2 a}}}{a(a x+b)}-\frac{\sqrt{\pi} \mathrm{e}^{\frac{b}{}^{2}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)}{2 a^{\frac{3}{2}}}\right)+c_{2}\right) \\
& =-\frac{\sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}} c_{1} \sqrt{2}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{a}-2 c_{2}\left(a^{\frac{3}{2}} b+a^{\frac{5}{2}} x\right)}{2 a^{\frac{3}{2}}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}} c_{1} \sqrt{2}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{a}-2 c_{2}\left(a^{\frac{3}{2}} b+a^{\frac{5}{2}} x\right)}{2 a^{\frac{3}{2}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}} c_{1} \sqrt{2}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{a}-2 c_{2}\left(a^{\frac{3}{2}} b+a^{\frac{5}{2}} x\right)}{2 a^{\frac{3}{2}}}
\]

Verified OK.

\subsection*{27.14.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+(a x+b) y^{\prime}-a y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x+b \tag{3}\\
& C=-a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{2}+2 a b x+b^{2}+6 a}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{2}+2 a b x+b^{2}+6 a \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 40: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\).

Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x}{2}+\frac{b}{2}+\frac{3}{2 x}-\frac{3 b}{2 a x^{2}}+\frac{3 b^{2}}{2 a^{2} x^{3}}-\frac{9}{4 a x^{3}}-\frac{3 b^{3}}{2 a^{3} x^{4}}+\frac{27 b}{4 a^{2} x^{4}}+\frac{3 b^{4}}{2 a^{4} x^{5}}-\frac{27 b^{2}}{2 a^{3} x^{5}}-\frac{3 b^{5}}{2 a^{5} x^{6}}+\frac{27}{4 a^{2} x^{5}}+\frac{45 b^{3}}{2 a^{4} x^{6}}-\frac{135 b}{4 a^{3} x^{6}}+ \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{a x}{2}+\frac{b}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{b^{2}}{4}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be
the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{2}+2 a b x+b^{2}+6 a}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right)+(0) \\
& =\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{3 a}{2}+\frac{b^{2}}{4}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{3 a}{2}+\frac{b^{2}}{4}\right)-\left(\frac{b^{2}}{4}\right) \\
& =\frac{3 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x}{2}+\frac{b}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
\begin{aligned}
& r=\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2} \\
& \begin{array}{|c|c|c|c|}
\hline \text { Order of } r \text { at } \infty & {[\sqrt{r}]_{\infty}} & \alpha_{\infty}^{+} & \alpha_{\infty}^{-} \\
\hline-2 & \frac{a x}{2}+\frac{b}{2} & 1 & -2 \\
\hline
\end{array}
\end{aligned}
\]

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{a x}{2}+\frac{b}{2}\right) \\
& =\frac{a x}{2}+\frac{b}{2} \\
& =\frac{a x}{2}+\frac{b}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a x}{2}+\frac{b}{2}\right)(1)+\left(\left(\frac{a}{2}\right)+\left(\frac{a x}{2}+\frac{b}{2}\right)^{2}-\left(\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right)\right)=0 \\
-a a_{0}+b=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{b}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{b}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\int\left(\frac{a x}{2}+\frac{b}{2}\right) d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\frac{1}{4} a x^{2}+\frac{1}{2} b x} \\
& =\frac{(a x+b) \mathrm{e}^{\frac{x(a x+2 b)}{4}}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x+b}{1} d x} \\
& =z_{1} e^{-\frac{1}{4} a x^{2}-\frac{1}{2} b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{a x+b}{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x+b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{2} a x^{2}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right) \sqrt{a}}{2 a x+2 b}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{a x+b}{a}\right) \\
& +c_{2}\left(\frac{a x+b}{a}\left(-\frac{\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right) \sqrt{a}}{2 a x+2 b}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+b)}{a}-\frac{c_{2}\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right)}{2 \sqrt{a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+b)}{a}-\frac{c_{2}\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right)}{2 \sqrt{a}}
\]

Verified OK.

\subsection*{27.14.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}-a y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite DE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b+a a_{k}(k-1)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k}+a_{k+1} b+3 a_{k+2}\right) k-a a_{k}+a_{k+1} b+2 a_{k+2}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a a_{k} k+a_{k+1} b k-a a_{k}+a_{k+1} b}{k^{2}+3 k+2}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 65
dsolve (diff \((y(x), x \$ 2)+(a * x+b) * \operatorname{diff}(y(x), x)-a * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=\mathrm{e}^{\frac{b^{2}}{2 a}} \pi c_{2}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+\sqrt{\pi} \sqrt{2} \sqrt{a} \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}+c_{1}(a x+b)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.959 (sec). Leaf size: 82

DSolve \(\left[y^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}^{\prime}[\mathrm{x}]-\mathrm{a} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{(a x+b)\left(-\frac{\sqrt{\frac{\pi}{2}} c_{2} \operatorname{erf}\left(\frac{a x+b}{\sqrt{2} \sqrt{a}}\right)}{a^{3 / 2}}-\frac{c_{2} e^{-\frac{(a x+b)^{2}}{2 a}}}{a(a x+b)}+c_{1}\right)}{b}
\]

\subsection*{27.15 problem 25}
27.15.1 Solving as second order integrable as is ode 2206
27.15.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2208
27.15.3 Solving using Kovacic algorithm 2209
27.15.4 Solving as exact linear second order ode ode 2215
27.15.5 Maple step by step solution . 2218

Internal problem ID [10849]
Internal file name [OUTPUT/9830_Sunday_June_19_2022_09_26_30_PM_79768022/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 25 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
y^{\prime \prime}+(a x+b) y^{\prime}+a y=0
\]

\subsection*{27.15.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}+(a x+b) y^{\prime}+a y\right) d x=0 \\
(a x+b) y+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x+b \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
(a x+b) y+y^{\prime}=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(a x+b) d x} \\
& =\mathrm{e}^{\frac{1}{2} a x^{2}+b x}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=-\frac{c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Verified OK.

\subsection*{27.15.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}+(a x+b) y^{\prime}+a y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}+(a x+b) y^{\prime}+a y\right) d x=0 \\
(a x+b) y+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x+b \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
(a x+b) y+y^{\prime}=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(a x+b) d x} \\
& =\mathrm{e}^{\frac{1}{2} a x^{2}+b x}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{x(a x+2 b)}{2} y}=\int c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=-\frac{c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Verified OK.

\subsection*{27.15.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+(a x+b) y^{\prime}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x+b \tag{3}\\
& C=a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{2}+2 a b x+b^{2}-2 a}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{2}+2 a b x+b^{2}-2 a \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 42: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x}{2}+\frac{b}{2}-\frac{1}{2 x}+\frac{b}{2 a x^{2}}-\frac{b^{2}}{2 a^{2} x^{3}}-\frac{1}{4 a x^{3}}+\frac{b^{3}}{2 a^{3} x^{4}}+\frac{3 b}{4 a^{2} x^{4}}-\frac{b^{4}}{2 a^{4} x^{5}}-\frac{3 b^{2}}{2 a^{3} x^{5}}+\frac{b^{5}}{2 a^{5} x^{6}}-\frac{1}{4 a^{2} x^{5}}+\frac{5 b^{3}}{2 a^{4} x^{6}}+\frac{5 b}{4 a^{3} x^{6}}+ \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{a x}{2}+\frac{b}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{b^{2}}{4}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{2}+2 a b x+b^{2}-2 a}{4} \\
& =Q+\frac{R}{4} \\
& =\left(-\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right)+(0) \\
& =-\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(-\frac{a}{2}+\frac{b^{2}}{4}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-\frac{a}{2}+\frac{b^{2}}{4}\right)-\left(\frac{b^{2}}{4}\right) \\
& =-\frac{a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x}{2}+\frac{b}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{a}{2}}{\frac{a}{2}}-1\right)=-1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{a}{2}}{\frac{a}{2}}-1\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(\frac{a x}{2}+\frac{b}{2}\) & -1 & 0 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{a x}{2}+\frac{b}{2}\right) \\
& =-\frac{a x}{2}-\frac{b}{2} \\
& =-\frac{a x}{2}-\frac{b}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{a x}{2}-\frac{b}{2}\right)(0)+\left(\left(-\frac{a}{2}\right)+\left(-\frac{a x}{2}-\frac{b}{2}\right)^{2}-\left(-\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{a x}{2}-\frac{b}{2}\right) d x} \\
& =\mathrm{e}^{-\frac{x(a x+2 b)}{4}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x+b}{1} d x} \\
& =z_{1} e^{-\frac{1}{4} a x^{2}-\frac{1}{2} b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x+b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{2} a x^{2}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \sqrt{2} \operatorname{erf}\left(\frac{(a x+b) \sqrt{2}}{2 \sqrt{-a}}\right)}{2 \sqrt{-a}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(-\frac{\sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \sqrt{2} \operatorname{erf}\left(\frac{(a x+b) \sqrt{2}}{2 \sqrt{-a}}\right)}{2 \sqrt{-a}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}-\frac{c_{2} \sqrt{2} \sqrt{\pi} \mathrm{e}^{-\frac{(a x+b)^{2}}{2 a}} \operatorname{erf}\left(\frac{(a x+b) \sqrt{2}}{2 \sqrt{-a}}\right)}{2 \sqrt{-a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}-\frac{c_{2} \sqrt{2} \sqrt{\pi} \mathrm{e}^{-\frac{(a x+b)^{2}}{2 a}} \operatorname{erf}\left(\frac{(a x+b) \sqrt{2}}{2 \sqrt{-a}}\right)}{2 \sqrt{-a}}
\]

Verified OK.

\subsection*{27.15.4 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=1 \\
& q(x)=a x+b \\
& r(x)=a \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =a
\end{aligned}
\]

Therefore (1) becomes
\[
0-(a)+(a)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(a x+b) y+y^{\prime}=c_{1}
\]

We now have a first order ode to solve which is
\[
(a x+b) y+y^{\prime}=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x+b \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
(a x+b) y+y^{\prime}=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(a x+b) d x} \\
& =\mathrm{e}^{\frac{1}{2} a x^{2}+b x}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=-\frac{c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{1} \sqrt{\pi} \mathrm{e}^{-\frac{b^{2}}{2 a}} \operatorname{erf}\left(-\frac{\sqrt{-2 a} x}{2}+\frac{b}{\sqrt{-2 a}}\right)}{\sqrt{-2 a}}+\mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}
\]

Verified OK.

\subsection*{27.15.5 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}+a y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite DE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite DE with series expansions
\(\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b+a a_{k}(k+1)\right) x^{k}=0\)
- Each term in the series must be 0 , giving the recursion relation \((k+1)\left(a_{k+2}(k+2)+a_{k+1} b+a a_{k}\right)=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a a_{k}+a_{k+1} b}{k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 36
```

dsolve(diff(y(x),x\$2)+(a*x+b)*diff(y(x),x)+a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(\operatorname{erf}\left(\frac{(a x+b) \sqrt{2}}{2 \sqrt{-a}}\right) c_{1}+c_{2}\right) \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 79
DSolve[y''[x]+(a*x+b)*y'[x]+a*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{-\frac{(a x+b)^{2}}{2 a}}\left(2 \sqrt{a} c_{2} e^{\frac{b^{2}}{2 a}}+\sqrt{2 \pi} c_{1} \operatorname{erfi}\left(\frac{a x+b}{\sqrt{2} \sqrt{a}}\right)\right)}{2 \sqrt{a}}
\]

\subsection*{27.16 problem 26}
27.16.1 Solving using Kovacic algorithm 2220
27.16.2 Maple step by step solution . 2226

Internal problem ID [10850]
Internal file name [OUTPUT/9831_Sunday_June_19_2022_09_26_31_PM_50554008/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+(a x+b) y^{\prime}+c(a x+b-c) y=0
\]

\subsection*{27.16.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+(a x+b) y^{\prime}+c(a x+b-c) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x+b \tag{3}\\
& C=c(a x+b-c)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{2}+2 a b x-4 a c x+b^{2}-4 b c+4 c^{2}+2 a}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{2}+2 a b x-4 a c x+b^{2}-4 b c+4 c^{2}+2 a \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}-a c x-b c+c^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 44: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{b}{2}-c+\frac{a x}{2}+\frac{1}{2 x}-\frac{2 b c}{a^{2} x^{3}}+\frac{3 b^{2} c}{a^{3} x^{4}}-\frac{6 b c^{2}}{a^{3} x^{4}}-\frac{4 b^{3} c}{a^{4} x^{5}}+\frac{12 b^{2} c^{2}}{a^{4} x^{5}}-\frac{16 b c^{3}}{a^{4} x^{5}}+\frac{6 b c}{a^{3} x^{5}}+\frac{5 b^{4} c}{a^{5} x^{6}}-\frac{20 b^{3} c^{2}}{a^{5} x^{6}}+\frac{40 b^{2} c^{3}}{a^{5} x^{6}}-\frac{40 b c^{4}}{a^{5} x^{6}}-\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{b}{2}-c+\frac{a x}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2}-b c+\frac{1}{2} a b x+c^{2}-a c x+\frac{1}{4} a^{2} x^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{1}{4} b^{2}-b c+c^{2}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{2}+2 a b x-4 a c x+b^{2}-4 b c+4 c^{2}+2 a}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{2}}{4}+\left(\frac{1}{2} a b-a c\right) x+\frac{a}{2}+\frac{b^{2}}{4}-b c+c^{2}\right)+(0) \\
& =\frac{a^{2} x^{2}}{4}+\left(\frac{1}{2} a b-a c\right) x+\frac{a}{2}+\frac{b^{2}}{4}-b c+c^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{1}{2} a+\frac{1}{4} b^{2}-b c+c^{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{1}{2} a+\frac{1}{4} b^{2}-b c+c^{2}\right)-\left(\frac{1}{4} b^{2}-b c+c^{2}\right) \\
& =\frac{a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{b}{2}-c+\frac{a x}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{a}{\frac{2}{a}}-1\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{a}{2}}{\frac{a}{2}}-1\right)=-1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}-a c x-b c+c^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(\frac{b}{2}-c+\frac{a x}{2}\) & 0 & -1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=0\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{b}{2}-c+\frac{a x}{2}\right) \\
& =\frac{b}{2}-c+\frac{a x}{2} \\
& =\frac{b}{2}-c+\frac{a x}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{b}{2}-c+\frac{a x}{2}\right)(0)+\left(\left(\frac{a}{2}\right)+\left(\frac{b}{2}-c+\frac{a x}{2}\right)^{2}-\left(\frac{1}{2} a+\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}-a c x-b c+c^{2}\right)\right)\)
\(0=0\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{b}{2}-c+\frac{a x}{2}\right) d x} \\
& =\mathrm{e}^{\frac{x(a x+2 b-4 c)}{4}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x+b}{1} d x} \\
& =z_{1} e^{-\frac{1}{4} a x^{2}-\frac{1}{2} b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-c x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x+b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{2} a x^{2}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{\pi} \mathrm{e}^{\frac{(b-2 c)^{2}}{2 a}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b-2 c)}{2 \sqrt{a}}\right)}{2 \sqrt{a}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-c x}\right)+c_{2}\left(\mathrm{e}^{-c x}\left(\frac{\sqrt{\pi} \mathrm{e}^{\frac{(b-2 c)^{2}}{2 a}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b-2 c)}{2 \sqrt{a}}\right)}{2 \sqrt{a}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-c x}+\frac{c_{2} \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{-2 a c x+(b-2 c)^{2}}{2 a}} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b-2 c)}{2 \sqrt{a}}\right)}{2 \sqrt{a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-c x}+\frac{c_{2} \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{-2 a c x+(b-2 c)^{2}}{2 a}} \operatorname{erf}\left(\frac{\sqrt{2}(a x+b-2 c)}{2 \sqrt{a}}\right)}{2 \sqrt{a}}
\]

Verified OK.

\subsection*{27.16.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}+c(a x+b-c) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(2 a_{2}+a_{1} b+a_{0}\left(b c-c^{2}\right)+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b+a_{k}\left(a k+b c-c^{2}\right)+a_{k-1} a c\right.\right.\)
- Each term must be 0
\(2 a_{2}+a_{1} b+a_{0}\left(b c-c^{2}\right)=0\)
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k}+a_{k+1} b+3 a_{k+2}\right) k+2 a_{k+2}+\left(b c-c^{2}\right) a_{k}+a_{k-1} a c+a_{k+1} b=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\((k+1)^{2} a_{k+3}+\left(a a_{k+1}+a_{k+2} b+3 a_{k+3}\right)(k+1)+2 a_{k+3}+\left(b c-c^{2}\right) a_{k+1}+a_{k} a c+a_{k+2} b=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k} a c+a k a_{k+1}+b c a_{k+1}+b k a_{k+2}-c^{2} a_{k+1}+a a_{k+1}+2 a_{k+2} b}{k^{2}+5 k+6}, 2 a_{2}+a_{1} b+a_{0}\left(b c-c^{2}\right)=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
```

dsolve(diff (y (x),x\$2)+(a*x+b)*diff (y (x), x)+c*(a*x+b-c)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-c x}\left(c_{1}+\operatorname{erf}\left(\frac{\sqrt{2}(a x+b-2 c)}{2 \sqrt{a}}\right) c_{2}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 70

DSolve \(\left[y^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{c} *(\mathrm{a} * \mathrm{x}+\mathrm{b}-\mathrm{c}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-\frac{1}{2} x(a x+2 b-2 c)}\left(c_{1} \operatorname{HermiteH}\left(-1, \frac{b-2 c+a x}{\sqrt{2} \sqrt{a}}\right)+c_{2} e^{\frac{(a x+b-2 c)^{2}}{2 a}}\right)
\]

\subsection*{27.17 problem 27}
27.17.1 Solving using Kovacic algorithm 2229
27.17.2 Maple step by step solution . 2235

Internal problem ID [10851]
Internal file name [OUTPUT/10107_Sunday_December_24_2023_05_12_22_PM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+(a x+2 b) y^{\prime}+\left(a b x+b^{2}-a\right) y=0
\]

\subsection*{27.17.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+(a x+2 b) y^{\prime}+\left(a b x+b^{2}-a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x+2 b \tag{3}\\
& C=a b x+b^{2}-a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a\left(a x^{2}+6\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a\left(a x^{2}+6\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a\left(a x^{2}+6\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 46: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x}{2}+\frac{3}{2 x}-\frac{9}{4 a x^{3}}+\frac{27}{4 a^{2} x^{5}}-\frac{405}{16 a^{3} x^{7}}+\frac{1701}{16 a^{4} x^{9}}-\frac{15309}{32 a^{5} x^{11}}+\frac{72171}{32 a^{6} x^{13}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{a x}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{a^{2} x^{2}}{4}
\]

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a\left(a x^{2}+6\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}\right)+(0) \\
& =\frac{3}{2} a+\frac{1}{4} a^{2} x^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{3 a}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{3 a}{2}\right)-(0) \\
& =\frac{3 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a\left(a x^{2}+6\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(\frac{a x}{2}\) & 1 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{a x}{2}\right) \\
& =\frac{a x}{2} \\
& =\frac{a x}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a x}{2}\right)(1)+\left(\left(\frac{a}{2}\right)+\left(\frac{a x}{2}\right)^{2}-\left(\frac{a\left(a x^{2}+6\right)}{4}\right)\right)=0 \\
-a a_{0}=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=0\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int \frac{a x}{2} d x} \\
& =(x) \mathrm{e}^{\frac{a x^{2}}{4}} \\
& =x \mathrm{e}^{\frac{a x^{2}}{4}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x+2 b}{1} d x} \\
& =z_{1} e^{-\frac{1}{4} a x^{2}-b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+4 b)}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-b x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x+2 b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{2} a x^{2}-2 b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-\sqrt{a} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a} x}{2}\right) x-2 \mathrm{e}^{-\frac{a x^{2}}{2}}}{2 x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-b x}\right)+c_{2}\left(x \mathrm{e}^{-b x}\left(\frac{-\sqrt{a} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a} x}{2}\right) x-2 \mathrm{e}^{-\frac{a x^{2}}{2}}}{2 x}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-b x}-\frac{c_{2} \mathrm{e}^{-b x}\left(\sqrt{a} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a} x}{2}\right) x+2 \mathrm{e}^{-\frac{a x^{2}}{2}}\right)}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-b x}-\frac{c_{2} \mathrm{e}^{-b x}\left(\sqrt{a} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a} x}{2}\right) x+2 \mathrm{e}^{-\frac{a x^{2}}{2}}\right)}{2}
\]

Verified OK.

\subsection*{27.17.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+2 b) y^{\prime}+\left(a b x+b^{2}-a\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(2 a_{2}+2 a_{1} b+a_{0}\left(b^{2}-a\right)+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k+1}(k+1) b+a_{k}\left(a k+b^{2}-a\right)+a_{k-1} a\right.\right.\)
- Each term must be 0
\(2 a_{2}+2 a_{1} b+a_{0}\left(b^{2}-a\right)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k} b^{2}+\left(a a_{k-1}+2 k a_{k+1}+2 a_{k+1}\right) b+k^{2} a_{k+2}+\left(a a_{k}+3 a_{k+2}\right) k-a a_{k}+2 a_{k+2}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+1} b^{2}+\left(a a_{k}+2(k+1) a_{k+2}+2 a_{k+2}\right) b+(k+1)^{2} a_{k+3}+\left(a a_{k+1}+3 a_{k+3}\right)(k+1)-a a_{k+1}+2 c\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k} a b+a k a_{k+1}+a_{k+1} b^{2}+2 b k a_{k+2}+4 b a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}+2 a_{1} b+a_{0}\left(b^{2}-a\right)=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 49
```

dsolve(diff (y (x),x\$2)+(a*x+2*b)*diff (y (x), x)+(a*b*x-a+b^2)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}+\mathrm{e}^{-b x} x\left(c_{2} \sqrt{a} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a} x}{2}\right)+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.405 (sec). Leaf size: 64
DSolve \(\left[y{ }^{\prime \prime}[x]+(a * x+2 * b) * y{ }^{\prime}[x]+\left(a * b * x-a+b^{\wedge} 2\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow x e^{-b x}\left(-\sqrt{\frac{\pi}{2}} \sqrt{a} c_{2} \operatorname{erf}\left(\frac{\sqrt{a} x}{\sqrt{2}}\right)-\frac{c_{2} e^{-\frac{a x^{2}}{2}}}{x}+c_{1}\right)
\]

\subsection*{27.18 problem 28}
27.18.1 Maple step by step solution 2238

Internal problem ID [10852]
Internal file name [OUTPUT/10108_Sunday_December_24_2023_05_12_23_PM_84918379/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+(a x+b) y^{\prime}+(c x+d) y=0
\]

\subsection*{27.18.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}+(c x+d) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} b+a_{0} d+2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b+a_{k}(a k+d)+a_{k-1} c\right) x^{k}\right)=0
\]
- Each term must be 0
\[
a_{1} b+a_{0} d+2 a_{2}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k}+a_{k+1} b+3 a_{k+2}\right) k+a_{k+1} b+a_{k-1} c+a_{k} d+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
(k+1)^{2} a_{k+3}+\left(a a_{k+1}+a_{k+2} b+3 a_{k+3}\right)(k+1)+a_{k+2} b+a_{k} c+a_{k+1} d+2 a_{k+3}=0
\]
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+a a_{k+1}+2 a_{k+2} b+a_{k} c+a_{k+1} d}{k^{2}+5 k+6}, a_{1} b+a_{0} d+2 a_{2}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 98
```

dsolve(diff(y(x),x\$2)+(a*x+b)*diff(y(x),x)+(c*x+d)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{c x}{a}}\left(\operatorname{KummerM}\left(\frac{d a^{2}-a b c+c^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x+a b-2 c\right)^{2}}{2 a^{3}}\right) c_{1}\right. \\
&\left.+\operatorname{KummerU}\left(\frac{d a^{2}-a b c+c^{2}}{2 a^{3}}, \frac{1}{2},-\frac{\left(a^{2} x+a b-2 c\right)^{2}}{2 a^{3}}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 132
DSolve[y' \(\quad[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{c} * \mathrm{x}+\mathrm{d}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{array}{r}
y(x) \rightarrow e^{\frac{c x}{a}-\frac{a x^{2}}{2}-b x}\left(c_{2} \text { Hypergeometric1F1 }\left(\frac{a^{3}-d a^{2}+b c a-c^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(x a^{2}+b a-2 c\right)^{2}}{2 a^{3}}\right)\right. \\
\left.+c_{1} \text { HermiteH }\left(\frac{-a^{3}+d a^{2}-b c a+c^{2}}{a^{3}}, \frac{x a^{2}+b a-2 c}{\sqrt{2} a^{3 / 2}}\right)\right)
\end{array}
\]

\subsection*{27.19 problem 29}
27.19.1 Maple step by step solution

Internal problem ID [10853]
Internal file name [OUTPUT/10109_Sunday_December_24_2023_05_12_23_PM_15034228/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+(a x+b) y^{\prime}+c\left((a-c) x^{2}+b x+1\right) y=0
\]

\subsection*{27.19.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}+c\left((a-c) x^{2}+b x+1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-c\left(a x^{2}-c x^{2}+b x+1\right) y-(a x+b) y^{\prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+(a x+b) y^{\prime}+c\left(a x^{2}-c x^{2}+b x+1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} b+a_{0} c+2 a_{2}+\left(6 a_{3}+2 a_{2} b+a_{1}(a+c)+a_{0} b c\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} b+a_{0} c=0,6 a_{3}+2 a_{2} b+a_{1}(a+c)+a_{0} b c=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} b}{2}-\frac{a_{0} c}{2}, a_{3}=\frac{1}{6} a_{1} b^{2}-\frac{1}{6} a_{1} a-\frac{1}{6} a_{1} c\right\}
\]
- \(\quad\) Each term in the series must be 0 , giving the recursion relation
\[
-a_{k-2} c^{2}+\left(a a_{k-2}+b a_{k-1}+a_{k}\right) c+k^{2} a_{k+2}+\left(a a_{k}+a_{k+1} b+3 a_{k+2}\right) k+a_{k+1} b+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
-a_{k} c^{2}+\left(a a_{k}+a_{k+1} b+a_{k+2}\right) c+(k+2)^{2} a_{k+4}+\left(a a_{k+2}+a_{k+3} b+3 a_{k+4}\right)(k+2)+a_{k+3} b+2 a_{k}
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a c+a k a_{k+2}+b c a_{k+1}+b k a_{k+3}-a_{k} c^{2}+2 a a_{k+2}+3 a_{k+3} b+c a_{k+2}}{k^{2}+7 k+12}, a_{2}=-\frac{a_{1} b}{2}-\frac{a_{0} c}{2}, a_{3}=\frac{1}{6}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 36
```

dsolve(diff(y(x),x\$2)+(a*x+b)*diff(y(x),x)+c*((a-c)*x^2+b*x+1)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{c x^{2}}{2}}\left(c_{1}+\operatorname{erf}\left(\frac{(-2 c+a) x+b}{\sqrt{2 a-4 c}}\right) c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 81
DSolve \(\left[y^{\prime \prime}[x]+(a * x+b) * y '[x]+c *\left((a-c) * x^{\wedge} 2+b * x+1\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) I
\[
y(x) \rightarrow e^{-\frac{1}{2} x(x(a-c)+2 b)}\left(c_{1} \text { HermiteH }\left(-1, \frac{b+(a-2 c) x}{\sqrt{2} \sqrt{a-2 c}}\right)+c_{2} e^{\frac{(x(a-2 c)+b)^{2}}{2(a-2 c)}}\right)
\]

\subsection*{27.20 problem 30}
27.20.1 Solving as second order change of variable on y method 1 ode . 2245
27.20.2 Solving using Kovacic algorithm 2248
27.20.3 Maple step by step solution . 2251

Internal problem ID [10854]
Internal file name [OUTPUT/10110_Sunday_December_24_2023_05_12_24_PM_53542549/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+2(a x+b) y^{\prime}+\left(a^{2} x^{2}+2 a b x+c\right) y=0
\]

\subsection*{27.20.1 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =2 a x+2 b \\
q(x) & =a^{2} x^{2}+2 a b x+c
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =a^{2} x^{2}+2 a b x+c-\frac{(2 a x+2 b)^{\prime}}{2}-\frac{(2 a x+2 b)^{2}}{4} \\
& =a^{2} x^{2}+2 a b x+c-\frac{(2 a)}{2}-\frac{\left((2 a x+2 b)^{2}\right)}{4} \\
& =a^{2} x^{2}+2 a b x+c-(a)-\frac{(2 a x+2 b)^{2}}{4} \\
& =-b^{2}-a+c
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 a x+2 b}{2}} \\
& =\mathrm{e}^{-\frac{x(a x+2 b)}{2}} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
-\mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(v(x) b^{2}+a v(x)-v(x) c-v^{\prime \prime}(x)\right)=0
\]

Which is now solved for \(v(x)\) This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
\]

Where in the above \(A=-1, B=0, C=b^{2}+a-c\). Let the solution be \(v(x)=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
-\lambda^{2} \mathrm{e}^{\lambda x}+\left(b^{2}+a-c\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
b^{2}-\lambda^{2}+a-c=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=-1, B=0, C=b^{2}+a-c\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(-1)} \pm \frac{1}{(2)(-1)} \sqrt{0^{2}-(4)(-1)\left(b^{2}+a-c\right)} \\
& = \pm-\sqrt{b^{2}+a-c}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+-\sqrt{b^{2}+a-c} \\
& \lambda_{2}=--\sqrt{b^{2}+a-c}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\sqrt{b^{2}+a-c} \\
& \lambda_{2}=\sqrt{b^{2}+a-c}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(-\sqrt{b^{2}+a-c}\right) x}+c_{2} e^{\left(\sqrt{b^{2}+a-c}\right) x}
\end{aligned}
\]

Or
\[
v(x)=c_{1} \mathrm{e}^{-\sqrt{b^{2}+a-c} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}+a-c} x}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}+a-c} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}+a-c} x}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]

Hence (7) becomes
\[
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}+a-c} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}+a-c} x}\right) \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}+a-c} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}+a-c} x}\right) \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}+a-c} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}+a-c} x}\right) \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]

Verified OK.

\subsection*{27.20.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+(2 a x+2 b) y^{\prime}+\left(a^{2} x^{2}+2 a b x+c\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 a x+2 b \tag{3}\\
& C=a^{2} x^{2}+2 a b x+c
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{b^{2}+a-c}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=b^{2}+a-c \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(b^{2}+a-c\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 50: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=b^{2}+a-c\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{b^{2}+a-c} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a x+2 b}{1} d x} \\
& =z_{1} e^{-\frac{1}{2} a x^{2}-b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a x+2 b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x^{2}-2 b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-2 \sqrt{b^{2}+a-c} x}}{2 \sqrt{b^{2}+a-c}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}\left(-\frac{\mathrm{e}^{-2 \sqrt{b^{2}+a-c} x}}{2 \sqrt{b^{2}+a-c}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{x\left(a x+2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}}{2 \sqrt{b^{2}+a-c}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{x\left(a x+2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}}{2 \sqrt{b^{2}+a-c}}
\]

Verified OK.

\subsection*{27.20.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(2 a x+2 b) y^{\prime}+\left(a^{2} x^{2}+2 a b x+c\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}\)
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{1} b+a_{0} c+2 a_{2}+\left(6 a_{3}+4 a_{2} b+a_{1}(2 a+c)+2 a_{0} a b\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+2 a_{k+1}(k+\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+2 a_{1} b+a_{0} c=0,6 a_{3}+4 a_{2} b+a_{1}(2 a+c)+2 a_{0} a b=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-a_{1} b-\frac{a_{0} c}{2}, a_{3}=-\frac{1}{3} a_{0} a b+\frac{2}{3} a_{1} b^{2}+\frac{1}{3} a_{0} b c-\frac{1}{3} a_{1} a-\frac{1}{6} a_{1} c\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(2 a a_{k}+2 a_{k+1} b+3 a_{k+2}\right) k+a_{k-2} a^{2}+2 a_{k-1} a b+2 a_{k+1} b+a_{k} c+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
(k+2)^{2} a_{k+4}+\left(2 a a_{k+2}+2 a_{k+3} b+3 a_{k+4}\right)(k+2)+a_{k} a^{2}+2 a_{k+1} a b+2 a_{k+3} b+a_{k+2} c+2 a_{k+4}=
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a^{2}+2 a_{k+1} a b+2 a k a_{k+2}+2 b k a_{k+3}+4 a a_{k+2}+6 a_{k+3} b+a_{k+2} c}{k^{2}+7 k+12}, a_{2}=-a_{1} b-\frac{a_{0} c}{2}, a_{3}=-\frac{1}{3}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 55
dsolve (diff \((y(x), x \$ 2)+2 *(a * x+b) * \operatorname{diff}(y(x), x)+\left(a^{\wedge} 2 * x^{\wedge} 2+2 * a * b * x+c\right) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{-\frac{x\left(a x-2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}+c_{2} \mathrm{e}^{-\frac{x\left(a x+2 \sqrt{b^{2}+a-c}+2 b\right)}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 86
DSolve \(\left[y^{\prime \prime}[x]+2 *(a * x+b) * y\right.\) ' \([x]+\left(a^{\wedge} 2 * x^{\wedge} 2+2 * a * b * x+c\right) * y[x]==0, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{\left.e^{-\frac{1}{2} x\left(2 \sqrt{a+b^{2}-c}+a x+2 b\right.}\right)\left(c_{2} e^{2 x \sqrt{a+b^{2}-c}}+2 c_{1} \sqrt{a+b^{2}-c}\right)}{2 \sqrt{a+b^{2}-c}}
\]

\subsection*{27.21 problem 31}
27.21.1 Maple step by step solution 2254

Internal problem ID [10855]
Internal file name [OUTPUT/10111_Sunday_December_24_2023_05_12_32_PM_77209391/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+(a x+b) y^{\prime}+\left(\alpha x^{2}+\beta x+\gamma\right) y=0
\]

\subsection*{27.21.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(a x+b) y^{\prime}+\left(\alpha x^{2}+\beta x+\gamma\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} b+a_{0} \gamma+2 a_{2}+\left(6 a_{3}+2 a_{2} b+a_{1}(a+\gamma)+a_{0} \beta\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b\right.\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} b+a_{0} \gamma=0,6 a_{3}+2 a_{2} b+a_{1}(a+\gamma)+a_{0} \beta=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} b}{2}-\frac{a_{0} \gamma}{2}, a_{3}=\frac{1}{6} a_{1} b^{2}+\frac{1}{6} a_{0} b \gamma-\frac{1}{6} a_{1} a-\frac{1}{6} a_{0} \beta-\frac{1}{6} a_{1} \gamma\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k}+a_{k+1} b+3 a_{k+2}\right) k+a_{k+1} b+a_{k-1} \beta+a_{k-2} \alpha+a_{k} \gamma+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\((k+2)^{2} a_{k+4}+\left(a a_{k+2}+a_{k+3} b+3 a_{k+4}\right)(k+2)+a_{k+3} b+a_{k+1} \beta+a_{k} \alpha+a_{k+2} \gamma+2 a_{k+4}=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a k a_{k+2}+b k a_{k+3}+2 a a_{k+2}+a_{k} \alpha+3 a_{k+3} b+a_{k+1} \beta+a_{k+2} \gamma}{k^{2}+7 k+12}, a_{2}=-\frac{a_{1} b}{2}-\frac{a_{0} \gamma}{2}, a_{3}=\frac{1}{6} a_{1} b^{2}\right.\)

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: indirect Equivalence to OF1 under \`\`^ @ Moebius\`\` is resolve
<- hypergeometric successful
<- special function solution successful

```

\section*{Solution by Maple}

Time used: 0.046 (sec). Leaf size: 254
```

dsolve(diff (y(x),x\$2)+(a*x+b)*diff (y (x),x)+(alpha*x^2+beta*x+gamma)*y(x)=0,y(x), singsol=all

```
\[
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{x\left((a x+2 b) \sqrt{a^{2}-4 \alpha}+x\left(a^{2}-4 \alpha\right)+2 a b-4 \beta\right)}{4 \sqrt{a^{2}-4 \alpha}}}\left(c _ { 2 } \left(a^{2} x+a b-4 \alpha x\right.\right. \\
& -2 \beta) \text { hypergeom }\left(\left[\frac{3\left(a^{2}-4 \alpha\right)^{\frac{3}{2}}+a^{3}-2 a^{2} \gamma+2(b \beta-2 \alpha) a+2\left(-b^{2}+4 \gamma\right) \alpha-2 \beta^{2}}{4\left(a^{2}-4 \alpha\right)^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{\left(a^{2} x+a\right.}{2(}\right],\left[\frac{1}{2}\right], \frac{\left(a^{2} x+a b-4\right.}{2\left(a^{2}-4\right.} \\
& \quad+\text { hypergeom }\left(\left[\frac{\left(a^{2}-4 \alpha\right)^{\frac{3}{2}}+a^{3}-2 a^{2} \gamma+(2 b \beta-4 \alpha) a+\left(-2 b^{2}+8 \gamma\right) \alpha-2 \beta^{2}}{4\left(a^{2}-4 \alpha\right)^{\frac{3}{2}}}\right.\right.
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.467 (sec). Leaf size: 307
DSolve \(\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\left(\backslash[\right.\) Alpha \(] * \mathrm{x}^{\wedge} 2+\backslash[\) Beta \(] * \mathrm{x}+\backslash[\) Gamma \(\left.]\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingular
\(y(x)\)
\(\rightarrow \exp \left(-\frac{x\left(2 b \sqrt{a^{2}-4 \alpha}+a\left(x \sqrt{a^{2}-4 \alpha}+2 b\right)+a^{2} x-4(\beta+\alpha x)\right)}{4 \sqrt{a^{2}-4 \alpha}}\right)\left(c_{1}\right.\) HermiteH \(\left(\frac{-a^{3}-\left(\sqrt{a^{2}-4 a}\right.}{}\right.\)

\subsection*{27.22 problem 32}

Internal problem ID [10856]
Internal file name [OUTPUT/10112_Sunday_December_24_2023_05_12_34_PM_89403799/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+(a x+b) y^{\prime}+c\left(-c x^{2 n}+a x^{1+n}+b x^{n}+n x^{n-1}\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{c} *\left(-\mathrm{c} * \mathrm{x}^{\wedge}(2 * \mathrm{n})+\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}+1)+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1)\right) * \mathrm{y}(\mathrm{x})=0\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime \prime}[x]+(a * x+b) * y^{\prime}[x]+c *\left(-c * x^{\wedge}(2 * n)+a * x^{\wedge}(n+1)+b * x^{\wedge} n+n * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\right.\), Include
Not solved

\subsection*{27.23 problem 33}
27.23.1 Solving using Kovacic algorithm 2261
27.23.2 Maple step by step solution . 2267

Internal problem ID [10857]
Internal file name [OUTPUT/10113_Sunday_December_24_2023_05_12_34_PM_15390749/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+a\left(-b^{2}+x^{2}\right) y^{\prime}-a(x+b) y=0
\]

\subsection*{27.23.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+a\left(-b^{2}+x^{2}\right) y^{\prime}-a(x+b) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=\left(-b^{2}+x^{2}\right) a \tag{3}\\
& C=-a(x+b)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 53: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx-\frac{a b^{2}}{2}+\frac{a x^{2}}{2}+\frac{b^{5}}{x^{6}}+\frac{2 b^{4}}{x^{5}}+\frac{b^{3}}{x^{4}}+\frac{2 b^{2}}{x^{3}}+\frac{b}{x^{2}}+\frac{2}{x}-\frac{13 b^{2}}{a x^{6}}-\frac{4 b}{a x^{5}}-\frac{4}{a x^{4}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2} b^{4}-\frac{1}{2} a^{2} b^{2} x^{2}+\frac{1}{4} a^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{4}}{4}-\frac{a^{2} b^{2} x^{2}}{2}+2 a x+\frac{a b\left(b^{3} a+4\right)}{4}\right)+(0) \\
& =\frac{a^{2} x^{4}}{4}-\frac{a^{2} b^{2} x^{2}}{2}+2 a x+\frac{a b\left(b^{3} a+4\right)}{4}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(2 a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(2 a)-(0) \\
& =2 a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right) \quad=\frac{1}{2}\left(\frac{2 a}{\frac{a}{2}}-2\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right) \quad=\frac{1}{2}\left(-\frac{2 a}{\frac{a}{2}}-2\right)=-3
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{ }]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2}\) & 1 & -3 \\
\hline
\end{tabular}

Now that the all \([\sqrt{ }]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup_{\infty}}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2}\right) \\
& =-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2} \\
& =-\frac{a\left(b^{2}-x^{2}\right)}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2}\right)(1)+\left((a x)+\left(-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2}\right)^{2}-\left(\frac{a\left(a b^{4}-2 a b^{2} x^{2}+a x^{4}+4 b+8 x\right)}{4}\right)\right)= \\
-a\left(a_{0}+b\right)(x+b)=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=-b\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x-b
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x-b) \mathrm{e}^{\int\left(-\frac{1}{2} a b^{2}+\frac{1}{2} a x^{2}\right) d x} \\
& =(x-b) \mathrm{e}^{-\frac{a\left(b^{2} x-\frac{1}{3} x^{3}\right)}{2}} \\
& =-(-x+b) \mathrm{e}^{-\frac{a x\left(b^{2}-\frac{x^{2}}{3}\right)}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{\left(-b^{2}+x^{2}\right) a}{1} d x} \\
& =z_{1} e^{-\frac{a\left(-b^{2} x+\frac{1}{3} x^{3}\right)}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{a x\left(3 b^{2}-x^{2}\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x-b
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{\left(-b^{2}+x^{2}\right) a}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{a b^{2} x-\frac{1}{3} a x^{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{a b^{2} x-\frac{1}{3} a x^{3}}}{(-x+b)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x-b)+c_{2}\left(x-b\left(\int \frac{\mathrm{e}^{a b^{2} x-\frac{1}{3} a x^{3}}}{(-x+b)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}(x-b)-c_{2}(-x+b)\left(\int \frac{\mathrm{e}^{a b^{2} x-\frac{1}{3} a x^{3}}}{(-x+b)^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}(x-b)-c_{2}(-x+b)\left(\int \frac{\mathrm{e}^{a b^{2} x-\frac{1}{3} a x^{3}}}{(-x+b)^{2}} d x\right)
\]

Verified OK.

\subsection*{27.23.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+a\left(-b^{2}+x^{2}\right) y^{\prime}-a(x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=a(x+b) y+a\left(b^{2}-x^{2}\right) y^{\prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-a\left(b^{2}-x^{2}\right) y^{\prime}-a(x+b) y=0\)
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(-a_{1} a b^{2}-a a_{0} b+2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k+1}(k+1) a b^{2}-a a_{k} b+a_{k-1} a(k-2)\right) x^{k}\right)\)
- Each term must be 0
\(-a_{1} a b^{2}-a a_{0} b+2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(\left(-b^{2} a_{k+1}+a_{k-1}\right) k-b^{2} a_{k+1}-b a_{k}-2 a_{k-1}\right) a+a_{k+2}(k+2)(k+1)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left(\left(-b^{2} a_{k+2}+a_{k}\right)(k+1)-b^{2} a_{k+2}-b a_{k+1}-2 a_{k}\right) a+a_{k+3}(k+3)(k+2)=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{\left(b^{2} k a_{k+2}+2 b^{2} a_{k+2}+b a_{k+1}-a_{k} k+a_{k}\right) a}{(k+3)(k+2)},-a_{1} a b^{2}-a a_{0} b+2 a_{2}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0         <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.297 (sec). Leaf size: 141
dsolve(\(\operatorname{diff}(y(x), x \$ 2)+a *\left(x^{\wedge} 2-b^{\wedge} 2\right) * \operatorname{diff}(y(x), x)-a *(x+b) * y(x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
y(x)= & c_{1} \text { HeunT }\left(-\frac{a 3^{\frac{2}{3}} b}{\left(a^{2}\right)^{\frac{1}{3}}},-6 \operatorname{csgn}(a),-\frac{a^{2} b^{2} 3^{\frac{1}{3}}}{\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}}\left(a^{2}\right)^{\frac{1}{6}} x}{3}\right) \mathrm{e}^{\frac{x\left(3 b^{2}-x^{2}\right) \operatorname{csgn}(a) a(\operatorname{sggn}(a)+1)}{6}} \\
& +c_{2} \operatorname{HeunT}\left(-\frac{a 3^{\frac{2}{3}} b}{\left(a^{2}\right)^{\frac{1}{3}}}, 6 \operatorname{csgn}(a),-\frac{a^{2} b^{2} 3^{\frac{1}{3}}}{\left(a^{2}\right)^{\frac{2}{3}}},\right.
\end{aligned}
\]
\[
\left.-\frac{3^{\frac{2}{3}}\left(a^{2}\right)^{\frac{1}{6}} x}{3}\right) \mathrm{e}^{\frac{x\left(3 b^{2}-x^{2}\right) \operatorname{csgn}(a) a(\operatorname{csgn}(a)-1)}{6}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.893 (sec). Leaf size: 55
DSolve[y' \([\mathrm{x}]+\mathrm{a} *\left(\mathrm{x}^{\wedge} 2-\mathrm{b} \sim 2\right) * y\) ' \([\mathrm{x}]-\mathrm{a} *(\mathrm{x}+\mathrm{b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{(b-x)\left(c_{2} \int_{1}^{x} \frac{e^{a b^{2} K[1]-\frac{1}{3} a K[1]^{3}}}{(b-K[1])^{2}} d K[1]+c_{1}\right)}{b}
\]

\subsection*{27.24 problem 34}
27.24.1 Solving using Kovacic algorithm 2271
27.24.2 Maple step by step solution . 2277

Internal problem ID [10858]
Internal file name [OUTPUT/10114_Sunday_December_24_2023_05_12_35_PM_24279716/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+\left(a x^{2}+b\right) y^{\prime}+c\left(a x^{2}+b-c\right) y=0
\]

\subsection*{27.24.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(a x^{2}+b\right) y^{\prime}+c\left(a x^{2}+b-c\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x^{2}+b \tag{3}\\
& C=c\left(a x^{2}+b-c\right)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{4}+2 a b x^{2}-4 a c x^{2}+4 a x+b^{2}-4 b c+4 c^{2}}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{4}+2 a b x^{2}-4 a c x^{2}+4 a x+b^{2}-4 b c+4 c^{2} \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(a x+\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{2}+\frac{1}{4} b^{2}-a c x^{2}-b c+c^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 55: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x^{2}}{2}+\frac{b}{2}-c+\frac{1}{x}-\frac{b}{a x^{3}}+\frac{2 c}{a x^{3}}-\frac{1}{a x^{4}}+\frac{b^{2}}{a^{2} x^{5}}-\frac{4 b c}{a^{2} x^{5}}+\frac{4 c^{2}}{a^{2} x^{5}}+\frac{3 b}{a^{2} x^{6}}-\frac{6 c}{a^{2} x^{6}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{b}{2}-c+\frac{a x^{2}}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2}-b c+\frac{1}{2} a b x^{2}+c^{2}-a c x^{2}+\frac{1}{4} a^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{4}+2 a b x^{2}-4 a c x^{2}+4 a x+b^{2}-4 b c+4 c^{2}}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{4}}{4}+\left(\frac{1}{2} a b-a c\right) x^{2}+a x+\frac{b^{2}}{4}-b c+c^{2}\right)+(0) \\
& =\frac{a^{2} x^{4}}{4}+\left(\frac{1}{2} a b-a c\right) x^{2}+a x+\frac{b^{2}}{4}-b c+c^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(a)-(0) \\
& =a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{b}{2}-c+\frac{a x^{2}}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{a}{\frac{a}{2}}-2\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{a}{\frac{a}{2}}-2\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=a x+\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{2}+\frac{1}{4} b^{2}-a c x^{2}-b c+c^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{b}{2}-c+\frac{a x^{2}}{2}\) & 0 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=0\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{b}{2}-c+\frac{a x^{2}}{2}\right) \\
& =\frac{b}{2}-c+\frac{a x^{2}}{2} \\
& =\frac{b}{2}-c+\frac{a x^{2}}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{b}{2}-c+\frac{a x^{2}}{2}\right)(0)+\left((a x)+\left(\frac{b}{2}-c+\frac{a x^{2}}{2}\right)^{2}-\left(a x+\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{2}+\frac{1}{4} b^{2}-a c x^{2}-b c+c\right.\right.\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{b}{2}-c+\frac{a x^{2}}{2}\right) d x} \\
& =\mathrm{e}^{\frac{x\left(a x^{2}+3 b-6 c\right)}{6}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}+b}{1} d x} \\
& =z_{1} e^{-\frac{1}{6} a x^{3}-\frac{1}{2} b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-c x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}+b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{3} a x^{3}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \mathrm{e}^{-\frac{x\left(a x^{2}+3 b-6 c\right)}{3}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-c x}\right)+c_{2}\left(\mathrm{e}^{-c x}\left(\int \mathrm{e}^{-\frac{x\left(a x^{2}+3 b-6 c\right)}{3}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-c x}+c_{2} \mathrm{e}^{-c x}\left(\int \mathrm{e}^{-\frac{x\left(a x^{2}+3 b-6 c\right)}{3}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-c x}+c_{2} \mathrm{e}^{-c x}\left(\int \mathrm{e}^{-\frac{x\left(a x^{2}+3 b-6 c\right)}{3}} d x\right)
\]

Verified OK.

\subsection*{27.24.2 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}+\left(a x^{2}+b\right) y^{\prime}+c\left(a x^{2}+b-c\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}+a_{1} b+c a_{0}(b-c)+\left(6 a_{3}+2 a_{2} b+c a_{1}(b-c)\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1) b\right.\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} b+c a_{0}(b-c)=0,6 a_{3}+2 a_{2} b+c a_{1}(b-c)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{1}{2} a_{0} b c+\frac{1}{2} a_{0} c^{2}-\frac{1}{2} a_{1} b, a_{3}=\frac{1}{6} a_{0} b^{2} c-\frac{1}{6} a_{0} b c^{2}+\frac{1}{6} a_{1} b^{2}-\frac{1}{6} a_{1} b c+\frac{1}{6} a_{1} c^{2}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k-1}+a_{k+1} b+3 a_{k+2}\right) k+2 a_{k+2}+\left(c a_{k-2}-a_{k-1}\right) a+\left(c a_{k}+a_{k+1}\right) b-a_{k} c^{2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\((k+2)^{2} a_{k+4}+\left(a a_{k+1}+b a_{k+3}+3 a_{k+4}\right)(k+2)+2 a_{k+4}+\left(c a_{k}-a_{k+1}\right) a+\left(c a_{k+2}+a_{k+3}\right) b-a\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a c+a k a_{k+1}+b c a_{k+2}+b k a_{k+3}-a_{k+2} c^{2}+a a_{k+1}+3 b a_{k+3}}{k^{2}+7 k+12}, a_{2}=-\frac{1}{2} a_{0} b c+\frac{1}{2} a_{0} c^{2}-\frac{1}{2} a_{1} b\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0         <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.203 (sec). Leaf size: 134
dsolve(diff \((y(x), x \$ 2)+\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x)+c *\left(a * x^{\wedge} 2+b-c\right) * y(x)=0, y(x), \quad\) singsol \(\left.=a l l\right)\)
\[
\begin{aligned}
& y(x)=c_{1} \operatorname{HeunT}(0, \\
& \\
& \left.\quad-3 \operatorname{csgn}(a), \frac{a(b-2 c) 3^{\frac{1}{3}}}{\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}}\left(a^{2}\right)^{\frac{1}{6}} x}{3}\right) \mathrm{e}^{-\frac{x\left(\left(a x^{2}+3 b\right) \operatorname{csgn}(a)+a x^{2}+3 b-6 c\right) \operatorname{csgn}(a)}{6}} \\
& +c_{2} \operatorname{HeunT}\left(0,3 \operatorname{csgn}(a), \frac{a(b-2 c) 3^{\frac{1}{3}}}{\left(a^{2}\right)^{\frac{2}{3}}},\right. \\
& \\
& \\
& \left.\quad-\frac{3^{\frac{2}{3}}\left(a^{2}\right)^{\frac{1}{6}} x}{3}\right) \mathrm{e}^{-\frac{x\left(\left(a x^{2}+3 b\right) \operatorname{csgn}(a)-a x^{2}-3 b+6 c\right) \operatorname{csgn}(a)}{6}}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.915 (sec). Leaf size: 46
DSolve[y''[x]+(a*x^2+b)*y'[x]+c*(a*x^2+b-c)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-c x}\left(c_{2} \int_{1}^{x} e^{-\frac{1}{3} K[1]\left(a K[1]^{2}+3 b-6 c\right)} d K[1]+c_{1}\right)
\]

\subsection*{27.25 problem 35}
27.25.1 Solving using Kovacic algorithm 2281
27.25.2 Maple step by step solution . 2287

Internal problem ID [10859]
Internal file name [OUTPUT/10115_Sunday_December_24_2023_05_12_36_PM_4955882/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+\left(a x^{2}+2 b\right) y^{\prime}+\left(a b x^{2}-a x+b^{2}\right) y=0
\]

\subsection*{27.25.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(a x^{2}+2 b\right) y^{\prime}+\left(\left(b x^{2}-x\right) a+b^{2}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x^{2}+2 b \tag{3}\\
& C=\left(b x^{2}-x\right) a+b^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a x\left(a x^{3}+8\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a x\left(a x^{3}+8\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a x\left(a x^{3}+8\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 57: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x^{2}}{2}+\frac{2}{x}-\frac{4}{a x^{4}}+\frac{16}{a^{2} x^{7}}-\frac{80}{a^{3} x^{10}}+\frac{448}{a^{4} x^{13}}-\frac{2688}{a^{5} x^{16}}+\frac{16896}{a^{6} x^{19}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{a x^{2}}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{a^{2} x^{4}}{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a x\left(a x^{3}+8\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(2 a x+\frac{1}{4} a^{2} x^{4}\right)+(0) \\
& =2 a x+\frac{1}{4} a^{2} x^{4}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(2 a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(2 a)-(0) \\
& =2 a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x^{2}}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{2 a}{\frac{a}{2}}-2\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{2 a}{\frac{a}{2}}-2\right)=-3
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a x\left(a x^{3}+8\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{a x^{2}}{2}\) & 1 & -3 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{a x^{2}}{2}\right) \\
& =\frac{a x^{2}}{2} \\
& =\frac{a x^{2}}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a x^{2}}{2}\right)(1)+\left((a x)+\left(\frac{a x^{2}}{2}\right)^{2}-\left(\frac{a x\left(a x^{3}+8\right)}{4}\right)\right)=0 \\
-a x a_{0}=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=0\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int \frac{a x^{2}}{2} d x} \\
& =(x) \mathrm{e}^{\frac{a x^{3}}{6}} \\
& =x \mathrm{e}^{\frac{a x^{3}}{6}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}+2 b}{1} d x} \\
& =z_{1} e^{-\frac{1}{6} a x^{3}-b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{2}+6 b\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-b x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}+2 b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{3} a x^{3}-2 b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{-\frac{a x^{3}}{3}}}{x^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-b x}\right)+c_{2}\left(x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{3}}{3}}}{x^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-b x}+c_{2} x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{3}}{3}}}{x^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-b x}+c_{2} x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{3}}{3}}}{x^{2}} d x\right)
\]

Verified OK.

\subsection*{27.25.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(a x^{2}+2 b\right) y^{\prime}+\left(\left(b x^{2}-x\right) a+b^{2}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\left(-a b x^{2}+a x-b^{2}\right) y-\left(a x^{2}+2 b\right) y^{\prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(a x^{2}+2 b\right) y^{\prime}+\left(a b x^{2}-a x+b^{2}\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} b^{2}+2 a_{1} b+2 a_{2}+\left(a_{1} b^{2}-a_{0} a+4 a_{2} b+6 a_{3}\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+2 a_{k+1}(k+1) b+\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} b^{2}+2 a_{1} b=0, a_{1} b^{2}-a_{0} a+4 a_{2} b+6 a_{3}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=-\frac{1}{2} a_{0} b^{2}-a_{1} b, a_{3}=\frac{1}{3} a_{0} b^{3}+\frac{1}{2} a_{1} b^{2}+\frac{1}{6} a_{0} a\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k} b^{2}+\left(a a_{k-2}+2 k a_{k+1}+2 a_{k+1}\right) b+k^{2} a_{k+2}+\left(a_{k-1} a+3 a_{k+2}\right) k-2 a_{k-1} a+2 a_{k+2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2} b^{2}+\left(a_{k} a+2(k+2) a_{k+3}+2 a_{k+3}\right) b+(k+2)^{2} a_{k+4}+\left(a_{k+1} a+3 a_{k+4}\right)(k+2)-2 a_{k+1} a+2\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a b+a k a_{k+1}+a_{k+2} b^{2}+2 b k a_{k+3}+6 b a_{k+3}}{k^{2}+7 k+12}, a_{2}=-\frac{1}{2} a_{0} b^{2}-a_{1} b, a_{3}=\frac{1}{3} a_{0} b^{3}+\frac{1}{2} a_{1} b^{2}\right.\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 91
\[
\begin{aligned}
& \text { dsolve }\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+2 * \mathrm{~b}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} 2-\mathrm{a} * \mathrm{x}+\mathrm{b}^{\wedge} 2\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}),\right. \\
& y(x) \\
& \\
& =\frac{\left.5\left(3^{\frac{2}{3}} c_{2} a\left(a x^{3}\right)^{\frac{1}{3}}\left(a x^{3}+2\right) \mathrm{e}^{-\frac{x\left(a x^{2}+6 b\right)}{6}}+\frac{9 x^{2}\left(c_{2} a^{2} x \mathrm{e}^{-b x} \text { WhittakerM }\left(\frac{1}{3}, \frac{5}{6}, \frac{a x^{3}}{3}\right)+c_{1} \mathrm{e}^{\left.\frac{x\left(a x^{2}-6 b\right.}{6}\right)}\right.}{5}\right)\right)}{9 x} \mathrm{e}^{-\frac{a x^{3}}{6}} \\
& 9 x
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.407 (sec). Leaf size: 51
DSolve [y' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+2 * \mathrm{~b}\right) * \mathrm{y}\) ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} 2-\mathrm{a} * \mathrm{x}+\mathrm{b}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{1}{9} e^{-b x}\left(9 c_{1} x-3^{2 / 3} c_{2} \sqrt[3]{a x^{3}} \Gamma\left(-\frac{1}{3}, \frac{a x^{3}}{3}\right)\right)
\]

\subsection*{27.26 problem 36}
27.26.1 Solving as second order change of variable on y method 1 ode . 2290
27.26.2 Solving using Kovacic algorithm 2293
27.26.3 Maple step by step solution . 2296

Internal problem ID [10860]
Internal file name [OUTPUT/10116_Sunday_December_24_2023_05_12_36_PM_17868219/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 36 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(2 x^{2}+a\right) y^{\prime}+\left(x^{4}+a x^{2}+b+2 x\right) y=0
\]

\subsection*{27.26.1 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=2 x^{2}+a \\
& q(x)=x^{4}+a x^{2}+b+2 x
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =x^{4}+a x^{2}+b+2 x-\frac{\left(2 x^{2}+a\right)^{\prime}}{2}-\frac{\left(2 x^{2}+a\right)^{2}}{4} \\
& =x^{4}+a x^{2}+b+2 x-\frac{(4 x)}{2}-\frac{\left(\left(2 x^{2}+a\right)^{2}\right)}{4} \\
& =x^{4}+a x^{2}+b+2 x-(2 x)-\frac{\left(2 x^{2}+a\right)^{2}}{4} \\
& =b-\frac{a^{2}}{4}
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 x^{2}+a}{2}} \\
& =\mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
-\mathrm{e}^{-\frac{x\left(2 x^{2}+3 a\right)}{6}}\left(v(x) a^{2}-4 v(x) b-4 v^{\prime \prime}(x)\right)=0
\]

Which is now solved for \(v(x)\) This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
\]

Where in the above \(A=-4, B=0, C=a^{2}-4 b\). Let the solution be \(v(x)=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
-4 \lambda^{2} \mathrm{e}^{\lambda x}+\left(a^{2}-4 b\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
a^{2}-4 \lambda^{2}-4 b=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=-4, B=0, C=a^{2}-4 b\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(-4)} \pm \frac{1}{(2)(-4)} \sqrt{0^{2}-(4)(-4)\left(a^{2}-4 b\right)} \\
& = \pm-\frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+-\frac{\sqrt{a^{2}-4 b}}{2} \\
& \lambda_{2}=--\frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{\sqrt{a^{2}-4 b}}{2} \\
& \lambda_{2}=\frac{\sqrt{a^{2}-4 b}}{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(-\frac{\sqrt{a^{2}-4 b}}{2}\right) x}+c_{2} e^{\left(\frac{\sqrt{a^{2}-4 b}}{2}\right) x}
\end{aligned}
\]

Or
\[
v(x)=c_{1} \mathrm{e}^{-\frac{x \sqrt{a^{2}-4 b}}{2}}+c_{2} \mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{-\frac{x \sqrt{a^{2}-4 b}}{2}}+c_{2} \mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x}
\]

Hence (7) becomes
\[
y=\left(c_{1} \mathrm{e}^{-\frac{x \sqrt{a^{2}-4 b}}{2}}+c_{2} \mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}\right) \mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{-\frac{x \sqrt{a^{2}-4 b}}{2}}+c_{2} \mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}\right) \mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{1} \mathrm{e}^{-\frac{x \sqrt{a^{2}-4 b}}{2}}+c_{2} \mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}\right) \mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x}
\]

Verified OK.

\subsection*{27.26.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+\left(2 x^{2}+a\right) y^{\prime}+\left(x^{4}+a x^{2}+b+2 x\right) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 x^{2}+a \tag{3}\\
& C=x^{4}+a x^{2}+b+2 x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2}-4 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2}-4 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2}}{4}-b\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is
\end{tabular} & no condition \\
\begin{tabular}{l}
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 59: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{a^{2}}{4}-b\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\frac{x \sqrt{a^{2}-4 b}}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x^{2}+a}{1} d x} \\
& =z_{1} e^{-\frac{1}{3} x^{3}-\frac{1}{2} a x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{1}{3} x^{3}-\frac{1}{2} a x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x^{3}}{3}-\frac{a x}{2}+\frac{x \sqrt{a^{2}-4 b}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x^{2}+a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2}{3} x^{3}-a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-x \sqrt{a^{2}-4 b}}}{\sqrt{a^{2}-4 b}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x^{3}}{3}-\frac{a x}{2}+\frac{x \sqrt{a^{2}-4 b}}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x^{3}}{3}-\frac{a x}{2}+\frac{x \sqrt{a^{2}-4 b}}{2}}\left(-\frac{\mathrm{e}^{-x \sqrt{a^{2}-4 b}}}{\sqrt{a^{2}-4 b}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{3}}{3}-\frac{a x}{2}+\frac{x \sqrt{a^{2}-4 b}}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{x\left(2 x^{2}+3 \sqrt{a^{2}-4 b}+3 a\right)}{6}}}{\sqrt{a^{2}-4 b}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x^{3}}{3}-\frac{a x}{2}+\frac{x \sqrt{a^{2}-4 b}}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{x\left(2 x^{2}+3 \sqrt{a^{2}-4 b}+3 a\right)}{6}}}{\sqrt{a^{2}-4 b}}
\]

Verified OK.

\subsection*{27.26.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(2 x^{2}+a\right) y^{\prime}+\left(x^{4}+a x^{2}+b+2 x\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .4\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} a+a_{0} b+2 a_{2}+\left(2 a a_{2}+a_{1} b+2 a_{0}+6 a_{3}\right) x+\left(a_{0} a+3 a a_{3}+a_{2} b+4 a_{1}+12 a_{4}\right) x^{2}+\left(a_{1} a+4 a\right.
\]
- The coefficients of each power of \(x\) must be 0
\(\left[2 a_{2}+a_{1} a+a_{0} b=0,2 a a_{2}+a_{1} b+2 a_{0}+6 a_{3}=0, a_{0} a+3 a a_{3}+a_{2} b+4 a_{1}+12 a_{4}=0, a_{1} a+4 a a\right.\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=-\frac{a_{1} a}{2}-\frac{a_{0} b}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}+\frac{1}{6} a_{0} a b-\frac{1}{6} a_{1} b-\frac{1}{3} a_{0}, a_{4}=-\frac{1}{24} a_{1} a^{3}-\frac{1}{24} a_{0} a^{2} b+\frac{1}{12} a_{1} a b+\frac{1}{24} a_{0} b^{2}\right.\)
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k+1}+2 a_{k-1}+3 a_{k+2}\right) k+2 a_{k+2}+\left(a_{k-2}+a_{k+1}\right) a+a_{k} b+a_{k-4}=0
\]
- \(\quad\) Shift index using \(k->k+4\)
\((k+4)^{2} a_{k+6}+\left(a a_{k+5}+2 a_{k+3}+3 a_{k+6}\right)(k+4)+2 a_{k+6}+\left(a_{k+2}+a_{k+5}\right) a+a_{k+4} b+a_{k}=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+6}=-\frac{a k a_{k+5}+a a_{k+2}+5 a a_{k+5}+a_{k+4} b+2 k a_{k+3}+a_{k}+8 a_{k+3}}{k^{2}+11 k+30}, a_{2}=-\frac{a_{1} a}{2}-\frac{a_{0} b}{2}, a_{3}=\frac{1}{6} a_{1} a^{2}+\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 57
dsolve (diff \((y(x), x \$ 2)+\left(2 * x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 4+a * x^{\wedge} 2+2 * x+b\right) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{\frac{x\left(-2 x^{2}+3 \sqrt{a^{2}-4 b}-3 a\right)}{6}}+c_{2} \mathrm{e}^{-\frac{x\left(2 x^{2}+3 \sqrt{a^{2}-4 b}+3 a\right)}{6}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.217 (sec). Leaf size: 79
```

DSolve[y''[x]+(2*x^2+a)*y'[x]+(x^4+a*x^2+2*x+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> T

```
\[
y(x) \rightarrow \frac{\left.e^{-\frac{1}{6} x\left(3 \sqrt{a^{2}-4 b}+3 a+2 x^{2}\right.}\right)\left(c_{2} e^{x \sqrt{a^{2}-4 b}}+c_{1} \sqrt{a^{2}-4 b}\right)}{\sqrt{a^{2}-4 b}}
\]

\subsection*{27.27 problem 37}
27.27.1 Maple step by step solution . 2299

Internal problem ID [10861]
Internal file name [OUTPUT/10117_Sunday_December_24_2023_05_12_38_PM_85001203/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 37 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}+\left(\alpha x^{2}+\beta x+\gamma\right) y=0
\]

\subsection*{27.27.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+x(a x+b) y^{\prime}+\left(\alpha x^{2}+\beta x+\gamma\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} \gamma+2 a_{2}+\left(6 a_{3}+a_{1}(b+\gamma)+a_{0} \beta\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+a_{k}(b k+\gamma)+a_{k-1}(a(k-1)\right.\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} \gamma=0,6 a_{3}+a_{1}(b+\gamma)+a_{0} \beta=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{0} \gamma}{2}, a_{3}=-\frac{1}{6} a_{1} b-\frac{1}{6} a_{0} \beta-\frac{1}{6} a_{1} \gamma\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k-1}+b a_{k}+3 a_{k+2}\right) k+(-a+\beta) a_{k-1}+a_{k-2} \alpha+a_{k} \gamma+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\((k+2)^{2} a_{k+4}+\left(a a_{k+1}+b a_{k+2}+3 a_{k+4}\right)(k+2)+(-a+\beta) a_{k+1}+a_{k} \alpha+a_{k+2} \gamma+2 a_{k+4}=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a k a_{k+1}+b k a_{k+2}+a a_{k+1}+a_{k} \alpha+2 b a_{k+2}+\beta a_{k+1}+a_{k+2} \gamma}{k^{2}+7 k+12}, a_{2}=-\frac{a_{0} \gamma}{2}, a_{3}=-\frac{1}{6} a_{1} b-\frac{1}{6} a_{0}\right.\)

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0

```
\(\checkmark\) Solution by Maple
Time used: 0.265 (sec). Leaf size: 271
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\right.\) alpha \(* \mathrm{x}^{\wedge} 2+\) beta \(\left.* \mathrm{x}+\mathrm{gamma}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol
\(y(x)\)
\(=c_{1} \mathrm{e}^{-\frac{\operatorname{csgn}(a) x\left(2 a^{2} x^{2} \operatorname{csgn}(a)+3 a b x \operatorname{csgn}(a)+2 a^{2} x^{2}+3 a b x-12 \alpha\right)}{12 a}} \operatorname{HeunT}\left(\frac{3^{\frac{2}{3}}\left(2 a^{2} \gamma-a b \beta+\alpha b^{2}+2 \alpha^{2}\right)}{2 a^{2}\left(a^{2}\right)^{\frac{1}{3}}}\right.\),
\[
\left.-\frac{3\left(a^{2}-\beta a+b \alpha\right) \operatorname{csgn}(a)}{a^{2}},-\frac{3^{\frac{1}{3}}\left(b^{2}+8 \alpha\right)}{4\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}} a(2 a x+b)}{6\left(a^{2}\right)^{\frac{5}{6}}}\right)
\]
\[
+c_{2} \mathrm{e}^{-\frac{\operatorname{csgn}(a) x\left(2 a^{2} x^{2} \operatorname{cssnn}(a)+3 a b x \operatorname{csgn}(a)-2 a^{2} x^{2}-3 a b x+12 \alpha\right)}{12 a}} \operatorname{HeunT}\left(\frac{3^{\frac{2}{3}}\left(2 a^{2} \gamma-a b \beta+\alpha b^{2}+2 \alpha^{2}\right)}{2 a^{2}\left(a^{2}\right)^{\frac{1}{3}}}, \frac{3\left(a^{2}-\beta a+b \alpha\right)}{a^{2}}\right.
\]
\[
\left.-\frac{3^{\frac{1}{3}}\left(b^{2}+8 \alpha\right)}{4\left(a^{2}\right)^{\frac{2}{3}}},-\frac{3^{\frac{2}{3}} a(2 a x+b)}{6\left(a^{2}\right)^{\frac{5}{6}}}\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[y''[x]+(a*x^2+b*x)*y'[x]+(\[Alpha]*x^2+\[Beta]*x+\[Gamma])*y[x]==0,y[x],x, IncludeSing

```

Not solved

\subsection*{27.28 problem 38}
27.28.1 Solving using Kovacic algorithm 2303
27.28.2 Maple step by step solution . 2310

Internal problem ID [10862]
Internal file name [OUTPUT/10118_Sunday_December_24_2023_05_12_38_PM_96398998/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+\left(a b x^{2}+b x+2 a\right) y^{\prime}+a^{2}\left(b x^{2}+1\right) y=0
\]

\subsection*{27.28.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(\left(a x^{2}+x\right) b+2 a\right) y^{\prime}+a^{2}\left(b x^{2}+1\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=\left(a x^{2}+x\right) b+2 a \tag{3}\\
& C=a^{2}\left(b x^{2}+1\right)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 62: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a b x^{2}}{2}+\frac{b x}{2}+\frac{2}{x}-\frac{3}{2 a x^{2}}+\frac{3}{2 a^{2} x^{3}}-\frac{4}{a b x^{4}}-\frac{3}{2 a^{3} x^{4}}+\frac{10}{a^{2} b x^{5}}+\frac{3}{2 a^{4} x^{5}}-\frac{73}{4 a^{3} b x^{6}}-\frac{3}{2 a^{5} x^{6}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a b}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{1}{2} b x+\frac{1}{2} a b x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2} x^{2}+\frac{1}{2} a b^{2} x^{3}+\frac{1}{4} a^{2} b^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(2 a b x+\frac{1}{2} b+\frac{1}{4} a^{2} b^{2} x^{4}+\frac{1}{2} a b^{2} x^{3}+\frac{1}{4} b^{2} x^{2}\right)+(0) \\
& =2 a b x+\frac{1}{2} b+\frac{1}{4} a^{2} b^{2} x^{4}+\frac{1}{2} a b^{2} x^{3}+\frac{1}{4} b^{2} x^{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(2 a b\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(2 a b)-(0) \\
& =2 a b
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} b x+\frac{1}{2} a b x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{2 a b}{\frac{a b}{2}}-2\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{2 a b}{\frac{a b}{2}}-2\right)=-3
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{1}{2} b x+\frac{1}{2} a b x^{2}\) & 1 & -3 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{1}{2} b x+\frac{1}{2} a b x^{2}\right) \\
& =\frac{1}{2} b x+\frac{1}{2} a b x^{2} \\
& =\frac{b x(a x+1)}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{2} b x+\frac{1}{2} a b x^{2}\right)(1)+\left(\left(a b x+\frac{1}{2} b\right)+\left(\frac{1}{2} b x+\frac{1}{2} a b x^{2}\right)^{2}-\left(\frac{b\left(a^{2} b x^{4}+2 a b x^{3}+b x^{2}+8 a x+2\right)}{4}\right.\right. \\
-b x\left(a a_{0}-1\right)
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{1}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{1}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\int\left(\frac{1}{2} b x+\frac{1}{2} a b x^{2}\right) d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\frac{b\left(\frac{1}{3} a x^{3}+\frac{1}{2} x^{2}\right)}{2}} \\
& =\frac{(a x+1) \mathrm{e}^{\frac{1}{6} a b x^{3}+\frac{1}{4} b x^{2}}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{\left(a x^{2}+x\right) b+2 a}{1} d x} \\
& =z_{1} e^{-\frac{1}{6} a b x^{3}-\frac{1}{4} b x^{2}-a x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a b x^{2}+\frac{3}{b} b x+6 a\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{(a x+1) \mathrm{e}^{-a x}}{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{\left(a x^{2}+x\right) b+2 a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x\left(a b x^{2}+\frac{3}{2} b x+6 a\right)}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{a^{2} \mathrm{e}^{-\frac{x^{2}\left(a x+\frac{3}{2}\right) b}{3}}}{(a x+1)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\right)+c_{2}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\left(\int \frac{a^{2} \mathrm{e}^{-\frac{x^{2}\left(a x+\frac{3}{2}\right) b}{3}}}{(a x+1)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{\mathrm{e}^{-\frac{x^{2}\left(a x+\frac{3}{2}\right) b}{3}}}{(a x+1)^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{\mathrm{e}^{-\frac{x^{2}\left(a x+\frac{3}{2}\right) b}{3}}}{(a x+1)^{2}} d x\right)
\]

Verified OK.

\subsection*{27.28.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(\left(a x^{2}+x\right) b+2 a\right) y^{\prime}+a^{2}\left(b x^{2}+1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\left(a b x^{2}+b x+2 a\right) y^{\prime}-a^{2}\left(b x^{2}+1\right) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(a b x^{2}+b x+2 a\right) y^{\prime}+a^{2}\left(b x^{2}+1\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} a^{2}+2 a_{1} a+2 a_{2}+\left(6 a_{3}+4 a a_{2}+a_{1}\left(a^{2}+b\right)\right) x+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+2}(k+2)(k+1)+2 a a_{k+1}(k+1)+\right.\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} a^{2}+2 a_{1} a=0,6 a_{3}+4 a a_{2}+a_{1}\left(a^{2}+b\right)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{1}{2} a_{0} a^{2}-a_{1} a, a_{3}=\frac{1}{3} a_{0} a^{3}+\frac{1}{2} a_{1} a^{2}-\frac{1}{6} a_{1} b\right\}
\]
- Each term in the series must be 0 , giving the recursion relation \(\left(b a_{k-2}+a_{k}\right) a^{2}+\left(\left(b a_{k-1}+2 a_{k+1}\right) k-b a_{k-1}+2 a_{k+1}\right) a+k^{2} a_{k+2}+\left(b a_{k}+3 a_{k+2}\right) k+2 a_{k+2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(\left(b a_{k}+a_{k+2}\right) a^{2}+\left(\left(b a_{k+1}+2 a_{k+3}\right)(k+2)-b a_{k+1}+2 a_{k+3}\right) a+(k+2)^{2} a_{k+4}+\left(b a_{k+2}+3 a_{k+4}\right)\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a^{2} b+a b k a_{k+1}+a^{2} a_{k+2}+a b a_{k+1}+2 a k a_{k+3}+b k a_{k+2}+6 a a_{k+3}+2 b a_{k+2}}{k^{2}+7 k+12}, a_{2}=-\frac{1}{2} a_{0} a^{2}-a_{1}\right.\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0         <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.36 (sec). Leaf size: 294
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * b * x^{\wedge} 2+b * x+2 * a\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 *\left(b * x^{\wedge} 2+1\right) * y(x)=0, y(x)\right.\), singsol \(\left.=a l l\right)\)
\[
\begin{aligned}
& y(x)=c_{1} \mathrm{e}^{-\frac{x\left(2 a^{2} b^{2} x^{2}+2 a b x^{2} \sqrt{a^{2} b^{2}}+3 a b^{2} x+3 b x \sqrt{a^{2} b^{2}}+12 a \sqrt{a^{2} b^{2}}\right)}{12 \sqrt{a^{2} b^{2}}}} \operatorname{HeunT}\left(\frac{b 3^{\frac{2}{3}}}{2\left(a^{2} b^{2}\right)^{\frac{1}{3}}},-\frac{6 a b}{\sqrt{a^{2} b^{2}}},\right. \\
&\left.-\frac{b^{2} 3^{\frac{1}{3}}}{4\left(a^{2} b^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}} a b^{2}(2 a x+1)}{6\left(a^{2} b^{2}\right)^{\frac{5}{6}}}\right) \\
&+c_{2} \mathrm{e}^{-\frac{\left(-2 a^{2} b^{2} x^{2}+2 a b x^{2} \sqrt{a^{2} b^{2}}-3 a b^{2} x+3 b x \sqrt{a^{2} b^{2}}+12 a \sqrt{a^{2} b^{2}}\right) x}{12 \sqrt{a^{2} b^{2}}}} \operatorname{HeunT}\left(\frac{b 3^{\frac{2}{3}}}{2\left(a^{2} b^{2}\right)^{\frac{1}{3}}}, \frac{6 a b}{\sqrt{a^{2} b^{2}}},\right. \\
&\left.-\frac{b^{2} 3^{\frac{1}{3}}}{4\left(a^{2} b^{2}\right)^{\frac{2}{3}}},-\frac{\left(a x+\frac{1}{2}\right) 3^{\frac{2}{3}} b^{2} a}{3\left(a^{2} b^{2}\right)^{\frac{5}{6}}}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.136 (sec). Leaf size: 57
DSolve \(\left[y\right.\) ' \(\quad[x]+\left(a * b * x^{\wedge} 2+b * x+2 * a\right) * y '[x]+a^{\wedge} 2 *\left(b * x^{\wedge} 2+1\right) * y[x]==0, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow e^{-a x}(a x+1)\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{1}{6} b K[1]^{2}(2 a K[1]+3)}}{(a K[1]+1)^{2}} d K[1]+c_{1}\right)
\]

\subsection*{27.29 problem 39}
27.29.1 Solving using Kovacic algorithm 2314
27.29.2 Maple step by step solution . 2320

Internal problem ID [10863]
Internal file name [OUTPUT/10119_Sunday_December_24_2023_05_12_39_PM_10954655/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 39 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+x\left(a b x^{2}+b c+2 a\right) y=0
\]

\subsection*{27.29.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+x\left(\left(a x^{2}+c\right) b+2 a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x^{2}+b x+c \tag{3}\\
& C=x\left(\left(a x^{2}+c\right) b+2 a\right)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{4}-2 a b x^{3}+2 a c x^{2}+b^{2} x^{2}-2 b c x-4 a x+c^{2}+2 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{4}-2 a b x^{3}+2 a c x^{2}+b^{2} x^{2}-2 b c x-4 a x+c^{2}+2 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-a x+\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} a b x^{3}+\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}-\frac{1}{2} b c x+\frac{1}{4} c^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 64: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a x^{2}}{2}-\frac{b x}{2}+\frac{c}{2}-\frac{1}{x}-\frac{b}{2 a x^{2}}+\frac{c}{a x^{3}}-\frac{b^{2}}{2 a^{2} x^{3}}+\frac{3 b c}{2 a^{2} x^{4}}-\frac{b^{3}}{2 a^{3} x^{4}}-\frac{1}{a x^{4}}-\frac{c^{2}}{a^{2} x^{5}}+\frac{2 b^{2} c}{a^{3} x^{5}}-\frac{b^{4}}{2 a^{4} x^{5}}-\frac{2 b}{a^{2} x^{5}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} c^{2}-\frac{1}{2} b c x+\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}-\frac{1}{2} a b x^{3}+\frac{1}{4} a^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is \(-\frac{b c}{2}\). Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{4}-2 a b x^{3}+2 a c x^{2}+b^{2} x^{2}-2 b c x-4 a x+c^{2}+2 b}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{4}}{4}-\frac{a b x^{3}}{2}+\left(\frac{a c}{2}+\frac{b^{2}}{4}\right) x^{2}+\left(-a-\frac{b c}{2}\right) x+\frac{b}{2}+\frac{c^{2}}{4}\right)+(0) \\
& =\frac{a^{2} x^{4}}{4}-\frac{a b x^{3}}{2}+\left(\frac{a c}{2}+\frac{b^{2}}{4}\right) x^{2}+\left(-a-\frac{b c}{2}\right) x+\frac{b}{2}+\frac{c^{2}}{4}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(-a-\frac{b c}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-a-\frac{b c}{2}\right)-\left(-\frac{b c}{2}\right) \\
& =-a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right) \quad \\
\alpha_{\infty}^{-} & \left.=\frac{1}{2}\left(-\frac{b}{a}-v\right) \quad=\frac{-a}{\frac{a}{2}}-2\right)=-2 \\
& \left.-\frac{-a}{\frac{a}{2}}-2\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-a x+\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} a b x^{3}+\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}-\frac{1}{2} b c x+\frac{1}{4} c^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\) & -2 & 0 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\right) \\
& =-\frac{1}{2} c+\frac{1}{2} b x-\frac{1}{2} a x^{2} \\
& =-\frac{1}{2} c+\frac{1}{2} b x-\frac{1}{2} a x^{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(-\frac{1}{2} c+\frac{1}{2} b x-\frac{1}{2} a x^{2}\right)(0)+\left(\left(\frac{b}{2}-a x\right)+\left(-\frac{1}{2} c+\frac{1}{2} b x-\frac{1}{2} a x^{2}\right)^{2}-\left(-a x+\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} c\right.\right.\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2} c+\frac{1}{2} b x-\frac{1}{2} a x^{2}\right) d x} \\
& =\mathrm{e}^{-\frac{\left(a x^{2}-\frac{3}{2} b x+3 c\right) x}{6}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}+b x+c}{1} d x} \\
& =z_{1} e^{-\frac{1}{6} a x^{3}-\frac{1}{4} b x^{2}-\frac{1}{2} c x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{2}+\frac{3}{2} b x+3 c\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{1}{3} a x^{3}-c x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}+b x+c}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x\left(a x^{2}+\frac{3}{2} b x+3 c\right)}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \mathrm{e}^{\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}+c x} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{1}{3} a x^{3}-c x}\right)+c_{2}\left(\mathrm{e}^{-\frac{1}{3} a x^{3}-c x}\left(\int \mathrm{e}^{\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}+c x} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{3} a x^{3}-c x}+c_{2} \mathrm{e}^{-\frac{x\left(a x^{2}+3 c\right)}{3}}\left(\int \mathrm{e}^{\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}+c x} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{3} a x^{3}-c x}+c_{2} \mathrm{e}^{-\frac{x\left(a x^{2}+3 c\right)}{3}}\left(\int \mathrm{e}^{\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}+c x} d x\right)
\]

Verified OK.

\subsection*{27.29.2 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+x\left(\left(a x^{2}+c\right) b+2 a\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\left(a x^{2}+b x+c\right) y^{\prime}-x\left(a b x^{2}+b c+2 a\right) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+x\left(a b x^{2}+b c+2 a\right) y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{1} c+2 a_{2}+\left(6 a_{3}+2 a_{2} c+a_{1} b+a_{0}(b c+2 a)\right) x+\left(12 a_{4}+3 a_{3} c+2 a_{2} b+a_{1}(b c+3 a)\right) x^{2}+\left(\sum_{k=3}^{\infty}\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} c=0,6 a_{3}+2 a_{2} c+a_{1} b+a_{0}(b c+2 a)=0,12 a_{4}+3 a_{3} c+2 a_{2} b+a_{1}(b c+3 a)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{1} c}{2}, a_{3}=-\frac{1}{6} a_{0} b c+\frac{1}{6} a_{1} c^{2}-\frac{1}{3} a_{0} a-\frac{1}{6} a_{1} b, a_{4}=\frac{1}{24} a_{0} b c^{2}-\frac{1}{24} a_{1} c^{3}+\frac{1}{12} a_{0} a c+\frac{1}{24} a_{1} b c-\frac{1}{4} a\right.
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k-1}+b a_{k}+a_{k+1} c+3 a_{k+2}\right) k+(b c+a) a_{k-1}+a_{k-3} a b+a_{k+1} c+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\((k+3)^{2} a_{k+5}+\left(a a_{k+2}+b a_{k+3}+a_{k+4} c+3 a_{k+5}\right)(k+3)+(b c+a) a_{k+2}+a_{k} a b+a_{k+4} c+2 a_{k+5}\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+5}=-\frac{a_{k} a b+a k a_{k+2}+b c a_{k+2}+b k a_{k+3}+c k a_{k+4}+4 a a_{k+2}+3 b a_{k+3}+4 a_{k+4} c}{k^{2}+9 k+20}, a_{2}=-\frac{a_{1} c}{2}, a_{3}=-\frac{1}{6} a\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0         <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.344 (sec). Leaf size: 169
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+x *\left(a * b * x^{\wedge} 2+b * c+2 * a\right) * y(x)=0, y(x), \quad\right.\) singsol \(=a l\)
\(y(x)\)
\(=c_{1} \mathrm{e}^{-\frac{x \operatorname{csgn}(a)\left(\left(a x^{2}+\frac{3}{2} b x+3 c\right) \operatorname{csgn}(a)+a x^{2}-\frac{3 b x}{2}+3 c\right)}{6}} \operatorname{HeunT}\left(0,3 \operatorname{csgn}(a), \frac{3^{\frac{1}{3}}\left(4 a c-b^{2}\right)}{4\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}} a(2 a x-b)}{6\left(a^{2}\right)^{\frac{5}{6}}}\right)\)
\(+c_{2} \mathrm{e}^{-\frac{x\left(\left(a x^{2}+\frac{3}{2} b x+3 c\right) \operatorname{csgn}(a)-a x^{2}+\frac{3 b x}{2}-3 c\right) \operatorname{csgn}(a)}{6}} \operatorname{HeunT}\left(0,-3 \operatorname{csgn}(a), \frac{3^{\frac{1}{3}}\left(4 a c-b^{2}\right)}{4\left(a^{2}\right)^{\frac{2}{3}}}\right.\),
\[
\left.-\frac{3^{\frac{2}{3}}\left(a x-\frac{b}{2}\right) a}{3\left(a^{2}\right)^{\frac{5}{6}}}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.085 (sec). Leaf size: 59
DSolve \(\left[y\right.\) ' \([x]+\left(a * x^{\wedge} 2+b * x+c\right) * y\) ' \([x]+x *\left(a * b * x^{\wedge} 2+b * c+2 * a\right) * y[x]==0, y[x], x\), IncludeSingularSolution
\[
y(x) \rightarrow e^{-\frac{1}{3} x\left(a x^{2}+3 c\right)}\left(c_{2} \int_{1}^{x} \exp \left(\frac{1}{6} K[1](6 c+K[1](2 a K[1]-3 b))\right) d K[1]+c_{1}\right)
\]

\subsection*{27.30 problem 40}
27.30.1 Solving using Kovacic algorithm 2324
27.30.2 Maple step by step solution . 2330

Internal problem ID [10864]
Internal file name [OUTPUT/10120_Sunday_December_24_2023_05_12_40_PM_89868459/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+\left(a b x^{3}+a c x^{2}+b\right) y=0
\]

\subsection*{27.30.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+\left(x^{2}(b x+c) a+b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x^{2}+b x+c \tag{3}\\
& C=x^{2}(b x+c) a+b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{4}-2 a b x^{3}-2 a c x^{2}+b^{2} x^{2}+2 b c x+4 a x+c^{2}-2 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{4}-2 a b x^{3}-2 a c x^{2}+b^{2} x^{2}+2 b c x+4 a x+c^{2}-2 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(a x-\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} a b x^{3}-\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}+\frac{1}{2} b c x+\frac{1}{4} c^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 66: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a x^{2}}{2}-\frac{b x}{2}-\frac{c}{2}+\frac{1}{x}+\frac{b}{2 a x^{2}}+\frac{c}{a x^{3}}+\frac{b^{2}}{2 a^{2} x^{3}}+\frac{3 b c}{2 a^{2} x^{4}}+\frac{b^{3}}{2 a^{3} x^{4}}-\frac{1}{a x^{4}}+\frac{c^{2}}{a^{2} x^{5}}+\frac{2 b^{2} c}{a^{3} x^{5}}+\frac{b^{4}}{2 a^{4} x^{5}}-\frac{2 b}{a^{2} x^{5}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} c^{2}+\frac{1}{2} b c x-\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}-\frac{1}{2} a b x^{3}+\frac{1}{4} a^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is \(\frac{b c}{2}\). Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{4}-2 a b x^{3}-2 a c x^{2}+b^{2} x^{2}+2 b c x+4 a x+c^{2}-2 b}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{4}}{4}-\frac{a b x^{3}}{2}+\left(-\frac{a c}{2}+\frac{b^{2}}{4}\right) x^{2}+\left(\frac{b c}{2}+a\right) x-\frac{b}{2}+\frac{c^{2}}{4}\right)+(0) \\
& =\frac{a^{2} x^{4}}{4}-\frac{a b x^{3}}{2}+\left(-\frac{a c}{2}+\frac{b^{2}}{4}\right) x^{2}+\left(\frac{b c}{2}+a\right) x-\frac{b}{2}+\frac{c^{2}}{4}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{b c}{2}+a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{b c}{2}+a\right)-\left(\frac{b c}{2}\right) \\
& =a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2} & \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right) & =\frac{1}{2}\left(\frac{a}{\frac{a}{2}}-2\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right) & =\frac{1}{2}\left(-\frac{a}{\frac{a}{2}}-2\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=a x-\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} a b x^{3}-\frac{1}{2} a c x^{2}+\frac{1}{4} b^{2} x^{2}+\frac{1}{2} b c x+\frac{1}{4} c^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\) & 0 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=0\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\right) \\
& =-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2} \\
& =-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\right)(0)+\left(\left(a x-\frac{b}{2}\right)+\left(-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\right)^{2}-\left(a x-\frac{1}{2} b+\frac{1}{4} a^{2} x^{4}-\frac{1}{2} a b\right.\right.\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2} c-\frac{1}{2} b x+\frac{1}{2} a x^{2}\right) d x} \\
& =\mathrm{e}^{-\frac{1}{2} c x-\frac{1}{4} b x^{2}+\frac{1}{6} a x^{3}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}+b x+c}{1} d x} \\
& =z_{1} e^{-\frac{1}{6} a x^{3}-\frac{1}{4} b x^{2}-\frac{1}{2} c x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{2}+\frac{3}{2} b x+3 c\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x(b x+2 c)}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}+b x+c}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x\left(a x^{2}+\frac{3}{2} b x+3 c\right)}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \mathrm{e}^{-\frac{\left(a x^{2}-\frac{3}{2} b x-3 c\right) x}{3}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x(b x+2 c)}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x(b x+2 c)}{2}}\left(\int \mathrm{e}^{-\frac{\left(a x^{2}-\frac{3}{2} b x-3 c\right) x}{3}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x(b x+2 c)}{2}}+c_{2} \mathrm{e}^{-\frac{x(b x+2 c)}{2}}\left(\int \mathrm{e}^{-\frac{\left(a x^{2}-\frac{3}{2} b x-3 c\right) x}{3}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x(b x+2 c)}{2}}+c_{2} \mathrm{e}^{-\frac{x(b x+2 c)}{2}}\left(\int \mathrm{e}^{-\frac{\left(a x^{2}-\frac{3}{2} b x-3 c\right) x}{3}} d x\right)
\]

Verified OK.

\subsection*{27.30.2 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+\left(x^{2}(b x+c) a+b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\left(-a b x^{3}-a c x^{2}-b\right) y-\left(a x^{2}+b x+c\right) y^{\prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+\left(a b x^{3}+a c x^{2}+b\right) y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} b+a_{1} c+2 a_{2}+\left(2 a_{1} b+2 a_{2} c+6 a_{3}\right) x+\left(a_{0} a c+a_{1} a+3 a_{2} b+3 a_{3} c+12 a_{4}\right) x^{2}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k+2}(k\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{1} c+a_{0} b=0,2 a_{1} b+2 a_{2} c+6 a_{3}=0, a_{0} a c+a_{1} a+3 a_{2} b+3 a_{3} c+12 a_{4}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=-\frac{a_{0} b}{2}-\frac{a_{1} c}{2}, a_{3}=\frac{1}{6} a_{0} b c+\frac{1}{6} a_{1} c^{2}-\frac{1}{3} a_{1} b, a_{4}=-\frac{1}{24} a_{0} b c^{2}-\frac{1}{24} a_{1} c^{3}-\frac{1}{12} a_{0} a c+\frac{1}{8} a_{0} b^{2}+\frac{5}{24} a_{1} b\right.\)
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(a a_{k-1}+a_{k} b+a_{k+1} c+3 a_{k+2}\right) k+\left(b a_{k-3}+c a_{k-2}-a_{k-1}\right) a+a_{k} b+a_{k+1} c+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\[
(k+3)^{2} a_{k+5}+\left(a a_{k+2}+a_{k+3} b+a_{k+4} c+3 a_{k+5}\right)(k+3)+\left(a_{k} b+a_{k+1} c-a_{k+2}\right) a+a_{k+3} b+a_{k+}
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+5}=-\frac{a_{k} a b+a c a_{k+1}+a k a_{k+2}+b k a_{k+3}+c k a_{k+4}+2 a a_{k+2}+4 a_{k+3} b+4 a_{k+4} c}{k^{2}+9 k+20}, a_{2}=-\frac{a_{0} b}{2}-\frac{a_{1} c}{2}, a_{3}=\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0         <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.344 (sec). Leaf size: 165
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge} 3+a * c * x^{\wedge} 2+b\right) * y(x)=0, y(x)\right.\), singsol \(=a l\)
\[
\begin{aligned}
y(x)= & c_{1} \mathrm{e}^{-\frac{x \operatorname{csgn}(a)\left(\left(a x^{2}+\frac{3}{2} b x+3 c\right) \operatorname{csgn}(a)+a x^{2}-\frac{3 b x}{2}-3 c\right)}{6}} \text { HeunT }(0,-3 \operatorname{csgn}(a), \\
& \left.-\frac{3^{\frac{1}{3}}\left(4 a c+b^{2}\right)}{4\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}} a(2 a x-b)}{6\left(a^{2}\right)^{\frac{5}{6}}}\right) \\
+ & c_{2} \mathrm{e}^{-\frac{x \operatorname{csgn}(a)\left(\left(a x^{2}+\frac{3}{2} b x+3 c\right) \operatorname{csgn}(a)-a x^{2}+\frac{3 b x}{2}+3 c\right)}{6}} \operatorname{HeunT}\left(0,3 \operatorname{csgn}(a),-\frac{3^{\frac{1}{3}}\left(4 a c+b^{2}\right)}{4\left(a^{2}\right)^{\frac{2}{3}}},\right. \\
& \left.-\frac{3^{\frac{2}{3}}\left(a x-\frac{b}{2}\right) a}{3\left(a^{2}\right)^{\frac{5}{6}}}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.096 (sec). Leaf size: 57
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * x^{\wedge} 2+b * x+c\right) * y\right.\) ' \([x]+\left(a * b * x^{\wedge} 3+a * c * x^{\wedge} 2+b\right) * y[x]==0, y[x], x\), IncludeSingularSolution
\[
y(x) \rightarrow e^{-\frac{1}{2} x(b x+2 c)}\left(c_{2} \int_{1}^{x} \exp \left(\frac{1}{6} K[1](6 c+K[1](3 b-2 a K[1]))\right) d K[1]+c_{1}\right)
\]

\subsection*{27.31 problem 41}
27.31.1 Solving using Kovacic algorithm 2334
27.31.2 Maple step by step solution . 2340

Internal problem ID [10865]
Internal file name [OUTPUT/10121_Sunday_December_24_2023_05_12_41_PM_73326468/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a x^{3}+2 b\right) y^{\prime}+\left(a b x^{3}-a x^{2}+b^{2}\right) y=0
\]

\subsection*{27.31.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(a x^{3}+2 b\right) y^{\prime}+\left(a b x^{3}-a x^{2}+b^{2}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=a x^{3}+2 b \tag{3}\\
& C=a b x^{3}-a x^{2}+b^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a x^{2}\left(a x^{4}+10\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a x^{2}\left(a x^{4}+10\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a x^{2}\left(a x^{4}+10\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 68: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-6 \\
& =-6
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -6 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-6\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{6}{2}=3
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{3} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{3}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x^{3}}{2}+\frac{5}{2 x}-\frac{25}{4 a x^{5}}+\frac{125}{4 a^{2} x^{9}}-\frac{3125}{16 a^{3} x^{13}}+\frac{21875}{16 a^{4} x^{17}}-\frac{328125}{32 a^{5} x^{21}}+\frac{2578125}{32 a^{6} x^{25}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=3\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{3} a_{i} x^{i} \\
& =\frac{a x^{3}}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{2}=x^{2}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{a^{2} x^{6}}{4}
\]

This shows that the coefficient of \(x^{2}\) in the above is 0 . Now we need to find the coefficient of \(x^{2}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=3\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x^{2}\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a x^{2}\left(a x^{4}+10\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{5}{2} a x^{2}+\frac{1}{4} a^{2} x^{6}\right)+(0) \\
& =\frac{5}{2} a x^{2}+\frac{1}{4} a^{2} x^{6}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{5 a}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{5 a}{2}\right)-(0) \\
& =\frac{5 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x^{3}}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{5 a}{2}}{\frac{a}{2}}-3\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{5 a}{2}}{\frac{a}{2}}-3\right)=-4
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a x^{2}\left(a x^{4}+10\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-6 & \(\frac{a x^{3}}{2}\) & 1 & -4 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{a x^{3}}{2}\right) \\
& =\frac{a x^{3}}{2} \\
& =\frac{a x^{3}}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a x^{3}}{2}\right)(1)+\left(\left(\frac{3 a x^{2}}{2}\right)+\left(\frac{a x^{3}}{2}\right)^{2}-\left(\frac{a x^{2}\left(a x^{4}+10\right)}{4}\right)\right)=0 \\
-a x^{2} a_{0}=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=0\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int \frac{a x^{3}}{2} d x} \\
& =(x) \mathrm{e}^{\frac{a x^{4}}{8}} \\
& =x \mathrm{e}^{\frac{a x^{4}}{8}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{3}+2 b}{1} d x} \\
& =z_{1} e^{-\frac{1}{8} a x^{4}-b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{3}+8 b\right)}{8}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-b x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{3}+2 b}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{4} a x^{4}-2 b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{-\frac{a x^{4}}{4}}}{x^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-b x}\right)+c_{2}\left(x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{4}}{4}}}{x^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-b x}+c_{2} x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{4}}{4}}}{x^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-b x}+c_{2} x \mathrm{e}^{-b x}\left(\int \frac{\mathrm{e}^{-\frac{a x^{4}}{4}}}{x^{2}} d x\right)
\]

Verified OK.

\subsection*{27.31.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(a x^{3}+2 b\right) y^{\prime}+\left(a b x^{3}-a x^{2}+b^{2}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} b^{2}+2 a_{1} b+2 a_{2}+\left(a_{1} b^{2}+4 a_{2} b+6 a_{3}\right) x+\left(a_{2} b^{2}-a_{0} a+6 a_{3} b+12 a_{4}\right) x^{2}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k+2}(k+2)(\right.\right.
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} b^{2}+2 a_{1} b=0, a_{1} b^{2}+4 a_{2} b+6 a_{3}=0, a_{2} b^{2}-a_{0} a+6 a_{3} b+12 a_{4}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{1}{2} a_{0} b^{2}-a_{1} b, a_{3}=\frac{1}{3} a_{0} b^{3}+\frac{1}{2} a_{1} b^{2}, a_{4}=-\frac{1}{8} a_{0} b^{4}-\frac{1}{6} a_{1} b^{3}+\frac{1}{12} a_{0} a\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k} b^{2}+\left(a a_{k-3}+2 k a_{k+1}+2 a_{k+1}\right) b+k^{2} a_{k+2}+\left(a_{k-2} a+3 a_{k+2}\right) k-3 a_{k-2} a+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\[
a_{k+3} b^{2}+\left(a_{k} a+2(k+3) a_{k+4}+2 a_{k+4}\right) b+(k+3)^{2} a_{k+5}+\left(a_{k+1} a+3 a_{k+5}\right)(k+3)-3 a_{k+1} a+2
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+5}=-\frac{a_{k} a b+a k a_{k+1}+a_{k+3} b^{2}+2 b k a_{k+4}+8 b a_{k+4}}{k^{2}+9 k+20}, a_{2}=-\frac{1}{2} a_{0} b^{2}-a_{1} b, a_{3}=\frac{1}{3} a_{0} b^{3}+\frac{1}{2} a_{1} b^{2},\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 85
```

dsolve(diff (y (x),x\$2)+(a*x^3+2*b)*diff (y(x),x)+(a*b*x^3-a*\mp@subsup{x}{}{\wedge}2+b^^2)*y(x)=0,y(x), singsol=all)
y(x)
=}\frac{\frac{7\mp@subsup{2}{}{\frac{1}{4}}\mp@subsup{c}{2}{}a(\mp@subsup{x}{}{4}a\mp@subsup{)}{}{\frac{3}{8}}(\mp@subsup{x}{}{4}a+3)\mp@subsup{\textrm{e}}{}{-\frac{x(a\mp@subsup{x}{}{3}+4b)}{4}}}{8}+\mp@subsup{\textrm{e}}{}{-\frac{x(a\mp@subsup{x}{}{3}+8b)}{8}}\operatorname{WhittakerM (\frac{3}{8},\frac{7}{8},\frac{\mp@subsup{x}{}{4}a}{4})\mp@subsup{c}{2}{}\mp@subsup{a}{}{2}\mp@subsup{x}{}{4}+\mp@subsup{\textrm{e}}{}{-bx}\mp@subsup{c}{1}{}\mp@subsup{x}{}{\frac{5}{2}}}}{\mp@subsup{x}{}{\frac{3}{2}}

```
\(\checkmark\) Solution by Mathematica
Time used: 0.431 (sec). Leaf size: 51
DSolve \(\left[y\right.\) '' \([x]+\left(a * x^{\wedge} 3+2 * b\right) * y\) ' \([x]+\left(a * b * x^{\wedge} 3-a * x^{\wedge} 2+b^{\wedge} 2\right) * y[x]==0, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{1}{8} e^{-b x}\left(8 c_{1} x-\sqrt{2} c_{2} \sqrt[4]{a x^{4}} \Gamma\left(-\frac{1}{4}, \frac{a x^{4}}{4}\right)\right)
\]

\subsection*{27.32 problem 42}
27.32.1 Solving using Kovacic algorithm 2343
27.32.2 Solving as second order ode lagrange adjoint equation method od 2350
27.32.3 Maple step by step solution

2354
Internal problem ID [10866]
Internal file name [OUTPUT/10122_Sunday_December_24_2023_05_12_41_PM_63694197/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a x^{3}+b x\right) y^{\prime}+2\left(2 a x^{2}+b\right) y=0
\]

\subsection*{27.32.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(4 a x^{2}+2 b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=x\left(a x^{2}+b\right) \tag{3}\\
& C=4 a x^{2}+2 b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{6}+2 a b x^{4}+b^{2} x^{2}-10 a x^{2}-6 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{6}+2 a b x^{4}+b^{2} x^{2}-10 a x^{2}-6 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{5}{2} a x^{2}-\frac{3}{2} b+\frac{1}{4} a^{2} x^{6}+\frac{1}{2} a b x^{4}+\frac{1}{4} b^{2} x^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 70: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-6 \\
& =-6
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -6 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-6\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{6}{2}=3
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{3} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{3}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a x^{3}}{2}+\frac{b x}{2}-\frac{5}{2 x}+\frac{b}{a x^{3}}-\frac{b^{2}}{a^{2} x^{5}}-\frac{25}{4 a x^{5}}+\frac{b^{3}}{a^{3} x^{7}}+\frac{45 b}{4 a^{2} x^{7}}-\frac{b^{4}}{a^{4} x^{9}}-\frac{69 b^{2}}{4 a^{3} x^{9}}-\frac{125}{4 a^{2} x^{9}}+\frac{b^{5}}{a^{5} x^{11}}+\frac{97 b^{3}}{4 a^{4} x^{11}}+\frac{100 b}{a^{3} x^{11}}+\).

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=3\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{3} a_{i} x^{i} \\
& =\frac{1}{2} b x+\frac{1}{2} a x^{3} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{2}=x^{2}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2} x^{2}+\frac{1}{2} a b x^{4}+\frac{1}{4} a^{2} x^{6}
\]

This shows that the coefficient of \(x^{2}\) in the above is \(\frac{b^{2}}{4}\). Now we need to find the coefficient of \(x^{2}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=3\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x^{2}\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{6}+2 a b x^{4}+b^{2} x^{2}-10 a x^{2}-6 b}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{a^{2} x^{6}}{4}+\frac{a b x^{4}}{2}+\left(-\frac{5 a}{2}+\frac{b^{2}}{4}\right) x^{2}-\frac{3 b}{2}\right)+(0) \\
& =\frac{a^{2} x^{6}}{4}+\frac{a b x^{4}}{2}+\left(-\frac{5 a}{2}+\frac{b^{2}}{4}\right) x^{2}-\frac{3 b}{2}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(-\frac{5 a}{2}+\frac{b^{2}}{4}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-\frac{5 a}{2}+\frac{b^{2}}{4}\right)-\left(\frac{b^{2}}{4}\right) \\
& =-\frac{5 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} b x+\frac{1}{2} a x^{3} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{5 a}{2}}{\frac{a}{2}}-3\right)=-4 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{5 a}{2}}{\frac{a}{2}}-3\right)=1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{5}{2} a x^{2}-\frac{3}{2} b+\frac{1}{4} a^{2} x^{6}+\frac{1}{2} a b x^{4}+\frac{1}{4} b^{2} x^{2}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-6 & \(\frac{1}{2} b x+\frac{1}{2} a x^{3}\) & -4 & 1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=1\), and since there are no poles then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{1}{2} b x+\frac{1}{2} a x^{3}\right) \\
& =-\frac{1}{2} b x-\frac{1}{2} a x^{3} \\
& =-\frac{x\left(a x^{2}+b\right)}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(-\frac{1}{2} b x-\frac{1}{2} a x^{3}\right)(1)+\left(\left(-\frac{b}{2}-\frac{3 a x^{2}}{2}\right)+\left(-\frac{1}{2} b x-\frac{1}{2} a x^{3}\right)^{2}-\left(-\frac{5}{2} a x^{2}-\frac{3}{2} b+\frac{1}{4} a^{2} x^{6}+\frac{1}{2} a b x\right.\right.\)

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=0\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int\left(-\frac{1}{2} b x-\frac{1}{2} a x^{3}\right) d x} \\
& =(x) \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{8 a}} \\
& =x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{8 a}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x\left(a x^{2}+b\right)}{1} d x} \\
& =z_{1} e^{-\frac{\left(a x^{2}+b\right)^{2}}{8 a}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{8 a}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x\left(a x^{2}+b\right)}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{\frac{\left(a x^{2}+b\right)^{2}}{4 a}}}{x^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}\right)+c_{2}\left(x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}\left(\int \frac{\mathrm{e}^{\frac{\left(a x^{2}+b\right)^{2}}{4 a}}}{x^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}+c_{2} x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}\left(\int \frac{\mathrm{e}^{\frac{\left(a x^{2}+b\right)^{2}}{4 a}}}{x^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}+c_{2} x \mathrm{e}^{-\frac{\left(a x^{2}+b\right)^{2}}{4 a}}\left(\int \frac{\mathrm{e}^{\frac{\left(a x^{2}+b\right)^{2}}{4 a}}}{x^{2}} d x\right)
\]

Verified OK.

\subsection*{27.32.2 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(4 a x^{2}+2 b\right) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =x\left(a x^{2}+b\right) \\
q(x) & =4 a x^{2}+2 b \\
r(x) & =0
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-\left(x\left(a x^{2}+b\right) \xi(x)\right)^{\prime}+\left(\left(4 a x^{2}+2 b\right) \xi(x)\right) & =0 \\
\xi^{\prime \prime}(x)-x\left(a x^{2}+b\right) \xi^{\prime}(x)+\left(a x^{2}+b\right) \xi(x) & =0
\end{aligned}
\]

Which is solved for \(\xi(x)\). In normal form the ode
\[
\begin{equation*}
\xi^{\prime \prime}(x)+\left(-a x^{3}-b x\right) \xi^{\prime}(x)+\left(a x^{2}+b\right) \xi(x)=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
\xi^{\prime \prime}(x)+p(x) \xi^{\prime}(x)+q(x) \xi(x)=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =-a x^{3}-b x \\
q(x) & =a x^{2}+b
\end{aligned}
\]

Applying change of variables on the depndent variable \(\xi(x)=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(\xi(x)\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(-a x^{3}-b x\right)}{x}+a x^{2}+b=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-a x^{3}-b x\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}-a x^{3}-b x\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}-a x^{3}-b x\right) u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(a x^{4}+b x^{2}-2\right)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{a x^{4}+b x^{2}-2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{a x^{4}+b x^{2}-2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{a x^{4}+b x^{2}-2}{x} d x \\
\ln (u) & =\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int c_{1} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
\xi(x) & =v(x) x^{n} \\
& =\left(\int c_{1} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x \\
& =\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x^{2}\left(a x^{2}+2 b\right)}{4}}}{x^{2}} d x\right)+c_{2}\right) x
\end{aligned}
\]

The original ode (2) now reduces to first order ode
\[
\begin{aligned}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(x\left(a x^{2}+b\right)-\frac{c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} x+\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x}\right) & =0
\end{aligned}
\]

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is
\[
\begin{aligned}
& y^{\prime}=F(x, y) \\
&=f(x) g(y) \\
&\left.=-\frac{y\left(\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln (x)\right.\right.}{} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x} \\
&\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x
\end{aligned}
\]

Where \(f(x)=-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln (x) d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} x-\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\right.}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
& \frac{1}{y} d y=-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2}}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x} \\
& \int \frac{1}{y} d y=\int-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}}}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x} \\
& \ln (y)=\int-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}}}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x} \\
& y=\mathrm{e}^{\left.\int-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln (x)\right.}{} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln (x) d x\right) b x^{2}+c_{2} b x^{2}-c_{3} e^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x) x-\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln \right.}} \underset{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x}{x} \\
& =c_{3} \mathrm{e}-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}}+\frac{b x^{2}}{2}-2 \ln (x) d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} x-\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-}\right.}{\left(\int c_{3} \mathrm{e}^{\frac{a x}{4}}+\frac{b x^{2}}{2}-2 \ln (x) d x+c_{2}\right) x}
\end{aligned}
\]

Hence, the solution found using Lagrange adjoint equation method is

\section*{\(y\)}
\(=c_{3} \mathrm{e}\)
\[
\int-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} x-\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right)-d}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x}
\]

Summary
The solution(s) found are the following
\(y\)
\(=c_{3} \mathrm{e}\)
\[
\begin{equation*}
\int-\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) a x^{4}+c_{2} a x^{4}+\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right) b x^{2}+c_{2} b x^{2}-c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} x-\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x\right)-c}{\left(\int c_{3} \mathrm{e}^{\frac{a x^{4}}{4}+\frac{b x^{2}}{2}-2 \ln (x)} d x+c_{2}\right) x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\(y\)

Verified OK.

\subsection*{27.32.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(4 a x^{2}+2 b\right) y=0\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(2 a_{0} b+2 a_{2}+\left(3 a_{1} b+6 a_{3}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k} b(k+2)+a_{k-2} a(k+2)\right) x^{k}\right)=0\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\(\left[2 a_{0} b+2 a_{2}=0,3 a_{1} b+6 a_{3}=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=-a_{0} b, a_{3}=-\frac{a_{1} b}{2}\right\}\)
- \(\quad\) Each term in the series must be 0 , giving the recursion relation \((k+2)\left(a_{k-2} a+a_{k} b+k a_{k+2}+a_{k+2}\right)=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
(k+4)\left(a_{k} a+a_{k+2} b+(k+2) a_{k+4}+a_{k+4}\right)=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k} a+a_{k+2} b}{k+3}, a_{2}=-a_{0} b, a_{3}=-\frac{a_{1} b}{2}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     -> Mathieu         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.406 (sec). Leaf size: 70
```

dsolve(diff(y(x),x\$2)+(a*x^3+b*x)*diff(y(x),x)+2*(2*a*x^2+b)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{\left(a x^{2}+2 b\right) x^{2}}{4}}(\operatorname{HeunB}(& \left.\frac{1}{2}, \frac{b}{\sqrt{a}}, \frac{5}{2},-\frac{3 b}{2 \sqrt{a}}, \frac{\sqrt{a} x^{2}}{2}\right) c_{1} x \\
& \left.+\operatorname{HeunB}\left(-\frac{1}{2}, \frac{b}{\sqrt{a}}, \frac{5}{2},-\frac{3 b}{2 \sqrt{a}}, \frac{\sqrt{a} x^{2}}{2}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.589 (sec). Leaf size: 63
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * x^{\wedge} 3+b * x\right) * y^{\prime}[x]+2 *\left(2 * a * x^{\wedge} 2+b\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow x e^{-\frac{1}{4} x^{2}\left(a x^{2}+2 b\right)}\left(c_{2} \int_{1}^{x} \frac{e^{\frac{1}{4}\left(a K[1]^{4}+2 b K[1]^{2}\right)}}{K[1]^{2}} d K[1]+c_{1}\right)
\]

\subsection*{27.33 problem 43}
27.33.1 Solving using Kovacic algorithm 2358
27.33.2 Maple step by step solution . 2365

Internal problem ID [10867]
Internal file name [OUTPUT/10123_Sunday_December_24_2023_05_12_43_PM_85035290/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a b x^{3}+b x^{2}+2 a\right) y^{\prime}+a^{2}\left(x^{3} b+1\right) y=0
\]

\subsection*{27.33.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(\left(a x^{3}+x^{2}\right) b+2 a\right) y^{\prime}+a^{2}\left(x^{3} b+1\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=\left(a x^{3}+x^{2}\right) b+2 a \tag{3}\\
& C=a^{2}\left(x^{3} b+1\right)
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10 a x+4\right)}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10 a x+4\right) \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10 a x+4\right)}{4}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 72: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-6 \\
& =-6
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -6 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-6\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{6}{2}=3
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{3} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{3}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a b x^{3}}{2}+\frac{b x^{2}}{2}+\frac{5}{2 x}-\frac{3}{2 a x^{2}}+\frac{3}{2 a^{2} x^{3}}-\frac{25}{4 a b x^{5}}-\frac{3}{2 a^{3} x^{4}}+\frac{55}{4 a^{2} b x^{6}}+\frac{3}{2 a^{4} x^{5}}-\frac{3}{2 a^{5} x^{6}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a b}{2}
\]

From Eq. (9) the sum up to \(v=3\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{3} a_{i} x^{i} \\
& =\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{2}=x^{2}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2} x^{4}+\frac{1}{2} a b^{2} x^{5}+\frac{1}{4} a^{2} b^{2} x^{6}
\]

This shows that the coefficient of \(x^{2}\) in the above is 0 . Now we need to find the coefficient of \(x^{2}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=3\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x^{2}\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10 a x+4\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{5}{2} a b x^{2}+b x+\frac{1}{4} a^{2} b^{2} x^{6}+\frac{1}{2} a b^{2} x^{5}+\frac{1}{4} b^{2} x^{4}\right)+(0) \\
& =\frac{5}{2} a b x^{2}+b x+\frac{1}{4} a^{2} b^{2} x^{6}+\frac{1}{2} a b^{2} x^{5}+\frac{1}{4} b^{2} x^{4}
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{5 a b}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{5 a b}{2}\right)-(0) \\
& =\frac{5 a b}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right) \quad=\frac{1}{2}\left(\frac{\frac{5 a b}{2}}{\frac{a b}{2}}-3\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right) \quad=\frac{1}{2}\left(-\frac{\frac{5 a b}{2}}{\frac{a b}{2}}-3\right)=-4
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10 a x+4\right)}{4}
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-6 & \(\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3}\) & 1 & -4 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3}\right) \\
& =\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3} \\
& =\frac{b x^{2}(a x+1)}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3}\right)(1)+\left(\left(\frac{3}{2} a b x^{2}+b x\right)+\left(\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3}\right)^{2}-\left(\frac{b x\left(a^{2} b x^{5}+2 a b x^{4}+x^{3} b+10\right.}{4}\right.\right.\)

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{1}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{1}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\int\left(\frac{1}{2} b x^{2}+\frac{1}{2} a b x^{3}\right) d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\frac{b\left(\frac{1}{4} a x^{4}+\frac{1}{3} x^{3}\right)}{2}} \\
& =\frac{(a x+1) \mathrm{e}^{\frac{1}{8} a b x^{4}+\frac{1}{6} x^{3} b}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{\left(a x^{3}+x^{2}\right) b+2 a}{1} d x} \\
& =z_{1} e^{-\frac{1}{8} a b x^{4}-\frac{1}{6} x^{3} b-a x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a b x^{3}+\frac{4}{3} b x^{2}+8 a\right)}{8}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{(a x+1) \mathrm{e}^{-a x}}{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{\left(a x^{3}+x^{2}\right) b+2 a}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x\left(a b x^{3}+\frac{4}{3} b x^{2}+8 a\right)}{4}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{a^{2} \mathrm{e}^{-\frac{x^{3}\left(a x+\frac{4}{3}\right) b}{4}}}{(a x+1)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\right)+c_{2}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\left(\int \frac{a^{2} \mathrm{e}^{-\frac{x^{3}\left(a x+\frac{4}{3}\right) b}{4}}}{(a x+1)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{\mathrm{e}^{-\frac{x^{3}\left(a x+\frac{4}{3}\right) b}{4}}}{(a x+1)^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{\mathrm{e}^{-\frac{x^{3}\left(a x+\frac{4}{3}\right) b}{4}}}{(a x+1)^{2}} d x\right)
\]

Verified OK.

\subsection*{27.33.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(\left(a x^{3}+x^{2}\right) b+2 a\right) y^{\prime}+a^{2}\left(x^{3} b+1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\left(a b x^{3}+b x^{2}+2 a\right) y^{\prime}-a^{2}\left(x^{3} b+1\right) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(a b x^{3}+b x^{2}+2 a\right) y^{\prime}+a^{2}\left(x^{3} b+1\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
a_{0} a^{2}+2 a_{1} a+2 a_{2}+\left(a_{1} a^{2}+4 a a_{2}+6 a_{3}\right) x+\left(a_{2} a^{2}+6 a a_{3}+a_{1} b+12 a_{4}\right) x^{2}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k+2}(k+2)\right.\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0} a^{2}+2 a_{1} a=0, a_{1} a^{2}+4 a a_{2}+6 a_{3}=0, a_{2} a^{2}+6 a a_{3}+a_{1} b+12 a_{4}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{1}{2} a_{0} a^{2}-a_{1} a, a_{3}=\frac{1}{3} a_{0} a^{3}+\frac{1}{2} a_{1} a^{2}, a_{4}=-\frac{1}{8} a_{0} a^{4}-\frac{1}{6} a_{1} a^{3}-\frac{1}{12} a_{1} b\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(b a_{k-3}+a_{k}\right) a^{2}+\left(a_{k-2}(k-2) b+2 a_{k+1}(k+1)\right) a+a_{k-1}(k-1) b+a_{k+2}(k+2)(k+1)=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\[
\left(b a_{k}+a_{k+3}\right) a^{2}+\left(a_{k+1}(k+1) b+2 a_{k+4}(k+4)\right) a+a_{k+2}(k+2) b+a_{k+5}(k+5)(k+4)=0
\]
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+5}=-\frac{a_{k} a^{2} b+a b k a_{k+1}+a^{2} a_{k+3}+a b a_{k+1}+2 a k a_{k+4}+b k a_{k+2}+8 a a_{k+4}+2 b a_{k+2}}{(k+5)(k+4)}, a_{2}=-\frac{1}{2} a_{0} a^{2}-a_{1}\right.\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.437 (sec). Leaf size: 41
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * b * x^{\wedge} 3+b * x^{\wedge} 2+2 * a\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 *\left(b * x^{\wedge} 3+1\right) * y(x)=0, y(x)\right.\), singsol=al
\[
y(x)=\mathrm{e}^{-a x}\left(c_{2}\left(\int \frac{\mathrm{e}^{-\frac{b x^{3}\left(a x+\frac{4}{3}\right)}{4}}}{(a x+1)^{2}} d x\right)+c_{1}\right)(a x+1)
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.356 (sec). Leaf size: 57
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * b * x^{\wedge} 3+b * x^{\wedge} 2+2 * a\right) * y '[x]+a^{\wedge} 2 *\left(b * x^{\wedge} 3+1\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolution
\[
y(x) \rightarrow e^{-a x}(a x+1)\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{1}{12} b K[1]^{3}(3 a K[1]+4)}}{(a K[1]+1)^{2}} d K[1]+c_{1}\right)
\]

\subsection*{27.34 problem 44}
27.34.1 Solving as second order ode missing y ode 2369
27.34.2 Maple step by step solution . 2371

Internal problem ID [10868]
Internal file name [OUTPUT/10124_Sunday_December_24_2023_05_12_44_PM_40460358/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```
\[
y^{\prime \prime}+a x^{n} y^{\prime}=0
\]

\subsection*{27.34.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)+a x^{n} p(x)=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-a x^{n} p
\end{aligned}
\]

Where \(f(x)=-a x^{n}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =-a x^{n} d x \\
\int \frac{1}{p} d p & =\int-a x^{n} d x \\
\ln (p) & =-\frac{a x^{1+n}}{1+n}+c_{1} \\
p & =\mathrm{e}^{-\frac{a x^{1+n}}{1+n}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{1+n}}{1+n}}
\end{aligned}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=c_{1} \mathrm{e}^{-\frac{a x^{1+n}}{1+n}}
\]

Integrating both sides gives
\[
\begin{aligned}
& y= \int c_{1} \mathrm{e}^{-\frac{a x^{1+n}}{1+n}} \mathrm{~d} x \\
&= c_{1}\left(\frac{a}{1+n}\right)^{-\frac{1}{1+n}}\left(\frac{(1+n)^{2} x^{\frac{1}{1+n}+\frac{n}{1+n}-1-n}\left(\frac{a}{1+n}\right)^{\frac{1}{1+n}}\left(\frac{x^{1+n} a n^{2}}{1+n}+\frac{2 x^{1+n} a n}{1+n}+n^{2}+\frac{a x^{1+n}}{1+n}+3 n+2\right)\left(\frac{a x^{1+n}}{1+n}\right)^{-\frac{2+n}{2(1+n)}} \mathrm{e}^{-\frac{a x^{1+n}}{2(1+n)}} \text { Whitta) }}{(2+n)(3+2 n) a}\right. \\
&
\end{aligned}
\]

Summary
The solution(s) found are the following
\(y\)
\(\begin{aligned} &= c_{1}\left(\frac{a}{1+n}\right)^{-\frac{1}{1+n}}\left(\frac{(1+n)^{2} x^{\frac{1}{1+n}+\frac{n}{1+n}-1-n}\left(\frac{a}{1+n}\right)^{\frac{1}{1+n}}\left(\frac{x^{1+n} n^{2}}{1+n}+\frac{2 x^{1+n} a n}{1+n}+n^{2}+\frac{a x^{1+n}}{1+n}+3 n+2\right)\left(\frac{a x^{1+n}}{1+n}\right)^{-\frac{2+n}{2(1+n)}} \mathrm{e}^{-\frac{a x^{1+n}}{2(1+n)}} \text { Whittaker }}{(2+n)(3+2 n) a}\right. \\ & \quad+c_{2} \\ & \text { Verification of solutions } \\ & y \\ &= c_{1}\left(\frac{a}{1+n}\right)^{-\frac{1}{1+n}}\left(\frac{(1+n)^{2} x^{\frac{1}{1+n}+\frac{n}{1+n}-1-n}\left(\frac{a}{1+n}\right)^{\frac{1}{1+n}\left(\frac{x^{1+n} a n^{2}}{1+n}+\frac{2 x^{1+n}}{1+n}+n^{2}+\frac{a x^{1+n}}{1+n}+3 n+2\right)\left(\frac{a x^{1+n}}{1+n}\right)^{-\frac{2+n}{2(1+n)}} e^{-\frac{a x^{1+n}}{2(1+n)}} \text { Whittaker }}(2+n)(3+2 n) a}{}\right. \\ & \quad+c_{2}\end{aligned}\)
Verified OK.

\subsection*{27.34.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+a x^{n} y^{\prime}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(u^{\prime}(x)+a x^{n} u(x)=0\)
- Separate variables
\(\frac{u^{\prime}(x)}{u(x)}=-a x^{n}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{u(x)} d x=\int-a x^{n} d x+c_{1}\)
- Evaluate integral
\(\ln (u(x))=-\frac{a x^{1+n}}{1+n}+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\mathrm{e}^{-\frac{-c_{1} n+a x^{1+n}-c_{1}}{1+n}}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\mathrm{e}^{-\frac{-c_{1} n+a x^{1+n}-c_{1}}{1+n}}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\mathrm{e}^{-\frac{-c_{1} n+a x^{1+n}-c_{1}}{1+n}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \mathrm{e}^{-\frac{-c_{1} n+a x^{1+n}-c_{1}}{1+n}} d x+c_{2}\)
- Compute integrals
\[
=\frac{\mathrm{e}^{-\frac{-c_{1} n-c_{1}}{1+n}}\left(\frac{a}{1+n}\right)^{-\frac{1}{1+n}}\left(\frac{(1+n)^{2} x^{\frac{1}{1+n}+\frac{n}{1+n}-1-n}\left(\frac{a}{1+n}\right)^{\frac{1}{1+n}}\left(\frac{x^{1+n}}{1+n} n^{2}+\frac{2 x^{1+n} a n}{1+n}+n^{2}+\frac{a x^{1+n}}{1+n}+3 n+2\right)\left(\frac{a x^{1+n}}{1+n}\right)^{-\frac{2+n}{2(1+n)}} e^{-\frac{a}{2}} \frac{(2+n)(3+2 n) a}{i n}}{\left({ }^{2}\right)}\right.}{}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y <- LODE missing y successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 244
```

dsolve(diff(y(x),x\$2)+a*x^n*diff(y(x),x)=0,y(x), singsol=all)

```
\(y(x)\)
\(=\frac{x^{-n}\left(\left(\frac{a x x^{n}}{n+1}\right)^{\frac{-n-2}{2 n+2}} c_{2}\left(\frac{a}{n+1}\right)^{\frac{1}{n+1}} \mathrm{e}^{-\frac{x^{n} a x}{2 n+2}}(n+2)^{2}(n+1)^{2} \text { WhittakerM }\left(\frac{n+2}{2 n+2}, \frac{2 n+3}{2 n+2}, \frac{a x x^{n}}{n+1}\right)+\left(\frac{a x x^{n}}{n+1}\right)^{\frac{-n-2}{2 n+2}} c_{2}\left(\frac{c}{n-1}\right.\right.}{(n+2)(2 n}\)
Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 56
DSolve[y''[x]+a*x^n*y'[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2}-\frac{c_{1} x\left(\frac{a x^{n+1}}{n+1}\right)^{-\frac{1}{n+1}} \Gamma\left(\frac{1}{n+1}, \frac{a x^{n+1}}{n+1}\right)}{n+1}
\]

\subsection*{27.35 problem 45}

Internal problem ID [10869]
Internal file name [OUTPUT/10125_Sunday_December_24_2023_05_13_38_PM_31232604/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x^{n} y^{\prime}+y x^{n-1} b=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.407 (sec). Leaf size: 96
```

dsolve(diff(y(x),x\$2)+a*x^n*diff(y(x),x)+b*x^(n-1)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=x(\text { KummerU } & \left(\frac{1+n-\frac{b}{a}}{n+1}, \frac{n+2}{n+1}, \frac{a x x^{n}}{n+1}\right) c_{2} \\
& \left.+\operatorname{KummerM}\left(\frac{1+n-\frac{b}{a}}{n+1}, \frac{n+2}{n+1}, \frac{a x x^{n}}{n+1}\right) c_{1}\right) \mathrm{e}^{-\frac{a x x^{n}}{n+1}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 120
DSolve[y''[x]+a*x^n*y'[x]+b*x^(n-1)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{1}{n}+1\right)^{-\frac{1}{n+1}} n^{-\frac{1}{n+1}} a^{\frac{1}{n+1}}\left(x^{n}\right)^{\frac{1}{n}} \text { Hypergeometric1F1 }\left(\frac{a+b}{n a+a}, \frac{n+2}{n+1},\right. \\
&\left.\quad-\frac{a\left(x^{n}\right)^{1+\frac{1}{n}}}{n+1}\right)+c_{1} \text { Hypergeometric1F1 }\left(\frac{b}{n a+a}, \frac{n}{n+1},-\frac{a\left(x^{n}\right)^{1+\frac{1}{n}}}{n+1}\right)
\end{aligned}
\]

\subsection*{27.36 problem 46}
27.36.1 Solving as linear second order ode solved by an integrating factor ode
27.36.2 Solving as second order change of variable on y method 1 ode . 2377

Internal problem ID [10870]
Internal file name [OUTPUT/10126_Sunday_December_24_2023_05_13_38_PM_911658/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_cvariable_on_y__method_1", "linear_second_order_ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+2 a x^{n} y^{\prime}+a\left(a x^{2 n}+n x^{n-1}\right) y=0
\]

\subsection*{27.36.1 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=2 a x^{n}\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 a x^{n} d x} \\
& =\mathrm{e}^{\frac{a x^{1+n}}{1+n}}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{gathered}
(M(x) y)^{\prime \prime}=0 \\
\left(\mathrm{e}^{\frac{a x^{1+n}}{1+n}} y\right)^{\prime \prime}=0
\end{gathered}
\]

Integrating once gives
\[
\left(\mathrm{e}^{\frac{a x^{1+n}}{1+n}} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{\frac{a x^{1+n}}{1+n}} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{a x^{1+n} 1+n}{1+n}}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}+c_{2} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}+c_{2} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}+c_{2} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}
\]

Verified OK.

\subsection*{27.36.2 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=2 a x^{n} \\
& q(x)=x^{2 n} a^{2}+\frac{a n x^{n}}{x}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =x^{2 n} a^{2}+\frac{a n x^{n}}{x}-\frac{\left(2 a x^{n}\right)^{\prime}}{2}-\frac{\left(2 a x^{n}\right)^{2}}{4} \\
& =x^{2 n} a^{2}+\frac{a n x^{n}}{x}-\frac{\left(\frac{2 a n x^{n}}{x}\right)}{2}-\frac{\left(4 x^{2 n} a^{2}\right)}{4} \\
& =x^{2 n} a^{2}+\frac{a n x^{n}}{x}-\left(\frac{a n x^{n}}{x}\right)-x^{2 n} a^{2} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 a x^{n}}{2}} \\
& =\mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
v^{\prime \prime}(x) \mathrm{e}^{-\frac{a x^{n+1}}{n+1}}=0
\]

Which is now solved for \(v(x)\) Integrating twice gives the solution
\[
v(x)=c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\mathrm{e}^{-\frac{a x^{n+1}}{n+1}}
\]

Hence (7) becomes
\[
y=\mathrm{e}^{-\frac{a x^{n+1}}{n+1}}\left(c_{1} x+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{a x^{n+1}}{n+1}}\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\frac{a x^{n+1}}{n+1}}\left(c_{1} x+c_{2}\right)
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
```

dsolve(diff(y(x),x\$2)+2*a*x^n*diff(y(x),x)+a*(a*x^(2*n)+n*x^(n-1))*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{a x^{n+1}}{n+1}}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 28
DSolve \(\left[y{ }^{\prime}\right.\) ' \([x]+2 * a * x^{\wedge} n * y^{\prime}[x]+a *\left(a * x^{\wedge}(2 * n)+n * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow\left(c_{2} x+c_{1}\right) e^{-\frac{a x^{n+1}}{n+1}}
\]

\subsection*{27.37 problem 47}

Internal problem ID [10871]
Internal file name [OUTPUT/10127_Sunday_December_24_2023_05_13_44_PM_32460967/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x^{n} y^{\prime}+\left(b x^{2 n}+c x^{n-1}\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.375 (sec). Leaf size: 171
dsolve(diff \((y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)+\left(b * x^{\wedge}(2 * n)+c * x^{\wedge}(n-1)\right) * y(x)=0, y(x)\), singsol=all)
\(y(x)\)
\[
\begin{gathered}
=\mathrm{e}^{-\frac{x^{n+1}\left(a+\sqrt{a^{2}-4 b}\right)}{2 n+2}} x\left(\operatorname{KummerM}\left(\frac{(n+2) \sqrt{a^{2}-4 b}+a n-2 c}{\sqrt{a^{2}-4 b}(2 n+2)}, \frac{n+2}{n+1}, \frac{\sqrt{a^{2}-4 b} x^{n+1}}{n+1}\right) c_{1}\right. \\
\left.+\operatorname{KummerU}\left(\frac{(n+2) \sqrt{a^{2}-4 b}+a n-2 c}{\sqrt{a^{2}-4 b}(2 n+2)}, \frac{n+2}{n+1}, \frac{\sqrt{a^{2}-4 b} x^{n+1}}{n+1}\right) c_{2}\right)
\end{gathered}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 333
DSolve \(\left[y\right.\) '' \([x]+a * x^{\wedge} n * y{ }^{\prime}[x]+\left(b * x^{\wedge}(2 * n)+c * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) T
\(y(x)\)
\(\rightarrow 2^{\frac{n}{2 n+2}} x^{-n / 2}\left(x^{n+1}\right)^{\frac{n}{2 n+2}} \exp \left(-\frac{1}{2} x^{n+1}\left(\frac{\sqrt{a^{2}-4 b}}{\sqrt{(n+1)^{2}}}+\frac{a}{n+1}\right)\right)\left(c_{1}\right.\) HypergeometricU \(\left(\frac{n\left(\sqrt{(n+1)^{2}} a^{2}\right.}{}\right.\)
\[
\left.+c_{2} L^{-\frac{1}{n+1}} \frac{2 \sqrt{a^{2}-4 b}(n+1)-n\left(\sqrt{(n+1)^{2}} a^{2}+\sqrt{a^{2}-4 b}(n+1) a-4 b \sqrt{(n+1)^{2}}\right)}{2\left(a^{2}-4 b\right)(n+1) \sqrt{(n+1)^{2}}}\left(\frac{\sqrt{a^{2}-4 b} x^{n+1}}{\sqrt{(n+1)^{2}}}\right)\right)
\]

\subsection*{27.38 problem 48}

Internal problem ID [10872]
Internal file name [OUTPUT/10128_Sunday_December_24_2023_05_13_45_PM_9092565/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 48.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+a x^{n} y^{\prime}-b\left(a x^{m+n}+b x^{2 m}+m x^{m-1}\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (diff \((y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)-b *\left(a * x^{\wedge}(n+m)+b * x^{\wedge}(2 * m)+m * x^{\wedge}(m-1)\right) * y(x)=0, y(x)\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]+a*x^n*y'[x]-b*(a*x^(n+m)+b*x^(2*m)+m*x^(m-1))*y[x]==0,y[x],x,IncludeSingularSo

Not solved

\subsection*{27.39 problem 49}

Internal problem ID [10873]
Internal file name [OUTPUT/10129_Sunday_December_24_2023_05_13_46_PM_18930705/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 49.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+2 a x^{n} y^{\prime}+\left(x^{2 n} a^{2}+b x^{2 m}+a n x^{n-1}+c x^{m-1}\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.406 (sec). Leaf size: 147
```

dsolve(diff(y(x),x\$2)+2*a*x^n*diff(y(x),x)+(a^2*x^(2*n)+b*x^(2*m)+a*n*x^(n-1)+c*x^(m-1))*y(x

```
\[
\begin{aligned}
& y(x) \\
& =x\left(\operatorname{KummerM}\left(\frac{(m+2) \sqrt{b}+i c}{\sqrt{b}(2 m+2)}, \frac{m+2}{1+m}, \frac{2 i \sqrt{b} x^{1+m}}{1+m}\right) c_{1}\right. \\
& \left.\quad+\operatorname{KummerU}\left(\frac{(m+2) \sqrt{b}+i c}{\sqrt{b}(2 m+2)}, \frac{m+2}{1+m}, \frac{2 i \sqrt{b} x^{1+m}}{1+m}\right) c_{2}\right) \mathrm{e}^{\frac{-i(n+1) \sqrt{b} x^{1+m}-x^{n+1} a_{a(1+m)}}{(n+1)(1+m)}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 236
DSolve \(\left[y^{\prime \prime}[x]+2 * a * x^{\wedge} n * y^{\prime}[x]+\left(a^{\wedge} 2 * x^{\wedge}(2 * n)+b * x^{\wedge}(2 * m)+a * n * x^{\wedge}(n-1)+c * x^{\wedge}(m-1)\right) * y[x]==0, y[x], x\right.\), Inc
\(y(x)\)
\(\rightarrow 2^{\frac{m}{2 m+2}} x^{-m / 2}\left(x^{m+1}\right)^{\frac{m}{2 m+2}} \exp \left(-x\left(\frac{a x^{n}}{n+1}+\frac{\sqrt{b} x^{m}}{\sqrt{-(m+1)^{2}}}\right)\right)\left(c_{1}\right.\) HypergeometricU \(\left(-\frac{(m+1)(m c+}{2 \sqrt{b}}\right.\)

\subsection*{27.40 problem 50}

Internal problem ID [10874]
Internal file name [OUTPUT/10130_Sunday_December_24_2023_05_13_59_PM_72771316/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 50.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+c\left(a x^{n}+b-c\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(790^{\text {form }}\) of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (diff \((y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+c *\left(a * x^{\wedge} n+b-c\right) * y(x)=0, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y^{\prime \prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{c} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}-\mathrm{c}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(->\) True]
Not solved

\subsection*{27.41 problem 51}

Internal problem ID [10875]
Internal file name [OUTPUT/10131_Sunday_December_24_2023_05_14_00_PM_4386285/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 51.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{n}+2 b\right) y^{\prime}+\left(a b x^{n}-a x^{n-1}+b^{2}\right) y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.203 (sec). Leaf size: 167
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+2 * b\right) * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge} n-a * x^{\wedge}(n-1)+b^{\wedge} 2\right) * y(x)=0, y(x)\right.\), singsol=
\(y(x)=\mathrm{e}^{-\frac{\left(a x^{n}+2(n+1) b\right) x}{2 n+2}} c_{2}(n+1)\left(a x^{-\frac{n}{2}}\right.\)
\(\left.+x^{-\frac{3 n}{2}-1} n\right)\) WhittakerM \(\left(\frac{-n-2}{2 n+2}, \frac{2 n+1}{2 n+2}, \frac{a x^{n+1}}{n+1}\right)\)
\(+c_{2} n^{2} x^{-\frac{3 n}{2}-1} \mathrm{e}^{-\frac{\left(a x^{n}+2(n+1) b\right) x}{2 n+2}}\) WhittakerM \(\left(\frac{n}{2 n+2}, \frac{2 n+1}{2 n+2}, \frac{a x^{n+1}}{n+1}\right)+c_{1} \mathrm{e}^{-b x} x\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]+\left(a * x^{\wedge} n+2 * b\right) * y '[x]+\left(a * b * x^{\wedge} n-a * x^{\wedge}(n-1)+b^{\wedge} 2\right) * y[x]==0, y[x], x\), IncludeSingularSoluti

Not solved

\subsection*{27.42 problem 52}

Internal problem ID [10876]
Internal file name [OUTPUT/10132_Sunday_December_24_2023_05_14_01_PM_22677750/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 52 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a b x^{n}+b x^{n-1}+2 a\right) y^{\prime}+a^{2}\left(b x^{n}+1\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa 795 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * b * x^{\wedge} n+b * x^{\wedge}(n-1)+2 * a\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 *\left(b * x^{\wedge} n+1\right) * y(x)=0, y(x)\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime} \quad[x]+\left(a * b * x^{\wedge} n+b * x^{\wedge}(n-1)+2 * a\right) * y^{\prime}[x]+a^{\wedge} 2 *\left(b * x^{\wedge} n+1\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolu

Not solved

\subsection*{27.43 problem 53}

Internal problem ID [10877]
Internal file name [OUTPUT/10133_Sunday_December_24_2023_05_14_02_PM_16480413/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a b x^{n}+2 b x^{n-1}-a^{2} x\right) y^{\prime}+a\left(a b x^{n}+b x^{n-1}-a^{2} x\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(798{ }^{\text {form }}\) of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (diff \((y(x), x \$ 2)+\left(a * b * x^{\wedge} n+2 * b * x^{\wedge}(n-1)-a^{\wedge} 2 * x\right) * \operatorname{diff}(y(x), x)+a *\left(a * b * x^{\wedge} n+b * x^{\wedge}(n-1)-a^{\wedge} 2 * x\right) * y\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * b * x^{\wedge} n+2 * b * x^{\wedge}(n-1)-a^{\wedge} 2 * x\right) * y{ }^{\prime}[x]+a *\left(a * b * x^{\wedge} n+b * x^{\wedge}(n-1)-a^{\wedge} 2 * x\right) * y[x]==0, y[x], x, I\right.\)
Not solved

\subsection*{27.44 problem 54}

Internal problem ID [10878]
Internal file name [OUTPUT/10134_Sunday_December_24_2023_05_14_03_PM_1011614/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 54.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+x^{n}\left(a x^{2}+(a c+b) x+b c\right) y^{\prime}-x^{n}(a x+b) y=0
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
<- linear symmetries successful`

```

\section*{Solution by Maple}

Time used: 0.484 (sec). Leaf size: 78
```

dsolve(diff (y(x), x\$2)+x^n* (a*x^2+(a*c+b)*x+b*c)*\operatorname{diff}(y(x),x)-x^n*(a*x+b)*y(x)=0,y(x), singso

```
\[
y(x)=-(x+c)\left(\left(\int \frac{\mathrm{e}^{-\frac{\left(a x^{2}(n+2)(n+1)+(a c+b) x(3+n)(n+1)+b c(3+n)(n+2)\right) x^{n+1}}{(3+n)(n+1)(n+2)}}}{(x+c)^{2}} d x\right) c_{1}+c_{2}\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime \prime}[x]+x^{\wedge} n *\left(a * x^{\wedge} 2+(a * c+b) * x+b * c\right) * y\right.\) ' \([x]-x^{\wedge} n *(a * x+b) * y[x]==0, y[x], x\), IncludeSingularSolu

Not solved

\subsection*{27.45 problem 55}
27.45.1 Solving as second order change of variable on y method 2 ode . 2403

Internal problem ID [10879]
Internal file name [OUTPUT/10135_Sunday_December_24_2023_05_14_04_PM_3647982/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 55 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}-\left(a x^{n-1}+b x^{m-1}\right) y=0
\]

\subsection*{27.45.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\frac{\left(-a x^{n}-b x^{m}\right) y}{x}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=a x^{n}+b x^{m} \\
& q(x)=\frac{-a x^{n}-b x^{m}}{x}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{n}+b x^{m}\right)}{x}+\frac{-a x^{n}-b x^{m}}{x}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}+a x^{n}+b x^{m}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}+a x^{n}+b x^{m}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}+a x^{n}+b x^{m}\right) u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(a x x^{n}+x^{m} b x+2\right)}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{a x x^{n}+x^{m} b x+2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{a x x^{n}+x^{m} b x+2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{a x x^{n}+x^{m} b x+2}{x} d x \\
\ln (u) & =-2 \ln (x)-\frac{a x \mathrm{e}^{n \ln (x)}}{n+1}-\frac{b x \mathrm{e}^{m \ln (x)}}{m+1}+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)-\frac{a x \mathrm{e}^{n \ln (x)}}{n+1}-\frac{b x e^{m \ln (x)}}{m+1}+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)-\frac{a x e^{n \ln (x)}}{n+1}-\frac{b x \mathrm{e}^{m \ln (x)}}{m+1}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \mathrm{e}^{-\frac{b x^{m+1}}{m+1}}}{x^{2}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \mathrm{e}^{-\frac{b x^{m+1}}{m+1}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \mathrm{e}^{-\frac{b x^{m+1}}{m+1}}}{x^{2}} d x+c_{2}\right) x \\
& =\left(c_{1}\left(\int \frac{\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}}{x^{2}} d x\right)+c_{2}\right) x
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \mathrm{e}^{-\frac{b x^{m+1}}{m+1}}}{x^{2}} d x+c_{2}\right) x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{n+1}}{n+1}} \mathrm{e}^{-\frac{b x^{m+1}}{m+1}}}{x^{2}} d x+c_{2}\right) x
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integ
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
No hypergeometric solution was found.
<- linear_1 successful
<- 2nd order, integrating factors of the form mu(x,y) successful

```
\(\checkmark\) Solution by Maple
Time used: 0.328 (sec). Leaf size: 47
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * \operatorname{diff}(y(x), x)-\left(a * x^{\wedge}(n-1)+b * x^{\wedge}(m-1)\right) * y(x)=0, y(x)\right.\), singsol \(=\)
\[
y(x)=x\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{-\frac{\left(b(n+1) x^{m}+a(1+m) x^{n}\right) x}{(1+m)(n+1)}}}{x^{2}} d x\right)\right)
\]

Solution by Mathematica
Time used: 1.216 (sec). Leaf size: 55
DSolve \(\left[y^{\prime \prime}[x]+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * y\right.\) ' \([x]-\left(a * x^{\wedge}(n-1)+b * x^{\wedge}(m-1)\right) * y[x]==0, y[x], x\), IncludeSingularSoluti
\[
y(x) \rightarrow x\left(c_{2} \int_{1}^{x} \frac{\exp \left(K[1]\left(-\frac{b K[1]^{m}}{m+1}-\frac{a K[1]^{n}}{n+1}\right)\right)}{K[1]^{2}} d K[1]+c_{1}\right)
\]

\subsection*{27.46 problem 56}
27.46.1 Solving as second order integrable as is ode 2408
27.46.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2410
27.46.3 Solving as exact linear second order ode ode 2412

Internal problem ID [10880]
Internal file name [OUTPUT/10136_Sunday_December_24_2023_05_14_06_PM_36119654/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 56.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\left(a n x^{n-1}+x^{m-1} b m\right) y=0
\]

\subsection*{27.46.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}\right) d x=0 \\
\frac{\left(a x x^{n}+x^{m} b x\right) y}{x}+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x^{n}+b x^{m} \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\left(a x^{n}+b x^{m}\right) y=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a x^{n}+b x^{m}\right) d x} \\
& =\mathrm{e}^{\frac{a x^{n+1}}{n+1}+\frac{b x^{m+1}}{m+1}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}} y\right) & =\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} \mathrm{d} x \\
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\) results in
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2} \mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]
which simplifies to
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{27.46.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}\right) d x=0 \\
\frac{\left(a x x^{n}+x^{m} b x\right) y}{x}+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x^{n}+b x^{m} \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\left(a x^{n}+b x^{m}\right) y=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a x^{n}+b x^{m}\right) d x} \\
& =\mathrm{e}^{\frac{a x^{n+1}}{n+1}+\frac{b x^{m+1}}{m+1}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\left.\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)} y\right)}\right. & =\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} \mathrm{d} x \\
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\) results in
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2} \mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]
which simplifies to
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{27.46.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=1 \\
& q(x)=a x^{n}+b x^{m} \\
& r(x)=\frac{x^{n} n a+b x^{m} m}{x} \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =\frac{a n x^{n}}{x}+\frac{x^{m} b m}{x}
\end{aligned}
\]

Therefore (1) becomes
\[
0-\left(\frac{a n x^{n}}{x}+\frac{x^{m} b m}{x}\right)+\left(\frac{x^{n} n a+b x^{m} m}{x}\right)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y^{\prime}+\left(a x^{n}+b x^{m}\right) y=c_{1}
\]

We now have a first order ode to solve which is
\[
y^{\prime}+\left(a x^{n}+b x^{m}\right) y=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =a x^{n}+b x^{m} \\
q(x) & =c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\left(a x^{n}+b x^{m}\right) y=c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a x^{n}+b x^{m}\right) d x} \\
& =\mathrm{e}^{\frac{a x^{n+1}}{n+1}+\frac{b x^{m+1}}{m+1}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y\right) & =\left(\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\left.\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)} y\right)}\right. & =\left(c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} \mathrm{d} x \\
& \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}} y=\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1) x\right.}{(n+1)(m+1)}}\) results in
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(\int c_{1} \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2} \mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}
\]
which simplifies to
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{-\left(a x^{n}(m+1)+b m^{m}(n+1) x\right.}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b b^{m}(n+1) x\right.}{(n+1)(m+1)}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}} d x\right)+c_{2}\right)
\]

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integral
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
No hypergeometric solution was found.
<- linear_1 successful`

Solution by Maple
Time used: 0.063 (sec). Leaf size: 72
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * \operatorname{diff}(y(x), x)+\left(a * n * x^{\wedge}(n-1)+b * m * x^{\wedge}(m-1)\right) * y(x)=0, y(x)\right.\), sing
\[
y(x)=\left(c_{1}\left(\int \mathrm{e}^{\frac{\left(b(n+1) x^{m}+a(1+m) x^{n}\right) x}{(1+m)(n+1)}} d x\right)+c_{2}\right) \mathrm{e}^{-\frac{\left(b(n+1) x^{m}+a(1+m) x^{n}\right) x}{(1+m)(n+1)}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 74
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * y '[x]+\left(a * n * x^{\wedge}(n-1)+b * m * x^{\wedge}(m-1)\right) * y[x]==0, y[x], x\right.\), IncludeSingularSo
\[
y(x) \rightarrow e^{x\left(-\frac{a x^{n}}{n+1}-\frac{b x^{m}}{m+1}\right)}\left(\int_{1}^{x} \exp \left(K[1]\left(\frac{b K[1]^{m}}{m+1}+\frac{a K[1]^{n}}{n+1}\right)\right) c_{1} d K[1]+c_{2}\right)
\]

\subsection*{27.47 problem 57}
27.47.1 Solving as second order ode lagrange adjoint equation method od 2415

Internal problem ID [10881]
Internal file name [OUTPUT/10137_Sunday_December_24_2023_05_14_34_PM_28021992/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 57.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\left(a(n+1) x^{n-1}+b(m+1) x^{m-1}\right) y=0
\]

\subsection*{27.47.1 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\frac{\left(b(m+1) x^{m}+a(n+1) x^{n}\right) y}{x}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=a x^{n}+b x^{m} \\
& q(x)=\frac{b(m+1) x^{m}+a(n+1) x^{n}}{x} \\
& r(x)=0
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-\left(\left(a x^{n}+b x^{m}\right) \xi(x)\right)^{\prime}+\left(\frac{\left(b(m+1) x^{m}+a(n+1) x^{n}\right) \xi(x)}{x}\right) & =0 \\
\xi^{\prime \prime}(x)+\left(-a x^{n}-b x^{m}\right) \xi^{\prime}(x)+\left(\frac{b(m+1) x^{m}+a(n+1) x^{n}}{x}-\frac{a n x^{n}}{x}-\frac{x^{m} b m}{x}\right) \xi(x) & =0
\end{aligned}
\]

Which is solved for \(\xi(x)\). In normal form the ode
\[
\begin{equation*}
-\xi^{\prime \prime}(x) x+\left(a x^{n}+b x^{m}\right) \xi^{\prime}(x) x+\left(-a x^{n}-b x^{m}\right) \xi(x)=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
\xi^{\prime \prime}(x)+p(x) \xi^{\prime}(x)+q(x) \xi(x)=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-a x^{n}-b x^{m} \\
& q(x)=\frac{a x^{n}+b x^{m}}{x}
\end{aligned}
\]

Applying change of variables on the depndent variable \(\xi(x)=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(\xi(x)\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(-a x^{n}-b x^{m}\right)}{x}+\frac{a x^{n}+b x^{m}}{x}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-a x^{n}-b x^{m}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}-a x^{n}-b x^{m}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}-a x^{n}-b x^{m}\right) u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(a x x^{n}+x^{m} b x-2\right)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{a x x^{n}+x^{m} b x-2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{a x x^{n}+x^{m} b x-2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{a x x^{n}+x^{m} b x-2}{x} d x \\
\ln (u) & =-2 \ln (x)+\frac{a x \mathrm{e}^{n \ln (x)}}{n+1}+\frac{b x \mathrm{e}^{m \ln (x)}}{m+1}+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+\frac{a x e^{n \ln (x)}}{n+1}+\frac{b x \mathrm{e}^{m \ln (x)}}{m+1}+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)+\frac{a x \mathrm{e}^{n \ln (x)}}{n+1}+\frac{b x e^{m \ln (x)}}{m+1}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int \frac{c_{1} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m}}{m+1}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
\xi(x) & =v(x) x^{n} \\
& =\left(\int \frac{c_{1} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x+c_{2}\right) x \\
& =\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{\left(a x^{n}(m+1)+b x^{m}(n+1)\right) x}{(n+1)(m+1)}}}{x^{2}} d x\right)+c_{2}\right) x
\end{aligned}
\]

The original ode (2) now reduces to first order ode
\[
\begin{aligned}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(a x^{n}+b x^{m}-\frac{\frac{c_{3} e^{\frac{a x x^{n}}{n+1}} e^{\frac{b x^{m} x}{m+1}}}{x}+\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}}}{\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} m x}{m+1}}}{x^{2}} d x+c_{2}\right) x}\right) & =0
\end{aligned}
\]

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
= & f(x) g(y) \\
& \left.=-\frac{y\left(a x^{n} x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \frac{\mathrm{e}^{\frac{b m^{m} x}{m+1}}}{x^{2}}}{} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x\right)+b x^{m} x^{2} c_{2}-c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}\right.}{x^{2}\left(\int \frac{\frac{c}{} 3^{\frac{a x x^{n}}{n+1}} \frac{\frac{b x^{m} x}{m+1}}{x^{2}}}{x^{2}}\right.} d x+c_{2}\right)
\end{aligned}
\]

Where \(f(x)=-\frac{a x^{n} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x\right)+b x^{m} x^{2} c_{2}-c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}-\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}}}{x^{2}}\right.}{x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} e^{\frac{b x^{n} x}{m+1}}}{x^{2}} d x+c_{2}\right)}\)
and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
& \frac{1}{y} d y=-\frac{a x^{n} x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1} \mathrm{e}^{\frac{b m^{m} x}{m+1}}}}{x^{2}} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x\right)+b x^{m} x^{2} c_{2}-c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x}{m}}}{x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x+c_{2}\right)} \\
& \left.\int \frac{1}{y} d y=\int-\frac{a x^{n} x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}}{x^{2}} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x^{n}}{n+1}}}{x^{\frac{}{} e^{2} x^{m}}} \mathrm{m+1}\right.}{d x}\right)+b x^{m} x^{2} c_{2}-c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \\
& \left.\ln (y)=\int-\frac{a x^{n} x^{2}\left(\int \frac{c}{\frac{c}{} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}} x^{2}\right.}{} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}}{x^{2}} d x\right)+b x^{m} x^{2} c_{2}-c_{3} \mathrm{e}^{\frac{a x x^{n}}{n+1}}
\end{aligned}
\]

Hence, the solution found using Lagrange adjoint equation method is
\(y\)
\[
\begin{aligned}
& \left.\int-\frac{a x^{n} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}}}{x^{2}} e^{\frac{b x^{m} x}{m+1}}\right.}{} d x\right)+a x^{n} x^{2} c_{2}+b x^{m} x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \frac{\frac{b x^{m} x}{m+1}}{x^{2}}}{x^{2}}\right)+b x^{m} x^{2} c_{2}-c_{3} e^{\frac{a x x^{n}}{n+1}} \mathrm{e}^{\frac{b x^{m} x}{m+1}}-\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}}}{x^{2}} e^{\frac{b x^{m} x}{m+1}} d x\right) x-c_{2} x \\
& x^{2}\left(\int \frac{c_{3} e^{\frac{a x x^{n}}{n+1}} \frac{b x^{m x}}{m+1}}{x^{2}} d x+c_{2}\right) \\
& =c_{3} \mathrm{e}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)

\section*{Verification of solutions}
\(y\)

Verified OK.
Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- 2nd order, integrating factors of the form mu(x,y) successful

```
\(\checkmark\) Solution by Maple
Time used: 0.313 (sec). Leaf size: 77
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * \operatorname{diff}(y(x), x)+\left(a *(n+1) * x^{\wedge}(n-1)+b *(m+1) * x^{\wedge}(m-1)\right) * y(x)=0, y\right.\)
\[
y(x)=x\left(c_{1}+\left(\int \frac{\mathrm{e}^{\frac{\left(b(n+1) x^{m}+a(1+m) x^{n}\right) x}{(1+m)(n+1)}}}{x^{2}} d x\right) c_{2}\right) \mathrm{e}^{-\frac{\left(b(n+1) x^{m}+a(1+m) x^{n}\right) x}{(1+m)(n+1)}}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime}{ }^{\prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\left(\mathrm{a} *(\mathrm{n}+1) * \mathrm{x}^{\wedge}(\mathrm{n}-1)+\mathrm{b} *(\mathrm{~m}+1) * \mathrm{x}^{\wedge}(\mathrm{m}-1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSi
Not solved

\subsection*{27.48 problem 58}

Internal problem ID [10882]
Internal file name [OUTPUT/10138_Sunday_December_24_2023_05_14_43_PM_8065640/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 58.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+c\left(a x^{n}+b x^{m}-c\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational 23 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (diff \((y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * \operatorname{diff}(y(x), x)+c *\left(a * x^{\wedge} n+b * x^{\wedge} m-c\right) * y(x)=0, y(x), \quad\) singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y\right.\) ' \([x]+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * y\) ' \([x]+c *\left(a * x^{\wedge} n+b * x^{\wedge} m-c\right) * y[x]==0, y[x], x\), IncludeSingularSolutions

Not solved

\subsection*{27.49 problem 59}

Internal problem ID [10883]
Internal file name [OUTPUT/10139_Sunday_December_24_2023_05_14_43_PM_65340826/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 59.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}\right) y^{\prime}+\left(x^{m+n} a b+b(m+1) x^{m-1}-a x^{n-1}\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational \(126^{\text {form of Mathieu ODE under a power © Moebius }}\)
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge}(n+m)+b *(m+1) * x^{\wedge}(m-1)-a * x^{\wedge}(n-1)\right) * y(x\right.\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime} '[x]+\left(a * x^{\wedge} n+b * x^{\wedge} m\right) * y '[x]+\left(a * b * x^{\wedge}(n+m)+b *(m+1) * x^{\wedge}(m-1)-a * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\right.\), Inc
Not solved

\subsection*{27.50 problem 60}

Internal problem ID [10884]
Internal file name [OUTPUT/10140_Sunday_December_24_2023_05_14_44_PM_40192406/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 60.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\left(x^{m+n} a b+x^{m} b c+a n x^{n-1}\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \({ }_{2} 29^{\text {form }}\) of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(\operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge}(n+m)+b * c * x^{\wedge} m+a * n * x^{\wedge}(n-1)\right) * y(x)=0\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[y{ }^{\prime \prime}[x]+\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y\right.\) ' \([x]+\left(a * b * x^{\wedge}(n+m)+b * c * x^{\wedge} m+a * n * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), Include

Not solved
28 Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
28.1 problem 61 2433
28.2 problem 62 2447
28.3 problem 63 2452
28.4 problem 64 2457
28.5 problem 65 2462
28.6 problem 66 2468
28.7 problem 67 2470
28.8 problem 68 2473
28.9 problem 69 2476
28.10problem 70 2491
28.11problem 71 2495
28.12problem 72 2499
28.13problem 73 2508
28.14problem 74 2512
28.15problem 75 2517
28.16problem 76 2528
28.17problem 77 2539
28.18problem 78 2544
28.19problem 79 2549
28.20problem 80 2554
28.21 problem 81 2563
28.22problem 82 2573
28.23problem 83 2583
28.24problem 84 2591
28.25 problem 85 2596
28.26problem 86 2601
28.27problem 87 2608
28.28problem 88 2622
28.29problem 89 2633
28.30problem 90 2645
28.31problem 91 2653
28.32problem 92 2656
28.33problem 93 2660
28.34problem 94 2662
28.35problem 95 2670
28.36problem 96 2675
28.37problem 97 2682
28.38problem 98 2685
28.39problem 99 2686
28.40problem 100 2689
28.41 problem 101 2692
28.42problem 102 2695
28.43problem 103 2698
28.44problem 104 2703
28.45problem 105 2706
28.46problem 106 2716
28.47 problem 107 2721
28.48problem 108 2727
28.49problem 109 2733

\section*{28.1 problem 61}
28.1.1 Solving as second order change of variable on \(x\) method 2 ode. 2433
28.1.2 Solving as second order change of variable on \(x\) method 1 ode . 2436
28.1.3 Solving as second order bessel ode ode 2438
28.1.4 Solving using Kovacic algorithm 2439
28.1.5 Maple step by step solution . 2444

Internal problem ID [10885]
Internal file name [OUTPUT/10141_Sunday_December_24_2023_05_14_45_PM_71262164/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 61.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(     x)]`]]

```
\[
x y^{\prime \prime}+\frac{y^{\prime}}{2}+a y=0
\]

\subsection*{28.1.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\frac{y^{\prime}}{2}+a y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{a}{x}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{2 x} d x\right)} d x \\
& =\int e^{-\frac{\ln (x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x}} d x \\
& =2 \sqrt{x} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{a}{x}}{\frac{1}{x}} \\
& =a \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+a y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=a\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+a \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+a=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=a\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(a)} \\
& = \pm \sqrt{-a}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-a}) \tau}+c_{2} e^{(-\sqrt{-a}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-a} \tau}+c_{2} \mathrm{e}^{-\sqrt{-a} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1} \mathrm{e}^{2 \sqrt{-a} \sqrt{x}}+c_{2} \mathrm{e}^{-2 \sqrt{-a} \sqrt{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 \sqrt{-a} \sqrt{x}}+c_{2} \mathrm{e}^{-2 \sqrt{-a} \sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 \sqrt{-a} \sqrt{x}}+c_{2} \mathrm{e}^{-2 \sqrt{-a} \sqrt{x}}
\]

Verified OK.

\subsection*{28.1.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\frac{y^{\prime}}{2}+a y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{a}{x}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{a}{x}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{a}{2 c \sqrt{\frac{a}{x}} x^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{a}{2 c \sqrt{\frac{a}{x}} x^{2}}+\frac{1}{2 x} \frac{\sqrt{\frac{a}{x}}}{c}}{\left(\frac{\sqrt{\frac{a}{x}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{a}{x}} d x}{c} \\
& =\frac{2 x \sqrt{\frac{a}{x}}}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cos (2 \sqrt{a} \sqrt{x})+c_{2} \sin (2 \sqrt{a} \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 \sqrt{a} \sqrt{x})+c_{2} \sin (2 \sqrt{a} \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cos (2 \sqrt{a} \sqrt{x})+c_{2} \sin (2 \sqrt{a} \sqrt{x})
\]

Verified OK.

\subsection*{28.1.3 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{y^{\prime} x}{2}+y a x=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{4} \\
\beta & =2 \sqrt{a} \\
n & =\frac{1}{2} \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=\frac{c_{1} x^{\frac{1}{4}} \sin (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}}-\frac{c_{2} x^{\frac{1}{4}} \cos (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{\frac{1}{4}} \sin (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}}-\frac{c_{2} x^{\frac{1}{4}} \cos (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{\frac{1}{4}} \sin (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}}-\frac{c_{2} x^{\frac{1}{4}} \cos (2 \sqrt{a} \sqrt{x})}{\sqrt{\pi} \sqrt{\sqrt{a} \sqrt{x}}}
\]

Verified OK.

\subsection*{28.1.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+\frac{y^{\prime}}{2}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =x \\
B & =\frac{1}{2} \tag{3}\\
C & =a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-16 a x-3}{16 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-16 a x-3 \\
& t=16 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-16 a x-3}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 75: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-1 \\
& =1
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=16 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[2]
\]

Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{3}{16 x^{2}}-\frac{a}{x}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(1<2\) then
\[
E_{\infty}=\{1\}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 1 & \(\{1\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{\infty}=1
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(1-(1)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(0))}\right) \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\frac{w}{2 x}+\frac{16 a x+1}{16 x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{1+4 \sqrt{-a x}}{4 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1+4 \sqrt{ }-a x}{4 x} d x} \\
& =x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{-a x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{4}} \\
& =z_{1}\left(\frac{1}{x^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{2 \sqrt{-a x}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{x}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{-a x}\left(-1+\mathrm{e}^{-4 \sqrt{-a x}}\right)}{2 \sqrt{x} a}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 \sqrt{-a x}}\right)+c_{2}\left(\mathrm{e}^{2 \sqrt{-a x}}\left(\frac{\sqrt{-a x}\left(-1+\mathrm{e}^{-4 \sqrt{-a x}}\right)}{2 \sqrt{x} a}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 \sqrt{-a x}}+\frac{c_{2} \sqrt{-a x}\left(-\mathrm{e}^{2 \sqrt{-a x}}+\mathrm{e}^{-2 \sqrt{-a x}}\right)}{2 \sqrt{x} a} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 \sqrt{-a x}}+\frac{c_{2} \sqrt{-a x}\left(-\mathrm{e}^{2 \sqrt{-a x}}+\mathrm{e}^{-2 \sqrt{-a x}}\right)}{2 \sqrt{x} a}
\]

Verified OK.

\subsection*{28.1.5 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+\frac{y^{\prime}}{2}+a y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}-\frac{a y}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{a y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{a}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(2 y^{\prime \prime} x+2 a y+y^{\prime}=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+1+2 r)+2 a a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1+2 r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{0, \frac{1}{2}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(2(k+1+r)\left(k+\frac{1}{2}+r\right) a_{k+1}+2 a a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{2 a a_{k}}{(k+1+r)(2 k+1+2 r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{2 a a_{k}}{(k+1)(2 k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{2 a a_{k}}{(k+1)(2 k+1)}\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=-\frac{2 a a_{k}}{\left(k+\frac{3}{2}\right)(2 k+2)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{2 a a_{k}}{\left(k+\frac{3}{2}\right)(2 k+2)}\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{k+\frac{1}{2}}\right), b_{1+k}=-\frac{2 a b_{k}}{(1+k)(2 k+1)}, c_{1+k}=-\frac{2 a c_{k}}{\left(k+\frac{3}{2}\right)(2 k+2)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve(x*diff(y(x),x\$2)+1/2*diff (y(x),x)+a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (2 \sqrt{x} \sqrt{a})+c_{2} \cos (2 \sqrt{x} \sqrt{a})
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 38
DSolve \([x * y\) '' \([x]+1 / 2 * y\) ' \([x]+a * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \cos (2 \sqrt{a} \sqrt{x})+c_{2} \sin (2 \sqrt{a} \sqrt{x})
\]

\section*{28.2 problem 62}
28.2.1 Solving as second order bessel ode ode 2447
28.2.2 Maple step by step solution . 2448

Internal problem ID [10886]
Internal file name [OUTPUT/10142_Sunday_December_24_2023_05_14_46_PM_39518988/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 62 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x y^{\prime \prime}+a y^{\prime}+y b=0
\]

\subsection*{28.2.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+b x y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =2 \sqrt{b} \\
n & =-a+1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{b} \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{b} \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{b} \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{b} \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{b} \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{b} \sqrt{x})
\]

Verified OK.

\subsection*{28.2.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+a y^{\prime}+y b=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{a y^{\prime}}{x}-\frac{b y}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{a y^{\prime}}{x}+\frac{b y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a}{x}, P_{3}(x)=\frac{b}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=a
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+a y^{\prime}+y b=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+r+a) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r+a)+a_{k} b\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1+r+a)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{0,-a+1\}
\]
- Each term in the series must be 0, giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+a)+a_{k} b=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k} b}{(k+1+r)(k+r+a)}
\]
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k} b}{(k+1)(k+a)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k} b}{(k+1)(k+a)}\right]
\]
- Recursion relation for \(r=-a+1\)
\[
a_{k+1}=-\frac{a_{k} b}{(k+2-a)(k+1)}
\]
- \(\quad\) Solution for \(r=-a+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-a+1}, a_{k+1}=-\frac{a_{k} b}{(k+2-a)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-a+1}\right), c_{1+k}=-\frac{c_{k} b}{(1+k)(k+a)}, d_{1+k}=-\frac{d_{k} b}{(k+2-a)(1+k)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 83
dsolve(\(x * \operatorname{diff}(y(x), x \$ 2)+a * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\), singsol=all)
\(y(x)\)
\(=\frac{\left(-\sqrt{x} \operatorname{BesselJ}(a+1,2 \sqrt{b} \sqrt{x}) \sqrt{b} c_{1}-\sqrt{x} \operatorname{BesselY}(a+1,2 \sqrt{b} \sqrt{x}) \sqrt{b} c_{2}+a(\operatorname{BesselJ}(a, 2 \sqrt{b} \sqrt{x})\right.}{\sqrt{b}}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 77
DSolve [x*y' ' \([\mathrm{x}]+\mathrm{a} * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow b^{\frac{1}{2}-\frac{a}{2}} x^{\frac{1}{2}-\frac{a}{2}}\left(c_{2} \operatorname{Gamma}(2\right. & -a) \operatorname{BesselJ}(1-a, 2 \sqrt{b} \sqrt{x}) \\
& \left.+c_{1} \operatorname{Gamma}(a) \operatorname{BesselJ}(a-1,2 \sqrt{b} \sqrt{x})\right)
\end{aligned}
\]

\section*{28.3 problem 63}
28.3.1 Solving as second order bessel ode ode 2452
28.3.2 Maple step by step solution . 2453

Internal problem ID [10887]
Internal file name [OUTPUT/10143_Sunday_December_24_2023_05_14_47_PM_22794471/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 63 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+a y^{\prime}+b x y=0
\]

\subsection*{28.3.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+b x^{2} y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =\sqrt{b} \\
n & =\frac{1}{2}-\frac{a}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y\left(\frac{1}{2}-\frac{a}{2}, x \sqrt{b}\right)
\]

Verified OK.

\subsection*{28.3.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+a y^{\prime}+b x y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{a y^{\prime}}{x}-y b
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{a y^{\prime}}{x}+y b=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a}{x}, P_{3}(x)=b\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=a\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+a y^{\prime}+b x y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+a) x^{-1+r}+a_{1}(1+r)(r+a) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k+r+a)+b a_{k-1}\right) x^{k+r}\right)\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+a)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-a+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(r+a)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+r+1)(k+r+a)+b a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+a)+b a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{b a_{k}}{(k+2+r)(k+1+r+a)}\)
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{b a_{k}}{(k+2)(k+1+a)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{b a_{k}}{(k+2)(k+1+a)}, a_{1} a=0\right]
\]
- Recursion relation for \(r=-a+1\)
\[
a_{k+2}=-\frac{b a_{k}}{(k+3-a)(k+2)}
\]
- \(\quad\) Solution for \(r=-a+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-a+1}, a_{k+2}=-\frac{b a_{k}}{(k+3-a)(k+2)}, a_{1}(-a+2)=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-a+1}\right), c_{k+2}=-\frac{b c_{k}}{(k+2)(k+1+a)}, c_{1} a=0, d_{k+2}=-\frac{b d_{k}}{(k+3-a)(k+2)}, d_{1}(-a\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
```

dsolve(x*diff(y(x),x\$2)+a*diff(y(x),x)+b*x*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(\operatorname{BesselJ}\left(\frac{a}{2}-\frac{1}{2}, \sqrt{b} x\right) c_{1}+\operatorname{Bessel} Y\left(\frac{a}{2}-\frac{1}{2}, \sqrt{b} x\right) c_{2}\right) x^{-\frac{a}{2}+\frac{1}{2}}
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 54
DSolve[x*y''[x]+a*y'[x]+b*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow x^{\frac{1}{2}-\frac{a}{2}}\left(c_{1} \operatorname{BesselJ}\left(\frac{a-1}{2}, \sqrt{b} x\right)+c_{2} \operatorname{BesselY}\left(\frac{a-1}{2}, \sqrt{b} x\right)\right)
\]

\section*{28.4 problem 64}
28.4.1 Solving as second order bessel ode ode 2457
28.4.2 Maple step by step solution . 2458

Internal problem ID [10888]
Internal file name [OUTPUT/10144_Sunday_December_24_2023_05_14_49_PM_65619040/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 64.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+a y^{\prime}+(b x+c) y=0
\]

\subsection*{28.4.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+\left(b x^{2}+c x\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =2 \\
n & =-a+1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

Verified OK.

\subsection*{28.4.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+a y^{\prime}+(b x+c) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(b x+c) y}{x}-\frac{a y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{a y^{\prime}}{x}+\frac{(b x+c) y}{x}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a}{x}, P_{3}(x)=\frac{b x+c}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=a\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+a y^{\prime}+(b x+c) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+a) x^{-1+r}+\left(a_{1}(1+r)(r+a)+a_{0} c\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(k+r+a)+a_{k} c-\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+a)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-a+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(r+a)+a_{0} c=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r+a)+a_{k} c+b a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+a)+a_{k+1} c+b a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{b a_{k}+a_{k+1} c}{(k+2+r)(k+1+r+a)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{b a_{k}+a_{k+1} c}{(k+2)(k+1+a)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{b a_{k}+a_{k+1} c}{(k+2)(k+1+a)}, a_{1} a+a_{0} c=0\right]\)
- Recursion relation for \(r=-a+1\)
\(a_{k+2}=-\frac{b a_{k}+a_{k+1} c}{(k+3-a)(k+2)}\)
- \(\quad\) Solution for \(r=-a+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-a+1}, a_{k+2}=-\frac{b a_{k}+a_{k+1} c}{(k+3-a)(k+2)}, a_{1}(-a+2)+a_{0} c=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k-a+1}\right), d_{k+2}=-\frac{b d_{k}+c d_{1+k}}{(k+2)(k+1+a)}, a d_{1}+c d_{0}=0, e_{k+2}=-\frac{b e_{k}+c e_{1+k}}{(k+3-a)(k+2)},\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```

Solution by Maple
Time used: 0.078 (sec). Leaf size: 66
```

dsolve(x*diff(y(x),x\$2)+a*diff (y(x),x)+(b*x+c)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-i \sqrt{b} x}(\text { KummerU } & \left(\frac{i c+a \sqrt{b}}{2 \sqrt{b}}, a, 2 i \sqrt{b} x\right) c_{2} \\
& \left.+\operatorname{KummerM}\left(\frac{i c+a \sqrt{b}}{2 \sqrt{b}}, a, 2 i \sqrt{b} x\right) c_{1}\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 85
DSolve[x*y''[x]+a*y'[x]+(b*x+c)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\(y(x) \rightarrow e^{-i \sqrt{b} x}\left(c_{1}\right.\) HypergeometricU \(\left.\left(\frac{1}{2}\left(a+\frac{i c}{\sqrt{b}}\right), a, 2 i \sqrt{b} x\right)+c_{2} L_{-\frac{a}{2}-\frac{i c}{2 \sqrt{b}}}^{a-1}(2 i \sqrt{b} x)\right)\)

\section*{28.5 problem 65}
28.5.1 Solving as second order change of variable on \(x\) method 2 ode . 2462
28.5.2 Solving as second order change of variable on \(x\) method 1 ode . 2465

Internal problem ID [10889]
Internal file name [OUTPUT/10145_Sunday_December_24_2023_05_15_08_PM_11268123/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 65.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2"
Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
x)]•]
\[
x y^{\prime \prime}+n y^{\prime}+b x^{1-2 n} y=0
\]

\subsection*{28.5.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+n y^{\prime}+b x^{1-2 n} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{n}{x} \\
q(x) & =b x^{-2 n}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{n}{x} d x\right)} d x \\
& =\int e^{-n \ln (x)} d x \\
& =\int x^{-n} d x \\
& =-\frac{x^{1-n}}{n-1} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{b x^{-2 n}}{x^{-2 n}} \\
& =b \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=b\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+b \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+b=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=b\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(b)} \\
& = \pm \sqrt{-b}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-b} \\
& \lambda_{2}=-\sqrt{-b}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-b} \\
& \lambda_{2}=-\sqrt{-b}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-b}) \tau}+c_{2} e^{(-\sqrt{-b}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-b} \tau}+c_{2} \mathrm{e}^{-\sqrt{-b} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1} \mathrm{e}^{-\frac{\sqrt{-b} x^{1-n}}{n-1}}+c_{2} \mathrm{e}^{\frac{\sqrt{-b} x^{1-n}}{n-1}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{\sqrt{-b} x^{1-n}}{n-1}}+c_{2} \mathrm{e}^{\frac{\sqrt{-b} x^{1-n}}{n-1}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{\sqrt{-b} x^{1-n}}{n-1}}+c_{2} \mathrm{e}^{\frac{\sqrt{-b} x^{1-n}}{n-1}}
\]

Verified OK.

\subsection*{28.5.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+n y^{\prime}+b x^{1-2 n} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{n}{x} \\
q(x) & =b x^{-2 n}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{b x^{-2 n}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{b x^{-2 n} n}{c \sqrt{b x^{-2 n}} x}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{b x^{-2 n} n}{c \sqrt{b x^{-2 n}} x}+\frac{n}{x} \frac{\sqrt{b x^{-2 n}}}{c}}{\left(\frac{\sqrt{b x^{-2 n}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{b x^{-2 n}} d x}{c} \\
& =-\frac{x \sqrt{b x^{-2 n}}}{c(n-1)}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cos \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right)-c_{2} \sin \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right)-c_{2} \sin \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cos \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right)-c_{2} \sin \left(\frac{x^{1-n} \sqrt{b}}{n-1}\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 43
dsolve (\(x * \operatorname{diff}(y(x), x \$ 2)+n * \operatorname{diff}(y(x), x)+b * x^{\wedge}(1-2 * n) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \sin \left(\frac{x^{-n+1} \sqrt{b}}{n-1}\right)+c_{2} \cos \left(\frac{x^{-n+1} \sqrt{b}}{n-1}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 52
DSolve \(\left[x * y\right.\) ' ' \([\mathrm{x}]+\mathrm{n} * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{b} * \mathrm{x}^{\wedge}(1-2 * \mathrm{n}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \cos \left(\frac{\sqrt{b} x^{1-n}}{n-1}\right)+c_{2} \sin \left(\frac{\sqrt{b} x^{1-n}}{1-n}\right)
\]

\section*{28.6 problem 66}
28.6.1 Solving as second order ode lagrange adjoint equation method od 2468

Internal problem ID [10890]
Internal file name [OUTPUT/10146_Sunday_December_24_2023_05_15_09_PM_18821174/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 66.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Emden, _Fowler]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+(1-3 n) y^{\prime}-a^{2} n^{2} x^{-1+2 n} y=0
\]

\subsection*{28.6.1 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+(1-3 n) y^{\prime}-a^{2} n^{2} x^{-1+2 n} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1-3 n}{x} \\
& q(x)=-x^{2 n-2} a^{2} n^{2} \\
& r(x)=0
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{array}{r}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q=0 \\
\xi^{\prime \prime}-\left(\frac{(1-3 n) \xi(x)}{x}\right)^{\prime}+\left(-x^{2 n-2} a^{2} n^{2} \xi(x)\right)=0 \\
\xi^{\prime \prime}(x)-\frac{(1-3 n) \xi^{\prime}(x)}{x}+\left(\frac{1-3 n}{x^{2}}-x^{2 n-2} a^{2} n^{2}\right) \xi(x)=0
\end{array}
\]

Which is solved for \(\xi(x)\).
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 62
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+(1-3 * n) * \operatorname{diff}(y(x), x)-a^{\wedge} 2 * n^{\wedge} 2 * x^{\wedge}(2 * n-1) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=c_{2} \mathrm{e}^{-a x^{n}}\left(a x^{n}+x^{-n} \sqrt{x^{2 n}}\right)-\mathrm{e}^{a x^{n}} c_{1}\left(a x^{n}-x^{-n} \sqrt{x^{2 n}}\right)
\]

Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 77
```

DSolve[x*y''[x]+(1-3*n)*y'[x]-a^2*n^2*x^(2*n-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> T

```
\[
y(x) \rightarrow\left(c_{1}-\frac{3}{8} i a c_{2} \sqrt{x^{2 n}}\right) \cosh \left(a \sqrt{x^{2 n}}\right)+\frac{1}{8}\left(3 i c_{2}-8 a c_{1} \sqrt{x^{2 n}}\right) \sinh \left(a \sqrt{x^{2 n}}\right)
\]

\section*{28.7 problem 67}
28.7.1 Solving as second order bessel ode ode 2470

Internal problem ID [10891]
Internal file name [OUTPUT/10147_Sunday_December_24_2023_05_15_10_PM_64440882/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 67.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x y^{\prime \prime}+a y^{\prime}+b x^{n} y=0
\]

\subsection*{28.7.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+x^{n} b x y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =\frac{2 \sqrt{b}}{n+1} \\
n & =-\frac{a-1}{n+1} \\
\gamma & =\frac{n}{2}+\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(-\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right)
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.218 (sec). Leaf size: 71
dsolve(\(x * \operatorname{diff}(y(x), x \$ 2)+a * \operatorname{diff}(y(x), x)+b * x^{\wedge} n * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\left(\operatorname{BesselY}\left(\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{2}+\operatorname{Bessel} J\left(\frac{a-1}{n+1}, \frac{2 \sqrt{b} x^{\frac{n}{2}+\frac{1}{2}}}{n+1}\right) c_{1}\right) x^{-\frac{a}{2}+\frac{1}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.245 (sec). Leaf size: 165
DSolve \(\left[\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\mathrm{a} * \mathrm{y}\right.\) ' \([\mathrm{x}]+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow\left(\frac{1}{n}\right. \\
&+1)^{\frac{a-1}{n+1}} n^{\frac{a-1}{n+1}} b^{\frac{1-a}{2 n+2}}\left(x^{n}\right)^{-\frac{a-1}{2 n}}\left(c_{2} \operatorname{Gamma}\left(\frac{-a+n+2}{n+1}\right) \operatorname{BesselJ}\left(\frac{1-a}{n+1}, \frac{2 \sqrt{b}\left(x^{n}\right)^{\frac{n+1}{2 n}}}{n+1}\right)\right. \\
&\left.+c_{1} \operatorname{Gamma}\left(\frac{a+n}{n+1}\right) \operatorname{BesselJ}\left(\frac{a-1}{n+1}, \frac{2 \sqrt{b}\left(x^{n}\right)^{\frac{n+1}{2 n}}}{n+1}\right)\right)
\end{aligned}
\]

\section*{28.8 problem 68}
28.8.1 Solving as second order bessel ode ode 2473

Internal problem ID [10892]
Internal file name [OUTPUT/10148_Sunday_December_24_2023_05_15_11_PM_52030711/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 68.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+a y^{\prime}+b x^{n}\left(-b x^{n+1}+a+n\right) y=0
\]

\subsection*{28.8.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+\left(-x^{2 n} b^{2} x^{2}+x^{n} a b x+x^{n} b n x\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =2 \\
n & =-a+1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.594 (sec). Leaf size: 166
dsolve(\(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{a} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{n} *\left(-\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}+1)+\mathrm{a}+\mathrm{n}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol=all)
\[
\begin{aligned}
y(x)= & -\left((a-n-2) x^{-\frac{3 n}{2}-\frac{a}{2}-1}+2 b x^{-\frac{n}{2}-\frac{a}{2}}\right) c_{2}(n \\
& +1) \text { WhittakerM }\left(\frac{-a-n}{2 n+2}, \frac{-a+2 n+3}{2 n+2},-\frac{2 b x^{n+1}}{n+1}\right) \\
& +x^{-\frac{3 n}{2}-\frac{a}{2}-1} c_{2}(a-n-2)^{2} \text { WhittakerM }\left(\frac{n+2-a}{2 n+2}, \frac{-a+2 n+3}{2 n+2},-\frac{2 b x^{n+1}}{n+1}\right) \\
& +c_{1} \mathrm{e}^{-\frac{b x^{n+1}}{n+1}}
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y\right.\) ' ' \([x]+a * y\) ' \([x]+b * x^{\wedge} n *\left(-b * x^{\wedge}(n+1)+a+n\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\operatorname{Tr}\)

Not solved

\section*{28.9 problem 69}
28.9.1 Solving as second order integrable as is ode 2476
28.9.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2478
28.9.3 Solving using Kovacic algorithm 2479
28.9.4 Solving as exact linear second order ode ode 2486
28.9.5 Maple step by step solution . 2488

Internal problem ID [10893]
Internal file name [OUTPUT/10149_Sunday_December_24_2023_05_15_33_PM_49026519/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 69.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
x y^{\prime \prime}+a x y^{\prime}+a y=0
\]

\subsection*{28.9.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+a x y^{\prime}+a y\right) d x=0 \\
(a x-1) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-a x+1) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x+1}{x} d x} \\
& =\mathrm{e}^{a x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{a x}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{\mathrm{e}^{a x}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{a x}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{a x} y}{x}=\int \frac{c_{1} \mathrm{e}^{a x}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{a x} y}{x}=c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\exp \operatorname{Integral}_{1}(-a x)\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{\mathrm{e}^{a x}}{x}\) results in
\[
y=x \mathrm{e}^{-a x} c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\exp \operatorname{Integral}_{1}(-a x)\right)+c_{2} x \mathrm{e}^{-a x}
\]
which simplifies to
\[
y=-\exp \operatorname{Integral}_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\exp \text { Integral }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\operatorname{expIntegral}{ }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Verified OK.

\subsection*{28.9.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}+a x y^{\prime}+a y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+a x y^{\prime}+a y\right) d x=0 \\
(a x-1) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-a x+1) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x+1}{x} d x} \\
& =\mathrm{e}^{a x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{a x}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{\mathrm{e}^{a x}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{a x}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{a x} y}{x}=\int \frac{c_{1} \mathrm{e}^{a x}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{a x} y}{x}=c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\exp \operatorname{Integral}_{1}(-a x)\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{\mathrm{e}^{a x}}{x}\) results in
\[
y=x \mathrm{e}^{-a x} c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\operatorname{expIntegral}{ }_{1}(-a x)\right)+c_{2} x \mathrm{e}^{-a x}
\]
which simplifies to
\[
y=-\exp \operatorname{Integral}_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\exp \operatorname{Integral}_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\exp \text { Integral }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Verified OK.

\subsection*{28.9.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
& x y^{\prime \prime}+a x y^{\prime}+a y=0 \tag{1}\\
& A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=a x \tag{3}\\
& C=a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a(a x-4)}{4 x} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a(a x-4) \\
& t=4 x
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a(a x-4)}{4 x}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 80: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =1-1 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x\). There is a pole at \(x=0\) of order 1 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 1 . For the pole at \(x=0\) of order 1 then
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =1 \\
\alpha_{c}^{-} & =1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a}{2}-\frac{1}{x}-\frac{1}{a x^{2}}-\frac{2}{a^{2} x^{3}}-\frac{5}{a^{3} x^{4}}-\frac{14}{a^{4} x^{5}}-\frac{42}{a^{5} x^{6}}-\frac{132}{a^{6} x^{7}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{a}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{a^{2}}{4}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading
coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a(a x-4)}{4 x} \\
& =Q+\frac{R}{4 x} \\
& =\left(\frac{a^{2}}{4}\right)+\left(-\frac{a}{x}\right) \\
& =\frac{a^{2}}{4}-\frac{a}{x}
\end{aligned}
\]

Since the degree of \(t\) is 1 , then we see that the coefficient of the term 1 in the remainder \(R\) is \(-4 a\). Dividing this by leading coefficient in \(t\) which is 4 gives \(-a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(-a)-(0) \\
& =-a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-a}{\frac{a}{2}}-0\right)=-1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-a}{\frac{a}{2}}-0\right)=1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a(a x-4)}{4 x}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(\frac{a}{2}\) & -1 & 1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{x}+(-)\left(\frac{a}{2}\right) \\
& =\frac{1}{x}-\frac{a}{2} \\
& =\frac{1}{x}-\frac{a}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{x}-\frac{a}{2}\right)(0)+\left(\left(-\frac{1}{x^{2}}\right)+\left(\frac{1}{x}-\frac{a}{2}\right)^{2}-\left(\frac{a(a x-4)}{4 x}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{x}-\frac{a}{2}\right) d x} \\
& =x \mathrm{e}^{-\frac{a x}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x x}{x} d x} \\
& =z_{1} e^{-\frac{a x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-a x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\left.\begin{array}{rl}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-\operatorname{expIntegral}}{1}(-a x) a x-\mathrm{e}^{a x}\right. \\
x
\end{array}\right)
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-a x}\right)+c_{2}\left(x \mathrm{e}^{-a x}\left(\frac{-\exp \operatorname{Integral}_{1}(-a x) a x-\mathrm{e}^{a x}}{x}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-a x}+c_{2}\left(-\exp \operatorname{Integral}_{1}(-a x) a x \mathrm{e}^{-a x}-1\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-a x}+c_{2}\left(-\operatorname{expIntegral}{ }_{1}(-a x) a x \mathrm{e}^{-a x}-1\right)
\]

Verified OK.

\subsection*{28.9.4 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=a x \\
& r(x)=a \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =a
\end{aligned}
\]

Therefore (1) becomes
\[
0-(a)+(a)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(a x-1) y+y^{\prime} x=c_{1}
\]

We now have a first order ode to solve which is
\[
(a x-1) y+y^{\prime} x=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-a x+1) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x+1}{x} d x} \\
& =\mathrm{e}^{a x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{a x}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{\mathrm{e}^{a x}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{a x} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{a x}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{a x} y}{x}=\int \frac{c_{1} \mathrm{e}^{a x}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{a x} y}{x}=c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\exp \operatorname{Integral}_{1}(-a x)\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{\mathrm{e}^{a x}}{x}\) results in
\[
y=x \mathrm{e}^{-a x} c_{1} a\left(-\frac{\mathrm{e}^{a x}}{a x}-\exp \operatorname{Integral}_{1}(-a x)\right)+c_{2} x \mathrm{e}^{-a x}
\]
which simplifies to
\[
y=-\exp \operatorname{Integral}_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\exp \text { Integral }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\operatorname{expIntegral}{ }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}-c_{1}+c_{2} x \mathrm{e}^{-a x}
\]

Verified OK.

\subsection*{28.9.5 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+a x y^{\prime}+a y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-a y^{\prime}-\frac{a y}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+a y^{\prime}+\frac{a y}{x}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=a, P_{3}(x)=\frac{a}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+a x y^{\prime}+a y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)+a a_{k}(k+1+r)\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,1\}\)
- Each term in the series must be 0 , giving the recursion relation
\((k+1+r)\left(a_{k+1}(k+r)+a a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{a a_{k}}{k+r}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{a a_{k}}{k}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a a_{k}}{k}\right]\)
- \(\quad\) Recursion relation for \(r=1\)
\[
a_{k+1}=-\frac{a a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a a_{k}}{k+1}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{1+k}\right), b_{1+k}=-\frac{a b_{k}}{k}, c_{1+k}=-\frac{a c_{k}}{1+k}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 29
```

dsolve(x*diff(y(x),x\$2)+a*x*diff(y(x),x)+a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\exp \text { Integral }_{1}(-a x) c_{1} a x \mathrm{e}^{-a x}+c_{1}+c_{2} x \mathrm{e}^{-a x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.177 (sec). Leaf size: 35
DSolve[x*y''[x]+a*x*y'[x]+a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-a x}\left(a c_{2} x \operatorname{ExpIntegralEi}(a x)-c_{2} e^{a x}+c_{1} x\right)
\]

\subsection*{28.10 problem 70}
28.10.1 Maple step by step solution

2491
Internal problem ID [10894]
Internal file name [OUTPUT/10150_Sunday_December_24_2023_05_15_35_PM_2570596/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 70 .}

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Laguerre]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+(-x+b) y^{\prime}-a y=0
\]

\subsection*{28.10.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(-x+b) y^{\prime}-a y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{a y}{x}-\frac{(-x+b) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(-x+b) y^{\prime}}{x}-\frac{a y}{x}=0
\]
\(\square\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{-x+b}{x}, P_{3}(x)=-\frac{a}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(-x+b) y^{\prime}-a y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+r+b) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r+b)-a_{k}(k+r+a)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1+r+b)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+1+r)(k+r+b)-a_{k}(k+r+a)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+r+a)}{(k+1+r)(k+r+b)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+a)}{(k+1)(k+b)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}(k+a)}{(k+1)(k+b)}\right]\)
- Recursion relation for \(r=-b+1\)
\(a_{k+1}=\frac{a_{k}(k-b+1+a)}{(k+2-b)(k+1)}\)
- \(\quad\) Solution for \(r=-b+1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+1}=\frac{a_{k}(k-b+1+a)}{(k+2-b)(k+1)}\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b+1}\right), c_{1+k}=\frac{c_{k}(k+a)}{(1+k)(k+b)}, d_{1+k}=\frac{d_{k}(k-b+1+a)}{(k+2-b)(1+k)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
```

dsolve(x*diff(y(x),x\$2)+(b-x)*diff(y(x),x)-a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \operatorname{KummerM}(a, b, x)+c_{2} \operatorname{KummerU}(a, b, x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 24
DSolve[x*y''[x]+(b-x)*y'[x]-a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{1} \text { Hypergeometric } \mathrm{U}(a, b, x)+c_{2} L_{-a}^{b-1}(x)
\]

\subsection*{28.11 problem 71}
28.11.1 Maple step by step solution . 2495

Internal problem ID [10895]
Internal file name [OUTPUT/10151_Sunday_December_24_2023_05_15_36_PM_79692819/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 71 .}

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+(a x+b) y^{\prime}+c((a-c) x+b) y=0
\]

\subsection*{28.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(a x+b) y^{\prime}+c((a-c) x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{c(a x-c x+b) y}{x}-\frac{(a x+b) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(a x+b) y^{\prime}}{x}+\frac{c(a x-c x+b) y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x+b}{x}, P_{3}(x)=\frac{c(a x-c x+b)}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(a x+b) y^{\prime}+c(a x-c x+b) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+b) x^{-1+r}+\left(a_{1}(1+r)(r+b)+a_{0}(a r+b c)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(k+r+b)\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- Each term must be 0
\(a_{1}(1+r)(r+b)+a_{0}(a r+b c)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r+b)+a k a_{k}+a r a_{k}+\left(b a_{k}+a_{k-1}(a-c)\right) c=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+b)+a(k+1) a_{k+1}+a r a_{k+1}+\left(b a_{k+1}+a_{k}(a-c)\right) c=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} a c+a k a_{k+1}+a r a_{k+1}+b c a_{k+1}-a_{k} c^{2}+a a_{k+1}}{(k+2+r)(k+1+r+b)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a_{k} a c+a k a_{k+1}+b c a_{k+1}-a_{k} c^{2}+a a_{k+1}}{(k+2)(k+1+b)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k} a c+a k a_{k+1}+b c a_{k+1}-a_{k} c^{2}+a a_{k+1}}{(k+2)(k+1+b)}, a_{0} b c+a_{1} b=0\right]
\]
- Recursion relation for \(r=-b+1\)
\[
a_{k+2}=-\frac{a_{k} a c+a k a_{k+1}+a(-b+1) a_{k+1}+b c a_{k+1}-a_{k} c^{2}+a a_{k+1}}{(k+3-b)(k+2)}
\]
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+2}=-\frac{a_{k} a c+a k a_{k+1}+a(-b+1) a_{k+1}+b c a_{k+1}-a_{k} c^{2}+a a_{k+1}}{(k+3-b)(k+2)}, a_{1}(2-b)+a_{0}(a(-b+1)+\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k-b+1}\right), d_{k+2}=-\frac{a c d_{k}+a k d_{1+k}+b c d_{1+k}-c^{2} d_{k}+a d_{1+k}}{(k+2)(k+1+b)}, b c d_{0}+b d_{1}=0, e_{k+2}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 40
```

dsolve(x*diff (y (x),x\$2)+(a*x+b)*diff (y (x), x)+c*((a-c)*x+b)*y (x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \mathrm{e}^{-c x}+c_{2} x^{-\frac{b}{2}} \text { WhittakerM }\left(-\frac{b}{2}, \frac{1}{2}-\frac{b}{2},(-2 c+a) x\right) \mathrm{e}^{-\frac{a x}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 50
DSolve \([x * y\) ' ' \([x]+(a * x+b) * y '[x]+c *((a-c) * x+b) * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True
\[
y(x) \rightarrow e^{-c x}\left(c_{1}-c_{2} x^{1-b}(x(a-2 c))^{b-1} \Gamma(1-b,(a-2 c) x)\right)
\]

\subsection*{28.12 problem 72}
28.12.1 Solving using Kovacic algorithm 2499
28.12.2 Maple step by step solution . 2504

Internal problem ID [10896]
Internal file name [OUTPUT/10152_Sunday_December_24_2023_05_15_37_PM_13557728/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 72 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+(2 a x+b) y^{\prime}+a(a x+b) y=0
\]

\subsection*{28.12.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+(2 a x+b) y^{\prime}+a(a x+b) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=2 a x+b \tag{3}\\
& C=(a x+b) a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{b(-2+b)}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=b(-2+b) \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{b(-2+b)}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 84: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{b(-2+b)}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{b(-2+b)}{4}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\left\{2,2-2 \sqrt{(b-1)^{2}}, 2+2 \sqrt{(b-1)^{2}}\right\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{b(-2+b)}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{1}{4}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\left\{2,2-2 \sqrt{(b-1)^{2}}, 2+2 \sqrt{(b-1)^{2}}\right\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=2, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(2)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(0))}\right) \\
& =\frac{1}{x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\frac{w}{x}-\frac{b(-2+b)}{4 x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=-\frac{-2+b}{2 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{-2+b}{2 x} d x} \\
& =x^{1-\frac{b}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a x+b}{x} d x} \\
& =z_{1} e^{-a x-\frac{b \ln (x)}{2}} \\
& =z_{1}\left(x^{-\frac{b}{2}} \mathrm{e}^{-a x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{-b+1} \mathrm{e}^{-a x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a x+b}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 a x-b \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{b-1}}{b-1}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-b+1} \mathrm{e}^{-a x}\right)+c_{2}\left(x^{-b+1} \mathrm{e}^{-a x}\left(\frac{x^{b-1}}{b-1}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-b+1} \mathrm{e}^{-a x}+\frac{c_{2} \mathrm{e}^{-a x}}{b-1} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x^{-b+1} \mathrm{e}^{-a x}+\frac{c_{2} \mathrm{e}^{-a x}}{b-1}
\]

Verified OK.

\subsection*{28.12.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(2 a x+b) y^{\prime}+a(a x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(a x+b) a y}{x}-\frac{(2 a x+b) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(2 a x+b) y^{\prime}}{x}+\frac{(a x+b) a y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2 a x+b}{x}, P_{3}(x)=\frac{(a x+b) a}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+(2 a x+b) y^{\prime}+a(a x+b) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+r+b) x^{-1+r}+\left(a_{1}(1+r)(r+b)+a a_{0}(2 r+b)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+r+b)\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- Each term must be 0
\(a_{1}(1+r)(r+b)+a a_{0}(2 r+b)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r+b)+a a_{k}(2 k+2 r+b)+a_{k-1} a^{2}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+b)+a a_{k+1}(2 k+2+2 r+b)+a_{k} a^{2}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a\left(a a_{k}+b a_{k+1}+2 k a_{k+1}+2 r a_{k+1}+2 a_{k+1}\right)}{(k+2+r)(k+1+r+b)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a\left(a a_{k}+b a_{k+1}+2 k a_{k+1}+2 a_{k+1}\right)}{(k+2)(k+1+b)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a\left(a a_{k}+b a_{k+1}+2 k a_{k+1}+2 a_{k+1}\right)}{(k+2)(k+1+b)}, a a_{0} b+a_{1} b=0\right]
\]
- Recursion relation for \(r=-b+1\)
\[
a_{k+2}=-\frac{a\left(a a_{k}+b a_{k+1}+2 k a_{k+1}+2(-b+1) a_{k+1}+2 a_{k+1}\right)}{(k+3-b)(k+2)}
\]
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+2}=-\frac{a\left(a a_{k}+b a_{k+1}+2 k a_{k+1}+2(-b+1) a_{k+1}+2 a_{k+1}\right)}{(k+3-b)(k+2)}, a_{1}(2-b)+a a_{0}(2-b)=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b+1}\right), c_{k+2}=-\frac{a\left(a c_{k}+b c_{1+k}+2 k c_{1+k}+2 c_{1+k}\right)}{(k+2)(k+1+b)}, a b c_{0}+b c_{1}=0, d_{k+2}=-\frac{q}{}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
```

dsolve(x*diff (y(x),x\$2)+(2*a*x+b)*diff(y(x),x)+a*(a*x+b)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-a x}\left(c_{1}+x^{-b+1} c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 70
DSolve \(\left[x * y{ }^{\prime \prime}[x]+(2 * a * x+b) * y\right.\) ' \([x]+a *(a * x+b) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{\left.e^{-a x} x^{\frac{1}{2}\left(-b-\sqrt{(b-1)^{2}}+1\right.}\right)\left(c_{2} x^{\sqrt{(b-1)^{2}}}+\sqrt{(b-1)^{2}} c_{1}\right)}{\sqrt{(b-1)^{2}}}
\]

\subsection*{28.13 problem 73}
28.13.1 Maple step by step solution 2508

Internal problem ID [10897]
Internal file name [OUTPUT/10153_Sunday_December_24_2023_05_15_38_PM_12477976/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 73 .}

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+((a+b) x+n+m) y^{\prime}+(a b x+a n+b m) y=0
\]

\subsection*{28.13.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+((a+b) x+n+m) y^{\prime}+((b x+n) a+b m) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(a b x+a n+b m) y}{x}-\frac{(a x+b x+m+n) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(a x+b x+m+n) y^{\prime}}{x}+\frac{(a b x+a n+b m) y}{x}=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x+b x+m+n}{x}, P_{3}(x)=\frac{a b x+a n+b m}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=m+n
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(a x+b x+m+n) y^{\prime}+(a b x+a n+b m) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+m+n) x^{-1+r}+\left(a_{1}(1+r)(r+m+n)+a_{0}(a n+a r+b m+b r)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+m+n)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-m-n+1\}\)
- Each term must be 0
\(a_{1}(1+r)(r+m+n)+a_{0}(a n+a r+b m+b r)=0\)
- Each term in the series must be 0, giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+m+n)+a_{k}(a+b) k+a_{k}(a+b) r+(a n+b m) a_{k}+a_{k-1} a b=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+m+n)+a_{k+1}(a+b)(k+1)+a_{k+1}(a+b) r+(a n+b m) a_{k+1}+a\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} a b+a k a_{k+1}+a n a_{k+1}+a r a_{k+1}+b k a_{k+1}+b m a_{k+1}+b r a_{k+1}+a a_{k+1}+b a_{k+1}}{(k+2+r)(k+1+r+m+n)}\)
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a_{k} a b+a k a_{k+1}+a n a_{k+1}+b k a_{k+1}+b m a_{k+1}+a a_{k+1}+b a_{k+1}}{(k+2)(k+1+m+n)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k} a b+a k a_{k+1}+a n a_{k+1}+b k a_{k+1}+b m a_{k+1}+a a_{k+1}+b a_{k+1}}{(k+2)(k+1+m+n)}, a_{1}(m+n)+a_{0}(a n+b m)=\right.
\]
- Recursion relation for \(r=-m-n+1\)
\(a_{k+2}=-\frac{a_{k} a b+a k a_{k+1}+a n a_{k+1}+a(-m-n+1) a_{k+1}+b k a_{k+1}+b m a_{k+1}+b(-m-n+1) a_{k+1}+a a_{k+1}+b a_{k+1}}{(k+3-m-n)(k+2)}\)
- \(\quad\) Solution for \(r=-m-n+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-m-n+1}, a_{k+2}=-\frac{a_{k} a b+a k a_{k+1}+a n a_{k+1}+a(-m-n+1) a_{k+1}+b k a_{k+1}+b m a_{k+1}+b(-m-n+1) a_{k+1}+a a_{k-}}{(k+3-m-n)(k+2)}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-m-n+1}\right), c_{k+2}=-\frac{a b c_{k}+a k c_{1+k}+a n c_{1+k}+b k c_{1+k}+b m c_{1+k}+a c_{1+k}+b c_{1+k}}{(k+2)(k+1+m+n)}, c_{1}(r\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 39
```

dsolve(x*diff (y (x),x\$2)+((a+b)*x+n+m)*diff (y(x),x)+(a*b*x+a*n+b*m)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-a x}\left(\operatorname{KummerU}(m, n+m,(a-b) x) c_{2}+\operatorname{KummerM}(m, n+m,(a-b) x) c_{1}\right)
\]

Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 46
```

DSolve[x*y''[x]+((a+b)*x+n+m)*y'[x]+(a*b*x+a*n+b*m)*y[x]==0,y[x],x,IncludeSingularSolutions

```
\[
y(x) \rightarrow e^{-a x}\left(c_{1} \text { Hypergeometric } \mathrm{U}(m, m+n,(a-b) x)+c_{2} L_{-m}^{m+n-1}((a-b) x)\right)
\]

\subsection*{28.14 problem 74}
28.14.1 Maple step by step solution . 2512

Internal problem ID [10898]
Internal file name [OUTPUT/10154_Sunday_December_24_2023_05_15_39_PM_52312670/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 74 .}

ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+(a x+b) y^{\prime}+(c x+d) y=0
\]

\subsection*{28.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(a x+b) y^{\prime}+(c x+d) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(c x+d) y}{x}-\frac{(a x+b) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(a x+b) y^{\prime}}{x}+\frac{(c x+d) y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x+b}{x}, P_{3}(x)=\frac{c x+d}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(a x+b) y^{\prime}+(c x+d) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-1+r+b) x^{-1+r}+\left(a_{1}(1+r)(r+b)+a_{0}(a r+d)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+r+b)\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(r+b)+a_{0}(a r+d)=0\)
- Each term in the series must be 0, giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+b)+a k a_{k}+a r a_{k}+a_{k-1} c+a_{k} d=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+1+r+b)+a(k+1) a_{k+1}+a r a_{k+1}+a_{k} c+a_{k+1} d=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a k a_{k+1}+a r a_{k+1}+a a_{k+1}+a_{k} c+a_{k+1} d}{(k+2+r)(k+1+r+b)}\)
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a k a_{k+1}+a a_{k+1}+a_{k} c+a_{k+1} d}{(k+2)(k+1+b)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a k a_{k+1}+a a_{k+1}+a_{k} c+a_{k+1} d}{(k+2)(k+1+b)}, a_{1} b+a_{0} d=0\right]
\]
- Recursion relation for \(r=-b+1\)
\[
a_{k+2}=-\frac{a k a_{k+1}+a(-b+1) a_{k+1}+a a_{k+1}+a_{k} c+a_{k+1} d}{(k+3-b)(k+2)}
\]
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+2}=-\frac{a k a_{k+1}+a(-b+1) a_{k+1}+a a_{k+1}+a_{k} c+a_{k+1} d}{(k+3-b)(k+2)}, a_{1}(2-b)+a_{0}(a(-b+1)+d)=\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k-b+1}\right), e_{k+2}=-\frac{a k e_{1+k}+a e_{1+k}+c e_{k}+d e_{1+k}}{(k+2)(k+1+b)}, b e_{1}+d e_{0}=0, f_{k+2}=-\frac{a k f_{1}}{}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.093 (sec). Leaf size: 109
```

dsolve(x*diff (y(x),x\$2)+(a*x+b)*diff (y (x), x)+(c*x+d)*y (x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{x\left(\sqrt{a^{2}-4 c}+a\right)}{2}}\left(\operatorname{KummerM}\left(\frac{b \sqrt{a^{2}-4 c}+a b-2 d}{2 \sqrt{a^{2}-4 c}}, b, \sqrt{a^{2}-4 c} x\right) c_{1}\right. \\
&\left.\quad+\operatorname{KummerU}\left(\frac{b \sqrt{a^{2}-4 c}+a b-2 d}{2 \sqrt{a^{2}-4 c}}, b, \sqrt{a^{2}-4 c} x\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 135
DSolve[x*y' ' \([\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{c} * \mathrm{x}+\mathrm{d}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{array}{r}
y(x) \rightarrow e^{-\frac{1}{2} x\left(\sqrt{a^{2}-4 c}+a\right)}\left(c_{1} \text { HypergeometricU }\left(\frac{a b+\sqrt{a^{2}-4 c b}-2 d}{2 \sqrt{a^{2}-4 c}}, b, \sqrt{a^{2}-4 c} x\right)\right. \\
\left.+c_{2} L_{-\frac{a b+\sqrt{a^{2}-4 c b-2 d}}{2 \sqrt{a^{2}-4 c}}}^{b-1}\left(\sqrt{a^{2}-4 c} x\right)\right)
\end{array}
\]

\subsection*{28.15 problem 75}
28.15.1 Solving using Kovacic algorithm 2517
28.15.2 Maple step by step solution . 2524

Internal problem ID [10899]
Internal file name [OUTPUT/10155_Sunday_December_24_2023_05_15_40_PM_71475027/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 75 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x y^{\prime \prime}-(a x+1) y^{\prime}-b x^{2}(b x+a) y=0
\]

\subsection*{28.15.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+(-a x-1) y^{\prime}+\left(-b^{2} x^{3}-a b x^{2}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-a x-1 \tag{3}\\
& C=-b^{2} x^{3}-a b x^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 88: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=b^{2} x^{2}+a b x+\frac{a^{2}}{4}+\frac{3}{4 x^{2}}+\frac{a}{2 x}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx b x+\frac{a}{2}+\frac{a}{4 b x^{2}}-\frac{a^{2}}{8 b^{2} x^{3}}+\frac{a^{3}}{16 b^{3} x^{4}}+\frac{3}{8 b x^{3}}-\frac{a^{4}}{32 b^{4} x^{5}}-\frac{3 a}{16 b^{2} x^{4}}+\frac{a^{5}}{64 b^{5} x^{6}}+\frac{a^{2}}{16 b^{3} x^{5}}-\frac{a^{6}}{128 b^{6} x^{7}}-\frac{3 a^{4}}{128 b^{5} x^{7}}-\frac{3 a}{32 b^{3}}\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=b
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{a}{2}+b x \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=b^{2} x^{2}+a b x+\frac{1}{4} a^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{a^{2}}{4}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(b^{2} x^{2}+a b x+\frac{1}{4} a^{2}\right)+\left(\frac{2 a x+3}{4 x^{2}}\right) \\
& =b^{2} x^{2}+a b x+\frac{a^{2}}{4}+\frac{2 a x+3}{4 x^{2}}
\end{aligned}
\]

We see that the coefficient of the term \(x\) in the quotient is \(\frac{a^{2}}{4}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{a^{2}}{4}\right)-\left(\frac{a^{2}}{4}\right) \\
& =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a}{2}+b x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{b}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{b}-1\right)=-\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(\frac{a}{2}+b x\) & \(-\frac{1}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)\left(\frac{a}{2}+b x\right) \\
& =-\frac{1}{2 x}-\frac{a}{2}-b x \\
& =-\frac{1}{2 x}-\frac{a}{2}-b x
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
(0)+2\left(-\frac{1}{2 x}-\frac{a}{2}-b x\right)(0)+\left(\left(\frac{1}{2 x^{2}}-b\right)+\left(-\frac{1}{2 x}-\frac{a}{2}-b x\right)^{2}-\left(\frac{4 b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}+2 a x+3}{4 x^{2}}\right)\right.
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}-\frac{a}{2}-b x\right) d x} \\
& =\frac{\mathrm{e}^{-\frac{x(b x+a)}{2}}}{\sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x-1}{x} d x} \\
& =z_{1} e^{\frac{a x}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{\frac{a x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{b x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-a x-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{a x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{a \sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{2 b x+a}{2 \sqrt{-b}}\right)+2 \mathrm{e}^{x(b x+a)} \sqrt{-b}}{4(-b)^{\frac{3}{2}}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{b x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{b x^{2}}{2}}\left(-\frac{a \sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{2 b x+a}{2 \sqrt{-b}}\right)+2 \mathrm{e}^{x(b x+a)} \sqrt{-b}}{4(-b)^{\frac{3}{2}}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{b x^{2}}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{b x^{2}}{2}}\left(a \sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{2 b x+a}{2 \sqrt{-b}}\right)+2 \mathrm{e}^{x(b x+a)} \sqrt{-b}\right)}{4(-b)^{\frac{3}{2}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{b x^{2}}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{b x^{2}}{2}}\left(a \sqrt{\pi} \mathrm{e}^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{2 b x+a}{2 \sqrt{-b}}\right)+2 \mathrm{e}^{x(b x+a)} \sqrt{-b}\right)}{4(-b)^{\frac{3}{2}}}
\]

Verified OK.

\subsection*{28.15.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+(-a x-1) y^{\prime}+\left(-b^{2} x^{3}-a b x^{2}\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=b x(b x+a) y+\frac{(a x+1) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}-\frac{(a x+1) y^{\prime}}{x}-b x(b x+a) y=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{a x+1}{x}, P_{3}(x)=-b x(b x+a)\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+(-a x-1) y^{\prime}-b x^{2}(b x+a) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=2 . .3\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)-a_{0} a r\right) x^{r}+\left(a_{2}(2+r) r-a a_{1}(1+r)\right) x^{1+r}+\left(a_{3}(3+\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\{0,2\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(-1+r)-a_{0} a r=0, a_{2}(2+r) r-a a_{1}(1+r)=0, a_{3}(3+r)(1+r)-a a_{2}(2+r)-a_{0}\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=\frac{a 0 a r}{r^{2}-1}, a_{2}=\frac{a^{2} a_{0}}{r^{2}+r-2}, a_{3}=\frac{a a_{0}\left(a^{2}+b r-b\right)}{r^{3}+3 r^{2}-r-3}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r-1)+\left(-b a_{k-2}-k a_{k}-r a_{k}\right) a-a_{k-3} b^{2}=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+4}(k+4+r)(k+2+r)+\left(-b a_{k+1}-(k+3) a_{k+3}-r a_{k+3}\right) a-a_{k} b^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+4}=\frac{a b a_{k+1}+a k a_{k+3}+a r a_{k+3}+a_{k} b^{2}+3 a a_{k+3}}{(k+4+r)(k+2+r)}\)
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+4}=\frac{a b a_{k+1}+a k a_{k+3}+a_{k} b^{2}+3 a a_{k+3}}{(k+4)(k+2)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a b a_{k+1}+a k a_{k+3}+a_{k} b^{2}+3 a a_{k+3}}{(k+4)(k+2)}, a_{1}=0, a_{2}=-\frac{a^{2} a_{0}}{2}, a_{3}=-\frac{a a_{0}\left(a^{2}-b\right)}{3}\right]
\]
- \(\quad\) Recursion relation for \(r=2\)
\[
a_{k+4}=\frac{a b a_{k+1}+a k a_{k+3}+a_{k} b^{2}+5 a a_{k+3}}{(k+6)(k+4)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=\frac{a b a_{k+1}+a k a_{k+3}+a_{k} b^{2}+5 a a_{k+3}}{(k+6)(k+4)}, a_{1}=\frac{2 a a_{0}}{3}, a_{2}=\frac{a^{2} a_{0}}{4}, a_{3}=\frac{a a_{0}\left(a^{2}+b\right)}{15}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+2}\right), c_{k+4}=\frac{a b c_{1+k}+a k c_{k+3}+b^{2} c_{k}+3 a c_{k+3}}{(k+4)(k+2)}, c_{1}=0, c_{2}=-\frac{a^{2} c_{0}}{2}, c_{3}=-\frac{a c_{0}}{}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 73
dsolve(\(x * \operatorname{diff}(y(x), x \$ 2)-(a * x+1) * \operatorname{diff}(y(x), x)-b * x^{\wedge} 2 *(b * x+a) * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=-\mathrm{e}^{-\frac{2 b^{2} x^{2}+a^{2}}{4 b}} \sqrt{\pi} \sqrt{-b} \operatorname{erf}\left(\frac{2 b x+a}{2 \sqrt{-b}}\right) c_{2} a+2 \mathrm{e}^{\frac{1}{2} x^{2} b+a x} c_{2} b+c_{1} \mathrm{e}^{-\frac{x^{2} b}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.444 (sec). Leaf size: 88
DSolve[x*y' \([\mathrm{x}]-(\mathrm{a} * \mathrm{x}+1) * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{b} * \mathrm{x}^{\wedge} 2 *(\mathrm{~b} * \mathrm{x}+\mathrm{a}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{e^{-\frac{b x^{2}}{2}}\left(2 \sqrt{b}\left(c_{2} e^{x(a+b x)}+2 b c_{1}\right)-\sqrt{\pi} a c_{2} e^{-\frac{a^{2}}{4 b}} \operatorname{erf}\left(\frac{a+2 b x}{2 \sqrt{b}}\right)\right)}{4 b^{3 / 2}}
\]

\subsection*{28.16 problem 76}
28.16.1 Solving using Kovacic algorithm 2528
28.16.2 Maple step by step solution . 2535

Internal problem ID [10900]
Internal file name [OUTPUT/10156_Sunday_December_31_2023_11_03_00_AM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 76 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}-(2 a x+1) y^{\prime}+\left(x^{3} b+a^{2} x+a\right) y=0
\]

\subsection*{28.16.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+(-2 a x-1) y^{\prime}+\left(x^{3} b+a^{2} x+a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-2 a x-1 \tag{3}\\
& C=x^{3} b+a^{2} x+a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4 b x^{4}+3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 b x^{4}+3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-4 b x^{4}+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 90: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-b x^{2}+\frac{3}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx i \sqrt{b} x-\frac{3 i}{8 \sqrt{b} x^{3}}-\frac{9 i}{128 b^{\frac{3}{2}} x^{7}}-\frac{27 i}{1024 b^{\frac{5}{2}} x^{11}}-\frac{405 i}{32768 b^{\frac{7}{2}} x^{15}}-\frac{1701 i}{262144 b^{\frac{9}{2}} x^{19}}-\frac{15309 i}{4194304 b^{\frac{11}{2}} x^{23}}-\frac{72171 i}{33554432 b^{\frac{13}{2}} x}\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=i \sqrt{b}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =i \sqrt{b} x \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=-b x^{2}
\]

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{-4 b x^{4}+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(-b x^{2}\right)+\left(\frac{3}{4 x^{2}}\right) \\
& =-b x^{2}+\frac{3}{4 x^{2}}
\end{aligned}
\]

We see that the coefficient of the term \(x\) in the quotient is 0 . Now \(b\) can be found.
\[
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =i \sqrt{b} x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{i \sqrt{b}}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{i \sqrt{b}}-1\right)=-\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{-4 b x^{4}+3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(i \sqrt{b} x\) & \(-\frac{1}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(i \sqrt{b} x) \\
& =-\frac{1}{2 x}-i \sqrt{b} x \\
& =\frac{-2 i \sqrt{b} x^{2}-1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}-i \sqrt{b} x\right)(0)+\left(\left(\frac{1}{2 x^{2}}-i \sqrt{b}\right)+\left(-\frac{1}{2 x}-i \sqrt{b} x\right)^{2}-\left(\frac{-4 b x^{4}+3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}-i \sqrt{b} x\right) d x} \\
& =\frac{\mathrm{e}^{-\frac{i \sqrt{b} x^{2}}{2}}}{\sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 a x-1}{x} d x} \\
& =z_{1} e^{a x+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{a x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{a x-\frac{i \sqrt{b} x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 a x-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 a x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i e^{i \sqrt{b} x^{2}}}{2 \sqrt{b}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{a x-\frac{i \sqrt{b} x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{a x-\frac{i \sqrt{b} x^{2}}{2}}\left(-\frac{i \mathrm{e}^{i \sqrt{b} x^{2}}}{2 \sqrt{b}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{a x-\frac{i \sqrt{b} x^{2}}{2}}-\frac{i c_{2} \mathrm{e}^{\frac{x(i \sqrt{b} x+2 a)}{2}}}{2 \sqrt{b}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{a x-\frac{i \sqrt{b} x^{2}}{2}}-\frac{i c_{2} \mathrm{e}^{\frac{x(i \sqrt{b} x+2 a)}{2}}}{2 \sqrt{b}}
\]

Verified OK.

\subsection*{28.16.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+(-2 a x-1) y^{\prime}+\left(x^{3} b+a^{2} x+a\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{\left(x^{3} b+a^{2} x+a\right) y}{x}+\frac{(2 a x+1) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(2 a x+1) y^{\prime}}{x}+\frac{\left(x^{3} b+a^{2} x+a\right) y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{2 a x+1}{x}, P_{3}(x)=\frac{x^{3} b+a^{2} x+a}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+(-2 a x-1) y^{\prime}+\left(x^{3} b+a^{2} x+a\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)-a a_{0}(-1+2 r)\right) x^{r}+\left(a_{2}(2+r) r-a a_{1}(1+2 r)+a_{0} a^{2}\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,2\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0 \(\left[a_{1}(1+r)(-1+r)-a a_{0}(-1+2 r)=0, a_{2}(2+r) r-a a_{1}(1+2 r)+a_{0} a^{2}=0, a_{3}(3+r)(1+r)\right.\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=\frac{a a_{0}(-1+2 r)}{r^{2}-1}, a_{2}=\frac{3 a^{2} r a_{0}}{r^{3}+2 r^{2}-r-2}, a_{3}=\frac{2 a^{3} a_{0}(1+2 r)}{r^{4}+5 r^{3}+5 r^{2}-5 r-6}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r-1)+a_{k-1} a^{2}-2 a_{k}\left(k+r-\frac{1}{2}\right) a+a_{k-3} b=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+4}(k+4+r)(k+2+r)+a_{k+2} a^{2}-2 a_{k+3}\left(k+\frac{5}{2}+r\right) a+a_{k} b=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+4}=-\frac{a_{k+2} a^{2}-2 a k a_{k+3}-2 a r a_{k+3}-5 a a_{k+3}+a_{k} b}{(k+4+r)(k+2+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+4}=-\frac{a_{k+2} a^{2}-2 a k a_{k+3}-5 a a_{k+3}+a_{k} b}{(k+4)(k+2)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k+2} a^{2}-2 a k a_{k+3}-5 a a_{k+3}+a_{k} b}{(k+4)(k+2)}, a_{1}=a_{0} a, a_{2}=0, a_{3}=-\frac{a^{3} a_{0}}{3}\right]
\]
- \(\quad\) Recursion relation for \(r=2\)
\[
a_{k+4}=-\frac{a_{k+2} a^{2}-2 a k a_{k+3}-9 a a_{k+3}+a_{k} b}{(k+6)(k+4)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{a_{k+2} a^{2}-2 a k a_{k+3}-9 a a_{k+3}+a_{k} b}{(k+6)(k+4)}, a_{1}=a_{0} a, a_{2}=\frac{a_{0} a^{2}}{2}, a_{3}=\frac{a^{3} a_{0}}{6}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+2}\right), c_{k+4}=-\frac{a^{2} c_{k+2}-2 a k c_{k+3}-5 a c_{k+3}+b c_{k}}{(k+4)(k+2)}, c_{1}=c_{0} a, c_{2}=0, c_{3}=-\frac{a^{3} c_{0}}{3}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful

```

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 39
```

dsolve(x*diff(y(x),x\$2)-(2*a*x+1)*diff (y (x),x)+(b*x^3+a^2*x+a)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \mathrm{e}^{a x+\frac{x^{2} \sqrt{-b}}{2}}+c_{2} \mathrm{e}^{a x-\frac{x^{2} \sqrt{-b}}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.276 (sec). Leaf size: 59
DSolve \(\left[x * y\right.\) ' \([x]-(2 * a * x+1) * y^{\prime}[x]+\left(b * x^{\wedge} 3+a^{\wedge} 2 * x+a\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) T
\[
y(x) \rightarrow \frac{1}{2} e^{a x-\frac{1}{2} i \sqrt{b} x^{2}}\left(2 c_{1}-\frac{i c_{2} e^{i \sqrt{b} x^{2}}}{\sqrt{b}}\right)
\]

\subsection*{28.17 problem 77}
28.17.1 Solving as second order ode missing y ode 2539
28.17.2 Maple step by step solution . 2541

Internal problem ID [10901]
Internal file name [OUTPUT/10157_Sunday_December_31_2023_11_03_01_AM_84918379/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 77.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x y^{\prime \prime}+(a x+b) y^{\prime}=-c x\left(-c x^{2}+a x+b+1\right)
\]

\subsection*{28.17.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x) x+(a x+b) p(x)+c x\left(-c x^{2}+a x+b+1\right)=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x-b}{x} \\
& q(x)=-c\left(-c x^{2}+a x+b+1\right)
\end{aligned}
\]

Hence the ode is
\[
p^{\prime}(x)-\frac{(-a x-b) p(x)}{x}=-c\left(-c x^{2}+a x+b+1\right)
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x-b}{x} d x} \\
& =\mathrm{e}^{a x+b \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=x^{b} \mathrm{e}^{a x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(-c\left(-c x^{2}+a x+b+1\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{b} \mathrm{e}^{a x} p\right) & =\left(x^{b} \mathrm{e}^{a x}\right)\left(-c\left(-c x^{2}+a x+b+1\right)\right) \\
\mathrm{d}\left(x^{b} \mathrm{e}^{a x} p\right) & =\left(-c\left(-c x^{2}+a x+b+1\right) x^{b} \mathrm{e}^{a x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\(x^{b} \mathrm{e}^{a x} p=\int-c\left(-c x^{2}+a x+b+1\right) x^{b} \mathrm{e}^{a x} \mathrm{~d} x\)
\(x^{b} \mathrm{e}^{a x} p=-\frac{(-a)^{-b} c^{2}\left(x^{b}(-a)^{b} b\left(b^{2}+3 b+2\right) \Gamma(b)(-a x)^{-b}-x^{b}(-a)^{b}\left(a^{2} x^{2}-a b x-2 a x+b^{2}+3 b+2\right) \mathrm{e}^{a}\right.}{a^{3}}\)
Dividing both sides by the integrating factor \(\mu=x^{b} \mathrm{e}^{a x}\) results in
\(p(x)=x^{-b} \mathrm{e}^{-a x}\left(-\frac{(-a)^{-b} c^{2}\left(x^{b}(-a)^{b} b\left(b^{2}+3 b+2\right) \Gamma(b)(-a x)^{-b}-x^{b}(-a)^{b}\left(a^{2} x^{2}-a b x-2 a x+b^{2}+3 b\right.\right.}{a^{3}}\right.\)
which simplifies to
\(p(x)=\frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}\right.\right.}{a^{3}}\)

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-\right.\right.}{a^{3}}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{(-a x)^{-b} b^{3} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}+a^{2} c^{2} x^{2}+3(-a x)^{-b} b^{2} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}-a^{3} c x-a c^{2} b x+x^{-b} c_{1} a^{3} \mathrm{e}^{-a}}{a^{3}} \\
& =\int \frac{(-a x)^{-b} b^{3} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}+a^{2} c^{2} x^{2}+3(-a x)^{-b} b^{2} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}-a^{3} c x-a c^{2} b x+x^{-b} c_{1} a^{3} \mathrm{e}^{-a}}{a^{3}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(\begin{aligned} &= \int \frac{(-a x)^{-b} b^{3} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}+a^{2} c^{2} x^{2}+3(-a x)^{-b} b^{2} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}-a^{3} c x-a c^{2} b x+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}}{a^{3}} \\ & \quad+c_{2}\end{aligned}\)
Verification of solutions
\[
\begin{aligned}
& y \\
& =\int^{y} \frac{(-a x)^{-b} b^{3} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}+a^{2} c^{2} x^{2}+3(-a x)^{-b} b^{2} c^{2} \Gamma(b,-a x) \mathrm{e}^{-a x}-a^{3} c x-a c^{2} b x+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-}{a^{3}}
\end{aligned}
\]

\section*{Verified OK.}

\subsection*{28.17.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+(a x+b) y^{\prime}=-c x\left(-c x^{2}+a x+b+1\right)\)
- Highest derivative means the order of the ODE is 2
```

y'

```
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\[
u^{\prime}(x) x+(a x+b) u(x)=-c x\left(-c x^{2}+a x+b+1\right)
\]
- Isolate the derivative
\(u^{\prime}(x)=-\frac{(a x+b) u(x)}{x}-c\left(-c x^{2}+a x+b+1\right)\)
- Group terms with \(u(x)\) on the lhs of the ODE and the rest on the rhs of the ODE
\(u^{\prime}(x)+\frac{(a x+b) u(x)}{x}=-c\left(-c x^{2}+a x+b+1\right)\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(u^{\prime}(x)+\frac{(a x+b) u(x)}{x}\right)=-\mu(x) c\left(-c x^{2}+a x+b+1\right)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) u(x))\)
\(\mu(x)\left(u^{\prime}(x)+\frac{(a x+b) u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\frac{\mu(x)(a x+b)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=x^{b} \mathrm{e}^{a x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int-\mu(x) c\left(-c x^{2}+a x+b+1\right) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) u(x)=\int-\mu(x) c\left(-c x^{2}+a x+b+1\right) d x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{\int-\mu(x) c\left(-c x^{2}+a x+b+1\right) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=x^{b} \mathrm{e}^{a x}\)
\(u(x)=\frac{\int-c\left(-c x^{2}+a x+b+1\right) x^{b} \mathrm{e}^{a x} d x+c_{1}}{x^{b} \mathrm{e}^{a x}}\)
- Evaluate the integrals on the rhs
\(u(x)=\frac{-(-a)^{-b} c^{2}\left(x^{b}(-a)^{b} b\left(b^{2}+3 b+2\right) \Gamma(b)(-a x)^{-b}-x^{b}(-a)^{b}\left(a^{2} x^{2}-a b x-2 a x+b^{2}+3 b+2\right) \mathrm{e}^{a x}-x^{b}(-a)^{b} b\left(b^{2}+3 b+2\right)(-a x)^{-b} \Gamma \Gamma(b,-a x)\right)}{a^{3}}-\frac{(-,}{-}\)
- Simplify
\(u(x)=\frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-3 b-2\right) c+a^{3} x\right)}{a^{3}}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-3 b-2\right) c+a^{3} x\right)}{a^{3}}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-3 b-2\right) c+a^{3} x\right)}{a^{3}}\)
- Integrate both sides to solve for \(y\)
\[
\int y^{\prime} d x=\int \frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-3 b-2\right) c+a^{3} x\right)}{a^{3}} d x+c_{2}
\]
- Compute integrals
\[
y=\int \frac{c^{2} \mathrm{e}^{-a x}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right)(-a x)^{-b}+x^{-b} c_{1} a^{3} \mathrm{e}^{-a x}-c\left(\left(-a^{2} x^{2}+x(2+b) a-b^{2}-3 b-2\right) c+a^{3} x\right)}{a^{3}} d x+c_{2}
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-c^2*_a^3+c*_a^2*a+_a*_b(_a)*a+_a*b*c
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 115
```

dsolve(x*diff(y(x),x\$2)+(a*x+b)*diff(y(x),x)+c*x*(-c*x^2+a*x+b+1)=0,y(x), singsol=all)

```
\(y(x)\)
\(=\frac{c_{2} a^{3}-\left(\int\left(-c^{2}\left(\left(b^{3}+3 b^{2}+2 b\right) \Gamma(b,-a x)-\Gamma(b+3)\right) \mathrm{e}^{-a x}(-a x)^{-b}-\mathrm{e}^{-a x} x^{-b} c_{1} a^{3}+\left(\left(-b^{2}+(a x-3) b\right.\right.\right.\right.}{a^{3}}\)
\(\checkmark\) Solution by Mathematica
Time used: 61.322 (sec). Leaf size: 92
DSolve \(\left[x * y{ }^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\mathrm{c} * \mathrm{x} *\left(-\mathrm{c} * \mathrm{x}^{\wedge} 2+\mathrm{a} * \mathrm{x}+\mathrm{b}+1\right)==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) Tru
\(y(x)\)
\[
\rightarrow \int_{1}^{x} e^{-a K[1]} K[1]^{-b}\left(\frac{c\left(-\left((b+1) \Gamma(b+1,-a K[1]) a^{2}\right)+\Gamma(b+2,-a K[1]) a^{2}+c \Gamma(b+3,-a K[1])\right) K[1]^{b}(}{a^{3}}+c_{1}\right) d K[1]+c_{2} .
\]

\subsection*{28.18 problem 78}
28.18.1 Maple step by step solution

2544
Internal problem ID [10902]
Internal file name [OUTPUT/10158_Sunday_December_31_2023_11_03_03_AM_20057251/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 78.}

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}-(2 a x+1) y^{\prime}+y b x^{3}=0
\]

\subsection*{28.18.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(-2 a x-1) y^{\prime}+y b x^{3}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-x^{2} b y+\frac{(2 a x+1) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(2 a x+1) y^{\prime}}{x}+x^{2} b y=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{2 a x+1}{x}, P_{3}(x)=b x^{2}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(-2 a x-1) y^{\prime}+y b x^{3}=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{3} \cdot y\) to series expansion
\[
x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}
\]
- \(\quad\) Shift index using \(k->k-3\)
\[
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)-2 a_{0} a r\right) x^{r}+\left(a_{2}(2+r) r-2 a a_{1}(1+r)\right) x^{1+r}+\left(a_{3}(3\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,2\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(-1+r)-2 a_{0} a r=0, a_{2}(2+r) r-2 a a_{1}(1+r)=0, a_{3}(3+r)(1+r)-2 a a_{2}(2+r)=\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=\frac{2 a_{0} a r}{r^{2}-1}, a_{2}=\frac{4 a^{2} a_{0}}{r^{2}+r-2}, a_{3}=\frac{8 a^{3} a_{0}}{r^{3}+3 r^{2}-r-3}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+1+r)(k+r-1)-2 a a_{k}(k+r)+a_{k-3} b=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+4}(k+4+r)(k+2+r)-2 a a_{k+3}(k+r+3)+a_{k} b=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+4}=\frac{2 a k a_{k+3}+2 a r a_{k+3}+6 a a_{k+3}-a_{k} b}{(k+4+r)(k+2+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+4}=\frac{2 a k a_{k+3}+6 a a_{k+3}-a_{k} b}{(k+4)(k+2)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{2 a k a_{k+3}+6 a a_{k+3}-a_{k} b}{(k+4)(k+2)}, a_{1}=0, a_{2}=-2 a^{2} a_{0}, a_{3}=-\frac{8 a^{3} a_{0}}{3}\right]
\]
- Recursion relation for \(r=2\)
\[
a_{k+4}=\frac{2 a k a_{k+3}+10 a a_{k+3}-a_{k} b}{(k+6)(k+4)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=\frac{2 a k a_{k+3}+10 a a_{k+3}-a_{k} b}{(k+6)(k+4)}, a_{1}=\frac{4 a a_{0}}{3}, a_{2}=a^{2} a_{0}, a_{3}=\frac{8 a^{3} a_{0}}{15}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+2}\right), c_{k+4}=\frac{2 a k c_{k+3}+6 a c_{k+3}-b c_{k}}{(k+4)(k+2)}, c_{1}=0, c_{2}=-2 a^{2} c_{0}, c_{3}=-\frac{8 a^{3} c_{0}}{3}, d_{k}\right.
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c=0 -

```
\(\checkmark\) Solution by Maple
Time used: 0.188 (sec). Leaf size: 106
dsolve (\(x * \operatorname{diff}(y(x), x \$ 2)-(2 * a * x+1) * \operatorname{diff}(y(x), x)+b * x^{\wedge} 3 * y(x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)=x^{2} \operatorname{HeunB}\left(2,0, \frac{a^{2}}{\sqrt{-b}},-\frac{2 i a}{(-b)^{\frac{1}{4}}}, i(-b)^{\frac{1}{4}} x\right) \mathrm{e}^{a x+\frac{x^{2} \sqrt{-b}}{2}}\left(c_{1}\right. \\
&\left.+c_{2}\left(\int \frac{\mathrm{e}^{-x^{2} \sqrt{-b}}}{\operatorname{HeunB}\left(2,0, \frac{a^{2}}{\sqrt{-b}},-\frac{2 i a}{(-b)^{\frac{1}{4}}}, i(-b)^{\frac{1}{4}} x\right)^{2} x^{3}} d x\right)\right)
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[x*y' ' \([\mathrm{x}]-(2 * a * x+1) * y^{\prime}[\mathrm{x}]+\mathrm{b} * \mathrm{x}^{\wedge} 3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{28.19 problem 79}
28.19.1 Maple step by step solution

Internal problem ID [10903]
Internal file name [OUTPUT/10159_Sunday_December_31_2023_11_03_03_AM_54718002/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 79 .}

ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a b x^{2}+b-5\right) y^{\prime}+2 a^{2}(-2+b) x^{3} y=0
\]

\subsection*{28.19.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(a b x^{2}+b-5\right) y^{\prime}+2 a^{2}(-2+b) x^{3} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a b x^{2}+b-5\right) y^{\prime}}{x}-2 x^{2} a^{2}(-2+b) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a b x^{2}+b-5\right) y^{\prime}}{x}+2 x^{2} a^{2}(-2+b) y=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a b x^{2}+b-5}{x}, P_{3}(x)=2 a^{2} x^{2}(-2+b)\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b-5\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a b x^{2}+b-5\right) y^{\prime}+2 a^{2}(-2+b) x^{3} y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{3} \cdot y\) to series expansion
\[
x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}
\]
- \(\quad\) Shift index using \(k->k-3\)
\[
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-6+r+b) x^{-1+r}+a_{1}(1+r)(-5+r+b) x^{r}+\left(a_{2}(2+r)(-4+r+b)+a_{0} a b r\right) x^{1+r}+\left(a_{3}\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-6+r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+6\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(-5+r+b)=0, a_{2}(2+r)(-4+r+b)+a_{0} a b r=0, a_{3}(3+r)(-3+r+b)+a_{1}(1+\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=0, a_{2}=-\frac{a_{0} a b r}{r b+r^{2}+2 b-2 r-8}, a_{3}=0\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k-5+r+b)+a_{k-1}(k+r-1) a b+2 a_{k-3} a^{2}(-2+b)=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+4}(k+4+r)(k-2+r+b)+a_{k+2}(k+2+r) a b+2 a_{k} a^{2}(-2+b)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+4}=-\frac{a\left(2 a b a_{k}+b k a_{k+2}+b r a_{k+2}-4 a a_{k}+2 b a_{k+2}\right)}{(k+4+r)(k-2+r+b)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+4}=-\frac{a\left(2 a b a_{k}+b k a_{k+2}-4 a a_{k}+2 b a_{k+2}\right)}{(k+4)(k-2+b)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a\left(2 a b a_{k}+b k a_{k+2}-4 a a_{k}+2 b a_{k+2}\right)}{(k+4)(k-2+b)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
\]
- Recursion relation for \(r=-b+6\)
\(a_{k+4}=-\frac{a\left(2 a b a_{k}+b k a_{k+2}+b(-b+6) a_{k+2}-4 a a_{k}+2 b a_{k+2}\right)}{(k+10-b)(k+4)}\)
- \(\quad\) Solution for \(r=-b+6\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+6}, a_{k+4}=-\frac{a\left(2 a b a_{k}+b k a_{k+2}+b(-b+6) a_{k+2}-4 a a_{k}+2 b a_{k+2}\right)}{(k+10-b)(k+4)}, a_{1}=0, a_{2}=-\frac{a_{0} a b(-b+6)}{(-b+6) b+(-b+6)^{2}+}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b+6}\right), c_{k+4}=-\frac{a\left(2 a b c_{k}+b k c_{k+2}-4 a c_{k}+2 b c_{k+2}\right)}{(k+4)(k-2+b)}, c_{1}=0, c_{2}=0, c_{3}=0, d_{k}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 1F1 ODE         <- Kummer successful     <- special function solution successful         -> Trying to convert hypergeometric functions to elementary form...         <- elementary form could result into a too large expression - returning special functi     <- Kovacics algorithm successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.187 (sec). Leaf size: 92
```

dsolve(x*diff(y(x),x\$2)+(a*b*x^2+b-5)*diff (y(x),x)+2*a^2*(b-2)*x^3*y(x)=0,y(x), singsol=all)
y(x)
=}\frac{(-3\operatorname{KummerU}(\frac{b}{2}+1,-2+\frac{b}{2},\frac{a(b-4)\mp@subsup{x}{}{2}}{2})\mp@subsup{c}{2}{}b+(a(b-4)\mp@subsup{x}{}{2}+b+4)\mp@subsup{c}{2}{}\operatorname{KummerU}(\frac{b}{2},-2+\frac{b}{2},\frac{a(b-4)\mp@subsup{x}{}{2}}{2})}{2

```
\(\checkmark\) Solution by Mathematica
Time used: 3.578 (sec). Leaf size: 67
DSolve[x*y' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} 2+\mathrm{b}-5\right) * \mathrm{y}^{\prime}[\mathrm{x}]+2 * \mathrm{a}^{\wedge} 2 *(\mathrm{~b}-2) * \mathrm{x}^{\wedge} 3 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\[
y(x) \rightarrow e^{-a x^{2}}\left(a x^{2}+1\right)\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{1}{2} a(b-4) K[1]^{2}} K[1]^{5-b}}{\left(a K[1]^{2}+1\right)^{2}} d K[1]+c_{1}\right)
\]

\subsection*{28.20 problem 80}
28.20.1 Solving using Kovacic algorithm

2554
Internal problem ID [10904]
Internal file name [OUTPUT/10160_Sunday_December_31_2023_11_03_04_AM_75682043/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 80.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}-\left(a c x^{2}+\left(b c+c^{2}+a\right) x+b+2 c\right) y=0
\]

\subsection*{28.20.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+x(a x+b) y^{\prime}+\left(-c^{2} x+\left(-a x^{2}-b x-2\right) c-a x-b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=(a x+b) x \tag{3}\\
& C=-c^{2} x+\left(-a x^{2}-b x-2\right) c-a x-b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x+4 b c x+4 c^{2} x+6 a x+4 b+8 c}{4 x} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x+4 b c x+4 c^{2} x+6 a x+4 b+8 c \\
& t=4 x
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x+4 b c x+4 c^{2} x+6 a x+4 b+8 c}{4 x}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 95: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =1-3 \\
& =-2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x\). There is a pole at \(x=0\) of order 1 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 1 . For the pole at \(x=0\) of order 1 then
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =1 \\
\alpha_{c}^{-} & =1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{b}{2}+c+\frac{a x}{2}+\frac{3}{2 x}+\frac{2 b c}{a^{2} x^{3}}-\frac{3 b^{2} c}{a^{3} x^{4}}-\frac{6 b c^{2}}{a^{3} x^{4}}+\frac{4 b^{3} c}{a^{4} x^{5}}+\frac{12 b^{2} c^{2}}{a^{4} x^{5}}+\frac{16 b c^{3}}{a^{4} x^{5}}-\frac{22 b c}{a^{3} x^{5}}-\frac{5 b^{4} c}{a^{5} x^{6}}-\frac{20 b^{3} c^{2}}{a^{5} x^{6}}-\frac{40 b^{2} c^{3}}{a^{5} x^{6}}-\frac{40 b c^{4}}{a^{5} x^{6}}+ \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{b}{2}+c+\frac{a x}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2}+b c+\frac{1}{2} a b x+c^{2}+a c x+\frac{1}{4} a^{2} x^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{1}{4} b^{2}+b c+c^{2}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x+4 b c x+4 c^{2} x+6 a x+4 b+8 c}{4 x} \\
& =Q+\frac{R}{4 x} \\
& =\left(\frac{a^{2} x^{2}}{4}+\left(\frac{1}{2} a b+a c\right) x+\frac{b^{2}}{4}+b c+c^{2}+\frac{3 a}{2}\right)+\left(\frac{4 b+8 c}{4 x}\right) \\
& =\frac{a^{2} x^{2}}{4}+\left(\frac{1}{2} a b+a c\right) x+\frac{b^{2}}{4}+b c+c^{2}+\frac{3 a}{2}+\frac{4 b+8 c}{4 x}
\end{aligned}
\]

We see that the coefficient of the term 1 in the quotient is \(\frac{1}{4} b^{2}+b c+c^{2}+\frac{3}{2} a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{1}{4} b^{2}+b c+c^{2}+\frac{3}{2} a\right)-\left(\frac{1}{4} b^{2}+b c+c^{2}\right) \\
& =\frac{3 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{b}{2}+c+\frac{a x}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
\begin{gathered}
r=\frac{x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x+4 b c x+4 c^{2} x+6 a x+4 b+8 c}{4 x} \\
\begin{array}{|c|c|c|c|c|}
\hline \text { pole } c \text { location } & \text { pole order } & {[\sqrt{r}]_{c}} & \alpha_{c}^{+} & \alpha_{c}^{-} \\
\hline 0 & 1 & 0 & 0 & 1 \\
\hline \begin{array}{|c|c|c|c|}
\hline \text { Order of } r \text { at } \infty & {[\sqrt{r}]_{\infty}} & \alpha_{\infty}^{+} & \alpha_{\infty}^{-} \\
\hline-2 & \frac{b}{2}+c+\frac{a x}{2} & 1 & -2 \\
\hline
\end{array}
\end{array} .
\end{gathered}
\]

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =\frac{1}{x}+\left(\frac{b}{2}+c+\frac{a x}{2}\right) \\
& =\frac{1}{x}+\frac{b}{2}+c+\frac{a x}{2} \\
& =\frac{1}{x}+\frac{b}{2}+c+\frac{a x}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{1}{x}+\frac{b}{2}+c+\frac{a x}{2}\right)(0)+\left(\left(-\frac{1}{x^{2}}+\frac{a}{2}\right)+\left(\frac{1}{x}+\frac{b}{2}+c+\frac{a x}{2}\right)^{2}-\left(\frac{x^{3} a^{2}+2 a b x^{2}+4 a c x^{2}+b^{2} x}{}\right.\right.\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{x}+\frac{b}{2}+c+\frac{a x}{2}\right) d x} \\
& =x \mathrm{e}^{\frac{x(a x+2 b+4 c)}{4}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{(a x+b) x}{x} d x} \\
& =z_{1} e^{-\frac{1}{4} a x^{2}-\frac{1}{2} b x} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x(a x+2 b)}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{c x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{(a x+b) x}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{2} a x^{2}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{-\frac{x(a x+2 b+4 c)}{2}}}{x^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{c x}\right)+c_{2}\left(x \mathrm{e}^{c x}\left(\int \frac{\mathrm{e}^{-\frac{x(a x+2 b+4 c)}{2}}}{x^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{c x}+c_{2} x \mathrm{e}^{c x}\left(\int \frac{\mathrm{e}^{-\frac{x(a x+2 b+4 c)}{2}}}{x^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{c x}+c_{2} x \mathrm{e}^{c x}\left(\int \frac{\mathrm{e}^{-\frac{x(a x+2 b+4 c)}{2}}}{x^{2}} d x\right)
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius             -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu             <- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0         Special function solution also has integrals. Returning default Liouvillian solution. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 8.546 (sec). Leaf size: 34
```

dsolve(x*diff (y (x),x\$2)+(a*x^2+b*x)*diff (y (x),x)-(a*c*x^2+(a+b*c+c^2)*x+b+2*c)*y(x)=0,y(x),

```
\[
y(x)=\mathrm{e}^{c x} x\left(c_{1}+c_{2}\left(\int \frac{\mathrm{e}^{-\frac{x(a x+2 b+4 c)}{2}}}{x^{2}} d x\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.129 (sec). Leaf size: 49
DSolve \(\left[x * y{ }^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 2+b * x\right) * y\right.\) ' \([x]-\left(a * c * x^{\wedge} 2+\left(a+b * c+c^{\wedge} 2\right) * x+b+2 * c\right) * y[x]==0, y[x], x\), IncludeSingul
\[
y(x) \rightarrow x e^{c x}\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{1}{2} K[1](2 b+4 c+a K[1])}}{K[1]^{2}} d K[1]+c_{1}\right)
\]

\subsection*{28.21 problem 81}
28.21.1 Solving using Kovacic algorithm 2563
28.21.2 Maple step by step solution . 2570

Internal problem ID [10905]
Internal file name [OUTPUT/10161_Sunday_December_31_2023_11_03_05_AM_43663572/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 81.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{2}+b x+2\right) y^{\prime}+y b=0
\]

\subsection*{28.21.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+\left(a x^{2}+b x+2\right) y^{\prime}+y b & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=a x^{2}+b x+2 \tag{3}\\
& C=b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{2}+2 a b x+b^{2}+6 a}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{2}+2 a b x+b^{2}+6 a \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}+\frac{3}{2} a\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 96: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a x}{2}+\frac{b}{2}+\frac{3}{2 x}-\frac{3 b}{2 a x^{2}}+\frac{3 b^{2}}{2 a^{2} x^{3}}-\frac{9}{4 a x^{3}}-\frac{3 b^{3}}{2 a^{3} x^{4}}+\frac{27 b}{4 a^{2} x^{4}}+\frac{3 b^{4}}{2 a^{4} x^{5}}-\frac{27 b^{2}}{2 a^{3} x^{5}}-\frac{3 b^{5}}{2 a^{5} x^{6}}+\frac{27}{4 a^{2} x^{5}}+\frac{45 b^{3}}{2 a^{4} x^{6}}-\frac{135 b}{4 a^{3} x^{6}}+\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{a x}{2}+\frac{b}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}
\]

This shows that the coefficient of 1 in the above is \(\frac{b^{2}}{4}\). Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{2}+2 a b x+b^{2}+6 a}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}+\frac{3}{2} a\right)+(0) \\
& =\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}+\frac{3}{2} a
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(\frac{3 a}{2}+\frac{b^{2}}{4}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{3 a}{2}+\frac{b^{2}}{4}\right)-\left(\frac{b^{2}}{4}\right) \\
& =\frac{3 a}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x}{2}+\frac{b}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{3 a}{2}}{\frac{a}{2}}-1\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}+\frac{3}{2} a
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(\frac{a x}{2}+\frac{b}{2}\) & 1 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{a x}{2}+\frac{b}{2}\right) \\
& =\frac{a x}{2}+\frac{b}{2} \\
& =\frac{a x}{2}+\frac{b}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{a x}{2}+\frac{b}{2}\right)(1)+\left(\left(\frac{a}{2}\right)+\left(\frac{a x}{2}+\frac{b}{2}\right)^{2}-\left(\frac{1}{4} a^{2} x^{2}+\frac{1}{2} a b x+\frac{1}{4} b^{2}+\frac{3}{2} a\right)\right)=0 \\
-a a_{0}+b=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{b}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{b}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\int\left(\frac{a x}{2}+\frac{b}{2}\right) d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\frac{1}{4} a x^{2}+\frac{1}{2} b x} \\
& =\frac{(a x+b) \mathrm{e}^{\frac{x(a x+2 b)}{4}}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}+b x+2}{x} d x} \\
& =z_{1} e^{-\frac{a x^{2}}{4}-\frac{b x}{2}-\ln (x)} \\
& =z_{1}\left(\frac{\mathrm{e}^{-\frac{x(a x+2 b)}{4}}}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{a x+b}{x a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}+b x+2}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{a x^{2}}{2}-b x-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right) \sqrt{a}}{2 a x+2 b}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{a x+b}{x a}\right) \\
& +c_{2}\left(\frac{a x+b}{x a}\left(-\frac{\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right) \sqrt{a}}{2 a x+2 b}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+b)}{x a}-\frac{c_{2}\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right)}{2 \sqrt{a} x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+b)}{x a}-\frac{c_{2}\left(\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{b^{2}}{2 a}}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+2 \mathrm{e}^{-\frac{x(a x+2 b)}{2}} \sqrt{a}\right)}{2 \sqrt{a} x}
\]

Verified OK.

\subsection*{28.21.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+\left(a x^{2}+b x+2\right) y^{\prime}+y b=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{b y}{x}-\frac{\left(a x^{2}+b x+2\right) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a x^{2}+b x+2\right) y^{\prime}}{x}+\frac{b y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x^{2}+b x+2}{x}, P_{3}(x)=\frac{b}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{2}+b x+2\right) y^{\prime}+y b=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+\left(a_{1}(1+r)(2+r)+a_{0} b(1+r)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+2+r)+a_{k} b\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- Each term must be 0
\[
a_{1}(1+r)(2+r)+a_{0} b(1+r)=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k+2+r)+a_{k} b(k+1+r)+a_{k-1}(k+r-1) a=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
a_{k+2}(k+2+r)(k+3+r)+a_{k+1} b(k+2+r)+a_{k}(k+r) a=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a k a_{k}+a r a_{k}+b k a_{k+1}+b r a_{k+1}+2 b a_{k+1}}{(k+2+r)(k+3+r)}
\]
- Recursion relation for \(r=-1\)
\[
a_{k+2}=-\frac{a k a_{k}+b k a_{k+1}-a a_{k}+b a_{k+1}}{(k+1)(k+2)}
\]
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a k a_{k}+b k a_{k+1}-a a_{k}+b a_{k+1}}{(k+1)(k+2)}, 0=0\right]
\]
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a k a_{k}+b k a_{k+1}+2 b a_{k+1}}{(k+2)(k+3)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a k a_{k}+b k a_{k+1}+2 b a_{k+1}}{(k+2)(k+3)}, a_{0} b+2 a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right), c_{k+2}=-\frac{a k c_{k}+b k c_{1+k}-a c_{k}+b c_{1+k}}{(1+k)(k+2)}, 0=0, d_{k+2}=-\frac{a k d_{k}+b k d_{1+k}+2 b d_{1}}{(k+2)(k+3)}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 69
```

dsolve(x*diff (y(x),x\$2)+(a*x^2+b*x+2)*\operatorname{diff}(y(x),x)+b*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{\mathrm{e}^{\frac{b^{2}}{2 a}} \pi c_{2}(a x+b) \operatorname{erf}\left(\frac{\sqrt{2}(a x+b)}{2 \sqrt{a}}\right)+\sqrt{\pi} \sqrt{2} \sqrt{a} \mathrm{e}^{-\frac{x(a x+2 b)}{2}} c_{2}+c_{1}(a x+b)}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.535 (sec). Leaf size: 85
DSolve[x*y' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+2\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{(a x+b)\left(-\frac{\sqrt{\frac{\pi}{2}} c_{2} \operatorname{erf}\left(\frac{a x+b}{\sqrt{2} \sqrt{a}}\right)}{a^{3 / 2}}-\frac{c_{2} e^{-\frac{(a x+b)^{2}}{2 a}}}{a(a x+b)}+c_{1}\right)}{b x}
\]

\subsection*{28.22 problem 82}
28.22.1 Solving as second order integrable as is ode
28.22.2 Solving as type second_order_integrable_as_is (not using ABC
version) . 2575
28.22.3 Solving as exact linear second order ode ode 2577
28.22.4 Maple step by step solution . 2579

Internal problem ID [10906]
Internal file name [OUTPUT/10162_Sunday_December_31_2023_11_03_06_AM_31797229/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 82.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y=0
\]

\subsection*{28.22.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y\right) d x=0 \\
\left(a x^{2}+b x+c-1\right) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{2}-b x-c+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{2}-b x-c+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{2}-b x-c+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{2}}{2}+b x+(c-1) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x\right)+c_{2} x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]
which simplifies to
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.22.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y\right) d x=0 \\
\left(a x^{2}+b x+c-1\right) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{2}-b x-c+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{2}-b x-c+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{2}-b x-c+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{2}}{2}+b x+(c-1) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

\section*{Integrating gives}
\[
\begin{aligned}
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x\right)+c_{2} x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]
which simplifies to
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.22.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=a x^{2}+b x+c \\
& r(x)=2 a x+b \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =2 a x+b
\end{aligned}
\]

Therefore (1) becomes
\[
0-(2 a x+b)+(2 a x+b)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
\left(a x^{2}+b x+c-1\right) y+y^{\prime} x=c_{1}
\]

We now have a first order ode to solve which is
\[
\left(a x^{2}+b x+c-1\right) y+y^{\prime} x=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{2}-b x-c+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{2}-b x-c+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{2}-b x-c+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{2}}{2}+b x+(c-1) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y\right) & =\left(c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2} y}=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} \mathrm{~d} x \\
& x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}} y=\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x^{c-1} \mathrm{e}^{\frac{x(a x+2 b)}{2}}\) results in
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(\int c_{1} x^{c-2} \mathrm{e}^{\frac{x(a x+2 b)}{2}} d x\right)+c_{2} x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}
\]
which simplifies to
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.22.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{(2 a x+b) y}{x}-\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}+\frac{(2 a x+b) y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x^{2}+b x+c}{x}, P_{3}(x)=\frac{2 a x+b}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=c\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+(2 a x+b) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+r+c) x^{-1+r}+\left(a_{1}(1+r)(r+c)+a_{0} b(1+r)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+r+c) .\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1+r+c)=0
\]
- Values of r that satisfy the indicial equation
\(r \in\{0,-c+1\}\)
- Each term must be 0
\(a_{1}(1+r)(r+c)+a_{0} b(1+r)=0\)
- Each term in the series must be 0, giving the recursion relation
\[
(k+1+r)\left(a_{k+1}(k+r+c)+a_{k} b+a_{k-1} a\right)=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
(k+r+2)\left(a_{k+2}(k+1+r+c)+a_{k+1} b+a_{k} a\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k} a+a_{k+1} b}{k+1+r+c}
\]
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a_{k} a+a_{k+1} b}{k+1+c}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k} a+a_{k+1} b}{k+1+c}, a_{0} b+a_{1} c=0\right]
\]
- \(\quad\) Recursion relation for \(r=-c+1\)
\[
a_{k+2}=-\frac{a_{k} a+a_{k+1} b}{k+2}
\]
- \(\quad\) Solution for \(r=-c+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-c+1}, a_{k+2}=-\frac{a_{k} a+a_{k+1} b}{k+2}, a_{1}(-c+2)+a_{0} b(-c+2)=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k-c+1}\right), d_{k+2}=-\frac{a d_{k}+b d_{1+k}}{k+1+c}, b d_{0}+c d_{1}=0, e_{k+2}=-\frac{a e_{k}+b e_{1+k}}{k+2}, e_{1}(-c\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius No hypergeometric solution was found. <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.109 (sec). Leaf size: 46
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+(2 * a * x+b) * y(x)=0, y(x), \quad\right.\) singsol=all)
\[
y(x)=x^{-c+1} \mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{\frac{1}{2} a x^{2}+b x} d x\right)+c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.772 (sec). Leaf size: 63
DSolve \([x * y\) ' \(\quad[x]+(a * x \wedge 2+b * x+c) * y\) ' \([x]+(2 * a * x+b) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow x^{1-c} e^{-\frac{1}{2} x(a x+2 b)}\left(c_{2} \int_{1}^{x} e^{\frac{1}{2} a K[1]^{2}+b K[1]} K[1]^{c-2} d K[1]+c_{1}\right)
\]

\subsection*{28.23 problem 83}
28.23.1 Solving as second order change of variable on y method 2 ode . 2583
28.23.2 Maple step by step solution . 2586

Internal problem ID [10907]
Internal file name [OUTPUT/10163_Sunday_December_31_2023_11_03_11_AM_95428243/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 83 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(c-1)(a x+b) y=0
\]

\subsection*{28.23.1 Solving as second order change of variable on y method 2 ode} In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+(c-1)(a x+b) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x^{2}+b x+c}{x} \\
q(x) & =\frac{(c-1)(a x+b)}{x}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{2}+b x+c\right)}{x^{2}}+\frac{(c-1)(a x+b)}{x}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-c+1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2 c+2}{x}+\frac{a x^{2}+b x+c}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(a x^{2}+b x-c+2\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(a x^{2}+b x-c+2\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(a x^{2}+b x-c+2\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{a x^{2}+b x-c+2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{a x^{2}+b x-c+2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{a x^{2}+b x-c+2}{x} d x \\
\ln (u) & =-\frac{a x^{2}}{2}-b x-(-c+2) \ln (x)+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{2}}{2}-b x-(-c+2) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}-b x-(-c+2) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}} \mathrm{e}^{-b x} x^{c}}{x^{2}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}} \mathrm{e}^{-b x} x^{c}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}} \mathrm{e}^{-b x} x^{c}}{x^{2}} d x+c_{2}\right) x^{-c+1} \\
& =x^{-c+1}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{-\frac{1}{2} a x^{2}-b x} d x\right)+c_{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}} \mathrm{e}^{-b x} x^{c}}{x^{2}} d x+c_{2}\right) x^{-c+1} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(\int \frac{c_{1} \mathrm{e}^{-\frac{a x^{2}}{2}} \mathrm{e}^{-b x} x^{c}}{x^{2}} d x+c_{2}\right) x^{-c+1}
\]

Verified OK.

\subsection*{28.23.2 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+(c-1)(a x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{(c-1)(a x+b) y}{x}-\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}+\frac{(c-1)(a x+b) y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x^{2}+b x+c}{x}, P_{3}(x)=\frac{(c-1)(a x+b)}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=c\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+(c-1)(a x+b) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\) \(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+r+c) x^{-1+r}+\left(a_{1}(1+r)(r+c)+a_{0} b(-1+r+c)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+r\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1+r+c)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-c+1\}\)
- Each term must be 0
\(a_{1}(1+r)(r+c)+a_{0} b(-1+r+c)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r+c)+a_{k} b(k+r+c-1)+a_{k-1} a(k-2+r+c)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
a_{k+2}(k+2+r)(k+1+r+c)+a_{k+1} b(k+r+c)+a_{k} a(k+r+c-1)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} a c+a k a_{k}+a r a_{k}+b c a_{k+1}+b k a_{k+1}+b r a_{k+1}-a_{k} a}{(k+2+r)(k+1+r+c)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a_{k} a c+a k a_{k}+b c a_{k+1}+b k a_{k+1}-a_{k} a}{(k+2)(k+1+c)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k} a c+a k a_{k}+b c a_{k+1}+b k a_{k+1}-a_{k} a}{(k+2)(k+1+c)}, a_{1} c+a_{0} b(c-1)=0\right]
\]
- Recursion relation for \(r=-c+1\)
\(a_{k+2}=-\frac{a_{k} a c+a k a_{k}+a(-c+1) a_{k}+b c a_{k+1}+b k a_{k+1}+b(-c+1) a_{k+1}-a_{k} a}{(k+3-c)(k+2)}\)
- \(\quad\) Solution for \(r=-c+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-c+1}, a_{k+2}=-\frac{a_{k} a c+a k a_{k}+a(-c+1) a_{k}+b c a_{k+1}+b k a_{k+1}+b(-c+1) a_{k+1}-a_{k} a}{(k+3-c)(k+2)}, a_{1}(-c+2)=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k-c+1}\right), d_{k+2}=-\frac{a c d_{k}+a k d_{k}+b c d_{1+k}+b k d_{1+k}-a d_{k}}{(k+2)(k+1+c)}, d_{1} c+d_{0} b(c-1)=0, e\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     -> Mathieu         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.297 (sec). Leaf size: 102
```

dsolve(x*diff(y(x),x\$2)+(a*x^2+b*x+c)*diff (y(x),x)+(c-1)*(a*x+b)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{x(a x+2 b)}{2}}\left(\operatorname{HeunB}\left(c-1, \frac{b \sqrt{2}}{\sqrt{a}}, c-3,-\frac{\sqrt{2} b(c-2)}{\sqrt{a}}, \frac{\sqrt{2} \sqrt{a} x}{2}\right) c_{1}\right. \\
&\left.+\operatorname{HeunB}\left(-c+1, \frac{b \sqrt{2}}{\sqrt{a}}, c-3,-\frac{\sqrt{2} b(c-2)}{\sqrt{a}}, \frac{\sqrt{2} \sqrt{a} x}{2}\right) x^{-c+1} c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.579 (sec). Leaf size: 49
DSolve \(\left[x * y\right.\) ' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right) * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{c}-1) *(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\[
y(x) \rightarrow x^{1-c}\left(c_{2} \int_{1}^{x} e^{-\frac{1}{2} K[1](2 b+a K[1])} K[1]^{c-2} d K[1]+c_{1}\right)
\]

\subsection*{28.24 problem 84}
28.24.1 Maple step by step solution

Internal problem ID [10908]
Internal file name [OUTPUT/10164_Sunday_December_31_2023_11_03_13_AM_15472296/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)

\section*{Problem number: 84 .}

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{2}+B x+\mathrm{C} 0\right) y=0
\]

\subsection*{28.24.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{2}+B x+C 0\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(A x^{2}+B x+C 0\right) y}{x}-\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}+\frac{\left(A x^{2}+B x+C 0\right) y}{x}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x^{2}+b x+c}{x}, P_{3}(x)=\frac{A x^{2}+B x+C 0}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=c
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{2}+B x+C 0\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-1+r+c) x^{-1+r}+\left(a_{1}(1+r)(r+c)+a_{0}(b r+C 0)\right) x^{r}+\left(a_{2}(2+r)(1+r+c)+a_{1}(b r+\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+c)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-c+1\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(r+c)+a_{0}(b r+C 0)=0, a_{2}(2+r)(1+r+c)+a_{1}(b r+C 0+b)+a_{0}(a r+B)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=-\frac{a_{0}(b r+C 0)}{r c+r^{2}+c+r}, a_{2}=-\frac{a_{0}\left(a r^{2} c+a r^{3}-b^{2} r^{2}+B r c+B r^{2}-2 b r C 0+a r c+a r^{2}-b^{2} r+B c+B r-C 0^{2}-C 0 b\right)}{r^{2} c^{2}+2 r^{3} c+r^{4}+3 r c^{2}+7 r^{2} c+4 r^{3}+2 c^{2}+7 r c+5 r^{2}+2 c+2 r}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+c)+a_{k}((k+r) b+C 0)+a_{k-1}((k+r-1) a+B)+A a_{k-2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+3}(k+3+r)(k+2+r+c)+a_{k+2}((k+2+r) b+C 0)+a_{k+1}((k+1+r) a+B)+A a_{k}=(\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{a k a_{k+1}+a r a_{k+1}+b k a_{k+2}+b r a_{k+2}+A a_{k}+B a_{k+1}+C 0 a_{k+2}+a a_{k+1}+2 b a_{k+2}}{(k+3+r)(k+2+r+c)}\)
- Recursion relation for \(r=0\)
\[
a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+A a_{k}+B a_{k+1}+C 0 a_{k+2}+a a_{k+1}+2 b a_{k+2}}{(k+3)(k+2+c)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+A a_{k}+B a_{k+1}+C 0 a_{k+2}+a a_{k+1}+2 b a_{k+2}}{(k+3)(k+2+c)}, a_{1}=-\frac{a_{0} C 0}{c}, a_{2}=-\frac{a_{0}(B c-C l}{2 c^{2}+}\right.
\]
- Recursion relation for \(r=-c+1\)
\[
a_{k+3}=-\frac{a k a_{k+1}+a(-c+1) a_{k+1}+b k a_{k+2}+b(-c+1) a_{k+2}+A a_{k}+B a_{k+1}+C 0 a_{k+2}+a a_{k+1}+2 b a_{k+2}}{(k+4-c)(k+3)}
\]
- \(\quad\) Solution for \(r=-c+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-c+1}, a_{k+3}=-\frac{a k a_{k+1}+a(-c+1) a_{k+1}+b k a_{k+2}+b(-c+1) a_{k+2}+A a_{k}+B a_{k+1}+C 0 a_{k+2}+a a_{k+1}+2 b a_{k+2}}{(k+4-c)(k+3)}, a\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k-c+1}\right), d_{k+3}=-\frac{a k d_{1+k}+b k d_{k+2}+A d_{k}+B d_{1+k}+C 0 d_{k+2}+a d_{1+k}+2 b d_{k+2}}{(k+3)(k+2+c)}, d_{1}=\right.
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c=0 -

```
\(\checkmark\) Solution by Maple
Time used: 0.281 (sec). Leaf size: 186
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+\left(A * x^{\wedge} 2+B * x+C 0\right) * y(x)=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
& y(x)=\mathrm{e}^{\frac{x\left(-a^{2} x-2 a b+2 A\right)}{2 a}}\left(x^{-c+1} \operatorname{HeunB}(-c+1,\right. \\
& \left.-\frac{\sqrt{2}(-a b+2 A)}{a^{\frac{3}{2}}}, \frac{(-c-1) a^{3}+2 B a^{2}-2 A a b+2 A^{2}}{a^{3}}, \frac{(b c-2 \mathrm{C} 0) \sqrt{2}}{\sqrt{a}}, \frac{\sqrt{2} \sqrt{a} x}{2}\right) c_{2} \\
& \\
& +\operatorname{HeunB}(c-1, \\
& \left.\left.-\frac{\sqrt{2}(-a b+2 A)}{a^{\frac{3}{2}}}, \frac{(-c-1) a^{3}+2 B a^{2}-2 A a b+2 A^{2}}{a^{3}}, \frac{(b c-2 \mathrm{C} 0) \sqrt{2}}{\sqrt{a}}, \frac{\sqrt{2} \sqrt{a} x}{2}\right) c_{1}\right)
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y^{\prime \prime}[x]+\left(a * x^{\wedge} 2+b * x+c\right) * y '[x]+\left(A * x^{\wedge} 2+B * x+C 0\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions

Not solved

\subsection*{28.25 problem 85}
28.25.1 Maple step by step solution

Internal problem ID [10909]
Internal file name [OUTPUT/10165_Sunday_December_31_2023_11_03_13_AM_53294476/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 85 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{2}+b x+2\right) y^{\prime}+\left(c x^{2}+d x+b\right) y=0
\]

\subsection*{28.25.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+\left(a x^{2}+b x+2\right) y^{\prime}+\left(c x^{2}+d x+b\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(c x^{2}+d x+b\right) y}{x}-\frac{\left(a x^{2}+b x+2\right) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a x^{2}+b x+2\right) y^{\prime}}{x}+\frac{\left(c x^{2}+d x+b\right) y}{x}=0
\]Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x^{2}+b x+2}{x}, P_{3}(x)=\frac{c x^{2}+d x+b}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{2}+b x+2\right) y^{\prime}+\left(c x^{2}+d x+b\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+\left(a_{1}(1+r)(2+r)+a_{0} b(1+r)\right) x^{r}+\left(a_{2}(2+r)(3+r)+a_{1} b(2+r)+a_{0}(a r .\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(2+r)+a_{0} b(1+r)=0, a_{2}(2+r)(3+r)+a_{1} b(2+r)+a_{0}(a r+d)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=-\frac{a_{0} b}{2+r}, a_{2}=-\frac{a_{0}\left(a r-b^{2}+d\right)}{r^{2}+5 r+6}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+1+r)(k+2+r)+a_{k} b(k+1+r)+a_{k-1}((k+r-1) a+d)+a_{k-2} c=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+3}(k+3+r)(k+4+r)+a_{k+2} b(k+3+r)+a_{k+1}((k+1+r) a+d)+a_{k} c=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{a k a_{k+1}+a r a_{k+1}+b k a_{k+2}+b r a_{k+2}+a a_{k+1}+3 b a_{k+2}+a_{k} c+d a_{k+1}}{(k+3+r)(k+4+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+2 b a_{k+2}+a_{k} c+d a_{k+1}}{(k+2)(k+3)}\)
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+2 b a_{k+2}+a_{k} c+d a_{k+1}}{(k+2)(k+3)}, a_{1}=-a_{0} b, a_{2}=-\frac{a_{0}\left(-b^{2}-a+d\right)}{2}\right]
\]
- Recursion relation for \(r=0\)
\[
a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+a a_{k+1}+3 b a_{k+2}+a_{k} c+d a_{k+1}}{(k+3)(k+4)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k+1}+b k a_{k+2}+a a_{k+1}+3 b a_{k+2}+a_{k} c+d a_{k+1}}{(k+3)(k+4)}, a_{1}=-\frac{a_{0} b}{2}, a_{2}=-\frac{a_{0}\left(-b^{2}+d\right)}{6}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k}\right), e_{k+3}=-\frac{a k e_{1+k}+b k e_{k+2}+2 b e_{k+2}+c e_{k}+d e_{1+k}}{(k+2)(k+3)}, e_{1}=-e_{0} b, e_{2}=-\frac{e_{0}(-i}{}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is resolve
<- hypergeometric successful
<- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.046 (sec). Leaf size: 143
```

dsolve(x*diff (y (x), x\$2)+(a*x^2+b*x+2)*\operatorname{diff}(y(x),x)+(c*x^2+d*x+b)*y(x)=0,y(x), singsol=all)
y(x)
=}\frac{\mp@subsup{\textrm{e}}{}{-\frac{x(\mp@subsup{a}{}{2}x+2ab-2c)}{2a}}(\mathrm{ hypergeom }([\frac{3\mp@subsup{a}{}{3}-d\mp@subsup{a}{}{2}+abc-\mp@subsup{c}{}{2}}{2\mp@subsup{a}{}{3}}],[\frac{3}{2}],\frac{(\mp@subsup{a}{}{2}x+ab-2c\mp@subsup{)}{}{2}}{2\mp@subsup{a}{}{3}})(\mp@subsup{a}{}{2}x+ab-2c)\mp@subsup{c}{2}{}+\mp@subsup{c}{1}{}\mathrm{ hypergeom ([諒}}{2a

```
\(\checkmark\) Solution by Mathematica
Time used: 0.155 (sec). Leaf size: 134
DSolve \(\left[x * y\right.\) ' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+2\right) * \mathrm{y}\) ' \([\mathrm{x}]+\left(\mathrm{c} * \mathrm{x}^{\wedge} 2+\mathrm{d} * \mathrm{x}+\mathrm{b}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\(y(x)\)
\(\rightarrow \frac{e^{-\frac{1}{2} x\left(-\frac{2 c}{a}+a x+2 b\right)}\left(c_{2} \text { Hypergeometric1F1 }\left(-\frac{-2 a^{3}+d a^{2}-b c a+c^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(x a^{2}+b a-2 c\right)^{2}}{2 a^{3}}\right)+c_{1} \text { HermiteH }\left(\frac{-2 a^{3}+d a^{2}-b c}{a^{3}}\right.\right.}{x}\)

\subsection*{28.26 problem 86}
28.26.1 Solving as second order change of variable on y method 2 ode . 2601
28.26.2 Maple step by step solution . 2604

Internal problem ID [10910]
Internal file name [OUTPUT/10166_Sunday_December_31_2023_11_03_14_AM_61480679/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 86.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{3}+b\right) y^{\prime}+a(b-1) x^{2} y=0
\]

\subsection*{28.26.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{3}+b\right) y^{\prime}+a(b-1) x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{3}+b}{x} \\
& q(x)=a x(b-1)
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{3}+b\right)}{x^{2}}+a x(b-1)=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-b+1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2 b+2}{x}+\frac{a x^{3}+b}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(a x^{3}-b+2\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(a x^{3}-b+2\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(a x^{3}-b+2\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{a x^{3}-b+2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{a x^{3}-b+2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{a x^{3}-b+2}{x} d x \\
\ln (u) & =-\frac{a x^{3}}{3}-(2-b) \ln (x)+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{3}}{3}-(2-b) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-(2-b) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}} x^{b}}{x^{2}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =3^{-\frac{4}{3}+\frac{b}{3}} a^{-\frac{b}{3}+\frac{1}{3}} c_{1}\left(\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{2+b} a^{\frac{2}{3}+\frac{b}{3}}\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)(5+b)}+\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{-4+}}{}\right.
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(3 ^ { - \frac { 4 } { 3 } + \frac { b } { 3 } } a ^ { - \frac { b } { 3 } + \frac { 1 } { 3 } } c _ { 1 } \left(\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{2+b} a^{\frac{2}{3}+\frac{b}{3}}\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)(5+b)}+\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{-4+b} a}{(2+b)(5+b)(b-1)}\right.\right. \\
& =\frac{3^{\frac{4}{3}+\frac{b}{6}} a c_{1} x^{3}\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)+(5+b)\left(c_{1}\left(a x^{3}+b+2\right) \mathrm{e}^{-\frac{a x^{3}}{3}}+c_{2} x^{-}\right.}{(2+}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{array}{r}
=\left(3 ^ { - \frac { 4 } { 3 } + \frac { b } { 3 } } a ^ { - \frac { b } { 3 } + \frac { 1 } { 3 } } c _ { 1 } \left(\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{2+b} a^{\frac{2}{3}+\frac{b}{3}}\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)(5+b)}\right.\right. \\
\left.+\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{-4+b} a^{-\frac{4}{3}+\frac{b}{3}}\left(a x^{3}+b+2\right)\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{4}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)}\right) \\
\left.+c_{2}\right) x^{-b+1}
\end{array}
\]

\section*{Verification of solutions}
\[
\begin{array}{r}
=\left(3 ^ { - \frac { 4 } { 3 } + \frac { b } { 3 } } a ^ { - \frac { b } { 3 } + \frac { 1 } { 3 } } c _ { 1 } \left(\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{2+b} a^{\frac{2}{3}+\frac{b}{3}}\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)(5+b)}\right.\right. \\
\left.+\frac{3^{-\frac{b}{6}+\frac{8}{3}} x^{-4+b} a^{-\frac{4}{3}+\frac{b}{3}}\left(a x^{3}+b+2\right)\left(a x^{3}\right)^{-\frac{1}{3}-\frac{b}{6}} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{4}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)}{(b-1)(2+b)}\right) \\
\left.+c_{2}\right) x^{-b+1}
\end{array}
\]

Verified OK.

\subsection*{28.26.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(a x^{3}+b\right) y^{\prime}+a(b-1) x^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a x^{3}+b\right) y^{\prime}}{x}-a x(b-1) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a x^{3}+b\right) y^{\prime}}{x}+a x(b-1) y=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x^{3}+b}{x}, P_{3}(x)=a x(b-1)\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{3}+b\right) y^{\prime}+a(b-1) x^{2} y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{2} \cdot y\) to series expansion
\[
x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+2}
\]
- Shift index using \(k->k-2\)
\[
x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+b) x^{-1+r}+a_{1}(1+r)(r+b) x^{r}+a_{2}(2+r)(1+r+b) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k+1}(k+1+r\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- The coefficients of each power of \(x\) must be 0
\(\left[a_{1}(1+r)(r+b)=0, a_{2}(2+r)(1+r+b)=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=0, a_{2}=0\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+b)+a_{k-2} a(k-3+r+b)=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+3}(k+3+r)(k+2+r+b)+a_{k} a(k+r+b-1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{a_{k} a(k+r+b-1)}{(k+3+r)(k+2+r+b)}\)
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+3}=-\frac{a_{k} a(k-1+b)}{(k+3)(k+2+b)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k} a(k-1+b)}{(k+3)(k+2+b)}, a_{1}=0, a_{2}=0\right]
\]
- Recursion relation for \(r=-b+1\)
\(a_{k+3}=-\frac{a_{k} a k}{(k+4-b)(k+3)}\)
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+3}=-\frac{a_{k} a k}{(k+4-b)(k+3)}, a_{1}=0, a_{2}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b+1}\right), c_{k+3}=-\frac{c_{k} a(k-1+b)}{(k+3)(k+2+b)}, c_{1}=0, c_{2}=0, d_{k+3}=-\frac{d_{k} a k}{(k+4-b)(k+3)}, a\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 107
```

dsolve(x*diff(y(x),x\$2)+(a*x^3+b)*diff (y(x),x)+a*(b-1)*x^2*y(x)=0,y(x), singsol=all)

```
\(y(x)\)
\(=\frac{9 c_{2} a^{2} x^{-\frac{b}{2}+3} \mathrm{e}^{-\frac{a x^{3}}{6}} \text { WhittakerM }\left(\frac{1}{3}+\frac{b}{6}, \frac{b}{6}+\frac{5}{6}, \frac{a x^{3}}{3}\right)+\left(a x^{-\frac{b}{2}+3}+x^{-\frac{b}{2}}(b+2)\right) c_{2} \mathrm{e}^{-\frac{a x^{3}}{3}} a 3^{-\frac{b}{6}+\frac{2}{3}}(b+5)(a}{9 x}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.424 (sec). Leaf size: 60
DSolve \(\left[x * y{ }^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 3+b\right) * y\right.\) ' \([x]+a *(b-1) * x^{\wedge} 2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} x^{1-b}-3^{\frac{b-4}{3}} c_{2}\left(a x^{3}\right)^{\frac{1}{3}-\frac{b}{3}} \Gamma\left(\frac{b-1}{3}, \frac{a x^{3}}{3}\right)
\]

\subsection*{28.27 problem 87}
28.27.1 Solving as second order integrable as is ode
28.27.2 Solving as type second_order_integrable_as_is (not using ABC version)
28.27.3 Solving using Kovacic algorithm 2612
28.27.4 Solving as exact linear second order ode ode 2618

Internal problem ID [10911]
Internal file name [OUTPUT/10167_Sunday_December_31_2023_11_03_15_AM_41317649/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 87 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_oorder_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
x y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(3 a x^{2}+b\right) y=0
\]

\subsection*{28.27.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{array}{r}
\int\left(x y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(3 a x^{2}+b\right) y\right) d x=0 \\
\left(a x^{3}+b x-1\right) y+y^{\prime} x=c_{1}
\end{array}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{3}-b x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{3}-b x+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{3}-b x+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{3}}{3}+b x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\) results in
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}
\]
which simplifies to
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.27.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(3 a x^{2}+b\right) y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(3 a x^{2}+b\right) y\right) d x=0 \\
\left(a x^{3}+b x-1\right) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{3}-b x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{3}-b x+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{3}-b x+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{3}}{3}+b x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{e^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\) results in
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}
\]
which simplifies to
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.27.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+x\left(a x^{2}+b\right) y^{\prime}+\left(3 a x^{2}+b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=x\left(a x^{2}+b\right) \tag{3}\\
& C=3 a x^{2}+b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b}{4 x} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b \\
& t=4 x
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b}{4 x}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 103: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =1-5 \\
& =-4
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x\). There is a pole at \(x=0\) of order 1 . Since there is no odd order pole
larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Looking at poles of order 1 . For the pole at \(x=0\) of order 1 then
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =1 \\
\alpha_{c}^{-} & =1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a x^{2}}{2}+\frac{b}{2}-\frac{2}{x}+\frac{b}{a x^{3}}-\frac{4}{a x^{4}}-\frac{b^{2}}{a^{2} x^{5}}+\frac{8 b}{a^{2} x^{6}}+\frac{b^{3}}{a^{3} x^{7}}-\frac{16}{a^{2} x^{7}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{a x^{2}}{2}+\frac{b}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{2}+\frac{1}{4} b^{2}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b}{4 x} \\
& =Q+\frac{R}{4 x} \\
& =\left(\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{2}-2 a x+\frac{1}{4} b^{2}\right)+\left(-\frac{b}{x}\right) \\
& =\frac{a^{2} x^{4}}{4}+\frac{a b x^{2}}{2}-2 a x+\frac{b^{2}}{4}-\frac{b}{x}
\end{aligned}
\]

We see that the coefficient of the term 1 in the quotient is \(-2 a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(-2 a)-(0) \\
& =-2 a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a x^{2}}{2}+\frac{b}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-2 a}{\frac{a}{2}}-2\right)=-3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-2 a}{\frac{a}{2}}-2\right)=1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b}{4 x}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{a x^{2}}{2}+\frac{b}{2}\) & -3 & 1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{x}+(-)\left(\frac{a x^{2}}{2}+\frac{b}{2}\right) \\
& =\frac{1}{x}-\frac{a x^{2}}{2}-\frac{b}{2} \\
& =\frac{1}{x}-\frac{a x^{2}}{2}-\frac{b}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
(0)+2\left(\frac{1}{x}-\frac{a x^{2}}{2}-\frac{b}{2}\right)(0)+\left(\left(-\frac{1}{x^{2}}-a x\right)+\left(\frac{1}{x}-\frac{a x^{2}}{2}-\frac{b}{2}\right)^{2}-\left(\frac{x^{5} a^{2}+2 a b x^{3}-8 a x^{2}+b^{2} x-4 b}{4 x}\right.\right.
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{x}-\frac{a x^{2}}{2}-\frac{b}{2}\right) d x} \\
& =x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{6}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x\left(a x^{2}+b\right)}{x} d x} \\
& =z_{1} e^{-\frac{1}{2} b x-\frac{1}{6} a x^{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x\left(a x^{2}+b\right)}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{3} a x^{3}-b x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{e^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\right)+c_{2}\left(x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}+c_{2} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}+c_{2} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)
\]

Verified OK.

\subsection*{28.27.4 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =x \\
q(x) & =x\left(a x^{2}+b\right) \\
r(x) & =3 a x^{2}+b \\
s(x) & =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =3 a x^{2}+b
\end{aligned}
\]

Therefore (1) becomes
\[
0-\left(3 a x^{2}+b\right)+\left(3 a x^{2}+b\right)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y^{\prime} x+\left(x\left(a x^{2}+b\right)-1\right) y=c_{1}
\]

We now have a first order ode to solve which is
\[
y^{\prime} x+\left(x\left(a x^{2}+b\right)-1\right) y=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{3}-b x+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{3}-b x+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{3}-b x+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{3}}{3}+b x-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}\right) & =\left(\frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}} y}{x}=\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{e^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x}\) results in
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(\int \frac{c_{1} \mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2} x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}
\]
which simplifies to
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius No hypergeometric solution was found. <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.141 (sec). Leaf size: 42
```

dsolve(x*diff(y(x),x\$2)+x*(a*x^2+b)*\operatorname{diff}(y(x),x)+(3*a*x^2+b)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=x \mathrm{e}^{-\frac{x\left(a x^{2}+3 b\right)}{3}}\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x\left(a x^{2}+3 b\right)}{3}}}{x^{2}} d x\right)+c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.43 (sec). Leaf size: 56
DSolve \(\left[x * y{ }^{\prime}{ }^{\prime}[x]+x *\left(a * x^{\wedge} 2+b\right) * y\right.\) ' \([x]+\left(3 * a * x^{\wedge} 2+b\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow x e^{-\frac{a x^{3}}{3}-b x}\left(c_{2} \int_{1}^{x} \frac{e^{\frac{1}{3} a K[1]^{3}+b K[1]}}{K[1]^{2}} d K[1]+c_{1}\right)
\]

\subsection*{28.28 problem 88}
28.28.1 Solving using Kovacic algorithm 2622
28.28.2 Maple step by step solution . 2628

Internal problem ID [10912]
Internal file name [OUTPUT/10168_Sunday_December_31_2023_11_03_18_AM_67796438/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 88.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{3}+b x^{2}+2\right) y^{\prime}+b x y=0
\]

\subsection*{28.28.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+\left(a x^{3}+b x^{2}+2\right) y^{\prime}+b x y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=a x^{3}+b x^{2}+2 \tag{3}\\
& C=b x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{4}+2 a b x^{3}+b^{2} x^{2}+8 a x+2 b}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} x^{4}+2 a b x^{3}+b^{2} x^{2}+8 a x+2 b \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{3}+\frac{1}{4} b^{2} x^{2}+2 a x+\frac{1}{2} b\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 104: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a x^{2}}{2}+\frac{b x}{2}+\frac{2}{x}-\frac{3 b}{2 a x^{2}}+\frac{3 b^{2}}{2 a^{2} x^{3}}-\frac{3 b^{3}}{2 a^{3} x^{4}}-\frac{4}{a x^{4}}+\frac{3 b^{4}}{2 a^{4} x^{5}}+\frac{10 b}{a^{2} x^{5}}-\frac{3 b^{5}}{2 a^{5} x^{6}}-\frac{73 b^{2}}{4 a^{3} x^{6}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{1}{2} b x+\frac{1}{2} a x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} b^{2} x^{2}+\frac{1}{2} a b x^{3}+\frac{1}{4} a^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is 0 . Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{4}+2 a b x^{3}+b^{2} x^{2}+8 a x+2 b}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{3}+\frac{1}{4} b^{2} x^{2}+2 a x+\frac{1}{2} b\right)+(0) \\
& =\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{3}+\frac{1}{4} b^{2} x^{2}+2 a x+\frac{1}{2} b
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is \(2 a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(2 a)-(0) \\
& =2 a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} b x+\frac{1}{2} a x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{2 a}{\frac{a}{2}}-2\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{2 a}{\frac{a}{2}}-2\right)=-3
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{3}+\frac{1}{4} b^{2} x^{2}+2 a x+\frac{1}{2} b
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(\frac{1}{2} b x+\frac{1}{2} a x^{2}\) & 1 & -3 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{1}{2} b x+\frac{1}{2} a x^{2}\right) \\
& =\frac{1}{2} b x+\frac{1}{2} a x^{2} \\
& =\frac{(a x+b) x}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{1}{2} b x+\frac{1}{2} a x^{2}\right)(1)+\left(\left(a x+\frac{b}{2}\right)+\left(\frac{1}{2} b x+\frac{1}{2} a x^{2}\right)^{2}-\left(\frac{1}{4} a^{2} x^{4}+\frac{1}{2} a b x^{3}+\frac{1}{4} b^{2} x^{2}+2 a x+\frac{1}{2} b\right)\right.\)
\[
-x\left(a a_{0}-b\right)=
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{b}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{b}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\int\left(\frac{1}{2} b x+\frac{1}{2} a x^{2}\right) d x} \\
& =\left(x+\frac{b}{a}\right) \mathrm{e}^{\frac{1}{6} a x^{3}+\frac{1}{4} b x^{2}} \\
& =\frac{(a x+b) \mathrm{e}^{\frac{1}{6} a x^{3}+\frac{1}{4} b x^{2}}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{3}+b x^{2}+2}{x} d x} \\
& =z_{1} e^{-\frac{a x^{3}}{6}-\frac{b x^{2}}{4}-\ln (x)} \\
& =z_{1}\left(\frac{\mathrm{e}^{-\frac{1}{6} a x^{3}-\frac{1}{4} b x^{2}}}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{a x+b}{x a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{3}+b x^{2}+2}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}} a^{2}}{(a x+b)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{a x+b}{x a}\right)+c_{2}\left(\frac{a x+b}{x a}\left(\int \frac{\mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}} a^{2}}{(a x+b)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+b)}{x a}+\frac{c_{2}(a x+b) a\left(\int \frac{\mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}}}{(a x+b)^{2}} d x\right)}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+b)}{x a}+\frac{c_{2}(a x+b) a\left(\int \frac{\mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}}}{(a x+b)^{2}} d x\right)}{x}
\]

Verified OK.

\subsection*{28.28.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(a x^{3}+b x^{2}+2\right) y^{\prime}+b x y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a x^{3}+b x^{2}+2\right) y^{\prime}}{x}-y b
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a x^{3}+b x^{2}+2\right) y^{\prime}}{x}+y b=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x^{3}+b x^{2}+2}{x}, P_{3}(x)=b\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{3}+b x^{2}+2\right) y^{\prime}+b x y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- \(\quad\) Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+a_{1}(1+r)(2+r) x^{r}+\left(a_{2}(2+r)(3+r)+b a_{0}(1+r)\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k+1}(k+\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(2+r)=0, a_{2}(2+r)(3+r)+b a_{0}(1+r)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=0, a_{2}=-\frac{b a_{0}(1+r)}{r^{2}+5 r+6}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+r+1)(k+2+r)+b a_{k-1}(k+r)+a_{k-2}(k-2+r) a=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
a_{k+3}(k+3+r)(k+4+r)+b a_{k+1}(k+2+r)+a_{k}(k+r) a=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+3}=-\frac{a k a_{k}+a r a_{k}+b k a_{k+1}+b r a_{k+1}+2 b a_{k+1}}{(k+3+r)(k+4+r)}
\]
- \(\quad\) Recursion relation for \(r=-1\)
\[
a_{k+3}=-\frac{a k a_{k}+b k a_{k+1}-a a_{k}+b a_{k+1}}{(k+2)(k+3)}
\]
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+3}=-\frac{a k a_{k}+b k a_{k+1}-a a_{k}+b a_{k+1}}{(k+2)(k+3)}, a_{1}=0, a_{2}=0\right]
\]
- Recursion relation for \(r=0\)
\(a_{k+3}=-\frac{a k a_{k}+b k a_{k+1}+2 b a_{k+1}}{(k+3)(k+4)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a k a_{k}+b k a_{k+1}+2 b a_{k+1}}{(k+3)(k+4)}, a_{1}=0, a_{2}=-\frac{a_{0} b}{6}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right), c_{k+3}=-\frac{a k c_{k}+b k c_{1+k}-a c_{k}+b c_{1+k}}{(k+2)(k+3)}, c_{1}=0, c_{2}=0, d_{k+3}=-\frac{a k d_{k}+b k}{(k+}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     -> Mathieu     -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0     <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.281 (sec). Leaf size: 143
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 3+b * x^{\wedge} 2+2\right) * \operatorname{diff}(y(x), x)+b * x * y(x)=0, y(x), \quad\right.\) singsol \(\left.=a l l\right)\)
\(y(x)\)
\(=\frac{c_{1} \mathrm{e}^{-\frac{\operatorname{csgn}(a) x^{2}(\operatorname{csgn}(a)+1)\left(a x+\frac{3 b}{2}\right)}{6}} \operatorname{HeunT}\left(\frac{3^{\frac{2}{3}} b}{2\left(a^{2}\right)^{\frac{1}{3}}},-6 \operatorname{csgn}(a),-\frac{b^{2} 3^{\frac{1}{3}}}{4\left(a^{2}\right)^{\frac{2}{3}}}, \frac{3^{\frac{2}{3}} a(2 a x+b)}{6\left(a^{2}\right)^{\frac{5}{6}}}\right)+c_{2} \mathrm{e}^{-\frac{\operatorname{csgn}(a) x^{2}(\operatorname{csgn}(a)-1)\left(a x+\frac{3 b}{2}\right)}{6}}}{x}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.962 (sec). Leaf size: 58
DSolve \(\left[x * y^{\prime \prime}[x]+\left(a * x^{\wedge} 3+b * x^{\wedge} 2+2\right) * y^{\prime}[x]+b * x * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{(a x+b)\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{1}{6} K[1]^{2}(3 b+2 a K[1])}}{(b+a K[1])^{2}} d K[1]+c_{1}\right)}{b x}
\]

\subsection*{28.29 problem 89}
28.29.1 Solving using Kovacic algorithm 2633
28.29.2 Maple step by step solution . 2640

Internal problem ID [10913]
Internal file name [OUTPUT/10169_Sunday_December_31_2023_11_03_19_AM_96435749/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 89 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}+a^{2} b x^{3} y=0
\]

\subsection*{28.29.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}+a^{2} b x^{3} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=a b x^{3}+b x^{2}+a x-1 \tag{3}\\
& C=a^{2} b x^{3}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} b^{2} x^{6}+2 a b^{2} x^{5}-2 a^{2} b x^{4}+b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}-2 a x+3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} b^{2} x^{6}+2 a b^{2} x^{5}-2 a^{2} b x^{4}+b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}-2 a x+3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2} b^{2} x^{6}+2 a b^{2} x^{5}-2 a^{2} b x^{4}+b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}-2 a x+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 106: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-6 \\
& =-4
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is -4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{a^{2} b^{2} x^{4}}{4}+\frac{a b^{2} x^{3}}{2}-\frac{a^{2} b x^{2}}{2}+\frac{b^{2} x^{2}}{4}+a b x+\frac{a^{2}}{4}+\frac{3}{4 x^{2}}-\frac{a}{2 x}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-4\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{2}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is \(\sqrt{r} \approx \frac{a b x^{2}}{2}+\frac{b x}{2}-\frac{a}{2}+\frac{3}{2 x}-\frac{3}{2 a x^{2}}+\frac{1}{b x^{3}}+\frac{3}{2 a^{2} x^{3}}-\frac{4}{a b x^{4}}+\frac{1}{b^{2} x^{5}}-\frac{3}{2 a^{3} x^{4}}+\frac{10}{a^{2} b x^{5}}+\frac{3}{2 a^{4} x^{5}}+\ldots\)

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a b}{2}
\]

From Eq. (9) the sum up to \(v=2\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =-\frac{1}{2} a+\frac{1}{2} b x+\frac{1}{2} a b x^{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{1}=x\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} a^{2}-\frac{1}{2} a b x-\frac{1}{2} a^{2} b x^{2}+\frac{1}{4} b^{2} x^{2}+\frac{1}{2} a b^{2} x^{3}+\frac{1}{4} a^{2} b^{2} x^{4}
\]

This shows that the coefficient of \(x\) in the above is \(-\frac{a b}{2}\). Now we need to find the coefficient of \(x\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=2\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(x\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} b^{2} x^{6}+2 a b^{2} x^{5}-2 a^{2} b x^{4}+b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}-2 a x+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(\frac{a^{2} b^{2} x^{4}}{4}+\frac{a b^{2} x^{3}}{2}+\left(-\frac{1}{2} a^{2} b+\frac{1}{4} b^{2}\right) x^{2}+a b x+\frac{a^{2}}{4}\right)+\left(\frac{-2 a x+3}{4 x^{2}}\right) \\
& =\frac{a^{2} b^{2} x^{4}}{4}+\frac{a b^{2} x^{3}}{2}+\left(-\frac{1}{2} a^{2} b+\frac{1}{4} b^{2}\right) x^{2}+a b x+\frac{a^{2}}{4}+\frac{-2 a x+3}{4 x^{2}}
\end{aligned}
\]

We see that the coefficient of the term \(x\) in the quotient is \(a b\). Now \(b\) can be found.
\[
\begin{aligned}
b & =(a b)-\left(-\frac{a b}{2}\right) \\
& =\frac{3 a b}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =-\frac{1}{2} a+\frac{1}{2} b x+\frac{1}{2} a b x^{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right) \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right) \\
& =\frac{1}{2}\left(\frac{\frac{3 a b}{2}}{\frac{a b}{2}}-2\right)=\frac{1}{2} \\
& =\frac{1}{2}\left(-\frac{\frac{3 a b}{2}}{\frac{a b}{2}}-2\right)=-\frac{5}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a^{2} b^{2} x^{6}+2 a b^{2} x^{5}-2 a^{2} b x^{4}+b^{2} x^{4}+4 a b x^{3}+a^{2} x^{2}-2 a x+3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-4 & \(-\frac{1}{2} a+\frac{1}{2} b x+\frac{1}{2} a b x^{2}\) & \(\frac{1}{2}\) & \(-\frac{5}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+\left(-\frac{1}{2} a+\frac{1}{2} b x+\frac{1}{2} a b x^{2}\right) \\
& =-\frac{1}{2 x}-\frac{a}{2}+\frac{b x}{2}+\frac{a b x^{2}}{2} \\
& =\frac{\left(b x^{2}-1\right)(a x+1)}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
(0)+2\left(-\frac{1}{2 x}-\frac{a}{2}+\frac{b x}{2}+\frac{a b x^{2}}{2}\right)(1)+\left(\left(\frac{1}{2 x^{2}}+\frac{b}{2}+a b x\right)+\left(-\frac{1}{2 x}-\frac{a}{2}+\frac{b x}{2}+\frac{a b x^{2}}{2}\right)^{2}-\left(\frac{a^{2} b^{2} x^{6}+}{}\right.\right.
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{1}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{1}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\int\left(-\frac{1}{2 x}-\frac{a}{2}+\frac{b x}{2}+\frac{a b x^{2}}{2}\right) d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\frac{b x^{2}}{4}+\frac{a b x^{3}}{6}-\frac{a x}{2}-\frac{\ln (x)}{2}} \\
& =\frac{(a x+1) \mathrm{e}^{\frac{1}{4} b x^{2}+\frac{1}{6} a b x^{3}-\frac{1}{2} a x}}{a \sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a b x^{3}+b x^{2}+a x-1}{x} d x} \\
& =z_{1} e^{-\frac{a b x^{3}}{6}-\frac{b x^{2}}{4}-\frac{a x}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{-\frac{x\left(a b x^{2}+\frac{3}{2} b x+3 a\right)}{6}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{(a x+1) \mathrm{e}^{-a x}}{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a b x^{3}+b x^{2}+a x-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{a b x^{3}}{3}-\frac{b x^{2}}{2}-a x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{x a^{2} \mathrm{e}^{-\frac{\left(a b x^{2}+\frac{3}{2} b x-3 a\right) x}{3}}}{(a x+1)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\right)+c_{2}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\left(\int \frac{x a^{2} \mathrm{e}^{-\frac{\left(a b x^{2}+\frac{3}{2} b x-3 a\right) x}{3}}}{(a x+1)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{x \mathrm{e}^{-\frac{\left(a b x^{2}+\frac{3}{2} b x-3 a\right) x}{3}}}{(a x+1)^{2}} d x\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2}(a x+1) \mathrm{e}^{-a x} a\left(\int \frac{x \mathrm{e}^{-\frac{\left(a b x^{2}+\frac{3}{2} b x-3 a\right) x}{3}}}{(a x+1)^{2}} d x\right)
\]

Verified OK.

\subsection*{28.29.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}+a^{2} b x^{3} y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-a^{2} b x^{2} y-\frac{\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}}{x}+a^{2} b x^{2} y=0
\]
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a b x^{3}+b x^{2}+a x-1}{x}, P_{3}(x)=a^{2} b x^{2}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+\left(a b x^{3}+b x^{2}+a x-1\right) y^{\prime}+a^{2} b x^{3} y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{3} \cdot y\) to series expansion
\[
x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}
\]
- Shift index using \(k->k-3\)
\[
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)+a_{0} a r\right) x^{r}+\left(a_{2}(2+r) r+a a_{1}(1+r)+a_{0} b r\right) x^{1+r}+(
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-2+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{0,2\}
\]
- The coefficients of each power of \(x\) must be 0
\(\left[a_{1}(1+r)(-1+r)+a_{0} a r=0, a_{2}(2+r) r+a a_{1}(1+r)+a_{0} b r=0, a_{3}(3+r)(1+r)+a a_{2}(2+\right.\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=-\frac{a_{0} a r}{r^{2}-1}, a_{2}=\frac{a_{0}\left(a^{2}-b r+b\right)}{r^{2}+r-2}, a_{3}=-\frac{a a_{0}\left(b r^{2}+a^{2}-3 b r+b\right)}{r^{3}+3 r^{2}-r-3}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(a^{2} a_{k-3}+a_{k-2}(k+r-2) a+a_{k-1}(k+r-1)\right) b+a a_{k}(k+r)+a_{k+1}(k+1+r)(k+r-1)=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(\left(a^{2} a_{k}+a_{k+1}(k+1+r) a+a_{k+2}(k+2+r)\right) b+a a_{k+3}(k+r+3)+a_{k+4}(k+4+r)(k+2+r)\)
- Recursion relation that defines series solution to ODE
\(a_{k+4}=-\frac{a^{2} b a_{k}+a b k a_{k+1}+a b r a_{k+1}+a b a_{k+1}+a k a_{k+3}+a r a_{k+3}+b k a_{k+2}+b r a_{k+2}+3 a a_{k+3}+2 b a_{k+2}}{(k+4+r)(k+2+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+4}=-\frac{a^{2} b a_{k}+a b k a_{k+1}+a b a_{k+1}+a k a_{k+3}+b k a_{k+2}+3 a a_{k+3}+2 b a_{k+2}}{(k+4)(k+2)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a^{2} b a_{k}+a b k a_{k+1}+a b a_{k+1}+a k a_{k+3}+b k a_{k+2}+3 a a_{k+3}+2 b a_{k+2}}{(k+4)(k+2)}, a_{1}=0, a_{2}=-\frac{a_{0}\left(a^{2}+b\right)}{2}, a_{3}\right.
\]
- \(\quad\) Recursion relation for \(r=2\)
\(a_{k+4}=-\frac{a^{2} b a_{k}+a b k a_{k+1}+3 a b a_{k+1}+a k a_{k+3}+b k a_{k+2}+5 a a_{k+3}+4 b a_{k+2}}{(k+6)(k+4)}\)
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{a^{2} b a_{k}+a b k a_{k+1}+3 a b a_{k+1}+a k a_{k+3}+b k a_{k+2}+5 a a_{k+3}+4 b a_{k+2}}{(k+6)(k+4)}, a_{1}=-\frac{2 a a_{0}}{3}, a_{2}=\frac{a_{0}\left(a^{2}\right.}{4}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+2}\right), c_{k+4}=-\frac{a^{2} b c_{k}+a b k c_{1+k}+a b c_{1+k}+a k c_{k+3}+b k c_{k+2}+3 a c_{k+3}+2 b c_{k+2}}{(k+4)(k+2)}, c_{1}=0\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.313 (sec). Leaf size: 48
dsolve (\(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * b * x^{\wedge} 3+b * x^{\wedge} 2+a * x-1\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 * b * x^{\wedge} 3 * y(x)=0, y(x)\), singsol=al
\[
y(x)=\mathrm{e}^{-a x}\left(c_{2}\left(\int \frac{x \mathrm{e}^{-\frac{\left(a b x^{2}+\frac{3}{2} b x-3 a\right) x}{3}}}{(a x+1)^{2}} d x\right)+c_{1}\right)(a x+1)
\]
\(\checkmark\) Solution by Mathematica
Time used: 4.606 (sec). Leaf size: 72
DSolve \(\left[x * y{ }^{\prime}\right.\) ' \([x]+\left(a * b * x^{\wedge} 3+b * x^{\wedge} 2+a * x-1\right) * y\) ' \([x]+a^{\wedge} 2 * b * x^{\wedge} 3 * y[x]==0, y[x], x\), IncludeSingularSolution
\[
y(x) \rightarrow \frac{e^{-a x}(a x+1)\left(c_{2} \int_{1}^{x} \frac{a^{2} \exp \left(-\frac{1}{6} K[1]\left(3 b K[1]+2 a\left(b K[1]^{2}-3\right)\right)\right) K[1]}{(a K[1]+1)^{2}} d K[1]+c_{1}\right)}{a}
\]

\subsection*{28.30 problem 90}
28.30.1 Solving as second order change of variable on y method 2 ode . 2645
28.30.2 Maple step by step solution . 2648

Internal problem ID [10914]
Internal file name [OUTPUT/10170_Sunday_December_31_2023_11_03_20_AM_5802521/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 90.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}+(d-1)\left(a x^{2}+b x+c\right) y=0
\]

\subsection*{28.30.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}+(d-1)\left(a x^{2}+b x+c\right) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{3}+b x^{2}+c x+d}{x} \\
& q(x)=\frac{(d-1)\left(a x^{2}+b x+c\right)}{x}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{3}+b x^{2}+c x+d\right)}{x^{2}}+\frac{(d-1)\left(a x^{2}+b x+c\right)}{x}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-d+1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2 d+2}{x}+\frac{a x^{3}+b x^{2}+c x+d}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(a x^{3}+b x^{2}+c x-d+2\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(a x^{3}+b x^{2}+c x-d+2\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(a x^{3}+b x^{2}+c x-d+2\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{a x^{3}+b x^{2}+c x-d+2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{a x^{3}+b x^{2}+c x-d+2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{a x^{3}+b x^{2}+c x-d+2}{x} d x \\
\ln (u) & =-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\int c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)} d x+c_{2}\right) x^{-d+1} \\
& =x^{-d+1}\left(c_{1}\left(\int x^{d-2} \mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} b x^{2}-c x} d x\right)+c_{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\int c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)} d x+c_{2}\right) x^{-d+1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\int c_{1} \mathrm{e}^{-\frac{a x^{3}}{3}-\frac{b x^{2}}{2}-c x-(2-d) \ln (x)} d x+c_{2}\right) x^{-d+1}
\]

Verified OK.

\subsection*{28.30.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}+(d-1)\left(a x^{2}+b x+c\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{(d-1)\left(a x^{2}+b x+c\right) y}{x}-\frac{\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}}{x}+\frac{(d-1)\left(a x^{2}+b x+c\right) y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x^{3}+b x^{2}+c x+d}{x}, P_{3}(x)=\frac{(d-1)\left(a x^{2}+b x+c\right)}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=d\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x+\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime}+(d-1)\left(a x^{2}+b x+c\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+r+d) x^{-1+r}+\left(a_{1}(1+r)(r+d)+a_{0} c(-1+r+d)\right) x^{r}+\left(a_{2}(2+r)(1+r+d)+a_{1} c\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r+d)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-d+1\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\(\left[a_{1}(1+r)(r+d)+a_{0} c(-1+r+d)=0, a_{2}(2+r)(1+r+d)+a_{1} c(r+d)+b a_{0}(-1+r+d)=\right.\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=-\frac{a_{0} c(-1+r+d)}{r d+r^{2}+d+r}, a_{2}=-\frac{a_{0}\left(b d r+b r^{2}-c^{2} d-c^{2} r+b d+c^{2}-b\right)}{r^{2} d+r^{3}+3 r d+4 r^{2}+2 d+5 r+2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation \(a_{k+1}(k+1+r)(k+r+d)+a_{k} c(k+r+d-1)+b a_{k-1}(k-2+r+d)+a_{k-2} a(k-3+r+d)\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+3}(k+3+r)(k+2+r+d)+a_{k+2} c(k+1+r+d)+b a_{k+1}(k+r+d)+a_{k} a(k+r+d-1)\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{a_{k} a d+a k a_{k}+a r a_{k}+b d a_{k+1}+b k a_{k+1}+b r a_{k+1}+c d a_{k+2}+c k a_{k+2}+c r a_{k+2}-a_{k} a+c a_{k+2}}{(k+3+r)(k+2+r+d)}\)
- Recursion relation for \(r=0\)
\(a_{k+3}=-\frac{a_{k} a d+a k a_{k}+b d a_{k+1}+b k a_{k+1}+c d a_{k+2}+c k a_{k+2}-a_{k} a+c a_{k+2}}{(k+3)(k+2+d)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k} a d+a k a_{k}+b d a_{k+1}+b k a_{k+1}+c d a_{k+2}+c k a_{k+2}-a_{k} a+c a_{k+2}}{(k+3)(k+2+d)}, a_{1}=-\frac{a_{0} c(d-1)}{d}, a_{2}=-\frac{a_{0}(}{}\right.\)
- Recursion relation for \(r=-d+1\)
\(a_{k+3}=-\frac{a_{k} a d+a k a_{k}+a(-d+1) a_{k}+b d a_{k+1}+b k a_{k+1}+b(-d+1) a_{k+1}+c d a_{k+2}+c k a_{k+2}+c(-d+1) a_{k+2}-a_{k} a+c a_{k+2}}{(k+4-d)(k+3)}\)
- \(\quad\) Solution for \(r=-d+1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-d+1}, a_{k+3}=-\frac{a_{k} a d+a k a_{k}+a(-d+1) a_{k}+b d a_{k+1}+b k a_{k+1}+b(-d+1) a_{k+1}+c d a_{k+2}+c k a_{k+2}+c(-d+1) a_{k+2}}{(k+4-d)(k+3)}\right.\)
- Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k-d+1}\right), e_{k+3}=-\frac{a d e_{k}+a k e_{k}+b d e_{1+k}+b k e_{1+k}+c d e_{k+2}+c k e_{k+2}-a e_{k}+c e_{k+2}}{(k+3)(k+2+d)}, e_{1}=\right.\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.359 (sec). Leaf size: 42
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * \operatorname{diff}(y(x), x)+(d-1) *\left(a * x^{\wedge} 2+b * x+c\right) * y(x)=0, y(x)\right.\),
\[
y(x)=x^{-d+1}\left(\left(\int x^{d-2} \mathrm{e}^{-\frac{1}{3} a x^{3}-\frac{1}{2} x^{2} b-c x} d x\right) c_{2}+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.839 (sec). Leaf size: 57
DSolve \(\left[x * y{ }^{\prime}\right.\) ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 3+\mathrm{b} * \mathrm{x}^{\wedge} 2+\mathrm{c} * \mathrm{x}+\mathrm{d}\right) * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{d}-1) *\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingular
\[
y(x) \rightarrow x^{1-d}\left(c_{2} \int_{1}^{x} \exp \left(-\frac{1}{6} K[1](6 c+K[1](3 b+2 a K[1]))\right) K[1]^{d-2} d K[1]+c_{1}\right)
\]

\subsection*{28.31 problem 91}

Internal problem ID [10915]
Internal file name [OUTPUT/10171_Sunday_December_31_2023_11_03_21_AM_13522463/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 91.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+a x^{n} y^{\prime}+\left(a b x^{n}-a x^{n-1}-b^{2} x+2 b\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x * \operatorname{diff}(y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge} n-a * x^{\wedge}(n-1)-b^{\wedge} 2 * x+2 * b\right) * y(x)=0, y(x)\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y\right.\) ' \(\quad[x]+a * x^{\wedge} n * y{ }^{\prime}[x]+\left(a * b * x^{\wedge} n-a * x^{\wedge}(n-1)-b^{\wedge} 2 * x+2 * b\right) * y[x]==0, y[x], x\), IncludeSingularSolu

Not solved

\subsection*{28.32 problem 92}
28.32.1 Solving as second order change of variable on y method 2 ode . 2656

Internal problem ID [10916]
Internal file name [OUTPUT/10172_Sunday_December_31_2023_11_03_22_AM_74756653/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 92 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{n}+2\right) y^{\prime}+x^{n-1} a y=0
\]

\subsection*{28.32.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{n}+2\right) y^{\prime}+x^{n-1} a y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{n}+2}{x} \\
& q(x)=a x^{n-2}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{n}+2\right)}{x^{2}}+a x^{n-2}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(-\frac{2}{x}+\frac{a x^{n}+2}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+a x^{n-1} v^{\prime}(x) & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+a x^{n-1} u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-a x^{n-1} u
\end{aligned}
\]

Where \(f(x)=-a x^{n-1}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-a x^{n-1} d x \\
\int \frac{1}{u} d u & =\int-a x^{n-1} d x \\
\ln (u) & =-\frac{a x^{n}}{n}+c_{1} \\
u & =\mathrm{e}^{-\frac{n x^{n}}{n}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{n}}{n}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x)= & u(x) \\
v(x)= & \int u(x) d x+c_{2} \\
& c_{1}\left(\frac{a}{n}\right)^{-\frac{1}{n}}\left(\frac{n^{3} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}\left(a x^{n}+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{1}{n}-\frac{n+1}{2 n}, \frac{n+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)}{(n+1)(2 n+1) a}+\frac{n^{2} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}(n+1)\left(\frac{a x^{n}}{n}\right)}{n}\right.
\end{aligned}
\]

\section*{Hence}
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1}\left(\frac{a}{n}\right)^{-\frac{1}{n}}\left(\frac{n^{3} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}\left(a x^{n}+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}} e^{-\frac{a x^{n}}{2 n}}{\text { WhittakerM }\left(\frac{1}{n}-\frac{n+1}{2 n}, \frac{n+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)}_{(n+1)(2 n+1) a}^{n}+\frac{n^{2} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}(n+1)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}}-\frac{a x^{n}}{2 n}}{a(2 n+1)}}{n}\right.}{x} \\
& =\frac{n c_{1} x^{1-n} \mathrm{e}^{-\frac{a x^{n}}{2 n}}\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}}(n+1)^{2} \text { WhittakerM }\left(\frac{n+1}{2 n}, \frac{2 n+1}{2 n}, \frac{a x^{n}}{n}\right)+\left((n+1) x^{1-n}+a x\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}} \mathrm{e}^{-\frac{a x}{2 n}}}{(n+1)(2 n+1) a x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{\frac{c_{1}\left(\frac{a}{n}\right)^{-\frac{1}{n}}\left(\frac{n^{3} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}\left(a x^{n}+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}}}{(n+1)(2 n+1) a} \text { hittakerM }\left(\frac{1}{n}-\frac{n+1}{2 n}, \frac{n+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)\right.}{}+\frac{n^{2} x^{1-n}\left(\frac{a}{n}\right)^{\frac{1}{n}}(n+1)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { Whitte }_{a(2 n+1)}^{e n}}{n}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\(y\)

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.203 (sec). Leaf size: 122
```

dsolve(x*diff (y(x), x\$2)+(a*x^n+2)*diff(y(x), x)+a*x^(n-1)*y(x)=0,y(x), singsol=all)
y(x)
=}\frac{n\mp@subsup{c}{2}{}\mp@subsup{\textrm{e}}{}{-\frac{a\mp@subsup{x}{}{n}}{2n}}((n+1)\mp@subsup{x}{}{-\frac{3n}{2}+\frac{1}{2}}+\mp@subsup{x}{}{-\frac{n}{2}+\frac{1}{2}}a)\mathrm{ WhittakerM (-n-1}2n}{2n+\frac{2n+1}{2n},\frac{a\mp@subsup{x}{}{n}}{n})+\mp@subsup{c}{2}{}\mp@subsup{x}{}{-\frac{3n}{2}+\frac{1}{2}}\mp@subsup{\textrm{e}}{}{-\frac{a\mp@subsup{x}{}{n}}{2n}}(n+1\mp@subsup{)}{}{2}\mathrm{ Whitte}

```
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 62
DSolve \(\left[x * y^{\prime \prime}[x]+\left(a * x^{\wedge} n+2\right) * y\right.\) ' \([x]+a * x^{\wedge}(n-1) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow(-1)^{-1 / n} n^{\frac{1}{n}-1} a^{-1 / n}\left(x^{n}\right)^{-1 / n}\left(c_{1}(-1)^{\frac{1}{n}} \Gamma\left(\frac{1}{n}, 0, \frac{a x^{n}}{n}\right)+c_{2} n\right)
\]

\subsection*{28.33 problem 93}

Internal problem ID [10917]
Internal file name [OUTPUT/10173_Sunday_December_31_2023_11_03_23_AM_45823441/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 93.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(x^{n}+1-n\right) y^{\prime}+b x^{-1+2 n} y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.046 (sec). Leaf size: 53
dsolve(\(x * \operatorname{diff}(y(x), x \$ 2)+\left(x^{\wedge} n+1-n\right) * \operatorname{diff}(y(x), x)+b * x^{\wedge}(2 * n-1) * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-\frac{x^{n}}{2 n}}\left(c_{1} \sinh \left(\frac{x^{n} \sqrt{\frac{-4 b+1}{n^{2}}}}{2}\right)+c_{2} \cosh \left(\frac{x^{n} \sqrt{\frac{-4 b+1}{n^{2}}}}{2}\right)\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 53
DSolve \(\left[\mathrm{x} * \mathrm{y}^{\prime \prime}[\mathrm{x}]+\left(\mathrm{x}^{\wedge} \mathrm{n}+1-\mathrm{n}\right) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\mathrm{b} * \mathrm{x}^{\wedge}(2 * \mathrm{n}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-\frac{(\sqrt{1-4 b}+1) x^{n}}{2 n}}\left(c_{2} e^{\frac{\sqrt{1-4 b x} x^{n}}{n}}+c_{1}\right)
\]

\subsection*{28.34 problem 94}
28.34.1 Solving as second order integrable as is ode 2662
28.34.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2664
28.34.3 Solving as exact linear second order ode ode 2666

Internal problem ID [10918]
Internal file name [OUTPUT/10174_Sunday_December_31_2023_11_03_24_AM_32701816/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 94.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+y x^{n-1} a n=0
\]

\subsection*{28.34.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+y x^{n-1} a n\right) d x=0 \\
\left(a x^{n}+b-1\right) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{n}-b+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{n}+(b-1) \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} \mathrm{~d} x \\
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\) results in
\[
y=\mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}\left(\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}
\]
which simplifies to
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.34.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+y x^{n-1} a n=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+y x^{n-1} a n\right) d x=0 \\
\left(a x^{n}+b-1\right) y+y^{\prime} x=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{n}-b+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{n}+(b-1) \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} \mathrm{~d} x \\
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\) results in
\[
y=\mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}\left(\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}
\]
which simplifies to
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.34.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=a x^{n}+b \\
& r(x)=a n x^{n-1} \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =\frac{a n x^{n}}{x}
\end{aligned}
\]

Therefore (1) becomes
\[
0-\left(\frac{a n x^{n}}{x}\right)+\left(a n x^{n-1}\right)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
\left(a x^{n}+b-1\right) y+y^{\prime} x=c_{1}
\]

We now have a first order ode to solve which is
\[
\left(a x^{n}+b-1\right) y+y^{\prime} x=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b+1}{x} \\
& q(x)=\frac{c_{1}}{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b+1\right) y}{x}=\frac{c_{1}}{x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-a x^{n}-b+1}{x} d x} \\
& =\mathrm{e}^{\frac{a x^{n}+(b-1) \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\right)\left(\frac{c_{1}}{x}\right) \\
\mathrm{d}\left(\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y\right) & =\left(\frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} \mathrm{~d} x \\
& \left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}} y=\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}\) results in
\[
y=\mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}\left(\int \frac{c_{1}\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{-b+1}{n}}
\]
which simplifies to
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(x^{n}\right)^{\frac{-b+1}{n}} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}\left(\int \frac{\left(x^{n}\right)^{\frac{b-1}{n}} \mathrm{e}^{\frac{a x^{n}}{n}}}{x} d x\right)+c_{2}\right)
\]

Verified OK.
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integral
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution <- linear_1 successful`

Solution by Maple
Time used: 0.094 (sec). Leaf size: 53
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+a * n * x^{\wedge}(n-1) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\mathrm{e}^{-\frac{a x^{n}}{n}}\left(\text { hypergeom }\left(\left[\frac{b-1}{n}\right],\left[\frac{b+n-1}{n}\right], \frac{a x^{n}}{n}\right) c_{1}+x^{-b+1} c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 121
DSolve \(\left[\mathrm{x} * \mathrm{y}\right.\) ' \({ }^{\prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow(-1)^{-\frac{b}{n}} n^{\frac{b-n-1}{n}} a^{\frac{1-b}{n}} e^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{1-b}{n}}\left(-(b-1) c_{1}(-1)^{\frac{1}{n}} \Gamma\left(\frac{b-1}{n},-\frac{a x^{n}}{n}\right)\right. \\
&+\left.c_{2} n(-1)^{b / n}+(b-1) c_{1}(-1)^{\frac{1}{n}} \operatorname{Gamma}\left(\frac{b-1}{n}\right)\right)
\end{aligned}
\]

\subsection*{28.35 problem 95}
28.35.1 Solving as second order change of variable on y method 2 ode . 2670

Internal problem ID [10919]
Internal file name [OUTPUT/10175_Sunday_December_31_2023_11_03_31_AM_34888450/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 95 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+a(b-1) x^{n-1} y=0
\]

\subsection*{28.35.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+a(b-1) x^{n-1} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{n}+b}{x} \\
& q(x)=a x^{n-2}(b-1)
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{n}+b\right)}{x^{2}}+a x^{n-2}(b-1)=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-b+1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2 b+2}{x}+\frac{a x^{n}+b}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(-b+2+a x^{n}\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(-b+2+a x^{n}\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(-b+2+a x^{n}\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{-b+2+a x^{n}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{-b+2+a x^{n}}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{-b+2+a x^{n}}{x} d x \\
\ln (u) & =-\frac{a x^{n}+(2-b) \ln \left(x^{n}\right)}{n}+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{n}+(2-b) \ln \left(x^{n}\right)}{n}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{n}+(2-b) \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{2}{n}}\left(x^{n}\right)^{\frac{b}{n}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2}
\end{aligned}
\]
\[
=\frac{\left(\frac{a}{n}\right)^{-\frac{b}{n}+\frac{1}{n}} c_{1}\left(x^{n}\right)^{\frac{-2+b}{n}} x^{2-b}\left(\frac{n^{3} x^{-n+b-1}\left(\frac{a}{n}\right)^{\frac{b}{n}-\frac{1}{n}}\left(a x^{n}+b+n-1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{b+n-1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM(} \frac{b-1}{n}-\frac{b+n-1}{2 n}, \frac{b+n-1}{2 n}+}{(b-1)(b+n-1)(b+2 n-1) a}\right.}{n}
\]

\section*{Hence}
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{\left(\frac{a}{n}\right)^{-\frac{b}{n}+\frac{1}{n}} c_{1}\left(x^{n}\right)^{\frac{-2+b}{n}} x^{2-b}\left(\frac{n^{3} x^{-n+b-1}\left(\frac{a}{n}\right)^{\frac{b}{n-\frac{1}{n}}\left(a x^{n}+b+n-1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{b+n-1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{b-1}{n}-\frac{b+n-1}{2 n}, \frac{b+n-1}{2 n}+\frac{1}{2}\right.}}{(b-1)(b+n-1)(b+2 n-1) a}\right.}{n}\right. \\
& =\frac{x^{-b+1}\left(\left(\frac{a x^{n}}{n}\right)^{-\frac{b+n-1}{2 n}} n^{2} c_{1} \mathrm{e}^{-\frac{a x^{n}}{2 n}}\left(x^{n}\right)^{\frac{-2+b}{n}}\left((b+n-1) x^{1-n}+a x\right) \text { WhittakerM }\left(\frac{-n+b-1}{2 n}, \frac{b+2 n-1}{2 n}, \frac{a x^{n}}{n}\right)+\right.}{a(b-}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\left(\frac{\left(\frac{a}{n}\right)^{-\frac{b}{n}+\frac{1}{n}} c_{1}\left(x^{n}\right)^{\frac{-2+b}{n}} x^{2-b}\left(\frac{n^{3} x^{-n+b-1}\left(\frac{a}{n}\right)^{\frac{b}{n}-\frac{1}{n}}\left(a x^{n}+b+n-1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{b+n-1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{b-1}{n}-\frac{b+n-1}{2 n}, \frac{b+n-1}{2 n}+\frac{1}{2}, \frac{a}{a}\right.}{(b-1)(b+n-1)(b+2 n-1) a}\right.}{n}\right.\)
\[
\left.+c_{2}\right) x^{-b+1}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& =\left(\frac{\left(\frac{a}{n}\right)^{-\frac{b}{n}+\frac{1}{n}} c_{1}\left(x^{n}\right)^{\frac{-2+b}{n}} x^{2-b}\left(\frac{n^{3} x^{-n+b-1}\left(\frac{a}{n}\right)^{\frac{b}{n}-\frac{1}{n}}\left(a x^{n}+b+n-1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{b+n-1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{b-1}{n}-\frac{b+n-1}{2 n}, \frac{b+n-1}{2 n}+\frac{1}{2}, \frac{a}{n}\right.}{(b-1)(b+n-1)(b+2 n-1) a}\right.}{n} \begin{array}{r}
n \\
\\
\left.+c_{2}\right) x^{-b+1}
\end{array}\right.
\end{aligned}
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 143
dsolve \(\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} *(\mathrm{~b}-1) * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\right.\), singsol=all)
\[
\begin{aligned}
y(x)= & \mathrm{e}^{-\frac{a x^{n}}{2 n}} n c_{2}\left((b+n-1) x^{-\frac{3 n}{2}+\frac{1}{2}-\frac{b}{2}}\right. \\
& \left.+a x^{\frac{1}{2}-\frac{b}{2}-\frac{n}{2}}\right) \text { WhittakerM }\left(\frac{b-n-1}{2 n}, \frac{b+2 n-1}{2 n}, \frac{a x^{n}}{n}\right) \\
& +x^{-\frac{3 n}{2}+\frac{1}{2}-\frac{b}{2}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} c_{2}(b+n-1)^{2} \text { WhittakerM }\left(\frac{b+n-1}{2 n}, \frac{b+2 n-1}{2 n}, \frac{a x^{n}}{n}\right) \\
& +c_{1} x^{-b+1}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.182 (sec). Leaf size: 90
```

DSolve[x*y''[x]+(a*x^n+b)*y'[x]+a*(b-1)*x^(n-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> T

```
\[
y(x) \rightarrow(-1)^{-\frac{b}{n}} n^{\frac{b-n-1}{n}} a^{\frac{1-b}{n}}\left(x^{n}\right)^{\frac{1-b}{n}}\left((b-1) c_{1}(-1)^{b / n} \Gamma\left(\frac{b-1}{n}, 0, \frac{a x^{n}}{n}\right)+c_{2}(-1)^{\frac{1}{n}} n\right)
\]

\subsection*{28.36 problem 96}
28.36.1 Solving as second order ode lagrange adjoint equation method od 2675

Internal problem ID [10920]
Internal file name [OUTPUT/10176_Sunday_December_31_2023_11_03_32_AM_23395983/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 96.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+a(b+n-1) x^{n-1} y=0
\]

\subsection*{28.36.1 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+a(b+n-1) x^{n-1} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{n}+b}{x} \\
& q(x)=a x^{n-2}(b+n-1) \\
& r(x)=0
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{array}{r}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q=0 \\
\xi^{\prime \prime}-\left(\frac{\left(a x^{n}+b\right) \xi(x)}{x}\right)^{\prime}+\left(a x^{n-2}(b+n-1) \xi(x)\right)=0 \\
\xi^{\prime \prime}(x)-\frac{\left(a x^{n}+b\right) \xi^{\prime}(x)}{x}+\left(-\frac{a n x^{n}}{x^{2}}+\frac{a x^{n}+b}{x^{2}}+a x^{n-2}(b+n-1)\right) \xi(x)=0
\end{array}
\]

Which is solved for \(\xi(x)\). In normal form the ode
\[
\begin{equation*}
\xi^{\prime \prime}(x) x^{2}+\left(-a x^{n}-b\right) \xi^{\prime}(x) x+b\left(a x^{n}+1\right) \xi(x)=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
\xi^{\prime \prime}(x)+p(x) \xi^{\prime}(x)+q(x) \xi(x)=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{-a x^{n}-b}{x} \\
& q(x)=\frac{b\left(a x^{n}+1\right)}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(\xi(x)=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(\xi(x)\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(-a x^{n}-b\right)}{x^{2}}+\frac{b\left(a x^{n}+1\right)}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=b \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2 b}{x}+\frac{-a x^{n}-b}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(b-a x^{n}\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(b-a x^{n}\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(-b+a x^{n}\right)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{-b+a x^{n}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{-b+a x^{n}}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-b+a x^{n}}{x} d x \\
\ln (u) & =\frac{a x^{n}}{n}-\frac{b \ln \left(x^{n}\right)}{n}+c_{1} \\
u & =\mathrm{e}^{\frac{a x^{n}}{n}-\frac{b \ln \left(x^{n}\right)}{n}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{a x^{n}}{n}-\frac{b \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int c_{1} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
\xi(x) & =v(x) x^{n} \\
& =\left(\int c_{1} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right) x^{b} \\
& =\left(c_{1}\left(\int \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right)+c_{2}\right) x^{b}
\end{aligned}
\]

The original ode (2) now reduces to first order ode
\[
\left.\begin{array}{rl}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(\frac{a x^{n}+b}{x}-\frac{\left(c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} x^{b}+\frac{\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right) x^{b} b}{x}\right) x^{-b}}{\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right.
\end{array}\right)=0
\]

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} \mathrm{e}^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)}
\end{aligned}
\]

Where \(f(x)=-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} e^{\frac{a x^{n} n}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
& \frac{1}{y} d y=-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} \mathrm{e}^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x \\
& \int \frac{1}{y} d y=\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} \mathrm{e}^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x \\
& \ln (y)=\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} \mathrm{e}^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x+c_{3} \\
& y=\mathrm{e}^{\left.\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right) \frac{b}{n} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} \frac{a x^{n} n}{n}\right.}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x+c_{3} \\
& =c_{3} \mathrm{e}^{\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} \mathrm{e}^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x}
\end{aligned}
\]

Hence, the solution found using Lagrange adjoint equation method is
\[
y=c_{3} \mathrm{e} \frac{\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x}{x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{3} \mathrm{e} \frac{\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x}{} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{3} \mathrm{e}^{\int-\frac{\left(x^{n}\left(x^{n}\right)^{\frac{b}{n}}\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x\right) a+a x^{n}\left(x^{n}\right)^{\frac{b}{n}} c_{2}-c_{3} e^{\frac{a x^{n}}{n}} x\right)\left(x^{n}\right)^{-\frac{b}{n}}}{x\left(\int c_{3} e^{\frac{a x^{n}}{n}}\left(x^{n}\right)^{-\frac{b}{n}} d x+c_{2}\right)} d x}
\]

\section*{Verified OK.}

\section*{Maple trace Kovacic algorithm successful}
- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric soluti
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special fun
<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful`
\(\checkmark\) Solution by Maple
Time used: 0.11 (sec). Leaf size: 56
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+a *(b+n-1) * x^{\wedge}(n-1) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1}+x^{-b+1} c_{2} \text { hypergeom }\left(\left[\frac{-b+1}{n}\right],\left[\frac{-b+n+1}{n}\right], \frac{a x^{n}}{n}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.178 (sec). Leaf size: 93
DSolve \(\left[x * y\right.\) ' ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{a} *(\mathrm{~b}+\mathrm{n}-1) * \mathrm{x}^{\wedge}(\mathrm{n}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\(y(x)\)
\(\rightarrow \frac{(-1)^{-1 / n} e^{-\frac{a x^{n}}{n}}\left((b-1) c_{2}(-1)^{b / n} \Gamma\left(\frac{1-b}{n},-\frac{a x^{n}}{n}\right)-(b-1) c_{2}(-1)^{b / n} \operatorname{Gamma}\left(\frac{1-b}{n}\right)+c_{1}(-1)^{\frac{1}{n}} n\right)}{n}\)

\subsection*{28.37 problem 97}

Internal problem ID [10921]
Internal file name [OUTPUT/10177_Sunday_December_31_2023_11_03_35_AM_43007570/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 97.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+c\left(a x^{n}-c x+b\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \({ }_{2} 83^{\text {form }}\) of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{c} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}-\mathrm{c} * \mathrm{x}+\mathrm{b}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{x} * \mathrm{y}^{\prime} \mathrm{'}^{[\mathrm{x}]}+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{c} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}-\mathrm{c} * \mathrm{x}+\mathrm{b}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(\rightarrow\) T

Not solved

\subsection*{28.38 problem 98}

Internal problem ID [10922]
Internal file name [OUTPUT/10178_Sunday_December_31_2023_11_03_36_AM_49956565/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 98.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a b x^{n}+b-3 n+1\right) y^{\prime}+a^{2} n(-n+b) x^{-1+2 n} y=0
\]

X Solution by Maple
dsolve (\(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}-3 * \mathrm{n}+1\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a}^{\wedge} 2 * \mathrm{n} *(\mathrm{~b}-\mathrm{n}) * \mathrm{x}^{\wedge}(2 * \mathrm{n}-1) * y(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), si

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{x} * \mathrm{y}^{\prime \prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}-3 * \mathrm{n}+1\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{a}^{\wedge} 2 * \mathrm{n} *(\mathrm{~b}-\mathrm{n}) * \mathrm{x}^{\wedge}(2 * \mathrm{n}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingular

Not solved

\subsection*{28.39 problem 99}

Internal problem ID [10923]
Internal file name [OUTPUT/10179_Sunday_December_31_2023_11_03_36_AM_5864548/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 99.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+\left(x^{-1+2 n} c+d x^{n-1}\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 156
```

dsolve(x*diff(y(x),x\$2)+(a*x^n+b)*diff(y(x),x)+(c*x^(2*n-1)+d*x^(n-1))*y(x)=0,y(x), singsol=

```
\(y(x)\)
\[
\begin{aligned}
= & \mathrm{e}^{-\frac{x^{n}\left(\sqrt{a^{2}-4 c}+a\right)}{2 n}}\left(\operatorname{KummerU}\left(\frac{(b+n-1) \sqrt{a^{2}-4 c}+a(b+n-1)-2 d}{2 \sqrt{a^{2}-4 c} n}, \frac{b+n-1}{n}, \frac{\sqrt{a^{2}-4 c} x^{n}}{n}\right) c_{2}\right. \\
& \left.+\operatorname{KummerM}\left(\frac{(b+n-1) \sqrt{a^{2}-4 c}+a(b+n-1)-2 d}{2 \sqrt{a^{2}-4 c} n}, \frac{b+n-1}{n}, \frac{\sqrt{a^{2}-4 c} x^{n}}{n}\right) c_{1}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.38 (sec). Leaf size: 255
DSolve \(\left[x * y\right.\) ' \(\quad[x]+\left(a * x^{\wedge} n+b\right) * y^{\prime}[x]+\left(c * x^{\wedge}(2 * n-1)+d * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\), IncludeSingularSoluti
\(y(x)\)
\(\rightarrow 2^{\frac{b+n-1}{2 n}} x^{\frac{1}{2}-\frac{n}{2}}\left(x^{n}\right)^{\frac{n-1}{2 n}} e^{-\frac{\left(\sqrt{a^{2}-4 c}+a\right) x^{n}}{2 n}}\left(c_{1}\right.\) Hypergeometric \(\mathrm{U}\left(\frac{(b+n-1) a^{2}+\sqrt{a^{2}-4 c}(b+n-1) a-2 \sqrt{ }}{2\left(a^{2}-4 c\right) n}\right.\)
\[
\left.+c_{2} L_{-\frac{b-1}{n}}^{\frac{(b+n-1) a^{2}+\sqrt{a^{2}-4 c}(b+n-1) a-2 \sqrt{a^{2}-4 c} d-4 c(b+n-1)}{2\left(a^{2}-4 c\right) n}}\left(\frac{\sqrt{a^{2}-4 c} x^{n}}{n}\right)\right)
\]

\subsection*{28.40 problem 100}

Internal problem ID [10924]
Internal file name [OUTPUT/10180_Sunday_December_31_2023_11_03_37_AM_34545972/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 100.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{n}+b x^{n-1}+2\right) y^{\prime}+y x^{n-2} b=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(\frac{1}{26} 90^{\text {form }}\) of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\checkmark\) Solution by Maple
Time used: 0.344 (sec). Leaf size: 53
dsolve \(\left(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}-1)+2\right) *\right.\) diff \((\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}-2)\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol=al
\[
\left.\left.y(x)=\frac{(a x+b)\left(c _ { 2 } \left(\int \frac{\mathrm{e}^{-\frac{(a x x n-1)+b n) x^{n-1}}{n(n-1}}}{(a x+b)^{2}}\right.\right.}{x} d x\right)+c_{1}\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y\right.\) ' \('[x]+\left(a * x \sim n+b * x^{\wedge}(n-1)+2\right) * y '[x]+\left(b * x^{\wedge}(n-2)\right) * y[x]==0, y[x], x\), IncludeSingularSolution
Not solved

\subsection*{28.41 problem 101}

Internal problem ID [10925]
Internal file name [OUTPUT/10181_Sunday_December_31_2023_11_03_38_AM_61021467/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 101.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a x^{n}+b x\right) y^{\prime}+\left(a b x^{n}+a n x^{n-1}-b\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(\frac{1}{2} 93\) form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(x * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x\right) * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge} n+a * n * x^{\wedge}(n-1)-b\right) * y(x)=0, y(x)\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y{ }^{\prime \prime}[x]+\left(a * x^{\wedge} n+b * x\right) * y\right.\) ' \([x]+\left(a * b * x^{\wedge} n+a * n * x^{\wedge}(n-1)-b\right) * y[x]==0, y[x], x\), IncludeSingularSolu

Not solved

\subsection*{28.42 problem 102}

Internal problem ID [10926]
Internal file name [OUTPUT/10182_Sunday_December_31_2023_11_03_39_AM_77566012/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 102.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(a b x^{n}+b x^{n-1}+a x-1\right) y^{\prime}+a^{2} b x^{n} y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(26{ }^{2}\) form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{n}-1)+\mathrm{a} * \mathrm{x}-1\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{a}^{\wedge} 2 * \mathrm{~b} * \mathrm{x}^{\wedge} \mathrm{n}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), sing

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x * y{ }^{\prime \prime}[x]+\left(a * b * x^{\wedge} n+b * x^{\wedge}(n-1)+a * x-1\right) * y '[x]+\left(a^{\wedge} 2 * b * x^{\wedge} n\right) * y[x]==0, y[x], x\right.\), IncludeSingularSo

Not solved

\subsection*{28.43 problem 103}
28.43.1 Solving as second order change of variable on y method 2 ode . 2698

Internal problem ID [10927]
Internal file name [OUTPUT/10183_Sunday_December_31_2023_11_03_40_AM_86763740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 103.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+(c-1)\left(a x^{n-1}+b x^{m-1}\right) y=0
\]

\subsection*{28.43.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\frac{(c-1)\left(a x^{n}+b x^{m}\right) y}{x}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{n}+b x^{m}+c}{x} \\
& q(x)=\frac{(c-1)\left(a x^{n}+b x^{m}\right)}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{n}+b x^{m}+c\right)}{x^{2}}+\frac{(c-1)\left(a x^{n}+b x^{m}\right)}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-c+1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2 c+2}{x}+\frac{a x^{n}+b x^{m}+c}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(-c+2+a x^{n}+b x^{m}\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(-c+2+a x^{n}+b x^{m}\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(-c+2+a x^{n}+b x^{m}\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{-c+2+a x^{n}+b x^{m}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{-c+2+a x^{n}+b x^{m}}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{-c+2+a x^{n}+b x^{m}}{x} d x \\
\ln (u) & =(c-2) \ln (x)-\frac{b \mathrm{e}^{m \ln (x)}}{m}-\frac{a \mathrm{e}^{n \ln (x)}}{n}+c_{1} \\
u & =\mathrm{e}^{(c-2) \ln (x)-\frac{b \mathrm{e}^{m \ln (x)}}{m}-\frac{a \mathrm{e}^{n \ln (x)}}{n}+c_{1}} \\
& =c_{1} \mathrm{e}^{(c-2) \ln (x)-\frac{b \mathrm{e}^{m \ln (x)}}{m}-\frac{a \mathrm{e}^{n \ln (x)}}{n}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x^{c} \mathrm{e}^{-\frac{b x^{m}}{m}} \mathrm{e}^{-\frac{a x^{n}}{n}}}{x^{2}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int \frac{c_{1} x^{c} \mathrm{e}^{-\frac{b x^{m}}{m}} \mathrm{e}^{-\frac{a x^{n}}{n}}}{x^{2}} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\int \frac{c_{1} x^{c} \mathrm{e}^{-\frac{b x^{m}}{m}} \mathrm{e}^{-\frac{a x^{n}}{n}}}{x^{2}} d x+c_{2}\right) x^{-c+1} \\
& =x^{-c+1}\left(c_{1}\left(\int x^{c-2} \mathrm{e}^{-\frac{b x^{m}}{m}-\frac{a x^{n}}{n}} d x\right)+c_{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\int \frac{c_{1} x^{c} \mathrm{e}^{-\frac{b x^{m}}{m}} \mathrm{e}^{-\frac{a x^{n}}{n}}}{x^{2}} d x+c_{2}\right) x^{-c+1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\int \frac{c_{1} x^{c} \mathrm{e}^{-\frac{b x^{m}}{m}} \mathrm{e}^{-\frac{a x^{n}}{n}}}{x^{2}} d x+c_{2}\right) x^{-c+1}
\]

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(\frac{1}{2}\) form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}+\mathrm{c}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(\mathrm{c}-1) *\left(\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}-1)+\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{m}-1)\right) * y(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{x} * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}+\mathrm{c}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+(\mathrm{c}-1) *\left(\mathrm{a} * \mathrm{x}^{\wedge}(\mathrm{n}-1)+\mathrm{b} * \mathrm{x}^{\wedge}(\mathrm{m}-1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSing

Not solved

\subsection*{28.44 problem 104}

Internal problem ID [10928]
Internal file name [OUTPUT/10184_Sunday_December_31_2023_11_03_41_AM_16119579/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form
\((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 104.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x y^{\prime \prime}+\left(x^{m+n} a b+x^{n} n a+b x^{m}+1-2 n\right) y^{\prime}+a^{2} b n x^{2 n+m-1} y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \(\frac{1}{}\) form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \mathrm{~b} * \mathrm{x}^{\wedge}(\mathrm{n}+\mathrm{m})+\mathrm{a} * \mathrm{n} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} * \mathrm{x}^{\wedge} \mathrm{m}+1-2 * \mathrm{n}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a}^{\wedge} 2 * \mathrm{~b} * \mathrm{n} * \mathrm{x}^{\wedge}(2 * \mathrm{n}+\mathrm{m}-1) * y\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([x * y]^{\prime}[x]+\left(a * b * x^{\wedge}(n+m)+a * n * x^{\wedge} n+b * x^{\wedge} m+1-2 * n\right) * y\) ' \([x]+a^{\wedge} 2 * b * n * x^{\wedge}(2 * n+m-1) * y[x]==0, y[x], x, I\)

Not solved

\subsection*{28.45 problem 105}
28.45.1 Solving as second order integrable as is ode
28.45.2 Solving as type second_order_integrable_as_is (not using ABC version) 2708
28.45.3 Solving as exact linear second order ode ode 2710
28.45.4 Maple step by step solution . 2712

Internal problem ID [10929]
Internal file name [OUTPUT/10185_Sunday_December_31_2023_11_03_43_AM_1225267/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 105.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b=0
\]

\subsection*{28.45.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left((x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b\right) d x=0 \\
(b x+c-1) y+(x+a) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-b x-c+1}{x+a} \\
& q(x)=\frac{c_{1}}{x+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-b x-c+1) y}{x+a}=\frac{c_{1}}{x+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-b x-c+1}{x+a} d x} \\
& =\mathrm{e}^{b x+(-a b+c-1) \ln (x+a)}
\end{aligned}
\]

Which simplifies to
\[
\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left((x+a)^{-a b+c-1} \mathrm{e}^{b x}\right)\left(\frac{c_{1}}{x+a}\right) \\
\mathrm{d}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left(c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} \mathrm{~d} x \\
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}\) results in
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}(x+a)^{a b-c+1} \mathrm{e}^{-b x}
\]
which simplifies to
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.45.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left((x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b\right) d x=0 \\
(b x+c-1) y+(x+a) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-b x-c+1}{x+a} \\
& q(x)=\frac{c_{1}}{x+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-b x-c+1) y}{x+a}=\frac{c_{1}}{x+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-b x-c+1}{x+a} d x} \\
& =\mathrm{e}^{b x+(-a b+c-1) \ln (x+a)}
\end{aligned}
\]

Which simplifies to
\[
\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left((x+a)^{-a b+c-1} \mathrm{e}^{b x}\right)\left(\frac{c_{1}}{x+a}\right) \\
\mathrm{d}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left(c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} \mathrm{~d} x \\
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}\) results in
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}(x+a)^{a b-c+1} \mathrm{e}^{-b x}
\]
which simplifies to
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.45.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =x+a \\
q(x) & =b x+c \\
r(x) & =b \\
s(x) & =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =b
\end{aligned}
\]

Therefore (1) becomes
\[
0-(b)+(b)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(b x+c-1) y+(x+a) y^{\prime}=c_{1}
\]

We now have a first order ode to solve which is
\[
(b x+c-1) y+(x+a) y^{\prime}=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-b x-c+1}{x+a} \\
& q(x)=\frac{c_{1}}{x+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{(-b x-c+1) y}{x+a}=\frac{c_{1}}{x+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-b x-c+1}{x+a} d x} \\
& =\mathrm{e}^{b x+(-a b+c-1) \ln (x+a)}
\end{aligned}
\]

Which simplifies to
\[
\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left((x+a)^{-a b+c-1} \mathrm{e}^{b x}\right)\left(\frac{c_{1}}{x+a}\right) \\
\mathrm{d}\left((x+a)^{-a b+c-1} \mathrm{e}^{b x} y\right) & =\left(c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} \mathrm{~d} x \\
& (x+a)^{-a b+c-1} \mathrm{e}^{b x} y=\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=(x+a)^{-a b+c-1} \mathrm{e}^{b x}\) results in
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(\int c_{1}(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}(x+a)^{a b-c+1} \mathrm{e}^{-b x}
\]
which simplifies to
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=(x+a)^{a b-c+1} \mathrm{e}^{-b x}\left(c_{1}\left(\int(x+a)^{-a b+c-2} \mathrm{e}^{b x} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.45.4 Maple step by step solution}

Let's solve
\((x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{b y}{x+a}-\frac{(b x+c) y^{\prime}}{x+a}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(b x+c) y^{\prime}}{x+a}+\frac{b y}{x+a}=0\)
Check to see if \(x_{0}=-a\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{b x+c}{x+a}, P_{3}(x)=\frac{b}{x+a}\right]\)
- \((x+a) \cdot P_{2}(x)\) is analytic at \(x=-a\)
\(\left.\left((x+a) \cdot P_{2}(x)\right)\right|_{x=-a}=-a b+c\)
- \((x+a)^{2} \cdot P_{3}(x)\) is analytic at \(x=-a\)
\(\left.\left((x+a)^{2} \cdot P_{3}(x)\right)\right|_{x=-a}=0\)
- \(x=-a\) is a regular singular point

Check to see if \(x_{0}=-a\) is a regular singular point
\[
x_{0}=-a
\]
- Multiply by denominators
\[
(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y b=0
\]
- \(\quad\) Change variables using \(x=u-a\) so that the regular singular point is at \(u=0\) \(u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-a b+b u+c)\left(\frac{d}{d u} y(u)\right)+b y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}\)
- Shift index using \(k->k+1\)
\(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0} r(a b-c-r+1) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(a b-c-k-r)+b a_{k}(k+1+r)\right) u^{k+r}\right)\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(a b-c-r+1)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0, a b-c+1\}\)
- Each term in the series must be 0 , giving the recursion relation
\(-(k+1+r)\left(a_{k+1}(a b-c-k-r)-b a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{b a_{k}}{a b-c-k-r}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{b a_{k}}{a b-c-k}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{b a_{k}}{a b-c-k}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+a)^{k}, a_{k+1}=\frac{b a_{k}}{a b-c-k}\right]
\]
- \(\quad\) Recursion relation for \(r=a b-c+1\)
\[
a_{k+1}=\frac{b a_{k}}{-k-1}
\]
- \(\quad\) Solution for \(r=a b-c+1\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{a b-c+k+1}, a_{k+1}=\frac{b a_{k}}{-k-1}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+a)^{a b-c+k+1}, a_{k+1}=\frac{b a_{k}}{-k-1}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k}(x+a)^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k}(x+a)^{a b-c+k+1}\right), d_{1+k}=\frac{b d_{k}}{a b-c-k}, e_{1+k}=\frac{b e_{k}}{-k-1}\right]
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integral
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution
<- linear_1 successful`
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 78
dsolve \(((x+a) * \operatorname{diff}(y(x), x \$ 2)+(b * x+c) * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\), singsol=all)
\[
\begin{array}{r}
y(x)=-\left(-(a+x)^{a b-c+1} c_{1}+(\Gamma(-a b+c)+\Gamma(-a b+c-1,-b(a+x))(a b-c+1)) b(a\right. \\
\left.+x) c_{2}(-b(a+x))^{a b-c}\right) \mathrm{e}^{-b x}
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.559 (sec). Leaf size: 90
DSolve[(\(x+a) * y\) ' \([x]+(b * x+c) * y\) ' \([x]+b * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow e^{-b(a+x)}(a+x)^{1-c}(-b(a+x))^{-c}\left(c_{1} e^{a b}(a+x)^{a b}(-b(a+x))^{c}\right. \\
&\left.+b c_{2}(-b(a+x))^{a b}(a+x)^{c} \Gamma(-a b+c-1,-b(a+x))\right)
\end{aligned}
\]

\subsection*{28.46 problem 106}
28.46.1 Maple step by step solution

2716
Internal problem ID [10930]
Internal file name [OUTPUT/10186_Sunday_December_31_2023_11_03_44_AM_97751028/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 106.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a_{1} x+a_{0}\right) y^{\prime \prime}+\left(b_{1} x+b_{0}\right) y^{\prime}-m b_{1} y=0
\]

\subsection*{28.46.1 Maple step by step solution}

Let's solve
\[
\left(a_{1} x+a_{0}\right) y^{\prime \prime}+\left(b_{1} x+b_{0}\right) y^{\prime}-m b_{1} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{b_{1} m y}{a_{1} x+a_{0}}-\frac{\left(b_{1} x+b_{0}\right) y^{\prime}}{a_{1} x+a_{0}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(b_{1} x+b_{0}\right) y^{\prime}}{a_{1} x+a_{0}}-\frac{b_{1} m y}{a_{1} x+a_{0}}=0\)
\(\square\)
Check to see if \(x_{0}=-\frac{a_{0}}{a_{1}}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{b_{1} x+b_{0}}{a_{1} x+a_{0}}, P_{3}(x)=-\frac{b_{1} m}{a_{1} x+a_{0}}\right]
\]
- \(\left(x+\frac{a_{0}}{a_{1}}\right) \cdot P_{2}(x)\) is analytic at \(x=-\frac{a_{0}}{a_{1}}\)
\[
\left.\left(\left(x+\frac{a_{0}}{a_{1}}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{a_{0}}{a_{1}}}=\frac{-\frac{b_{1} a_{0}}{a_{1}}+b_{0}}{a_{1}}
\]
- \(\left(x+\frac{a_{0}}{a_{1}}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=-\frac{a_{0}}{a_{1}}\)
\[
\left.\left(\left(x+\frac{a_{0}}{a_{1}}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{a_{0}}{a_{1}}}=0
\]
- \(x=-\frac{a_{0}}{a_{1}}\) is a regular singular point

Check to see if \(x_{0}=-\frac{a_{0}}{a_{1}}\) is a regular singular point \(x_{0}=-\frac{a_{0}}{a_{1}}\)
- Multiply by denominators
\[
\left(a_{1} x+a_{0}\right) y^{\prime \prime}+\left(b_{1} x+b_{0}\right) y^{\prime}-m b_{1} y=0
\]
- Change variables using \(x=u-\frac{a_{0}}{a_{1}}\) so that the regular singular point is at \(u=0\) \(a_{1} u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(b_{1} u-\frac{b_{1} a_{0}}{a_{1}}+b_{0}\right)\left(\frac{d}{d u} y(u)\right)-b_{1} m y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-\frac{a_{0} r\left(-a_{1}^{2} r+a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}\right) u^{-1+r}}{a_{1}}+\left(\sum_{k=0}^{\infty}\left(-\frac{a_{k+1}(k+1+r)\left(-a_{1}^{2}(k+1)-a_{1}^{2} r+a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}\right)}{a_{1}}+a_{k} b_{1}(k+r-m)\right)\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-\frac{r\left(-a_{1}^{2} r+a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}\right)}{a_{1}}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
\frac{a_{k+1}(k+1+r)(k+r) a_{1}^{2}+\left(b_{0}(k+1+r) a_{k+1}+a_{k} b_{1}(k+r-m)\right) a_{1}-a_{0} b_{1} a_{k+1}(k+1+r)}{a_{1}}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k} b_{1}(k+r-m) a_{1}}{(k+1+r)\left(-a_{1}^{2} k-a_{1}^{2} r+a_{0} b_{1}-a_{1} b_{0}\right)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k} b_{1}(k-m) a_{1}}{(k+1)\left(-a_{1}^{2} k+a_{0} b_{1}-a_{1} b_{0}\right)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k} b_{1}(k-m) a_{1}}{(k+1)\left(-a_{1}^{2} k+a_{0} b_{1}-a_{1} b_{0}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{a_{0}}{a_{1}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{a_{0}}{a_{1}}\right)^{k}, a_{k+1}=\frac{a_{k} b_{1}(k-m) a_{1}}{(k+1)\left(-a_{1}^{2} k+a_{0} b_{1}-a_{1} b_{0}\right)}\right]
\]
- Recursion relation for \(r=\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\)
\[
a_{k+1}=\frac{a_{k} b_{1}\left(k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}-m\right) a_{1}}{\left(k+1+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\right)\left(-a_{1}^{2} k-a_{1}^{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{1}}}, a_{k+1}=\frac{a_{k} b_{1}\left(k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}-m\right) a_{1}}{\left(k+1+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\right)\left(-a_{1}^{2} k-a_{1}^{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{a_{0}}{a_{1}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{a_{0}}{a_{1}}\right)^{k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}}, a_{k+1}=\frac{a_{k} b_{1}\left(k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}-m\right) a_{1}}{\left(k+1+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}\right)\left(-a_{1}^{2} k-a_{1}^{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x+\frac{a_{0}}{a_{1}}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x+\frac{a_{0}}{a_{1}}\right)^{k+\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{1}}}\right), a_{1+k}=\frac{a_{k} b_{1}(-m+k) a_{1}}{(1+k)\left(-a_{1}^{2} k+a_{0} b_{1}-a_{1} b_{0}\right)}, b_{1+k}=\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.063 (sec). Leaf size: 101
```

dsolve((a__1*x+a__0)*diff (y (x),x\$2)+(b__1*x+b__0)*diff (y (x),x)-m*b__ 1*y(x)=0,y(x), singsol=a

```
\(y(x)=\left(a_{1} x\right.\)
\[
\begin{array}{r}
\left.+a_{0}\right)^{\frac{a_{0} b_{1}+a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}} \mathrm{e}^{-\frac{b_{1} x}{a_{1}}}\left(\operatorname{KummerM}\left(1+m, \frac{a_{0} b_{1}+2 a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}, \frac{b_{1}\left(a_{1} x+a_{0}\right)}{a_{1}^{2}}\right) c_{1}\right. \\
\\
\left.+\operatorname{KummerU}\left(1+m, \frac{a_{0} b_{1}+2 a_{1}^{2}-a_{1} b_{0}}{a_{1}^{2}}, \frac{b_{1}\left(a_{1} x+a_{0}\right)}{a_{1}^{2}}\right) c_{2}\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.278 (sec). Leaf size: 102
DSolve \(\left[(\mathrm{a} 1 * \mathrm{x}+\mathrm{a} 0) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+(\mathrm{b} 1 * \mathrm{x}+\mathrm{b} 0) * \mathrm{y} \mathrm{I}^{\prime}[\mathrm{x}]-\mathrm{m} * \mathrm{~b} 1 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(\rightarrow\) True
\[
\begin{aligned}
& y(x) \rightarrow e^{-\frac{\mathrm{b} 1 x}{\mathrm{a} 1}}(\mathrm{a} 0+\mathrm{a} 1 x)^{\frac{\mathrm{a} 0 \mathrm{~b} 1+\mathrm{a} 1^{2}-\mathrm{a} 1 \mathrm{~b} 0}{\mathrm{a} 1^{2}}}\left(c _ { 1 } \text { HypergeometricU } \left(m+1,-\frac{\mathrm{b} 0}{\mathrm{a} 1}+\frac{\mathrm{a} 0 \mathrm{~b} 1}{\mathrm{a} 1^{2}}\right.\right. \\
& \left.\left.+2, \frac{\mathrm{~b} 1(\mathrm{a} 0+\mathrm{a} 1 x)}{\mathrm{a} 1^{2}}\right)+c_{2} L_{-m-1}^{\frac{\mathrm{a} 1^{2}-\mathrm{b} 0 \mathrm{a} 1+\mathrm{a} 0 \mathrm{~b} 1}{\mathrm{a} 1^{2}}}\left(\frac{\mathrm{~b} 1(\mathrm{a} 0+\mathrm{a} 1 x)}{\mathrm{a} 1^{2}}\right)\right)
\end{aligned}
\]

\subsection*{28.47 problem 107}
28.47.1 Maple step by step solution

Internal problem ID [10931]
Internal file name [OUTPUT/10187_Sunday_December_31_2023_11_03_45_AM_79548268/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 107.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
(a x+b) y^{\prime \prime}+s(c x+d) y^{\prime}-s^{2}((a+c) x+b+d) y=0
\]

\subsection*{28.47.1 Maple step by step solution}

Let's solve
\[
(a x+b) y^{\prime \prime}+s(c x+d) y^{\prime}-s^{2}((a+c) x+b+d) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{s^{2}(a x+c x+b+d) y}{a x+b}-\frac{s(c x+d) y^{\prime}}{a x+b}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{s(c x+d) y^{\prime}}{a x+b}-\frac{s^{2}(a x+c x+b+d) y}{a x+b}=0\)
\(\square \quad\) Check to see if \(x_{0}=-\frac{b}{a}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{s(c x+d)}{a x+b}, P_{3}(x)=-\frac{s^{2}(a x+c x+b+d)}{a x+b}\right]
\]
- \(\left(x+\frac{b}{a}\right) \cdot P_{2}(x)\) is analytic at \(x=-\frac{b}{a}\)
\[
\left.\left(\left(x+\frac{b}{a}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{b}{a}}=\frac{s\left(-\frac{b c}{a}+d\right)}{a}
\]
- \(\left(x+\frac{b}{a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=-\frac{b}{a}\)
\[
\left.\left(\left(x+\frac{b}{a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{b}{a}}=0
\]
- \(x=-\frac{b}{a}\) is a regular singular point

Check to see if \(x_{0}=-\frac{b}{a}\) is a regular singular point
\[
x_{0}=-\frac{b}{a}
\]
- Multiply by denominators
\[
(a x+b) y^{\prime \prime}+s(c x+d) y^{\prime}-s^{2}(a x+c x+b+d) y=0
\]
- Change variables using \(x=u-\frac{b}{a}\) so that the regular singular point is at \(u=0\)
\[
a u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(s c u-\frac{c s b}{a}+d s\right)\left(\frac{d}{d u} y(u)\right)+\left(-s^{2} a u-s^{2} c u+\frac{s^{2} b c}{a}-d s^{2}\right) y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
\]

\section*{Rewrite ODE with series expansions}
\[
\frac{a_{0} r\left(a^{2} r+d s a-b c s-a^{2}\right) u^{-1+r}}{a}+\left(\frac{a_{1}(1+r)\left(a^{2} r+d s a-b c s\right)}{a}+\frac{a_{0} s(a c r-d s a+b c s)}{a}\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(\frac{a_{k+1}(k+1+r)\left(a^{2}(k+1)+a^{2}\right)}{a}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\frac{r\left(a^{2} r+d s a-b c s-a^{2}\right)}{a}=0
\]
- Values of r that satisfy the indicial equation
\(r \in\left\{0, \frac{-d s a+b c s+a^{2}}{a^{2}}\right\}\)
- \(\quad\) Each term must be 0
\[
\frac{a_{1}(1+r)\left(a^{2} r+d s a-b c s\right)}{a}+\frac{a_{0} s(a c r-d s a+b c s)}{a}=0
\]
- Each term in the series must be 0, giving the recursion relation
\(\frac{\left(-s^{2} a_{k-1}+a_{k+1}(k+1+r)(k+r)\right) a^{2}+s\left(\left(-c a_{k-1}-d a_{k}\right) s+d(k+1+r) a_{k+1}+c a_{k}(k+r)\right) a-c\left(-a_{k} s+a_{k+1}(k+1+r)\right) b s}{a}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\frac{\left(-s^{2} a_{k}+a_{k+2}(k+2+r)(k+1+r)\right) a^{2}+s\left(\left(-c a_{k}-d a_{k+1}\right) s+d(k+2+r) a_{k+2}+c a_{k+1}(k+1+r)\right) a-c\left(-a_{k+1} s+a_{k+2}(k+2+r)\right) b s}{a}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}-a c r a_{k+1}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{(k+2+r)\left(a^{2} k+a^{2} r+d s a-b c s+a^{2}\right)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{(k+2)\left(a^{2} k+d s a-b c s+a^{2}\right)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{(k+2)\left(a^{2} k+d s a-b c s+a^{2}\right)}, \frac{a_{1}(d s a-b c s)}{a}+\frac{a_{0} s(-d s a+b c s)}{a}=\right.
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b}{a}\right)^{k}, a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{(k+2)\left(a^{2} k+d s a-b c s+a^{2}\right)}, \frac{a_{1}(d s a-b c s)}{a}+\frac{a_{0} s(-d s a+b c s)}{a}\right.
\]
- Recursion relation for \(r=\frac{-d s a+b c s+a^{2}}{a^{2}}\)
\[
a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}-\frac{c\left(-d s a+b c s+a^{2}\right) a_{k+1}}{a}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{\left(k+2+\frac{-d s a+b c s+a^{2}}{a^{2}}\right)\left(a^{2} k+2 a^{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{-d s a+b c s+a^{2}}{a^{2}}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{-d s a+b c s+a^{2}}{a^{2}}}, a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}-\frac{c\left(-d s a+b c s+a^{2}\right) a_{k+1}}{a}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a_{k+1}\right)}{\left(k+2+\frac{-d s a+b c s+a^{2}}{a^{2}}\right)\left(a^{2} k+2 a^{2}\right)}\right.
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b}{a}\right)^{k+\frac{-d s a+b c s+a^{2}}{a^{2}}}, a_{k+2}=\frac{s\left(a^{2} s a_{k}-a c k a_{k+1}-\frac{c\left(-d s a+b c s+a^{2}\right) a_{k+1}}{a}+a c s a_{k}+a d s a_{k+1}-b c s a_{k+1}-a c a\right.}{\left(k+2+\frac{-d s a+b c s+a^{2}}{a^{2}}\right)\left(a^{2} k+2 a^{2}\right)}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k}\left(x+\frac{b}{a}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k}\left(x+\frac{b}{a}\right)^{k+\frac{-d s a+b s s+a^{2}}{a^{2}}}\right), e_{k+2}=\frac{s\left(a^{2} s e_{k}-a c k e_{1+k}+a c s e_{k}+a d s e_{1+k}-b c s e_{1}\right.}{(k+2)\left(a^{2} k+d s a-b c s+a^{2}\right)}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Kummer successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 166
```

dsolve((a*x+b)*diff (y(x),x\$2)+s*(c*x+d)*diff (y(x),x)-s^2*((a+c)*x+b+d)*y(x)=0,y(x), singsol=
y(x)
=}\frac{(((-\mp@subsup{c}{1}{}+\mp@subsup{c}{2}{})\mp@subsup{a}{}{2}+ads\mp@subsup{c}{1}{}-bcs\mp@subsup{c}{1}{})\Gamma(\frac{-dsa+bcs+\mp@subsup{a}{}{2}}{\mp@subsup{a}{}{2}},\frac{s(2a+c)(ax+b)}{\mp@subsup{a}{}{2}})+\Gamma(\frac{-dsa+bcs+2\mp@subsup{a}{}{2}}{\mp@subsup{a}{}{2}})\mp@subsup{c}{1}{}\mp@subsup{a}{}{2})(ax+b)\frac{-dsa+bcs+}{\mp@subsup{a}{}{2}}}{\mp@subsup{a}{}{2}

```
\(\checkmark\) Solution by Mathematica
Time used: 1.269 (sec). Leaf size: 122
DSolve \(\left[(a * x+b) * y ' ~ '[x]+s *(c * x+d) * y '[x]-s^{\wedge} 2 *((a+c) * x+b+d) * y[x]==0, y[x], x\right.\), IncludeSingularSoluti
\(y(x)\)
\(\rightarrow c_{1} e^{s x}\)
\(-\frac{c_{2} e^{s\left(\frac{b(2 a+c)}{a^{2}}+x\right)}(a x+b)^{\frac{s(b c-a d)}{a^{2}}+1}\left(\frac{s(2 a+c)(a x+b)}{a^{2}}\right)^{\frac{s(a d-b c)}{a^{2}}-1} \Gamma\left(\frac{a^{2}-d s a+b c s}{a^{2}}, \frac{(2 a+c) s(b+a x)}{a^{2}}\right)}{a}\)

\subsection*{28.48 problem 108}
28.48.1 Maple step by step solution

Internal problem ID [10932]
Internal file name [OUTPUT/10188_Sunday_December_31_2023_11_03_46_AM_19163397/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 108.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a_{2} x+b_{2}\right) y^{\prime \prime}+\left(a_{1} x+b_{1}\right) y^{\prime}+\left(a_{0} x+b_{0}\right) y=0
\]

\subsection*{28.48.1 Maple step by step solution}

Let's solve
\[
\left(a_{2} x+b_{2}\right) y^{\prime \prime}+\left(a_{1} x+b_{1}\right) y^{\prime}+\left(a_{0} x+b_{0}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{\left(a_{0} x+b_{0}\right) y}{a_{2} x+b_{2}}-\frac{\left(a_{1} x+b_{1}\right) y^{\prime}}{a_{2} x+b_{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a_{1} x+b_{1}\right) y^{\prime}}{a_{2} x+b_{2}}+\frac{\left(a_{0} x+b_{0}\right) y}{a_{2} x+b_{2}}=0\)
\(\square\)
Check to see if \(x_{0}=-\frac{b_{2}}{a_{2}}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a_{1} x+b_{1}}{a_{2} x+b_{2}}, P_{3}(x)=\frac{a_{0} x+b_{0}}{a_{2} x+b_{2}}\right]
\]
- \(\left(x+\frac{b_{2}}{a_{2}}\right) \cdot P_{2}(x)\) is analytic at \(x=-\frac{b_{2}}{a_{2}}\)
\[
\left.\left(\left(x+\frac{b_{2}}{a_{2}}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{b_{2}}{a_{2}}}=\frac{-\frac{a_{1} b_{2}}{a_{2}}+b_{1}}{a_{2}}
\]
- \(\left(x+\frac{b_{2}}{a_{2}}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=-\frac{b_{2}}{a_{2}}\)
\[
\left.\left(\left(x+\frac{b_{2}}{a_{2}}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{b_{2}}{a_{2}}}=0
\]
- \(x=-\frac{b_{2}}{a_{2}}\) is a regular singular point

Check to see if \(x_{0}=-\frac{b_{2}}{a_{2}}\) is a regular singular point
\[
x_{0}=-\frac{b_{2}}{a_{2}}
\]
- Multiply by denominators
\[
\left(a_{2} x+b_{2}\right) y^{\prime \prime}+\left(a_{1} x+b_{1}\right) y^{\prime}+\left(a_{0} x+b_{0}\right) y=0
\]
- Change variables using \(x=u-\frac{b_{2}}{a_{2}}\) so that the regular singular point is at \(u=0\)
\[
a_{2} u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(a_{1} u-\frac{a_{1} b_{2}}{a_{2}}+b_{1}\right)\left(\frac{d}{d u} y(u)\right)+\left(a_{0} u-\frac{a_{0} b_{2}}{a_{2}}+b_{0}\right) y(u)=0
\]
- Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-\frac{a_{0} r\left(-a_{2}^{2} r+a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}\right) u^{-1+r}}{a_{2}}+\left(-\frac{a_{1}(1+r)\left(-a_{2}^{2} r+a_{1} b_{2}-a_{2} b_{1}\right)}{a_{2}}-\frac{a_{0}\left(-a_{1} a_{2} r+a_{0} b_{2}-a_{2} b_{0}\right)}{a_{2}}\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(-\frac{a_{k+1}(}{}\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
-\frac{r\left(-a_{2}^{2} r+a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}\right)}{a_{2}}=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\right\}\)
- Each term must be 0
\[
-\frac{a_{1}(1+r)\left(-a_{2}^{2} r+a_{1} b_{2}-a_{2} b_{1}\right)}{a_{2}}-\frac{a_{0}\left(-a_{1} a_{2} r+a_{0} b_{2}-a_{2} b_{0}\right)}{a_{2}}=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\frac{a_{k+1}(k+1+r)(k+r) a_{2}^{2}+\left(b_{1}(k+1+r) a_{k+1}+k a_{1} a_{k}+r a_{1} a_{k}+a_{k-1} a_{0}+a_{k} b_{0}\right) a_{2}-b_{2}\left(a_{1}(k+1+r) a_{k+1}+a_{k} a_{0}\right)}{a_{2}}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
\frac{a_{k+2}(k+2+r)(k+1+r) a_{2}^{2}+\left(b_{1}(k+2+r) a_{k+2}+(k+1) a_{1} a_{k+1}+r a_{1} a_{k+1}+a_{k} a_{0}+a_{k+1} b_{0}\right) a_{2}-b_{2}\left(a_{1}(k+2+r) a_{k+2}+a_{k+1} a_{0}\right)}{a_{2}}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+a_{1} a_{2} r a_{k+1}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{(k+2+r)\left(-a_{2}^{2} k-a_{2}^{2} r+a_{1} b_{2}-a_{2}^{2}-a_{2} b_{1}\right)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{(k+2)\left(-a_{2}^{2} k+a_{1} b_{2}-a_{2}^{2}-a_{2} b_{1}\right)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{(k+2)\left(-a_{2}^{2} k+a_{1} b_{2}-a_{2}^{2}-a_{2} b_{1}\right)},-\frac{a_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)}{a_{2}}-\frac{a_{0}\left(a_{0} b_{2}-a_{2} b_{0}\right)}{a_{2}}=\right.
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b_{2}}{a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b_{2}}{a_{2}}\right)^{k}, a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{(k+2)\left(-a_{2}^{2} k+a_{1} b_{2}-a_{2}^{2}-a_{2} b_{1}\right)},-\frac{a_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)}{a_{2}}-\frac{a_{0}\left(a_{0} b_{2}-a\right.}{a_{2}}\right.
\]
- Recursion relation for \(r=\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\)
\[
a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+\frac{a_{1}\left(a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}\right) a_{k+1}}{a_{2}}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{\left(k+2+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\right)\left(-a_{2}^{2} k-2 a_{2}^{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}}, a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+\frac{a_{1}\left(a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}\right) a_{k+1}}{a_{2}}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2} b_{0} a_{k+1}}{\left(k+2+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\right)\left(-a_{2}^{2} k-2 a_{2}^{2}\right)}\right.
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b_{2}}{a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b_{2}}{a_{2}}\right)^{k+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}}, a_{k+2}=\frac{a_{1} a_{2} k a_{k+1}+\frac{a_{1}\left(a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}\right) a_{k+1}}{a_{2}}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{k+1}+a_{1} a_{2} a_{k+1}+a_{2}}{\left(k+2+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}\right)\left(-a_{2}^{2} k-2 a_{2}^{2}\right)}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b_{2}}{a_{2}}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x+\frac{b_{2}}{a_{2}}\right)^{k+\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}}\right), a_{k+2}=\frac{a_{1} a_{2} k a_{1+k}+a_{0} a_{2} a_{k}-a_{0} b_{2} a_{1+k}+a_{1} a}{(k+2)\left(-a_{2}^{k} k+a_{1} b_{2}-a_{2}^{2}-\right.}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 248
```

dsolve((a__2*x+b__2)*diff(y(x),x\$2)+(a__1*x+b__1)*diff (y(x),x)+(a__ 0*x+b__0)*y(x)=0,y(x), si

```
\[
\begin{aligned}
& y(x)=\left(a_{2} x\right. \\
& \left.+b_{2}\right)^{\frac{a_{1} b_{2}+a_{2}^{2}-a_{2} b_{1}}{a_{2}^{2}}} \mathrm{e}^{-\frac{\left(\sqrt{-4 a_{0} a_{2}+a_{1}^{2}}+a_{1}\right) x}{2 a_{2}}}\left(\operatorname { K u m m e r M } \left(\frac{\left(a_{1} b_{2}+2 a_{2}^{2}-a_{2} b_{1}\right) \sqrt{-4 a_{0} a_{2}+a_{1}^{2}}-2 a_{2}^{2} b_{0}+\left(2 a_{0} b_{2}-\right.}{2 \sqrt{-4 a_{0} a_{2}+a_{1}^{2}} a_{2}^{2}}\right.\right. \\
& \quad+\operatorname{KummerU}\left(\frac{\left(a_{1} b_{2}+2 a_{2}^{2}-a_{2} b_{1}\right) \sqrt{-4 a_{0} a_{2}+a_{1}^{2}}-2 a_{2}^{2} b_{0}+\left(2 a_{0} b_{2}+b_{1} a_{1}\right) a_{2}-a_{1}^{2} b_{2}}{2 \sqrt{-4 a_{0} a_{2}+a_{1}^{2}} a_{2}^{2}}, \frac{a_{1} b_{2}+2 a_{2}^{2}-a_{2} b}{a_{2}^{2}}\right.
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.526 (sec). Leaf size: 301
DSolve \(\left[(\mathrm{a} 2 * \mathrm{x}+\mathrm{b} 2) * \mathrm{y}^{\prime}\right.\) ' \([\mathrm{x}]+(\mathrm{a} 1 * \mathrm{x}+\mathrm{b} 1) * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{a} 0 * \mathrm{x}+\mathrm{b} 0) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions
\(y(x) \rightarrow e^{-\frac{x\left(\sqrt{\mathrm{al}^{2}-4 \mathrm{aOa} 2}+\mathrm{a} 1\right)}{2 \mathrm{a} 2}}(\mathrm{a} 2 x\)
\(+\mathrm{b} 2)^{\frac{\mathrm{abb} 2+\mathrm{a} 2^{2}-\mathrm{a} 2 \mathrm{~b} 1}{\mathrm{a} 2^{2}}}\left(c_{1}\right.\) HypergeometricU \(\left(\frac{2\left(\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}-\mathrm{b} 0\right) \mathrm{a} 2^{2}+\left(\mathrm{a} 1 \mathrm{~b} 1-\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2} \mathrm{~b} 1+2\right.}{2 \mathrm{a} 2^{2} \sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}}\right.\)
\(\left.-\frac{\mathrm{b} 1}{\mathrm{a} 2}+\frac{\mathrm{a} 1 \mathrm{~b} 2}{\mathrm{a} 2^{2}}+2, \frac{\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}(\mathrm{~b} 2+\mathrm{a} 2 x)}{\mathrm{a} 2^{2}}\right)\)
\(\left.+c_{2} L^{\frac{\mathrm{a} 2^{2}-\mathrm{bla2} 2+\mathrm{alb} 2}{\sqrt{22^{2}}}} \frac{-2\left(\sqrt{\mathrm{a}^{2}-4 \mathrm{aOa} 2}-\mathrm{b} 0\right) \mathrm{a} 2^{2}+\left(-\mathrm{a} 1 \mathrm{~b} 1+\sqrt{\mathrm{a}^{2}-4 \mathrm{aOa} 2 \mathrm{~b} 1-2 \mathrm{abb} 2}\right) \mathrm{a} 2+\mathrm{a} 1\left(\mathrm{a} 1-\sqrt{\mathrm{a}^{2}-4 \mathrm{aO} 2} 2\right) \mathrm{b} 2}{2 \mathrm{a}^{2} \sqrt{\mathrm{a}^{2}-4 \mathrm{aOa} 2}}\left(\frac{\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}(\mathrm{~b} 2+\mathrm{a} 2 x)}{\mathrm{a} 2^{2}}\right)\right)\)

\subsection*{28.49 problem 109}
28.49.1 Solving as second order integrable as is ode
28.49.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2735
28.49.3 Solving as exact linear second order ode ode 2737

Internal problem ID [10933]
Internal file name [OUTPUT/10189_Sunday_December_31_2023_11_03_49_AM_24274775/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-3 Equation of form \((a x+b) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 109.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
(x+\gamma) y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\left(a n x^{n-1}+x^{m-1} b m\right) y=0
\]

\subsection*{28.49.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left((x+\gamma) y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}\right) d x=0 \\
\frac{\left(a x x^{n}+x^{m} b x+c x-x\right) y}{x}+(x+\gamma) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} \\
& q(x)=\frac{c_{1}}{x+\gamma}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b x^{m}-c+1\right) y}{x+\gamma}=\frac{c_{1}}{x+\gamma}
\]

The integrating factor \(\mu\) is
\[
\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+\gamma}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\right)\left(\frac{c_{1}}{x+\gamma}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} \mathrm{d} x \\
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{n}+c-1}{x+\gamma} d x}}{x+\gamma} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\) results in
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}\left(\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2} \mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}
\]
which simplifies to
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.49.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
(x+\gamma) y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left((x+\gamma) y^{\prime \prime}+\left(a x^{n}+b x^{m}+c\right) y^{\prime}+\frac{\left(x^{n} n a+b x^{m} m\right) y}{x}\right) d x=0 \\
\frac{\left(a x x^{n}+x^{m} b x+c x-x\right) y}{x}+(x+\gamma) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} \\
& q(x)=\frac{c_{1}}{x+\gamma}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b x^{m}-c+1\right) y}{x+\gamma}=\frac{c_{1}}{x+\gamma}
\]

The integrating factor \(\mu\) is
\[
\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+\gamma}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\right)\left(\frac{c_{1}}{x+\gamma}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} \mathrm{d} x \\
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\) results in
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}\left(\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2} \mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}
\]
which simplifies to
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{28.49.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x+\gamma \\
& q(x)=a x^{n}+b x^{m}+c \\
& r(x)=\frac{x^{n} n a+b x^{m} m}{x} \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =\frac{a n x^{n}}{x}+\frac{b x^{m} m}{x}
\end{aligned}
\]

Therefore (1) becomes
\[
0-\left(\frac{a n x^{n}}{x}+\frac{b x^{m} m}{x}\right)+\left(\frac{x^{n} n a+b x^{m} m}{x}\right)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(x+\gamma) y^{\prime}+\left(a x^{n}+b x^{m}+c-1\right) y=c_{1}
\]

We now have a first order ode to solve which is
\[
(x+\gamma) y^{\prime}+\left(a x^{n}+b x^{m}+c-1\right) y=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} \\
& q(x)=\frac{c_{1}}{x+\gamma}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(-a x^{n}-b x^{m}-c+1\right) y}{x+\gamma}=\frac{c_{1}}{x+\gamma}
\]

The integrating factor \(\mu\) is
\[
\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x+\gamma}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\right)\left(\frac{c_{1}}{x+\gamma}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y\right) & =\left(\frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} \mathrm{d} x \\
& \mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x} y=\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\int-\frac{-a x^{n}-b x^{m}-c+1}{x+\gamma} d x}\) results in
\[
\left.y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\right)\left(\int \frac{c_{1} \mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2} \mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}
\]
which simplifies to
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right.}\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right)
\]

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 63
dsolve \(\left((x+\operatorname{gamma}) * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * \operatorname{diff}(y(x), x)+\left(a * n * x^{\wedge}(n-1)+b * m * x^{\wedge}(m-1)\right) * y(x)=\right.\)
\[
y(x)=\left(c_{1}\left(\int \frac{\mathrm{e}^{\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x}}{x+\gamma} d x\right)+c_{2}\right) \mathrm{e}^{-\left(\int \frac{a x^{n}+b x^{m}+c-1}{x+\gamma} d x\right)}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[(x+\backslash[\right.\) Gamma \(]) * y^{\prime} '[x]+\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y '[x]+\left(a * n * x^{\wedge}(n-1)+b * m * x^{\wedge}(m-1)\right) * y[x]==0, y[x], x\), In
Not solved
29 Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form
\(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
29.1 problem 110 2742
29.2 problem 111 2751
29.3 problem 112 2756
29.4 problem 113 2761
29.5 problem 114 2766
29.6 problem 115 2771
29.7 problem 116 2776
29.8 problem 117 2786
29.9 problem 118 2791
29.10problem 119 [2794
29.11problem 120 2797
29.12 problem 121 2800
29.13problem 122 2804
29.14problem 123 2807
29.15problem 124 2822
29.16problem 125 2827
29.17problem 126 2832
29.18problem 127 2837
29.19problem 128 2842
29.20problem 129 2854
29.21 problem 130 2865
29.22problem 131 2876
29.23problem 132 2882
29.24problem 133 2885
29.25problem 134 2888
29.26problem 135 2891
29.27problem 136 2896
29.28problem 137 2899
29.29problem 138 2906
29.30problem 139 2910
29.31 problem 140 2915
29.32problem 141 2926
29.33problem 142 2929
29.34problem 143 2934
29.35problem 144 2937
29.36problem 145 2940
29.37problem 146 2945
29.38problem 147 2948
29.39problem 148 2951

\section*{29.1 problem 110}
29.1.1 Solving as second order euler ode ode 2742
29.1.2 Solving using Kovacic algorithm 2743
29.1.3 Maple step by step solution . 2748

Internal problem ID [10934]
Internal file name [OUTPUT/10190_Sunday_December_31_2023_11_03_51_AM_72514253/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 110.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+a y=0
\]

\subsection*{29.1.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}+a x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+0 x^{r}+a x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+0+a=0
\]

Or
\[
\begin{equation*}
r^{2}+a-r=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{\sqrt{1-4 a}}{2} \\
& r_{2}=\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=c_{1} x^{\frac{1}{2}-\frac{\sqrt{1-4 a}}{2}}+c_{2} x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{\sqrt{1-4 a}}{2}}+c_{2} x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}-\frac{\sqrt{1-4 a}}{2}}+c_{2} x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}
\]

Verified OK.

\subsection*{29.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=0 \tag{3}\\
& C=a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-a}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-a \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{a}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 113: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{a}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-a\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2,2-2 \sqrt{1-4 a}, 2+2 \sqrt{1-4 a}\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{a}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-1\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\{2,2-2 \sqrt{1-4 a}, 2+2 \sqrt{1-4 a}\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=2, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(2)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(0))}\right) \\
& =\frac{1}{x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\frac{w}{x}+\frac{a}{x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{1+\sqrt{1-4 a}}{2 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1+\sqrt{1-4 a}}{2 x} d x} \\
& =x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}} \int \frac{1}{x^{1+\sqrt{1-4 a}}} d x \\
& =x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}\left(-\frac{x^{-\sqrt{1-4 a}}}{\sqrt{1-4 a}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}\right)+c_{2}\left(x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}\left(-\frac{x^{-\sqrt{1-4 a}}}{\sqrt{1-4 a}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}-\frac{c_{2} x^{\frac{1}{2}-\frac{\sqrt{1-4 a}}{2}}}{\sqrt{1-4 a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}+\frac{\sqrt{1-4 a}}{2}}-\frac{c_{2} x^{\frac{1}{2}-\frac{\sqrt{1-4 a}}{2}}}{\sqrt{1-4 a}}
\]

Verified OK.

\subsection*{29.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+a y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{a y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{a y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=0, P_{3}(x)=\frac{a}{x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=a\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+a y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite DE with series expansions
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite DE with series expansions
\(\sum_{k=0}^{\infty} a_{k}\left(k^{2}+2 k r+r^{2}+a-k-r\right) x^{k+r}=0\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(k^{2}+a-k\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k}=0
\]
- Recursion relation for \(r=0\)
\[
a_{k}=0
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
```

dsolve(x^2*diff(y(x),x\$2)+a*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\sqrt{x}\left(c_{1} x^{\frac{\sqrt{-4 a+1}}{2}}+c_{2} x^{-\frac{\sqrt{-4 a+1}}{2}}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 42
DSolve [x~2*y' ' \([\mathrm{x}]+\mathrm{a} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 a}}\left(c_{2} x^{\sqrt{1-4 a}}+c_{1}\right)
\]

\section*{29.2 problem 111}
29.2.1 Solving as second order bessel ode ode 2751
29.2.2 Maple step by step solution . 2752

Internal problem ID [10935]
Internal file name [OUTPUT/10191_Sunday_December_31_2023_11_03_52_AM_93987930/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 111.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+(a x+b) y=0
\]

\subsection*{29.2.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(a x+b) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \sqrt{a} \\
n & =\sqrt{-4 b+1} \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 b+1}, 2 \sqrt{a} \sqrt{x})
\]

Verified OK.

\subsection*{29.2.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+(a x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(a x+b) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(a x+b) y}{x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=\frac{a x+b}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=b\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+(a x+b) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(r^{2}+b-r\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}+b-k-r\right)+a_{k-1} a\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r^{2}+b-r=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}, \frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+(2 r-1) k+r^{2}+b-r\right) a_{k}+a_{k-1} a=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left((k+1)^{2}+(2 r-1)(k+1)+r^{2}+b-r\right) a_{k+1}+a_{k} a=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k} a}{k^{2}+2 k r+r^{2}+b+k+r}
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\)
\[
a_{k+1}=-\frac{a_{k} a}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)^{2}+b+k+\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}}, a_{k+1}=-\frac{a_{k} a}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)^{2}+b+k+\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}}\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\)
\[
a_{k+1}=-\frac{a_{k} a}{k^{2}+2 k\left(\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\right)+\left(\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\right)^{2}+b+k+\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}}
\]
- \(\quad\) Solution for \(r=\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}}, a_{k+1}=-\frac{a_{k} a}{k^{2}+2 k\left(\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\right)+\left(\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}\right)^{2}+b+k+\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+\frac{\sqrt{-4 b+1}}{2}+\frac{1}{2}}\right), c_{1+k}=-\frac{c_{k} a}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 b+1}}{2}\right)^{2}+b+k+}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 45
```

dsolve(x^2*diff(y(x),x\$2)+(a*x+b)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(\operatorname{BesselJ}(\sqrt{-4 b+1}, 2 \sqrt{x} \sqrt{a}) c_{1}+\operatorname{Bessel} Y(\sqrt{-4 b+1}, 2 \sqrt{x} \sqrt{a}) c_{2}\right) \sqrt{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 95
```

DSolve[x^2*y''[x]+(a*x+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{array}{r}
y(x) \rightarrow \sqrt{a} \sqrt{x}\left(c_{1} \operatorname{Gamma}(1-\sqrt{1-4 b}) \operatorname{BesselJ}(-\sqrt{1-4 b}, 2 \sqrt{a} \sqrt{x})\right. \\
\left.+c_{2} \operatorname{Gamma}(\sqrt{1-4 b}+1) \operatorname{BesselJ}(\sqrt{1-4 b}, 2 \sqrt{a} \sqrt{x})\right)
\end{array}
\]

\section*{29.3 problem 112}
29.3.1 Solving as second order bessel ode ode 2756
29.3.2 Maple step by step solution . 2757

Internal problem ID [10936]
Internal file name [OUTPUT/10192_Sunday_December_31_2023_11_03_53_AM_39922936/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 112.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a^{2} x^{2}-n(n+1)\right) y=0
\]

\subsection*{29.3.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a^{2} x^{2}-n^{2}-n\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =a \\
n & =-n-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, a x\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, a x\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, a x\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, a x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, a x\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-n-\frac{1}{2}, a x\right)
\]

Verified OK.

\subsection*{29.3.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+\left(a^{2} x^{2}-n^{2}-n\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a^{2} x^{2}-n^{2}-n\right) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a^{2} x^{2}-n^{2}-n\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=\frac{a^{2} x^{2}-n^{2}-n}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-n^{2}-n\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+\left(a^{2} x^{2}-n^{2}-n\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(r+n)(r-1-n) x^{r}+a_{1}(r+n+1)(r-n) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(r+n+k)(r-1-n+k)+a_{k}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((r+n)(r-1-n)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-n, n+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(r+n+1)(r-n)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(r+n+k)(r-1-n+k)+a_{k-2} a^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(r+n+k+2)(r+1-n+k)+a_{k} a^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} a^{2}}{(r+n+k+2)(r+1-n+k)}\)
- Recursion relation for \(r=-n\)
\(a_{k+2}=-\frac{a_{k} a^{2}}{(k+2)(-2 n+1+k)}\)
- \(\quad\) Solution for \(r=-n\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-n}, a_{k+2}=-\frac{a_{k} a^{2}}{(k+2)(-2 n+1+k)}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=n+1\)
\[
a_{k+2}=-\frac{a_{k} a^{2}}{(2 n+3+k)(k+2)}
\]
- \(\quad\) Solution for \(r=n+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n+1}, a_{k+2}=-\frac{a_{k} a^{2}}{(2 n+3+k)(k+2)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k-n}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{k+n+1}\right), b_{k+2}=-\frac{b_{k} a^{2}}{(k+2)(-2 n+1+k)}, b_{1}=0, c_{k+2}=-\frac{c_{k} a^{2}}{(2 n+3+k)(k+2)}, c_{1}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve(x^2*diff(y(x),x\$2)+(a^2*x^2-n*(n+1))*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(\operatorname{BesselJ}\left(n+\frac{1}{2}, a x\right) c_{1}+\operatorname{Bessel} Y\left(n+\frac{1}{2}, a x\right) c_{2}\right) \sqrt{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 36
DSolve \(\left[x^{\wedge} 2 * y^{\prime} '[\mathrm{x}]+\left(\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 2-\mathrm{n} *(\mathrm{n}+1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \sqrt{x}\left(c_{1} \operatorname{BesselJ}\left(n+\frac{1}{2}, a x\right)+c_{2} \operatorname{Bessel} Y\left(n+\frac{1}{2}, a x\right)\right)
\]

\section*{29.4 problem 113}
29.4.1 Solving as second order bessel ode ode 2761
29.4.2 Maple step by step solution . 2762

Internal problem ID [10937]
Internal file name [OUTPUT/10193_Sunday_December_31_2023_11_03_54_AM_32349464/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 113.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-\left(a^{2} x^{2}+n(n+1)\right) y=0
\]

\subsection*{29.4.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a^{2} x^{2}-n^{2}-n\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =i a \\
n & =-n-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i a x\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-n-\frac{1}{2}, i a x\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i a x\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-n-\frac{1}{2}, i a x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i a x\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(-n-\frac{1}{2}, i a x\right)
\]

Verified OK.

\subsection*{29.4.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+\left(-a^{2} x^{2}-n^{2}-n\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\left(a^{2} x^{2}+n^{2}+n\right) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{\left(a^{2} x^{2}+n^{2}+n\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=-\frac{a^{2} x^{2}+n^{2}+n}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-n^{2}-n\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+\left(-a^{2} x^{2}-n^{2}-n\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(r+n)(r-1-n) x^{r}+a_{1}(r+n+1)(r-n) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(r+n+k)(r-1-n+k)-a_{k}\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((r+n)(r-1-n)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-n, n+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(r+n+1)(r-n)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(r+n+k)(r-1-n+k)-a_{k-2} a^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(r+n+k+2)(r+1-n+k)-a_{k} a^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k} a^{2}}{(r+n+k+2)(r+1-n+k)}\)
- Recursion relation for \(r=-n\)
\(a_{k+2}=\frac{a_{k} a^{2}}{(k+2)(-2 n+1+k)}\)
- \(\quad\) Solution for \(r=-n\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-n}, a_{k+2}=\frac{a_{k} a^{2}}{(k+2)(-2 n+1+k)}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=n+1\)
\[
a_{k+2}=\frac{a_{k} a^{2}}{(2 n+3+k)(k+2)}
\]
- \(\quad\) Solution for \(r=n+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n+1}, a_{k+2}=\frac{a_{k} a^{2}}{(2 n+3+k)(k+2)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k-n}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{k+n+1}\right), b_{k+2}=\frac{b_{k} a^{2}}{(k+2)(-2 n+1+k)}, b_{1}=0, c_{k+2}=\frac{c_{k} a^{2}}{(2 n+3+k)(k+2)}, c_{1}=0\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
```

dsolve(x^2*diff(y(x),x\$2)-(a^2*x^2+n*(n+1))*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\sqrt{x}\left(\operatorname{BesselJ}\left(n+\frac{1}{2}, \sqrt{-a^{2}} x\right) c_{1}+\operatorname{BesselY}\left(n+\frac{1}{2}, \sqrt{-a^{2}} x\right) c_{2}\right)
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 42
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]-\left(a^{\wedge} 2 * x^{\wedge} 2+n *(n+1)\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \sqrt{x}\left(c_{1} \operatorname{BesselJ}\left(n+\frac{1}{2},-i a x\right)+c_{2} \operatorname{Bessel} Y\left(n+\frac{1}{2},-i a x\right)\right)
\]

\section*{29.5 problem 114}
29.5.1 Solving as second order bessel ode ode 2766
29.5.2 Maple step by step solution . 2767

Internal problem ID [10938]
Internal file name [OUTPUT/10194_Sunday_December_31_2023_11_03_55_AM_29510659/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 114.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-\left(a^{2} x^{2}+2 a b x+b^{2}-b\right) y=0
\]

\subsection*{29.5.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a^{2} x^{2}-2 a b x-b^{2}+b\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =1-2 b \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x})
\]

Verified OK.

\subsection*{29.5.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+\left(-a^{2} x^{2}-2 a b x-b^{2}+b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{\left(a^{2} x^{2}+2 a b x+b^{2}-b\right) y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{\left(a^{2} x^{2}+2 a b x+b^{2}-b\right) y}{x^{2}}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=-\frac{a^{2} x^{2}+2 a b x+b^{2}-b}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-b^{2}+b\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+\left(-a^{2} x^{2}-2 a b x-b^{2}+b\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(-a_{0}(r-1+b)(-r+b) x^{r}+\left(-a_{1}(r+b)(-r-1+b)-2 a_{0} a b\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(-a_{k}(r-1+k+b\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-(r-1+b)(-r+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{b,-b+1\}\)
- Each term must be 0
\(-a_{1}(r+b)(-r-1+b)-2 a_{0} a b=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=-\frac{2 a_{0} a b}{b^{2}-r^{2}-b-r}\)
- Each term in the series must be 0 , giving the recursion relation
\(-a_{k}(r-1+k+b)(-r-k+b)-2 a_{k-1} a b-a_{k-2} a^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(-a_{k+2}(r+1+k+b)(-r-k-2+b)-2 a_{k+1} a b-a_{k} a^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a\left(a a_{k}+2 b a_{k+1}\right)}{(r+1+k+b)(-r-k-2+b)}\)
- Recursion relation for \(r=b\)
\(a_{k+2}=-\frac{a\left(a a_{k}+2 b a_{k+1}\right)}{(2 b+1+k)(-k-2)}\)
- \(\quad\) Solution for \(r=b\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+b}, a_{k+2}=-\frac{a\left(a a_{k}+2 b a_{k+1}\right)}{(2 b+1+k)(-k-2)}, a_{1}=a a_{0}\right]
\]
- Recursion relation for \(r=-b+1\)
\(a_{k+2}=-\frac{a\left(a a_{k}+2 b a_{k+1}\right)}{(k+2)(2 b-3-k)}\)
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b+1}, a_{k+2}=-\frac{a\left(a a_{k}+2 b a_{k+1}\right)}{(k+2)(2 b-3-k)}, a_{1}=-\frac{2 a_{0} a b}{b^{2}-(-b+1)^{2}-1}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+b}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b+1}\right), c_{k+2}=-\frac{a\left(a c_{k}+2 b c_{1+k}\right)}{(2 b+1+k)(-k-2)}, c_{1}=a c_{0}, d_{k+2}=-\frac{a\left(a d_{k}+2 b d_{1+k}\right)}{(k+2)(2 b-3-k)}, d\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 29
```

dsolve(x^2*diff (y(x),x\$2)-(a^2*x^2+2*a*b*x+b^2-b)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} x^{b} \mathrm{e}^{a x}+c_{2} \text { WhittakerM }\left(-b, \frac{1}{2}-b, 2 a x\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 38
DSolve [x^2*y''[x]-(a^2*x^2+2*a*b*x+b^2-b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{1} M_{-b, b-\frac{1}{2}}(2 a x)+c_{2} W_{-b, b-\frac{1}{2}}(2 a x)
\]

\section*{29.6 problem 115}
29.6.1 Solving as second order bessel ode ode
29.6.2 Maple step by step solution . 2772

Internal problem ID [10939]
Internal file name [OUTPUT/10195_Sunday_December_31_2023_11_04_23_AM_68992916/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 115.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{2}+b x+c\right) y=0
\]

\subsection*{29.6.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a x^{2}+b x+c\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =\sqrt{-4 c+1} \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x}) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x})
\]

Verified OK.

\subsection*{29.6.2 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x^{2}+\left(a x^{2}+b x+c\right) y=0\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a x^{2}+b x+c\right) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a x^{2}+b x+c\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=\frac{a x^{2}+b x+c}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=c\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+\left(a x^{2}+b x+c\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(r^{2}+c-r\right) x^{r}+\left(\left(r^{2}+c+r\right) a_{1}+a_{0} b\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}\left(k^{2}+2 k r+r^{2}+c-k-r\right)+b a_{k-1}+\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r^{2}+c-r=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}, \frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\right\}\)
- Each term must be 0
\(\left(r^{2}+c+r\right) a_{1}+a_{0} b=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\[
a_{1}=-\frac{a_{0} b}{r^{2}+c+r}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+(2 r-1) k+r^{2}+c-r\right) a_{k}+a_{k-2} a+b a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+(2 r-1)(k+2)+r^{2}+c-r\right) a_{k+2}+a_{k} a+b a_{k+1}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+2 k r+r^{2}+c+3 k+3 r+2}
\]
- Recursion relation for \(r=\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\)
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)^{2}+c+3 k+\frac{7}{2}-\frac{3 \sqrt{-4 c+1}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}}, a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)^{2}+c+3 k+\frac{7}{2}-\frac{3 \sqrt{-4 c+1}}{2}}, a_{1}=-\frac{}{\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right.}\right.
\]
- Recursion relation for \(r=\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\)
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+2 k\left(\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\right)+\left(\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\right)^{2}+c+3 k+\frac{3 \sqrt{-4 c+1}}{2}+\frac{7}{2}}
\]
- \(\quad\) Solution for \(r=\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}}, a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+2 k\left(\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\right)+\left(\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}\right)^{2}+c+3 k+\frac{3 \sqrt{-4 c+1}}{2}+\frac{7}{2}}, a_{1}=-\frac{\sqrt{\frac{\sqrt{-4 c+1}}{2}+}}{\left(\frac{10}{}\right.}\right.
\]
- \(\quad\) Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k+\frac{1}{2}-\frac{\sqrt{ }-4 c+1}{2}}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{\sqrt{-4 c+1}}{2}+\frac{1}{2}}\right), d_{k+2}=-\frac{a d_{k}+b d_{1+k}}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{-4 c+1}}{2}\right)^{2}+c+3 k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.078 (sec). Leaf size: 57
```

dsolve(x^2*diff(y(x),x\$2)+(a*x^2+b*x+c)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & c_{1} \text { WhittakerM }\left(-\frac{i b}{2 \sqrt{a}}, \frac{\sqrt{-4 c+1}}{2}, 2 i \sqrt{a} x\right) \\
& +c_{2} \text { WhittakerW }\left(-\frac{i b}{2 \sqrt{a}}, \frac{\sqrt{-4 c+1}}{2}, 2 i \sqrt{a} x\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 88
DSolve[x^2*y''[x]+(a*x^2+b*x+c)*y[x]==0,y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} M_{-\frac{i b}{2 \sqrt{a}},-\frac{1}{2} i \sqrt{4 c-1}}(2 i \sqrt{a} x)+c_{2} W_{-\frac{i b}{2 \sqrt{a}},-\frac{1}{2} i \sqrt{4 c-1}}(2 i \sqrt{a} x)
\]

\section*{29.7 problem 116}
29.7.1 Solving as second order bessel ode ode 2776
29.7.2 Solving using Kovacic algorithm 2777
29.7.3 Maple step by step solution . 2783

Internal problem ID [10940]
Internal file name [OUTPUT/10196_Sunday_December_31_2023_11_05_12_AM_19421269/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 116.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-\left(a x^{3}+\frac{5}{16}\right) y=0
\]

\subsection*{29.7.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a x^{3}-\frac{5}{16}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 \sqrt{-a}}{3} \\
n & =-\frac{1}{2} \\
\gamma & =\frac{3}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sqrt{6} \cos \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}}+\frac{c_{2} \sqrt{x} \sqrt{2} \sqrt{6} \sin \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sqrt{6} \cos \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}}+\frac{c_{2} \sqrt{x} \sqrt{2} \sqrt{6} \sin \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sqrt{6} \cos \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}}+\frac{c_{2} \sqrt{x} \sqrt{2} \sqrt{6} \sin \left(\frac{2 \sqrt{-a} x^{\frac{3}{2}}}{3}\right)}{2 \sqrt{\pi} \sqrt{\sqrt{-a} x^{\frac{3}{2}}}}
\]

Verified OK.

\subsection*{29.7.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+\left(-a x^{3}-\frac{5}{16}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =x^{2} \\
B & =0 \tag{3}\\
C & =-a x^{3}-\frac{5}{16}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{16 a x^{3}+5}{16 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=16 a x^{3}+5 \\
& t=16 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{16 a x^{3}+5}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 120: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-3 \\
& =-1
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=16 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[2]
\]

Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=a x+\frac{5}{16 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{5}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{-1,2,5\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(-1<2\) then
\[
E_{\infty}=\{-1\}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\{-1,2,5\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline-1 & \(\{-1\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=-1, e_{\infty}=-1
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(-1-(-1)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{-1}{(x-(0))}\right) \\
& =-\frac{1}{2 x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =-\frac{1}{2 x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}+\frac{w}{2 x}+\frac{-16 a x^{3}+1}{16 x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{-1+4 x \sqrt{a x}}{4 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{-1+4 x \sqrt{a x}}{4 x} d x} \\
& =\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}} \int \frac{1}{\frac{\mathrm{e}^{\frac{4 x \sqrt{a x}}{3}}}{\sqrt{x}}} d x \\
& =\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}\left(-\frac{\sqrt{x}\left(-1+\mathrm{e}^{-\frac{4 x \sqrt{a x}}{3}}\right)}{2 \sqrt{a x}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}\right)+c_{2}\left(\frac{\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}\left(-\frac{\sqrt{x}\left(-1+\mathrm{e}^{-\frac{4 x \sqrt{a x}}{3}}\right)}{2 \sqrt{a x}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}+\frac{c_{2} x^{\frac{1}{4}}\left(\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}-\mathrm{e}^{-\frac{2 x \sqrt{a x}}{3}}\right)}{2 \sqrt{a x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}}{x^{\frac{1}{4}}}+\frac{c_{2} x^{\frac{1}{4}}\left(\mathrm{e}^{\frac{2 x \sqrt{a x}}{3}}-\mathrm{e}^{-\frac{2 x \sqrt{a x}}{3}}\right)}{2 \sqrt{a x}}
\]

Verified OK.

\subsection*{29.7.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x^{2}+\left(-a x^{3}-\frac{5}{16}\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=\frac{\left(16 a x^{3}+5\right) y}{16 x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}-\frac{\left(16 a x^{3}+5\right) y}{16 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=0, P_{3}(x)=-\frac{16 a x^{3}+5}{16 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{5}{16}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
16 y^{\prime \prime} x^{2}+\left(-16 a x^{3}-5\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(1+4 r)(-5+4 r) x^{r}+a_{1}(5+4 r)(-1+4 r) x^{1+r}+a_{2}(9+4 r)(3+4 r) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}(4 k+\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+4 r)(-5+4 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{-\frac{1}{4}, \frac{5}{4}\right\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(5+4 r)(-1+4 r)=0, a_{2}(9+4 r)(3+4 r)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=0, a_{2}=0\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(16\left(k+r-\frac{5}{4}\right)\left(k+r+\frac{1}{4}\right) a_{k}-16 a_{k-3} a=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(16\left(k+\frac{7}{4}+r\right)\left(k+\frac{13}{4}+r\right) a_{k+3}-16 a_{k} a=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=\frac{16 a_{k} a}{(4 k+7+4 r)(4 k+13+4 r)}\)
- Recursion relation for \(r=-\frac{1}{4}\)
\(a_{k+3}=\frac{16 a_{k} a}{(4 k+6)(4 k+12)}\)
- \(\quad\) Solution for \(r=-\frac{1}{4}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{4}}, a_{k+3}=\frac{16 a_{k} a}{(4 k+6)(4 k+12)}, a_{1}=0, a_{2}=0\right]\)
- Recursion relation for \(r=\frac{5}{4}\)
\(a_{k+3}=\frac{16 a_{k} a}{(4 k+12)(4 k+18)}\)
- \(\quad\) Solution for \(r=\frac{5}{4}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{5}{4}}, a_{k+3}=\frac{16 a_{k} a}{(4 k+12)(4 k+18)}, a_{1}=0, a_{2}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{4}}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{k+\frac{5}{4}}\right), b_{k+3}=\frac{16 b_{k} a}{(4 k+6)(4 k+12)}, b_{1}=0, b_{2}=0, c_{k+3}=\frac{16 c_{k} a}{(4 k+12)(4 k+18)}, c_{1}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 31
```

dsolve(x^2*diff(y(x),x\$2)-(a*x^3+5/16)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} \sinh \left(\frac{2 x^{\frac{3}{2}} \sqrt{a}}{3}\right)+c_{2} \cosh \left(\frac{2 x^{\frac{3}{2} \sqrt{a}}}{3}\right)}{x^{\frac{1}{4}}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 60
DSolve \(\left[x^{\wedge} 2 *\right.\) y' \(^{\prime \prime}[\mathrm{x}]-\left(\mathrm{a} * \mathrm{x}^{\wedge} 3+5 / 16\right) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{-\frac{2}{3} \sqrt{a} x^{3 / 2}}\left(2 c_{1} e^{\frac{4}{3} \sqrt{a} x^{3 / 2}}-\frac{c_{2}}{\sqrt{a}}\right)}{2 \sqrt[4]{x}}
\]

\section*{29.8 problem 117}
29.8.1 Solving as second order bessel ode ode 2786
29.8.2 Maple step by step solution . 2787

Internal problem ID [10941]
Internal file name [OUTPUT/10197_Sunday_December_31_2023_11_05_15_AM_29391360/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 117.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-\left(a^{2} x^{4}+a(-1+2 b) x^{2}+b(1+b)\right) y=0
\]

\subsection*{29.8.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-a^{2} x^{4}-2 a b x^{2}+a x^{2}-b^{2}-b\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-2 b-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(-2 b-1,2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(-2 b-1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(-2 b-1,2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(-2 b-1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(-2 b-1,2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(-2 b-1,2 \sqrt{x})
\]

Verified OK.

\subsection*{29.8.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+\left(-a^{2} x^{4}-2\left(b-\frac{1}{2}\right) x^{2} a-b^{2}-b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\(y^{\prime \prime}=\frac{\left(a^{2} x^{4}+2 a b x^{2}-a x^{2}+b^{2}+b\right) y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{\left(a^{2} x^{4}+2 a b x^{2}-a x^{2}+b^{2}+b\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=-\frac{a^{2} x^{4}+2 a b x^{2}-a x^{2}+b^{2}+b}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-b^{2}-b\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+\left(-a^{2} x^{4}-2 a b x^{2}+a x^{2}-b^{2}-b\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .4\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(-a_{0}(r+b)(-r+1+b) x^{r}-a_{1}(r+1+b)(-r+b) x^{1+r}+\left(-a_{2}(r+2+b)(-r-1+b)-a_{0} a(\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-(r+b)(-r+1+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-b, 1+b\}
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[-a_{1}(r+1+b)(-r+b)=0,-a_{2}(r+2+b)(-r-1+b)-a_{0} a(-1+2 b)=0,-a_{3}(r+3+b)(\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=0, a_{2}=-\frac{a_{0} a(-1+2 b)}{b^{2}-r^{2}+b-3 r-2}, a_{3}=0\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
-a_{k}(r+k+b)(-r+1-k+b)-a\left(a a_{k-4}+2 b a_{k-2}-a_{k-2}\right)=0
\]
- \(\quad\) Shift index using \(k->k+4\)
\(-a_{k+4}(r+k+4+b)(-r-3-k+b)-a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+4}=-\frac{a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)}{(r+k+4+b)(-r-3-k+b)}\)
- \(\quad\) Recursion relation for \(r=-b\)
\(a_{k+4}=-\frac{a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)}{(k+4)(2 b-3-k)}\)
- \(\quad\) Solution for \(r=-b\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b}, a_{k+4}=-\frac{a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)}{(k+4)(2 b-3-k)}, a_{1}=0, a_{2}=-\frac{a_{0} a(-1+2 b)}{-2+4 b}, a_{3}=0\right]\)
- Recursion relation for \(r=1+b\)
\[
a_{k+4}=-\frac{a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)}{(5+2 b+k)(-k-4)}
\]
- \(\quad\) Solution for \(r=1+b\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1+b}, a_{k+4}=-\frac{a\left(a_{k} a+2 b a_{k+2}-a_{k+2}\right)}{(5+2 b+k)(-k-4)}, a_{1}=0, a_{2}=-\frac{a_{0} a(-1+2 b)}{b^{2}-(1+b)^{2}-2 b-5}, a_{3}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k-b}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+1+b}\right), c_{k+4}=-\frac{a\left(a c_{k}+2 b c_{k+2}-c_{k+2}\right)}{(k+4)(2 b-3-k)}, c_{1}=0, c_{2}=-\frac{c_{0} a(-1+2 b)}{-2+4 b}, c_{3}=\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
\[
\begin{aligned}
& \text { dsolve }\left(\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\left(\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 4+\mathrm{a} *(2 * \mathrm{~b}-1) * \mathrm{x}^{\wedge} 2+\mathrm{b} *(\mathrm{~b}+1)\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { singsol }=a l l\right) \\
& y(x)=x^{-b} \mathrm{e}^{-\frac{a x^{2}}{2}}\left(c_{2} \Gamma\left(b+\frac{1}{2}\right)-c_{2} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)+c_{1}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.45 (sec). Leaf size: 66
DSolve \(\left[x^{\wedge} 2 * y{ }^{\prime \prime}[\mathrm{x}]-\left(\mathrm{a} \wedge 2 * \mathrm{x}^{\wedge} 4+\mathrm{a} *(2 * \mathrm{~b}-1) * \mathrm{x}^{\wedge} 2+\mathrm{b} *(\mathrm{~b}+1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{1}{2} e^{-\frac{a x^{2}}{2}} x^{-b}\left(a c_{2} x^{2 b+3}\left(-a x^{2}\right)^{-b-\frac{3}{2}} \Gamma\left(b+\frac{1}{2},-a x^{2}\right)+2 c_{1}\right)
\]

\section*{29.9 problem 118}
29.9.1 Solving as second order bessel ode ode 2791

Internal problem ID [10942]
Internal file name [OUTPUT/10198_Sunday_December_31_2023_11_06_30_AM_50299776/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 118.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{n}+b\right) y=0
\]

\subsection*{29.9.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a x^{n}+b\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
& \alpha=\frac{1}{2} \\
& \beta=\frac{2 \sqrt{a}}{n} \\
& n=\frac{\sqrt{-4 b+1}}{n} \\
& \gamma=\frac{n}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)(1)
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right)
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 63
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\left(\operatorname{BesselJ}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right) c_{1}+\operatorname{BesselY}\left(\frac{\sqrt{-4 b+1}}{n}, \frac{2 \sqrt{a} x^{\frac{n}{2}}}{n}\right) c_{2}\right) \sqrt{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.343 (sec). Leaf size: 351
```

DSolve[x^2*y''[x]+(a*x^n+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& y(x) \\
& \rightarrow n^{-\frac{\sqrt{(1-4 b) n^{2}}+i \sqrt{4 b-1} n+n}{n^{2}}} a^{\frac{-\sqrt{(1-4 b) n^{2}}-i \sqrt{4 b-1} n+n}{2 n^{2}}}\left(x^{n}\right)^{\frac{-\sqrt{(1-4 b) n^{2}}-i \sqrt{4 b-1} n+n}{2 n^{2}}}\left(c_{2} n^{\frac{2 \sqrt{(1-4 b) n^{2}}}{n^{2}}} a^{\frac{i \sqrt{4 b-1}}{n}}\left(x^{n}\right)^{\frac{i \sqrt{4 b-1}}{n}}\right. \text { Gamma } \\
& \quad+c_{1} n^{\frac{2 i \sqrt{4 b-1}}{n}} a^{\frac{\sqrt{\left(1-4 b n^{2}\right.}}{n^{2}}}\left(x^{n}\right)^{\frac{\sqrt{\left(1-4 b n^{2}\right.}}{n^{2}}} \operatorname{Gamma}(1 \\
& \left.\left.-\frac{\sqrt{1-4 b}}{n}\right) \operatorname{BesselJ}\left(-\frac{\sqrt{(1-4 b) n^{2}}}{n^{2}}, \frac{2 \sqrt{a} \sqrt{x^{n}}}{n}\right)\right)
\end{aligned}
\]

\subsection*{29.10 problem 119}
29.10.1 Solving as second order bessel ode ode

2794
Internal problem ID [10943]
Internal file name [OUTPUT/10199_Sunday_December_31_2023_11_06_31_AM_12918249/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 119.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-\left(x^{2 n} a^{2}+a(2 b+n-1) x^{n}+b(b-1)\right) y=0
\]

\subsection*{29.10.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{2 n} a^{2}-2 a b x^{n}-x^{n} n a+a x^{n}-b^{2}+b\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =1-2 b \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(1-2 b, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(1-2 b, 2 \sqrt{x})
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 134
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-\left(a^{\wedge} 2 * x^{\wedge}(2 * n)+a *(2 * b+n-1) * x^{\wedge} n+b *(b-1)\right) * y(x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)= 2\left(b-\frac{1}{2}-\frac{n}{2}\right)^{2} c_{2} x^{-\frac{3 n}{2}+\frac{1}{2}} \text { WhittakerM }\left(\frac{n-2 b+1}{2 n},-\frac{2 b-2 n-1}{2 n}, \frac{2 a x^{n}}{n}\right) \\
&+n\left(\left(-b+\frac{1}{2}+\frac{n}{2}\right) x^{-\frac{3 n}{2}+\frac{1}{2}}+x^{-\frac{n}{2}+\frac{1}{2}} a\right) c_{2} \text { WhittakerM }\left(-\frac{2 b+n-1}{2 n},\right. \\
&\left.-\frac{2 b-2 n-1}{2 n}, \frac{2 a x^{n}}{n}\right)+c_{1} x^{b} \mathrm{e}^{\frac{a x^{n}}{n}}
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]-\left(\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge}(2 * \mathrm{n})+\mathrm{a} *(2 * \mathrm{~b}+\mathrm{n}-1) * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b} *(\mathrm{~b}-1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSoluti
Not solved

\subsection*{29.11 problem 120}
29.11.1 Solving as second order bessel ode ode 2797

Internal problem ID [10944]
Internal file name [OUTPUT/10200_Sunday_December_31_2023_11_06_58_AM_48794329/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 120.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{2 n}+b x^{n}+c\right) y=0
\]

\subsection*{29.11.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a x^{2 n}+b x^{n}+c\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =\sqrt{-4 c+1} \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{-4 c+1}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{-4 c+1}, 2 \sqrt{x})
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 90
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge}(2 * n)+b * x^{\wedge} n+c\right) * y(x)=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
& y(x)=x^{-\frac{n}{2}} \sqrt{x}\left(\text { WhittakerW }\left(-\frac{i b}{2 \sqrt{a} n}, \frac{i \sqrt{4 c-1}}{2 n}, \frac{2 i \sqrt{a} x^{n}}{n}\right) c_{2}\right. \\
&+\text { WhittakerM } \left.\left(-\frac{i b}{2 \sqrt{a} n}, \frac{i \sqrt{4 c-1}}{2 n}, \frac{2 i \sqrt{a} x^{n}}{n}\right) c_{1}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 236
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+\left(a * x^{\wedge}(2 * n)+b * x^{\wedge} n+c\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\(\rightarrow 2^{\frac{\sqrt{(1-4 c) n^{2}}+n^{2}}{2 n^{2}}} x^{\frac{1}{2}-\frac{n}{2}} e^{\frac{i \sqrt{a} x^{n}}{n}}\left(x^{n}\right)^{\frac{\sqrt{(1-4 c) n^{2}}+n^{2}}{2 n^{2}}}\left(c_{1}\right.\) HypergeometricU \(\left(\frac{1}{2}\left(-\frac{i b}{\sqrt{a} n}+\frac{\sqrt{(1-4 c) n^{2}}}{n^{2}}+1\right), \frac{\sqrt{(1-}}{?}\right.\)
\[
\left.\left.\left.+1,-\frac{2 i \sqrt{a} x^{n}}{n}\right)+c_{2} L^{\frac{\sqrt{(1-4 c) n^{2}}}{n^{2}}} \frac{\frac{1}{2}\left(\frac{i b}{\sqrt{a} n}-\frac{\sqrt{(1-4 c) n^{2}}}{n^{2}}-1\right)}{n}\right)\left(-\frac{2 i \sqrt{a} x^{n}}{n}\right)\right)
\]

\subsection*{29.12 problem 121}
29.12.1 Solving as second order bessel ode ode 2800

Internal problem ID [10945]
Internal file name [OUTPUT/10201_Sunday_December_31_2023_11_07_54_AM_35512270/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 121.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{3 n}+b x^{2 n}+\frac{1}{4}-\frac{n^{2}}{4}\right) y=0
\]

\subsection*{29.12.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a x^{3 n}+b x^{2 n}+\frac{1}{4}-\frac{n^{2}}{4}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =n \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(n, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(n, 2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(n, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(n, 2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}(n, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(n, 2 \sqrt{x})
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         <- hyper3 successful: indirect Equivalence to 0F1 under \`\`^ @ Moebius\`\` is resolve     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.297 (sec). Leaf size: 177
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge}(3 * n)+b * x^{\wedge}(2 * n)+1 / 4-1 / 4 * n^{\wedge} 2\right) * y(x)=0, y(x)\right.\), singsol=all)
\(y(x)\)
\(=\frac{\left(\frac{23^{5} \pi c_{2}\left(a x^{n}+b\right) \operatorname{BesselI}\left(\frac{1}{3}, \frac{2 \sqrt{-x^{3 n} a^{3}-3 x^{2 n} a^{2} b-3 x^{n} a b^{2}-b^{3}}}{n^{2} a^{2}}\right.}{3}\right)}{3}+c_{1} \operatorname{BesselI}\left(-\frac{1}{3}, \frac{2 \sqrt{\frac{-x^{3 n} a^{3}-3 x^{2 n} a^{2} b-3 x^{n} a b^{2}-b^{3}}{n^{2} a^{2}}}}{3}\right) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{2}}\)
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+\left(a * x^{\wedge}(3 * n)+b * x^{\wedge}(2 * n)+1 / 4-1 / 4 * n^{\wedge} 2\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions

Not solved

\subsection*{29.13 problem 122}

Internal problem ID [10946]
Internal file name [OUTPUT/10202_Sunday_December_31_2023_11_08_17_AM_31922755/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 122.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+\left(a x^{2 n}\left(b x^{n}+c\right)^{m}+\frac{1}{4}-\frac{n^{2}}{4}\right) y=0
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]

```

X Solution by Maple
```

dsolve(x^2*diff(y(x),x\$2)+(a*x^(2*n)*(b*x^n+c)^m+1/4-1/4*n^2)*y(x)=0,y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+\left(a * x^{\wedge}(2 * n) *\left(b * x^{\wedge} n+c\right) \wedge m+1 / 4-1 / 4 * n^{\wedge} 2\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolution

Not solved

\subsection*{29.14 problem 123}
29.14.1 Solving as second order euler ode ode 2807
29.14.2 Solving as second order change of variable on \(x\) method 2 ode . 2808
29.14.3 Solving as second order change of variable on y method 2 ode . 2811
29.14.4 Solving using Kovacic algorithm 2814
29.14.5 Maple step by step solution . 2819

Internal problem ID [10947]
Internal file name [OUTPUT/10203_Sunday_December_31_2023_11_08_18_AM_20323320/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 123.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of__variable_on_x_method_2", "second_order_change_of__variable_on_y__method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+a x y^{\prime}+y b=0
\]

\subsection*{29.14.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+a x r x^{r-1}+b x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+a r x^{r}+b x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+a r+b=0
\]

Or
\[
\begin{equation*}
r^{2}+(a-1) r+b=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2} \\
& r_{2}=-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=c_{1} x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}+c_{2} x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}+c_{2} x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}+c_{2} x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}
\]

Verified OK.

\subsection*{29.14.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+y b=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a}{x} \\
q(x) & =\frac{b}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{a}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-a \ln (x)} d x \\
& =\int x^{-a} d x \\
& =-\frac{x^{-a+1}}{a-1} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{b}{x^{2}}}{x^{-2 a}} \\
& =b x^{-2+2 a} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b x^{-2+2 a} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
b x^{-2+2 a}=\frac{b}{(a-1)^{2} \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{b y(\tau)}{(a-1)^{2} \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right)(a-1)^{2} \tau^{2}+b y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
(a-1)^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+b \tau^{r}=0
\]

Simplifying gives
\[
(a-1)^{2} r(r-1) \tau^{r}+0 \tau^{r}+b \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
(a-1)^{2} r(r-1)+0+b=0
\]

Or
\[
\begin{equation*}
\left(a^{2}-2 a+1\right) r^{2}+\left(-a^{2}+2 a-1\right) r+b=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-\frac{-a+1+\sqrt{a^{2}-2 a-4 b+1}}{2(a-1)} \\
& r_{2}=\frac{a-1+\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r_{1}}\) and \(y_{2}=\tau^{r_{2}}\). Hence
\[
y(\tau)=c_{1} \tau^{-\frac{-a+1+\sqrt{a^{2}-2 a-4 b+1}}{2(a-1)}}+c_{2} \tau^{\frac{a-1+\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1-\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}+c_{2}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1+\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1-\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}+c_{2}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1+\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1-\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}+c_{2}\left(-\frac{x^{-a+1}}{a-1}\right)^{\frac{a-1+\sqrt{a^{2}-2 a-4 b+1}}{-2+2 a}}
\]

Verified OK.

\subsection*{29.14.3 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+y b=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a}{x} \\
& q(x)=\frac{b}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n a}{x^{2}}+\frac{b}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2} \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-a+1+\sqrt{a^{2}-2 a-4 b+1}}{x}+\frac{a}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(1+\sqrt{a^{2}-2 a-4 b+1}\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(1+\sqrt{a^{2}-2 a-4 b+1}\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\left(-1-\sqrt{a^{2}-2 a-4 b+1}\right) u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{-1-\sqrt{a^{2}-2 a-4 b+1}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-\sqrt{a^{2}-2 a-4 b+1}}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-\sqrt{a^{2}-2 a-4 b+1}}{x} d x \\
\ln (u) & =\left(-1-\sqrt{a^{2}-2 a-4 b+1}\right) \ln (x)+c_{1} \\
u & =\mathrm{e}^{\left(-1-\sqrt{a^{2}-2 a-4 b+1}\right) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\left(-1-\sqrt{a^{2}-2 a-4 b+1}\right) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x^{-\sqrt{a^{2}-2 a-4 b+1}}}{x}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1} x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1} x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}+c_{2}\right) x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}} \\
& =-\frac{x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}\left(-c_{2} \sqrt{a^{2}-2 a-4 b+1} x^{\sqrt{a^{2}-2 a-4 b+1}}+c_{1}\right)}{\sqrt{a^{2}-2 a-4 b+1}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{c_{1} x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}+c_{2}\right) x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(-\frac{c_{1} x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}+c_{2}\right) x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}
\]

Verified OK.

\subsection*{29.14.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+a x y^{\prime}+y b & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=a x \tag{3}\\
& C=b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2}-2 a-4 b}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2}-2 a-4 b \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2}-2 a-4 b}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 123: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{\frac{1}{4} a^{2}-\frac{1}{2} a-b}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{1}{4} a^{2}-\frac{1}{2} a-b\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\left\{2,2-2 \sqrt{a^{2}-2 a-4 b+1}, 2+2 \sqrt{a^{2}-2 a-4 b+1}\right\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{a^{2}-2 a-4 b}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{1}{4}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\left\{2,2-2 \sqrt{a^{2}-2 a-4 b+1}, 2+2 \sqrt{a^{2}-2 a-4 b+1}\right\}\) \\
\cline { 2 - 3 } & \\
\cline { 2 - 3 } & Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\cline { 2 - 3 } & 2 & \(\{2\}\) \\
\cline { 2 - 3 }
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=2, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(2)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(0))}\right) \\
& =\frac{1}{x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\frac{w}{x}+\frac{-a^{2}+2 a+4 b}{4 x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{1+\sqrt{a^{2}-2 a-4 b+1}}{2 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1+\sqrt{a^{2}-2 a-4 b+1}}{2 x} d x} \\
& =x^{\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{a \ln (x)}{2}} \\
& =z_{1}\left(x^{-\frac{a}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}\right)+c_{2}\left(x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}\left(-\frac{x^{-\sqrt{a^{2}-2 a-4 b+1}}}{\sqrt{a^{2}-2 a-4 b+1}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}-\frac{c_{2} x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}}{\sqrt{a^{2}-2 a-4 b+1}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{-\frac{a}{2}+\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}-\frac{c_{2} x^{-\frac{a}{2}+\frac{1}{2}-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}}}{\sqrt{a^{2}-2 a-4 b+1}}
\]

Verified OK.

\subsection*{29.14.5 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+a x y^{\prime}+y b=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{a y^{\prime}}{x}-\frac{b y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{a y^{\prime}}{x}+\frac{b y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a}{x}, P_{3}(x)=\frac{b}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=a\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=b\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+a x y^{\prime}+y b=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite DE with series expansions
\(\sum_{k=0}^{\infty} a_{k}\left(a k+a r+k^{2}+2 k r+r^{2}+b-k-r\right) x^{k+r}=0\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r=0\)
- Each term in the series must be 0, giving the recursion relation \(\left(k^{2}+(a-1) k+b\right) a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k}=0\)
- Recursion relation for \(r=0\)
\[
a_{k}=0
\]
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 52
```

dsolve(x^2*diff (y (x),x\$2)+a*x*diff (y (x), x)+b*y(x)=0,y(x), singsol=all)

```
\[
y(x)=x^{-\frac{a}{2}} \sqrt{x}\left(x^{\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}} c_{1}+x^{-\frac{\sqrt{a^{2}-2 a-4 b+1}}{2}} c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 57
DSolve \([x \wedge 2 * y\) '' \([x]+a * x * y\) ' \([x]+b * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\left.y(x) \rightarrow x^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 b+1}-a+1\right.}\right)\left(c_{2} x^{\sqrt{a^{2}-2 a-4 b+1}}+c_{1}\right)
\]

\subsection*{29.15 problem 124}
29.15.1 Solving as second order bessel ode ode 2822
29.15.2 Maple step by step solution . 2823

Internal problem ID [10948]
Internal file name [OUTPUT/10204_Sunday_December_31_2023_11_08_22_AM_32927791/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 124.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\left(n+\frac{1}{2}\right)^{2}\right) y=0
\]

\subsection*{29.15.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-n^{2}-n-\frac{1}{4}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =0 \\
\beta & =1 \\
n & =-n-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, x\right)+c_{2} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, x\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, x\right)+c_{2} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, x\right)+c_{2} \operatorname{BesselY}\left(-n-\frac{1}{2}, x\right)
\]

Verified OK.

\subsection*{29.15.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+y^{\prime} x+\left(x^{2}-n^{2}-n-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=\frac{\left(4 n^{2}-4 x^{2}+4 n+1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{\left(4 n^{2}-4 x^{2}+4 n+1\right) y}{4 x^{2}}=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{4 n^{2}-4 x^{2}+4 n+1}{4 x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-n^{2}-n-\frac{1}{4}\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(4 y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-4 n^{2}+4 x^{2}-4 n-1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(2 r+1+2 n)(2 r-1-2 n) x^{r}+a_{1}(2 r+3+2 n)(2 r+1-2 n) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 r+1+2 n+\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(2 r+1+2 n)(2 r-1-2 n)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-n-\frac{1}{2}, n+\frac{1}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(2 r+3+2 n)(2 r+1-2 n)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(2 r+1+2 n+2 k)(2 r-1-2 n+2 k)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(2 r+5+2 n+2 k)(2 r+3-2 n+2 k)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{4 a_{k}}{(2 r+5+2 n+2 k)(2 r+3-2 n+2 k)}\)
- Recursion relation for \(r=-n-\frac{1}{2}\)
\(a_{k+2}=-\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}\)
- \(\quad\) Solution for \(r=-n-\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-n-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}, a_{1}=0\right]\)
- \(\quad\) Recursion relation for \(r=n+\frac{1}{2}\)
\(a_{k+2}=-\frac{4 a_{k}}{(4 n+6+2 k)(4+2 k)}\)
- \(\quad\) Solution for \(r=n+\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{(4 n+6+2 k)(4+2 k)}, a_{1}=0\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-n-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+n+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{(4 n+6+2 k)(4-}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(x^2-(n+1/2)^2)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \operatorname{BesselJ}\left(n+\frac{1}{2}, x\right)+c_{2} \operatorname{Bessel} Y\left(n+\frac{1}{2}, x\right)
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.387 (sec). Leaf size: 26
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+x * y\right.\) ' \([x]+\left(x^{\wedge} 2-(n+1 / 2) \wedge 2\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \operatorname{BesselJ}\left(n+\frac{1}{2}, x\right)+c_{2} \operatorname{Bessel} Y\left(n+\frac{1}{2}, x\right)
\]

\subsection*{29.16 problem 125}
29.16.1 Solving as second order bessel ode ode 2827
29.16.2 Maple step by step solution . 2828

Internal problem ID [10949]
Internal file name [OUTPUT/10205_Sunday_December_31_2023_11_08_24_AM_80160225/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 125.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+y^{\prime} x-\left(x^{2}+\left(n+\frac{1}{2}\right)^{2}\right) y=0
\]

\subsection*{29.16.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-x^{2}-n^{2}-n-\frac{1}{4}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =0 \\
\beta & =i \\
n & =-n-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i x\right)+c_{2} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, i x\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i x\right)+c_{2} \operatorname{Bessel} Y\left(-n-\frac{1}{2}, i x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \operatorname{BesselJ}\left(-n-\frac{1}{2}, i x\right)+c_{2} \operatorname{BesselY}\left(-n-\frac{1}{2}, i x\right)
\]

Verified OK.

\subsection*{29.16.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-x^{2}-n^{2}-n-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=\frac{\left(4 n^{2}+4 x^{2}+4 n+1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{\left(4 n^{2}+4 x^{2}+4 n+1\right) y}{4 x^{2}}=0\)
\(\square\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{4 n^{2}+4 x^{2}+4 n+1}{4 x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-n^{2}-n-\frac{1}{4}\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(4 y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-4 n^{2}-4 x^{2}-4 n-1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(2 r+1+2 n)(2 r-1-2 n) x^{r}+a_{1}(2 r+3+2 n)(2 r+1-2 n) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 r+1+2 n+\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(2 r+1+2 n)(2 r-1-2 n)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-n-\frac{1}{2}, n+\frac{1}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(2 r+3+2 n)(2 r+1-2 n)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(2 r+1+2 n+2 k)(2 r-1-2 n+2 k)-4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(2 r+5+2 n+2 k)(2 r+3-2 n+2 k)-4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{4 a_{k}}{(2 r+5+2 n+2 k)(2 r+3-2 n+2 k)}\)
- Recursion relation for \(r=-n-\frac{1}{2}\)
\(a_{k+2}=\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}\)
- \(\quad\) Solution for \(r=-n-\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-n-\frac{1}{2}}, a_{k+2}=\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}, a_{1}=0\right]\)
- \(\quad\) Recursion relation for \(r=n+\frac{1}{2}\)
\(a_{k+2}=\frac{4 a_{k}}{(4 n+6+2 k)(4+2 k)}\)
- \(\quad\) Solution for \(r=n+\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n+\frac{1}{2}}, a_{k+2}=\frac{4 a_{k}}{(4 n+6+2 k)(4+2 k)}, a_{1}=0\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-n-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+n+\frac{1}{2}}\right), a_{k+2}=\frac{4 a_{k}}{(4+2 k)(-4 n+2+2 k)}, a_{1}=0, b_{k+2}=\frac{4 b_{k}}{(4 n+6+2 k)(4+2 k)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)-(x^2+(n+1/2)^2)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \operatorname{BesselI}\left(n+\frac{1}{2}, x\right)+c_{2} \operatorname{BesselK}\left(n+\frac{1}{2}, x\right)
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 34
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+x * y\right.\) ' \([x]-\left(x^{\wedge} 2+(n+1 / 2) \wedge 2\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \operatorname{BesselJ}\left(n+\frac{1}{2},-i x\right)+c_{2} \operatorname{Bessel} Y\left(n+\frac{1}{2},-i x\right)
\]

\subsection*{29.17 problem 126}
29.17.1 Solving as second order bessel ode ode 2832
29.17.2 Maple step by step solution . 2833

Internal problem ID [10950]
Internal file name [OUTPUT/10206_Sunday_December_31_2023_11_08_26_AM_33239479/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 126.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[_Bessel]
\[
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-\nu^{2}+x^{2}\right) y=0
\]

\subsection*{29.17.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-\nu^{2}+x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =0 \\
\beta & =1 \\
n & =\nu \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \operatorname{BesselJ}(\nu, x)+c_{2} \operatorname{BesselY}(\nu, x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \operatorname{BesselJ}(\nu, x)+c_{2} \operatorname{BesselY}(\nu, x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \operatorname{BesselJ}(\nu, x)+c_{2} \operatorname{BesselY}(\nu, x)
\]

Verified OK.

\subsection*{29.17.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-\nu^{2}+x^{2}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\left(\nu^{2}-x^{2}\right) y}{x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{\left(\nu^{2}-x^{2}\right) y}{x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{\nu^{2}-x^{2}}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1
\]
- \(\quad x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\nu^{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+y^{\prime} x+\left(-\nu^{2}+x^{2}\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(\nu+r)(-\nu+r) x^{r}+a_{1}(1+\nu+r)(1-\nu+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+\nu+r)(k-\nu+r)+a_{k-2}\right)\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((\nu+r)(-\nu+r)=0\)
- Values of \(r\) that satisfy the indicial equation \(r \in\{\nu,-\nu\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+\nu+r)(1-\nu+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+\nu+r)(k-\nu+r)+a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+2+\nu+r)(k+2-\nu+r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k}}{(k+2+\nu+r)(k+2-\nu+r)}\)
- \(\quad\) Recursion relation for \(r=\nu\)
\(a_{k+2}=-\frac{a_{k}}{(k+2+2 \nu)(k+2)}\)
- \(\quad\) Solution for \(r=\nu\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\nu}, a_{k+2}=-\frac{a_{k}}{(k+2+2 \nu)(k+2)}, a_{1}=0\right]
\]
- Recursion relation for \(r=-\nu\)
\[
a_{k+2}=-\frac{a_{k}}{(k+2)(k+2-2 \nu)}
\]
- \(\quad\) Solution for \(r=-\nu\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\nu}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+2-2 \nu)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\nu}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\nu}\right), a_{k+2}=-\frac{a_{k}}{(k+2+2 \nu)(k+2)}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+2)(k+2-2 \nu)}, b_{1}=\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 2-n u^{\wedge} 2\right) * y(x)=0, y(x), \quad\) singsol=all \()\)
\[
y(x)=c_{1} \operatorname{BesselJ}(\nu, x)+c_{2} \operatorname{Bessel} Y(\nu, x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 26
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+x * y\right.\) ' \([x]+\left(x^{\wedge} 2-\backslash[N u]\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \operatorname{BesselJ}(\sqrt{\nu}, x)+c_{2} \operatorname{BesselY}(\sqrt{\nu}, x)
\]

\subsection*{29.18 problem 127}
29.18.1 Solving as second order bessel ode ode 2837
29.18.2 Maple step by step solution . 2838

Internal problem ID [10951]
Internal file name [OUTPUT/10207_Sunday_December_31_2023_11_08_27_AM_25912510/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 127.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_Bessel, _modified]]
\[
x^{2} y^{\prime \prime}+y^{\prime} x-\left(\nu^{2}+x^{2}\right) y=0
\]

\subsection*{29.18.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-\nu^{2}-x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =0 \\
\beta & =i \\
n & =\nu \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \operatorname{BesselJ}(\nu, i x)+c_{2} \operatorname{BesselY}(\nu, i x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \operatorname{BesselJ}(\nu, i x)+c_{2} \operatorname{BesselY}(\nu, i x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \operatorname{BesselJ}(\nu, i x)+c_{2} \operatorname{BesselY}(\nu, i x)
\]

Verified OK.

\subsection*{29.18.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-\nu^{2}-x^{2}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=\frac{\left(\nu^{2}+x^{2}\right) y}{x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{\left(\nu^{2}+x^{2}\right) y}{x^{2}}=0
\]Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{\nu^{2}+x^{2}}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\nu^{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+y^{\prime} x+\left(-\nu^{2}-x^{2}\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(\nu+r)(-\nu+r) x^{r}+a_{1}(1+\nu+r)(1-\nu+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+\nu+r)(k-\nu+r)-a_{k-2}\right)\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((\nu+r)(-\nu+r)=0\)
- Values of \(r\) that satisfy the indicial equation \(r \in\{\nu,-\nu\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+\nu+r)(1-\nu+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+\nu+r)(k-\nu+r)-a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+2+\nu+r)(k+2-\nu+r)-a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k}}{(k+2+\nu+r)(k+2-\nu+r)}\)
- Recursion relation for \(r=\nu\)
\(a_{k+2}=\frac{a_{k}}{(k+2+2 \nu)(k+2)}\)
- \(\quad\) Solution for \(r=\nu\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\nu}, a_{k+2}=\frac{a_{k}}{(k+2+2 \nu)(k+2)}, a_{1}=0\right]
\]
- Recursion relation for \(r=-\nu\)
\[
a_{k+2}=\frac{a_{k}}{(k+2)(k+2-2 \nu)}
\]
- \(\quad\) Solution for \(r=-\nu\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\nu}, a_{k+2}=\frac{a_{k}}{(k+2)(k+2-2 \nu)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\nu}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\nu}\right), a_{k+2}=\frac{a_{k}}{(k+2+2 \nu)(k+2)}, a_{1}=0, b_{k+2}=\frac{b_{k}}{(k+2)(k+2-2 \nu)}, b_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)-\left(x^{\wedge} 2+n u^{\wedge} 2\right) * y(x)=0, y(x), \quad\) singsol=all \()\)
\[
y(x)=c_{1} \operatorname{BesselI}(\nu, x)+c_{2} \operatorname{BesselK}(\nu, x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 34
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+x * y\right.\) ' \([x]-\left(x^{\wedge} 2+\backslash[N u]\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \operatorname{BesselJ}(\sqrt{\nu},-i x)+c_{2} \operatorname{BesselY}(\sqrt{\nu},-i x)
\]

\subsection*{29.19 problem 128}
29.19.1 Solving as second order bessel ode ode 2842
29.19.2 Solving using Kovacic algorithm 2843
29.19.3 Maple step by step solution . 2850

Internal problem ID [10952]
Internal file name [OUTPUT/10208_Sunday_December_31_2023_11_08_29_AM_14546133/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 128.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+2 y^{\prime} x-\left(a^{2} x^{2}+2\right) y=0
\]

\subsection*{29.19.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x+\left(-a^{2} x^{2}-2\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =-\frac{1}{2} \\
\beta & =i a \\
n & =-\frac{3}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-\frac{i c_{1} \sqrt{2}(\sinh (a x) a x-\cosh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a}-\frac{c_{2} \sqrt{2}(-\cosh (a x) a x+\sinh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{i c_{1} \sqrt{2}(\sinh (a x) a x-\cosh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a}-\frac{c_{2} \sqrt{2}(-\cosh (a x) a x+\sinh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{i c_{1} \sqrt{2}(\sinh (a x) a x-\cosh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a}-\frac{c_{2} \sqrt{2}(-\cosh (a x) a x+\sinh (a x))}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i a x} a}
\]

Verified OK.

\subsection*{29.19.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+2 y^{\prime} x+\left(-a^{2} x^{2}-2\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-a^{2} x^{2}-2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} x^{2}+2}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =a^{2} x^{2}+2 \\
t & =x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2} x^{2}+2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 129: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=a^{2}+\frac{2}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx a+\frac{1}{a x^{2}}-\frac{1}{2 a^{3} x^{4}}+\frac{1}{2 a^{5} x^{6}}-\frac{5}{8 a^{7} x^{8}}+\frac{7}{8 a^{9} x^{10}}-\frac{21}{16 a^{11} x^{12}}+\frac{33}{16 a^{13} x^{14}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=a
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =a \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=a^{2}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} x^{2}+2}{x^{2}} \\
& =Q+\frac{R}{x^{2}} \\
& =\left(a^{2}\right)+\left(\frac{2}{x^{2}}\right) \\
& =a^{2}+\frac{2}{x^{2}}
\end{aligned}
\]

Since the degree of \(t\) is 2 , then we see that the coefficient of the term \(x\) in the remainder \(R\) is 0 . Dividing this by leading coefficient in \(t\) which is 1 gives 0 . Now \(b\) can be found.
\[
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =a \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{a}-0\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{a}-0\right)=0
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a^{2} x^{2}+2}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & 2 & -1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(a\) & 0 & 0 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=0\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =0-(-1) \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(a) \\
& =-\frac{1}{x}-a \\
& =\frac{-a x-1}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{x}-a\right)(1)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}-a\right)^{2}-\left(\frac{a^{2} x^{2}+2}{x^{2}}\right)\right)=0 \\
\frac{2 a a_{0}-2}{x}=0
\end{array}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{1}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{1}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{\int\left(-\frac{1}{x}-a\right) d x} \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{-a x-\ln (x)} \\
& =\frac{(a x+1) \mathrm{e}^{-a x}}{a x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{(a x+1) \mathrm{e}^{-a x}}{a x^{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{(a x-1) \mathrm{e}^{2 a x}}{2(a x+1) a}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a x^{2}}\right)+c_{2}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a x^{2}}\left(\frac{(a x-1) \mathrm{e}^{2 a x}}{2(a x+1) a}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a x^{2}}+\frac{c_{2}(a x-1) \mathrm{e}^{a x}}{2 a^{2} x^{2}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a x^{2}}+\frac{c_{2}(a x-1) \mathrm{e}^{a x}}{2 a^{2} x^{2}}
\]

Verified OK.

\subsection*{29.19.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+2 y^{\prime} x+\left(-a^{2} x^{2}-2\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\left(a^{2} x^{2}+2\right) y}{x^{2}}-\frac{2 y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{\left(a^{2} x^{2}+2\right) y}{x^{2}}=0
\]
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=-\frac{a^{2} x^{2}+2}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+2 y^{\prime} x+\left(-a^{2} x^{2}-2\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)

\section*{Rewrite ODE with series expansions}
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}(2+r)(-1+r) x^{r}+a_{1}(3+r) r x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r-1)-a_{k-2} a^{2}\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((2+r)(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-2,1\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(3+r) r=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k}(k+r+2)(k+r-1)-a_{k-2} a^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+4+r)(k+1+r)-a_{k} a^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k} a^{2}}{(k+4+r)(k+1+r)}\)
- \(\quad\) Recursion relation for \(r=-2\)
\[
a_{k+2}=\frac{a_{k} a^{2}}{(k+2)(k-1)}
\]
- \(\quad\) Solution for \(r=-2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=\frac{a_{k} a^{2}}{(k+2)(k-1)}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=1\)
\[
a_{k+2}=\frac{a_{k} a^{2}}{(k+5)(k+2)}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=\frac{a_{k} a^{2}}{(k+5)(k+2)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{1+k}\right), b_{k+2}=\frac{b_{k} a^{2}}{(k+2)(k-1)}, b_{1}=0, c_{k+2}=\frac{c_{k} a^{2}}{(k+5)(k+2)}, c_{1}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
```

dsolve(x^2* diff(y(x),x\$2)+2*x*diff(y(x),x)-(a^2*x^2+2)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{2} \mathrm{e}^{-a x}(a x+1)+c_{1} \mathrm{e}^{a x}(a x-1)}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 29
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}\right.\) ' \([\mathrm{x}]-\left(\mathrm{a}^{\wedge} 2 * \mathrm{x}^{\wedge} 2+2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} j_{-2}(i a x)-c_{2} y_{-2}(i a x)
\]

\subsection*{29.20 problem 129}
29.20.1 Solving as second order change of variable on y method 1 ode . 2854
29.20.2 Solving as second order bessel ode ode 2857
29.20.3 Solving using Kovacic algorithm 2858
29.20.4 Maple step by step solution . 2861

Internal problem ID [10953]
Internal file name [OUTPUT/10209_Sunday_December_31_2023_11_08_32_AM_83452150/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form
\(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 129.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(b^{2} x^{2}+a(a+1)\right) y=0
\]

\subsection*{29.20.1 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2 a}{x} \\
& q(x)=\frac{b^{2} x^{2}+a^{2}+a}{x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{b^{2} x^{2}+a^{2}+a}{x^{2}}-\frac{\left(-\frac{2 a}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2 a}{x}\right)^{2}}{4} \\
& =\frac{b^{2} x^{2}+a^{2}+a}{x^{2}}-\frac{\left(\frac{2 a}{x^{2}}\right)}{2}-\frac{\left(\frac{4 a^{2}}{x^{2}}\right)}{4} \\
& =\frac{b^{2} x^{2}+a^{2}+a}{x^{2}}-\left(\frac{a}{x^{2}}\right)-\frac{a^{2}}{x^{2}} \\
& =b^{2}
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2 a}{x}} \\
& =x^{a} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) x^{a} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x^{a+2}\left(v(x) b^{2}+v^{\prime \prime}(x)\right)=0
\]

Which is now solved for \(v(x)\) This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
\]

Where in the above \(A=1, B=0, C=b^{2}\). Let the solution be \(v(x)=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+b^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
b^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=b^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(b^{2}\right)} \\
& = \pm \sqrt{-b^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-b^{2}} \\
& \lambda_{2}=-\sqrt{-b^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-b^{2}} \\
& \lambda_{2}=-\sqrt{-b^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(\sqrt{-b^{2}}\right) x}+c_{2} e^{\left(-\sqrt{-b^{2}}\right) x}
\end{aligned}
\]

Or
\[
v(x)=c_{1} \mathrm{e}^{\sqrt{-b^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-b^{2}} x}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-b^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-b^{2}} x}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=x^{a}
\]

Hence (7) becomes
\[
y=\left(c_{1} \mathrm{e}^{\sqrt{-b^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-b^{2}} x}\right) x^{a}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{\sqrt{-b^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-b^{2}} x}\right) x^{a} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(c_{1} \mathrm{e}^{\sqrt{-b^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-b^{2}} x}\right) x^{a}
\]

Verified OK.

\subsection*{29.20.2 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(b^{2} x^{2}+a^{2}+a\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =a+\frac{1}{2} \\
\beta & =b \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cos (b x)}{\sqrt{\pi} \sqrt{b x}}+\frac{c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sin (b x)}{\sqrt{\pi} \sqrt{b x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cos (b x)}{\sqrt{\pi} \sqrt{b x}}+\frac{c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sin (b x)}{\sqrt{\pi} \sqrt{b x}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cos (b x)}{\sqrt{\pi} \sqrt{b x}}+\frac{c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sin (b x)}{\sqrt{\pi} \sqrt{b x}}
\]

Verified OK.

\subsection*{29.20.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(b^{2} x^{2}+a^{2}+a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=-2 a x \tag{3}\\
& C=b^{2} x^{2}+a^{2}+a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-b^{2}}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-b^{2} \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-b^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 131: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-b^{2}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{-b^{2}} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 a x}{x^{2}} d x} \\
& =z_{1} e^{a \ln (x)} \\
& =z_{1}\left(x^{a}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\sqrt{-b^{2}} x} x^{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 a \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{-b^{2}} \mathrm{e}^{-2 \sqrt{-b^{2}} x}}{2 b^{2}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-b^{2}} x} x^{a}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-b^{2}} x} x^{a}\left(\frac{\sqrt{-b^{2}} \mathrm{e}^{-2 \sqrt{-b^{2}} x}}{2 b^{2}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-b^{2}} x} x^{a}+\frac{c_{2} x^{a} \sqrt{-b^{2}} \mathrm{e}^{-\sqrt{-b^{2}} x}}{2 b^{2}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{\sqrt{-b^{2}} x} x^{a}+\frac{c_{2} x^{a} \sqrt{-b^{2}} \mathrm{e}^{-\sqrt{-b^{2}} x}}{2 b^{2}}
\]

Verified OK.

\subsection*{29.20.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x^{2}-2 a x y^{\prime}+\left(b^{2} x^{2}+a^{2}+a\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{\left(b^{2} x^{2}+a^{2}+a\right) y}{x^{2}}+\frac{2 a y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{2 a y^{\prime}}{x}+\frac{\left(b^{2} x^{2}+a^{2}+a\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{2 a}{x}, P_{3}(x)=\frac{b^{2} x^{2}+a^{2}+a}{x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2 a\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=a^{2}+a\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}-2 a x y^{\prime}+\left(b^{2} x^{2}+a^{2}+a\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(-r+1+a)(-r+a) x^{r}+a_{1}(-r+a)(-r-1+a) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(-r+1-k+a)(-r-k\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-r+1+a)(-r+a)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{a, a+1\}\)
- Each term must be 0
\(a_{1}(-r+a)(-r-1+a)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k}(-r+1-k+a)(-r-k+a)+a_{k-2} b^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(-r-1-k+a)(-r-k-2+a)+a_{k} b^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} b^{2}}{(-r-1-k+a)(-r-k-2+a)}\)
- \(\quad\) Recursion relation for \(r=a\)
\[
a_{k+2}=-\frac{a_{k} b^{2}}{(-1-k)(-k-2)}
\]
- \(\quad\) Solution for \(r=a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+a}, a_{k+2}=-\frac{a_{k} b^{2}}{(-1-k)(-k-2)}, a_{1}=0\right]
\]
- Recursion relation for \(r=a+1\)
\[
a_{k+2}=-\frac{a_{k} b^{2}}{(-k-2)(-3-k)}
\]
- \(\quad\) Solution for \(r=a+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+a+1}, a_{k+2}=-\frac{a_{k} b^{2}}{(-k-2)(-3-k)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+a}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+a+1}\right), c_{k+2}=-\frac{c_{k} b^{2}}{(-1-k)(-k-2)}, c_{1}=0, d_{k+2}=-\frac{d_{k} b^{2}}{(-k-2)(-k-3)}, d_{1}=\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
```

dsolve(x^2*\operatorname{diff}(y(x),x\$2)-2*a*x*diff(y(x),x)+(b^2*x^2+a*(a+1))*y(x)=0,y(x), singsol=all)

```
\[
y(x)=x^{a}\left(c_{1} \sin (b x)+c_{2} \cos (b x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 42
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]-2 * a * x * y{ }^{\prime}[x]+\left(b^{\wedge} 2 * x^{\wedge} 2+a *(a+1)\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) I
\[
y(x) \rightarrow c_{1} x^{a} e^{-i b x}-\frac{i c_{2} x^{a} e^{i b x}}{2 b}
\]

\subsection*{29.21 problem 130}
29.21.1 Solving as second order change of variable on y method 1 ode . 2865
29.21.2 Solving as second order bessel ode ode 2868
29.21.3 Solving using Kovacic algorithm 2869
29.21.4 Maple step by step solution . 2872

Internal problem ID [10954]
Internal file name [OUTPUT/10210_Sunday_December_31_2023_11_08_35_AM_56902748/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form
\(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 130.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(-b^{2} x^{2}+a(a+1)\right) y=0
\]

\subsection*{29.21.1 Solving as second order change of variable on y method 1 ode} In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2 a}{x} \\
& q(x)=\frac{-b^{2} x^{2}+a^{2}+a}{x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{-b^{2} x^{2}+a^{2}+a}{x^{2}}-\frac{\left(-\frac{2 a}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2 a}{x}\right)^{2}}{4} \\
& =\frac{-b^{2} x^{2}+a^{2}+a}{x^{2}}-\frac{\left(\frac{2 a}{x^{2}}\right)}{2}-\frac{\left(\frac{4 a^{2}}{x^{2}}\right)^{4}}{4} \\
& =\frac{-b^{2} x^{2}+a^{2}+a}{x^{2}}-\left(\frac{a}{x^{2}}\right)-\frac{a^{2}}{x^{2}} \\
& =-b^{2}
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{2 a}{x}}{2}} \\
& =x^{a} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) x^{a} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
-x^{a+2}\left(v(x) b^{2}-v^{\prime \prime}(x)\right)=0
\]

Which is now solved for \(v(x)\) This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
\]

Where in the above \(A=-1, B=0, C=b^{2}\). Let the solution be \(v(x)=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
-\lambda^{2} \mathrm{e}^{\lambda x}+b^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
b^{2}-\lambda^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=-1, B=0, C=b^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(-1)} \pm \frac{1}{(2)(-1)} \sqrt{0^{2}-(4)(-1)\left(b^{2}\right)} \\
& = \pm-\sqrt{b^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+-\sqrt{b^{2}} \\
& \lambda_{2}=--\sqrt{b^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\sqrt{b^{2}} \\
& \lambda_{2}=\sqrt{b^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(-\sqrt{b^{2}}\right) x}+c_{2} e^{\left(\sqrt{b^{2}}\right) x}
\end{aligned}
\]

Or
\[
v(x)=c_{1} \mathrm{e}^{-\sqrt{b^{2}} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}} x}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}} x}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=x^{a}
\]

Hence (7) becomes
\[
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}} x}\right) x^{a}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}} x}\right) x^{a} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(c_{1} \mathrm{e}^{-\sqrt{b^{2}} x}+c_{2} \mathrm{e}^{\sqrt{b^{2}} x}\right) x^{a}
\]

Verified OK.

\subsection*{29.21.2 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(-b^{2} x^{2}+a^{2}+a\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =a+\frac{1}{2} \\
\beta & =i b \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cosh (b x)}{\sqrt{\pi} \sqrt{i b x}}+\frac{i c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sinh (b x)}{\sqrt{\pi} \sqrt{i b x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cosh (b x)}{\sqrt{\pi} \sqrt{i b x}}+\frac{i c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sinh (b x)}{\sqrt{\pi} \sqrt{i b x}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} x^{a+\frac{1}{2}} \sqrt{2} \cosh (b x)}{\sqrt{\pi} \sqrt{i b x}}+\frac{i c_{2} x^{a+\frac{1}{2}} \sqrt{2} \sinh (b x)}{\sqrt{\pi} \sqrt{i b x}}
\]

Verified OK.

\subsection*{29.21.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}-2 a x y^{\prime}+\left(-b^{2} x^{2}+a^{2}+a\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=-2 a x \tag{3}\\
& C=-b^{2} x^{2}+a^{2}+a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{b^{2}}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=b^{2} \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(b^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 133: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=b^{2}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{b^{2}} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 a x}{x^{2}} d x} \\
& =z_{1} e^{a \ln (x)} \\
& =z_{1}\left(x^{a}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\operatorname{csgn}(b) b x} x^{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 a \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\operatorname{csgn}(b) \mathrm{e}^{-2 \operatorname{csgn}(b) b x}}{2 b}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\operatorname{csgn}(b) b x} x^{a}\right)+c_{2}\left(\mathrm{e}^{\operatorname{csgn}(b) b x} x^{a}\left(-\frac{\operatorname{csgn}(b) \mathrm{e}^{-2 \operatorname{csgn}(b) b x}}{2 b}\right)\right)
\end{aligned}
\]

Simplifying the solution \(y=c_{1} \mathrm{e}^{\operatorname{csgn}(b) b x} x^{a}-\frac{c_{2} x^{a} \operatorname{csgn}(b) \mathrm{e}^{-\operatorname{csgn}(b) b x}}{2 b}\) to \(y=c_{1} \mathrm{e}^{b x} x^{a}-\frac{c_{2} x^{a} \mathrm{e}^{-b x}}{2 b}\) Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{b x} x^{a}-\frac{c_{2} x^{a} \mathrm{e}^{-b x}}{2 b} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{b x} x^{a}-\frac{c_{2} x^{a} \mathrm{e}^{-b x}}{2 b}
\]

Verified OK.

\subsection*{29.21.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}-2 a x y^{\prime}+\left(-b^{2} x^{2}+a^{2}+a\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(-b^{2} x^{2}+a^{2}+a\right) y}{x^{2}}+\frac{2 a y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{2 a y^{\prime}}{x}+\frac{\left(-b^{2} x^{2}+a^{2}+a\right) y}{x^{2}}=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{2 a}{x}, P_{3}(x)=\frac{-b^{2} x^{2}+a^{2}+a}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2 a\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=a^{2}+a\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x^{2}-2 a x y^{\prime}+\left(-b^{2} x^{2}+a^{2}+a\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)

\section*{Rewrite ODE with series expansions}
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(-r+1+a)(-r+a) x^{r}+a_{1}(-r+a)(-r-1+a) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(-r+1-k+a)(-r-k\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-r+1+a)(-r+a)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{a, a+1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(-r+a)(-r-1+a)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k}(-r+1-k+a)(-r-k+a)-a_{k-2} b^{2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(-r-1-k+a)(-r-k-2+a)-a_{k} b^{2}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k} b^{2}}{(-r-1-k+a)(-r-k-2+a)}\)
- Recursion relation for \(r=a\)
\[
a_{k+2}=\frac{a_{k} b^{2}}{(-1-k)(-k-2)}
\]
- \(\quad\) Solution for \(r=a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+a}, a_{k+2}=\frac{a_{k} b^{2}}{(-1-k)(-k-2)}, a_{1}=0\right]
\]
- Recursion relation for \(r=a+1\)
\[
a_{k+2}=\frac{a_{k} b^{2}}{(-k-2)(-3-k)}
\]
- \(\quad\) Solution for \(r=a+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+a+1}, a_{k+2}=\frac{a_{k} b^{2}}{(-k-2)(-3-k)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+a}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+a+1}\right), c_{k+2}=\frac{c_{k} b^{2}}{(-1-k)(-k-2)}, c_{1}=0, d_{k+2}=\frac{d_{k} b^{2}}{(-k-2)(-k-3)}, d_{1}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(x^2*diff(y(x), x\$2)-2*a*x*diff (y(x),x)+(-b^2*x^2+a*(a+1))*y(x)=0,y(x), singsol=all)

```
\[
y(x)=x^{a}\left(c_{1} \sinh (b x)+c_{2} \cosh (b x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 35
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]-2 * a * x * y{ }^{\prime}[x]+\left(-b^{\wedge} 2 * x^{\wedge} 2+a *(a+1)\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\)
\[
y(x) \rightarrow c_{1} x^{a} e^{-b x}+\frac{c_{2} x^{a} e^{b x}}{2 b}
\]

\subsection*{29.22 problem 131}
29.22.1 Solving as second order bessel ode ode \(\qquad\)
29.22.2 Maple step by step solution . 2877

Internal problem ID [10955]
Internal file name [OUTPUT/10211_Sunday_December_31_2023_11_08_37_AM_37366069/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 131.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\lambda x y^{\prime}+\left(a x^{2}+b x+c\right) y=0
\]

\subsection*{29.22.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\lambda x y^{\prime}+\left(a x^{2}+b x+c\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{\lambda}{2} \\
\beta & =2 \\
n & =\sqrt{\lambda^{2}-4 c-2 \lambda+1} \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\(y=c_{1} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselJ}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right)+c_{2} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselY}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right)\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselJ}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right) \tag{1}\\
& +c_{2} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselY}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselJ}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right) \\
& +c_{2} x^{\frac{1}{2}-\frac{\lambda}{2}} \operatorname{BesselY}\left(\sqrt{\lambda^{2}-4 c-2 \lambda+1}, 2 \sqrt{x}\right)
\end{aligned}
\]

Verified OK.

\subsection*{29.22.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+\lambda x y^{\prime}+\left(a x^{2}+b x+c\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a x^{2}+b x+c\right) y}{x^{2}}-\frac{\lambda y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\lambda y^{\prime}}{x}+\frac{\left(a x^{2}+b x+c\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{\lambda}{x}, P_{3}(x)=\frac{a x^{2}+b x+c}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\lambda
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=c
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x^{2}+\lambda x y^{\prime}+\left(a x^{2}+b x+c\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}\left(\lambda r+r^{2}+c-r\right) x^{r}+\left(\left(\lambda r+r^{2}+c+\lambda+r\right) a_{1}+a_{0} b\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}\left(k^{2}+\lambda k+2 k r+\lambda r+\right.\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\lambda r+r^{2}+c-r=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}, \frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right\}\)
- Each term must be 0
\[
\left(\lambda r+r^{2}+c+\lambda+r\right) a_{1}+a_{0} b=0
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
a_{1}=-\frac{a_{0} b}{\lambda r+r^{2}+c+\lambda+r}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+(2 r+\lambda-1) k+r^{2}+(\lambda-1) r+c\right) a_{k}+a_{k-2} a+b a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+(2 r+\lambda-1)(k+2)+r^{2}+(\lambda-1) r+c\right) a_{k+2}+a_{k} a+b a_{k+1}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+\lambda k+2 k r+\lambda r+r^{2}+c+3 k+2 \lambda+3 r+2}
\]
- Recursion relation for \(r=\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\)
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+\lambda k+2 k\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\lambda\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)^{2}+c+3 k+\frac{\lambda}{2}+\frac{7}{2}-\frac{3 \sqrt{\lambda^{2}-4 c}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}}, a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+\lambda k+2 k\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\lambda\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\left(\frac{1}{2}-\frac{\lambda}{2}-\right.}\right.
\]
- Recursion relation for \(r=\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\)
\[
a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+\lambda k+2 k\left(\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\lambda\left(\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\left(\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)^{2}+c+3 k+\frac{\lambda}{2}+\frac{7}{2}+\frac{3 \sqrt{\lambda^{2}-4 c-}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}}, a_{k+2}=-\frac{a_{k} a+b a_{k+1}}{k^{2}+\lambda k+2 k\left(\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\lambda\left(\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}\right)+\left(\frac{1}{2}-\frac{\lambda}{2}-\right.}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k+\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{1}{2}-\frac{\lambda}{2}+\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}}\right), d_{k+2}=-\frac{}{k^{2}+\lambda k+2 k\left(\frac{1}{2}-\frac{\lambda}{2}-\frac{\sqrt{\lambda^{2}-}}{}\right.}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.11 (sec). Leaf size: 75
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\operatorname{lambda} * x * \operatorname{diff}(y(x), x)+\left(a * x^{\wedge} 2+b * x+c\right) * y(x)=0, y(x), \quad\) singsol=all)
\[
\begin{aligned}
y(x)=x^{-\frac{\lambda}{2}}\left(\text { WhittakerW } \left(-\frac{i b}{2 \sqrt{a}},\right.\right. & \left.\frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}, 2 i \sqrt{a} x\right) c_{2} \\
& \left.+ \text { WhittakerM }\left(-\frac{i b}{2 \sqrt{a}}, \frac{\sqrt{\lambda^{2}-4 c-2 \lambda+1}}{2}, 2 i \sqrt{a} x\right) c_{1}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 159
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\backslash[\right.\) Lambda \(] * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\)
\(y(x)\)
\(\left.\rightarrow e^{-i \sqrt{a} x} x^{\frac{1}{2}\left(\sqrt{(\lambda-1)^{2}-4 c}-\lambda+1\right.}\right)\left(c_{1}\right.\) Hypergeometric \(\mathrm{U}\left(\frac{1}{2}\left(\frac{i b}{\sqrt{a}}+\sqrt{(\lambda-1)^{2}-4 c}+1\right), \sqrt{(\lambda-1)^{2}-4 c}\right.\) \(\left.+1,2 i \sqrt{a} x)+c_{2} L_{\frac{1}{2}\left(-\frac{i b}{\sqrt{a}}-\sqrt{(\lambda-1)^{2}-4 c}-1\right)}^{\sqrt{(\lambda-1)^{2}-4 c}}(2 i \sqrt{a} x)\right)\)

\subsection*{29.23 problem 132}
29.23.1 Solving as second order bessel ode ode 2882

Internal problem ID [10956]
Internal file name [OUTPUT/10212_Sunday_December_31_2023_11_09_42_AM_75486021/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 132.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+a x y^{\prime}+\left(b x^{n}+c\right) y=0
\]

\subsection*{29.23.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+\left(b x^{n}+c\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =\frac{2 \sqrt{b}}{n} \\
n & =\frac{\sqrt{a^{2}-2 a-4 c+1}}{n} \\
\gamma & =\frac{n}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\(y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right)+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right)\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right) \tag{1}\\
& +c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right) \\
& +c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 80
```

dsolve(x^2*diff(y(x),x\$2)+a*x*diff(y(x),x)+(b*x^n+c)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=x^{-\frac{a}{2}} \sqrt{x}(\operatorname{BesselY} & \left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right) c_{2} \\
& \left.+\operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} x^{\frac{n}{2}}}{n}\right) c_{1}\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 168
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+a * x * y\) ' \([x]+\left(b * x^{\wedge} n+c\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\[
\begin{aligned}
& \rightarrow n^{\frac{a-1}{n}} b^{-\frac{a-1}{2 n}}\left(x^{n}\right)^{-\frac{a-1}{2 n}}\left(c_{1} \operatorname{Gamma}(1\right. \\
& \left.\quad-\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}\right) \operatorname{BesselJ}\left(-\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} \sqrt{x^{n}}}{n}\right) \\
& \left.\quad+c_{2} \operatorname{Gamma}\left(\frac{n+\sqrt{a^{2}-2 a-4 c+1}}{n}\right) \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-2 a-4 c+1}}{n}, \frac{2 \sqrt{b} \sqrt{x^{n}}}{n}\right)\right)
\end{aligned}
\]

\subsection*{29.24 problem 133}
29.24.1 Solving as second order bessel ode ode

2885
Internal problem ID [10957]
Internal file name [OUTPUT/10213_Sunday_December_31_2023_11_09_46_AM_10467483/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 133.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+a x y^{\prime}+x^{n}\left(b x^{n}+c\right) y=0
\]

\subsection*{29.24.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+a x y^{\prime}+\left(b x^{2 n}+x^{n} c\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{a}{2} \\
\beta & =2 \\
n & =-a+1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselY}(-a+1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{BesselJ}(-a+1,2 \sqrt{x})+c_{2} x^{\frac{1}{2}-\frac{a}{2}} \operatorname{Bessel} Y(-a+1,2 \sqrt{x})
\]

Verified OK.
Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Whittaker successful
<- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.218 (sec). Leaf size: 82
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+a * x * \operatorname{diff}(y(x), x)+x^{\wedge} n *\left(b * x^{\wedge} n+c\right) * y(x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)=\left(\text { WhittakerM }\left(-\frac{i c}{2 n \sqrt{b}}, \frac{a-1}{2 n}, \frac{2 i \sqrt{b} x^{n}}{n}\right) c_{1}\right. \\
&\left.+ \text { WhittakerW }\left(-\frac{i c}{2 n \sqrt{b}}, \frac{a-1}{2 n}, \frac{2 i \sqrt{b} x^{n}}{n}\right) c_{2}\right) x^{-\frac{a}{2}-\frac{n}{2}+\frac{1}{2}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 165
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+a * x * y\right.\) ' \([x]+x^{\wedge} n *\left(b * x^{\wedge} n+c\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\(\rightarrow 2^{\frac{a+n-1}{2 n}} x^{\frac{1}{2}(-a-n+1)}\left(x^{n}\right)^{\frac{a+n-1}{2 n}} e^{\frac{i \sqrt{b} x^{n}}{n}}\left(c_{1}\right.\) Hypergeometric \(\mathrm{U}\left(-\frac{-a+\frac{i c}{\sqrt{b}}-n+1}{2 n}, \frac{a+n-1}{n}\right.\),
\[
\left.\left.-\frac{2 i \sqrt{b} x^{n}}{n}\right)+c_{2} L_{-\frac{a-1}{\frac{a-\frac{i c}{b}+n-1}{2 n}}}^{\left.\left.-\frac{2 i \sqrt{b} x^{n}}{n}\right)\right) .\left(-\frac{2}{2 n}\right.}\right)
\]

\subsection*{29.25 problem 134}

Internal problem ID [10958]
Internal file name [OUTPUT/10214_Sunday_December_31_2023_11_10_05_AM_77954774/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 134.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+(a x+b) y^{\prime}+y c=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.093 (sec). Leaf size: 114
```

dsolve(x^2*diff(y(x),x\$2)+(a*x+b)*diff (y (x), x)+c*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & x^{-\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}-\frac{a}{2}+\frac{1}{2}}\left(\operatorname { K u m m e r U } \left(-\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}+\frac{a}{2}, 1\right.\right. \\
& \left.+\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right) c_{2} \\
& \left.+ \text { KummerM }\left(-\frac{1}{2}+\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}+\frac{a}{2}, 1+\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right) c_{1}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.574 (sec). Leaf size: 243
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+(a * x+b) * y^{\prime}[x]+c * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x) \rightarrow\)
\[
\begin{gathered}
-i^{-\sqrt{a^{2}-2 a-4 c+1}+a+1} b^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right)}\left(\frac{1}{x}\right)^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right)}\left(c_{2} i^{2 \sqrt{a^{2}-2 a-4 c+1}} b^{\sqrt{a^{2}-2 a-4 c+1}}\left(\frac{1}{x}\right)^{1}\right. \\
\left.+1, \frac{b}{x}\right)+c_{1} \text { Hypergeometric1F1 }\left(\frac{1}{2}\left(a-\sqrt{a^{2}-2 a-4 c+1}-1\right), 1\right. \\
\left.\left.-\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right)\right)
\end{gathered}
\]

\subsection*{29.26 problem 135}
29.26.1 Maple step by step solution . 2891

Internal problem ID [10959]
Internal file name [OUTPUT/10215_Sunday_December_31_2023_11_10_06_AM_80813510/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 135.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+a x^{2} y^{\prime}+\left(b x^{2}+c x+d\right) y=0
\]

\subsection*{29.26.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+a x^{2} y^{\prime}+\left(b x^{2}+c x+d\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-a y^{\prime}-\frac{\left(b x^{2}+c x+d\right) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+a y^{\prime}+\frac{\left(b x^{2}+c x+d\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=a, P_{3}(x)=\frac{b x^{2}+c x+d}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=d\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x^{2}+a x^{2} y^{\prime}+\left(b x^{2}+c x+d\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime}\) to series expansion
\[
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(r^{2}+d-r\right) x^{r}+\left(\left(r^{2}+d+r\right) a_{1}+a_{0}(a r+c)\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}\left(k^{2}+2 k r+r^{2}+d-k-r\right)+\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}+d-r=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}, \frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(\left(r^{2}+d+r\right) a_{1}+a_{0}(a r+c)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=-\frac{a_{0}(a r+c)}{r^{2}+d+r}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+(2 r-1) k+r^{2}+d-r\right) a_{k}+(a k+a r-a+c) a_{k-1}+a_{k-2} b=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+(2 r-1)(k+2)+r^{2}+d-r\right) a_{k+2}+(a(k+2)+a r-a+c) a_{k+1}+a_{k} b=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a k a_{k+1}+a r a_{k+1}+a a_{k+1}+a_{k} b+c a_{k+1}}{k^{2}+2 k r+r^{2}+d+3 k+3 r+2}\)
- Recursion relation for \(r=\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\)
\[
a_{k+2}=-\frac{a k a_{k+1}+a\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right) a_{k+1}+a a_{k+1}+a_{k} b+c a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)^{2}+d+3 k+\frac{7}{2}-\frac{3 \sqrt{1-4 d}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}}, a_{k+2}=-\frac{a k a_{k+1}+a\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right) a_{k+1}+a a_{k+1}+a_{k} b+c a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)^{2}+d+3 k+\frac{7}{2}-\frac{3 \sqrt{1-4 d}}{2}}, a_{1}=-\frac{a_{0}\left(a \left(\frac{1}{2}-\frac{\sqrt{1-}}{2}\right.\right.}{\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)^{2}+d}\right.
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\)
\[
a_{k+2}=-\frac{a k a_{k+1}+a\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right) a_{k+1}+a a_{k+1}+a_{k} b+c a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right)+\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right)^{2}+d+3 k+\frac{7}{2}+\frac{3 \sqrt{1-4 d}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}}, a_{k+2}=-\frac{a k a_{k+1}+a\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right) a_{k+1}+a a_{k+1}+a_{k} b+c a_{k+1}}{k^{2}+2 k\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right)+\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right)^{2}+d+3 k+\frac{7}{2}+\frac{3 \sqrt{1-4 d}}{2}}, a_{1}=-\frac{a_{0}\left(a \left(\frac{1}{2}+\frac{\sqrt{1-}}{2}\right.\right.}{\left(\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}\right)^{2}+d}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k+\frac{1}{2}+\frac{\sqrt{1-4 d}}{2}}\right), e_{k+2}=-\frac{a k e_{1+k}+a\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right) e_{1+k}+a e_{1+k}+e_{k} b+c e}{k^{2}+2 k\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{1-4 d}}{2}\right)^{2}+d+3 k+\frac{7}{2}-}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.078 (sec). Leaf size: 79
```

dsolve(x^2*diff(y(x),x\$2)+a*x^2*diff(y(x),x)+(b*x^2+c*x+d)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{a x}{2}}\left(\text { WhittakerM }\left(\frac{c}{\sqrt{a^{2}-4 b}}, \frac{\sqrt{1-4 d}}{2}, \sqrt{a^{2}-4 b} x\right) c_{1}\right. \\
\left.+ \text { WhittakerW }\left(\frac{c}{\sqrt{a^{2}-4 b}}, \frac{\sqrt{1-4 d}}{2}, \sqrt{a^{2}-4 b} x\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 157
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[\mathrm{x}]+\mathrm{a} * \mathrm{x}^{\wedge} 2 * \mathrm{y}{ }^{\prime}[\mathrm{x}]+\left(\mathrm{b} * \mathrm{x}^{\wedge} 2+\mathrm{c} * \mathrm{x}+\mathrm{d}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(->\) True]
\(y(x)\)
\[
\begin{aligned}
& \rightarrow x^{\frac{1}{2}(\sqrt{1-4 d}+1)} e^{-\frac{1}{2} x\left(\sqrt{a^{2}-4 b}+a\right)}\left(c _ { 1 } \text { Hypergeometric } \mathrm { U } \left(\frac{1}{2}\left(-\frac{2 c}{\sqrt{a^{2}-4 b}}+\sqrt{1-4 d}+1\right), \sqrt{1-4 d}\right.\right. \\
&\left.\left.+1, \sqrt{a^{2}-4 b} x\right)+c_{2} L_{\frac{\sqrt{1-4 d}}{\sqrt{a^{2}-4 b}}-\frac{1}{2} \sqrt{1-4 d}-\frac{1}{2}}\left(\sqrt{a^{2}-4 b} x\right)\right)
\end{aligned}
\]

\subsection*{29.27 problem 136}

Internal problem ID [10960]
Internal file name [OUTPUT/10216_Sunday_December_31_2023_11_10_06_AM_94347684/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 136.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+\left(a x^{2}+b\right) y^{\prime}+c\left((a-c) x^{2}+b\right) y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunD ODE, case c = 0     <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.485 (sec). Leaf size: 243
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x)+c *\left((a-c) * x^{\wedge} 2+b\right) * y(x)=0, y(x), \quad\right.\) singsol=all \()\)
\[
\begin{aligned}
y(x)= & \sqrt{x}(\operatorname{HeunD}(-4 \sqrt{-b(-2 c+a)},-4 \sqrt{-b(-2 c+a)}-1
\end{aligned} \quad \begin{array}{r}
\quad+(-4 a+8 c) b, 8 \sqrt{-b(-2 c+a)},-4 \sqrt{-b(-2 c+a)}+1 \\
\\
\left.+(-8 c+4 a) b, \frac{\sqrt{-b(-2 c+a)} x-b}{\sqrt{-b(-2 c+a)} x+b}\right) \mathrm{e}^{-x(a-c)} c_{2}+\operatorname{HeunD}(4 \sqrt{-b(-2 c+a)} \\
-4 \sqrt{-b(-2 c+a)}-1+(-4 a+8 c) b, 8 \sqrt{-b(-2 c+a)},-4 \sqrt{-b(-2 c+a)}+1 \\
\\
\left.\left.\quad+(-8 c+4 a) b, \frac{\sqrt{-b(-2 c+a)} x-b}{\sqrt{-b(-2 c+a)} x+b}\right) \mathrm{e}^{\frac{-c x^{2}+b}{x}} c_{1}\right)
\end{array}
\]

Solution by Mathematica
Time used: 1.026 (sec). Leaf size: 44
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 2+b\right) * y^{\prime}[x]+c *\left((a-c) * x^{\wedge} 2+b\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\)
\[
y(x) \rightarrow e^{-c x}\left(c_{2} \int_{1}^{x} e^{\frac{b}{K[1]}-a K[1]+2 c K[1]} d K[1]+c_{1}\right)
\]

\subsection*{29.28 problem 137}
29.28.1 Solving as second order ode lagrange adjoint equation method od 2899
29.28.2 Maple step by step solution

Internal problem ID [10961]
Internal file name [OUTPUT/10217_Sunday_December_31_2023_11_10_08_AM_81546286/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 137.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}-y b=0
\]

\subsection*{29.28.1 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x(a x+b) y^{\prime}-y b=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x+b}{x} \\
q(x) & =-\frac{b}{x^{2}} \\
r(x) & =0
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-\left(\frac{(a x+b) \xi(x)}{x}\right)^{\prime}+\left(-\frac{b \xi(x)}{x^{2}}\right) & =0 \\
\xi^{\prime \prime}(x)-\frac{(a x+b) \xi^{\prime}(x)}{x}+\left(-\frac{a}{x}+\frac{a x+b}{x^{2}}-\frac{b}{x^{2}}\right) \xi(x) & =0
\end{aligned}
\]

Which is solved for \(\xi(x)\). This is second order ode with missing dependent variable \(\xi(x)\). Let
\[
p(x)=\xi^{\prime}(x)
\]

Then
\[
p^{\prime}(x)=\xi^{\prime \prime}(x)
\]

Hence the ode becomes
\[
p^{\prime}(x) x+(-a x-b) p(x)=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p(a x+b)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{a x+b}{x}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =\frac{a x+b}{x} d x \\
\int \frac{1}{p} d p & =\int \frac{a x+b}{x} d x \\
\ln (p) & =a x+b \ln (x)+c_{1} \\
p & =\mathrm{e}^{a x+b \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{a x+b \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
p(x)=c_{1} x^{b} \mathrm{e}^{a x}
\]

Since \(p=\xi^{\prime}(x)\) then the new first order ode to solve is
\[
\xi^{\prime}(x)=c_{1} x^{b} \mathrm{e}^{a x}
\]

Integrating both sides gives
\[
\begin{aligned}
\xi(x) & =\int c_{1} x^{b} \mathrm{e}^{a x} \mathrm{~d} x \\
& =-\frac{c_{1}(-a)^{-b}\left(x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}-x^{b}(-a)^{b} \mathrm{e}^{a x}-x^{b}(-a)^{b} b(-a x)^{-b} \Gamma(b,-a x)\right)}{a}+c_{2}
\end{aligned}
\]

The original ode (2) now reduces to first order ode
\[
\begin{array}{r}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y=\int \xi(x) \\
\left.y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right)=\frac{\int \xi(x)}{\xi(}\right) \\
y^{\prime}+y\left(\frac{a x+b}{x}+\frac{c_{3}(-a)^{-b}\left(-\frac{x^{b} b(-a)^{b} \mathrm{e}^{a x}}{x}-x^{b}(-a)^{b} a \mathrm{e}^{a x}-x^{b}(-a)^{b} b(-a x)^{-b} a(-a x)^{b-1} \mathrm{e}^{a x}\right)}{a\left(-\frac{c_{3}(-a)^{-b}\left(x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}-x^{b}(-a)^{b} \mathrm{e}^{a x}-x^{b}(-a)^{b} b(-a x)^{-b} \Gamma(b,-a x)\right)}{a}+c_{2}\right)}\right)=0
\end{array}
\]

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y\left(c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-b}(-a\right.}{x\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+c_{3}(-\right.}
\end{aligned}
\]

Where \(f(x)=\frac{c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b,-a x) c_{3} a b x+a}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+c_{3}(-a)^{-b} x^{b}(-a)^{b} b(-a x)^{-b} \Gamma(b,-a\right.}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
& \frac{1}{y} d y=\frac{c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-b}(}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+c_{3}\right.} \\
& \int \frac{1}{y} d y=\int \frac{c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-}}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+\right.} \\
& \ln (y)=\int \frac{c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-}}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+\right.}
\end{aligned}
\]

Hence, the solution found using Lagrange adjoint equation method is
\[
\begin{aligned}
& y
\end{aligned}
\]

Summary
The solution(s) found are the following
\(y\)
\(=c_{3} \mathrm{e}^{\frac{c_{3}(-a)^{-b} a x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} e^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} b x-x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b,-a x) c_{3} a b x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b}}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+c_{3}(-a)^{-b} x^{b}(-a)^{b} b(-a x)^{-b} \Gamma(b,-a x)+c_{3}(-a)^{-b} x^{b}(-a)^{b} e^{a}\right.}}\)
Verification of solutions
\(y\)
\(=c_{3} \mathrm{e}^{\frac{\left.c_{3}(-a)^{-b} b_{a x} x^{b}(-a)^{b} b(-a x)^{-b}(-a x)^{b-1} \mathrm{e}^{a x} x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b) c_{3} a b x-x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b} \Gamma(b,-a x) c_{3} a b x+x^{b}(-a)^{-b}(-a)^{b}(-a x)^{-b}\right)}{\left(-c_{3}(-a)^{-b} x^{b}(-a)^{b} b \Gamma(b)(-a x)^{-b}+c_{3}(-a)^{-b} x^{b}(-a)^{b} b(-a x)^{-b} \Gamma(b,-a x)+c_{3}(-a)^{-b} x^{b}(-a)^{b} \mathrm{e}^{a}\right.}}\)
Verified OK.

\subsection*{29.28.2 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime} x^{2}+x(a x+b) y^{\prime}-y b=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(a x+b) y^{\prime}}{x}+\frac{b y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(a x+b) y^{\prime}}{x}-\frac{b y}{x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x+b}{x}, P_{3}(x)=-\frac{b}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-b\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}+x(a x+b) y^{\prime}-y b=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(r-1)(b+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)(k+b+r)+a a_{k-1}(k+r-1)\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((r-1)(b+r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\{1,-b\}\)
- Each term in the series must be 0 , giving the recursion relation
\((k+r-1)\left(a_{k}(k+b+r)+a a_{k-1}\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\((k+r)\left(a_{k+1}(k+1+b+r)+a a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a a_{k}}{k+1+b+r}
\]
- Recursion relation for \(r=1\)
\[
a_{k+1}=-\frac{a a_{k}}{k+2+b}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a a_{k}}{k+2+b}\right]
\]
- \(\quad\) Recursion relation for \(r=-b\)
\[
a_{k+1}=-\frac{a a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=-b\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-b}, a_{k+1}=-\frac{a a_{k}}{k+1}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{1+k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k-b}\right), c_{1+k}=-\frac{a c_{k}}{k+2+b}, d_{1+k}=-\frac{a d_{k}}{1+k}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 51
```

dsolve(x^2*diff(y(x),x\$2)+(a*x^2+b*x)*\operatorname{diff}(y(x),x)-b*y(x)=0,y(x), singsol=all)

```
\[
y(x)=-\mathrm{e}^{-a x} c_{2}(\Gamma(b,-a x) b-\Gamma(b+1))(-a x)^{-b}+c_{1} x^{-b} \mathrm{e}^{-a x}-c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 43
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+\left(a * x^{\wedge} 2+b * x\right) * y\right.\) ' \([x]-b * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-a x}\left(\frac{c_{1}(-a x)^{-b} \Gamma(b+1,-a x)}{a}+c_{2} x^{-b}\right)
\]

\subsection*{29.29 problem 138}
29.29.1 Maple step by step solution

2906
Internal problem ID [10962]
Internal file name [OUTPUT/10218_Sunday_December_31_2023_11_10_11_AM_65170388/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 138.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}+\left(k(a-k) x^{2}+(a n+b k-2 k n) x+n(-n+b-1)\right) y=0
\]

\subsection*{29.29.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+x(a x+b) y^{\prime}+\left(-n^{2}+((a-2 k) x+b-1) n+k x((a-k) x+b)\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(a k x^{2}-k^{2} x^{2}+a n x+k x b-2 k n x+n b-n^{2}-n\right) y}{x^{2}}-\frac{(a x+b) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(a x+b) y^{\prime}}{x}+\frac{\left(a k x^{2}-k^{2} x^{2}+a n x+k x b-2 k n x+n b-n^{2}-n\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x+b}{x}, P_{3}(x)=\frac{a k x^{2}-k^{2} x^{2}+a n x+k x b-2 k n x+n b-n^{2}-n}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=b\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=n b-n^{2}-n\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x^{2}+x(a x+b) y^{\prime}+\left(a k x^{2}-k^{2} x^{2}+a n x+k x b-2 k n x+n b-n^{2}-n\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}(n+r)(b+r-1-n) x^{r}+\left(a_{1}(1+n+r)(b+r-n)+a_{0}(a n+a r+b k-2 k n)\right) x^{1+r}+\left(\sum_{k=}^{\infty}\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((n+r)(b+r-1-n)=0\)
- Values of r that satisfy the indicial equation
\(r \in\{-n, n-b+1\}\)
- Each term must be 0
\(a_{1}(1+n+r)(b+r-n)+a_{0}(a n+a r+b k-2 k n)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=-\frac{a_{0}(a n+a r+b k-2 k n)}{n b+b r-n^{2}+r^{2}+b-n+r}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+n+r)(k+b+r-1-n)+((k+n+r-1) a+k(-2 n+b)) a_{k-1}+k a_{k-2}(a-k)=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+2+n+r)(k+1+b+r-n)+((k+1+n+r) a+k(-2 n+b)) a_{k+1}+k a_{k}(a-k)=\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k} a k+a k a_{k+1}+a n a_{k+1}+a r a_{k+1}+b k a_{k+1}-a_{k} k^{2}-2 k n a_{k+1}+a a_{k+1}}{(k+2+n+r)(k+1+b+r-n)}\)
- Recursion relation for \(r=-n\)
\(a_{k+2}=-\frac{a_{k} a k+a k a_{k+1}+b k a_{k+1}-a_{k} k^{2}-2 k n a_{k+1}+a a_{k+1}}{(k+2)(k+1+b-2 n)}\)
- \(\quad\) Solution for \(r=-n\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-n}, a_{k+2}=-\frac{a_{k} a k+a k a_{k+1}+b k a_{k+1}-a_{k} k^{2}-2 k n a_{k+1}+a a_{k+1}}{(k+2)(k+1+b-2 n)}, a_{1}=-\frac{a_{0}(b k-2 k n)}{-2 n+b}\right]
\]
- Recursion relation for \(r=n-b+1\)
\[
a_{k+2}=-\frac{a_{k} a k+a k a_{k+1}+a n a_{k+1}+a(n-b+1) a_{k+1}+b k a_{k+1}-a_{k} k^{2}-2 k n a_{k+1}+a a_{k+1}}{(k+3+2 n-b)(k+2)}
\]
- \(\quad\) Solution for \(r=n-b+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n-b+1}, a_{k+2}=-\frac{a_{k} a k+a k a_{k+1}+a n a_{k+1}+a(n-b+1) a_{k+1}+b k a_{k+1}-a_{k} k^{2}-2 k n a_{k+1}+a a_{k+1}}{(k+3+2 n-b)(k+2)}, a_{1}=-\frac{}{n t}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{m=0}^{\infty} c_{m} x^{m-n}\right)+\left(\sum_{m=0}^{\infty} d_{m} x^{m+n-b+1}\right), c_{m+2}=-\frac{a k c_{m}+a m c_{m+1}+b k c_{m+1}-k^{2} c_{m}-2 k n c_{m+1}+a c_{m+1}}{(m+2)(m+1+b-2 n)}, c\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 48
```

dsolve(x^2*diff (y(x),x\$2)+(a*x^2+b*x)*diff (y(x),x)+(k*(a-k)*x^2+(a*n+b*k-2*k*n)*x+n*(b-n-1))

```
\[
y(x)=c_{1} x^{-n} \mathrm{e}^{-k x}+c_{2} x^{-\frac{b}{2}} \text { WhittakerM }\left(-\frac{b}{2}+n,-\frac{b}{2}+n+\frac{1}{2},(-2 k+a) x\right) \mathrm{e}^{-\frac{a x}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.504 (sec). Leaf size: 64
DSolve \(\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\left(\mathrm{k} *(\mathrm{a}-\mathrm{k}) * \mathrm{x}^{\wedge} 2+(\mathrm{a} * \mathrm{n}+\mathrm{b} * \mathrm{k}-2 * \mathrm{k} * \mathrm{n}) * \mathrm{x}+\mathrm{n} *(\mathrm{~b}-\mathrm{n}-1)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\)
\[
y(x) \rightarrow e^{-k x} x^{-n}\left(c_{1}-c_{2} x^{-b+2 n+1}(x(a-2 k))^{b-2 n-1} \Gamma(-b+2 n+1,(a-2 k) x)\right)
\]

\subsection*{29.30 problem 139}
29.30.1 Maple step by step solution . 2910

Internal problem ID [10963]
Internal file name [OUTPUT/10219_Sunday_December_31_2023_11_10_12_AM_23575013/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 139.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
a_{2} x^{2} y^{\prime \prime}+\left(a_{1} x^{2}+b_{1} x\right) y^{\prime}+\left(x^{2} a_{0}+b_{0} x+c_{0}\right) y=0
\]

\subsection*{29.30.1 Maple step by step solution}

Let's solve
\(a_{2} x^{2} y^{\prime \prime}+x\left(a_{1} x+b_{1}\right) y^{\prime}+\left(x^{2} a_{0}+b_{0} x+c_{0}\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(x^{2} a_{0}+b_{0} x+c_{0}\right) y}{a_{2} x^{2}}-\frac{\left(a_{1} x+b_{1}\right) y^{\prime}}{x a_{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a_{1} x+b_{1}\right) y^{\prime}}{x a_{2}}+\frac{\left(x^{2} a_{0}+b_{0} x+c_{0}\right) y}{a_{2} x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a_{1} x+b_{1}}{a_{2} x}, P_{3}(x)=\frac{x^{2} a_{0}+b_{0} x+c_{0}}{a_{2} x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{b_{1}}{a_{2}}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{c_{0}}{a_{2}}\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
a_{2} x^{2} y^{\prime \prime}+x\left(a_{1} x+b_{1}\right) y^{\prime}+\left(x^{2} a_{0}+b_{0} x+c_{0}\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(a_{2} r^{2}-a_{2} r+b_{1} r+c_{0}\right) x^{r}+\left(\left(a_{2} r^{2}+a_{2} r+b_{1} r+b_{1}+c_{0}\right) a_{1}+a_{0}\left(a_{1} r+b_{0}\right)\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(a\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
a_{2} r^{2}-a_{2} r+b_{1} r+c_{0}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}},-\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}\right\}
\]
- Each term must be 0
\[
\left(a_{2} r^{2}+a_{2} r+b_{1} r+b_{1}+c_{0}\right) a_{1}+a_{0}\left(a_{1} r+b_{0}\right)=0
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
a_{1}=-\frac{a_{0}\left(a_{1} r+b_{0}\right)}{a_{2} r^{2}+a_{2} r+b_{1} r+b_{1}+c_{0}}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left((k+r)(k+r-1) a_{2}+b_{1} k+b_{1} r+c_{0}\right) a_{k}+a_{1} k a_{k-1}+a_{1} r a_{k-1}+\left(-a_{1}+b_{0}\right) a_{k-1}+a_{k-2} a_{0}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2+r)(k+1+r) a_{2}+b_{1}(k+2)+b_{1} r+c_{0}\right) a_{k+2}+a_{1}(k+2) a_{k+1}+a_{1} r a_{k+1}+\left(-a_{1}+b_{0}\right)
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{1} k a_{k+1}+a_{1} r a_{k+1}+a_{k} a_{0}+a_{1} a_{k+1}+b_{0} a_{k+1}}{a_{2} k^{2}+2 a_{2} k r+a_{2} r^{2}+3 a_{2} k+3 a_{2} r+b_{1} k+b_{1} r+2 a_{2}+2 b_{1}+c_{0}}
\]
- Recursion relation for \(r=\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}\)
\[
a_{k+2}=-\frac{a_{1} k a_{k+1}+\frac{a_{1}\left(a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right) a_{k+1}}{2 a_{2}}+a_{k} a_{0}+a_{1} a_{k+1}+b_{0} a_{k+}}{a_{2} k^{2}+k\left(a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)+\frac{\left(a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)^{2}}{4 a_{2}}+3 a_{2} k+\frac{7 a_{2}}{2}+\frac{b_{1}}{2}+\frac{3 \sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b}}{2}}
\]
- Solution for \(r=\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}}, a_{k+2}=-\frac{a_{1} k a_{k+1}+\frac{a_{1}\left(a_{2}-b_{1}+\right.}{a_{2} k^{2}+k\left(a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)+\frac{\left(a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-}\right.}{4 a_{2}}}}{\frac{1}{2}}\right.
\]
- Recursion relation for \(r=-\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}\)
\[
a_{k+2}=-\frac{a_{1} k a_{k+1}-\frac{a_{1}\left(-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right) a_{k+1}}{2 a_{2}}+a_{k} a_{0}+a_{1} a_{k+1}+b_{0}}{a_{2} k^{2}-k\left(-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)+\frac{\left(-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)^{2}}{4 a_{2}}+3 a_{2} k+\frac{7 a_{2}}{2}+\frac{b_{1}}{2}-\frac{3 \sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}}}{2}}
\]
- Solution for \(r=-\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}}, a_{k+2}=-\frac{a_{1} k a_{k+1}-\frac{a_{1}\left(-a_{2}\right.}{a_{2} k^{2}-k\left(-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}\right)+\frac{\left(-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a}\right.}{4 a_{2}}}}{\substack{ }}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}-2 a_{2} b_{1}-4 c_{0} a_{2}+b_{1}^{2}}}{2 a_{2}}}\right), a_{k+2}=-\frac{a_{2} k^{2}+k}{-}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.11 (sec). Leaf size: 150
dsolve (a__ \(2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a_{-_} 1 * x^{\wedge} 2+b_{-} 1 * x\right) * \operatorname{diff}(y(x), x)+\left(a_{-} 0 * x^{\wedge} 2+b_{-} 0 * x+c_{-} 0\right) * y(x)=0\),
\(y(x)\)
\(=\mathrm{e}^{-\frac{a_{1} x}{2 a_{2}}} x^{-\frac{b_{1}}{2 a_{2}}}\left(c_{1}\right.\) WhittakerM \(\left(-\frac{b_{1} a_{1}-2 a_{2} b_{0}}{2 a_{2} \sqrt{-4 a_{0} a_{2}+a_{1}^{2}}}, \frac{\sqrt{a_{2}^{2}+\left(-2 b_{1}-4 c_{0}\right) a_{2}+b_{1}^{2}}}{2 a_{2}}, \frac{\sqrt{-4 a_{0} a_{2}+a_{1}^{2}} x}{a_{2}}\right)\)
+ WhittakerW \(\left.\left(-\frac{b_{1} a_{1}-2 a_{2} b_{0}}{2 a_{2} \sqrt{-4 a_{0} a_{2}+a_{1}^{2}}}, \frac{\sqrt{a_{2}^{2}+\left(-2 b_{1}-4 c_{0}\right) a_{2}+b_{1}^{2}}}{2 a_{2}}, \frac{\sqrt{-4 a_{0} a_{2}+a_{1}^{2}} x}{a_{2}}\right) c_{2}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.538 (sec). Leaf size: 272
DSolve \(\left[\mathrm{a} 2 * \mathrm{x}^{\wedge} 2 * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+\left(\mathrm{a} 1 * \mathrm{x}^{\wedge} 2+\mathrm{b} 1 * \mathrm{x}\right) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{a} 0 * \mathrm{x}^{\wedge} 2+\mathrm{b} 0 * \mathrm{x}+\mathrm{c} 0\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolu
\(y(x)\)
\(\rightarrow e^{-\frac{x\left(\sqrt{\mathrm{a}^{2}-4 \mathrm{aOa} 2}+\mathrm{a} 1\right)}{2 \mathrm{a} 2}} x^{\frac{\sqrt{\mathrm{a}^{2}-2 \mathrm{a} 2(\mathrm{~b} 1+2 \mathrm{c} 0)+\mathrm{b} 1^{2}}+\mathrm{a} 2-\mathrm{b} 1}{2 \mathrm{a} 2}}\left(c_{1}\right.\) HypergeometricU \(\left(\frac{-\frac{2 \mathrm{~b} 0 \mathrm{a} 2}{\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}}+\mathrm{a} 2+\frac{\mathrm{a} 1 \mathrm{~b} 1}{\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2}}}{2 \mathrm{a}}\right.\)
\[
\left.+c_{2} L^{\frac{\sqrt{\mathrm{a} 2^{2}-2(\mathrm{~b} 1+2 \mathrm{c} 0) \mathrm{a} 2+\mathrm{b} 1^{2}}}{\mathrm{a} 2}} \underset{-\frac{-\frac{2 \mathrm{~b} a}{\sqrt{\mathrm{a}^{2}-4 \mathrm{a} 0 \mathrm{a} 2}}+\mathrm{a} 2+\frac{\mathrm{a} 1 \mathrm{~b} 1}{\sqrt{\mathrm{a}^{2}-4 \mathrm{aoa} 2}}+\sqrt{\mathrm{a}^{2}-2(\mathrm{~b} 1+2 \mathrm{c} 0) \mathrm{a} 2+\mathrm{b} 1^{2}}}{2 \mathrm{a} 2}}{ }\left(\frac{\sqrt{\mathrm{a} 1^{2}-4 \mathrm{a} 0 \mathrm{a} 2} x}{\mathrm{a} 2}\right)\right)
\]

\subsection*{29.31 problem 140}
29.31.1 Solving using Kovacic algorithm 2915

Internal problem ID [10964]
Internal file name [OUTPUT/10220_Sunday_December_31_2023_11_10_14_AM_28903513/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 140.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(a x^{2}+(a b-1) x+b\right) y^{\prime}+a^{2} b x y=0
\]

\subsection*{29.31.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+\left(a b x+a x^{2}+b-x\right) y^{\prime}+a^{2} b x y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=a b x+a x^{2}+b-x \tag{3}\\
& C=a^{2} b x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{a^{2} b^{2} x^{2}-2 a^{2} b x^{3}+a^{2} x^{4}+2 a b^{2} x-2 a b x^{2}-2 a x^{3}+b^{2}-6 b x+3 x^{2}}{4 x^{4}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=a^{2} b^{2} x^{2}-2 a^{2} b x^{3}+a^{2} x^{4}+2 a b^{2} x-2 a b x^{2}-2 a x^{3}+b^{2}-6 b x+3 x^{2} \\
& t=4 x^{4}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2} b^{2} x^{2}-2 a^{2} b x^{3}+a^{2} x^{4}+2 a b^{2} x-2 a b x^{2}-2 a x^{3}+b^{2}-6 b x+3 x^{2}}{4 x^{4}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 140: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-4 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{4}\). There is a pole at \(x=0\) of order 4 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Looking at higher order poles of order \(2 v \geq 4\) (must be even order for case one).Then for each pole \(c,[\sqrt{r}]_{c}\) is the sum of terms \(\frac{1}{(x-c)^{2}}\) for \(2 \leq i \leq v\) in the Laurent series expansion of \(\sqrt{r}\) expanded around each pole \(c\). Hence
\[
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
\]

Let \(a\) be the coefficient of the term \(\frac{1}{(x-c)^{v}}\) in the above where \(v\) is the pole order divided by 2 . Let \(b\) be the coefficient of \(\frac{1}{(x-c)^{v+1}}\) in \(r\) minus the coefficient of \(\frac{1}{(x-c)^{v+1}}\) in \([\sqrt{r}]_{c}\). Then
\[
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
\]

The partial fraction decomposition of \(r\) is
\[
r=\frac{a^{2}}{4}+\frac{b^{2}}{4 x^{4}}+\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{x^{3}}+\frac{\frac{1}{4} a^{2} b^{2}-\frac{1}{2} a b+\frac{3}{4}}{x^{2}}+\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{x}
\]

There is pole in \(r\) at \(x=0\) of order 4 , hence \(v=2\). Expanding \(\sqrt{r}\) as Laurent series about this pole \(c=0\) gives
\([\sqrt{r}]_{c} \approx \frac{b}{2 x^{2}}+\frac{2 a b^{2}-6 b}{4 b x}+\frac{b\left(\frac{a^{2} b^{2}-2 a b+3}{2 b^{2}}-\frac{\left(2 a b^{2}-6 b\right)^{2}}{8 b^{4}}\right)}{2}+\frac{b\left(\frac{-2 a^{2} b-2 a}{2 b^{2}}-\frac{\left(2 a b^{2}-6 b\right)\left(a^{2} b^{2}-2 a b+3\right)}{4 b^{4}}+\frac{\left(2 a b^{2}-6 b\right)^{3}}{16 b^{6}}\right) x}{2}+\)

Using eq. (1B), taking the sum up to \(v=2\) the above becomes
\[
\begin{equation*}
[\sqrt{r}]_{c}=\frac{b}{2 x^{2}} \tag{3~B}
\end{equation*}
\]

The above shows that the coefficient of \(\frac{1}{(x-0)^{2}}\) is
\[
a=\frac{b}{2}
\]

Now we need to find \(b\). let \(b\) be the coefficient of the term \(\frac{1}{(x-c)^{v+1}}\) in \(r\) minus the coefficient of the same term but in the sum \([\sqrt{r}]_{c}\) found in eq. (3B). Here \(c\) is current pole which is \(c=0\). This term becomes \(\frac{1}{x^{3}}\). The coefficient of this term in the sum \([\sqrt{r}]_{c}\) is seen to be 0 and the coefficient of this term \(r\) is found from the partial fraction decomposition from above to be \(\frac{1}{2} a b^{2}-\frac{3}{2} b\). Therefore
\[
\begin{aligned}
b & =\left(\frac{1}{2} a b^{2}-\frac{3}{2} b\right)-(0) \\
& =\frac{1}{2} a b^{2}-\frac{3}{2} b
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =\frac{b}{2 x^{2}} \\
\alpha_{c}^{+} & =\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{\frac{b}{2}}+2\right)=\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1 \\
\alpha_{c}^{-} & =\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{\frac{b}{2}}+2\right)=-\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{a}{2}-\frac{1}{2 x}-\frac{a b}{2 x}-\frac{13 b^{2}}{4 a x^{4}}-\frac{163 b^{4}}{4 a^{2} x^{7}}-\frac{20 b^{3}}{a^{2} x^{6}}-\frac{23 b^{2}}{4 a^{3} x^{6}}+\frac{11 b}{4 a^{3} x^{5}}+\frac{14 b^{2}}{a^{4} x^{7}}+\frac{11 b}{2 a^{4} x^{6}}+\frac{3 b}{a^{5} x^{7}}-\frac{3}{4 a^{6} x^{7}}-\frac{b^{6}}{2 x^{7}}-\frac{b^{5}}{2 x^{6}}-\frac{b^{4}}{2 x^{5}}- \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{a}{2}
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{a}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{a^{2}}{4}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{a^{2} b^{2} x^{2}-2 a^{2} b x^{3}+a^{2} x^{4}+2 a b^{2} x-2 a b x^{2}-2 a x^{3}+b^{2}-6 b x+3 x^{2}}{4 x^{4}} \\
& =Q+\frac{R}{4 x^{4}} \\
& =\left(\frac{a^{2}}{4}\right)+\left(\frac{\left(-2 a^{2} b-2 a\right) x^{3}+\left(a^{2} b^{2}-2 a b+3\right) x^{2}+\left(2 a b^{2}-6 b\right) x+b^{2}}{4 x^{4}}\right) \\
& =\frac{a^{2}}{4}+\frac{\left(-2 a^{2} b-2 a\right) x^{3}+\left(a^{2} b^{2}-2 a b+3\right) x^{2}+\left(2 a b^{2}-6 b\right) x+b^{2}}{4 x^{4}}
\end{aligned}
\]

Since the degree of \(t\) is 4 , then we see that the coefficient of the term \(x^{3}\) in the remainder \(R\) is \(-2 a^{2} b-2 a\). Dividing this by leading coefficient in \(t\) which is 4 gives \(-\frac{1}{2} a^{2} b-\frac{1}{2} a\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-\frac{1}{2} a^{2} b-\frac{1}{2} a\right)-(0) \\
& =-\frac{1}{2} a^{2} b-\frac{1}{2} a
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{a}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{\frac{a}{2}}-0\right)=\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{\frac{a}{2}}-0\right)=-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{a^{2} b^{2} x^{2}-2 a^{2} b x^{3}+a^{2} x^{4}+2 a b^{2} x-2 a b x^{2}-2 a x^{3}+b^{2}-6 b x+3 x^{2}}{4 x^{4}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 4 & \(\frac{b}{2 x^{2}}\) & \(\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1\) & \(-\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(\frac{a}{2}\) & \(\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}\) & \(-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{+}\right) \\
& =-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}-\left(-\frac{-\frac{1}{2} a^{2} b-\frac{1}{2} a}{a}-1\right) \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((+)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{+}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{b}{2 x^{2}}+\frac{\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1}{x}+(-)\left(\frac{a}{2}\right) \\
& =\frac{b}{2 x^{2}}+\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1 \\
& =\frac{(-x+b)(a x+1)}{2 x^{2}}-\frac{a}{2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(\frac{b}{2 x^{2}}+\frac{\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1}{x}-\frac{a}{2}\right)(1)+\left(\left(-\frac{b}{x^{3}}-\frac{\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1}{x^{2}}\right)+\left(\frac{b}{2 x^{2}}+\frac{\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{b}+1}{x}-\frac{a}{2}\right)^{2}-\left(\frac{a^{2}}{x}\right.\right.\)

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{1}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{1}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\left(x+\frac{1}{a}\right) \mathrm{e}^{\int\left(\frac{b}{2 x^{2}}+\frac{\frac{1}{2} a b^{2}-\frac{3}{2} b}{x}+1\right.}-\frac{a}{2}\right) d x \\
& =\left(x+\frac{1}{a}\right) \mathrm{e}^{-\frac{b}{2 x}-\frac{a x}{2}+\frac{\ln (x) a b}{2}-\frac{\ln (x)}{2}} \\
& =\frac{x^{\frac{a b}{2}-\frac{1}{2}}(a x+1) \mathrm{e}^{-\frac{a x^{2}+b}{2 x}}}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a b x+a x^{2}+b-x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{a x}{2}+\frac{b}{2 x}-\frac{(a b-1) \ln (x)}{2}} \\
& =z_{1}\left(x^{-\frac{a b}{2}+\frac{1}{2}} e^{\frac{-a x^{2}+b}{2 x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{(a x+1) \mathrm{e}^{-a x}}{a}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a b x+a x^{2}+b-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-a x+\frac{b}{x}-\ln (x) a b+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{x^{-a b+1} a^{2} \mathrm{e}^{\frac{a x^{2}+b}{x}}}{(a x+1)^{2}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\right)+c_{2}\left(\frac{(a x+1) \mathrm{e}^{-a x}}{a}\left(\int \frac{x^{-a b+1} a^{2} \mathrm{e}^{\frac{a x^{2}+b}{x}}}{(a x+1)^{2}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2} a(a x+1) \mathrm{e}^{-a x}\left(\int \frac{x^{-a b+1} \mathrm{e}^{\frac{a x^{2}+b}{x}}}{(a x+1)^{2}} d x\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}(a x+1) \mathrm{e}^{-a x}}{a}+c_{2} a(a x+1) \mathrm{e}^{-a x}\left(\int \frac{x^{-a b+1} \mathrm{e}^{\frac{a x^{2}+b}{x}}}{(a x+1)^{2}} d x\right)
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunD ODE, case c = 0     <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.312 (sec). Leaf size: 199
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+(a * b-1) * x+b\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 * b * x * y(x)=0, y(x)\right.\), singsol=all)
\[
\begin{array}{r}
y(x)=\left(\text { HeunD } \left(4 \sqrt{a b},-a^{2} b^{2}+4 a b-8 \sqrt{a b}-4,-8 \sqrt{a b}(a b-1), a^{2} b^{2}-4 a b-8 \sqrt{a b}\right.\right. \\
\left.+4, \frac{\sqrt{a b} x-b}{\sqrt{a b} x+b}\right) \mathrm{e}^{\frac{-a x^{2}+b}{x}} c_{1}+\operatorname{HeunD}\left(-4 \sqrt{a b},-a^{2} b^{2}+4 a b-8 \sqrt{a b}-4\right. \\
\left.\left.-8 \sqrt{a b}(a b-1), a^{2} b^{2}-4 a b-8 \sqrt{a b}+4, \frac{\sqrt{a b} x-b}{\sqrt{a b} x+b}\right) c_{2}\right) x^{1-\frac{a b}{2}}
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 4.002 (sec). Leaf size: 67
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 2+(a * b-1) * x+b\right) * y^{\prime}[x]+a^{\wedge} 2 * b * x * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\[
\left.y(x) \rightarrow \frac{e^{-a x}(a x+1)\left(c_{2} \int_{1}^{x} \frac{a^{2} e^{\frac{b}{K[1]}+a K[1]} K[1]^{1-a b}}{(a K[1]+1)^{2}}\right.}{l} d K[1]+c_{1}\right)
\]

\subsection*{29.32 problem 141}

Internal problem ID [10965]
Internal file name [OUTPUT/10221_Sunday_December_31_2023_11_10_17_AM_90655406/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 141.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}-2 x\left(x^{2}-a\right) y^{\prime}+\left(2 n x^{2}+\left((-1)^{n}-1\right) a\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.125 (sec). Leaf size: 81
```

dsolve(x^2*diff(y(x),x\$2)-2*x*(x^2-a)*diff (y(x),x)+(2*n*x^2+( (-1)^n-1)*a )*y(x)=0,y(x), sin

```
\[
\begin{aligned}
y(x)=x^{-a-\frac{1}{2}} \mathrm{e}^{\frac{x^{2}}{2}}(& \text { WhittakerM }\left(\frac{a}{2}+\frac{n}{2}+\frac{1}{4}, \frac{\sqrt{1-4 a(-1)^{n}+4 a^{2}}}{4}, x^{2}\right) c_{1} \\
& \left.+ \text { WhittakerW }\left(\frac{a}{2}+\frac{n}{2}+\frac{1}{4}, \frac{\sqrt{1-4 a(-1)^{n}+4 a^{2}}}{4}, x^{2}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.646 (sec). Leaf size: 231
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]-2 * \mathrm{x} *\left(\mathrm{x}^{\wedge} 2-\mathrm{a}\right) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\left(2 * \mathrm{n} * \mathrm{x}^{\wedge} 2+\left((-1)^{\wedge} \mathrm{n}-1\right) * \mathrm{a}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingulars
\(y(x)\)
\[
\begin{aligned}
& \rightarrow i^{-a}(-1)^{\frac{1}{4}\left(1-\sqrt{4 a^{2}-4 a(-1)^{n}+1}\right)} x^{\frac{1}{2}\left(-\sqrt{4 a^{2}-4 a(-1)^{n}+1}-2 a+1\right)}\left(c _ { 1 } \text { Hypergeometric1F1 } \left(\frac { 1 } { 4 } \left(-2 a-2 n-\sqrt{4 a^{2}-4}\right.\right.\right. \\
&\left.-\frac{1}{2} \sqrt{4 a^{2}-4(-1)^{n} a+1}, x^{2}\right) \\
&+c_{2} i^{\sqrt{4 a^{2}-4 a(-1)^{n}+1}} x^{\sqrt{4 a^{2}-4 a(-1)^{n}+1}} \text { Hypergeometric1F1 }(\frac{1}{4}\left(-2 a-2 n+\sqrt{4 a^{2}-4(-1)^{n} a+1}+1\right), \frac{1}{2}(1
\end{aligned}
\]

\subsection*{29.33 problem 142}
29.33.1 Maple step by step solution

Internal problem ID [10966]
Internal file name [OUTPUT/10222_Sunday_December_31_2023_11_10_18_AM_21141346/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 142.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+x\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{3}+B x^{2}+C x+d\right) y=0
\]

\subsection*{29.33.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{2}+x\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{3}+B x^{2}+C x+d\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(A x^{3}+B x^{2}+C x+d\right) y}{x^{2}}-\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a x^{2}+b x+c\right) y^{\prime}}{x}+\frac{\left(A x^{3}+B x^{2}+C x+d\right) y}{x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x^{2}+b x+c}{x}, P_{3}(x)=\frac{A x^{3}+B x^{2}+C x+d}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=c
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=d\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x^{2}+x\left(a x^{2}+b x+c\right) y^{\prime}+\left(A x^{3}+B x^{2}+C x+d\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .3\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(c r+r^{2}+d-r\right) x^{r}+\left(\left(c r+r^{2}+c+d+r\right) a_{1}+a_{0}(b r+C)\right) x^{1+r}+\left(\left(c r+r^{2}+2 c+d+3 r+\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
c r+r^{2}+d-r=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2},-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right\}
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[\left(c r+r^{2}+c+d+r\right) a_{1}+a_{0}(b r+C)=0,\left(c r+r^{2}+2 c+d+3 r+2\right) a_{2}+a_{1}(b r+C+b)+a_{0}\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=-\frac{a_{0}(b r+C)}{c r+r^{2}+c+d+r}, a_{2}=-\frac{a_{0}\left(a r^{2} c+a r^{3}-b^{2} r^{2}+B c r+B r^{2}-2 b r C+a r c+a r d+a r^{2}-b^{2} r+B c+B d+B r-C^{2}-C b\right)}{c^{2} r^{2}+2 c r^{3}+r^{4}+3 c^{2} r+2 c r d+7 c r^{2}+2 r^{2} d+4 r^{3}+2 c^{2}+3 c d+7 c r+d^{2}+4 d r+5 r^{2}+2 c+2 d+2 r}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+(c+2 r-1) k+r^{2}+(c-1) r+d\right) a_{k}+\left(a a_{k-2}+b a_{k-1}\right) k+\left(a a_{k-2}+b a_{k-1}\right) r+(B-2 a)
\]
- \(\quad\) Shift index using \(k->k+3\)
\[
\left((k+3)^{2}+(c+2 r-1)(k+3)+r^{2}+(c-1) r+d\right) a_{k+3}+\left(a a_{k+1}+b a_{k+2}\right)(k+3)+\left(a a_{k+1}+\right.
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+3}=-\frac{a k a_{k+1}+a r a_{k+1}+b k a_{k+2}+b r a_{k+2}+A a_{k}+B a_{k+1}+C a_{k+2}+a a_{k+1}+2 b a_{k+2}}{c k+c r+k^{2}+2 k r+r^{2}+3 c+d+5 k+5 r+6}
\]
- Recursion relation for \(r=-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\)
\[
a_{k+3}=-\frac{a k a_{k+1}+a\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right) a_{k+1}+b k a_{k+2}+b\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right) a_{k+2}+A a_{k}+B a_{k+1}+C a_{k+2}+a a_{k+1}-}{c k+c\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right)+k^{2}+2 k\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right)+\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right)^{2}+\frac{c}{2}+d+5 k+\frac{17}{2}+\frac{5 \sqrt{c^{2}-}}{}}
\]
- \(\quad\) Solution for \(r=-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}}, a_{k+3}=-\frac{a k a_{k+1}+a\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right) a_{k+1}+b k a_{k+2}+b\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-}}{2}\right.}{c k+c\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right)+k^{2}+2 k\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}\right)+\left(-\frac{c}{2}+\right.}\right.
\]
- Recursion relation for \(r=-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\)
\[
a_{k+3}=-\frac{a k a_{k+1}+a\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right) a_{k+1}+b k a_{k+2}+b\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right) a_{k+2}+A a_{k}+B a_{k+1}+C a_{k+2}+a a_{k+1}-}{c k+c\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right)+k^{2}+2 k\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right)+\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right)^{2}+\frac{c}{2}+d+5 k-\frac{5 \sqrt{c^{2}-2 c-}}{2}}
\]
- \(\quad\) Solution for \(r=-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}}, a_{k+3}=-\frac{a k a_{k+1}+a\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right) a_{k+1}+b k a_{k+2}+b\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+}}{2}\right.}{c k+c\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right)+k^{2}+2 k\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}\right)+\left(-\frac{c}{2}-\right.}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k-\frac{c}{2}-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}+\frac{1}{2}}\right), e_{k+3}=-\frac{a k e_{1+k}+a\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}}}{c k+c\left(-\frac{c}{2}+\frac{1}{2}+\frac{\sqrt{c^{2}-2 c-4 d}}{2}\right.}\right.}{c}\right.
\]

Maple trace
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 -

```
\(\checkmark\) Solution by Maple
Time used: 0.328 (sec). Leaf size: 232
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x *\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+\left(A * x^{\wedge} 3+B * x^{\wedge} 2+C * x+d\right) * y(x)=0, y(x)\right.\), sing
\[
\begin{aligned}
& y(x) \\
& =x^{-\frac{c}{2}+\frac{1}{2}} \mathrm{e}^{\frac{x\left(-a^{2} x-2 a b+2 A\right)}{2 a}}\left(c _ { 1 } x ^ { \frac { \sqrt { c ^ { 2 } - 2 c - 4 d + 1 } } { 2 } } \operatorname { H e u n B } \left(\sqrt{c^{2}-2 c-4 d+1}, \frac{\sqrt{2}(-a b+2 A)}{a^{\frac{3}{2}}},\right.\right. \\
& \left.-c-\frac{2 A b}{a^{2}}+\frac{2 B}{a}-1+\frac{2 A^{2}}{a^{3}}, \frac{\sqrt{2}(-b c+2 C)}{\sqrt{a}},-\frac{\sqrt{2} \sqrt{a} x}{2}\right) \\
& +c_{2} x^{-\frac{\sqrt{c^{2}-2 c-4 d+1}}{2}} \operatorname{HeunB}\left(-\sqrt{c^{2}-2 c-4 d+1}, \frac{\sqrt{2}(-a b+2 A)}{a^{\frac{3}{2}}},-c-\frac{2 A b}{a^{2}}+\frac{2 B}{a}\right. \\
& \left.\left.-1+\frac{2 A^{2}}{a^{3}}, \frac{\sqrt{2}(-b c+2 C)}{\sqrt{a}},-\frac{\sqrt{2} \sqrt{a} x}{2}\right)\right)
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]+x *\left(a * x^{\wedge} 2+b * x+c\right) * y y^{\prime}[x]+\left(A * x^{\wedge} 3+B * x^{\wedge} 2+C 0 * x+d\right) * y[x]==0, y[x], x\right.\), IncludeSingulars

Not solved

\subsection*{29.34 problem 143}

Internal problem ID [10967]
Internal file name [OUTPUT/10223_Sunday_December_31_2023_11_10_20_AM_8686326/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 143.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+a x^{n} y^{\prime}-\left(a b x^{n}+a c x^{n-1}+b^{2} x^{2}+2 b c x+c^{2}-c\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa 2935 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)-\left(a * b * x^{\wedge} n+a * c * x^{\wedge}(n-1)+b^{\wedge} 2 * x^{\wedge} 2+2 * b * c * x+c^{\wedge} 2-c\right) * y(x\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}[x]+a * x^{\wedge} n * y{ }^{\prime}[x]-\left(a * b * x^{\wedge} n+a * c * x^{\wedge}(n-1)+b^{\wedge} 2 * x^{\wedge} 2+2 * b * c * x+c^{\wedge} 2-c\right) * y[x]==0, y[x], x\right.\), Inc
Not solved

\subsection*{29.35 problem 144}

Internal problem ID [10968]
Internal file name [OUTPUT/10224_Sunday_December_31_2023_11_10_21_AM_39182112/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 144.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+a x^{n} y^{\prime}+\left(a b x^{n+2 m}-b^{2} x^{4 m+2}+a m x^{n-1}-m^{2}-m\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa \({ }_{29}\) form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)+\left(a * b * x^{\wedge}(n+2 * m)-b^{\wedge} 2 * x^{\wedge}(4 * m+2)+a * m * x^{\wedge}(n-1)-m^{\wedge} 2-m\right)\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+a * x^{\wedge} n * y{ }^{\prime}[x]+\left(a * b * x^{\wedge}(n+2 * m)-b^{\wedge} 2 * x^{\wedge}(4 * m+2)+a * m * x^{\wedge}(n-1)-m^{\wedge} 2-m\right) * y[x]==0, y[x], x\right.\)

Not solved

\subsection*{29.36 problem 145}
29.36.1 Solving as second order change of variable on y method 2 ode . 2940

Internal problem ID [10969]
Internal file name [OUTPUT/10225_Sunday_December_31_2023_11_10_22_AM_99014734/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 145.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+x\left(a x^{n}+b\right) y^{\prime}+b\left(a x^{n}-1\right) y=0
\]

\subsection*{29.36.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x\left(a x^{n}+b\right) y^{\prime}+b\left(a x^{n}-1\right) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x^{n}+b}{x} \\
& q(x)=\frac{b\left(a x^{n}-1\right)}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(a x^{n}+b\right)}{x^{2}}+\frac{b\left(a x^{n}-1\right)}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-b \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(-\frac{2 b}{x}+\frac{a x^{n}+b}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(-b+a x^{n}\right) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{\left(-b+a x^{n}\right) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(-b+a x^{n}\right) u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{-b+a x^{n}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{-b+a x^{n}}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{-b+a x^{n}}{x} d x \\
\ln (u) & =-\frac{a x^{n}}{n}+\frac{b \ln \left(x^{n}\right)}{n}+c_{1} \\
u & =\mathrm{e}^{-\frac{a x^{n}}{n}+\frac{b \ln \left(x^{n}\right)}{n}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{a x^{n}}{n}+\frac{b \ln \left(x^{n}\right)}{n}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(x^{n}\right)^{\frac{b}{n}}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x)= & u(x) \\
v(x)= & \int u(x) d x+c_{2} \\
& c_{1}\left(x^{n}\right)^{\frac{b}{n}} x^{-b}\left(\frac{a}{n}\right)^{-\frac{b}{n}-\frac{1}{n}}\left(\frac{n^{3} x^{b-n+1}\left(\frac{a}{n}\right)^{\frac{b}{n}+\frac{1}{n}}\left(a x^{n}+b+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+b+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{1+b}{n}-\frac{n+b+1}{2 n}, \frac{n+b+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right.}{(1+b)(n+b+1)(2 n+b+1) a}\right. \\
= & n
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{c_{1}\left(x^{n}\right)^{\frac{b}{n}} x^{-b}\left(\frac{a}{n}\right)^{-\frac{b}{n}-\frac{1}{n}}\left(\frac{\left.n^{3} x^{b-n+1}\left(\frac{a}{n}\right)^{\frac{b}{n}+\frac{1}{n}}\left(a x^{n}+b+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+b+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM(} \frac{1+b}{n}-\frac{n+b+1}{2 n}, \frac{n+b+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)}{(1+b)(n+b+1)(2 n+b+1) a}\right.}{n}\right. \\
& =\frac{x^{-b}\left(\left(\frac{a x^{n}}{n}\right)^{-\frac{n+b+1}{2 n}}\left((n+b+1) x^{1-n}+a x\right) n^{2} c_{1} \mathrm{e}^{-\frac{a x^{n}}{2 n}}\left(x^{n}\right)^{\frac{b}{n}} \text { WhittakerM }\left(\frac{b-n+1}{2 n}, \frac{2 n+b+1}{2 n}, \frac{a x^{n}}{n}\right)+(n+b\right.}{(1+b)(n-}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(=\left(\frac{c_{1}\left(x^{n}\right)^{\frac{b}{n}} x^{-b}\left(\frac{a}{n}\right)^{-\frac{b}{n}-\frac{1}{n}}\left(\frac{n^{3} x^{b-n+1}\left(\frac{a}{n}\right)^{\frac{b}{n}+\frac{1}{n}}\left(a x^{n}+b+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+b+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{1+b}{n}-\frac{n+b+1}{2 n}, \frac{n+b+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)}{(1+b)(n+b+1)(2 n+b+1) a}+\right.}{n}+\right.\)
\[
\left.+c_{2}\right) x^{-b}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& =\left(\begin{array}{r}
c_{1}\left(x^{n}\right)^{\frac{b}{n}} x^{-b}\left(\frac{a}{n}\right)^{-\frac{b}{n}-\frac{1}{n}}\left(\frac{n^{3} x^{b-n+1}\left(\frac{a}{n}\right)^{\frac{b}{n}+\frac{1}{n}}\left(a x^{n}+b+n+1\right)\left(\frac{a x^{n}}{n}\right)^{-\frac{n+b+1}{2 n}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} \text { WhittakerM }\left(\frac{1+b}{n}-\frac{n+b+1}{2 n}, \frac{n+b+1}{2 n}+\frac{1}{2}, \frac{a x^{n}}{n}\right)}{(1+b)(n+b+1)(2 n+b+1) a}+\right. \\
\\
\\
\left.+c_{2}\right) x^{-b}
\end{array}\right)
\end{aligned}
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Group is reducible, not completely reducible     <- Kovacics algorithm successful <- Equivalence, under non-integer power transformations successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.11 (sec). Leaf size: 141
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x *\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+b *\left(a * x^{\wedge} n-1\right) * y(x)=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
y(x)= & \mathrm{e}^{-\frac{a x^{n}}{2 n}}\left((b+n+1) x^{-\frac{3 n}{2}+\frac{1}{2}-\frac{b}{2}}\right. \\
& \left.+a x^{\frac{1}{2}-\frac{b}{2}-\frac{n}{2}}\right) n c_{2} \text { WhittakerM }\left(\frac{b-n+1}{2 n}, \frac{b+2 n+1}{2 n}, \frac{a x^{n}}{n}\right) \\
& +x^{-\frac{3 n}{2}+\frac{1}{2}-\frac{b}{2}} \mathrm{e}^{-\frac{a x^{n}}{2 n}} c_{2}(b+n+1)^{2} \text { WhittakerM }\left(\frac{b+n+1}{2 n}, \frac{b+2 n+1}{2 n}, \frac{a x^{n}}{n}\right) \\
& +c_{1} x^{-b}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 76
```

DSolve[x^2*y''[x]+x*(a*x^n+b)*y'[x] +b*(a*x^n-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> T

```
\[
y(x) \rightarrow(-1)^{-\frac{b}{n}} n^{\frac{b}{n}-1} a^{-\frac{b}{n}}\left(x^{n}\right)^{-\frac{b}{n}}\left((b+1) c_{1}(-1)^{b / n} \Gamma\left(\frac{b+1}{n}, 0, \frac{a x^{n}}{n}\right)+c_{2} n\right)
\]

\subsection*{29.37 problem 146}

Internal problem ID [10970]
Internal file name [OUTPUT/10226_Sunday_December_31_2023_11_10_23_AM_15916150/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 146.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+x\left(a x^{n}+b\right) y^{\prime}+\left(\alpha x^{2 n}+\beta x^{n}+\gamma\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.187 (sec). Leaf size: 148
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{x} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{alpha} \mathrm{x}^{\wedge}(2 * \mathrm{n})+\right.\) beta*x\(\left.{ }^{\wedge} \mathrm{n}+\mathrm{gamma}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}\)
\(y(x)\)
\[
\begin{aligned}
&=x^{\frac{1}{2}-\frac{b}{2}-\frac{n}{2}} \mathrm{e}^{-\frac{a x^{n}}{2 n}}\left(c_{1} \text { WhittakerM }\left(-\frac{a(b+n-1)-2 \beta}{2 \sqrt{a^{2}-4 \alpha} n}, \frac{\sqrt{b^{2}-2 b-4 \gamma+1}}{2 n}, \frac{\sqrt{a^{2}-4 \alpha} x^{n}}{n}\right)\right. \\
&\left.+c_{2} \text { WhittakerW }\left(-\frac{a(b+n-1)-2 \beta}{2 \sqrt{a^{2}-4 \alpha} n}, \frac{\sqrt{b^{2}-2 b-4 \gamma+1}}{2 n}, \frac{\sqrt{a^{2}-4 \alpha} x^{n}}{n}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.485 (sec). Leaf size: 420
DSolve \(\left[x^{\wedge} 2 * y^{\prime} '^{\prime}[\mathrm{x}]+\mathrm{x} *\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\left(\backslash[\right.\) Alpha \(] * \mathrm{x}^{\wedge}(2 * \mathrm{n})+\backslash[\) Beta \(] * \mathrm{x}^{\wedge} \mathrm{n}+\backslash[\) Gamma \(\left.]\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{I}\)
\(y(x)\)
\(\left.\rightarrow x^{\frac{1}{2}-\frac{n}{2}} 2^{\frac{1}{2}\left(\frac{\sqrt{n^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{n^{2}}+1\right.}\right) e^{-\frac{\left(\sqrt{a^{2}-4 \alpha}+a\right) x^{n}}{2 n}}\left(x^{n}\right)^{\frac{\sqrt{n^{2}\left(b^{2}-2 b-4 \gamma+1\right)}-b n+n^{2}}{2 n^{2}}}\left(c_{1}\right.\) HypergeometricU \(\left(\underline{\left(n^{2}+\sqrt{n^{2}}\right.}\right.\)
\(\left.+c_{2} L^{\frac{\sqrt{n^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{n^{2}}} \frac{-\left(\left(n^{2}+\sqrt{n^{2}\left(b^{2}-2 b-4 \gamma+1\right)}\right) a^{2}\right)-n(b+n-1) \sqrt{a^{2}-4 \alpha} a+4 n^{2} \alpha+2 n \sqrt{a^{2}-4 \alpha} \beta+4 \alpha \sqrt{n^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{2 n^{2}\left(a^{2}-4 \alpha\right)}\left(\frac{x^{n} \sqrt{a^{2}-4 \alpha}}{n}\right)\right)\)

\subsection*{29.38 problem 147}

Internal problem ID [10971]
Internal file name [OUTPUT/10227_Sunday_December_31_2023_11_10_24_AM_96377248/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 147.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+x\left(2 a x^{n}+b\right) y^{\prime}+\left(x^{2 n} a^{2}+a(b+n-1) x^{n}+\alpha x^{2 m}+\beta x^{m}+\gamma\right) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying an equivalence, under non-integer power transformations,     to LODEs admitting Liouvillian solutions.     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 115
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x *\left(2 * a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+\left(a^{\wedge} 2 * x^{\wedge}(2 * n)+a *(b+n-1) * x \uparrow n+a l p h a * x^{\wedge}(2 * m\right.\right.\)
\[
\begin{aligned}
& y(x)=x^{-\frac{b}{2}} x^{-\frac{m}{2}} \sqrt{x} \mathrm{e}^{-\frac{a x^{n}}{n}}\left(c_{1} \text { WhittakerM }\left(-\frac{i \beta}{2 m \sqrt{\alpha}}, \frac{\sqrt{b^{2}-2 b-4 \gamma+1}}{2 m}, \frac{2 i \sqrt{\alpha} x^{m}}{m}\right)\right. \\
&\left.+c_{2} \text { WhittakerW }\left(-\frac{i \beta}{2 m \sqrt{\alpha}}, \frac{\sqrt{b^{2}-2 b-4 \gamma+1}}{2 m}, \frac{2 i \sqrt{\alpha} x^{m}}{m}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.47 (sec). Leaf size: 291
DSolve \(\left[x^{\wedge} 2 * y^{\prime} '^{\prime}[x]+x *\left(2 * a * x^{\wedge} n+b\right) * y^{\prime}[x]+\left(a^{\wedge} 2 * x^{\wedge}(2 * n)+a *(b+n-1) * x^{\wedge} n+\backslash[A l p h a] * x^{\wedge}(2 * m)+\backslash[\right.\right.\) Beta \(] * x^{\prime}\)
\(y(x)\)
\(\left.\left.\rightarrow x^{\frac{1}{2}-\frac{m}{2}} 2^{\frac{1}{2}\left(\frac{\sqrt{m^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{m^{2}}+1\right.}\right)\left(x^{n}\right)^{-\frac{b}{2 n}}\left(x^{m}\right)^{\frac{1}{2}\left(\frac{\sqrt{m^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{m^{2}}+1\right.}\right) e^{-\frac{a x^{n}}{n}+\frac{i \sqrt{\alpha} x^{m}}{m}}\left(c_{1}\right.\) Hypergeometric \(\mathrm{U}\left(\frac{m^{2}}{}\right.\) \(\left.\left.-\frac{2 i x^{m} \sqrt{\alpha}}{m}\right)+c_{2} L_{-\frac{\sqrt{m^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{m^{2}}}^{-\frac{m^{2}-\frac{i \beta m}{\sqrt{\alpha}}+\sqrt{m^{2}\left(b^{2}-2 b-4 \gamma+1\right)}}{2 m^{2}}}\left(-\frac{2 i x^{m} \sqrt{\alpha}}{m}\right)\right)\)

\subsection*{29.39 problem 148}

Internal problem ID [10972]
Internal file name [OUTPUT/10228_Sunday_December_31_2023_11_10_26_AM_19684180/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^{2} y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 148.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+\left(a x^{2+n}+b x^{2}+c\right) y^{\prime}+\left(a n x^{n+1}+x^{n} a c+b c\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa 2952 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge}(n+2)+b * x^{\wedge} 2+c\right) * \operatorname{diff}(y(x), x)+\left(a * n * x^{\wedge}(n+1)+a * c * x \wedge n+b * c\right) * y(x)=0\right.\),

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge}(n+2)+b * x^{\wedge} 2+c\right) * y^{\prime}[x]+\left(a * n * x^{\wedge}(n+1)+a * c * x^{\wedge} n+b * c\right) * y[x]==0, y[x], x\right.\), Include

Not solved
30 Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form
\(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
30.1 problem 149 2955
30.2 problem 150 2960
30.3 problem 151 2965
30.4 problem 152 2980
30.5 problem 153 2995
30.6 problem 154 2999
30.7 problem 155 3003
30.8 problem 156 3013
30.9 problem 157 3017
30.10problem 158 3021
30.11problem 159 3026
30.12problem 160 3031
30.13problem 161 3036
30.14 problem 162 3041
30.15problem 163 3055
30.16problem 164 3063
30.17problem 165 3067
30.18problem 166 3074
30.19problem 167 3076
30.20problem 168 3082
30.21 problem 169 3087
30.22problem 170 3090
30.23problem 171 3093
30.24problem 172 3097
30.25 problem 173 3102
30.26 problem 174 3107
30.27 problem 175 3122
30.28problem 176 3134
30.29problem 177 3142
30.30problem 178 3158
30.31 problem 179 3169
30.32problem 180 3175
30.33problem 181 3181

\section*{30.1 problem 149}
30.1.1 Maple step by step solution

2955
Internal problem ID [10973]
Internal file name [OUTPUT/10229_Sunday_December_31_2023_11_10_27_AM_99537949/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 149.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}+n(n-1) y=0
\]

\subsection*{30.1.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}+\left(n^{2}-n\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{n(n-1) y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{n(n-1) y}{x^{2}-1}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=0, P_{3}(x)=-\frac{(n-1) n}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=0\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)-n(n-1) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(-n^{2}+n\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\(-2 a_{0} r(-1+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r)+a_{k}(r-1+n+k)(r-n+k)\right) u^{k+r}\right)\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r(-1+r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\{0,1\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
-2 a_{k+1}(k+1+r)(k+r)+a_{k}(r-1+n+k)(r-n+k)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(r-1+n+k)(r-n+k)}{2(k+1+r)(k+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(-1+n+k)(-n+k)}{2(k+1) k}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(-1+n+k)(-n+k)}{2(k+1) k}\right]\)
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(-1+n+k)(-n+k)}{2(k+1) k}\right]
\]
- Recursion relation for \(r=1\)
\(a_{k+1}=\frac{a_{k}(n+k)(1-n+k)}{2(k+2)(k+1)}\)
- \(\quad\) Solution for \(r=1\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+1}, a_{k+1}=\frac{a_{k}(n+k)(1-n+k)}{2(k+2)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+1}, a_{k+1}=\frac{a_{k}(n+k)(1-n+k)}{2(k+2)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{1+k}\right), a_{1+k}=\frac{a_{k}(k+n-1)(-n+k)}{2(1+k) k}, b_{1+k}=\frac{b_{k}(k+n)(1-n+k)}{2(k+2)(1+k)}\right]
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
<- hypergeometric successful
<- special function solution successful

```

\section*{Solution by Maple}

Time used: 0.078 (sec). Leaf size: 52
```

dsolve((1-x^2)*diff (y(x),x\$2)+n*(n-1)*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)=-(-1+x)(1+x)(& \text { hypergeom }\left(\left[\frac{n}{2}+1, \frac{3}{2}-\frac{n}{2}\right],\left[\frac{3}{2}\right], x^{2}\right) c_{2} x \\
+ & \left.c_{1} \text { hypergeom }\left(\left[-\frac{n}{2}+1, \frac{n}{2}+\frac{1}{2}\right],\left[\frac{1}{2}\right], x^{2}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 56
DSolve[(1- \(\left.x^{\wedge} 2\right) * y^{\prime \prime}[\mathrm{x}]+\mathrm{n} *(\mathrm{n}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow & i c_{2} x \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}-\frac{n}{2}, \frac{n}{2}, \frac{3}{2}, x^{2}\right) \\
& +c_{1} \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{n-1}{2},-\frac{n}{2}, \frac{1}{2}, x^{2}\right)
\end{aligned}
\]

\section*{30.2 problem 150}
30.2.1 Maple step by step solution 2960

Internal problem ID [10974]
Internal file name [OUTPUT/10230_Sunday_December_31_2023_11_10_28_AM_77036271/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 150.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-a^{2}+x^{2}\right) y^{\prime \prime}+y^{\prime} b-6 y=0
\]

\subsection*{30.2.1 Maple step by step solution}

Let's solve
\[
\left(-a^{2}+x^{2}\right) y^{\prime \prime}+y^{\prime} b-6 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{6 y}{a^{2}-x^{2}}+\frac{b y^{\prime}}{a^{2}-x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{b y^{\prime}}{a^{2}-x^{2}}+\frac{6 y}{a^{2}-x^{2}}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{b}{a^{2}-x^{2}}, P_{3}(x)=\frac{6}{a^{2}-x^{2}}\right]
\]
- \((x-a) \cdot P_{2}(x)\) is analytic at \(x=a\)
\[
\left.\left((x-a) \cdot P_{2}(x)\right)\right|_{x=a}=\frac{b}{2 a}
\]
- \(\quad(x-a)^{2} \cdot P_{3}(x)\) is analytic at \(x=a\)
\[
\left.\left((x-a)^{2} \cdot P_{3}(x)\right)\right|_{x=a}=0
\]
- \(x=a\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=a\)
- Multiply by denominators
\(y^{\prime \prime}\left(a^{2}-x^{2}\right)-y^{\prime} b+6 y=0\)
- \(\quad\) Change variables using \(x=u+a\) so that the regular singular point is at \(u=0\)
\[
\left(-2 u a-u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)-b\left(\frac{d}{d u} y(u)\right)+6 y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(\frac{d}{d u} y(u)\) to series expansion
\[
\frac{d}{d u} y(u)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1}
\]
- Shift index using \(k->k+1\) \(\frac{d}{d u} y(u)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) u^{k+r}\)
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1\).. 2
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\(-a_{0} r(2 a r-2 a+b) u^{r-1}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 a(k+1)+2 a r-2 a+b)-a_{k}(k+r+2)(\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(2 a r-2 a+b)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{2 a-b}{2 a}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(-2(k+1+r)\left(a k+a r+\frac{1}{2} b\right) a_{k+1}-a_{k}(k+r+2)(k+r-3)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{a_{k}(k+r+2)(k+r-3)}{(k+1+r)(2 a k+2 a r+b)}\)
- Recursion relation for \(r=0\); series terminates at \(k=3\)
\(a_{k+1}=-\frac{a_{k}(k+2)(k-3)}{(k+1)(2 a k+b)}\)
- Apply recursion relation for \(k=0\)
\(a_{1}=\frac{6 a_{0}}{b}\)
- Apply recursion relation for \(k=1\)
\(a_{2}=\frac{3 a_{1}}{2 a+b}\)
- Express in terms of \(a_{0}\)
\(a_{2}=\frac{18 a_{0}}{b(2 a+b)}\)
- Apply recursion relation for \(k=2\)
\(a_{3}=\frac{4 a_{2}}{3(4 a+b)}\)
- \(\quad\) Express in terms of \(a_{0}\)
\(a_{3}=\frac{24 a_{0}}{b(2 a+b)(4 a+b)}\)
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li
\(y(u)=a_{0} \cdot\left(1+\frac{6 u}{b}+\frac{18 u^{2}}{b(2 a+b)}+\frac{24 u^{3}}{b(2 a+b)(4 a+b)}\right)\)
- \(\quad\) Revert the change of variables \(u=x-a\)
\(\left[y=\frac{a_{0}\left(-10 a^{2} b-24 a^{2} x+b^{3}+6 b^{2} x+18 b x^{2}+24 x^{3}\right)}{b(2 a+b)(4 a+b)}\right]\)
- Recursion relation for \(r=\frac{2 a-b}{2 a}\)
\(a_{k+1}=-\frac{a_{k}\left(k+\frac{2 a-b}{2 a}+2\right)\left(k+\frac{2 a-b}{2 a}-3\right)}{\left(k+1+\frac{2 a-b}{2 a}\right)(2 a k+2 a)}\)
- \(\quad\) Solution for \(r=\frac{2 a-b}{2 a}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2 a-b}{2 a}}, a_{k+1}=-\frac{a_{k}\left(k+\frac{2 a-b}{2 a}+2\right)\left(k+\frac{2 a-b}{2 a}-3\right)}{\left(k+1+\frac{2 a-b}{2 a}\right)(2 a k+2 a)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-a)^{k+\frac{2 a-b}{2 a}}, a_{k+1}=-\frac{a_{k}\left(k+\frac{2 a-b}{2 a}+2\right)\left(k+\frac{2 a-b}{2 a}-3\right)}{\left(k+1+\frac{2 a-b}{2 a}\right)(2 a k+2 a)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\frac{c_{0}\left(-10 a^{2} b-24 a^{2} x+b^{3}+6 b^{2} x+18 b x^{2}+24 x^{3}\right)}{b(2 a+b)(4 a+b)}+\left(\sum_{k=0}^{\infty} d_{k}(x-a)^{k+\frac{2 a-b}{2 a}}\right), d_{1+k}=-\frac{d_{k}\left(k+\frac{2 a-b}{2 a}+2\right)\left(k+\frac{2 a-b}{2 a}-3\right.}{\left(k+1+\frac{2 a-b}{2 a}\right)(2 a k+2 a)}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 76
```

dsolve((x^2-a^2)*diff(y(x),x\$2)+b*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & -\frac{c_{1}\left(10 a^{2} b+24 a^{2} x-b^{3}-6 b^{2} x-18 x^{2} b-24 x^{3}\right)}{24} \\
& +c_{2}(a+x)(a-x)(b-4 x)\left(\frac{a+x}{a-x}\right)^{\frac{b}{2 a}}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 13.059 (sec). Leaf size: 1171

\section*{DSolve \(\left[\left(x^{\wedge} 2-a^{\wedge} 2\right) * y^{\prime}[x]+b * y^{\prime}[x]-6 * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]}
\(y(x)\)
\[
\begin{aligned}
& \rightarrow e^{\frac{b \operatorname{arctanh}\left(\frac{x}{a}\right)}{2 a}+\frac{\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b+\sqrt{b^{2}\left(64 a^{4}-20 b^{2} a^{2}+b^{4}\right)^{2}}\right)}{\operatorname{RootSum}\left[-b^{3}-6 \# 1 b^{2}+10 a^{2} b-18 \# 1^{2} b-24 \# 1^{3}+24 a^{2} \# 1 \&, \log (x-\# 1) \&\right]}} 2\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b\right)
\end{aligned}(a)
\]
\[
-a)^{\frac{1}{2}-\frac{\sqrt{b^{2}\left(64 a^{4}-20 b^{2} a^{2}+b^{4}\right)^{2}}}{4 a(4 a-b b)(2 a+b)(4 a+b)}}
\]
\[
\begin{array}{r}
+x)^{\frac{1}{4}\left(2-\frac{\sqrt{\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b\right)^{2}}}{a b\left(32 a^{3}-16 a^{2}-2 b^{2} a+b^{3}\right)}\right)}(4 x-b)^{\frac{b^{5}-20 a^{2} b^{3}+64 a^{4} b-\sqrt{\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b\right)^{2}}}{2\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b\right)}} c_{1}(x \\
-a)^{\frac{1}{2}-\frac{\sqrt{\left(b^{5}-20 a^{2} b^{3}+64 a^{4} b\right)^{2}}}{4 a(4 a-b) b(2 a+b)(4 a+b)}}
\end{array}
\]

\section*{30.3 problem 151}
30.3.1 Solving as second order change of variable on \(x\) method 2 ode. 2965
30.3.2 Solving as second order change of variable on \(x\) method 1 ode . 2968
30.3.3 Solving using Kovacic algorithm 2970
30.3.4 Maple step by step solution . 2976

Internal problem ID [10975]
Internal file name [OUTPUT/10231_Sunday_December_31_2023_11_10_29_AM_95943088/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 151.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order__change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]
\[
\left(x^{2}-1\right) y^{\prime \prime}+y^{\prime} x+a y=0
\]

\subsection*{30.3.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}+y^{\prime} x+a y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{x}{x^{2}-1} \\
& q(x)=\frac{a}{x^{2}-1}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{x}{x^{2}-1} d x\right)} d x \\
& =\int \mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x-1} \sqrt{1+x}} d x \\
& =\frac{\sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{a}{x^{2}-1}}{\frac{1}{(x-1)(1+x)}} \\
& =a \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+a y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=a\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+a \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+a=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=a\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(a)} \\
& = \pm \sqrt{-a}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-a} \\
& \lambda_{2}=-\sqrt{-a}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-a}) \tau}+c_{2} e^{(-\sqrt{-a}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-a} \tau}+c_{2} \mathrm{e}^{-\sqrt{-a} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x}-1} \sqrt{1+x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{\sqrt{-a} \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}
\]

Verified OK.

\subsection*{30.3.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}+y^{\prime} x+a y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{x}{x^{2}-1} \\
& q(x)=\frac{a}{x^{2}-1}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{a}{x^{2}-1}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{a x}{c \sqrt{\frac{a}{x^{2}-1}}\left(x^{2}-1\right)^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{a x}{c \sqrt{\frac{a}{x^{2}-1}}\left(x^{2}-1\right)^{2}}+\frac{x}{x^{2}-1} \frac{\sqrt{\frac{a}{x^{2}-1}}}{c}}{\left(\frac{\sqrt{\frac{a}{x^{2}-1}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{a}{x^{2}-1}} d x}{c} \\
& =\frac{\sqrt{\frac{a}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
\begin{aligned}
y= & c_{1} \cos \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \tag{1}\\
& +c_{2} \sin \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \cos \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(\sqrt{a} \sqrt{\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{30.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(x^{2}-1\right) y^{\prime \prime}+y^{\prime} x+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =x^{2}-1 \\
B & =x \tag{3}\\
C & =a
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4 a x^{2}-x^{2}+4 a-2}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 a x^{2}-x^{2}+4 a-2 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-4 a x^{2}-x^{2}+4 a-2}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 144: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(x^{2}-1\right)^{2}\). There is a pole at \(x=1\) of order 2 . There is a pole at \(x=-1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{3}{16(x-1)^{2}}+\frac{\frac{1}{16}-\frac{a}{2}}{x-1}-\frac{3}{16(1+x)^{2}}+\frac{-\frac{1}{16}+\frac{a}{2}}{1+x}
\]

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac{1}{(x-1)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac{1}{(1+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{-4 a x^{2}-x^{2}+4 a-2}{4\left(x^{2}-1\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-1\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 1 & 2 & \(\{1,2,3\}\) \\
\hline-1 & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(1))}+\frac{1}{(x-(-1))}\right) \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\left(\frac{1}{2 x-2}+\frac{1}{2+2 x}\right) w+\frac{4 a x^{2}+x^{2}-4 a}{4\left(x^{2}-1\right)^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{x+2 \sqrt{-a\left(x^{2}-1\right)}}{2(x-1)(1+x)}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x+2 \sqrt{-a\left(x^{2}-1\right)}}{2(x-1)(1+x)} d x} \\
& =\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(\frac{\sqrt{a} x}{\sqrt{\left(-x^{2}+1\right)^{a}}}\right)}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}-1} d x} \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}-1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{2 \sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{\sqrt{x^{2}-1}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) \\
& +c_{2}\left(\frac{\left.\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right.}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\left(\int \frac{\left.\mathrm{e}^{2 \sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right.}\right)}{\sqrt{x^{2}-1}} d x\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& +\frac{\left.c_{2}\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right.}\right)\left(\int \frac{\left.\mathrm{e}^{2 \sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right.}\right)}{\sqrt{x^{2}-1}} d x\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \tag{1}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& +\frac{\left.c_{2}\left(x^{2}-1\right)^{\frac{1}{4}} \mathrm{e}^{-\sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right.}\right)\left(\int \frac{\mathrm{e}^{2 \sqrt{a} \arctan \left(x \sqrt{-\frac{1}{x^{2}-1}}\right)}}{\sqrt{x^{2}-1}} d x\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
\]

Verified OK.

\subsection*{30.3.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}\left(x^{2}-1\right)+y^{\prime} x+a y=0\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}-\frac{a y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}+\frac{a y}{x^{2}-1}=0\)

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=\frac{a}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=-1\)
- Multiply by denominators
\[
y^{\prime \prime}\left(x^{2}-1\right)+y^{\prime} x+a y=0
\]
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+a y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\) \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}\left(k^{2}+2 k r+r^{2}+a\right)\right) u^{k+r}\right)=\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(-2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}\left(k^{2}+2 k r+r^{2}+a\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r+r^{2}+a\right)}{(2 k+1+2 r)(k+1+r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}\left(k^{2}+a\right)}{(2 k+1)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+a\right)}{(2 k+1)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+a\right)}{(2 k+1)(k+1)}\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k^{2}+a+k+\frac{1}{4}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k^{2}+a+k+\frac{1}{4}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k^{2}+a+k+\frac{1}{4}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k+\frac{1}{2}}\right), b_{1+k}=\frac{b_{k}\left(k^{2}+a\right)}{(2 k+1)(1+k)}, c_{1+k}=\frac{c_{k}\left(k^{2}+a+k+\frac{1}{4}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve \(\left(\left(x^{\wedge} 2-1\right) * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+a * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{i \sqrt{a}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-i \sqrt{a}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 97
DSolve[(\(\left.x^{\wedge} 2-1\right) * y^{\prime \prime}[x]+x * y\) ' \([x]+a * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \cos \left(\frac{1}{2} \sqrt{a}\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right) \\
& -c_{2} \sin \left(\frac{1}{2} \sqrt{a}\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right)
\end{aligned}
\]

\section*{30.4 problem 152}
30.4.1 Solving as second order change of variable on \(x\) method 2 ode . 2980
30.4.2 Solving as second order change of variable on \(x\) method 1 ode . 2983
30.4.3 Solving using Kovacic algorithm 2985
30.4.4 Maple step by step solution . 2991

Internal problem ID [10976]
Internal file name [OUTPUT/10232_Sunday_December_31_2023_11_10_31_AM_33496255/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 152.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order__change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
\[
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+y n^{2}=0
\]

\subsection*{30.4.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+y n^{2}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{x}{x^{2}-1} \\
& q(x)=\frac{n^{2}}{-x^{2}+1}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{x}{x^{2}-1} d x\right)} d x \\
& =\int e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x-1} \sqrt{1+x}} d x \\
& =\frac{\sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{n^{2}}{-x^{2}+1}}{\frac{1}{(x-1)(1+x)}} \\
& =-n^{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-n^{2} y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-n^{2}\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-n^{2} \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-n^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-n^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-n^{2}\right)} \\
& = \pm \sqrt{n^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{n^{2}} \\
& \lambda_{2}=-\sqrt{n^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{n^{2}} \\
& \lambda_{2}=-\sqrt{n^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{\left(\sqrt{n^{2}}\right) \tau}+c_{2} e^{\left(-\sqrt{n^{2}}\right) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{n^{2}} \tau}+c_{2} \mathrm{e}^{-\sqrt{n^{2}} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{n}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-n}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{n}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-n} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{n}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-n}
\]

Verified OK.

\subsection*{30.4.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+y n^{2}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =-\frac{n^{2}}{x^{2}-1}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{n^{2}}{x^{2}-1}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{n^{2} x}{c \sqrt{-\frac{n^{2}}{x^{2}-1}}\left(x^{2}-1\right)^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{n^{2} x}{c \sqrt{-\frac{n^{2}}{x^{2}-1}}\left(x^{2}-1\right)^{2}}+\frac{x}{x^{2}-1} \frac{\sqrt{-\frac{n^{2}}{x^{2}-1}}}{c}}{\left(\frac{\sqrt{-\frac{n^{2}}{x^{2}-1}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{n^{2}}{x^{2}-1}} d x}{c} \\
& =\frac{\sqrt{-\frac{n^{2}}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
\begin{aligned}
y= & c_{1} \cos \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \tag{1}\\
& +c_{2} \sin \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \cos \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(n \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{30.4.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+y n^{2} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=-x^{2}+1 \\
& B=-x \tag{3}\\
& C=n^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4 n^{2} x^{2}-4 n^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 n^{2} x^{2}-4 n^{2}-x^{2}-2 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 n^{2} x^{2}-4 n^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 146: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(x^{2}-1\right)^{2}\). There is a pole at \(x=1\) of order 2 . There is a pole at \(x=-1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{3}{16(x-1)^{2}}+\frac{\frac{1}{16}+\frac{n^{2}}{2}}{x-1}-\frac{3}{16(1+x)^{2}}+\frac{-\frac{n^{2}}{2}-\frac{1}{16}}{1+x}
\]

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac{1}{(x-1)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac{1}{(1+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{4 n^{2} x^{2}-4 n^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=1\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 1 & 2 & \(\{1,2,3\}\) \\
\hline-1 & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(1))}+\frac{1}{(x-(-1))}\right) \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\left(\frac{1}{2 x-2}+\frac{1}{2+2 x}\right) w+\frac{-4 n^{2} x^{2}+4 n^{2}+x^{2}}{4\left(x^{2}-1\right)^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{x+2 n \sqrt{x^{2}-1}}{2(x-1)(1+x)}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x+2 n \sqrt{x^{2}-1}}{2(x-1)(1+x)} d x} \\
& =\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x}{-x^{2}+1} d x} \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{-x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 n}}{2 n}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) \\
& +c_{2}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 n}}{2 n}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-n}}{2 n(1+x)^{\frac{1}{4}}(x-1)^{\frac{1}{4}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-n}}{2 n(1+x)^{\frac{1}{4}}(x-1)^{\frac{1}{4}}}
\]

Verified OK.

\subsection*{30.4.4 Maple step by step solution}

Let's solve
\(\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+y n^{2}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{n^{2} y}{x^{2}-1}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{n^{2} y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{n^{2}}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+y^{\prime} x-y n^{2}=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)-n^{2} y(u)=0\)
- Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+n+r)(k-n+r)\right) u^{k+r}\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\[
-2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+n+r)(k-n+r)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+n+r)(k-n+r)}{(2 k+1+2 r)(k+1+r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(k+n)(k-n)}{(2 k+1)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+n)(k-n)}{(2 k+1)(k+1)}\right]
\]
- Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+n)(k-n)}{(2 k+1)(k+1)}\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}\right)\left(k-n+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}\right)\left(k-n+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}\right)\left(k-n+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}}\right), a_{1+k}=\frac{a_{k}(k+n)(k-n)}{(2 k+1)(1+k)}, b_{1+k}=\frac{b_{k}\left(k+n+\frac{1}{2}\right)\left(k-n+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
```

dsolve((1-x^2)*diff(y(x),x\$2)-x*diff(y(x),x)+n^2*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{-n}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{n}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 91
DSolve[(1-x^2)*y' '[x]-x*y'[x]+n^2*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \cosh \left(\frac{1}{2} n\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right) \\
& -i c_{2} \sinh \left(\frac{1}{2} n\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right)
\end{aligned}
\]

\section*{30.5 problem 153}
30.5.1 Maple step by step solution

2995
Internal problem ID [10977]
Internal file name [OUTPUT/10233_Sunday_December_31_2023_11_10_33_AM_23421686/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 153.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+n(n+1) y=0
\]

\subsection*{30.5.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(n^{2}+n\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{n(n+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{n(n+1) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{n(n+1)}{x^{2}-1}\right]
\]
- \(\quad(1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+2 y^{\prime} x-n(n+1) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-n^{2}-n\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\(-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(r+1+n+k)(r-n+k)\right) u^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=0\)
- Each term in the series must be 0 , giving the recursion relation
\[
-2 a_{k+1}(k+1)^{2}+a_{k}(1+n+k)(-n+k)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 15
```

dsolve((1-x~2)*diff (y(x), x\$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \text { LegendreP }(n, x)+c_{2} \text { LegendreQ }(n, x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 18

DSolve \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime} '[x]-2 * x * y '[x]+n *(n+1) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True \(]\)
\[
y(x) \rightarrow c_{1} \text { LegendreP }(n, x)+c_{2} \text { Legendre } \mathrm{Q}(n, x)
\]

\section*{30.6 problem 154}
30.6.1 Maple step by step solution . 2999

Internal problem ID [10978]
Internal file name [OUTPUT/10234_Sunday_December_31_2023_11_10_34_AM_21094205/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 154.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\nu(\nu+1) y=0
\]

\subsection*{30.6.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(\nu^{2}+\nu\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\nu(\nu+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{\nu(\nu+1) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{\nu(\nu+1)}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+2 y^{\prime} x-\nu(\nu+1) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-\nu^{2}-\nu\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\(-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(r+1+\nu+k)(r-\nu+k)\right) u^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=0\)
- Each term in the series must be 0 , giving the recursion relation
\(-2 a_{k+1}(k+1)^{2}+a_{k}(1+\nu+k)(-\nu+k)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(1+\nu+k)(-\nu+k)}{2(k+1)^{2}}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(1+\nu+k)(-\nu+k)}{2(k+1)^{2}}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(1+\nu+k)(-\nu+k)}{2(k+1)^{2}}\right]\)
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(1+\nu+k)(-\nu+k)}{2(k+1)^{2}}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 15
```

dsolve((1-x^2)*diff (y(x), x\$2)-2*x*diff (y(x),x)+nu*(nu+1)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \text { LegendreP }(\nu, x)+c_{2} \text { LegendreQ }(\nu, x)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 18
DSolve \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime \prime}[x]-2 * x * y^{\prime}[x]+\backslash[N u] *(\backslash[N u]+1) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) I
\[
y(x) \rightarrow c_{1} \text { LegendreP }(\nu, x)+c_{2} \text { LegendreQ }(\nu, x)
\]

\section*{30.7 problem 155}
30.7.1 Solving using Kovacic algorithm 3003
30.7.2 Maple step by step solution . 3009

Internal problem ID [10979]
Internal file name [OUTPUT/10235_Sunday_December_31_2023_11_10_35_AM_79879110/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 155.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[_Gegenbauer]
\[
\left(-x^{2}+1\right) y^{\prime \prime}-3 y^{\prime} x+n y(2+n)=0
\]

\subsection*{30.7.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(-x^{2}+1\right) y^{\prime \prime}-3 y^{\prime} x+\left(n^{2}+2 n\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=-x^{2}+1 \\
& B=-3 x \tag{3}\\
& C=n^{2}+2 n
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4 n^{2} x^{2}+8 n x^{2}-4 n^{2}+3 x^{2}-8 n-6}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 n^{2} x^{2}+8 n x^{2}-4 n^{2}+3 x^{2}-8 n-6 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 n^{2} x^{2}+8 n x^{2}-4 n^{2}+3 x^{2}-8 n-6}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 150: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(x^{2}-1\right)^{2}\). There is a pole at \(x=1\) of order 2 . There is a pole at \(x=-1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{3}{16(x-1)^{2}}+\frac{\frac{9}{16}+\frac{1}{2} n^{2}+n}{x-1}-\frac{3}{16(1+x)^{2}}+\frac{-\frac{9}{16}-\frac{1}{2} n^{2}-n}{1+x}
\]

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac{1}{(x-1)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac{1}{(1+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{4 n^{2} x^{2}+8 n x^{2}-4 n^{2}+3 x^{2}-8 n-6}{4\left(x^{2}-1\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=1\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 1 & 2 & \(\{1,2,3\}\) \\
\hline-1 & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(1))}+\frac{1}{(x-(-1))}\right) \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\left(\frac{1}{2 x-2}+\frac{1}{2+2 x}\right) w+\frac{-4 n^{2} x^{2}-8 n x^{2}+4 n^{2}-3 x^{2}+8 n+4}{4\left(x^{2}-1\right)^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{2 n \sqrt{x^{2}-1}+2 \sqrt{x^{2}-1}+x}{2(x-1)(1+x)}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{2 n \sqrt{x^{2}-1}+2 \sqrt{x^{2}-1}+x}{2(x-1)(1+x)} d x} \\
& =\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{-x^{2}+1} d x} \\
& =z_{1} e^{-\frac{3 \ln (x-1)}{4}-\frac{3 \ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{-x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 \ln (x-1)}{2}-\frac{3 \ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 n-2}}{2+2 n}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}\right) \\
& +c_{2}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 n-2}}{2+2 n}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-n-1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}(2+2 n)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{n+1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-n-1}}{(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}(2+2 n)}
\]

Verified OK.

\subsection*{30.7.2 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-3 y^{\prime} x+\left(n^{2}+2 n\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{n(2+n) y}{x^{2}-1}-\frac{3 x y^{\prime}}{x^{2}-1}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 x y^{\prime}}{x^{2}-1}-\frac{n(2+n) y}{x^{2}-1}=0\)

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{3 x}{x^{2}-1}, P_{3}(x)=-\frac{n(2+n)}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{3}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+3 y^{\prime} x-n y(2+n)=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(3 u-3)\left(\frac{d}{d u} y(u)\right)+\left(-n^{2}-2 n\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+3+2 r)+a_{k}(r+2+n+k)(r-n+k)\right) u^{k}\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0,-\frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k}(r+2+n+k)(r-n+k)-2\left(k+\frac{3}{2}+r\right)(k+1+r) a_{k+1}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(r+2+n+k)(r-n+k)}{(2 k+3+2 r)(k+1+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(2+n+k)(-n+k)}{(2 k+3)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(2+n+k)(-n+k)}{(2 k+3)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(2+n+k)(-n+k)}{(2 k+3)(k+1)}\right]
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(\frac{3}{2}+n+k\right)\left(-\frac{1}{2}-n+k\right)}{(2 k+2)\left(k+\frac{1}{2}\right)}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(\frac{3}{2}+n+k\right)\left(-\frac{1}{2}-n+k\right)}{(2 k+2)\left(k+\frac{1}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(\frac{3}{2}+n+k\right)\left(-\frac{1}{2}-n+k\right)}{(2 k+2)\left(k+\frac{1}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k-\frac{1}{2}}\right), a_{1+k}=\frac{a_{k}(2+n+k)(-n+k)}{(2 k+3)(1+k)}, b_{1+k}=\frac{b_{k}\left(\frac{3}{2}+n+k\right)\left(-\frac{1}{2}-n+k\right)}{(2 k+2)\left(k+\frac{1}{2}\right)}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.063 (sec). Leaf size: 68
```

dsolve((1-x^2)*diff (y(x),x\$2)-3*x*diff (y(x),x)+n*(n+2)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1}\left(-\sqrt{x^{2}-1}+x\right)\left(x+\sqrt{x^{2}-1}\right)^{-n-1}-c_{2}\left(x+\sqrt{x^{2}-1}\right)^{n}}{\sqrt{x^{2}-1}\left(-\sqrt{x^{2}-1}+x\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 42
DSolve[(1-x^2)*y' \([x]-3 * x * y\) ' \([x]+n *(n+2) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{1} P_{n+\frac{1}{2}}^{\frac{1}{2}}(x)+c_{2} Q_{n+\frac{1}{2}}^{\frac{1}{2}}(x)}{\sqrt[4]{x^{2}-1}}
\]

\section*{30.8 problem 156}
30.8.1 Maple step by step solution . 3013

Internal problem ID [10980]
Internal file name [OUTPUT/10236_Sunday_December_31_2023_11_10_36_AM_51136809/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 156.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(x^{2}-1\right) y^{\prime \prime}+2(n+1) x y^{\prime}-(\nu+n+1)(\nu-n) y=0
\]

\subsection*{30.8.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}\left(x^{2}-1\right)+(2 x n+2 x) y^{\prime}+\left(n^{2}-\nu^{2}+n-\nu\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(n^{2}-\nu^{2}+n-\nu\right) y}{x^{2}-1}-\frac{2(n+1) x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2(n+1) x y^{\prime}}{x^{2}-1}+\frac{\left(n^{2}-\nu^{2}+n-\nu\right) y}{x^{2}-1}=0\)
\(\square\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2(n+1) x}{x^{2}-1}, P_{3}(x)=\frac{n^{2}-\nu^{2}+n-\nu}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=n+1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+2(n+1) x y^{\prime}+\left(n^{2}-\nu^{2}+n-\nu\right) y=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 n u-2 n+2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(n^{2}-\nu^{2}+n-\nu\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-2 a_{0} r(r+n) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-2 a_{k+1}(k+1+r)(k+1+r+n)+a_{k}(k+n+\nu+r+1)(r-\nu-\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r(r+n)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-n\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
-2 a_{k+1}(k+1+r)(k+1+r+n)+a_{k}(k+n+\nu+r+1)(r-\nu+n+k)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+n+\nu+r+1)(r-\nu+n+k)}{2(k+1+r)(k+1+r+n)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(k+n+\nu+1)(-\nu+n+k)}{2(k+1)(k+1+n)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+n+\nu+1)(-\nu+n+k)}{2(k+1)(k+1+n)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+n+\nu+1)(-\nu+n+k)}{2(k+1)(k+1+n)}\right]
\]
- Recursion relation for \(r=-n\)
\[
a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1-n)(k+1)}
\]
- \(\quad\) Solution for \(r=-n\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-n}, a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1-n)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-n}, a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1-n)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{-n+k}\right), a_{1+k}=\frac{a_{k}(k+n+\nu+1)(-\nu+n+k)}{2(1+k)(k+1+n)}, b_{1+k}=\frac{b_{k}(k+\nu+1)(-\nu+}{2(k+1-n)(1+k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 27
```

dsolve((x^2-1)*diff (y(x),x\$2)+2*(n+1)*x*diff(y(x),x)-(nu+n+1)*(nu-n)*y(x)=0,y(x), singsol=al

```
\[
y(x)=\left(\text { LegendreP }(\nu, n, x) c_{1}+\text { LegendreQ }(\nu, n, x) c_{2}\right)\left(x^{2}-1\right)^{-\frac{n}{2}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 32
DSolve \(\left[\left(x^{\wedge} 2-1\right) * y^{\prime \prime}[x]+2 *(n+1) * x * y '[x]-(\backslash[N u]+n+1) *(\backslash[N u]-n) * y[x]==0, y[x], x\right.\), IncludeSingularSo
\[
y(x) \rightarrow\left(x^{2}-1\right)^{-n / 2}\left(c_{1} P_{\nu}^{n}(x)+c_{2} Q_{\nu}^{n}(x)\right)
\]

\section*{30.9 problem 157}
30.9.1 Maple step by step solution . 3017

Internal problem ID [10981]
Internal file name [OUTPUT/10237_Sunday_December_31_2023_11_10_37_AM_18961001/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 157.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(x^{2}-1\right) y^{\prime \prime}-2(n-1) x y^{\prime}-(\nu-n+1)(\nu+n) y=0
\]

\subsection*{30.9.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}\left(x^{2}-1\right)+(-2 x n+2 x) y^{\prime}+\left(n^{2}-\nu^{2}-n-\nu\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(n^{2}-\nu^{2}-n-\nu\right) y}{x^{2}-1}+\frac{2(n-1) x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{2(n-1) x y^{\prime}}{x^{2}-1}+\frac{\left(n^{2}-\nu^{2}-n-\nu\right) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{2 x(n-1)}{x^{2}-1}, P_{3}(x)=\frac{n^{2}-\nu^{2}-n-\nu}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1-n\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)-2(n-1) x y^{\prime}+\left(n^{2}-\nu^{2}-n-\nu\right) y=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-2 u n+2 n+2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(n^{2}-\nu^{2}-n-\nu\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-2 a_{0} r(r-n) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-2 a_{k+1}(k+1+r)(k+1+r-n)+a_{k}(k-n+\nu+r+1)(r-\nu-\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
-2 r(r-n)=0
\]
- Values of r that satisfy the indicial equation
\(r \in\{0, n\}\)
- Each term in the series must be 0, giving the recursion relation
\[
-2 a_{k+1}(k+1+r)(k+1+r-n)+a_{k}(k-n+\nu+r+1)(r-\nu-n+k)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k-n+\nu+r+1)(r-\nu-n+k)}{2(k+1+r)(k+1+r-n)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k-n+\nu+1)(-\nu-n+k)}{2(k+1)(k+1-n)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k-n+\nu+1)(-\nu-n+k)}{2(k+1)(k+1-n)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k-n+\nu+1)(-\nu-n+k)}{2(k+1)(k+1-n)}\right]
\]
- Recursion relation for \(r=n\)
\[
a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1+n)(k+1)}
\]
- \(\quad\) Solution for \(r=n\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+n}, a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1+n)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+n}, a_{k+1}=\frac{a_{k}(k+\nu+1)(-\nu+k)}{2(k+1+n)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+n}\right), a_{1+k}=\frac{a_{k}(k-n+\nu+1)(-\nu-n+k)}{2(1+k)(k+1-n)}, b_{1+k}=\frac{b_{k}(k+\nu+1)(-\nu+k}{2(k+1+n)(1+k)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 27
```

dsolve((x^2-1)*diff (y(x),x\$2)-2*(n-1)*x*diff(y(x),x)-(nu-n+1)*(nu+n)*y(x)=0,y(x), singsol=al

```
\[
y(x)=\left(\text { LegendreP }(\nu, n, x) c_{1}+\operatorname{LegendreQ}(\nu, n, x) c_{2}\right)\left(x^{2}-1\right)^{\frac{n}{2}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 32
DSolve \(\left[\left(x^{\wedge} 2-1\right) * y\right.\) ' \('[x]-2 *(n-1) * x * y '[x]-(\backslash[N u]-n+1) *(\backslash[N u]+n) * y[x]==0, y[x], x\), IncludeSingularSo
\[
y(x) \rightarrow\left(x^{2}-1\right)^{n / 2}\left(c_{1} P_{\nu}^{n}(x)+c_{2} Q_{\nu}^{n}(x)\right)
\]

\subsection*{30.10 problem 158}
30.10.1 Maple step by step solution . 3021

Internal problem ID [10982]
Internal file name [OUTPUT/10238_Sunday_December_31_2023_11_10_39_AM_64591386/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 158.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(x^{2}-1\right) y^{\prime \prime}+(2 a+1) y^{\prime}-b(2 a+b) y=0
\]

\subsection*{30.10.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}\left(x^{2}-1\right)+(2 a+1) y^{\prime}+\left(-2 a b-b^{2}\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=\frac{b(2 a+b) y}{x^{2}-1}-\frac{(2 a+1) y^{\prime}}{x^{2}-1}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(2 a+1) y^{\prime}}{x^{2}-1}-\frac{b(2 a+b) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2 a+1}{x^{2}-1}, P_{3}(x)=-\frac{b(2 a+b)}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-a-\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+(2 a+1) y^{\prime}-b(2 a+b) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 a+1)\left(\frac{d}{d u} y(u)\right)+\left(-2 a b-b^{2}\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(\frac{d}{d u} y(u)\) to series expansion \(\frac{d}{d u} y(u)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
\frac{d}{d u} y(u)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(3-2 r+2 a) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(a_{k+1}(k+1+r)(-2 k+1-2 r+2 a)-a_{k}\left(2 a b+b^{2}-k^{2}-2 k r-\right.\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(3-2 r+2 a)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{3}{2}+a\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(-2 k+1-2 r+2 a)+\left(r^{2}+(2 k-1) r-2 a b-b^{2}+k^{2}-k\right) a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}-2 k r-r^{2}+k+r\right) a_{k}}{(k+1+r)(-2 k+1-2 r+2 a)}\)
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}+k\right) a_{k}}{(k+1)(-2 k+1+2 a)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}+k\right) a_{k}}{(k+1)(-2 k+1+2 a)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}+k\right) a_{k}}{(k+1)(-2 k+1+2 a)}\right]\)
- Recursion relation for \(r=\frac{3}{2}+a\)
\[
a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}-2 k\left(\frac{3}{2}+a\right)-\left(\frac{3}{2}+a\right)^{2}+k+\frac{3}{2}+a\right) a_{k}}{\left(k+\frac{5}{2}+a\right)(-2 k-2)}
\]
- \(\quad\) Solution for \(r=\frac{3}{2}+a\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3}{2}+a}, a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}-2 k\left(\frac{3}{2}+a\right)-\left(\frac{3}{2}+a\right)^{2}+k+\frac{3}{2}+a\right) a_{k}}{\left(k+\frac{5}{2}+a\right)(-2 k-2)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{3}{2}+a}, a_{k+1}=\frac{\left(2 a b+b^{2}-k^{2}-2 k\left(\frac{3}{2}+a\right)-\left(\frac{3}{2}+a\right)^{2}+k+\frac{3}{2}+a\right) a_{k}}{\left(k+\frac{5}{2}+a\right)(-2 k-2)}\right]
\]
- Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k}(1+x)^{k+\frac{3}{2}+a}\right), c_{1+k}=\frac{\left(2 a b+b^{2}-k^{2}+k\right) c_{k}}{(1+k)(-2 k+1+2 a)}, d_{1+k}=\frac{\left(2 a b+b^{2}-k^{2}-2 k\left(\frac{3}{2}+\right.\right.}{\left(k+\frac{5}{2}+\right.}\right.\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.078 (sec). Leaf size: 112
```

dsolve((x^2-1)*diff(y(x),x\$2)+(2*a+1)*diff(y(x),x)-b*(2*a+b)*y(x)=0,y(x), singsol=all)

```
\[
\begin{array}{r}
y(x)=c_{1} \text { hypergeom }\left(\left[-\frac{1}{2}-\frac{\sqrt{8 a b+4 b^{2}+1}}{2}, \frac{\sqrt{8 a b+4 b^{2}+1}}{2}-\frac{1}{2}\right],\left[-a-\frac{1}{2}\right], \frac{1}{2}+\frac{x}{2}\right) \\
+c_{2}\left(\frac{1}{2}+\frac{x}{2}\right)^{a+\frac{3}{2}} \text { hypergeom }\left(\left[1-\frac{\sqrt{8 a b+4 b^{2}+1}}{2}+a, \frac{\sqrt{8 a b+4 b^{2}+1}}{2}+1\right.\right. \\
\left.+a],\left[\frac{5}{2}+a\right], \frac{1}{2}+\frac{x}{2}\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.304 (sec). Leaf size: 152
DSolve \(\left[\left(x^{\wedge} 2-1\right) * y^{\prime \prime}[x]+(2 * a+1) * y{ }^{\prime}[x]-b *(2 * a+b) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
\begin{array}{r}
y(x) \rightarrow 2^{a-\frac{1}{2}} c_{2}(x-1)^{\frac{1}{2}-a} \text { Hypergeometric } 2 \mathrm{~F} 1(-a \\
\left.-\frac{1}{2} \sqrt{4 b^{2}+8 a b+1}, \frac{1}{2} \sqrt{4 b^{2}+8 a b+1}-a, \frac{3}{2}-a, \frac{1}{2}-\frac{x}{2}\right) \\
+c_{1} \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}\left(-\sqrt{4 b^{2}+8 a b+1}-1\right), \frac{1}{2}\left(\sqrt{4 b^{2}+8 a b+1}-1\right), a\right. \\
\left.+\frac{1}{2}, \frac{1-x}{2}\right)
\end{array}
\]

\subsection*{30.11 problem 159}
30.11.1 Maple step by step solution \(\qquad\)
Internal problem ID [10983]
Internal file name [OUTPUT/10239_Sunday_December_31_2023_11_10_39_AM_59917378/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 159.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Gegenbauer]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(2 a-3) x y^{\prime}+(n+1)(n+2 a-1) y=0
\]

\subsection*{30.11.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(2 a-3) x y^{\prime}+\left((2+2 n) a+n^{2}-1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\left(2 a n+n^{2}+2 a-1\right) y}{x^{2}-1}+\frac{x(2 a-3) y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{x(2 a-3) y^{\prime}}{x^{2}-1}-\frac{\left(2 a n+n^{2}+2 a-1\right) y}{x^{2}-1}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{x(2 a-3)}{x^{2}-1}, P_{3}(x)=-\frac{2 a n+n^{2}+2 a-1}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{3}{2}-a\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)-(2 a-3) x y^{\prime}+\left(-2 a n-n^{2}-2 a+1\right) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-2 u a+2 a+3 u-3)\left(\frac{d}{d u} y(u)\right)+\left(-2 a n-n^{2}-2 a+1\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1-2 r+2 a) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(a_{k+1}(k+1+r)(-2 k-3-2 r+2 a)-a_{k}(k+n+r+1)(-k\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-1-2 r+2 a)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0,-\frac{1}{2}+a\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+1+r)(-2 k-3-2 r+2 a)+a_{k}(k+n+r+1)(k-2 a+r+1-n)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+n+r+1)(-k+2 a-r-1+n)}{(k+1+r)(-2 k-3-2 r+2 a)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+n+1)(-k+2 a-1+n)}{(k+1)(-2 k-3+2 a)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+n+1)(-k+2 a-1+n)}{(k+1)(-2 k-3+2 a)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+n+1)(-k+2 a-1+n)}{(k+1)(-2 k-3+2 a)}\right]
\]
- Recursion relation for \(r=-\frac{1}{2}+a\)
\[
a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}+a\right)\left(-k+a-\frac{1}{2}+n\right)}{\left(k+\frac{1}{2}+a\right)(-2 k-2)}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}+a\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}+a}, a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}+a\right)\left(-k+a-\frac{1}{2}+n\right)}{\left(k+\frac{1}{2}+a\right)(-2 k-2)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{1}{2}+a}, a_{k+1}=\frac{a_{k}\left(k+n+\frac{1}{2}+a\right)\left(-k+a-\frac{1}{2}+n\right)}{\left(k+\frac{1}{2}+a\right)(-2 k-2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k-\frac{1}{2}+a}\right), b_{1+k}=\frac{b_{k}(k+n+1)(-k+2 a-1+n)}{(1+k)(-2 k-3+2 a)}, c_{1+k}=\frac{c_{k}\left(k+n+\frac{1}{2}+a\right)}{\left(k+\frac{1}{2}+a\right)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 39
```

dsolve((1-x^2)*diff (y(x),x\$2)+(2*a-3)*x*\operatorname{diff}(y(x),x)+(n+1)*(n+2*a-1)*y(x)=0,y(x), singsol=al

```
\(y(x)=\left(\right.\) LegendreP \(\left.\left(a+n-\frac{1}{2}, a-\frac{1}{2}, x\right) c_{1}+\operatorname{LegendreQ}\left(a+n-\frac{1}{2}, a-\frac{1}{2}, x\right) c_{2}\right)\left(x^{2}\right.\)
\(-1)^{\frac{a}{2}-\frac{1}{4}}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.325 (sec). Leaf size: 158
DSolve \(\left[\left(1-x^{\wedge} 2\right) * y{ }^{\prime} '[x]+(2 * a-3) * y '[x]+(n+1) *(n+2 * a-1) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\[
\begin{aligned}
& y(x) \rightarrow 2^{\frac{1}{2}-a} c_{2}(x-1)^{a-\frac{1}{2}} \text { Hypergeometric2F1 }\left(a-\frac{1}{2} \sqrt{4 n^{2}+8 a(n+1)-3}-1, a\right. \\
& \left.+\frac{1}{2} \sqrt{4 n^{2}+8 a(n+1)-3}-1, a+\frac{1}{2}, \frac{1-x}{2}\right) \\
& +c_{1} \text { Hypergeometric } 2 \text { F1 }\left(\frac { 1 } { 2 } \left(-\sqrt{4 n^{2}+8 a(n+1)-3}\right.\right. \\
& \left.-1), \frac{1}{2}\left(\sqrt{4 n^{2}+8 a(n+1)-3}-1\right), \frac{3}{2}-a, \frac{1-x}{2}\right)
\end{aligned}
\]

\subsection*{30.12 problem 160}
30.12.1 Maple step by step solution

Internal problem ID [10984]
Internal file name [OUTPUT/10240_Sunday_December_31_2023_11_10_41_AM_52504833/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 160.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) x) y^{\prime}+n(n+\alpha+\beta+1) y=0
\]

\subsection*{30.12.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}+((-\beta-\alpha-2) x+\beta-\alpha) y^{\prime}+n(n+\alpha+\beta+1) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{n(n+\alpha+\beta+1) y}{x^{2}-1}-\frac{(x \alpha+\beta x+\alpha-\beta+2 x) y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(x \alpha+\beta x+\alpha-\beta+2 x) y^{\prime}}{x^{2}-1}-\frac{n(n+\alpha+\beta+1) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{x \alpha+\beta x+\alpha-\beta+2 x}{x^{2}-1}, P_{3}(x)=-\frac{n(n+\alpha+\beta+1)}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\beta+1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(y^{\prime \prime}\left(x^{2}-1\right)+(x \alpha+\beta x+\alpha-\beta+2 x) y^{\prime}-n(n+\alpha+\beta+1) y=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(\alpha u+\beta u-2 \beta+2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-\alpha n-\beta n-n^{2}-n\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-2 a_{0} r(r+\beta) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-2 a_{k+1}(k+1+r)(k+1+r+\beta)+a_{k}(k-n+r)(k+\alpha+\beta+r .\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
-2 r(r+\beta)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{0,-\beta\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
-2 a_{k+1}(k+1+r)(k+1+r+\beta)+a_{k}(k-n+r)(k+\alpha+\beta+r+1+n)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(k-n+r)(k+\alpha+\beta+r+1+n)}{2(k+1+r)(k+1+r+\beta)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(k-n)(k+\alpha+\beta+1+n)}{2(k+1)(k+1+\beta)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k-n)(k+\alpha+\beta+1+n)}{2(k+1)(k+1+\beta)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k-n)(k+\alpha+\beta+1+n)}{2(k+1)(k+1+\beta)}\right]
\]
- Recursion relation for \(r=-\beta\)
\[
a_{k+1}=\frac{a_{k}(k-n-\beta)(k+\alpha+1+n)}{2(k+1-\beta)(k+1)}
\]
- \(\quad\) Solution for \(r=-\beta\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\beta}, a_{k+1}=\frac{a_{k}(k-n-\beta)(k+\alpha+1+n)}{2(k+1-\beta)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\beta}, a_{k+1}=\frac{a_{k}(k-n-\beta)(k+\alpha+1+n)}{2(k+1-\beta)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k-\beta}\right), a_{1+k}=\frac{a_{k}(k-n)(k+\alpha+\beta+1+n)}{2(1+k)(k+1+\beta)}, b_{1+k}=\frac{b_{k}(k-n-\beta)(k+\alpha+1}{2(k+1-\beta)(1+k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.094 (sec). Leaf size: 61
```

dsolve((1-x^2)*diff (y(x),x\$2)+(beta-alpha-(alpha+beta+2)*x)*diff (y(x),x)+n*(n+alpha+beta+1)*

```
\[
\begin{aligned}
y(x)= & c_{1} \text { hypergeom }\left([-n, n+\alpha+\beta+1],[\beta+1], \frac{1}{2}+\frac{x}{2}\right) \\
& +c_{2}\left(\frac{1}{2}+\frac{x}{2}\right)^{-\beta} \text { hypergeom }\left([-n-\beta, n+\alpha+1],[1-\beta], \frac{1}{2}+\frac{x}{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 69
DSolve \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime \prime}[\mathrm{x}]+(\backslash[\right.\) Beta \(]-\backslash[\) Alpha \(]-(\backslash[\) Alpha \(]+\backslash[\) Beta \(]+2) * x) * y '[x]+n *(n+\backslash[A l p h a]+\backslash[B e t a]+\)
\[
\begin{aligned}
y(x) \rightarrow & 2^{\alpha} c_{2}(x-1)^{-\alpha} \text { Hypergeometric } 2 \mathrm{~F} 1\left(-n-\alpha, n+\beta+1,1-\alpha, \frac{1-x}{2}\right) \\
& +c_{1} \text { Hypergeometric2F1 }\left(-n, n+\alpha+\beta+1, \alpha+1, \frac{1-x}{2}\right)
\end{aligned}
\]

\subsection*{30.13 problem 161}
30.13.1 Maple step by step solution . 3036

Internal problem ID [10985]
Internal file name [OUTPUT/10241_Sunday_December_31_2023_11_10_43_AM_21876183/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 161.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(\alpha-\beta+(\alpha+\beta-2) x) y^{\prime}+(n+1)(n+\alpha+\beta) y=0
\]

\subsection*{30.13.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(\alpha-\beta+(\alpha+\beta-2) x) y^{\prime}+(n+1)(n+\alpha+\beta) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(n+1)(n+\alpha+\beta) y}{x^{2}-1}+\frac{(x \alpha+\beta x+\alpha-\beta-2 x) y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x \alpha+\beta x+\alpha-\beta-2 x) y^{\prime}}{x^{2}-1}-\frac{(n+1)(n+\alpha+\beta) y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{x \alpha+\beta x+\alpha-\beta-2 x}{x^{2}-1}, P_{3}(x)=-\frac{(n+1)(n+\alpha+\beta)}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-\beta+1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\[
y^{\prime \prime}\left(x^{2}-1\right)+(-x \alpha-\beta x-\alpha+\beta+2 x) y^{\prime}-(n+1)(n+\alpha+\beta) y=0
\]
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-\alpha u-\beta u+2 \beta+2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-\alpha n-\beta n-n^{2}-\alpha-\beta-n\right) y(\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
2 a_{0} r(-r+\beta) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(2 a_{k+1}(k+1+r)(-k-1-r+\beta)-a_{k}(k+n+r+1)(-k+\alpha+\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
2 r(-r+\beta)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0, \beta\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
(k+n+r+1)(k+r-\beta-\alpha-n) a_{k}-2 a_{k+1}(k+1+r)(k+r-\beta+1)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{(k+n+r+1)(-k+\alpha+\beta-r+n) a_{k}}{2(k+1+r)(-k-1-r+\beta)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{(k+n+1)(-k+\alpha+\beta+n) a_{k}}{2(k+1)(-k-1+\beta)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{(k+n+1)(-k+\alpha+\beta+n) a_{k}}{2(k+1)(-k-1+\beta)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{(k+n+1)(-k+\alpha+\beta+n) a_{k}}{2(k+1)(-k-1+\beta)}\right]
\]
- \(\quad\) Recursion relation for \(r=\beta\)
\[
a_{k+1}=\frac{(k+n+\beta+1)(-k+\alpha+n) a_{k}}{2(k+1+\beta)(-k-1)}
\]
- \(\quad\) Solution for \(r=\beta\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\beta}, a_{k+1}=\frac{(k+n+\beta+1)(-k+\alpha+n) a_{k}}{2(k+1+\beta)(-k-1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\beta}, a_{k+1}=\frac{(k+n+\beta+1)(-k+\alpha+n) a_{k}}{2(k+1+\beta)(-k-1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\beta}\right), a_{1+k}=\frac{(k+n+1)(-k+\alpha+\beta+n) a_{k}}{2(1+k)(-k-1+\beta)}, b_{1+k}=\frac{(k+n+\beta+1)(-k+}{2(k+1+\beta)(-k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.094 (sec). Leaf size: 64
dsolve \(\left(\left(1-x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)+(a l p h a-b e t a+(a l p h a+b e t a-2) * x) * \operatorname{diff}(y(x), x)+(n+1) *(n+a l p h a+b e t a\right.\)
\[
\begin{aligned}
y(x)= & c_{1} \text { hypergeom }\left([n+1,-n-\beta-\alpha],[1-\beta], \frac{1}{2}+\frac{x}{2}\right) \\
& +c_{2}\left(\frac{1}{2}+\frac{x}{2}\right)^{\beta} \text { hypergeom }\left([-n-\alpha, n+\beta+1],[\beta+1], \frac{1}{2}+\frac{x}{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 74
DSolve \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime} '[x]+(\backslash[\right.\) Alpha \(]-\backslash[B e t a]+(\backslash[A l p h a]+\backslash[B e t a]-2) * x) * y '[x]+(n+1) *(n+\backslash[A l p h a]+\backslash[B e\)
\[
\begin{aligned}
y(x) \rightarrow & 2^{-\alpha} c_{2}(x-1)^{\alpha} \text { Hypergeometric } 2 \mathrm{~F} 1\left(n+\alpha+1,-n-\beta, \alpha+1, \frac{1-x}{2}\right) \\
& +c_{1} \text { Hypergeometric2F1 }\left(n+1,-n-\alpha-\beta, 1-\alpha, \frac{1-x}{2}\right)
\end{aligned}
\]

\subsection*{30.14 problem 162}
30.14.1 Solving as second order change of variable on \(x\) method 2 ode . 3041
30.14.2 Solving as second order change of variable on \(x\) method 1 ode . 3044
30.14.3 Solving using Kovacic algorithm 3046

Internal problem ID [10986]
Internal file name [OUTPUT/10242_Sunday_December_31_2023_11_10_44_AM_62076601/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 162.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
\left(a x^{2}+b\right) y^{\prime \prime}+a x y^{\prime}+y c=0
\]

\subsection*{30.14.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(a x^{2}+b\right) y^{\prime \prime}+a x y^{\prime}+y c=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x}{a x^{2}+b} \\
q(x) & =\frac{c}{a x^{2}+b}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{a x}{a x^{2}+b} d x\right)} d x \\
& =\int e^{-\frac{\ln \left(a x^{2}+b\right)}{2}} d x \\
& =\int \frac{1}{\sqrt{a x^{2}+b}} d x \\
& =\frac{\ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{c}{a x^{2}+b}}{\frac{1}{a x^{2}+b}} \\
& =c \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=c\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+c \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+c=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=c\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(c)} \\
& = \pm \sqrt{-c}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-c} \\
& \lambda_{2}=-\sqrt{-c}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-c} \\
& \lambda_{2}=-\sqrt{-c}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-c}) \tau}+c_{2} e^{(-\sqrt{-c}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-c} \tau}+c_{2} \mathrm{e}^{-\sqrt{-c} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{\frac{\sqrt{-c}}{\sqrt{a}}}+c_{2}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{-\frac{\sqrt{-c}}{\sqrt{a}}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{\frac{\sqrt{-c}}{\sqrt{a}}}+c_{2}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{-\frac{\sqrt{-c}}{\sqrt{a}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{\frac{\sqrt{-c}}{\sqrt{a}}}+c_{2}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{-\frac{\sqrt{-c}}{\sqrt{a}}}
\]

Verified OK.

\subsection*{30.14.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
\left(a x^{2}+b\right) y^{\prime \prime}+a x y^{\prime}+y c=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x}{a x^{2}+b} \\
q(x) & =\frac{c}{a x^{2}+b}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{c}{a x^{2}+b}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{c a x}{c \sqrt{\frac{c}{a x^{2}+b}}\left(a x^{2}+b\right)^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{c a x}{c \sqrt{\frac{c}{a x^{2}+b}}\left(a x^{2}+b\right)^{2}}+\frac{a x}{a x^{2}+b} \frac{\sqrt{\frac{c}{a x^{2}+b}}}{c}}{\left(\frac{\sqrt{\frac{c}{a x^{2}+b}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{c}{a x^{2}+b}} d x}{c} \\
& =\frac{\sqrt{\frac{c}{a x^{2}+b}} \sqrt{a x^{2}+b} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{c \sqrt{a}}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cos \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cos \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \ln \left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)}{\sqrt{a}}\right)
\]

Verified OK.

\subsection*{30.14.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(a x^{2}+b\right) y^{\prime \prime}+a x y^{\prime}+y c & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=a x^{2}+b \\
& B=a x \tag{3}\\
& C=c
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-a^{2} x^{2}-4 a c x^{2}+2 a b-4 b c}{4\left(a x^{2}+b\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-a^{2} x^{2}-4 a c x^{2}+2 a b-4 b c \\
& t=4\left(a x^{2}+b\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-a^{2} x^{2}-4 a c x^{2}+2 a b-4 b c}{4\left(a x^{2}+b\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 158: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(a x^{2}+b\right)^{2}\). There is a pole at \(x=\frac{\sqrt{-a b}}{a}\) of order 2 . There is a pole at
\(x=-\frac{\sqrt{-a b}}{a}\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Unable to find solution using case two.
Attempting to find a solution using \(n=4\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
\begin{aligned}
r= & -\frac{3}{16\left(x-\sqrt{-\frac{b}{a}}\right)^{2}}-\frac{3}{16\left(x+\sqrt{-\frac{b}{a}}\right)^{2}} \\
& +\frac{-a b+8 b c}{16\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x-\sqrt{-\frac{b}{a}}\right)}-\frac{-a b+8 b c}{16\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x+\sqrt{-\frac{b}{a}}\right)}
\end{aligned}
\]

For the pole at \(x=\frac{\sqrt{-a b}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x-\frac{\sqrt{-a b}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. This shows that \(b=0\). Hence
\[
E_{c}=\left\{\left.6+\frac{12 k}{n} \sqrt{1+4 b} \right\rvert\, k=0, \pm 1, \pm 2, \ldots, \pm \frac{n}{2}\right\} \cap \mathbb{Z}
\]

Where \(n\) for case 3 is 4,6 or 12 . For the current case \(n=4\). Hence the above becomes
\[
E_{c}=\{0,3,6,9,12\}
\]

For the pole at \(x=-\frac{\sqrt{-a b}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{\sqrt{-a b}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. This shows that \(b=0\). Hence
\[
E_{c}=\left\{\left.6+\frac{12 k}{n} \sqrt{1+4 b} \right\rvert\, k=0, \pm 1, \pm 2, \ldots, \pm \frac{n}{2}\right\} \cap \mathbb{Z}
\]

Where \(n\) for case 3 is 4,6 or 12 . For the current case \(n=4\). Hence the above becomes
\[
E_{c}=\{0,3,6,9,12\}
\]

Let
\[
\begin{equation*}
E_{\infty}=\left\{\left.6+\frac{12 k}{n} \sqrt{1+4 b} \right\rvert\, k=0, \pm 1, \pm 2, \ldots, \pm \frac{n}{2}\right\} \cap \mathbb{Z} \tag{B1}
\end{equation*}
\]

Where \(b\) is the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series for \(r\) at \(\infty\) given by
\(r \approx \frac{-a^{2}-4 a c}{4 a^{2} x^{2}}+\frac{-\frac{\left(-a^{2}-4 a c\right) b}{2 a^{3}}+\frac{2 a b-4 b c}{4 a^{2}}}{x^{4}}+\frac{\frac{3\left(-a^{2}-4 a c\right) b^{2}}{4 a^{4}}-\frac{(2 a b-4 b c) b}{2 a^{3}}}{x^{6}}+\frac{-\frac{\left(-a^{2}-4 a c\right) b^{3}}{a^{5}}+\frac{3(2 a b-4 b c) b^{2}}{4 a^{4}}}{x^{8}}+\frac{\frac{5\left(-a^{2}-4 a c\right) b^{4}}{4 a^{6}}}{x}\)
The above shows that
\[
b=-\frac{1}{4}
\]

The value of \(n\) in eq. (B1) for case 3 is 4,6 or 2 .For the current case \(n=4\). eq. (B1) simplifies to the following, after removing any duplicate and non integer entries in the set.
\[
E_{\infty}=\{6\}
\]

The following table summarizes the results found so far for poles and for the order of \(r\) at \(\infty\) for case 3 of Kovacic algorithm using \(n=4\).
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & set \(\left\{E_{c}\right\}\) \\
\hline\(\frac{\sqrt{-a b}}{a}\) & 2 & \(\{0,3,6,9,12\}\) \\
\hline\(-\frac{\sqrt{-a b}}{a}\) & 2 & \(\{0,3,6,9,12\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & set \(\left\{E_{\infty}\right\}\) \\
\hline 2 & \(\{6\}\) \\
\hline
\end{tabular}

Now that \(E_{c}\) sets for all poles are found and \(E_{\infty}\) set is found, the next step is to determine a non negative integer \(d\) using the following
\[
d=\frac{n}{12}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right)
\]

Where in the above \(e_{c}\) is a distinct element from each corresponding \(E_{c}\). This means all possible tuples \(\left\{e_{c_{1}}, e_{c_{2}}, \ldots, e_{c_{n}}\right\}\) are tried in the sum above, where \(e_{c_{i}}\) is one element of each \(E_{c}\) found earlier. Using the following family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=3, e_{2}=3, e_{\infty}=6
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{n}{12}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{4}{12}(6-(3+(3))) \\
& =0
\end{aligned}
\]

The following rational function is
\[
\begin{aligned}
\theta & =\frac{n}{12} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{4}{12}\left(\frac{3}{\left(x-\left(\frac{\sqrt{-a b}}{a}\right)\right)}+\frac{3}{\left(x-\left(-\frac{\sqrt{-a b}}{a}\right)\right)}\right) \\
& =\frac{2 a x}{a x^{2}+b}
\end{aligned}
\]

And
\[
\begin{aligned}
S & =\prod_{c \in \Gamma}(x-c) \\
& =\left(x-\frac{\sqrt{-a b}}{a}\right)\left(x+\frac{\sqrt{-a b}}{a}\right)
\end{aligned}
\]

The polynomial \(p(x)\) is now determined. Since the degree of the polynomial is \(d=0\), then let
\[
p(x)=1
\]

The following set of equations are set up in order to determine the coefficients \(a_{i}\) (if any) of the above polynomial
\[
\begin{align*}
P_{n} & =-p(x) \\
& =-1 \\
P_{i-1} & =-S p_{i}^{\prime}+\left((n-i) S^{\prime}-S \theta\right) P_{i}-(n-1)(i+1) S^{2} r P_{i+1} \quad i=n, n-1, \ldots, 0 \tag{1A}
\end{align*}
\]

The coefficients \(a_{i}\) are solved for from
\[
\begin{equation*}
P_{-1}=0 \tag{2~A}
\end{equation*}
\]

By using method of undetermined coefficients. Carrying the above computation in eq. (1A) gives the following sequence of polynomials \(P_{i}\) (noting that \(n=4\) and \(r=\) \(\left.\frac{-a^{2} x^{2}-4 a c x^{2}+2 a b-4 b c}{4\left(a x^{2}+b\right)^{2}}\right)\).
\[
\begin{aligned}
P_{4} & =-p \\
& =-1 \\
P_{3} & =2 x \\
P_{2} & =\frac{-3 a^{2} x^{2}-4 a c x^{2}-4 b c}{a^{2}} \\
P_{1} & =\frac{3 x\left(a x^{2}(a+4 c)+4 b c\right)}{a^{2}} \\
P_{0} & =-\frac{3\left(a^{2} x^{2}+4 a c x^{2}+4 b c\right)^{2}}{2 a^{4}} \\
P_{-1} & =0
\end{aligned}
\]

Because \(P_{-1}=0\) then \(z=e^{\int \omega}\) is a solution. \(\omega\) is found by finding a solution to the equation generated by the following sum
\[
\begin{aligned}
& \sum_{i=0}^{n} S^{i} \frac{P_{i}}{(n-i)!} \omega^{i}=0 \\
& \sum_{i=0}^{4} S^{i} \frac{P_{i}}{(4-i)!} \omega^{i}=0
\end{aligned}
\]

Where the \(P_{i}\) are the polynomials found earlier. Computing the above sum gives
\[
\begin{equation*}
\frac{1}{16 a^{4}}\left(-\left(4 a^{2} x^{4} \omega^{2}-4 a^{2} x^{3} \omega+8 a b \omega^{2} x^{2}+a^{2} x^{2}-4 a b \omega x+4 a c x^{2}+4 b^{2} \omega^{2}+4 b c\right)^{2}\right)=0 \tag{3A}
\end{equation*}
\]

The solution \(\omega\) of eq. 3 A is found as
\[
\omega=\frac{1}{2 a x^{2}+2 b}\left(a x-2 \sqrt{-\left(a x^{2}+b\right) c}\right)
\]

This \(\omega\) is used to find a solution to \(z^{\prime \prime}=r z\).
\[
\begin{equation*}
z_{1}(x)=e^{\int \omega d x} \tag{5~A}
\end{equation*}
\]

Doing the integration gives in eq. (4A) gives
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{a x-2}{} \frac{\sqrt{-\left(a x^{2}+b\right) c}}{2 a x^{2}+2 b} d x} \\
& \left.=\left(a x^{2}+b\right)^{\frac{1}{4}} \mathrm{e}^{\frac{c \arctan \left(\frac{\sqrt{a c} x}{\sqrt{-\left(a x^{2}+b\right) c}}\right.}{\sqrt{a c}}}\right)
\end{aligned}
\]

Which simplifies to
\[
z_{1}(x)=\left(a x^{2}+b\right)^{\frac{1}{4}} \mathrm{e}^{\left.\frac{c \arctan \left(x \sqrt{-\frac{a}{a}}\right)}{\sqrt{a c}}\right)}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x}{a x^{2}+b} d x} \\
& =z_{1} e^{-\frac{\ln \left(a x^{2}+b\right)}{4}} \\
& =z_{1}\left(\frac{1}{\left(a x^{2}+b\right)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{\operatorname{carctan}\left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x}{a x^{2}+b} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln \left(a x^{2}+b\right)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{-\frac{2 \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}}{\sqrt{a x^{2}+b}} d x\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\left.\frac{c \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}\right)+c_{2}\left(\mathrm{e}^{\frac{c \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}\left(\int \frac{\mathrm{e}^{-\frac{2 \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}}{\sqrt{a x^{2}+b}} d x\right)\right)} .\right.
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\left.y=c_{1} \mathrm{e}^{\left.\frac{\operatorname{carctan}\left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}+c_{2} \mathrm{e}^{\frac{c \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right.}{\sqrt{a c}}}\left(\int \frac{\mathrm{e}^{-\frac{2 c \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}}{\sqrt{a x^{2}+b}} d x\right) .\right) ~(x)}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{c \arctan \left(\sqrt[x]{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}+c_{2} \mathrm{e}^{\frac{c \arctan \left(x \sqrt{-\frac{a}{a} x^{2}+b}\right.}{\sqrt{a c}}}\left(\int \frac{\mathrm{e}^{-\frac{2 c \arctan \left(x \sqrt{-\frac{a}{a x^{2}+b}}\right)}{\sqrt{a c}}}}{\sqrt{a x^{2}+b}} d x\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
```

dsolve((a*x^2+b)*diff(y(x),x\$2)+a*x*diff(y(x),x)+c*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{\frac{i \sqrt{c}}{\sqrt{a}}}+c_{2}\left(\sqrt{a} x+\sqrt{a x^{2}+b}\right)^{-\frac{i \sqrt{c}}{\sqrt{a}}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 74
DSolve[(a*x^2+b)*y' ' \([x]+a * x * y{ }^{\prime}[x]+c * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \cos \left(\frac{\sqrt{c} \operatorname{arctanh}\left(\frac{\sqrt{a} x}{\sqrt{a x^{2}+b}}\right)}{\sqrt{a}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \operatorname{arctanh}\left(\frac{\sqrt{a} x}{\sqrt{a x^{2}+b}}\right)}{\sqrt{a}}\right)
\]

\subsection*{30.15 problem 163}
30.15.1 Solving as second order integrable as is ode
30.15.2 Solving as type second_order_integrable_as_is (not using ABC version)
30.15.3 Solving as exact linear second order ode ode 3059

Internal problem ID [10987]
Internal file name [OUTPUT/10243_Sunday_December_31_2023_11_13_29_AM_55836174/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 163.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
\left(x^{2}+a\right) y^{\prime \prime}+2 b x y^{\prime}+2(b-1) y=0
\]

\subsection*{30.15.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(x^{2}+a\right) y^{\prime \prime}+2 b x y^{\prime}+(2 b-2) y\right) d x=0 \\
(2 b x-2 x) y+\left(x^{2}+a\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{2 x(b-1)}{x^{2}+a} \\
& q(x)=\frac{c_{1}}{x^{2}+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{2 x(b-1) y}{x^{2}+a}=\frac{c_{1}}{x^{2}+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x(b-1)}{x^{2}+a} d x} \\
& =\mathrm{e}^{\frac{(2 b-2) \ln \left(x^{2}+a\right)}{2}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{2}+a\right)^{b-1}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(\left(x^{2}+a\right)^{b-1}\right)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\mathrm{d}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(c_{1}\left(x^{2}+a\right)^{-2+b}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} \mathrm{~d} x \\
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{2}+a\right)^{b-1}\) results in
\[
y=\left(x^{2}+a\right)^{-b+1}\left(\int c_{1}\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\left(x^{2}+a\right)^{-b+1}
\]
which simplifies to
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

Verified OK.

\subsection*{30.15.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
\left(x^{2}+a\right) y^{\prime \prime}+2 b x y^{\prime}+(2 b-2) y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(x^{2}+a\right) y^{\prime \prime}+2 b x y^{\prime}+(2 b-2) y\right) d x=0 \\
(2 b x-2 x) y+\left(x^{2}+a\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{2 x(b-1)}{x^{2}+a} \\
& q(x)=\frac{c_{1}}{x^{2}+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{2 x(b-1) y}{x^{2}+a}=\frac{c_{1}}{x^{2}+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x(b-1)}{x^{2}+a} d x} \\
& =\mathrm{e}^{\frac{(2 b-2) \ln \left(x^{2}+a\right)}{2}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{2}+a\right)^{b-1}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(\left(x^{2}+a\right)^{b-1}\right)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\mathrm{d}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(c_{1}\left(x^{2}+a\right)^{-2+b}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} \mathrm{~d} x \\
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{2}+a\right)^{b-1}\) results in
\[
y=\left(x^{2}+a\right)^{-b+1}\left(\int c_{1}\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\left(x^{2}+a\right)^{-b+1}
\]
which simplifies to
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

Verified OK.

\subsection*{30.15.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =x^{2}+a \\
q(x) & =2 b x \\
r(x) & =2 b-2 \\
s(x) & =0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =2 b
\end{aligned}
\]

Therefore (1) becomes
\[
2-(2 b)+(2 b-2)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(2 b x-2 x) y+\left(x^{2}+a\right) y^{\prime}=c_{1}
\]

We now have a first order ode to solve which is
\[
(2 b x-2 x) y+\left(x^{2}+a\right) y^{\prime}=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{2 x(b-1)}{x^{2}+a} \\
& q(x)=\frac{c_{1}}{x^{2}+a}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{2 x(b-1) y}{x^{2}+a}=\frac{c_{1}}{x^{2}+a}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x(b-1)}{x^{2}+a} d x} \\
& =\mathrm{e}^{\frac{(2 b-2) \ln \left(x^{2}+a\right)}{2}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(x^{2}+a\right)^{b-1}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(\left(x^{2}+a\right)^{b-1}\right)\left(\frac{c_{1}}{x^{2}+a}\right) \\
\mathrm{d}\left(\left(x^{2}+a\right)^{b-1} y\right) & =\left(c_{1}\left(x^{2}+a\right)^{-2+b}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} \mathrm{~d} x \\
& \left(x^{2}+a\right)^{b-1} y=\int c_{1}\left(x^{2}+a\right)^{-2+b} d x+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\left(x^{2}+a\right)^{b-1}\) results in
\[
y=\left(x^{2}+a\right)^{-b+1}\left(\int c_{1}\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\left(x^{2}+a\right)^{-b+1}
\]
which simplifies to
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{1}\left(\int\left(x^{2}+a\right)^{-2+b} d x\right)+c_{2}\right)\left(x^{2}+a\right)^{-b+1}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 2F1 ODE     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - feturning with <- linear_1 successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.047 (sec). Leaf size: 41
dsolve \(\left(\left(x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x \$ 2)+2 * b * x * \operatorname{diff}(y(x), x)+2 *(b-1) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=c_{1}\left(\frac{x^{2}+a}{a}\right)^{-b+1}+c_{2} x \text { hypergeom }\left(\left[1, b-\frac{1}{2}\right],\left[\frac{3}{2}\right],-\frac{x^{2}}{a}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.426 (sec). Leaf size: 64
DSolve \(\left[\left(x^{\wedge} 2+a\right) * y{ }^{\prime}[\mathrm{x}]+2 * \mathrm{~b} * \mathrm{x} * \mathrm{y}\right.\) ' \([\mathrm{x}]+2 *(\mathrm{~b}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow\left(a+x^{2}\right)\left(\frac{c_{2} x\left(\frac{a+x^{2}}{a}\right)^{-b} \text { Hypergeometric2F1 }\left(\frac{1}{2}, 2-b, \frac{3}{2},-\frac{x^{2}}{a}\right)}{a^{2}}+c_{1}\left(a+x^{2}\right)^{-b}\right)
\]

\subsection*{30.16 problem 164}
30.16.1 Maple step by step solution . 3063

Internal problem ID [10988]
Internal file name [OUTPUT/10244_Sunday_December_31_2023_11_13_32_AM_79566971/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 164.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-a^{2}+x^{2}\right) y^{\prime \prime}+2 b x y^{\prime}+b(b-1) y=0
\]

\subsection*{30.16.1 Maple step by step solution}

Let's solve
\[
\left(-a^{2}+x^{2}\right) y^{\prime \prime}+2 b x y^{\prime}+\left(b^{2}-b\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{b(b-1) y}{a^{2}-x^{2}}+\frac{2 b x y^{\prime}}{a^{2}-x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{2 b x y^{\prime}}{a^{2}-x^{2}}-\frac{b(b-1) y}{a^{2}-x^{2}}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{2 b x}{a^{2}-x^{2}}, P_{3}(x)=-\frac{b(b-1)}{a^{2}-x^{2}}\right]
\]
- \((x-a) \cdot P_{2}(x)\) is analytic at \(x=a\)
\(\left.\left((x-a) \cdot P_{2}(x)\right)\right|_{x=a}=b\)
- \(\quad(x-a)^{2} \cdot P_{3}(x)\) is analytic at \(x=a\)
\[
\left.\left((x-a)^{2} \cdot P_{3}(x)\right)\right|_{x=a}=0
\]
- \(x=a\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=a\)
- Multiply by denominators
\[
y^{\prime \prime}\left(a^{2}-x^{2}\right)-2 b x y^{\prime}-b(b-1) y=0
\]
- \(\quad\) Change variables using \(x=u+a\) so that the regular singular point is at \(u=0\) \(\left(-2 u a-u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-2 a b-2 b u)\left(\frac{d}{d u} y(u)\right)+\left(-b^{2}+b\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-2 a a_{0} r(r-1+b) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-2 a a_{k+1}(k+1+r)(r+k+b)-a_{k}(r+k+b)(r-1+k+b)\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
-2 a r(r-1+b)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-b+1\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
-2(r+k+b)\left(\frac{a_{k}(r-1+k+b)}{2}+a a_{k+1}(k+1+r)\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}(r-1+k+b)}{2 a(k+1+r)}
\]
- Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{a_{k}(-1+k+b)}{2 a(k+1)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}(-1+k+b)}{2 a(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}, a_{k+1}=-\frac{a_{k}(-1+k+b)}{2 a(k+1)}\right]
\]
- Recursion relation for \(r=-b+1\)
\[
a_{k+1}=-\frac{a_{k} k}{2 a(k+2-b)}
\]
- \(\quad\) Solution for \(r=-b+1\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-b+1}, a_{k+1}=-\frac{a_{k} k}{2 a(k+2-b)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-a\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-a)^{k-b+1}, a_{k+1}=-\frac{a_{k} k}{2 a(k+2-b)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k}(x-a)^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k}(x-a)^{k-b+1}\right), c_{1+k}=-\frac{c_{k}(-1+k+b)}{2 a(1+k)}, d_{1+k}=-\frac{d_{k} k}{2 a(k+2-b)}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
\[
\begin{gathered}
\text { dsolve }\left(\left(\mathrm{x}^{\wedge} 2-\mathrm{a}^{\wedge} 2\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * \mathrm{~b} * \mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{b} *(\mathrm{~b}-1) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { singsol }=\mathrm{all}\right) \\
y(x)=c_{1}(a+x)^{-b+1}+c_{2}(a-x)^{-b+1}
\end{gathered}
\]

Solution by Mathematica
Time used: 0.727 (sec). Leaf size: 127
DSolve \(\left[\left(x^{\wedge} 2-a^{\wedge} 2\right) * y{ }^{\prime} '[x]+2 * b * x * y '[x]+b *(b-1) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True \(]\)
\[
\rightarrow \frac{(x-a)^{\frac{1}{2}-\frac{1}{2} \sqrt{(b-1)^{2}}}(a+x)^{\frac{1}{2}-\frac{1}{2} \sqrt{(b-1)^{2}}}\left(x^{2}-a^{2}\right)^{-b / 2}\left(2 a \sqrt{(b-1)^{2}} c_{1}(x-a)^{\sqrt{(b-1)^{2}}}-c_{2}(a+x)^{\sqrt{(b-1)^{2}}}\right)}{2 a \sqrt{(b-1)^{2}}}
\]

\subsection*{30.17 problem 165}
30.17.1 Solving using Kovacic algorithm 3067

Internal problem ID [10989]
Internal file name [OUTPUT/10245_Sunday_December_31_2023_11_14_36_AM_89762430/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 165.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(a^{2}+x^{2}\right) y^{\prime \prime}+2 b x y^{\prime}+b(b-1) y=0
\]

\subsection*{30.17.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(a^{2}+x^{2}\right) y^{\prime \prime}+2 b x y^{\prime}+\left(b^{2}-b\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=a^{2}+x^{2} \\
& B=2 b x \tag{3}\\
& C=b^{2}-b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-b a^{2}(-2+b)}{\left(a^{2}+x^{2}\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-b a^{2}(-2+b) \\
& t=\left(a^{2}+x^{2}\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{b a^{2}(-2+b)}{\left(a^{2}+x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 160: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=\left(a^{2}+x^{2}\right)^{2}\). There is a pole at \(x=i a\) of order 2 . There is a pole at \(x=-i a\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 4 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{b(-2+b)}{4\left(x-\sqrt{-a^{2}}\right)^{2}}+\frac{b(-2+b)}{4\left(x+\sqrt{-a^{2}}\right)^{2}}+\frac{b a^{2}(-2+b)}{4\left(-a^{2}\right)^{\frac{3}{2}}\left(x-\sqrt{-a^{2}}\right)}-\frac{b a^{2}(-2+b)}{4\left(-a^{2}\right)^{\frac{3}{2}}\left(x+\sqrt{-a^{2}}\right)}
\]

For the pole at \(x=i a\) let \(b\) be the coefficient of \(\frac{1}{(-i a+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=0\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
\]

For the pole at \(x=-i a\) let \(b\) be the coefficient of \(\frac{1}{(i a+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=0\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
\]

Now since the order of \(r\) at \(\infty\) is \(4>2\) then
\[
E_{\infty}=\{0,2,4\}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline\(i a\) & 2 & \(\{0,2,4\}\) \\
\hline\(-i a\) & 2 & \(\{0,2,4\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 4 & \(\{0,2,4\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=2, e_{2}=2, e_{\infty}=4
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(4-(2+(2))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(i a))}+\frac{2}{(x-(-i a))}\right) \\
& =\frac{1}{-i a+x}+\frac{1}{i a+x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{-i a+x}+\frac{1}{i a+x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\left(\frac{1}{-i a+x}+\frac{1}{i a+x}\right) w+\frac{(b-1)^{2} a^{2}+x^{2}}{\left(a^{2}+x^{2}\right)^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=\frac{i a b-i a+x}{a^{2}+x^{2}}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{i a b-i a+x}{a^{2}+x^{2}} d x} \\
& =\sqrt{a^{2}+x^{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 b x}{a^{2}+x^{2}} d x} \\
& =z_{1} e^{-\frac{b \ln \left(a^{2}+x^{2}\right)}{2}} \\
& =z_{1}\left(\left(a^{2}+x^{2}\right)^{-\frac{b}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\left(a^{2}+x^{2}\right)^{-\frac{b}{2}+\frac{1}{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 b x}{a^{2}+x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-b \ln \left(a^{2}+x^{2}\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{-2 i(b-1) \arctan \left(\frac{x}{a}\right)}(i a+x)(i x+a)}{2 a(b-1)\left(a^{2}+x^{2}\right)}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\left(a^{2}+x^{2}\right)^{-\frac{b}{2}+\frac{1}{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}\right) \\
& +c_{2}\left(\left(a^{2}+x^{2}\right)^{-\frac{b}{2}+\frac{1}{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}\left(\frac{\mathrm{e}^{-2 i(b-1) \arctan \left(\frac{x}{a}\right)}(i a+x)(i x+a)}{2 a(b-1)\left(a^{2}+x^{2}\right)}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\(y=c_{1}\left(a^{2}+x^{2}\right)^{-\frac{b}{2}+\frac{1}{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}+\frac{c_{2}(i a+x)(i x+a)\left(a^{2}+x^{2}\right)^{-\frac{1}{2}-\frac{b}{2}} \mathrm{e}^{-i(b-1) \arctan \left(\frac{x}{a}\right)}}{2 a(b-1)}\)

Verification of solutions
\(y=c_{1}\left(a^{2}+x^{2}\right)^{-\frac{b}{2}+\frac{1}{2}} \mathrm{e}^{i(b-1) \arctan \left(\frac{x}{a}\right)}+\frac{c_{2}(i a+x)(i x+a)\left(a^{2}+x^{2}\right)^{-\frac{1}{2}-\frac{b}{2}} \mathrm{e}^{-i(b-1) \arctan \left(\frac{x}{a}\right)}}{2 a(b-1)}\)
Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.14 (sec). Leaf size: 33
dsolve \(\left(\left(x^{\wedge} 2+a^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)+2 * b * x * \operatorname{diff}(y(x), x)+b *(b-1) * y(x)=0, y(x), \quad\right.\) singsol=all)
\[
y(x)=c_{1}(-i x+a)^{-b+1}+c_{2}(i x+a)^{-b+1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.813 (sec). Leaf size: 101
DSolve [(x^2+a^2)*y' ' \([x]+2 * b * x * y '[x]+b *(b-1) * y[x]==0, y[x], x\), IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \frac{\left(a^{2}+x^{2}\right)^{\frac{1}{2}-\frac{b}{2}} e^{-i \sqrt{(b-1)^{2}} \arctan \left(\frac{a}{x}\right)}\left(i c_{2} e^{2 i \sqrt{(b-1)^{2}} \arctan \left(\frac{a}{x}\right)}+2 a \sqrt{(b-1)^{2}} c_{1}\right)}{2 a \sqrt{(b-1)^{2}}}
\]

\subsection*{30.18 problem 166}

Internal problem ID [10990]
Internal file name [OUTPUT/10246_Sunday_December_31_2023_11_14_37_AM_52742929/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 166.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{2}+b\right) y^{\prime \prime}+(2 n+1) a x y^{\prime}+y c=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Legendre successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.078 (sec). Leaf size: 93
dsolve \(\left(\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x \$ 2)+(2 * n+1) * a * x * \operatorname{diff}(y(x), x)+c * y(x)=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
y(x)=\left(a x^{2}+b\right)^{-\frac{n}{2}+\frac{1}{4}} & \left(c_{1} \text { LegendreP }\left(-\frac{-2 \sqrt{a n^{2}-c}+\sqrt{a}}{2 \sqrt{a}}, n-\frac{1}{2}, \frac{a x}{\sqrt{-a b}}\right)\right. \\
& \left.+c_{2} \text { LegendreQ }\left(-\frac{-2 \sqrt{a n^{2}-c}+\sqrt{a}}{2 \sqrt{a}}, n-\frac{1}{2}, \frac{a x}{\sqrt{-a b}}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 118
DSolve \(\left[\left(a * x^{\wedge} 2+b\right) * y^{\prime} \cdot[x]+(2 * n+1) * a * x * y{ }^{\prime}[x]+c * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow\left(a x^{2}+b\right)^{\frac{1}{4}-\frac{n}{2}}\left(c_{1} P_{\frac{\sqrt{a n^{2}-c}}{\sqrt{a}}-\frac{1}{2}}^{n-\frac{1}{2}}\left(\frac{i \sqrt{a} x}{\sqrt{b}}\right)+c_{2} Q_{\frac{\sqrt{a n^{2}-c}}{\sqrt{a}}-\frac{1}{2}}^{n-\frac{1}{2}}\left(\frac{i \sqrt{a} x}{\sqrt{b}}\right)\right)
\]

\subsection*{30.19 problem 167}
30.19.1 Maple step by step solution . 3076

Internal problem ID [10991]
Internal file name [OUTPUT/10247_Sunday_December_31_2023_11_24_06_AM_26071113/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 167.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+\left(2 a x^{2}+b\right) y=0
\]

\subsection*{30.19.1 Maple step by step solution}

Let's solve
\(\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+\left(2 a x^{2}+b\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\left(2 a x^{2}+b\right) y}{x^{2}-1}-\frac{x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{\left(2 a x^{2}+b\right) y}{x^{2}-1}=0\)
\(\square\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{2 a x^{2}+b}{x^{2}-1}\right]
\]
- \(\quad(1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-1
\]
- Multiply by denominators
\[
y^{\prime \prime}\left(x^{2}-1\right)+y^{\prime} x+\left(-2 a x^{2}-b\right) y=0
\]
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\[
\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+\left(-2 a u^{2}+4 a u-2 a-b\right) y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .2\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) u^{-1+r}+\left(-a_{1}(1+r)(1+2 r)-a_{0}\left(-r^{2}+2 a+b\right)\right) u^{r}+\left(-a_{2}(2+r)(3+2 r)-a\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{0, \frac{1}{2}\right\}
\]
- \(\quad\) The coefficients of each power of \(u\) must be 0
\[
\left[-a_{1}(1+r)(1+2 r)-a_{0}\left(-r^{2}+2 a+b\right)=0,-a_{2}(2+r)(3+2 r)-a_{1}\left(-r^{2}+2 a+b-2 r-1\right)+\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=-\frac{a_{0}\left(-r^{2}+2 a+b\right)}{2 r^{2}+3 r+1}, a_{2}=\frac{a_{0}\left(r^{4}+4 r^{2} a-2 r^{2} b+2 r^{3}+4 a^{2}+4 a b+8 a r+b^{2}-2 b r+r^{2}+2 a-b\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\[
-2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+\left(k^{2}+2 k r+r^{2}-2 a-b\right) a_{k}-2 a\left(a_{k-2}-2 a_{k-1}\right)=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
-2\left(k+\frac{5}{2}+r\right)(k+3+r) a_{k+3}+\left((k+2)^{2}+2(k+2) r+r^{2}-2 a-b\right) a_{k+2}-2 a\left(a_{k}-2 a_{k+1}\right)=
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+3}=-\frac{-k^{2} a_{k+2}-2 k r a_{k+2}-r^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-4 k a_{k+2}-4 r a_{k+2}-4 a_{k+2}}{(2 k+5+2 r)(k+3+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-4 k a_{k+2}-4 a_{k+2}}{(2 k+5)(k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-4 k a_{k+2}-4 a_{k+2}}{(2 k+5)(k+3)}, a_{1}=-a_{0}(2 a+b), a_{2}=\right.
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-4 k a_{k+2}-4 a_{k+2}}{(2 k+5)(k+3)}, a_{1}=-a_{0}(2 a+b), a_{2}\right.
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\(a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-5 k a_{k+2}-\frac{25}{4} a_{k+2}}{(2 k+6)\left(k+\frac{7}{2}\right)}\)
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-5 k a_{k+2}-\frac{25}{4} a_{k+2}}{(2 k+6)\left(k+\frac{7}{2}\right)}, a_{1}=-\frac{a_{0}\left(-\frac{1}{4}+2 a+b\right)}{3}, c\right.\)
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+3}=-\frac{-k^{2} a_{k+2}+2 a_{k} a-4 a a_{k+1}+2 a a_{k+2}+b a_{k+2}-5 k a_{k+2}-\frac{25}{4} a_{k+2}}{(2 k+6)\left(k+\frac{7}{2}\right)}, a_{1}=-\frac{a_{0}\left(-\frac{1}{4}+2 a+1\right.}{3}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k}(1+x)^{k+\frac{1}{2}}\right), c_{k+3}=-\frac{-k^{2} c_{k+2}+2 a c_{k}-4 a c_{1+k}+2 a c_{k+2}+b c_{k+2}-4 k c_{k+2}-4 c}{(2 k+5)(k+3)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     -> Mathieu         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         Equivalence transformation and function parameters: {x = t}, {kappa = 4*b-4, mu = -8*a     <- Equivalence to the rational form of Mathieu ODE successful     <- Mathieu successful <- special function solution successful`

```

Solution by Maple
Time used: 0.359 (sec). Leaf size: 27
```

dsolve((1-x^2)*diff (y(x),x\$2)-x*diff (y(x),x)+(2*a*x^2+b)*y (x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \text { MathieuC }\left(a+b,-\frac{a}{2}, \arccos (x)\right)+c_{2} \operatorname{MathieuS}\left(a+b,-\frac{a}{2}, \arccos (x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 34
DSolve \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime}[x]-x * y^{\prime}[x]+\left(2 * a * x^{\wedge} 2+b\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True \(]\)
\(y(x) \rightarrow c_{1}\) MathieuC \(\left[a+b,-\frac{a}{2}, \arccos (x)\right]+c_{2}\) MathieuS \(\left[a+b,-\frac{a}{2}, \arccos (x)\right]\)

\subsection*{30.20 problem 168}
30.20.1 Maple step by step solution . 3082

Internal problem ID [10992]
Internal file name [OUTPUT/10248_Sunday_December_31_2023_11_24_07_AM_58330519/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 168.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(a x+b) y^{\prime}+y c=0
\]

\subsection*{30.20.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}+(a x+b) y^{\prime}+y c=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{c y}{x^{2}-1}+\frac{(a x+b) y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(a x+b) y^{\prime}}{x^{2}-1}-\frac{c y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{a x+b}{x^{2}-1}, P_{3}(x)=-\frac{c}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-\frac{a}{2}+\frac{b}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\[
y^{\prime \prime}\left(x^{2}-1\right)+(-a x-b) y^{\prime}-y c=0
\]
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-a u+a-b)\left(\frac{d}{d u} y(u)\right)-c y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(2-2 r+a-b) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(a_{k+1}(k+1+r)(-2 k-2 r+a-b)-a_{k}\left(a k+a r-k^{2}-2 k r\right.\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(2-2 r+a-b)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{a}{2}-\frac{b}{2}+1\right\}\)
- \(\quad\) Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(-2 k-2 r+a-b)-a_{k}\left(-k^{2}+(a-2 r+1) k-r^{2}+(a+1) r+c\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}\left(a k+a r-k^{2}-2 k r-r^{2}+c+k+r\right)}{(k+1+r)(-2 k-2 r+a-b)}\)
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}\left(a k-k^{2}+c+k\right)}{(k+1)(-2 k+a-b)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(a k-k^{2}+c+k\right)}{(k+1)(-2 k+a-b)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}\left(a k-k^{2}+c+k\right)}{(k+1)(-2 k+a-b)}\right]\)
- \(\quad\) Recursion relation for \(r=\frac{a}{2}-\frac{b}{2}+1\)
\[
a_{k+1}=\frac{a_{k}\left(a k+a\left(\frac{a}{2}-\frac{b}{2}+1\right)-k^{2}-2 k\left(\frac{a}{2}-\frac{b}{2}+1\right)-\left(\frac{a}{2}-\frac{b}{2}+1\right)^{2}+c+k+\frac{a}{2}-\frac{b}{2}+1\right)}{\left(k+2+\frac{a}{2}-\frac{b}{2}\right)(-2 k-2)}
\]
- \(\quad\) Solution for \(r=\frac{a}{2}-\frac{b}{2}+1\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{a}{2}-\frac{b}{2}+1}, a_{k+1}=\frac{a_{k}\left(a k+a\left(\frac{a}{2}-\frac{b}{2}+1\right)-k^{2}-2 k\left(\frac{a}{2}-\frac{b}{2}+1\right)-\left(\frac{a}{2}-\frac{b}{2}+1\right)^{2}+c+k+\frac{a}{2}-\frac{b}{2}+1\right)}{\left(k+2+\frac{a}{2}-\frac{b}{2}\right)(-2 k-2)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{a}{2}-\frac{b}{2}+1}, a_{k+1}=\frac{a_{k}\left(a k+a\left(\frac{a}{2}-\frac{b}{2}+1\right)-k^{2}-2 k\left(\frac{a}{2}-\frac{b}{2}+1\right)-\left(\frac{a}{2}-\frac{b}{2}+1\right)^{2}+c+k+\frac{a}{2}-\frac{b}{2}+1\right)}{\left(k+2+\frac{a}{2}-\frac{b}{2}\right)(-2 k-2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k}(1+x)^{k+\frac{a}{2}-\frac{b}{2}+1}\right), d_{1+k}=\frac{d_{k}\left(a k-k^{2}+c+k\right)}{(1+k)(-2 k+a-b)}, e_{1+k}=\frac{e_{k}\left(a k+a\left(\frac{a}{2}-\frac{b}{2}+1\right.\right.}{}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.079 (sec). Leaf size: 134
```

dsolve((1-x^2)*diff(y(x),x\$2)+(a*x+b)*diff(y(x),x)+c*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & c_{1} \text { hypergeom }\left(\left[-\frac{1}{2}-\frac{a}{2}-\frac{\sqrt{a^{2}+2 a+4 c+1}}{2},-\frac{1}{2}-\frac{a}{2}\right.\right. \\
& \left.\left.+\frac{\sqrt{a^{2}+2 a+4 c+1}}{2}\right],\left[-\frac{a}{2}+\frac{b}{2}\right], \frac{1}{2}+\frac{x}{2}\right)+c_{2}\left(\frac{1}{2}+\frac{x}{2}\right)^{1+\frac{a}{2}-\frac{b}{2}} \text { hypergeom }\left(\left[\frac{1}{2}\right.\right. \\
& \left.\left.-\frac{\sqrt{a^{2}+2 a+4 c+1}}{2}-\frac{b}{2}, \frac{1}{2}+\frac{\sqrt{a^{2}+2 a+4 c+1}}{2}-\frac{b}{2}\right],\left[2+\frac{a}{2}-\frac{b}{2}\right], \frac{1}{2}+\frac{x}{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.317 (sec). Leaf size: 184
DSolve[(1-x^2)*y' \([x]+(a * x+b) * y\) ' \([x]+c * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow 2^{\frac{1}{2}(-a-b-2)}\left(c_{2}(x\right. \\
& \quad-1)^{\frac{1}{2}(a+b+2)} \text { Hypergeometric2F1 }\left(\frac{1}{2}\left(b-\sqrt{a^{2}+2 a+4 c+1}+1\right), \frac{1}{2}\left(b+\sqrt{a^{2}+2 a+4 c+1}+1\right), \frac{1}{2}(a+\right. \\
& \quad+c_{1} 2^{\frac{1}{2}(a+b+2)} \text { Hypergeometric2F1 }\left(\frac{1}{2}\left(-a-\sqrt{a^{2}+2 a+4 c+1}-1\right), \frac{1}{2}\left(-a+\sqrt{a^{2}+2 a+4 c+1}-1\right),\right.
\end{aligned}
\]

\subsection*{30.21 problem 169}

Internal problem ID [10993]
Internal file name [OUTPUT/10249_Sunday_December_31_2023_11_24_09_AM_34106090/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 169.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{2}+b\right) y^{\prime \prime}+\left(c x^{2}+d\right) y^{\prime}+\lambda\left((-a \lambda+c) x^{2}+d-b \lambda\right) y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu         <- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <>     <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.281 (sec). Leaf size: 939
```

dsolve((a*x^2+b)*\operatorname{diff}(y(x),x\$2)+(c*x^2+d)*diff(y(x),x)+lambda*((c-a*lambda)*x^2+d-b*lambda)*

```
\[
\begin{aligned}
& y(x)=(-a x+\sqrt{-a b})^{\frac{2 a^{2} b+\sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+44^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}}{4 a^{2} b}}\left(c_{2}(a x\right. \\
& +\sqrt{-a b})^{-\frac{-2 a^{2} b+\sqrt{-a b\left(4 \sqrt{-a b} a^{2} d-4 \sqrt{-a b} a b c-4 a^{3} b+a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)}}{4 a^{2} b}} \operatorname{HeunC}\left(\frac{(4 a \lambda-2 c) \sqrt{-\frac{b}{a}}}{a},\right. \\
& -\frac{\sqrt{-a b\left(4 \sqrt{-a b} a^{2} d-4 \sqrt{-a b} a b c-4 a^{3} b+a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)}}{2 a^{2} b}, \frac{\sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+4 a^{4} b^{2}-c}}{2 a^{2} b} \\
& -\frac{b c \lambda}{a^{2}}+\frac{1}{2}-\frac{d^{2}}{8 a b}-\frac{c d}{4 a^{2}}+\frac{3 b c^{2}}{8 a^{3}}, \frac{a x}{2 \sqrt{-a b}} \\
& \left.+\frac{1}{2}\right) \mathrm{e}^{\frac{-i \pi \sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+4 a^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}+i \pi \sqrt{-a b\left(4 \sqrt{-a b} a^{2} d-4 \sqrt{-a b} a b c-4 a^{3} b+a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)}-4 b}{8 a^{2} b}\left(a^{2}\left(\frac{d}{\sqrt{b} \sqrt{a}}-\frac{\sqrt{b} c}{a^{\frac{3}{2}}}\right)\right.} \\
& +c_{1}(a x
\end{aligned}
\]
\[
\left.\left.-\frac{b c \lambda}{a^{2}}+\frac{1}{2}-\frac{d^{2}}{8 a b}-\frac{c d}{4 a^{2}}+\frac{3 b c^{2}}{8 a^{3}}, \frac{a x}{2 \sqrt{-a b}}+\frac{1}{2}\right)\right)
\]

\section*{Solution by Mathematica}

Time used: 2.859 (sec). Leaf size: 74
DSolve \(\left[\left(a * x^{\wedge} 2+b\right) * y^{\prime}[x]+\left(c * x^{\wedge} 2+d\right) * y '[x]+\backslash[\right.\) Lambda \(] *\left((c-a * \backslash[\right.\) Lambda \(]) * x^{\wedge} 2+d-b * \backslash[\) Lambda \(\left.]\right) * y[x]==\)
\(y(x) \rightarrow e^{\lambda(-x)}\left(c_{2} \int_{1}^{x} \exp \left(\frac{(b c-a d) \arctan \left(\frac{\sqrt{a} K[1]}{\sqrt{b}}\right)}{a^{3 / 2} \sqrt{b}}+\left(2 \lambda-\frac{c}{a}\right) K[1]\right) d K[1]+c_{1}\right)\)

\subsection*{30.22 problem 170}

Internal problem ID [10994]
Internal file name [OUTPUT/10250_Sunday_December_31_2023_11_24_11_AM_22104146/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 170.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{2}+b\right) y^{\prime \prime}+\left(\lambda(a+c) x^{2}+(c-a) x+2 b \lambda\right) y^{\prime}+\lambda^{2}\left(c x^{2}+b\right) y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <>
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.422 (sec). Leaf size: 1381
```

dsolve((a*x^2+b)*diff(y(x),x\$2)+(lambda*(c+a)*x^2+(c-a)*x+2*b*lambda)*diff (y (x),x)+lambda^2*

```

\section*{Expression too large to display}
\(\checkmark\) Solution by Mathematica
Time used: 5.408 (sec). Leaf size: 104
DSolve \(\left[\left(a * x^{\wedge} 2+b\right) * y^{\prime} \quad[\mathrm{x}]+\left(\backslash[\right.\right.\) Lambda \(] *(\mathrm{c}+\mathrm{a}) * \mathrm{x}^{\wedge} 2+(\mathrm{c}-\mathrm{a}) * \mathrm{x}+2 * \mathrm{~b} * \backslash[\) Lambda] \() * \mathrm{y}^{\prime}[\mathrm{x}]+\backslash[\) Lambda \(] \wedge 2 *\left(\mathrm{c} * \mathrm{x}^{\wedge} 2\right.\)
\[
\begin{aligned}
y(x) \rightarrow & e^{\lambda(-x)}(\lambda x \\
& +1)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{(a-c) \lambda\left(\sqrt{a} K[1]-\sqrt{b} \arctan \left(\frac{\sqrt{a} K[1]}{\sqrt{b}}\right)\right)}{a^{3 / 2}}\right)\left(a K[1]^{2}+b\right)^{\frac{a-c}{2 a}}}{(\lambda K[1]+1)^{2}} d K[1]+c_{1}\right)
\end{aligned}
\]

\subsection*{30.23 problem 171}
30.23.1 Maple step by step solution . 3093

Internal problem ID [10995]
Internal file name [OUTPUT/10251_Sunday_December_31_2023_11_24_12_AM_56588853/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 171.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Jacobi]
Unable to solve or complete the solution.
\[
x(x-1) y^{\prime \prime}+((\alpha+\beta+1) x-\gamma) y^{\prime}+\alpha \beta y=0
\]

\subsection*{30.23.1 Maple step by step solution}

Let's solve
\[
\left(x^{2}-x\right) y^{\prime \prime}+((\alpha+\beta+1) x-\gamma) y^{\prime}+\alpha \beta y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\alpha \beta y}{x(x-1)}-\frac{(x \alpha+\beta x-\gamma+x) y^{\prime}}{x(x-1)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(x \alpha+\beta x-\gamma+x) y^{\prime}}{x(x-1)}+\frac{\alpha \beta y}{x(x-1)}=0\)
\(\square\)

\section*{Check to see if \(x_{0}\) is a regular singular point}
- Define functions
\[
\left[P_{2}(x)=\frac{x \alpha+\beta x-\gamma+x}{x(x-1)}, P_{3}(x)=\frac{\alpha \beta}{x(x-1)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\gamma
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x(x-1) y^{\prime \prime}+(x \alpha+\beta x-\gamma+x) y^{\prime}+\alpha \beta y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-1+r+\gamma) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(k+r+\gamma)+a_{k}(\beta+k+r)(\alpha+k+r)\right) x^{k+}\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+r+\gamma)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,-\gamma+1\}\)
- Each term in the series must be 0, giving the recursion relation
\(-a_{k+1}(k+1+r)(k+r+\gamma)+a_{k}(\beta+k+r)(\alpha+k+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(\beta+k+r)(\alpha+k+r)}{(k+1+r)(k+r+\gamma)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(\beta+k)(\alpha+k)}{(k+1)(k+\gamma)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}(\beta+k)(\alpha+k)}{(k+1)(k+\gamma)}\right]\)
- \(\quad\) Recursion relation for \(r=-\gamma+1\)
\(a_{k+1}=\frac{a_{k}(\beta+k-\gamma+1)(\alpha+k-\gamma+1)}{(k+2-\gamma)(k+1)}\)
- \(\quad\) Solution for \(r=-\gamma+1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\gamma+1}, a_{k+1}=\frac{a_{k}(\beta+k-\gamma+1)(\alpha+k-\gamma+1)}{(k+2-\gamma)(k+1)}\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\gamma+1}\right), a_{1+k}=\frac{a_{k}(\beta+k)(\alpha+k)}{(1+k)(k+\gamma)}, b_{1+k}=\frac{b_{k}(\beta+k-\gamma+1)(\alpha+k-\gamma+1)}{(k+2-\gamma)(1+k)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.125 (sec). Leaf size: 44
```

dsolve(x*(x-1)*diff (y(x),x\$2)+((alpha+beta+1)*x-gamma)*diff (y(x),x)+alpha*beta*y(x)=0,y(x),

```
\(y(x)=c_{1}\) hypergeom \(([\alpha, \beta],[\gamma], x)+c_{2} x^{1-\gamma}\) hypergeom \(([\beta+1-\gamma, \alpha+1-\gamma],[2-\gamma], x)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.281 (sec). Leaf size: 49
DSolve \([\mathrm{x} *(\mathrm{x}-1) * \mathrm{y}\) ' ' \([\mathrm{x}]+((\backslash[\) Alpha \(]+\backslash[\) Beta \(]+1) * \mathrm{x}-\backslash[\) Gamma \(]) * \mathrm{y}\) ' \([\mathrm{x}]+\backslash[\) Alpha \(] * \backslash[\) Beta \(] * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}]\),
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \text { Hypergeometric2F1 }(\alpha, \beta, \gamma, x) \\
& -(-1)^{-\gamma} c_{2} x^{1-\gamma} \operatorname{Hypergeometric} 2 \mathrm{~F} 1(\alpha-\gamma+1, \beta-\gamma+1,2-\gamma, x)
\end{aligned}
\]

\subsection*{30.24 problem 172}
30.24.1 Maple step by step solution . 3097

Internal problem ID [10996]
Internal file name [OUTPUT/10252_Sunday_December_31_2023_11_24_13_AM_550928/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 172.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y d=0
\]

\subsection*{30.24.1 Maple step by step solution}

Let's solve
\[
x(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y d=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{d y}{x(x+a)}-\frac{(b x+c) y^{\prime}}{x(x+a)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(b x+c) y^{\prime}}{x(x+a)}+\frac{d y}{x(x+a)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{b x+c}{x(x+a)}, P_{3}(x)=\frac{d}{x(x+a)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{c}{a}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x(x+a) y^{\prime \prime}+(b x+c) y^{\prime}+y d=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(a r-a+c) x^{r-1}+\left(\sum _ { k = 0 } ^ { \infty } \left(a_{k+1}(k+1+r)(a(k+1)+a r-a+c)+a_{k}\left(b k+b r+k^{2}+2 k r+\right.\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(a r-a+c)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{a-c}{a}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\((k+1+r)(a k+a r+c) a_{k+1}+\left(k^{2}+(b+2 r-1) k+r^{2}+(b-1) r+d\right) a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{\left(b k+b r+k^{2}+2 k r+r^{2}+d-k-r\right) a_{k}}{(k+1+r)(a k+a r+c)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{\left(b k+k^{2}+d-k\right) a_{k}}{(k+1)(a k+c)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{\left(b k+k^{2}+d-k\right) a_{k}}{(k+1)(a k+c)}\right]
\]
- Recursion relation for \(r=\frac{a-c}{a}\)
\[
a_{k+1}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-c)}{a}+\frac{(a-c)^{2}}{a^{2}}+d-k-\frac{a-c}{a}\right) a_{k}}{\left(k+1+\frac{a-c}{a}\right)(a k+a)}
\]
- \(\quad\) Solution for \(r=\frac{a-c}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a-c}{a}}, a_{k+1}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-c)}{a}+\frac{(a-c)^{2}}{a^{2}}+d-k-\frac{a-c}{a}\right) a_{k}}{\left(k+1+\frac{a-c}{a}\right)(a k+a)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k+\frac{a-c}{a}}\right), e_{1+k}=-\frac{\left(b k+k^{2}+d-k\right) e_{k}}{(1+k)(a k+c)}, f_{1+k}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-c)}{a}+\frac{(a-c)^{2}}{a^{2}}\right.}{\left(k+1+\frac{a-c}{a}\right)(a k+a)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.109 (sec). Leaf size: 230
```

dsolve(x*(x+a)*diff(y(x),x\$2)+(b*x+c)*diff(y(x),x)+d*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=c_{2}(\operatorname{csgn}(a) a+a \\
& +2 x)^{-\frac{((b-2) \operatorname{csgn}(a) a+a b-2 c) \operatorname{csgn}(a)}{2 a}} \text { hypergeom }\left(\left[\frac{\operatorname{csgn}(a)\left(\operatorname{csgn}(a) a+\sqrt{b^{2}-2 b-4 d+1} \operatorname{csgn}(a) a-a b+\right.}{2 a}\right],\left[-\frac{\operatorname{csgn}(a)((b-4) \operatorname{csgn}(a) a+a b}{2 a}\right.\right. \\
& \left.-\frac{\operatorname{csgn}(a)\left(\sqrt{b^{2}-2 b-4 d+1} \operatorname{csgn}(a) a-\operatorname{csgn}(a) a+a b-2 c\right)}{2 a}\right],-\frac{1}{2}+\frac{b}{2} \\
& +c_{1} \text { hypergeom }\left(\left[-\frac{1}{2}+\frac{b}{2}-\frac{\sqrt{b^{2}-2 b-4 d+1}}{2}\right],\left[\frac{(b \operatorname{csgn}(a) a+a b-2 c) \operatorname{csgn}(a)}{2 a}\right], \frac{\operatorname{csgn}(a)(\operatorname{csgn}(a) a+a+2 x)}{2 a}\right) \\
& \left.+\frac{\sqrt{b^{2}-2 b-4 d+1}}{2}\right]
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.423 (sec). Leaf size: 165
DSolve[x*(x+a)*y' ' \([x]+(b * x+c) * y\) ' \([x]+d * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{array}{r}
y(x) \rightarrow c_{2} a^{\frac{c}{a}-1} x^{1-\frac{c}{a}} \text { Hypergeometric2F1 }\left(\frac { 1 } { 2 } \left(b-\frac{2 c}{a}+\sqrt{b^{2}-2 b-4 d+1}\right.\right. \\
\left.+1), \frac{b a-\sqrt{b^{2}-2 b-4 d+1} a+a-2 c}{2 a}, 2-\frac{c}{a},-\frac{x}{a}\right) \\
+c_{1} \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}\left(b-\sqrt{b^{2}-2 b-4 d+1}-1\right), \frac{1}{2}(b\right. \\
\\
\left.\left.+\sqrt{b^{2}-2 b-4 d+1}-1\right), \frac{c}{a},-\frac{x}{a}\right)
\end{array}
\]

\subsection*{30.25 problem 173}
30.25.1 Maple step by step solution . 3102

Internal problem ID [10997]
Internal file name [OUTPUT/10253_Sunday_December_31_2023_11_24_15_AM_29690673/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 173.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_Jacobi]
Unable to solve or complete the solution.
\[
2 x(x-1) y^{\prime \prime}+(2 x-1) y^{\prime}+(a x+b) y=0
\]

\subsection*{30.25.1 Maple step by step solution}

Let's solve
\[
\left(2 x^{2}-2 x\right) y^{\prime \prime}+(2 x-1) y^{\prime}+(a x+b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(a x+b) y}{2 x(x-1)}-\frac{(2 x-1) y^{\prime}}{2 x(x-1)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(2 x-1) y^{\prime}}{2 x(x-1)}+\frac{(a x+b) y}{2 x(x-1)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2 x-1}{2 x(x-1)}, P_{3}(x)=\frac{a x+b}{2 x(x-1)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
2 x(x-1) y^{\prime \prime}+(2 x-1) y^{\prime}+(a x+b) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) x^{-1+r}+\left(-a_{1}(1+r)(1+2 r)+a_{0}\left(2 r^{2}+b\right)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(-a_{k+1}(k+1+r)(2 k+1\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term must be 0
\(-a_{1}(1+r)(1+2 r)+a_{0}\left(2 r^{2}+b\right)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(-2(k+1+r)\left(k+\frac{1}{2}+r\right) a_{k+1}+2 k^{2} a_{k}+4 k r a_{k}+2 r^{2} a_{k}+a_{k-1} a+a_{k} b=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
-2(k+2+r)\left(k+\frac{3}{2}+r\right) a_{k+2}+2(k+1)^{2} a_{k+1}+4(k+1) r a_{k+1}+2 r^{2} a_{k+1}+a_{k} a+a_{k+1} b=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{2 k^{2} a_{k+1}+4 k r a_{k+1}+2 r^{2} a_{k+1}+a_{k} a+a_{k+1} b+4 k a_{k+1}+4 r a_{k+1}+2 a_{k+1}}{(k+2+r)(2 k+3+2 r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+2}=\frac{2 k^{2} a_{k+1}+a_{k} a+a_{k+1} b+4 k a_{k+1}+2 a_{k+1}}{(k+2)(2 k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 k^{2} a_{k+1}+a_{k} a+a_{k+1} b+4 k a_{k+1}+2 a_{k+1}}{(k+2)(2 k+3)}, a_{0} b-a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\(a_{k+2}=\frac{2 k^{2} a_{k+1}+a_{k} a+a_{k+1} b+6 k a_{k+1}+\frac{9}{2} a_{k+1}}{\left(k+\frac{5}{2}\right)(2 k+4)}\)
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{2 k^{2} a_{k+1}+a_{k} a+a_{k+1} b+6 k a_{k+1}+\frac{9}{2} a_{k+1}}{\left(k+\frac{5}{2}\right)(2 k+4)},-3 a_{1}+a_{0}\left(b+\frac{1}{2}\right)=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+\frac{1}{2}}\right), c_{k+2}=\frac{2 k^{2} c_{1+k}+a c_{k}+b c_{1+k}+4 k c_{1+k}+2 c_{1+k}}{(k+2)(2 k+3)}, b c_{0}-c_{1}=0, d_{k+2}=\frac{2 k^{2}}{6}\right.
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {x = t}, {kappa = -8*b-4, mu = 8*a
<- Equivalence to the rational form of Mathieu ODE successful
<- Mathieu successful
<- special function solution successful`

```

Solution by Maple
Time used: 0.297 (sec). Leaf size: 39
```

dsolve(2*x*(x-1)*diff(y(x),x\$2)+(2*x-1)*diff(y(x),x)+(a*x+b)*y(x)=0,y(x), singsol=all)

```
\(y(x)=c_{1}\) MathieuC \(\left(-a-2 b, \frac{a}{2}, \arccos (\sqrt{x})\right)+c_{2} \operatorname{MathieuS}\left(-a-2 b, \frac{a}{2}, \arccos (\sqrt{x})\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.258 (sec). Leaf size: 50
DSolve \(\left[2 * x *(x-1) * y{ }^{\prime} '[x]+(2 * x-1) * y '[x]+(a * x+b) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\(y(x) \rightarrow c_{1}\) MathieuC \(\left[-a-2 b, \frac{a}{2}, \arccos (\sqrt{x})\right]+c_{2}\) MathieuS \(\left[-a-2 b, \frac{a}{2}, \arccos (\sqrt{x})\right]\)

\subsection*{30.26 problem 174}
30.26.1 Solving as second order change of variable on \(x\) method 2 ode . 3107
30.26.2 Solving as second order change of variable on \(x\) method 1 ode . 3110
30.26.3 Solving using Kovacic algorithm 3112
30.26.4 Maple step by step solution . 3118

Internal problem ID [10998]
Internal file name [OUTPUT/10254_Sunday_December_31_2023_11_24_16_AM_3198913/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 174.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order__change__of_variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0
\]

\subsection*{30.26.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{x+a}{2 a x+x^{2}+b} \\
& q(x)=-\frac{m^{2}}{2 a x+x^{2}+b}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{x+a}{2 a x+x^{2}+b} d x\right)} d x \\
& =\int e^{-\frac{\ln \left(2 a x+x^{2}+b\right)}{2}} d x \\
& =\int \frac{1}{\sqrt{2 a x+x^{2}+b}} d x \\
& =\ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{m^{2}}{2 a x+x^{2}+b}}{\frac{1}{2 a x+x^{2}+b}} \\
& =-m^{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-m^{2} y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-m^{2}\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-m^{2} \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-m^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-m^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-m^{2}\right)} \\
& = \pm \sqrt{m^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{m^{2}} \\
& \lambda_{2}=-\sqrt{m^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{m^{2}} \\
& \lambda_{2}=-\sqrt{m^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{\left(\sqrt{m^{2}}\right) \tau}+c_{2} e^{\left(-\sqrt{m^{2}}\right) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{m^{2}} \tau}+c_{2} \mathrm{e}^{-\sqrt{m^{2}} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}+c_{2}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-m}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}+c_{2}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-m} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}+c_{2}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-m}
\]

Verified OK.

\subsection*{30.26.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{x+a}{2 a x+x^{2}+b} \\
& q(x)=-\frac{m^{2}}{2 a x+x^{2}+b}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{m^{2}(2 a+2 x)}{2 c \sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}}\left(2 a x+x^{2}+b\right)^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{m^{2}(2 a+2 x)}{2 c \sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}}\left(2 a x+x^{2}+b\right)^{2}}+\frac{x+a}{2 a x+x^{2}+b} \frac{\sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}}}{c}}{\left(\frac{\sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}} d x}{c} \\
& =\frac{\sqrt{-\frac{m^{2}}{2 a x+x^{2}+b}} \sqrt{2 a x+x^{2}+b} \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\(y=c_{1} \cosh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right)+i c_{2} \sinh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right)\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cosh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right) \tag{1}\\
& +i c_{2} \sinh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=c_{1} \cosh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right)+i c_{2} \sinh \left(m \ln \left(x+a+\sqrt{2 a x+x^{2}+b}\right)\right)\)
Verified OK.

\subsection*{30.26.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=2 a x+x^{2}+b \\
& B=x+a \tag{3}\\
& C=-m^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{8 m^{2} a x+4 m^{2} x^{2}+4 b m^{2}-3 a^{2}-2 a x-x^{2}+2 b}{4\left(2 a x+x^{2}+b\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=8 m^{2} a x+4 m^{2} x^{2}+4 b m^{2}-3 a^{2}-2 a x-x^{2}+2 b \\
& t=4\left(2 a x+x^{2}+b\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{8 m^{2} a x+4 m^{2} x^{2}+4 b m^{2}-3 a^{2}-2 a x-x^{2}+2 b}{4\left(2 a x+x^{2}+b\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 166: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(2 a x+x^{2}+b\right)^{2}\). There is a pole at \(x=-a+\sqrt{a^{2}-b}\) of order 2 . There is a pole at \(x=-a-\sqrt{a^{2}-b}\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
\begin{aligned}
r & \frac{4\left(-a+\sqrt{a^{2}-b}\right)^{2} m^{2}+8\left(-a+\sqrt{a^{2}-b}\right) a m^{2}+4 b m^{2}-\left(-a+\sqrt{a^{2}-b}\right)^{2}-2\left(-a+\sqrt{a^{2}-b}\right) a-3 a}{16\left(a^{2}-b\right)\left(x+a-\sqrt{a^{2}-b}\right)^{2}} \\
& +\frac{4\left(-a-\sqrt{a^{2}-b}\right)^{2} m^{2}+8\left(-a-\sqrt{a^{2}-b}\right) a m^{2}+4 b m^{2}-\left(-a-\sqrt{a^{2}-b}\right)^{2}-2\left(-a-\sqrt{a^{2}-b}\right) a-}{16\left(a^{2}-b\right)\left(x+a+\sqrt{a^{2}-b}\right)^{2}} \\
& +\frac{4\left(-a+\sqrt{a^{2}-b}\right)^{2} m^{2}+8\left(-a+\sqrt{a^{2}-b}\right) a m^{2}+8 a^{2} m^{2}-4 b m^{2}-\left(-a+\sqrt{a^{2}-b}\right)^{2}-2\left(-a+\sqrt{a^{2}}\right.}{16\left(a^{2}-b\right)^{\frac{3}{2}}\left(x+a-\sqrt{a^{2}-b}\right)} \\
& -\frac{4\left(-a-\sqrt{a^{2}-b}\right)^{2} m^{2}+8\left(-a-\sqrt{a^{2}-b}\right) a m^{2}+8 a^{2} m^{2}-4 b m^{2}-\left(-a-\sqrt{a^{2}-b}\right)^{2}-2\left(-a-\sqrt{a^{2}}\right.}{16\left(a^{2}-b\right)^{\frac{3}{2}}\left(x+a+\sqrt{a^{2}-b}\right)}
\end{aligned}
\]

For the pole at \(x=-a+\sqrt{a^{2}-b}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+a-\sqrt{a^{2}-b}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-a-\sqrt{a^{2}-b}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+a+\sqrt{a^{2}-b}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{8 m^{2} a x+4 m^{2} x^{2}+4 b m^{2}-3 a^{2}-2 a x-x^{2}+2 b}{4\left(2 a x+x^{2}+b\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline\(-a+\sqrt{a^{2}-b}\) & 2 & \(\{1,2,3\}\) \\
\hline\(-a-\sqrt{a^{2}-b}\) & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{\left(x-\left(-a+\sqrt{a^{2}-b}\right)\right)}+\frac{1}{\left(x-\left(-a-\sqrt{a^{2}-b}\right)\right)}\right) \\
& =\frac{1}{2 x+2 a-2 \sqrt{a^{2}-b}}+\frac{1}{2 x+2 a+2 \sqrt{a^{2}-b}}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x+2 a-2 \sqrt{a^{2}-b}}+\frac{1}{2 x+2 a+2 \sqrt{a^{2}-b}}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
\begin{aligned}
& w^{2}-\left(\frac{1}{2 x+2 a-2 \sqrt{a^{2}-b}}+\frac{1}{2 x+2 a+2 \sqrt{a^{2}-b}}\right) w \\
& +\frac{\left(-4 m^{2}+1\right) x^{2}+\left(-8 m^{2}+2\right) a x-4 b m^{2}+a^{2}}{4\left(x+a-\sqrt{a^{2}-b}\right)^{2}\left(x+a+\sqrt{a^{2}-b}\right)^{2}}=0
\end{aligned}
\]

Solving for \(\omega\) gives
\[
\omega=\frac{2 m \sqrt{2 a x+x^{2}+b}+a+x}{4 a x+2 x^{2}+2 b}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{2 m \sqrt{2 a x+x^{2}+b+a+x}}{4 a x+2 x^{2}+2 b} d x} \\
& =\left(2 a x+x^{2}+b\right)^{\frac{1}{4}}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x+a}{2 a x+x^{2}+b} d x} \\
& =z_{1} e^{-\frac{\ln \left(2 a x+x^{2}+b\right)}{4}} \\
& =z_{1}\left(\frac{1}{\left(2 a x+x^{2}+b\right)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x+a}{2 a x+x^{2}+b} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln \left(2 a x+x^{2}+b\right)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-2 m}}{2 m}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}\right) \\
& +c_{2}\left(\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}\left(-\frac{\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-2 m}}{2 m}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}-\frac{c_{2}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-m}}{2 m} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{m}-\frac{c_{2}\left(x+a+\sqrt{2 a x+x^{2}+b}\right)^{-m}}{2 m}
\]

Verified OK.

\subsection*{30.26.4 Maple step by step solution}

Let's solve
\[
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{m^{2} y}{2 a x+x^{2}+b}-\frac{(x+a) y^{\prime}}{2 a x+x^{2}+b}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(x+a) y^{\prime}}{2 a x+x^{2}+b}-\frac{m^{2} y}{2 a x+x^{2}+b}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{x+a}{2 a x+x^{2}+b}, P_{3}(x)=-\frac{m^{2}}{2 a x+x^{2}+b}\right]
\]
- \(\left(x+a+\sqrt{a^{2}-b}\right) \cdot P_{2}(x)\) is analytic at \(x=-a-\sqrt{a^{2}-b}\)
\(\left.\left(\left(x+a+\sqrt{a^{2}-b}\right) \cdot P_{2}(x)\right)\right|_{x=-a-\sqrt{a^{2}-b}}=0\)
- \(\left(x+a+{\sqrt{a^{2}-b}}^{2} \cdot P_{3}(x)\right.\) is analytic at \(x=-a-\sqrt{a^{2}-b}\)
\[
\left.\left(\left(x+a+\sqrt{a^{2}-b}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-a-\sqrt{a^{2}-b}}=0
\]
- \(x=-a-\sqrt{a^{2}-b}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=-a-\sqrt{a^{2}-b}\)
- Multiply by denominators
\[
\left(2 a x+x^{2}+b\right) y^{\prime \prime}+(x+a) y^{\prime}-y m^{2}=0
\]
- Change variables using \(x=u-a-\sqrt{a^{2}-b}\) so that the regular singular point is at \(u=0\)
\[
\left(u^{2}-2 u \sqrt{a^{2}-b}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(u-\sqrt{a^{2}-b}\right)\left(\frac{d}{d u} y(u)\right)-m^{2} y(u)=0
\]
- Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-\sqrt{a^{2}-b} a_{0} r(-1+2 r) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-\sqrt{a^{2}-b} a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+m+r)\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-\sqrt{a^{2}-b} r(-1+2 r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(-2 a_{k+1}\left(k+r+\frac{1}{2}\right)(k+1+r) \sqrt{a^{2}-b}+a_{k}(k+m+r)(k-m+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r-m^{2}+r^{2}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+4 k r+2 r^{2}+3 k+3 r+1\right)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+3 k+1\right)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+3 k+1\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+a+\sqrt{a^{2}-b}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+a+{\sqrt{a^{2}-b}}^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+3 k+1\right)}\right]\right.
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}+k+\frac{1}{4}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+5 k+3\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}+k+\frac{1}{4}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+5 k+3\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+a+\sqrt{a^{2}-b}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+a+\sqrt{a^{2}-b}\right)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k^{2}-m^{2}+k+\frac{1}{4}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+5 k+3\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k}\left(x+a+\sqrt{a^{2}-b}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} d_{k}\left(x+a+\sqrt{a^{2}-b}\right)^{k+\frac{1}{2}}\right), c_{1+k}=\frac{c_{k}\left(k^{2}-m^{2}\right)}{\sqrt{a^{2}-b}\left(2 k^{2}+3 k+1\right)}, d_{1}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 43
dsolve \(\left(\left(x^{\wedge} 2+2 * a * x+b\right) * \operatorname{diff}(y(x), x \$ 2)+(x+a) * \operatorname{diff}(y(x), x)-m^{\wedge} 2 * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=c_{1}\left(a+x+\sqrt{2 a x+x^{2}+b}\right)^{-m}+c_{2}\left(a+x+\sqrt{2 a x+x^{2}+b}\right)^{m}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.301 (sec). Leaf size: 63
DSolve \(\left[\left(x^{\wedge} 2+2 * a * x+b\right) * y{ }^{\prime \prime}[x]+(x+a) * y y^{\prime}[x]-m^{\wedge} 2 * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True \(]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \cosh \left(m \log \left(\sqrt{2 a x+b+x^{2}}-a-x\right)\right) \\
& -i c_{2} \sinh \left(m \log \left(\sqrt{2 a x+b+x^{2}}-a-x\right)\right)
\end{aligned}
\]

\subsection*{30.27 problem 175}
30.27.1 Solving as second order integrable as is ode
30.27.2 Solving as type second_order_integrable_as_is (not using ABC version) . 3125
30.27.3 Solving as exact linear second order ode ode 3127
30.27.4 Maple step by step solution . 3130

Internal problem ID [10999]
Internal file name [OUTPUT/10255_Sunday_December_31_2023_11_24_17_AM_39314145/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 175.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y=0
\]

\subsection*{30.27.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y\right) d x=0 \\
(-2 a x+d x-b+k) y+\left(a x^{2}+b x+c\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} \\
q(x) & =\frac{c_{1}}{a x^{2}+b x+c}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{((2 a-d) x+b-k) y}{a x^{2}+b x+c}=\frac{c_{1}}{a x^{2}+b x+c}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} d x} \\
& =\mathrm{e}^{-\frac{(2 a-d) \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(b-k-\frac{(2 a-d) b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}}
\]

The ode becomes
\[
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=(\mu)\left(\frac{c_{1}}{a x^{2}+b x+c}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}\right)\left(\frac{2 a x+2}{a x^{2}}\right.}\right.\right. \\
& \mathrm{d}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}\right) \mathrm{d} x}\right.\right.
\end{aligned}
\]

\section*{Integrating gives}
\(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} y=\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} \mathrm{~d} x\)
\(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} y=\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x+c_{2}\)

Dividing both sides by the integrating factor \(\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}}\) results in
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+c_{2}\)
which simplifies to
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+\right.\)
Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(a x^{2}+b x\right. \\
& \left.+c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2}} a}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)\right.} \begin{array}{l}
\left.+c_{2}\right)
\end{array}\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=\left(a x^{2}+b x\right. \\
& +c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} d x} d\right)\right.} \begin{array}{r}
\left.+c_{2}\right)
\end{array}
\end{aligned}
\]

Verified OK.

\subsection*{30.27.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y\right) d x=0 \\
(-2 a x+d x-b+k) y+\left(a x^{2}+b x+c\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} \\
q(x) & =\frac{c_{1}}{a x^{2}+b x+c}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{((2 a-d) x+b-k) y}{a x^{2}+b x+c}=\frac{c_{1}}{a x^{2}+b x+c}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} d x} \\
& =\mathrm{e}^{-\frac{(2 a-d) \ln \left(a x^{2}+b x+c\right)}{2 a}}-\frac{2\left(b-k-\frac{(2 a-d) b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}}
\]

The ode becomes
\[
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=(\mu)\left(\frac{c_{1}}{a x^{2}+b x+c}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}\right)\left(\frac{{ }^{(2 a x+b}}{a x^{2}}\right.}\right)\right. \\
& \mathrm{d}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}\right) \mathrm{d} x}\right)\right.
\end{aligned}
\]

\section*{Integrating gives}

\(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} y=\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x+c_{2}\)
Dividing both sides by the integrating factor \(\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}}\) results in
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+c_{2}\)
which simplifies to
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+\right.\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\left(a x^{2}+b x\right. \\
& +c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} d x}\right)\right.} \begin{array}{r}
\left.+c_{2}\right)
\end{array}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=\left(a x^{2}+b x\right. \\
& +c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} d x} d\right)\right.} \begin{array}{r}
\left.+c_{2}\right)
\end{array}
\end{aligned}
\]

Verified OK.

\subsection*{30.27.3 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=a x^{2}+b x+c \\
& q(x)=d x+k \\
& r(x)=-2 a+d \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =2 a \\
q^{\prime}(x) & =d
\end{aligned}
\]

Therefore (1) becomes
\[
2 a-(d)+(-2 a+d)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
(-2 a x+d x-b+k) y+\left(a x^{2}+b x+c\right) y^{\prime}=c_{1}
\]

We now have a first order ode to solve which is
\[
(-2 a x+d x-b+k) y+\left(a x^{2}+b x+c\right) y^{\prime}=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} \\
q(x) & =\frac{c_{1}}{a x^{2}+b x+c}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{((2 a-d) x+b-k) y}{a x^{2}+b x+c}=\frac{c_{1}}{a x^{2}+b x+c}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{(2 a-d) x+b-k}{a x^{2}+b x+c} d x} \\
& =\mathrm{e}^{-\frac{(2 a-d) \ln \left(a x^{2}+b x+c\right)}{2 a}}-\frac{2\left(b-k-\frac{(2 a-d) b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}
\end{aligned}
\]

Which simplifies to
\[
\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}}
\]

The ode becomes
\[
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=(\mu)\left(\frac{c_{1}}{a x^{2}+b x+c}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}\right)\left(\frac{2}{a x^{2}}\right.}\right.\right. \\
& \mathrm{d}\left(\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}} y\right)}=\left(c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\left.\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}\right) \mathrm{d} x}\right.\right.
\end{aligned}
\]

\section*{Integrating gives}

Dividing both sides by the integrating factor \(\mu=\left(a x^{2}+b x+c\right)^{\frac{-2 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}}\) results in
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(\int c_{1}\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+c_{2}\)
which simplifies to
\(y=\left(a x^{2}+b x+c\right)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)+\right.\)

\section*{Summary}

The solution(s) found are the following
\(y=\left(a x^{2}+b x\right.\)
\[
\begin{array}{r}
\left.+c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)\right.} \begin{array}{r}
+c_{2}
\end{array}\right)
\end{array}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=\left(a x^{2}+b x\right. \\
& +c)^{\frac{2 a-d}{2 a}} \mathrm{e}^{-\frac{2 \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)\left(a k-\frac{b d}{2}\right)}\right.}{\sqrt{4 a c-b^{2} a}}\left(c_{1}\left(\int\left(a x^{2}+b x+c\right)^{\frac{-4 a+d}{2 a}} \mathrm{e}^{\frac{(2 a k-b d) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a \sqrt{4 a c-b^{2}}}} d x\right)\right.} \begin{array}{l}
\left.+c_{2}\right)
\end{array}
\end{aligned}
\]

Verified OK.

\subsection*{30.27.4 Maple step by step solution}

Let's solve
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(2 a-d) y}{a x^{2}+b x+c}-\frac{(d x+k) y^{\prime}}{a x^{2}+b x+c}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(d x+k) y^{\prime}}{a x^{2}+b x+c}-\frac{(2 a-d) y}{a x^{2}+b x+c}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{d x+k}{a x^{2}+b x+c}, P_{3}(x)=-\frac{2 a-d}{a x^{2}+b x+c}\right]\)
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\(\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0\)
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
\]
- \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
- Multiply by denominators
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(d x+k) y^{\prime}+(-2 a+d) y=0
\]
- Change variables using \(x=u+\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) so that the regular singular point is at \(u=0\) \(\left(a u^{2}+u \sqrt{-4 a c+b^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(d u-\frac{d b}{2 a}+\frac{d \sqrt{-4 a c+b^{2}}}{2 a}+k\right)\left(\frac{d}{d u} y(u)\right)+(-2 a+d) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)

\section*{Rewrite ODE with series expansions}
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
\frac{a_{0} r\left(2 \sqrt{-4 a c+b^{2}} a r-2 \sqrt{-4 a c+b^{2}} a+\sqrt{-4 a c+b^{2}} d+2 a k-b d\right) u^{-1+r}}{2 a}+\left(\sum _ { k = 0 } ^ { \infty } \left(\frac{a_{k+1}(k+r+1)\left(2 \sqrt{-4 a c+b^{2}} a(k+1)+2 \sqrt{-4 a c+b^{2}}\right.}{2 a}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\frac{r\left(2 \sqrt{-4 a c+b^{2}} a r-2 \sqrt{-4 a c+b^{2}} a+\sqrt{-4 a c+b^{2}} d+2 a k-b d\right)}{2 a}=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
\frac{\left(a_{k+1}\left((k+r) a+\frac{d}{2}\right) \sqrt{-4 a c+b^{2}}+a_{k}(k+r-2) a^{2}+\left(a_{k} d+k a_{k+1}\right) a-\frac{b d a_{k+1}}{2}\right)(k+r+1)}{a}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{2 a a_{k}(a k+a r-2 a+d)}{2 \sqrt{-4 a c+b^{2}} a k+2 \sqrt{-4 a c+b^{2}} a r+\sqrt{-4 a c+b^{2}} d+2 a k-b d}
\]
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{2 a a_{k}(a k-2 a+d)}{2 \sqrt{-4 a c+b^{2}} a k+\sqrt{-4 a c+b^{2}} d+2 a k-b d}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{2 a a_{k}(a k-2 a+d)}{2 \sqrt{-4 a c+b^{2}} a k+\sqrt{-4 a c+b^{2}} d+2 a k-b d}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k}, a_{k+1}=-\frac{2 a a_{k}(a k-2 a+d)}{2 \sqrt{-4 a c+b^{2}} a k+\sqrt{-4 a c+b^{2}} d+2 a k-b d}\right]
\]
- Recursion relation for \(r=\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}\)
\[
a_{k+1}=-\frac{2 a a_{k}\left(a k+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}}}-2 a+d\right)}{2 \sqrt{-4 a c+b^{2}} a k+2 \sqrt{-4 a c+b^{2}} a}
\]
- \(\quad\) Solution for \(r=\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}}, a_{k+1}=-\frac{2 a a_{k}\left(a k+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}}}-2 a+d\right)}{2 \sqrt{-4 a c+b^{2}} a k+2 \sqrt{-4 a c+b^{2}} a}\right]
\]
- Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}}, a_{k+1}=-\frac{2 a a_{k}\left(a k+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-}{2 \sqrt{-4 a c+b^{2}}}\right.}{2 \sqrt{-4 a c+b^{2}} a k+2 \sqrt{-4 a c-}}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{m=0}^{\infty} e_{m}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{m}\right)+\left(\sum_{m=0}^{\infty} f_{m}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{\left.m+\frac{2 \sqrt{-4 a c+b^{2}} a-\sqrt{-4 a c+b^{2}} d-2 a k+b d}{2 \sqrt{-4 a c+b^{2}} a}\right)}\right.\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 2F1 ODE     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning hypergeometric solution     linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 1412
dsolve \(\left(\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+(d * x+k) * \operatorname{diff}(y(x), x)+(d-2 * a) * y(x)=0, y(x)\right.\), singsol=all)

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 15.225 (sec). Leaf size: 164
DSolve \(\left[\left(a * x^{\wedge} 2+b * x+c\right) * y{ }^{\prime}[x]+(d * x+k) * y '[x]+(d-2 * a) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\[
y(x) \rightarrow(x(a x+b)
\]
\[
+c)^{1-\frac{d}{2 a}} \exp \left(\frac{(b d-2 a k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{a \sqrt{4 a c-b^{2}}}\right)\left(c_{2} \int_{1}^{x} \exp \left(\frac{(d-4 a) \log (c+K[1](b+a K[1]))-\frac{2(b d-2}{2 a}}{2 a}+c_{1}\right)\right.
\]

\subsection*{30.28 problem 176}
30.28.1 Solving as second order ode non constant coeff transformation on B ode
30.28.2 Maple step by step solution 3137

Internal problem ID [11000]
Internal file name [OUTPUT/10256_Sunday_December_31_2023_11_33_06_AM_29844681/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 176.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(k x+d) y^{\prime}-y k=0
\]

\subsection*{30.28.1 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=a x^{2}+b x+c \\
& B=k x+d \\
& C=-k \\
& F=0
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(a x^{2}+b x+c\right)(0)+(k x+d)(k)+(-k)(k x+d) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
\left(a x^{2}+b x+c\right)(k x+d) v^{\prime \prime}+\left(2 k\left(a x^{2}+b x+c\right)+(k x+d)^{2}\right) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
\left(a x^{2}+b x+c\right)(k x+d) u^{\prime}(x)+2\left(k\left(a+\frac{k}{2}\right) x^{2}+k(b+d) x+c k+\frac{d^{2}}{2}\right) u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(2 a k x^{2}+k^{2} x^{2}+2 k x b+2 d k x+2 c k+d^{2}\right)}{\left(a x^{2}+b x+c\right)(k x+d)}
\end{aligned}
\]

Where \(f(x)=-\frac{2 a k x^{2}+k^{2} x^{2}+2 k x b+2 d k x+2 c k+d^{2}}{\left(a x^{2}+b x+c\right)(k x+d)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{2 a k x^{2}+k^{2} x^{2}+2 k x b+2 d k x+2 c k+d^{2}}{\left(a x^{2}+b x+c\right)(k x+d)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2 a k x^{2}+k^{2} x^{2}+2 k x b+2 d k x+2 c k+d^{2}}{\left(a x^{2}+b x+c\right)(k x+d)} d x \\
\ln (u) & =-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)+c_{1} \\
u & =\mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} \mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} \mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)} \mathrm{d} x \\
& =\int c_{1} \mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)} d x+c_{2}
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y(x) & =B v \\
& =(k x+d)\left(\int c_{1} \mathrm{e}^{-\frac{k \ln \left(a x^{2}+b x+c\right)}{2 a}-\frac{2\left(d-\frac{k b}{2 a}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}-2 \ln (k x+d)} d x+c_{2}\right) \\
& =(k x+d)\left(c_{1}\left(\int \frac{\left(a x^{2}+b x+c\right)^{-\frac{k}{2 a}} \mathrm{e}^{-\frac{2\left(a d-\frac{b k}{2}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}}{(k x+d)^{2}} d x\right)+c_{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=(k x+d)\left(c_{1}\left(\int \frac{\left(a x^{2}+b x+c\right)^{-\frac{k}{2 a}} \mathrm{e}^{-\frac{2\left(a d-\frac{b k}{2}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}}{(k x+d)^{2}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=(k x+d)\left(c_{1}\left(\int \frac{\left(a x^{2}+b x+c\right)^{-\frac{k}{2 a}} \mathrm{e}^{-\frac{2\left(a d-\frac{b k}{2}\right) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2} a}}}}{(k x+d)^{2}} d x\right)+c_{2}\right)
\]

Verified OK.

\subsection*{30.28.2 Maple step by step solution}

Let's solve
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+(k x+d) y^{\prime}-y k=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\[
y^{\prime \prime}=\frac{k y}{a x^{2}+b x+c}-\frac{(k x+d) y^{\prime}}{a x^{2}+b x+c}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(k x+d) y^{\prime}}{a x^{2}+b x+c}-\frac{k y}{a x^{2}+b x+c}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{k x+d}{a x^{2}+b x+c}, P_{3}(x)=-\frac{k}{a x^{2}+b x+c}\right]\)
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\(\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0\)
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\(\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0\)
- \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
- Multiply by denominators
\(\left(a x^{2}+b x+c\right) y^{\prime \prime}+(k x+d) y^{\prime}-y k=0\)
- Change variables using \(x=u+\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) so that the regular singular point is at \(u=0\) \(\left(a u^{2}+u \sqrt{-4 a c+b^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(k u-\frac{k b}{2 a}+\frac{k \sqrt{-4 a c+b^{2}}}{2 a}+d\right)\left(\frac{d}{d u} y(u)\right)-k y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\) \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
\frac{a_{0} r\left(2 \sqrt{-4 a c+b^{2}} a r-2 \sqrt{-4 a c+b^{2}} a+k \sqrt{-4 a c+b^{2}}+2 a d-b k\right) u^{r-1}}{2 a}+\left(\sum _ { k = 0 } ^ { \infty } \left(\frac{a_{k+1}(k+1+r)\left(2 \sqrt{-4 a c+b^{2}} a(k+1)+2 \sqrt{-4 a c+b^{2}} a r\right.}{2 a}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(\frac{r\left(2 \sqrt{-4 a c+b^{2}} a r-2 \sqrt{-4 a c+b^{2}} a+k \sqrt{-4 a c+b^{2}}+2 a d-b k\right)}{2 a}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k}{2 \sqrt{-4 a c+b^{2}} a}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\frac{2 a_{k+1}\left((k+r) a+\frac{k}{2}\right)(k+1+r) \sqrt{-4 a c+b^{2}}+2 a_{k}(k+r)(k+r-1) a^{2}+\left(2 d(k+1+r) a_{k+1}+2 k a_{k}(k+r-1)\right) a-a_{k+1} b k(k+1+r)}{2 a}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{2 a a_{k}\left(a k^{2}+2 a k r+a r^{2}-a k-a r+k k+k r-k\right)}{2 \sqrt{-4 a c+b^{2}} a k^{2}+4 \sqrt{-4 a c+b^{2}} a k r+2 \sqrt{-4 a c+b^{2}} a r^{2}+2 \sqrt{-4 a c+b^{2}} a k+2 \sqrt{-4 a c+b^{2}} a r+\sqrt{-4 a c+b^{2}} k k+\sqrt{-4 a c+b^{2}} k r}\)
- Recursion relation for \(r=0\); series terminates at \(k=1\)
\[
a_{k+1}=-\frac{2 a a_{k}\left(a k^{2}-a k+k k-k\right)}{2 \sqrt{-4 a c+b^{2}} a k^{2}+2 \sqrt{-4 a c+b^{2}} a k+\sqrt{-4 a c+b^{2}} k k+2 a d k-b k k+k \sqrt{-4 a c+b^{2}}+2 a d-b k}
\]
- Apply recursion relation for \(k=0\)
\[
a_{1}=\frac{2 a a_{0} k}{k \sqrt{-4 a c+b^{2}}+2 a d-b k}
\]
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li
\[
y(u)=a_{0} \cdot\left(1+\frac{2 a k u}{k \sqrt{-4 a c+b^{2}}+2 a d-b k}\right)
\]
- Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\frac{2 a_{0} a(k x+d)}{k \sqrt{-4 a c+b^{2}}+2 a d-b k}\right]
\]
- Recursion relation for \(r=\frac{2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k}{2 \sqrt{-4 a c+b^{2}} a}\)
\[
a_{k+1}=-\frac{2 a a_{k}\left(a k^{2}+\frac{k\left(2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k\right)}{\sqrt{-4 a c+b^{2}}}+\frac{\left(2 \sqrt{-4 a c+b^{2}} a-1\right.}{4 a(}\right.}{2 \sqrt{-4 a c+b^{2}} a k^{2}+2 k\left(2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k\right)+\frac{\left(2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k\right)^{2}}{2 \sqrt{-4 a c+b^{2}} a}+2 \sqrt{-4 a c+b^{2}} a k+}
\]
- \(\quad\) Solution for \(r=\frac{2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k}{2 \sqrt{-4 a c+b^{2}} a}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k}{2 \sqrt{-4 a c+b^{2} a}}}, a_{k+1}=-\frac{2 a a_{k}(}{2 \sqrt{-4 a c+b^{2}} a k^{2}+2 k\left(2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+\right.}\right.
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{\left.k+\frac{2 \sqrt{-4 a c+b^{2}} a-k \sqrt{-4 a c+b^{2}}-2 a d+b k}{2 \sqrt{-4 a c+b^{2} a}}, a_{k+1}=-\frac{}{2 \sqrt{-4 a c+b^{2}} a k^{2}+2 k\left(2 \sqrt{-4 a c+b^{2}} a-\right.}\right]}\right.
\]
- Combine solutions and rename parameters

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful     <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - returning wi <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 315
dsolve \(\left(\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+(k * x+d) * \operatorname{diff}(y(x), x)-k * y(x)=0, y(x), \quad\right.\) singsol=all)
\[
\begin{aligned}
& y(x)=c_{1}(k x+d) \\
& \quad+c_{2}\left(2 \sqrt{\frac{-4 a c+b^{2}}{a^{2}}} x a^{2}+\sqrt{\frac{-4 a c+b^{2}}{a^{2}}} b a-4 a c+b^{2}\right)^{\frac{a\left(a-\frac{k}{2}\right) \sqrt{\frac{-4 a c+b^{2}}{a^{2}}}+a d-\frac{k b}{2}}{\sqrt{\frac{-4 a c+b^{2}}{a^{2}}} a^{2}}} \text { hypergeom }\left(\left[-\frac{k \sqrt{\frac{-4 a c+i}{a^{2}}}}{2 a^{2}}\right.\right.
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 4.256 (sec). Leaf size: 107
DSolve \(\left[\left(a * x^{\wedge} 2+b * x+c\right) * y '^{\prime}[x]+(k * x+d) * y '[x]-k * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True]

\subsection*{30.29 problem 177}
30.29.1 Solving as second order change of variable on \(x\) method 2 ode . 3142
30.29.2 Solving as second order change of variable on \(x\) method 1 ode . 3145
30.29.3 Solving using Kovacic algorithm 3147
30.29.4 Maple step by step solution . 3154

Internal problem ID [11001]
Internal file name [OUTPUT/10257_Sunday_December_31_2023_11_33_11_AM_17031722/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 177.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_1", "second__order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d=0
\]

\subsection*{30.29.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x+b}{a x^{2}+2 b x+c} \\
& q(x)=\frac{d}{a x^{2}+2 b x+c}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{a x+b}{a x^{2}+2 b x+c} d x\right)} d x \\
& =\int e^{-\frac{\ln \left(a x^{2}+2 b x+c\right)}{2}} d x \\
& =\int \frac{1}{\sqrt{a x^{2}+2 b x+c}} d x \\
& =\frac{\ln \left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)}{\sqrt{a}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{d}{a x^{2}+2 b x+c}}{\frac{1}{a x^{2}+2 b x+c}} \\
& =d \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+d y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=d\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+d \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+d=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=d\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(d)} \\
& = \pm \sqrt{-d}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-d} \\
& \lambda_{2}=-\sqrt{-d}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-d} \\
& \lambda_{2}=-\sqrt{-d}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-d}) \tau}+c_{2} e^{(-\sqrt{-d}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-d} \tau}+c_{2} \mathrm{e}^{-\sqrt{-d} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{\frac{\sqrt{-d}}{\sqrt{a}}}+c_{2}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{-\frac{\sqrt{-d}}{\sqrt{a}}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{\frac{\sqrt{-d}}{\sqrt{a}}}+c_{2}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{-\frac{\sqrt{-d}}{\sqrt{a}}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{\frac{\sqrt{-d}}{\sqrt{a}}}+c_{2}\left(\frac{a x+b}{\sqrt{a}}+\sqrt{a x^{2}+2 b x+c}\right)^{-\frac{\sqrt{-d}}{\sqrt{a}}}
\]

Verified OK.

\subsection*{30.29.2 Solving as second order change of variable on \(x\) method 1 ode} In normal form the ode
\[
\begin{equation*}
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{a x+b}{a x^{2}+2 b x+c} \\
& q(x)=\frac{d}{a x^{2}+2 b x+c}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{d}{a x^{2}+2 b x+c}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{d(2 a x+2 b)}{2 c \sqrt{\frac{d}{a x^{2}+2 b x+c}}\left(a x^{2}+2 b x+c\right)^{2}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
&=\frac{-\frac{d(2 a x+2 b)}{2 c \sqrt{\frac{d}{a x^{2}+2 b x+c}}\left(a x^{2}+2 b x+c\right)^{2}}+\frac{a x+b}{a x^{2}+2 b x+c} \frac{\sqrt{\frac{d}{a x^{2}+2 b x+c}}}{c}}{\left(\frac{\sqrt{\frac{d}{a x^{2}+2 b x+c}}}{c}\right)^{2}} \\
&=0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{d}{a x^{2}+2 b x+c}} d x}{c} \\
& =\frac{\sqrt{\frac{d}{a x^{2}+2 b x+c}} \sqrt{a x^{2}+2 b x+c} \ln \left(\frac{\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b}{\sqrt{a}}\right)}{c \sqrt{a}}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
\begin{aligned}
y= & c_{1} \cos \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right) \\
& +c_{2} \sin \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right) \tag{1}\\
& +c_{2} \sin \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \cos \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right) \\
& +c_{2} \sin \left(\frac{\sqrt{d}\left(2 \ln \left(\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b\right)-\ln (a)\right)}{2 \sqrt{a}}\right)
\end{aligned}
\]

Verified OK.

\subsection*{30.29.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=a x^{2}+2 b x+c \\
& B=a x+b \tag{3}\\
& C=d
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-a^{2} x^{2}-4 a d x^{2}-2 a b x-8 b d x+2 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-a^{2} x^{2}-4 a d x^{2}-2 a b x-8 b d x+2 a c-3 b^{2}-4 c d \\
& t=4\left(a x^{2}+2 b x+c\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-a^{2} x^{2}-4 a d x^{2}-2 a b x-8 b d x+2 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 170: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(a x^{2}+2 b x+c\right)^{2}\). There is a pole at \(x=-\frac{b-\sqrt{-a c+b^{2}}}{a}\) of order 2 . There is a pole at \(x=-\frac{b+\sqrt{-a c+b^{2}}}{a}\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
\begin{aligned}
r & =\frac{-\left(-b+\sqrt{-a c+b^{2}}\right)^{2}-\frac{4\left(-b+\sqrt{-a c+b^{2}}\right)^{2} d}{a}-2\left(-b+\sqrt{-a c+b^{2}}\right) b-\frac{8\left(-b+\sqrt{-a c+b^{2}}\right) b d}{a}+2 a c-3 b^{2}-4 c d}{16\left(-a c+b^{2}\right)\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2}} \\
& +\frac{-\left(b+\sqrt{-a c+b^{2}}\right)^{2}-\frac{4\left(b+\sqrt{-a c+b^{2}}\right)^{2} d}{a}+2\left(b+\sqrt{-a c+b^{2}}\right) b+\frac{8\left(b+\sqrt{-a c+b^{2}}\right) b d}{a}+2 a c-3 b^{2}-4 c d}{16\left(-a c+b^{2}\right)\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)^{2}} \\
& +\frac{-\left(-b+\sqrt{-a c+b^{2}}\right)^{2} a-4\left(-b+\sqrt{-a c+b^{2}}\right)^{2} d-2\left(-b+\sqrt{-a c+b^{2}}\right) a b-8\left(-b+\sqrt{-a c+b^{2}}\right) b d}{16\left(-a c+b^{2}\right)^{\frac{3}{2}}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)} \\
& -\frac{-\left(b+\sqrt{-a c+b^{2}}\right)^{2} a-4\left(b+\sqrt{-a c+b^{2}}\right)^{2} d+2\left(b+\sqrt{-a c+b^{2}}\right) a b+8\left(b+\sqrt{-a c+b^{2}}\right) b d-2 a^{2} c}{16\left(-a c+b^{2}\right)^{\frac{3}{2}}\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)}
\end{aligned}
\]

For the pole at \(x=-\frac{b-\sqrt{-a c+b^{2}}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b-\sqrt{-a c+b^{2}}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-\frac{b+\sqrt{-a c+b^{2}}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{-a^{2} x^{2}-4 a d x^{2}-2 a b x-8 b d x+2 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline\(-\frac{b-\sqrt{-a c+b^{2}}}{a}\) & 2 & \(\{1,2,3\}\) \\
\hline\(-\frac{b+\sqrt{-a c+b^{2}}}{a}\) & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{\left(x-\left(-\frac{b-\sqrt{-a c+b^{2}}}{a}\right)\right)}+\frac{1}{\left(x-\left(-\frac{b+\sqrt{-a c+b^{2}}}{a}\right)\right)}\right) \\
& =\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
\begin{aligned}
& w^{2}-\left(\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}\right) w \\
& +\frac{\left(a^{2} x^{2}+\left(4 d x^{2}+2 b x\right) a+8 b d x+b^{2}+4 c d\right) a^{2}}{4\left(a x+b-\sqrt{-a c+b^{2}}\right)^{2}\left(a x+\sqrt{-a c+b^{2}}+b\right)^{2}}=0
\end{aligned}
\]

Solving for \(\omega\) gives
\[
\omega=\frac{a x+2 \sqrt{-d\left(a x^{2}+2 b x+c\right)}+b}{2 a x^{2}+4 b x+2 c}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{a x+2 \sqrt{-d\left(a x^{2}+2 b x+c\right)}+b}{2 a x^{2}+4 b x+2 c} d x} \\
& =\left(a x^{2}+2 b x+c\right)^{\frac{1}{4}} \mathrm{e}^{\left.-\frac{d \arctan \left(\frac { \sqrt { a d } (a x + b) } { } \left(\frac{d\left(a x+b-\sqrt{\left.-a c+b^{2}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}\right.}{a}\right.\right.}{\sqrt{-\frac{\sqrt{a d}}{}}}\right)}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x+b}{a x^{2}+2 b x+c} d x} \\
& =z_{1} e^{-\frac{\ln \left(a x^{2}+2 b x+c\right)}{4}} \\
& =z_{1}\left(\frac{1}{\left(a x^{2}+2 b x+c\right)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{d \arctan \left((a x+b) \sqrt{-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}}\right)}{\sqrt{a d}}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

\section*{Substituting gives}
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x+b}{a x^{2}+2 b x+c} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln \left(a x^{2}+2 b x+c\right)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\mathrm{e}^{\frac{2 d \arctan ((a x+b)}{\sqrt{-\frac{1}{\left(a x+b-\sqrt{\left.-a c+b^{2}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}\right.}} \sqrt{\sqrt{a d}}}} \sqrt{a x^{2}+2 b x+c}}{}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\mathrm{e}^{-\frac{d \arctan \left((a x+b) \sqrt{-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{\left.-a c+b^{2}+b\right)}\right.}}\right)}{\sqrt{a d}}}\right) \\
& +c_{2}\left(\mathrm{e}^{-\frac{d \arctan \left((a x+b) \sqrt{-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}} \sqrt{\sqrt{a d}}\right.}{}}\left(\int \frac{\left.\mathrm{e}^{\frac{2 d \arctan ((a x+b)}{\left.\sqrt{-\frac{1}{\left(a x+b-\sqrt{\left.-a c+b^{2}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}\right.}}\right)} \sqrt{\sqrt{a x^{2}+2 b x+c}}}\right)}{}\right)\right.
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\left.\left.\begin{array}{rl}
y & =c_{1} \mathrm{e}^{-\frac{d \arctan \left((a x+b) \sqrt{-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}}\right)}{\sqrt{a d}}} \tag{1}\\
& +c_{2} \mathrm{e}^{-\frac{d \arctan \left((a x+b) \sqrt{-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}}\right.}{\sqrt{a d}}}(1)
\end{array}\left(\mathrm{e}^{\frac{2 d \arctan \left((a x+b) \sqrt{\left.-\frac{1}{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{\left.-a c+b^{2}+b\right)}\right.}\right)}\right.}{\sqrt{a d}}}\right) d x\right) \sqrt{a x^{2}+2 b x+c}\right)
\]

\section*{Verification of solutions}

Verified OK.

\subsection*{30.29.4 Maple step by step solution}

Let's solve
\(\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d=0\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{d y}{a x^{2}+2 b x+c}-\frac{(a x+b) y^{\prime}}{a x^{2}+2 b x+c}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(a x+b) y^{\prime}}{a x^{2}+2 b x+c}+\frac{d y}{a x^{2}+2 b x+c}=0
\]
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{a x+b}{a x^{2}+2 b x+c}, P_{3}(x)=\frac{d}{a x^{2}+2 b x+c}\right]\)
- \(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\(\left.\left(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-a c+b^{2}}}{a}}=0\)
- \(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\(\left.\left(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-a c+b^{2}}}{a}}=0\)
- \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=\frac{-b+\sqrt{-a c+b^{2}}}{a}
\]
- Multiply by denominators
\(\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(a x+b) y^{\prime}+y d=0\)
- Change variables using \(x=u+\frac{-b+\sqrt{-a c+b^{2}}}{a}\) so that the regular singular point is at \(u=0\) \(\left(a u^{2}+2 u \sqrt{-a c+b^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(a u+\sqrt{-a c+b^{2}}\right)\left(\frac{d}{d u} y(u)\right)+d y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
\sqrt{-a c+b^{2}} a_{0} r(-1+2 r) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(\sqrt{-a c+b^{2}} a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}\left(a k^{2}+2 a\right.\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(\sqrt{-a c+b^{2}} r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
2 a_{k+1}(k+1+r)\left(k+r+\frac{1}{2}\right) \sqrt{-a c+b^{2}}+a_{k}\left(a k^{2}+2 a k r+a r^{2}+d\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}\left(a k^{2}+2 a k r+a r^{2}+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+4 k r+2 r^{2}+3 k+3 r+1\right)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}\left(a k^{2}+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k+\frac{1}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k+\frac{1}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k+\frac{1}{2}}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k+\frac{1}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k+\frac{1}{2}}\right), e_{1+k}=-\frac{e_{k}\left(a k^{2}+d\right)}{\sqrt{-a c+b^{2}\left(2 k^{2}+3 k+1\right)}},\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 81
dsolve \(\left(\left(a * x^{\wedge} 2+2 * b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+(a * x+b) * \operatorname{diff}(y(x), x)+d * y(x)=0, y(x), \quad\right.\) singsol \(\left.=a l l\right)\)
\(y(x)=c_{1}\left(\frac{\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b}{\sqrt{a}}\right)^{\frac{i \sqrt{a}}{\sqrt{a}}}+c_{2}\left(\frac{\sqrt{a x^{2}+2 b x+c} \sqrt{a}+a x+b}{\sqrt{a}}\right)^{-\frac{i \sqrt{a}}{\sqrt{a}}}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.404 (sec). Leaf size: 93
DSolve \(\left[\left(a * x^{\wedge} 2+2 * b * x+c\right) * y '^{\prime}[x]+(a * x+b) * y '[x]+d * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \cos \left(\frac{\sqrt{d} \log \left(-\sqrt{a} \sqrt{a x^{2}+2 b x+c}+a x+b\right)}{\sqrt{a}}\right) \\
& -c_{2} \sin \left(\frac{\sqrt{d} \log \left(-\sqrt{a} \sqrt{a x^{2}+2 b x+c}+a x+b\right)}{\sqrt{a}}\right)
\end{aligned}
\]

\subsection*{30.30 problem 178}
30.30.1 Solving using Kovacic algorithm 3158
30.30.2 Maple step by step solution . 3165

Internal problem ID [11002]
Internal file name [OUTPUT/10258_Sunday_December_31_2023_11_33_16_AM_13214284/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 178.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+3(a x+b) y^{\prime}+y d=0
\]

\subsection*{30.30.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(3 a x+3 b) y^{\prime}+y d & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=a x^{2}+2 b x+c \\
& B=3 a x+3 b \tag{3}\\
& C=d
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{3 a^{2} x^{2}-4 a d x^{2}+6 a b x-8 b d x+6 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=3 a^{2} x^{2}-4 a d x^{2}+6 a b x-8 b d x+6 a c-3 b^{2}-4 c d \\
& t=4\left(a x^{2}+2 b x+c\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3 a^{2} x^{2}-4 a d x^{2}+6 a b x-8 b d x+6 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 172: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4\left(a x^{2}+2 b x+c\right)^{2}\). There is a pole at \(x=-\frac{b-\sqrt{-a c+b^{2}}}{a}\) of order 2 . There is a pole at \(x=-\frac{b+\sqrt{-a c+b^{2}}}{a}\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
\begin{aligned}
r & =\frac{3\left(-b+\sqrt{-a c+b^{2}}\right)^{2}-\frac{4\left(-b+\sqrt{-a c+b^{2}}\right)^{2} d}{a}+6\left(-b+\sqrt{-a c+b^{2}}\right) b-\frac{8\left(-b+\sqrt{-a c+b^{2}}\right) b d}{a}+6 a c-3 b^{2}-4 c d}{16\left(-a c+b^{2}\right)\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2}} \\
& +\frac{3\left(b+\sqrt{-a c+b^{2}}\right)^{2}-\frac{4\left(b+\sqrt{-a c+b^{2}}\right)^{2} d}{a}-6\left(b+\sqrt{-a c+b^{2}}\right) b+\frac{8\left(b+\sqrt{-a c+b^{2}}\right) b d}{a}+6 a c-3 b^{2}-4 c d}{16\left(-a c+b^{2}\right)\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)^{2}} \\
& +\frac{3\left(-b+\sqrt{-a c+b^{2}}\right)^{2} a-4\left(-b+\sqrt{-a c+b^{2}}\right)^{2} d+6\left(-b+\sqrt{-a c+b^{2}}\right) a b-8\left(-b+\sqrt{-a c+b^{2}}\right) b d-}{16\left(-a c+b^{2}\right)^{\frac{3}{2}}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)} \\
& -\frac{3\left(b+\sqrt{-a c+b^{2}}\right)^{2} a-4\left(b+\sqrt{-a c+b^{2}}\right)^{2} d-6\left(b+\sqrt{-a c+b^{2}}\right) a b+8\left(b+\sqrt{-a c+b^{2}}\right) b d-6 a^{2} c-}{16\left(-a c+b^{2}\right)^{\frac{3}{2}}\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)}
\end{aligned}
\]

For the pole at \(x=-\frac{b-\sqrt{-a c+b^{2}}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b-\sqrt{-a c+b^{2}}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-\frac{b+\sqrt{-a c+b^{2}}}{a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b+\sqrt{-a c+b^{2}}}{a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{3 a^{2} x^{2}-4 a d x^{2}+6 a b x-8 b d x+6 a c-3 b^{2}-4 c d}{4\left(a x^{2}+2 b x+c\right)^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{-2,2,6\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline\(-\frac{b-\sqrt{-a c+b^{2}}}{a}\) & 2 & \(\{1,2,3\}\) \\
\hline\(-\frac{b+\sqrt{-a c+b^{2}}}{a}\) & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{-2,2,6\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=1, e_{2}=1, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{\left(x-\left(-\frac{b-\sqrt{-a c+b^{2}}}{a}\right)\right)}+\frac{1}{\left(x-\left(-\frac{b+\sqrt{-a c+b^{2}}}{a}\right)\right)}\right) \\
& =\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
\begin{aligned}
& w^{2}-\left(\frac{1}{2 x+\frac{2\left(b-\sqrt{-a c+b^{2}}\right)}{a}}+\frac{1}{2 x+\frac{2\left(b+\sqrt{-a c+b^{2}}\right)}{a}}\right) w \\
& -\frac{3 a^{2}\left(a^{2} x^{2}+\left(-\frac{4}{3} d x^{2}+2 b x+\frac{4}{3} c\right) a-\frac{8 b d x}{3}-\frac{b^{2}}{3}-\frac{4 c d}{3}\right)}{4\left(a x+b-\sqrt{-a c+b^{2}}\right)^{2}\left(a x+\sqrt{-a c+b^{2}}+b\right)^{2}}=0
\end{aligned}
\]

Solving for \(\omega\) gives
\[
\omega=\frac{a x+2 \sqrt{a^{2} x^{2}-a d x^{2}+2 a b x-2 b d x+a c-c d}+b}{2 a x^{2}+4 b x+2 c}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{a x+2 \sqrt{a^{2} x^{2}-a d x^{2}+2 a b x-2 b d x+a c-c d}+b}{2 a x^{2}+4 b x+2 c}} d x
\end{aligned}
\]
\[
=\left(a x^{2}+2 b x+c\right)^{\frac{1}{4}}\left(\frac{\sqrt{\frac{(a-d)\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}{a}} \sqrt{a(a-d)}+(a-d)(a x+b)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 a x+3 b}{a x^{2}+2 b x+c} d x} \\
& =z_{1} e^{-\frac{3 \ln \left(a x^{2}+2 b x+c\right)}{4}} \\
& =z_{1}\left(\frac{1}{\left(a x^{2}+2 b x+c\right)^{\frac{3}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}}}{\sqrt{a x^{2}+2 b x+c}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 a x+3 b}{a x^{2}+2 b x+c} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 \ln \left(a x^{2}+2 b x+c\right)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int \frac{\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}+b\right)}{\sqrt{a(a-d)}}\right)^{-\frac{2(a-d)}{\sqrt{a(a-d)}}} \sqrt{a x^{2}+2 b x+c}}{}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{\left(\frac{\left.(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right.}\right)+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}}}{\sqrt{a x^{2}+2 b x+c}}\right) \\
& +c_{2}\left(\frac{\left.\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}} \sqrt{\sqrt{a x^{2}+2 b x+c}}\right) \int \frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)(a x+\sqrt{-a c}}\right.}{\sqrt{a(a-d)}}}{\sqrt{a x^{2}+2 b x+c}}\right. \\
&
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y & \left.=\frac{c_{1}\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}}}{\sqrt{a x^{2}+2 b x+c}}\right) \tag{1}\\
& c_{2}\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right)}+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}(1)} \sqrt{\sqrt{a x^{2}+2 b x+c}}
\end{align*}
\]

Verification of solutions
\(y=\frac{c_{1}\left(\frac{\left.(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right.}\right)+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}}}{\sqrt{a x^{2}+2 b x+c}}\)
\(+\frac{\left.c_{2}\left(\frac{\left.(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right.}\right)+b\right)}{\sqrt{a(a-d)}}\right)^{\frac{a-d}{\sqrt{a(a-d)}}} \iint \frac{\left(\frac{(a-d)\left(a x+\sqrt{\left(a x+b-\sqrt{-a c+b^{2}}\right)\left(a x+\sqrt{-a c+b^{2}}+b\right.}\right)}{\sqrt{a(a-d)})}\right)}{\sqrt{a x^{2}+2 b x+c}}\right)}{\sqrt{a x^{2}+2 b x+c}}\)
Verified OK.

\subsection*{30.30.2 Maple step by step solution}

Let's solve
\[
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(3 a x+3 b) y^{\prime}+y d=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{d y}{a x^{2}+2 b x+c}-\frac{3(a x+b) y^{\prime}}{a x^{2}+2 b x+c}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{3(a x+b) y^{\prime}}{a x^{2}+2 b x+c}+\frac{d y}{a x^{2}+2 b x+c}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{3(a x+b)}{a x^{2}+2 b x+c}, P_{3}(x)=\frac{d}{a x^{2}+2 b x+c}\right]
\]
- \(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left.\left(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-a c+b^{2}}}{a}}=0
\]
- \(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left.\left(\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-a c+b^{2}}}{a}}=0
\]
- \(x=\frac{-b+\sqrt{-a c+b^{2}}}{a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=\frac{-b+\sqrt{-a c+b^{2}}}{a}
\]
- Multiply by denominators
\[
\left(a x^{2}+2 b x+c\right) y^{\prime \prime}+(3 a x+3 b) y^{\prime}+y d=0
\]
- Change variables using \(x=u+\frac{-b+\sqrt{-a c+b^{2}}}{a}\) so that the regular singular point is at \(u=0\)
\[
\left(a u^{2}+2 u \sqrt{-a c+b^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(3 a u+3 \sqrt{-a c+b^{2}}\right)\left(\frac{d}{d u} y(u)\right)+d y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
\sqrt{-a c+b^{2}} a_{0}(1+2 r) r u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(\sqrt{-a c+b^{2}} a_{k+1}(2 k+3+2 r)(k+1+r)+a_{k}\left(a k^{2}+2 a k\right.\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\sqrt{-a c+b^{2}}(1+2 r) r=0
\]
- Values of r that satisfy the indicial equation
\(r \in\left\{0,-\frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
2 a_{k+1}(k+1+r)\left(k+r+\frac{3}{2}\right) \sqrt{-a c+b^{2}}+\left(a k^{2}+2 a(r+1) k+a r^{2}+2 a r+d\right) a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{a_{k}\left(a k^{2}+2 a k r+a r^{2}+2 a k+2 a r+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+4 k r+2 r^{2}+5 k+5 r+3\right)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{a_{k}\left(a k^{2}+2 a k+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+2 a k+d\right)}{\sqrt{-a c+b^{2}\left(2 k^{2}+5 k+3\right)}}\right]
\]
- Revert the change of variables \(u=x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+2 a k+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)}\right]
\]
- \(\quad\) Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k-\frac{3}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k-\frac{3}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}\right]
\]
- Revert the change of variables \(u=x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k-\frac{1}{2}}, a_{k+1}=-\frac{a_{k}\left(a k^{2}+a k-\frac{3}{4} a+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+3 k+1\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} e_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} f_{k}\left(x-\frac{-b+\sqrt{-a c+b^{2}}}{a}\right)^{k-\frac{1}{2}}\right), e_{1+k}=-\frac{e_{k}\left(a k^{2}+2 a k+d\right)}{\sqrt{-a c+b^{2}}\left(2 k^{2}+5 k+3\right)},\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.219 (sec). Leaf size: 88
```

dsolve((a*x^2+2*b*x+c)*diff(y(x),x\$2)+3*(a*x+b)*\operatorname{diff}(y(x),x)+d*y(x)=0,y(x), singsol=all)

```
\[
y(x)
\]
\[
=\frac{c_{2}\left(\sqrt{a\left(a x^{2}+2 b x+c\right)}+a x+b\right)^{-\frac{\sqrt{-d+a}}{\sqrt{a}}}+c_{1}\left(\sqrt{a\left(a x^{2}+2 b x+c\right)}+a x+b\right)^{\frac{\sqrt{-d+a}}{\sqrt{a}}}}{\sqrt{a x^{2}+2 b x+c}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 152
DSolve \(\left[\left(a * x^{\wedge} 2+2 * b * x+c\right) * y^{\prime \prime}[x]+3 *(a * x+b) * y '[x]+d * y[x]==0, y[x], x\right.\), IncludeSingulafSolutions \(\rightarrow\) I
\[
y(x) \rightarrow \frac{c_{1} P_{\frac{\sqrt{a-d}}{\sqrt{a}}-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\sqrt{-b^{2}-a c}(b+a x)}{a \sqrt{c^{2}-\frac{b^{4}}{a^{2}}}}\right)+c_{2} Q_{\sqrt[{\sqrt{a-d}}]{\sqrt{a}}-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\sqrt{-b^{2}-a c}(b+a x)}{a \sqrt{c^{2}-\frac{b^{4}}{a^{2}}}}\right)}{\sqrt[4]{x(a x+2 b)+c}}
\]

\subsection*{30.31 problem 179}
30.31.1 Maple step by step solution
. 3169
Internal problem ID [11003]
Internal file name [OUTPUT/10259_Sunday_December_31_2023_11_33_17_AM_58603201/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 179.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a_{2} x^{2}+b_{2} x+c_{2}\right) y^{\prime \prime}+\left(b_{1} x+c_{1}\right) y^{\prime}+c_{0} y=0
\]

\subsection*{30.31.1 Maple step by step solution}

Let's solve
\(\left(a_{2} x^{2}+b_{2} x+c_{2}\right) y^{\prime \prime}+\left(b_{1} x+c_{1}\right) y^{\prime}+c_{0} y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{c_{0} y}{a_{2} x^{2}+b_{2} x+c_{2}}-\frac{\left(b_{1} x+c_{1}\right) y^{\prime}}{a_{2} x^{2}+b_{2} x+c_{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(b_{1} x+c_{1}\right) y^{\prime}}{a_{2} x^{2}+b_{2} x+c_{2}}+\frac{c_{0} y}{a_{2} x^{2}+b_{2} x+c_{2}}=0\)Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{b_{1} x+c_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}, P_{3}(x)=\frac{c_{0}}{a_{2} x^{2}+b_{2} x+c_{2}}\right]
\]
- \(\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\)
\[
\left.\left(\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}}=0
\]
- \(\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\)
\[
\left.\left(\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}}=0
\]
- \(x=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\)
- Multiply by denominators
\(\left(a_{2} x^{2}+b_{2} x+c_{2}\right) y^{\prime \prime}+\left(b_{1} x+c_{1}\right) y^{\prime}+c_{0} y=0\)
- Change variables using \(x=u+\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\) so that the regular singular point is at \(u=0\)
\[
\left(a_{2} u^{2}+u \sqrt{-4 c_{2} a_{2}+b_{2}^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(b_{1} u-\frac{b_{1} b_{2}}{2 a_{2}}+\frac{b_{1} \sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}+c_{1}\right)\left(\frac{d}{d u} y(u)\right)+c_{0} y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\) \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
\frac{a_{0} r\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} r-2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}+2 c_{1} a_{2}-b_{1} b_{2}\right) u^{-1+r}}{2 a_{2}}+\left(\sum _ { k = 0 } ^ { \infty } \left(\frac{a_{k+1}(k+1+r)\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}\right.}{}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\frac{r\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} r-2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}+2 c_{1} a_{2}-b_{1} b_{2}\right)}{2 a_{2}}=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c_{1} a_{2}+b_{1} b_{2}}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}}\right\}\)
- Each term in the series must be 0 , giving the recursion relation \(\frac{2\left((k+r) a_{2}+\frac{b_{1}}{2}\right) a_{k+1}(k+1+r) \sqrt{-4 c_{2} a_{2}+b_{2}^{2}}+2 a_{k}(k+r)(k+r-1) a_{2}^{2}+\left(2 c_{1}(k+1+r) a_{k+1}+2 a_{k}\left(b_{1} k+b_{1} r+c_{0}\right)\right) a_{2}-b_{1} b_{2} a_{k+1}(k+1+r)}{2 a_{2}}\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{2 a_{2} a_{k}\left(a_{2} k^{2}+2 a_{2} k r+a_{2} r^{2}-a_{2} k-a_{2} r+b_{1}\right)}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k^{2}+4 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k r+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} r^{2}+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} r+\sqrt{-4 c_{2} a_{2}+}}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{2 a_{2} a_{k}\left(a_{2} k^{2}-a_{2} k+b_{1} k+c_{0}\right)}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k^{2}+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1} k+2 c_{1} a_{2} k-b_{1} b_{2} k+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}+2 c_{1} a_{2}-b_{1} b_{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{2 a_{2} a_{k}\left(a_{2} k^{2}-a_{2} k+b_{1} k+c_{0}\right)}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k^{2}+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1} k+2 c_{1} a_{2} k-b_{1} b_{2} k+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}}\right.
\]
- Revert the change of variables \(u=x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right)^{k}, a_{k+1}=-\frac{2 a_{2} a_{k}\left(a_{2} k^{2}-a_{2} k+b_{1} k+c_{0}\right)}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k^{2}+2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1} k+2 c_{1} a_{2} k}\right.
\]
- Recursion relation for \(r=\frac{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c_{1} a_{2}+b_{1} b_{2}}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}}\)
\[
\frac{2 a_{2} a_{k}\left(a_{2} k^{2}+\frac{k\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c\right.}{\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}\right.}{\left.2 c_{1} a_{2}+b_{1} b_{2}\right)+\frac{\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c_{1} a\right.}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}}}
\]
- Solution for \(r=\frac{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c_{1} a_{2}+b_{1} b_{2}}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}} b_{1}-2 c_{1} a_{2}+b_{1} b_{2}}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}}}, a_{k+1}=-\frac{}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2} k^{2}+2 k\left(2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-1\right.}\right.
\]
- Revert the change of variables \(u=x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x-\frac{-b_{2}+\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 a_{2}}\right)^{\left.k+\frac{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2}} a_{2}-\sqrt{-4 c_{2} a_{2}+b_{2}^{2}}}{2 \sqrt{-4 c_{2} a_{2}+b_{2}^{2} a_{2}}}\right]}\right.\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.14 (sec). Leaf size: 482
```

dsolve((a__2*x^2+b__2*x+c__2)*diff(y(x),x\$2)+(b__1*x+c__1)*diff (y(x),x)+c__ 0*y(x)=0,y(x), si

```
\[
\begin{aligned}
& y(x)=c_{3} \text { hypergeom }\left(\left[\frac{-a_{2}+b_{1}+\sqrt{a_{2}^{2}+\left(-2 b_{1}-4 c_{0}\right) a_{2}+b_{1}^{2}}}{2 a_{2}},\right.\right. \\
& \left.-\frac{a_{2}-b_{1}+\sqrt{a_{2}^{2}+\left(-2 b_{1}-4 c_{0}\right) a_{2}+b_{1}^{2}}}{2 a_{2}}\right],\left[\frac{b_{1} \sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}^{2}}} a_{2}-2 a_{2} c_{1}+b_{1} b_{2}}{\left.2 a_{2}^{2} \sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}^{2}}}\right], \frac{\left(-2 x a_{2}^{2}-b_{2} a_{2}\right) \sqrt{\frac{-4 c_{2} c}{a}}}{8 c_{2} a_{2}-}}\right. \\
& \quad+c_{4}\left(2 \sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}^{2}}} x a_{2}^{2}+\sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}^{2}}} b_{2} a_{2}-4 c_{2} a_{2}+b_{2}^{2}\right) \frac{a_{2}\left(a_{2}-\frac{b_{1}}{2}\right) \sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}}}+a_{2} c_{1}-\frac{b_{1} b_{2}}{2}}{\sqrt{\frac{-4 c_{2} a_{2}+b_{2}^{2}}{a_{2}^{2}} a_{2}^{2}}} \text { hypergeom }
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 6.771 (sec). Leaf size: 498
DSolve \(\left[\left(a 2 * x^{2} 2+b 2 * x+c 2\right) * y^{\prime} \cdot[x]+(b 1 * x+c 1) * y '[x]+c 0 * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\(y(x)\)
\(\rightarrow c_{1}\) Hypergeometric2F1 \(\left(-\frac{\mathrm{a} 2-\mathrm{b} 1+\sqrt{(\mathrm{a} 2-\mathrm{b} 1)^{2}-4 \mathrm{a} 2 \mathrm{c} 0}}{2 \mathrm{a} 2}, \frac{-\mathrm{a} 2+\mathrm{b} 1+\sqrt{(\mathrm{a} 2-\mathrm{b} 1)^{2}-4 \mathrm{a} 2 \mathrm{c} 0}}{2 \mathrm{a} 2}, \frac{\mathrm{~b} 1(\mathrm{~b} 2}{}\right.\) \(-c_{2} 2^{\frac{\frac{\mathrm{b} 1 \mathrm{~b} 2}{\sqrt{\mathrm{~b} 2^{2}-4 \mathrm{ac} 2}} \mathrm{tb} 1}{2 \mathrm{a} 2}}-\frac{\mathrm{c} 1}{{\sqrt{\mathrm{~b} 2^{2}-4 \mathrm{ac} 2}}^{-1}} \exp \left(-\frac{i \pi\left(\mathrm{~b} 1\left(\sqrt{\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}+\mathrm{b} 2\right)-2 \mathrm{a} 2 \mathrm{c} 1\right)}{2 \mathrm{a} 2 \sqrt{\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}}\right)\left(\frac{\sqrt{\mathrm{b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}+2 \mathrm{a}}{\sqrt{\mathrm{b} 2^{2}-4 \mathrm{a} 2}}\right.\) \(\left.-\frac{\frac{\mathrm{b} 2 \mathrm{~b} 1}{\sqrt{\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}}+\mathrm{b} 1+\mathrm{a} 2\left(-\frac{\mathrm{cc} 1}{\sqrt{\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}}-4\right)}{2 \mathrm{a} 2}, \frac{\mathrm{~b} 2+2 \mathrm{a} 2 x+\sqrt{\mathrm{b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}}{2 \sqrt{\mathrm{~b} 2^{2}-4 \mathrm{a} 2 \mathrm{c} 2}}\right)\)

\subsection*{30.32 problem 180}
30.32.1 Maple step by step solution . 3175

Internal problem ID [11004]
Internal file name [OUTPUT/10260_Sunday_December_31_2023_11_33_20_AM_7107991/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 180.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}-\left(-k^{2}+x^{2}\right) y^{\prime}+(x+k) y=0
\]

\subsection*{30.32.1 Maple step by step solution}

Let's solve
\(\left(a x^{2}+b x+c\right) y^{\prime \prime}+\left(k^{2}-x^{2}\right) y^{\prime}+(x+k) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(x+k) y}{a x^{2}+b x+c}-\frac{\left(k^{2}-x^{2}\right) y^{\prime}}{a x^{2}+b x+c}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(k^{2}-x^{2}\right) y^{\prime}}{a x^{2}+b x+c}+\frac{(x+k) y}{a x^{2}+b x+c}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{k^{2}-x^{2}}{a x^{2}+b x+c}, P_{3}(x)=\frac{x+k}{a x^{2}+b x+c}\right]
\]
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
\]
- \(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
\]
- \(x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}
\]
- Multiply by denominators
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+\left(k^{2}-x^{2}\right) y^{\prime}+(x+k) y=0
\]
- Change variables using \(x=u+\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\) so that the regular singular point is at \(u=0\)
\[
\left(a u^{2}+u \sqrt{-4 a c+b^{2}}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(k^{2}-u^{2}+\frac{u b}{a}-\frac{u \sqrt{-4 a c+b^{2}}}{a}-\frac{b^{2}}{2 a^{2}}+\frac{b \sqrt{-4 a c+b^{2}}}{2 a^{2}}+\frac{c}{a}\right)\left(\frac{d}{d u} y(u)\right)
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .2\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
\frac{a_{0} r\left(2 a^{2} \sqrt{-4 a c+b^{2}} r+2 a^{2} k^{2}-2 a^{2} \sqrt{-4 a c+b^{2}}+b \sqrt{-4 a c+b^{2}}+2 a c-b^{2}\right) u^{-1+r}}{2 a^{2}}+\left(\frac{a_{1}(1+r)\left(2 a^{2} \sqrt{-4 a c+b^{2}} r+2 a^{2} k^{2}+b \sqrt{-4 a c+b^{2}}-\right.}{2 a^{2}}\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\frac{r\left(2 a^{2} \sqrt{-4 a c+b^{2}} r+2 a^{2} k^{2}-2 a^{2} \sqrt{-4 a c+b^{2}}+b \sqrt{-4 a c+b^{2}}+2 a c-b^{2}\right)}{2 a^{2}}=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}}{2 a^{2} \sqrt{-4 a c+b^{2}}}\right\}\)
- \(\quad\) Each term must be 0
\[
\frac{a_{1}(1+r)\left(2 a^{2} \sqrt{-4 a c+b^{2}} r+2 a^{2} k^{2}+b \sqrt{-4 a c+b^{2}}+2 a c-b^{2}\right)}{2 a^{2}}-\frac{a_{0}\left(-2 a^{2} r^{2}+2 a^{2} r+2 \sqrt{-4 a c+b^{2}} r-2 a k-2 b r-\sqrt{-4 a c+b^{2}}+b\right)}{2 a}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
\frac{\left(2 a_{k+1}(k+1+r)(k+r) a^{2}-2\left(k+r-\frac{1}{2}\right) a_{k} a+b a_{k+1}(k+1+r)\right) \sqrt{-4 a c+b^{2}}+2 a_{k}(k+r)(k+r-1) a^{3}+\left(2 k^{2}(k+1+r) a_{k+1}+2 a_{k} k-2 k a_{k-1}-\{ \right.}{2 a^{2}}
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
\frac{\left(2 a_{k+2}(k+2+r)(k+1+r) a^{2}-2\left(k+\frac{1}{2}+r\right) a_{k+1} a+b a_{k+2}(k+2+r)\right) \sqrt{-4 a c+b^{2}}+2 a_{k+1}(k+1+r)(k+r) a^{3}+\left(2 k^{2}(k+2+r) a_{k+2}+2 a_{k+1} k-\right.}{2 a^{2}}
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-4 a^{2} k r a_{k+1}-2 a^{2} r^{2} a_{k+1}-2 a^{2} k a_{k+1}-2 a^{2} r a_{k+1}+2 \sqrt{-4 a c+b^{2}} k a_{k+1}+2 \sqrt{-4 a c+b^{2}} r a_{k+1}-8\right.}{4 \sqrt{-4 a c+b^{2}} a^{2} k r-2 b^{2}-b^{2} k-b^{2} r+4 a^{2} k^{2}+4 a c+4 a^{2} \sqrt{-4 a c+b^{2}}+2 b \sqrt{-4 a c+b^{2}}+2 a^{2} k^{2} k+2 a^{2} k^{2} r+2 a c k+2 a c r+2 \sqrt{-4 a c+b}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-2 a^{2} k a_{k+1}+2 \sqrt{-4 a c+b^{2}} k a_{k+1}-2 a k a_{k+1}+2 a k a_{k}-2 b k a_{k+1}+\sqrt{-4 a c+b^{2}} a_{k+1}-2 a_{k} a-b a_{k+1}\right)}{-2 b^{2}-b^{2} k+4 a^{2} k^{2}+4 a c+4 a^{2} \sqrt{-4 a c+b^{2}}+2 b \sqrt{-4 a c+b^{2}}+2 a^{2} k^{2} k+2 a c k+2 \sqrt{-4 a c+b^{2}} a^{2} k^{2}+6 a^{2} \sqrt{-4 a c+b^{2}} k+\sqrt{-4 a c+b^{2}}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-2 a^{2} k a_{k+1}+2 \sqrt{-4 a c+b^{2}} k a_{k+1}-2 a k a_{k+1}+2 a k a_{k}-2 b k a_{k+1}+\sqrt{-4 a c+b^{2}}\right.}{-2 b^{2}-b^{2} k+4 a^{2} k^{2}+4 a c+4 a^{2} \sqrt{-4 a c+b^{2}}+2 b \sqrt{-4 a c+b^{2}}+2 a^{2} k^{2} k+2 a c k+2 \sqrt{-4 a c+b^{2}} a^{2} k^{2}+6 a^{2} \sqrt{ }}\right.
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k}, a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-2 a^{2} k a_{k+1}+2 \sqrt{-4 a c+b^{2}} k a_{k+1}-2 a k a_{k+1}+2 a k a_{k}-2 b\right.}{-2 b^{2}-b^{2} k+4 a^{2} k^{2}+4 a c+4 a^{2} \sqrt{-4 a c+b^{2}+2 b \sqrt{-4 a c+b^{2}}+2 a^{2} k^{2} k+2 a c k+2 \sqrt{ }}, ~}\right.
\]
- Recursion relation for \(r=\frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}}{2 a^{2} \sqrt{-4 a c+b^{2}}}\)
\[
a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-\frac{2 k\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}\right) a_{k+1}}{\sqrt{-4 a c+b^{2}}}-\frac{\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}\right)^{2} a_{k}-}{2 a^{2}\left(-4 a c+b^{2}\right)}\right.}{2 k\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}\right)+b^{2}-b^{2} k-\frac{b^{2}\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}\right)}{2 a^{2} \sqrt{-4 a c+b^{2}}}-2 a^{2} k}
\]
- Solution for \(r=\frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}}{2 a^{2} \sqrt{-4 a c+b^{2}}}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}}{2 a^{2} \sqrt{-4 a c+b^{2}}}, a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-\frac{2 k\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a}\right.}{\sqrt{-4 a c+b^{2}}}\right.}{2 k\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c\right.}, \frac{c}{}}\right.
\]
- \(\quad\) Revert the change of variables \(u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k+\frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}-2 a c+b^{2}}{2 a^{2} \sqrt{-4 a c+b^{2}}}}, a_{k+2}=\frac{a\left(-2 a^{2} k^{2} a_{k+1}-\frac{2 k\left(-2 a^{2} k^{2}+2\right.}{}\right.}{2 k\left(-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b}\right.}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{m=0}^{\infty} d_{m}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{m}\right)+\left(\sum_{m=0}^{\infty} e_{m}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{m+\frac{-2 a^{2} k^{2}+2 a^{2} \sqrt{-4 a c+b^{2}}-b \sqrt{-4 a c+b^{2}}}{2 a^{2} \sqrt{-4 a c+b^{2}}} .}\right.\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <>
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.328 (sec). Leaf size: 1535
```

dsolve((a*x^2+b*x+c)*diff(y(x),x\$2)-(x^2-k^2)*diff (y(x),x)+(x+k)*y(x)=0,y(x), singsol=all)

```

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 2.442 (sec). Leaf size: 119
DSolve \(\left[\left(a * x^{\wedge} 2+b * x+c\right) * y^{\prime} \cdot[x]-\left(x^{\wedge} 2-k^{\wedge} 2\right) * y '[x]+(x+k) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\(y(x)\)

\subsection*{30.33 problem 181}

Internal problem ID [11005]
Internal file name [OUTPUT/10261_Sunday_December_31_2023_11_33_25_AM_57004415/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \(\left(a x^{2}+b x+c\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 181.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{2}+b x+c\right) y^{\prime \prime}+\left(k^{3}+x^{3}\right) y^{\prime}-\left(k^{2}-k x+x^{2}\right) y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.437 (sec). Leaf size: 246
dsolve \(\left(\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+\left(x^{\wedge} 3+k^{\wedge} 3\right) * \operatorname{diff}(y(x), x)-\left(x^{\wedge} 2-k * x+k^{\wedge} 2\right) * y(x)=0, y(x)\right.\), singso
\(y(x)=(x\)
\(+k)\left(\left(\int \frac{\left(2 a x+b-\sqrt{-4 a c+b^{2}}\right)^{-\frac{k^{3}}{\sqrt{-4 a c+b^{2}}}}\left(\frac{-2 a x-b+\sqrt{-4 a c+b^{2}}}{2 a x+\sqrt{-4 a c+b^{2}+b}}\right)^{-\frac{3 b c}{2 a^{2} \sqrt{-4 a c+b^{2}}}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{-2 a x-b+\sqrt{-4 a c+b^{2}}}\right)^{-\frac{b^{3}}{2 a^{3} \sqrt{-4}}}}{(x+k)^{2}}\right.\right.\)
\[
\left.+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.224 (sec). Leaf size: 137
DSolve \(\left[\left(a * x^{\wedge} 2+b * x+c\right) * y '^{\prime}[x]+\left(x^{\wedge} 3+k^{\wedge} 3\right) * y^{\prime}[x]-\left(x^{\wedge} 2-k * x+k^{\wedge} 2\right) * y[x]==0, y[x], x\right.\), IncludeSingularSolu
\(y(x)\)
\(\rightarrow \frac{(k+x)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{\left(b^{3}-3 a c b-2 a^{3} k^{3}\right) \arctan \left(\frac{b+2 a K[1]}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{a^{3} \sqrt{4 a c-b^{2}}}-\frac{K[1](a K[1]-2 b)}{2 a^{2}}\right)(c+K[1](b+a K[1]))^{-\frac{b^{2}-a c}{2 a^{3}}}}{(k+K[1])^{2}} d K[1]+c_{1}\right)}{k}\)
31 Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form
\(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
31.1 problem 182 3185
31.2 problem 183 3188
31.3 problem 184 3191
31.4 problem 185 3194
31.5 problem 186 3196
31.6 problem 187 3199
31.7 problem 188 3202
31.8 problem 189 3205
31.9 problem 190 3221
31.10problem 191 3226
31.11problem 192 3231
31.12problem 193 3242
31.13problem 194 3251
31.14problem 195 3256
31.15problem 196 3261
31.16problem 197 3266
31.17problem 198 3271
31.18problem 199 3272
31.19problem 200 3273
31.20problem 201 3274
31.21problem 202 3277
31.22problem 203 3297
31.23problem 204 3298
31.24problem 205 3303
31.25problem 206 3309
31.26problem 207 3319
31.27problem 208 3325
31.28problem 209 3331
31.29problem 210 3334

\section*{31.1 problem 182}
31.1.1 Solving as second order bessel ode ode

3185
Internal problem ID [11006]
Internal file name [OUTPUT/10262_Sunday_December_31_2023_11_33_28_AM_16378108/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 182.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{3} y^{\prime \prime}+(a x+b) y=0
\]

\subsection*{31.1.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a+\frac{b}{x}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \sqrt{b} \\
n & =\sqrt{1-4 a} \\
\gamma & =-\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\sqrt{1-4 a}, \frac{2 \sqrt{b}}{\sqrt{x}}\right)
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 49
dsolve \(\left(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 2)+(a * x+b) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\left(\operatorname{BesselJ}\left(-\sqrt{-4 a+1}, \frac{2 \sqrt{b}}{\sqrt{x}}\right) c_{1}+\operatorname{BesselY}\left(-\sqrt{-4 a+1}, \frac{2 \sqrt{b}}{\sqrt{x}}\right) c_{2}\right) \sqrt{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 101
DSolve \(\left[x^{\wedge} 3 * y^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.\), IncludeSingularSolutions \(->\) True]
\(y(x)\)
\(\rightarrow \frac{c_{1} \text { Gamma }(1-\sqrt{1-4 a}) \text { BesselJ }\left(-\sqrt{1-4 a}, 2 \sqrt{b} \sqrt{\frac{1}{x}}\right)+c_{2} \operatorname{Gamma}(\sqrt{1-4 a}+1) \text { BesselJ }(\sqrt{1-4 c}}{\sqrt{b} \sqrt{\frac{1}{x}}}\)

\section*{31.2 problem 183}

Internal problem ID [11007]
Internal file name [OUTPUT/10263_Sunday_December_31_2023_11_33_29_AM_57178898/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 183.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+\left(a x^{2}+b\right) y^{\prime}+y c x=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.156 (sec). Leaf size: 120
```

dsolve(x^3*diff(y(x),x\$2)+(a*x^2+b)*diff(y(x),x)+c*x*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & x^{-\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}-\frac{a}{2}+\frac{1}{2}}\left(\text { KummerM } \left(-\frac{1}{4}+\frac{\sqrt{a^{2}-2 a-4 c+1}}{4}+\frac{a}{4}, 1\right.\right. \\
& \left.+\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}, \frac{b}{2 x^{2}}\right) c_{1} \\
& \left.+\operatorname{KummerU}\left(-\frac{1}{4}+\frac{\sqrt{a^{2}-2 a-4 c+1}}{4}+\frac{a}{4}, 1+\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}, \frac{b}{2 x^{2}}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.646 (sec). Leaf size: 308
DSolve \(\left[x^{\wedge} 3 * y\right.\) ' ' \([x]+\left(a * x^{\wedge} 2+b\right) * y\) ' \([x]+c * x * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \\
& \left.\left.-(-1)^{\frac{1}{4}\left(-\sqrt{a^{2}-2 a-4 c+1}+a+3\right)} 2^{\frac{1}{4}\left(-\sqrt{a^{2}-2 a-4 c+1}-a+1\right.}\right) b^{\frac{1}{4}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right.}\right)\left(\frac{1}{x}\right)^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right)}\left(c_{2} \sqrt{ }^{\sqrt{c}}\right. \\
& +c_{1} 2^{\frac{1}{2} \sqrt{a^{2}-2 a-4 c+1}} \text { Hypergeometric1F1 }\left(\frac{1}{4}\left(a-\sqrt{a^{2}-2 a-4 c+1}-1\right), 1\right. \\
& \left.\left.-\frac{1}{2} \sqrt{a^{2}-2 a-4 c+1}, \frac{b}{2 x^{2}}\right)\right)
\end{aligned}
\]

\section*{31.3 problem 184}

Internal problem ID [11008]
Internal file name [OUTPUT/10264_Sunday_December_31_2023_11_33_31_AM_3795090/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 184.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}+y b=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Kummer successful <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning special function solu <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 108
```

dsolve(x^3*diff(y(x),x\$2)+(a*x^2+b*x)*diff(y(x),x)+b*y(x)=0,y(x), singsol=all)

```
\(y(x)\)
\(=\frac{c_{1} x\left(\Gamma\left(a,-\frac{b}{x}\right)-\Gamma(a)\right)(-1)^{-a}(a-2) b^{-a+1}+c_{1}\left(\Gamma\left(a,-\frac{b}{x}\right)-\Gamma(a)\right)(-1)^{-a} b^{-a+2}+b x^{-a+1} c_{1} \mathrm{e}^{\frac{b}{x}}+c_{2}(a}{x}\)
\(\checkmark\) Solution by Mathematica
Time used: 2.653 (sec). Leaf size: 62
DSolve \(\left[x^{\wedge} 3 * y\right.\) ' ' \([x]+\left(a * x^{\wedge} 2+b * x\right) * y{ }^{\prime}[x]+b * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{((a-2) x+b)\left(c_{2} \int_{1}^{x} \frac{e^{\frac{b}{K(1]} K[1]^{2-a}}}{(b+(a-2) K[1])^{2}} d K[1]+c_{1}\right)}{x(a+b-2)}
\]

\section*{31.4 problem 185}

Internal problem ID [11009]
Internal file name [OUTPUT/10265_Sunday_December_31_2023_11_33_32_AM_61588335/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 185.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}+y c=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 146
```

dsolve(x^3*diff(y(x),x\$2)+(a*x^2+b*x)*diff(y(x),x)+c*y(x)=0,y(x), singsol=all)

```
\(y(x)\)
\(=\frac{x^{-a}\left(-c x c_{2}(a b-c)(b-c) \operatorname{KummerU}\left(\frac{(a+1) b-c}{b}, a, \frac{b}{x}\right)+\left(c_{1} x b(a b-c) \operatorname{KummerM}\left(\frac{(a+1) b-c}{b}, a, \frac{b}{x}\right)-(b c\right.\right.}{b^{2} c}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.435 (sec). Leaf size: 62
```

DSolve[x^3*y''[x]+(a*x^2+b*x)*y'[x]+c*y[x]==0,y[x],x,IncludeSingularSolutions ->> True]

```
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \text { Hypergeometric1F1 }\left(-\frac{c}{b}, 2-a, \frac{b}{x}\right) \\
& -(-1)^{a} c_{2} b^{a-1}\left(\frac{1}{x}\right)^{a-1} \text { Hypergeometric1F1 }\left(a-\frac{b+c}{b}, a, \frac{b}{x}\right)
\end{aligned}
\]

\section*{31.5 problem 186}

Internal problem ID [11010]
Internal file name [OUTPUT/10266_Sunday_December_31_2023_11_33_32_AM_61507542/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 186.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+\left(a x^{2}+b x\right) y^{\prime}+(c x+d) y=0
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.125 (sec). Leaf size: 132
```

dsolve(x^3*diff(y(x),x\$2)+(a*x^2+b*x)*diff (y(x),x)+(c*x+d)*y(x)=0,y(x), singsol=all)

```
\[
\begin{array}{r}
y(x)=x^{-\frac{\sqrt{a^{2}-2 a-4 c+1}}{2}-\frac{a}{2}+\frac{1}{2}}\left(\operatorname { K u m m e r M } \left(\frac{\sqrt{a^{2}-2 a-4 c+1} b+b(a-1)-2 d}{2 b}, 1\right.\right. \\
\left.+\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right) c_{1} \\
+\operatorname{KummerU}\left(\frac{\sqrt{a^{2}-2 a-4 c+1} b+b(a-1)-2 d}{2 b}, 1\right. \\
\left.\left.+\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right) c_{2}\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.641 (sec). Leaf size: 255
DSolve \(\left[x^{\wedge} 3 * y{ }^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 2+b * x\right) * y{ }^{\prime}[x]+(c * x+d) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \\
& \qquad \begin{array}{r}
\left.-i^{-\sqrt{a^{2}-2 a-4 c+1}+a+1} b^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right.}\right)\left(\frac{1}{x}\right)^{\frac{1}{2}\left(-\sqrt{a^{2}-2 a-4 c+1}+a-1\right)}\left(c_{2} i^{2 \sqrt{a^{2}-2 a-4 c+1}} b^{\sqrt{a^{2}-2 a-4 c+1}}\left(\frac{1}{x}\right)^{1}\right. \\
\left.+1, \frac{b}{x}\right)+c_{1} \text { Hypergeometric1F1 }\left(\frac{1}{2}\left(a-\frac{2 d}{b}-\sqrt{a^{2}-2 a-4 c+1}-1\right), 1\right. \\
\\
\left.\left.\quad-\sqrt{a^{2}-2 a-4 c+1}, \frac{b}{x}\right)\right)
\end{array}
\end{aligned}
\]

\section*{31.6 problem 187}

Internal problem ID [11011]
Internal file name [OUTPUT/10267_Sunday_December_31_2023_11_33_33_AM_40075043/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 187.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+\left(a x^{3}+a b x-x^{2}+b\right) y^{\prime}+a^{2} b x y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.454 (sec). Leaf size: 49
dsolve \(\left(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 3-x^{\wedge} 2+a * b * x+b\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 * b * x * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\mathrm{e}^{-a x}\left(c_{2}\left(\int \frac{x \mathrm{e}^{\frac{2 a x^{3}+2 a b x+b}{2 x^{2}}}}{(a x+1)^{2}} d x\right)+c_{1}\right)(a x+1)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.347 (sec). Leaf size: 70
DSolve \(\left[x^{\wedge} 3 * y{ }^{\prime}{ }^{\prime}[x]+\left(a * x^{\wedge} 3-x^{\wedge} 2+a * b * x+b\right) * y '[x]+a^{\wedge} 2 * b * x * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{e^{-a x}(a x+1)\left(c_{2} \int_{1}^{x} \frac{a^{2} e^{a K[1]+\frac{2 a K[1] b+b}{2 K[1])^{2}}} K[1]}{(a K[1]+1)^{2}} d K[1]+c_{1}\right)}{a}
\]

\section*{31.7 problem 188}

Internal problem ID [11012]
Internal file name [OUTPUT/10268_Sunday_December_31_2023_11_33_34_AM_35096271/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 188.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{3} y^{\prime \prime}+x\left(a x^{n}+b\right) y^{\prime}-\left(a x^{n}-x^{n-1} a b+b\right) y=0
\]
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))\) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve \(\left(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 2)+x *\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)-\left(a * x^{\wedge} n-a * b * x^{\wedge}(n-1)+b\right) * y(x)=0, y(x)\right.\), singso

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[x^{\wedge} 3 * y{ }^{\prime}{ }^{\prime}[x]+x *\left(a * x^{\wedge} n+b\right) * y\right.\) ' \([x]-\left(a * x^{\wedge} n-a * b * x^{\wedge}(n-1)+b\right) * y[x]==0, y[x], x\), IncludeSingularSolu

Not solved

\section*{31.8 problem 189}
31.8.1 Solving as second order integrable as is ode 3205

31.8.3 Solving using Kovacic algorithm 3209
31.8.4 Solving as exact linear second order ode ode 3215
31.8.5 Maple step by step solution . 3217

Internal problem ID [11013]
Internal file name [OUTPUT/10269_Sunday_December_31_2023_11_33_34_AM_92961714/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 189.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
x\left(a x^{2}+b\right) y^{\prime \prime}+2\left(a x^{2}+b\right) y^{\prime}-2 y a x=0
\]

\subsection*{31.8.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x\right) d x=0 \\
\left(-a x^{2}+b\right) y+\left(a x^{3}+b x\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} \\
q(x) & =\frac{c_{1}}{x\left(a x^{2}+b\right)}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(a x^{2}-b\right) y}{x\left(a x^{2}+b\right)}=\frac{c_{1}}{x\left(a x^{2}+b\right)}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} d x} \\
& =\mathrm{e}^{\ln (x)-\ln \left(a x^{2}+b\right)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{x}{a x^{2}+b}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{x}{a x^{2}+b}\right)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\mathrm{d}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{c_{1}}{\left(a x^{2}+b\right)^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{x y}{a x^{2}+b} & =\int \frac{c_{1}}{\left(a x^{2}+b\right)^{2}} \mathrm{~d} x \\
\frac{x y}{a x^{2}+b} & =c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{x}{a x^{2}+b}\) results in
\[
y=\frac{\left(a x^{2}+b\right) c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)}{x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]
which simplifies to
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

Verified OK.

\subsection*{31.8.2 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x\right) d x=0 \\
\left(-a x^{2}+b\right) y+\left(a x^{3}+b x\right) y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} \\
q(x) & =\frac{c_{1}}{x\left(a x^{2}+b\right)}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(a x^{2}-b\right) y}{x\left(a x^{2}+b\right)}=\frac{c_{1}}{x\left(a x^{2}+b\right)}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} d x} \\
& =\mathrm{e}^{\ln (x)-\ln \left(a x^{2}+b\right)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{x}{a x^{2}+b}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{x}{a x^{2}+b}\right)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\mathrm{d}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{c_{1}}{\left(a x^{2}+b\right)^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{x y}{a x^{2}+b} & =\int \frac{c_{1}}{\left(a x^{2}+b\right)^{2}} \mathrm{~d} x \\
\frac{x y}{a x^{2}+b} & =c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{x}{a x^{2}+b}\) results in
\[
y=\frac{\left(a x^{2}+b\right) c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)}{x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]
which simplifies to
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

Verified OK.

\subsection*{31.8.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x\left(a x^{2}+b\right) \\
& B=2 a x^{2}+2 b \tag{3}\\
& C=-2 a x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{2 a}{a x^{2}+b} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=2 a \\
& t=a x^{2}+b
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2 a}{a x^{2}+b}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 176: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=a x^{2}+b\). There is a pole at \(x=\frac{\sqrt{-a b}}{a}\) of order 1 . There is a pole at
\(x=-\frac{\sqrt{-a b}}{a}\) of order 1 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 1 . For the pole at \(x=\frac{\sqrt{-a b}}{a}\) of order 1 then
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =1 \\
\alpha_{c}^{-} & =1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{2 a}{a x^{2}+b}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{2 a}{a x^{2}+b}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline\(\frac{\sqrt{-a b}}{a}\) & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & 2 & -1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to
determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=2\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =2-(1) \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}}+(0) \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}} \\
& =-\frac{a}{-a x+\sqrt{-a b}}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{gathered}
(0)+2\left(\frac{1}{x-\frac{\sqrt{-a b}}{a}}\right)(1)+\left(\left(-\frac{1}{\left(x-\frac{\sqrt{-a b}}{a}\right)^{2}}\right)+\left(\frac{1}{x-\frac{\sqrt{-a b}}{a}}\right)^{2}-\left(\frac{2 a}{a x^{2}+b}\right)\right)=0 \\
-\frac{2 a\left(\left(-x-a_{0}\right) \sqrt{-a b}+a x a_{0}-b\right)}{(a x-\sqrt{-a b})\left(a x^{2}+b\right)}=0
\end{gathered}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=\frac{\sqrt{-a b}}{a}\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x+\frac{\sqrt{-a b}}{a}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\left(x+\frac{\sqrt{-a b}}{a}\right) \mathrm{e}^{\int \frac{1}{x-\frac{\sqrt{-a b}}{a}} d x} \\
& =\left(x+\frac{\sqrt{-a b}}{a}\right) x-\frac{\sqrt{-a b}}{a} \\
& =\frac{a x^{2}+b}{a}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a x^{2}+2 b}{x\left(a x^{2}+b\right)} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{a x^{2}+b}{a x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a x^{2}+2 b}{x\left(a x^{2}+b\right)} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{a^{2}\left(\frac{x}{a x^{2}+b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}\right)}{2 b}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{a x^{2}+b}{a x}\right)+c_{2}\left(\frac{a x^{2}+b}{a x}\left(\frac{a^{2}\left(\frac{x}{a x^{2}+b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}\right)}{2 b}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}\left(a x^{2}+b\right)}{a x}+\frac{c_{2} a\left(\sqrt{a b} x+\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right)\right)}{2 x b \sqrt{a b}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}\left(a x^{2}+b\right)}{a x}+\frac{c_{2} a\left(\sqrt{a b} x+\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right)\right)}{2 x b \sqrt{a b}}
\]

Verified OK.

\subsection*{31.8.4 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x\left(a x^{2}+b\right) \\
& q(x)=2 a x^{2}+2 b \\
& r(x)=-2 a x \\
& s(x)=0
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =6 a x \\
q^{\prime}(x) & =4 a x
\end{aligned}
\]

Therefore (1) becomes
\[
6 a x-(4 a x)+(-2 a x)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
x\left(a x^{2}+b\right) y^{\prime}+\left(-a x^{2}+b\right) y=c_{1}
\]

We now have a first order ode to solve which is
\[
x\left(a x^{2}+b\right) y^{\prime}+\left(-a x^{2}+b\right) y=c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} \\
q(x) & =\frac{c_{1}}{x\left(a x^{2}+b\right)}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{\left(a x^{2}-b\right) y}{x\left(a x^{2}+b\right)}=\frac{c_{1}}{x\left(a x^{2}+b\right)}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{a x^{2}-b}{x\left(a x^{2}+b\right)} d x} \\
& =\mathrm{e}^{\ln (x)-\ln \left(a x^{2}+b\right)}
\end{aligned}
\]

Which simplifies to
\[
\mu=\frac{x}{a x^{2}+b}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{x}{a x^{2}+b}\right)\left(\frac{c_{1}}{x\left(a x^{2}+b\right)}\right) \\
\mathrm{d}\left(\frac{x y}{a x^{2}+b}\right) & =\left(\frac{c_{1}}{\left(a x^{2}+b\right)^{2}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{x y}{a x^{2}+b} & =\int \frac{c_{1}}{\left(a x^{2}+b\right)^{2}} \mathrm{~d} x \\
\frac{x y}{a x^{2}+b} & =c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{x}{a x^{2}+b}\) results in
\[
y=\frac{\left(a x^{2}+b\right) c_{1}\left(\frac{x}{2 b\left(a x^{2}+b\right)}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 b \sqrt{a b}}\right)}{x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]
which simplifies to
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}}{2 b}+\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(a x^{2}+b\right) c_{1}}{2 b \sqrt{a b} x}+\frac{c_{2}\left(a x^{2}+b\right)}{x}
\]

Verified OK.

\subsection*{31.8.5 Maple step by step solution}

Let's solve
\(x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{2 a y}{a x^{2}+b}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{2 a y}{a x^{2}+b}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=-\frac{2 a}{a x^{2}+b}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x\left(a x^{2}+b\right) y^{\prime \prime}+\left(2 a x^{2}+2 b\right) y^{\prime}-2 y a x=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

\section*{Rewrite ODE with series expansions}
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
b a_{0} r(1+r) x^{-1+r}+b a_{1}(1+r)(2+r) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(b a_{k+1}(k+r+1)(k+r+2)+a a_{k-1}(k+r+1\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(b r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- \(\quad\) Each term must be 0
\(b a_{1}(1+r)(2+r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\((k+r+1)\left(b a_{k+1}(k+r+2)+a a_{k-1}(k-2+r)\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\((k+r+2)\left(b a_{k+2}(k+3+r)+a a_{k}(k+r-1)\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a a_{k}(k+r-1)}{b(k+3+r)}\)
- Recursion relation for \(r=-1\); series terminates at \(k=2\)
\(a_{k+2}=-\frac{a a_{k}(k-2)}{b(k+2)}\)
- \(\quad\) Solution for \(r=-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a a_{k}(k-2)}{b(k+2)}, 0=0\right]\)
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a a_{k}(k-1)}{b(k+3)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a a_{k}(k-1)}{b(k+3)}, 2 b a_{1}=0\right]\)
- Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right), c_{k+2}=-\frac{a c_{k}(k-2)}{b(k+2)}, 0=0, d_{k+2}=-\frac{a d_{k}(k-1)}{b(k+3)}, 2 b d_{1}=0\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 46
```

dsolve(x*(a*x^2+b)*diff(y(x),x\$2)+2*(a*x^2+b)*\operatorname{diff}(y(x),x)-2*a*x*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{\left(a x^{2}+b\right) c_{2} \arctan \left(\frac{\sqrt{a b} x}{b}\right)+\sqrt{a b} c_{2} x+c_{1}\left(a x^{2}+b\right)}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 78
DSolve \(\left[x *\left(a * x^{\wedge} 2+b\right) * y^{\prime \prime}[x]+2 *\left(a * x^{\wedge} 2+b\right) * y '[x]-2 * a * x * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\)
\[
y(x) \rightarrow \frac{c_{2}\left(a x^{2}+b\right) \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)+\sqrt{a} \sqrt{b}\left(2 a b c_{1} x^{2}+2 b^{2} c_{1}+c_{2} x\right)}{2 \sqrt{a} b^{3 / 2} x}
\]

\section*{31.9 problem 190}
31.9.1 Maple step by step solution 3221

Internal problem ID [11014]
Internal file name [OUTPUT/10270_Sunday_December_31_2023_11_33_36_AM_47036669/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 190.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) y^{\prime}+s x y=0
\]

\subsection*{31.9.1 Maple step by step solution}

Let's solve
\[
x\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) y^{\prime}+s x y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(b x^{2}+c\right) y^{\prime}}{x\left(x^{2}+a\right)}-\frac{s y}{x^{2}+a}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(b x^{2}+c\right) y^{\prime}}{x\left(x^{2}+a\right)}+\frac{s y}{x^{2}+a}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{b x^{2}+c}{x\left(x^{2}+a\right)}, P_{3}(x)=\frac{s}{x^{2}+a}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{c}{a}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) y^{\prime}+s x y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\) \(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(a r-a+c) x^{r-1}+a_{1}(1+r)(a r+c) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+r+1)(a(k+1)+a r-a+c)+a\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(a r-a+c)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{a-c}{a}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(a r+c)=0\)
- Each term in the series must be 0, giving the recursion relation
\(\left(k^{2}+(b+2 r-3) k+r^{2}+(b-3) r-b+s+2\right) a_{k-1}+a_{k+1}(k+r+1)(a k+a r+c)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+(b+2 r-3)(k+1)+r^{2}+(b-3) r-b+s+2\right) a_{k}+a_{k+2}(k+2+r)(a(k+1)+a\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{\left(b k+b r+k^{2}+2 k r+r^{2}-k-r+s\right) a_{k}}{(k+2+r)(a k+a r+a+c)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{\left(b k+k^{2}-k+s\right) a_{k}}{(k+2)(a k+a+c)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{\left(b k+k^{2}-k+s\right) a_{k}}{(k+2)(a k+a+c)}, a_{1} c=0\right]
\]
- Recursion relation for \(r=\frac{a-c}{a}\)
\[
a_{k+2}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-c)}{a}+\frac{(a-c)^{2}}{a^{2}}-k-\frac{a-c}{a}+s\right) a_{k}}{\left(k+2+\frac{a-c}{a}\right)(a k+2 a)}
\]
- \(\quad\) Solution for \(r=\frac{a-c}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a-c}{a}}, a_{k+2}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-c)}{a}+\frac{(a-c)^{2}}{a^{2}}-k-\frac{a-c}{a}+s\right) a_{k}}{\left(k+2+\frac{a-c}{a}\right)(a k+2 a)}, a_{1}\left(1+\frac{a-c}{a}\right) a=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{a-c}{a}}\right), d_{k+2}=-\frac{\left(b k+k^{2}-k+s\right) d_{k}}{(k+2)(a k+a+c)}, d_{1} c=0, e_{k+2}=-\frac{\left(b k+\frac{b(a-c)}{a}+k^{2}+\frac{2 k(a-}{a}\right.}{\left(k+2+\frac{a}{a}\right.}\right.
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
<- heuristic approach successful
<- hypergeometric successful
<- special function solution successful`
\(\checkmark\) Solution by Maple
Time used: 0.157 (sec). Leaf size: 175
dsolve \(\left(x *\left(x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x \$ 2)+\left(b * x^{\wedge} 2+c\right) * \operatorname{diff}(y(x), x)+s * x * y(x)=0, y(x), \quad\right.\) singsol=all)
\[
\begin{aligned}
& y(x)=\left(x^{2}\right. \\
& +a)^{\frac{(-b+2) a+c}{2 a}}\left(x ^ { \frac { a - c } { a } } \text { hypergeom } \left(\left[-\frac{b}{4}+\frac{5}{4}-\frac{\sqrt{b^{2}-2 b-4 s+1}}{4},-\frac{b}{4}+\frac{5}{4}+\frac{\sqrt{b^{2}-2 b-4 s+1}}{4}\right],\left[\frac{3 a-c}{2 a}\right.\right.\right. \\
& \left.-\frac{x^{2}}{a}\right) c_{1} \\
& + \text { hypergeom }\left(\left[-\frac{b}{4}+\frac{3}{4}+\frac{c}{2 a}+\frac{\sqrt{b^{2}-2 b-4 s+1}}{4},-\frac{\sqrt{b^{2}-2 b-4 s+1}}{4}-\frac{b}{4}+\frac{3}{4}+\frac{c}{2 a}\right],\left[\frac{1}{2}+\frac{c}{2 a}\right],\right. \\
& \left.\left.-\frac{x^{2}}{a}\right) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.967 (sec). Leaf size: 185
DSolve \(\left[x *\left(x^{\wedge} 2+a\right) * y{ }^{\prime} '[x]+\left(b * x^{\wedge} 2+c\right) * y y^{\prime}[x]+s * x * y[x]==0, y[x], x\right.\), IncludeSingularSolutions \(->\) True]
\(y(x)\)
\(\rightarrow c_{2} a^{\frac{1}{2}\left(\frac{c}{a}-1\right)} x^{1-\frac{c}{a}}\) Hypergeometric2F1 \(\left(\frac{a\left(b+\sqrt{b^{2}-2 b-4 s+1}+1\right)-2 c}{4 a}, \frac{b a-\sqrt{b^{2}-2 b-4 s+1} a+a}{4 a}\right.\)
\[
\begin{aligned}
\left.-\frac{c}{2 a},-\frac{x^{2}}{a}\right)+c_{1} \text { Hypergeometric } 2 \mathrm{~F} 1 & \left(\frac{1}{4}\left(b-\sqrt{b^{2}-2 b-4 s+1}-1\right), \frac{1}{4}(b\right. \\
+ & \left.\left.\sqrt{b^{2}-2 b-4 s+1}-1\right), \frac{a+c}{2 a},-\frac{x^{2}}{a}\right)
\end{aligned}
\]

\subsection*{31.10 problem 191}
31.10.1 Maple step by step solution 3226

Internal problem ID [11015]
Internal file name [OUTPUT/10271_Sunday_December_31_2023_11_33_37_AM_1689924/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 191.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2}(a x+b) y^{\prime \prime}+\left(c x^{2}+(a \lambda+2 b) x+b \lambda\right) y^{\prime}+\lambda(-2 a+c) y=0
\]

\subsection*{31.10.1 Maple step by step solution}

Let's solve
\(x^{2}(a x+b) y^{\prime \prime}+\left(c x^{2}+(a \lambda+2 b) x+b \lambda\right) y^{\prime}+\lambda(-2 a+c) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{\lambda(2 a-c) y}{x^{2}(a x+b)}-\frac{\left(a \lambda x+c x^{2}+b \lambda+2 b x\right) y^{\prime}}{x^{2}(a x+b)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(a \lambda x+c x^{2}+b \lambda+2 b x\right) y^{\prime}}{x^{2}(a x+b)}-\frac{\lambda(2 a-c) y}{x^{2}(a x+b)}=0\)

\section*{\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point}
- Define functions
\[
\left[P_{2}(x)=\frac{a \lambda x+c x^{2}+b \lambda+2 b x}{x^{2}(a x+b)}, P_{3}(x)=-\frac{\lambda(2 a-c)}{x^{2}(a x+b)}\right]
\]
- \(\left(x+\frac{b}{a}\right) \cdot P_{2}(x)\) is analytic at \(x=-\frac{b}{a}\)
\[
\left.\left(\left(x+\frac{b}{a}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{b}{a}}=\frac{\left(\frac{c b^{2}}{a^{2}}-\frac{2 b^{2}}{a}\right) a}{b^{2}}
\]
- \(\left(x+\frac{b}{a}\right)^{2} \cdot P_{3}(x)\) is analytic at \(x=-\frac{b}{a}\)
\[
\left.\left(\left(x+\frac{b}{a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{b}{a}}=0
\]
- \(x=-\frac{b}{a}\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-\frac{b}{a}
\]
- Multiply by denominators
\[
x^{2}(a x+b) y^{\prime \prime}+\left(a \lambda x+c x^{2}+b \lambda+2 b x\right) y^{\prime}-\lambda(2 a-c) y=0
\]
- Change variables using \(x=u-\frac{b}{a}\) so that the regular singular point is at \(u=0\)
\[
\left(a u^{3}-2 u^{2} b+\frac{u b^{2}}{a}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(a \lambda u+c u^{2}-\frac{2 c u b}{a}+\frac{c b^{2}}{a^{2}}+2 b u-\frac{2 b^{2}}{a}\right)\left(\frac{d}{d u} y(u)\right)+(-2 a \lambda+c \lambda
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .2\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .3\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
\frac{a_{0} r b^{2}(a r-3 a+c) u^{r-1}}{a^{2}}+\left(\frac{a_{1}(1+r) b^{2}(a r-2 a+c)}{a^{2}}+\frac{a_{0}(a r-2 a+c)(a \lambda-2 b r)}{a}\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(\frac{a_{k+1}(k+1+r) b^{2}(a(k+1)+a r-3 a+}{a^{2}}\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
\frac{r b^{2}(a r-3 a+c)}{a^{2}}=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{3 a-c}{a}\right\}\)
- \(\quad\) Each term must be 0
\[
\frac{a_{1}(1+r) b^{2}(a r-2 a+c)}{a^{2}}+\frac{a_{0}(a r-2 a+c)(a \lambda-2 b r)}{a}=0
\]
- \(\quad\) Each term in the series must be 0 , giving the recursion relation
\[
\frac{((k+r-2) a+c)\left(\left(k a_{k-1}+\lambda a_{k}+r a_{k-1}-a_{k-1}\right) a^{2}-2 a_{k}(k+r) b a+a_{k+1}(k+1+r) b^{2}\right)}{a^{2}}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
\frac{((k+r-1) a+c)\left(\left((k+1) a_{k}+\lambda a_{k+1}+a_{k} r-a_{k}\right) a^{2}-2 a_{k+1}(k+1+r) b a+a_{k+2}(k+2+r) b^{2}\right)}{a^{2}}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}+a r a_{k}-2 b k a_{k+1}-2 b r a_{k+1}-2 b a_{k+1}\right)}{(k+2+r) b^{2}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}-2 b k a_{k+1}-2 b a_{k+1}\right)}{(k+2) b^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}-2 b k a_{k+1}-2 b a_{k+1}\right)}{(k+2) b^{2}}, \frac{a_{1} b^{2}(-2 a+c)}{a^{2}}+a_{0}(-2 a+c) \lambda=0\right]
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b}{a}\right)^{k}, a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}-2 b k a_{k+1}-2 b a_{k+1}\right)}{(k+2) b^{2}}, \frac{a_{1} b^{2}(-2 a+c)}{a^{2}}+a_{0}(-2 a+c) \lambda=0\right]
\]
- Recursion relation for \(r=\frac{3 a-c}{a}\)
\[
a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}+(3 a-c) a_{k}-2 b k a_{k+1}-\frac{2 b(3 a-c) a_{k+1}}{a}-2 b a_{k+1}\right)}{\left(k+2+\frac{3 a-c}{a}\right) b^{2}}
\]
- \(\quad\) Solution for \(r=\frac{3 a-c}{a}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3 a-c}{a}}, a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}+(3 a-c) a_{k}-2 b k a_{k+1}-\frac{2 b(3 a-c) a_{k+1}}{a}-2 b a_{k+1}\right)}{\left(k+2+\frac{3 a-c}{a}\right) b^{2}}, \frac{a_{1}\left(1+\frac{3 a-c}{a}\right) b^{2}}{a}+a\right.
\]
- \(\quad\) Revert the change of variables \(u=x+\frac{b}{a}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{b}{a}\right)^{k+\frac{3 a-c}{a}}, a_{k+2}=-\frac{a\left(a k a_{k}+a \lambda a_{k+1}+(3 a-c) a_{k}-2 b k a_{k+1}-\frac{2 b(3 a-c) a_{k+1}}{a}-2 b a_{k+1}\right)}{\left(k+2+\frac{3 a-c}{a}\right) b^{2}}, \frac{a_{1}\left(1+\frac{3 a-c}{a}\right) b^{2}}{a}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k}\left(x+\frac{b}{a}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k}\left(x+\frac{b}{a}\right)^{k+\frac{3 a-c}{a}}\right), d_{k+2}=-\frac{a\left(a k d_{k}+a \lambda d_{1+k}-2 b k d_{1+k}-2 b d_{1+k}\right)}{(k+2) b^{2}}, \frac{d_{1} b^{2}(-2 a}{a^{2}}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius     -> Mathieu         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     <- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0 <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.469 (sec). Leaf size: 169
dsolve \(\left(x^{\wedge} 2 *(a * x+b) * \operatorname{diff}(y(x), x \$ 2)+\left(c * x^{\wedge} 2+(2 * b+a * \operatorname{lambda}) * x+b * \operatorname{lambda}\right) * \operatorname{diff}(y(x), x)+\operatorname{lambda} *(c-2\right.\)
\(y(x)\)
\(=\frac{(a x+b)^{\frac{3 a-c}{a}}\left(c_{1} x^{\frac{-3 a+c}{a}} \operatorname{HeunC}\left(\frac{\lambda a}{b}, 1-\frac{c}{a}, 3-\frac{c}{a}, 0,-\frac{\lambda a}{b}+\frac{c \lambda}{2 b}+\frac{5}{2}-\frac{2 c}{a}+\frac{c^{2}}{2 a^{2}},-\frac{b}{a x}\right) x^{2}+c_{2} \operatorname{HeunC}\left(\frac{\lambda a}{b}, \frac{c}{a}\right.\right.}{x^{2}}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.48 (sec). Leaf size: 55
DSolve \(\left[\mathrm{x}^{\wedge} 2 *(\mathrm{a} * \mathrm{x}+\mathrm{b}) * \mathrm{y}^{\prime}\right.\) ' \([\mathrm{x}]+\left(\mathrm{c} * \mathrm{x}^{\wedge} 2+\left(2 * \mathrm{~b}+\mathrm{a} * \backslash[\right.\right.\) Lambda] \() * \mathrm{x}+\mathrm{b} * \backslash[\) Lambda] \() * \mathrm{y}^{\prime}[\mathrm{x}]+\backslash[\) Lambda] \(*(\mathrm{c}-2 * \mathrm{a}) * \mathrm{y}[\)
\[
y(x) \rightarrow e^{\frac{\lambda}{x}}\left(c_{2} \int_{1}^{x} \frac{e^{-\frac{\lambda}{K[1]}}(b+a K[1])^{2-\frac{c}{a}}}{K[1]^{2}} d K[1]+c_{1}\right)
\]

\subsection*{31.11 problem 192}
31.11.1 Solving as second order change of variable on y method 1 ode . 3231
31.11.2 Solving as second order change of variable on y method 2 ode . 3233
31.11.3 Solving using Kovacic algorithm 3235
31.11.4 Maple step by step solution . 3238

Internal problem ID [11016]
Internal file name [OUTPUT/10272_Sunday_December_31_2023_11_33_38_AM_27467238/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 192.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_y_method_1", "second_order__change__of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2}(a x+b) y^{\prime \prime}-2 x(a x+2 b) y^{\prime}+2(a x+3 b) y=0
\]

\subsection*{31.11.1 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{-2 a x^{2}-4 b x}{a x^{3}+b x^{2}} \\
& q(x)=\frac{2 a x+6 b}{a x^{3}+b x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2 a x+6 b}{a x^{3}+b x^{2}}-\frac{\left(\frac{-2 a x^{2}-4 b x}{a x^{3}+b x^{2}}\right)^{\prime}}{2}-\frac{\left(\frac{-2 a x^{2}-4 b x}{a x^{3}+b x^{2}}\right)^{2}}{4} \\
& =\frac{2 a x+6 b}{a x^{3}+b x^{2}}-\frac{\left(\frac{-4 a x-4 b}{a x^{3}+b x^{2}}-\frac{\left(-2 a x^{2}-4 b x\right)\left(3 a x^{2}+2 b x\right)}{\left(a x^{3}+b x^{2}\right)^{2}}\right)}{2}-\frac{\left(\frac{\left(-2 a x^{2}-4 b x\right)^{2}}{\left(a x^{3}+b x^{2}\right)^{2}}\right)}{4} \\
& =\frac{2 a x+6 b}{a x^{3}+b x^{2}}-\left(\frac{-4 a x-4 b}{2 a x^{3}+2 b x^{2}}-\frac{\left(-2 a x^{2}-4 b x\right)\left(3 a x^{2}+2 b x\right)}{2\left(a x^{3}+b x^{2}\right)^{2}}\right)-\frac{\left(-2 a x^{2}-4 b x\right)^{2}}{4\left(a x^{3}+b x^{2}\right)^{2}} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{\frac{-2 a x^{2}-4 b x}{a x^{3}+b x^{2}}}{2}} \\
& =\frac{x^{2}}{a x+b} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=\frac{v(x) x^{2}}{a x+b} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x^{4} v^{\prime \prime}(x)=0
\]

Which is now solved for \(v(x)\) Integrating twice gives the solution
\[
v(x)=c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\frac{x^{2}}{a x+b}
\]

Hence (7) becomes
\[
y=\frac{\left(c_{1} x+c_{2}\right) x^{2}}{a x+b}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(c_{1} x+c_{2}\right) x^{2}}{a x+b} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(c_{1} x+c_{2}\right) x^{2}}{a x+b}
\]

Verified OK.

\subsection*{31.11.2 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2}(a x+b) y^{\prime \prime}+\left(-2 a x^{2}-4 b x\right) y^{\prime}+(2 a x+6 b) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{-2 a x-4 b}{(a x+b) x} \\
q(x) & =\frac{2 a x+6 b}{x^{2}(a x+b)}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(-2 a x-4 b)}{(a x+b) x^{2}}+\frac{2 a x+6 b}{x^{2}(a x+b)}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4}{x}+\frac{-2 a x-4 b}{(a x+b) x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{2 a v^{\prime}(x)}{a x+b} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{2 a u(x)}{a x+b}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 a u}{a x+b}
\end{aligned}
\]

Where \(f(x)=-\frac{2 a}{a x+b}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{2 a}{a x+b} d x \\
\int \frac{1}{u} d u & =\int-\frac{2 a}{a x+b} d x \\
\ln (u) & =-2 \ln (a x+b)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (a x+b)+c_{1}} \\
& =\frac{c_{1}}{(a x+b)^{2}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{(a x+b) a}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{(a x+b) a}+c_{2}\right) x^{2} \\
& =\left(-\frac{c_{1}}{(a x+b) a}+c_{2}\right) x^{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{c_{1}}{(a x+b) a}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(-\frac{c_{1}}{(a x+b) a}+c_{2}\right) x^{2}
\]

Verified OK.

\subsection*{31.11.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2}(a x+b) y^{\prime \prime}+\left(-2 a x^{2}-4 b x\right) y^{\prime}+(2 a x+6 b) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2}(a x+b) \\
& B=-2 a x^{2}-4 b x \tag{3}\\
& C=2 a x+6 b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 180: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 a x^{2}-4 b x}{x^{2}(a x+b)} d x} \\
& =z_{1} e^{2 \ln (x)-\ln (a x+b)} \\
& =z_{1}\left(\frac{x^{2}}{a x+b}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{x^{2}}{a x+b}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 a x^{2}-4 b x}{x^{2}(a x+b)} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)-2 \ln (a x+b)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{x^{2}}{a x+b}\right)+c_{2}\left(\frac{x^{2}}{a x+b}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{2}}{a x+b}+\frac{c_{2} x^{3}}{a x+b} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{2}}{a x+b}+\frac{c_{2} x^{3}}{a x+b}
\]

Verified OK.

\subsection*{31.11.4 Maple step by step solution}

Let's solve
\[
x^{2}(a x+b) y^{\prime \prime}+\left(-2 a x^{2}-4 b x\right) y^{\prime}+(2 a x+6 b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2(a x+3 b) y}{x^{2}(a x+b)}+\frac{2(a x+2 b) y^{\prime}}{x(a x+b)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{2(a x+2 b) y^{\prime}}{x(a x+b)}+\frac{2(a x+3 b) y}{x^{2}(a x+b)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{2(a x+2 b)}{(a x+b) x}, P_{3}(x)=\frac{2(a x+3 b)}{x^{2}(a x+b)}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-4\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=6
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\(x^{2}(a x+b) y^{\prime \prime}-2 x(a x+2 b) y^{\prime}+(2 a x+6 b) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .3\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
b a_{0}(-2+r)(-3+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(b a_{k}(k+r-2)(k+r-3)+a a_{k-1}(k+r-2)(k+r-3)\right) x^{k+r}\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
b(-2+r)(-3+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{2,3\}
\]
- Each term in the series must be 0, giving the recursion relation
\((k+r-2)(k+r-3)\left(a a_{k-1}+a_{k} b\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\((k+r-1)(k+r-2)\left(a_{k} a+b a_{k+1}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- Recursion relation for \(r=2\)
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{a a_{k}}{b}\right]
\]
- Recursion relation for \(r=3\)
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- \(\quad\) Solution for \(r=3\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+1}=-\frac{a a_{k}}{b}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+3}\right), c_{1+k}=-\frac{a c_{k}}{b}, d_{1+k}=-\frac{a d_{k}}{b}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve \(\left(x^{\wedge} 2 *(a * x+b) * \operatorname{diff}(y(x), x \$ 2)-2 * x *(a * x+2 * b) * \operatorname{diff}(y(x), x)+2 *(a * x+3 * b) * y(x)=0, y(x)\right.\), singso
\[
y(x)=\frac{x^{2}\left(c_{2} x+c_{1}\right)}{a x+b}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 23
DSolve \(\left[x^{\wedge} 2 *(a * x+b) * y\right.\) ' \([\mathrm{x}]-2 * x *(a * x+2 * b) * y\) ' \([x]+2 *(a * x+3 * b) * y[x]==0, y[x], x\), IncludeSingularSolu
\[
y(x) \rightarrow \frac{x^{2}\left(c_{2} x+c_{1}\right)}{a x+b}
\]

\subsection*{31.12 problem 193}
31.12.1 Solving using Kovacic algorithm 3242
31.12.2 Maple step by step solution . 3247

Internal problem ID [11017]
Internal file name [OUTPUT/10273_Sunday_December_31_2023_11_39_39_AM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 193.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2}(a x+b) y^{\prime \prime}+\left(a(2-m-n) x^{2}-b(m+n) x\right) y^{\prime}+(a m(n-1) x+b n(m+1)) y=0
\]

\subsection*{31.12.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x^{2}(a x+b) y^{\prime \prime}-x(a(m+n-2) x+(m+n) b) y^{\prime}+(((a x+b) n-a x) m+n b) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2}(a x+b) \\
& B=-x(a(m+n-2) x+(m+n) b) \tag{3}\\
& C=((a x+b) n-a x) m+n b
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{m^{2}-2 n m+n^{2}+2 m-2 n}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=m^{2}-2 n m+n^{2}+2 m-2 n \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{m^{2}-2 n m+n^{2}+2 m-2 n}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 182: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]
\(\underline{\text { Attempting to find a solution using case } n=1}\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{\frac{1}{4} m^{2}-\frac{1}{2} n m+\frac{1}{4} n^{2}+\frac{1}{2} m-\frac{1}{2} n}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{(m-n+2)(m-n)}{4}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\left\{2,2-2 \sqrt{(-m-1+n)^{2}}, 2+2 \sqrt{(-m-1+n)^{2}}\right\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{m^{2}-2 n m+n^{2}+2 m-2 n}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{1}{4}\). Hence
\[
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\left\{2,2-2 \sqrt{(-m-1+n)^{2}}, 2+2 \sqrt{(-m-1+n)^{2}}\right\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 2 & \(\{2\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=2, e_{\infty}=2
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(2)) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(0))}\right) \\
& =\frac{1}{x}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
w^{2}-\frac{w}{x}-\frac{(m-n+2)(m-n)}{4 x^{2}}=0
\]

Solving for \(\omega\) gives
\[
\omega=-\frac{m-n}{2 x}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{m-n}{2 x} d x} \\
& =x^{-\frac{m}{2}+\frac{n}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x(a(m+n-2) x+(m+n) b)}{x^{2}(a x+b)} d x} \\
& =z_{1} e^{\frac{(m+n) \ln (x)}{2}-\ln (a x+b)} \\
& =z_{1}\left(\frac{x^{\frac{m}{2}+\frac{n}{2}}}{a x+b}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{x^{n}}{a x+b}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x(a(m+n-2) x+(m+n) b)}{x^{2}(a x+b)} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (a x+b)+(m+n) \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{m+1-n}}{m+1-n}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{x^{n}}{a x+b}\right)+c_{2}\left(\frac{x^{n}}{a x+b}\left(\frac{x^{m+1-n}}{m+1-n}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{n}}{a x+b}+\frac{c_{2} x^{m+1}}{(m+1-n)(a x+b)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{n}}{a x+b}+\frac{c_{2} x^{m+1}}{(m+1-n)(a x+b)}
\]

Verified OK.

\subsection*{31.12.2 Maple step by step solution}

Let's solve
\[
x^{2}(a x+b) y^{\prime \prime}-x(a(m+n-2) x+(m+n) b) y^{\prime}+(((a x+b) n-a x) m+n b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(a x m n-a x m+n b m+n b) y}{x^{2}(a x+b)}+\frac{(a x m+a n x-2 a x+b m+n b) y^{\prime}}{(a x+b) x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{(a x m+a n x-2 a x+b m+n b) y^{\prime}}{(a x+b) x}+\frac{(a x m n-a x m+n b m+n b) y}{x^{2}(a x+b)}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{a x m+a n x-2 a x+b m+n b}{(a x+b) x}, P_{3}(x)=\frac{a x m n-a x m+n b m+n b}{x^{2}(a x+b)}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{b m+n b}{b}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{n b m+n b}{b}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(x^{2}(a x+b) y^{\prime \prime}-(a x m+a n x-2 a x+b m+n b) y^{\prime} x+(a x m n-a x m+n b m+n b) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .3\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(b a_{0}(-n+r)(-m+r-1) x^{r}+\left(\sum_{k=1}^{\infty}\left(b a_{k}(k-n+r)(k-m+r-1)+a a_{k-1}(k-n+r)(k-n\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(b(-n+r)(-m+r-1)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{n, m+1\}\)
- Each term in the series must be 0 , giving the recursion relation
\((k-n+r)(k-m+r-1)\left(a a_{k-1}+b a_{k}\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\((k-n+r+1)(k-m+r)\left(a a_{k}+b a_{k+1}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- \(\quad\) Recursion relation for \(r=n\)
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- \(\quad\) Solution for \(r=n\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+n}, a_{k+1}=-\frac{a a_{k}}{b}\right]
\]
- Recursion relation for \(r=m+1\)
\[
a_{k+1}=-\frac{a a_{k}}{b}
\]
- \(\quad\) Solution for \(r=m+1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+m+1}, a_{k+1}=-\frac{a a_{k}}{b}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+n}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+m+1}\right), c_{1+k}=-\frac{a c_{k}}{b}, d_{1+k}=-\frac{a d_{k}}{b}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 25
```

dsolve(x^2*(a*x+b)*diff (y (x),x\$2)+(a*(2-n-m)*x^2-b*(n+m)*x)*diff (y (x),x)+(a*m*(n-1)*x+b*n*(m

```
\[
y(x)=\frac{c_{1} x^{n}+c_{2} x^{1+m}}{a x+b}
\]

Solution by Mathematica
Time used: 0.403 (sec). Leaf size: 82
DSolve \(\left[x^{\wedge} 2 *(a * x+b) * y^{\prime}[x]+\left(a *(2-n-m) * x^{\wedge} 2-b *(n+m) * x\right) * y '[x]+(a * m *(n-1) * x+b * n *(m+1)) * y[x]==0, y[\right.\)
\[
y(x) \rightarrow \frac{\left.x^{\frac{1}{2}\left(-\sqrt{(m-n+1)^{2}}+m+n+1\right.}\right)\left(c_{2} x^{\sqrt{(m-n+1)^{2}}}+c_{1} \sqrt{(m-n+1)^{2}}\right)}{\sqrt{(m-n+1)^{2}}(a x+b)}
\]

\subsection*{31.13 problem 194}
31.13.1 Maple step by step solution . 3251

Internal problem ID [11018]
Internal file name [OUTPUT/10274_Sunday_December_31_2023_11_39_42_AM_20266088/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 194.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{2}\left(x+a_{2}\right) y^{\prime \prime}+x\left(b_{1} x+a_{1}\right) y^{\prime}+\left(b_{0} x+a_{0}\right) y=0
\]

\subsection*{31.13.1 Maple step by step solution}

Let's solve
\[
x^{2}\left(x+a_{2}\right) y^{\prime \prime}+x\left(b_{1} x+a_{1}\right) y^{\prime}+\left(b_{0} x+a_{0}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(b_{0} x+a_{0}\right) y}{x^{2}\left(x+a_{2}\right)}-\frac{\left(b_{1} x+a_{1}\right) y^{\prime}}{x\left(x+a_{2}\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(b_{1} x+a_{1}\right) y^{\prime}}{x\left(x+a_{2}\right)}+\frac{\left(b_{0} x+a_{0}\right) y}{x^{2}\left(x+a_{2}\right)}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{b_{1} x+a_{1}}{x\left(x+a_{2}\right)}, P_{3}(x)=\frac{b_{0} x+a_{0}}{x^{2}\left(x+a_{2}\right)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{a_{1}}{a_{2}}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{a_{0}}{a_{2}}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x^{2}\left(x+a_{2}\right) y^{\prime \prime}+x\left(b_{1} x+a_{1}\right) y^{\prime}+\left(b_{0} x+a_{0}\right) y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .3\) \(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0}\left(a_{2} r^{2}+a_{1} r-a_{2} r+a_{0}\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k}\left(a_{2} k^{2}+2 a_{2} k r+a_{2} r^{2}+a_{1} k+a_{1} r-a_{2} k-a_{2} r+a_{0}\right)+a\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(a_{2} r^{2}+a_{1} r-a_{2} r+a_{0}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{-\frac{-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}, \frac{a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(\left(k^{2}+\left(2 r+b_{1}-3\right) k+r^{2}+\left(b_{1}-3\right) r+b_{0}-b_{1}+2\right) a_{k-1}+\left(a_{2} k^{2}+\left(2 a_{2} r+a_{1}-a_{2}\right) k+a_{2} r^{2}+\right.\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left((k+1)^{2}+\left(2 r+b_{1}-3\right)(k+1)+r^{2}+\left(b_{1}-3\right) r+b_{0}-b_{1}+2\right) a_{k}+\left(a_{2}(k+1)^{2}+\left(2 a_{2} r+a_{1}\right.\right.
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{\left(b_{1} k+b_{1} r+k^{2}+2 k r+r^{2}+b_{0}-k-r\right) a_{k}}{a_{2} k^{2}+2 a_{2} k r+a_{2} r^{2}+a_{1} k+a_{1} r+a_{2} k+a_{2} r+a_{0}+a_{1}}
\]
- Recursion relation for \(r=-\frac{-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}\)
\[
a_{k+1}=-\frac{\left(b_{1} k-\frac{b_{1}\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{2 a_{2}}+k^{2}-\frac{k\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{a_{2}}+\frac{\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 c}\right.}{4 a_{2}^{2}}\right.}{a_{2} k^{2}-k\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)+\frac{\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)^{2}}{4 a_{2}}+a_{1} k-\frac{a_{1}\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a}\right.}{2 a_{2}}}
\]
- Solution for \(r=-\frac{-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}}, a_{k+1}=-\frac{\left(b_{1} k-\frac{b_{1}\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{2 a_{2}}+k^{2}-\frac{k\left(-a_{2}+a_{1}\right.}{}\right.}{a_{2} k^{2}-k\left(-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)+\frac{\left(-a_{2}+a_{1}+\sqrt{-}\right.}{}}\right.
\]
- Recursion relation for \(r=\frac{a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}\)
\[
a_{k+1}=-\frac{\left(b_{1} k+\frac{b_{1}\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{2 a_{2}}+k^{2}+\frac{k\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{a_{2}}+\frac{\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}}\right.}{4 a_{2}^{2}}\right.}{a_{2} k^{2}+k\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)+\frac{\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)^{2}}{4 a_{2}}+a_{1} k+\frac{a_{1}\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a}\right.}{2 a_{2}}}
\]
- Solution for \(r=\frac{a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}}, a_{k+1}=-\frac{\left(b_{1} k+\frac{b_{1}\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)}{2 a_{2}}+k^{2}+\frac{k\left(a_{2}-a_{1}+\sqrt{ }\right.}{a_{2} k^{2}+k\left(a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}\right)+\frac{\left(a_{2}-a_{1}+\sqrt{-4 a_{0}}\right.}{}}\right.}{}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{-a_{2}+a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{a_{2}-a_{1}+\sqrt{-4 a_{0} a_{2}+a_{1}^{2}-2 a_{1} a_{2}+a_{2}^{2}}}{2 a_{2}}}\right), a_{1+k}=-\frac{(}{a_{2} k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric     -> heuristic approach     <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.125 (sec). Leaf size: 317
```

dsolve(x^2*(x+a__2)*diff (y(x),x\$2)+x*(b__ 1*x+a__1)*\operatorname{diff}(y(x),x)+(b__ 0*x+a__ 0)*y (x)=0,y(x),

```
\(y(x)\)
\(=c_{1} x^{\frac{a_{2}-a_{1}+\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right) a_{2}+a_{1}^{2}}}{2 a_{2}}}\) hypergeom \(\left(\left[\frac{a_{2} b_{1}-a_{1}+\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right) a_{2}+a_{1}^{2}}-\sqrt{b_{1}^{2}-4 b_{0}-2 b_{1}+}}{2 a_{2}}\right.\right.\)
 \(\left.-\frac{x}{a_{2}}\right)\)
\[
\begin{gathered}
+c_{2} x^{-\frac{-a_{2}+a_{1}+\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right) a_{2}+a_{1}^{2}}}{2 a_{2}}} \text { hypergeom }\left(\left[-\frac{-\sqrt{b_{1}^{2}-4 b_{0}-2 b_{1}+1} a_{2}-a_{2} b_{1}+\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right.}}{2 a_{2}}\right.\right. \\
\left.-\frac{\sqrt{b_{1}^{2}-4 b_{0}-2 b_{1}+1} a_{2}-a_{2} b_{1}+\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right) a_{2}+a_{1}^{2}}+a_{1}}{2 a_{2}}\right],\left[\frac{a_{2}-\sqrt{a_{2}^{2}+\left(-4 a_{0}-2 a_{1}\right) a_{2}}}{a_{2}}\right. \\
\left.-\frac{x}{a_{2}}\right)
\end{gathered}
\]

Solution by Mathematica
Time used: 1.236 (sec). Leaf size: 384
DSolve \(\left[x^{\wedge} 2 *(x+a 2) * y^{\prime}{ }^{\prime}[x]+x *(b 1 * x+a 1) * y '[x]+(b 0 * x+a 0) * y[x]==0, y[x], x\right.\), IncludeSingularSolutions
\(y(x)\)
\(\rightarrow \mathrm{a} 2^{-\frac{\sqrt{-4 \mathrm{a} 0 \mathrm{a} 2+\mathrm{al}^{2}-2 \mathrm{a} 122+\mathrm{a} 2^{2}}-\mathrm{a} 1+\mathrm{a} 2}{2 \mathrm{a} 2}} x^{-\frac{\sqrt{-4 \mathrm{aO} 02+\mathrm{a} 1^{2}-2 \mathrm{ala} 2+\mathrm{a} 2^{2}}+\mathrm{a} 1-\mathrm{a} 2}{2 \mathrm{a} 2}}\left(c_{2} x^{\frac{\sqrt{-4 \mathrm{aO} 02+\mathrm{a} 1^{2}-2 \mathrm{a} 1 \mathrm{a} 2+\mathrm{a}^{2}}}{\mathrm{a} 2}}\right.\) Hypergeometric2F1 \(\left.-\frac{x}{\mathrm{a} 2}\right)\)
\[
\left.\begin{array}{c}
+c_{1} \mathrm{a} 2 \frac{\sqrt{-4 \mathrm{a} 022+\mathrm{al}^{2}-2 \mathrm{a} 1 \mathrm{a} 2+\mathrm{a} 2^{2}}}{\mathrm{a} 2} \text { Hypergeometric2F1 }\left(-\frac{\mathrm{a} 1-\mathrm{a} 2 \mathrm{~b} 1+\sqrt{\mathrm{a} 1^{2}-2 \mathrm{a} 2 \mathrm{a} 1+\mathrm{a} 2(\mathrm{a} 2-4 \mathrm{a} 0)}+\mathrm{a} 2 \sqrt{ }}{2 \mathrm{a} 2}\right. \\
-\frac{\mathrm{a} 1-\mathrm{a} 2\left(\mathrm{~b} 1+\sqrt{(\mathrm{b} 1-1)^{2}-4 \mathrm{~b} 0}\right)+\sqrt{\mathrm{a} 1^{2}-2 \mathrm{a} 2 \mathrm{a} 1+\mathrm{a} 2(\mathrm{a} 2-4 \mathrm{a} 0)}}{2 \mathrm{a} 2}, 1 \\
\left.-\frac{\sqrt{\mathrm{a} 1^{2}-2 \mathrm{a} 2 \mathrm{a} 1+\mathrm{a} 2^{2}-4 \mathrm{a} 0 \mathrm{a} 2}}{\mathrm{a} 2},-\frac{x}{\mathrm{a} 2}\right)
\end{array}\right)
\]

\subsection*{31.14 problem 195}
31.14.1 Maple step by step solution

Internal problem ID [11019]
Internal file name [OUTPUT/10275_Sunday_December_31_2023_11_39_43_AM_40293410/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 195 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}+(\beta-2 b) y=0
\]

\subsection*{31.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}+(\beta-2 b) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(-\beta+2 b) y}{x\left(a x^{2}+b x+c\right)}-\frac{\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}-\frac{(-\beta+2 b) y}{x\left(a x^{2}+b x+c\right)}=0
\]
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{\alpha x^{2}+\beta x+2 c}{x\left(a x^{2}+b x+c\right)}, P_{3}(x)=-\frac{-\beta+2 b}{x\left(a x^{2}+b x+c\right)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}+(\beta-2 b) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
c a_{0} r(r+1) x^{r-1}+\left(c a_{1}(r+1)(2+r)+a_{0}(r+1)(b r-2 b+\beta)\right) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(c a_{k+1}(k+r+1)(k-\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
c r(r+1)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-1,0\}
\]
- Each term must be 0
\(c a_{1}(r+1)(2+r)+a_{0}(r+1)(b r-2 b+\beta)=0\)
- Each term in the series must be 0 , giving the recursion relation
\[
c a_{k+1}(k+r+1)(k+2+r)+((k+r-2) b+\beta)(k+r+1) a_{k}+((k+r-2) a+\alpha)(k+r-1
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
c a_{k+2}(k+2+r)(k+3+r)+((k+r-1) b+\beta)(k+2+r) a_{k+1}+((k+r-1) a+\alpha)(k+r)
\]
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a k^{2} a_{k}+2 a k r a_{k}+a r^{2} a_{k}+b k^{2} a_{k+1}+2 b k r a_{k+1}+b r^{2} a_{k+1}-a k a_{k}-a r a_{k}+a_{k} \alpha k+a_{k} \alpha r+b k a_{k+1}+b r a_{k+1}+\beta k a_{k+1}+\beta r a_{k-}-}{c(k+2+r)(k+3+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+a_{k} \alpha k-b k a_{k+1}+\beta k a_{k+1}+2 a a_{k}-a_{k} \alpha-2 b a_{k+1}+\beta a_{k+1}}{c(k+1)(k+2)}\)
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+a_{k} \alpha k-b k a_{k+1}+\beta k a_{k+1}+2 a a_{k}-a_{k} \alpha-2 b a_{k+1}+\beta a_{k+1}}{c(k+1)(k+2)}, 0=0\right]
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-a k a_{k}+a_{k} \alpha k+b k a_{k+1}+\beta k a_{k+1}-2 b a_{k+1}+2 \beta a_{k+1}}{c(k+2)(k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-a k a_{k}+a_{k} \alpha k+b k a_{k+1}+\beta k a_{k+1}-2 b a_{k+1}+2 \beta a_{k+1}}{c(k+2)(k+3)}, 2 c a_{1}+a_{0}(\beta-2 b)=\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k}\right), d_{k+2}=-\frac{a k^{2} d_{k}+b k^{2} d_{1+k}-3 a k d_{k}+\alpha k d_{k}-b k d_{1+k}+\beta k d_{1+k}+2 a d_{k}-\alpha d_{k}-2 b d_{1+}}{c(1+k)(k+2)}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 2F1 ODE         <- hypergeometric successful     <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning special function solu     <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 9.625 (sec). Leaf size: 1505
```

dsolve((a*x^3+b*x^2+c*x)*diff (y(x),x\$2)+(alpha*x^2+beta*x+2*c)*diff (y(x),x)+(beta-2*b)*y(x)=

```

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 4.64 (sec). Leaf size: 139
DSolve \(\left[\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x\right) * y^{\prime} \quad[x]+\left(\backslash[A l p h a] * x^{\wedge} 2+\backslash[\right.\right.\) Beta \(\left.] * x+2 * c\right) * y^{\prime}[x]+(\backslash[\) Beta \(]-2 * b) * y[x]==0, y[x\)
\(y(x)\)
\(\rightarrow \frac{(2 a x+2 b-\beta-\alpha x)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{(b \alpha+2 a(b-\beta)) \arctan \left(\frac{b+2 a K[1]}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\left.a \sqrt{4 a c-b^{2}}\right)(c+K[1](b+a K[1]))^{1-\frac{\alpha}{2 a}}}\right.}{(-2 b+\beta+(\alpha-2 a) K[1])^{2}} d K[1]+c_{1}\right)}{x(2 b-\beta)}\)

\subsection*{31.15 problem 196}
31.15.1 Maple step by step solution . 3261

Internal problem ID [11020]
Internal file name [OUTPUT/10276_Sunday_December_31_2023_11_39_46_AM_38210555/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 196.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}-(x \alpha+2 b-\beta) y=0
\]

\subsection*{31.15.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}+(-x \alpha-2 b+\beta) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(x \alpha+2 b-\beta) y}{x\left(a x^{2}+b x+c\right)}-\frac{\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}-\frac{(x \alpha+2 b-\beta) y}{x\left(a x^{2}+b x+c\right)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{\alpha x^{2}+\beta x+2 c}{x\left(a x^{2}+b x+c\right)}, P_{3}(x)=-\frac{x \alpha+2 b-\beta}{x\left(a x^{2}+b x+c\right)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(\alpha x^{2}+\beta x+2 c\right) y^{\prime}+(-x \alpha-2 b+\beta) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(c a_{0} r(r+1) x^{r-1}+\left(c a_{1}(r+1)(2+r)+a_{0}(r+1)(b r-2 b+\beta)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(c a_{k+1}(k+r+1)(k\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(c r(r+1)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- Each term must be 0
\(c a_{1}(r+1)(2+r)+a_{0}(r+1)(b r-2 b+\beta)=0\)
- Each term in the series must be 0, giving the recursion relation
\(c a_{k+1}(k+r+1)(k+2+r)+((k+r-2) b+\beta)(k+r+1) a_{k}+(k+r-2)((k+r-1) a+c\)
- \(\quad\) Shift index using \(k->k+1\)
\(c a_{k+2}(k+2+r)(k+3+r)+((k+r-1) b+\beta)(k+2+r) a_{k+1}+(k+r-1)((k+r) a+\alpha)\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a k^{2} a_{k}+2 a k r a_{k}+a r^{2} a_{k}+b k^{2} a_{k+1}+2 b k r a_{k+1}+b r^{2} a_{k+1}-a k a_{k}-a r a_{k}+a_{k} \alpha k+a_{k} \alpha r+b k a_{k+1}+b r a_{k+1}+\beta k a_{k+1}+\beta r a_{k-}}{c(k+2+r)(k+3+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+a_{k} \alpha k-b k a_{k+1}+\beta k a_{k+1}+2 a a_{k}-2 a_{k} \alpha-2 b a_{k+1}+\beta a_{k+1}}{c(k+1)(k+2)}\)
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+a_{k} \alpha k-b k a_{k+1}+\beta k a_{k+1}+2 a a_{k}-2 a_{k} \alpha-2 b a_{k+1}+\beta a_{k+1}}{c(k+1)(k+2)}, 0=0\right]
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-a k a_{k}+a_{k} \alpha k+b k a_{k+1}+\beta k a_{k+1}-a_{k} \alpha-2 b a_{k+1}+2 \beta a_{k+1}}{c(k+2)(k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-a k a_{k}+a_{k} \alpha k+b k a_{k+1}+\beta k a_{k+1}-a_{k} \alpha-2 b a_{k+1}+2 \beta a_{k+1}}{c(k+2)(k+3)}, 2 c a_{1}+a_{0}(\beta-2 b\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k}\right), d_{k+2}=-\frac{a k^{2} d_{k}+b k^{2} d_{1+k}-3 a k d_{k}+\alpha k d_{k}-b k d_{1+k}+\beta k d_{1+k}+2 a d_{k}-2 \alpha d_{k}-2 b d_{1}}{c(1+k)(k+2)}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 2F1 ODE         <- hypergeometric successful     <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning special function solu     <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.062 (sec). Leaf size: 1505
```

dsolve((a*x^3+b*x^2+c*x)*diff (y (x),x\$2)+(alpha*x^2+beta*x+2*c)*diff (y (x),x)-(alpha*x+2*b-bet

```

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 6.092 (sec). Leaf size: 224
DSolve \(\left[\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x\right) * y^{\prime} \quad[x]+\left(\backslash[A l p h a] * x^{\wedge} 2+\backslash[\right.\right.\) Beta \(\left.] * x+2 * \mathrm{c}\right) * y^{\prime}[\mathrm{x}]-(\backslash[\) Alpha \(] * x+2 * b-\backslash[\) Beta \(]) *\)
\(y(x)\)
\[
\rightarrow \frac{\left(b(2 a x-3 \beta-2 \alpha x)-a \alpha x^{2}-2 a \beta x+2 b^{2}+\beta^{2}+\alpha c+\alpha^{2} x^{2}+2 \alpha \beta x\right)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{(b \alpha+2 a(b-\beta)) \arctan \left(\frac{b}{2}\right.}{a \sqrt{4 a c-b^{2}}}\right.}{\left(2 b^{2}-3 \beta b+2(a-\alpha) K[1] b+\beta^{2}+\alpha^{2}\right.}\right.}{x\left(2 b^{2}+\beta^{2}-3 \beta b+\alpha c\right)}
\]

\subsection*{31.16 problem 197}
31.16.1 Maple step by step solution

Internal problem ID [11021]
Internal file name [OUTPUT/10277_Sunday_December_31_2023_11_39_47_AM_81148635/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 197.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left(-2 a x^{2}-(1+b) x+k\right) y^{\prime}+2(a x+1) y=0
\]

\subsection*{31.16.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(-2 a x^{2}+(-1-b) x+k\right) y^{\prime}+(2 a x+2) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2(a x+1) y}{x\left(a x^{2}+b x+c\right)}+\frac{\left(2 a x^{2}+b x-k+x\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{\left(2 a x^{2}+b x-k+x\right) y^{\prime}}{x\left(a x^{2}+b x+c\right)}+\frac{2(a x+1) y}{x\left(a x^{2}+b x+c\right)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{2 a x^{2}+b x-k+x}{x\left(a x^{2}+b x+c\right)}, P_{3}(x)=\frac{2(a x+1)}{x\left(a x^{2}+b x+c\right)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{k}{c}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(-2 a x^{2}-b x+k-x\right) y^{\prime}+(2 a x+2) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\) \(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(c r-c+k) x^{r-1}+\left(a_{1}(1+r)(c r+k)+a_{0}(r-2)(b r-1)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(c(k-\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(c r-c+k)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{c-k}{c}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(c r+k)+a_{0}(r-2)(b r-1)=0\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)((k+r) c+k)+(k+r-2) a_{k}(-1+(k+r) b)+a a_{k-1}(k+r-2)(k-3+r)=
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)((k+1+r) c+k)+(k+r-1) a_{k+1}(-1+(k+1+r) b)+a a_{k}(k+r-1)(k+\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a k^{2} a_{k}+2 a k r a_{k}+a r^{2} a_{k}+b k^{2} a_{k+1}+2 b k r a_{k+1}+b r^{2} a_{k+1}-3 a k a_{k}-3 a r a_{k}+2 a_{k} a-b a_{k+1}-k a_{k+1}-r a_{k+1}+a_{k+1}}{(k+2+r)(c k+c r+c+k)}\)
- Recursion relation for \(r=0\); series terminates at \(k=1\)
\(a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+2 a_{k} a-b a_{k+1}-k a_{k+1}+a_{k+1}}{(k+2)(c k+c+k)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a k^{2} a_{k}+b k^{2} a_{k+1}-3 a k a_{k}+2 a_{k} a-b a_{k+1}-k a_{k+1}+a_{k+1}}{(k+2)(c k+c+k)}, a_{1} k+2 a_{0}=0\right]
\]
- Recursion relation for \(r=\frac{c-k}{c}\)
\[
a_{k+2}=-\frac{a k^{2} a_{k}+\frac{2 a k(c-k) a_{k}}{c}+\frac{a(c-k)^{2} a_{k}}{c^{2}}+b k^{2} a_{k+1}+\frac{2 b k(c-k) a_{k+1}}{c}+\frac{b(c-k)^{2} a_{k+1}}{c^{2}}-3 a k a_{k}-\frac{3 a(c-k) a_{k}}{c}+2 a_{k} a-b a_{k+1}-k a_{k+1}-\frac{(}{c}}{\left(k+2+\frac{c-k}{c}\right)(c k+2 c)}
\]
- \(\quad\) Solution for \(r=\frac{c-k}{c}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{c-k}{c}}, a_{k+2}=-\frac{a k^{2} a_{k}+\frac{2 a k(c-k) a_{k}}{c}+\frac{a(c-k)^{2} a_{k}}{c^{2}}+b k^{2} a_{k+1}+\frac{2 b k(c-k) a_{k+1}}{c}+\frac{b(c-k)^{2} a_{k+1}}{c^{2}}-3 a k a_{k}-\frac{3 a(c-k) a_{k}}{c}}{\left(k+2+\frac{c-k}{c}\right)(c k+2 c)}\right.
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{m=0}^{\infty} d_{m} x^{m}\right)+\left(\sum_{m=0}^{\infty} e_{m} x^{m+\frac{c-k}{c}}\right), d_{m+2}=-\frac{a m^{2} d_{m}+b m^{2} d_{m+1}-3 a m d_{m}+2 a d_{m}-b d_{m+1}-m d_{m+1}+d_{m+}}{(m+2)(c m+c+k)}\right.
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 2F1 ODE         <- hypergeometric successful     <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning special function solu     <- Kovacics algorithm successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.437 (sec). Leaf size: 2278
```

dsolve((a*x^3+b*x^2+c*x)*diff (y(x),x\$2)+(-2*a*x^2-(b+1)*x+k)*diff (y(x),x)+2*(a*x+1)*y(x)=0,y

```

Expression too large to display

\section*{\(\checkmark\) Solution by Mathematica}

Time used: 10.126 (sec). Leaf size: 186
DSolve[(a*x^3+b*x^2+c*x)*y' \({ }^{\prime}[x]+\left(-2 * a * x^{\wedge} 2-(b+1) * x+k\right) * y{ }^{\prime}[x]+2 *(a * x+1) * y[x]==0, y[x], x\), IncludeS
\[
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{\left(-k x(a x+2)-(b-1) x^{2}+c(k-2 x)+k^{2}\right)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{(2 c+b k) \arctan \left(\frac{b+2 a K[1]}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{c \sqrt{4 a c-b^{2}}}\right) K[1]^{-\frac{k}{c}}(c+K[1](b+a K[1]))^{\frac{k}{2 c}}+\frac{3}{2}}{\left(k^{2}-K[1](a K[1]+2) k-(b-1) K[1]^{2}+c(k-2 K[1])\right)^{2}}\right.}{a k+b-c(k-2)-k^{2}+2 k-1}
\end{aligned}
\]

\subsection*{31.17 problem 198}

Internal problem ID [11022]
Internal file name [OUTPUT/10278_Sunday_December_31_2023_11_39_49_AM_273934/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 198.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left(n x^{2}+m x+k\right) y^{\prime}+(k-1)((-a k+n) x+m-b k) y=0
\]

X Solution by Maple
```

dsolve((a*x^3+b*x^2+c*x)*diff (y (x), x\$2)+(n*x^2+m*x+k)*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+(\textrm{k}-1)*((n-a*k)*x+m-b*k})*

```

No solution found
Solution by Mathematica
Time used: 148.451 (sec). Leaf size: 570
```

DSolve[(a*x^3+b*x^2+c*x)*y''[x]+(n*x^2+m*x+k)*y'[x]+(k-1)*((n-a*k)*x+m-b*k)*y[x]==0,y[x],x,I

```
\[
\begin{aligned}
& y(x) \rightarrow \\
& \quad 2^{-\frac{k}{c}}\left(-\frac{a x}{\sqrt{b^{2}-4 a c+b}}\right)^{1-\frac{k}{c}}\left(a c _ { 1 } x (- 2 ^ { \frac { k } { c } }) (- \frac { a x } { \sqrt { b ^ { 2 } - 4 a c } + b }) ^ { \frac { k } { c } - 1 } \text { HeunG } \left[\frac{b-\sqrt{b^{2}-4 a c}}{\sqrt{b^{2}-4 a c+b}},-\frac{2(k-1)(b k-m)}{\sqrt{b^{2}-4 a c}+b}, \frac{1}{2}\left(-\sqrt{\frac{(-2 a k-1}{a}}\right.\right.\right.
\end{aligned}
\]

\subsection*{31.18 problem 199}

Internal problem ID [11023]
Internal file name [OUTPUT/10279_Sunday_December_31_2023_11_39_52_AM_61793738/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 199.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left((m-a) x^{2}+(2 c m-1) x-c\right) y^{\prime}+(-2 m x+1) y=0
\]

\section*{X Solution by Maple}
```

dsolve((a*x^3+b*x^2+c*x)*diff(y(x),x\$2)+((m-a)*x^2+(2*c*m-1)*x-c)*\operatorname{diff}(y(x),x)+(-2*m*x+1)*y(

```

No solution found

\section*{Solution by Mathematica}

Time used: 17.694 (sec). Leaf size: 192
\[
\begin{aligned}
& \text { DSolve }\left[\left(\mathrm{a} * \mathrm{x}^{\wedge} 3+\mathrm{b} * \mathrm{x}^{\wedge} 2+\mathrm{c} * \mathrm{x}\right) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left((\mathrm{m}-\mathrm{a}) * \mathrm{x}^{\wedge} 2+(2 * \mathrm{c} * \mathrm{~m}-1) * \mathrm{x}-\mathrm{c}\right) * \mathrm{y}{ }^{\prime}[\mathrm{x}]+(-2 * \mathrm{~m} * \mathrm{x}+1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}, \mathrm{In}\right. \\
& y(x) \\
& \quad\left(x(a x+2 b+m x-1)+c(2 b+4 m x-1)+4 c^{2} m\right)\left(c_{2} \int_{1}^{x} \frac{\exp \left(\frac{(b m-2 a(b+2 c m-1)) \arctan \left(\frac{b+2 a K[1]}{\left.\sqrt{4 a c-b^{2}}\right)}\right) K[1](c+K[1](b-}{a \sqrt{4 a c-b^{2}}}\right)}{\left(4 m c^{2}+(2 b+4 m K[1]-1) c+K[1](2 b+a K[1]+m K[1]\right.}\right. \\
& \rightarrow \frac{a+2 b(c+1)+4 c^{2} m+4 c m-c+m-1}{}
\end{aligned}
\]

\subsection*{31.19 problem 200}

Internal problem ID [11024]
Internal file name [OUTPUT/10280_Sunday_December_31_2023_03_56_49_PM_14438536/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 200.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
\left(a x^{3}+b x^{2}+c x\right) y^{\prime \prime}+\left(n x^{2}+m x+k\right) y^{\prime}+(-2(a+n) x+1) y=0
\]
\(X\) Solution by Maple
```

dsolve((a*x^3+b*x^2+c*x)*diff (y (x),x\$2)+(n*x^2+m*x+k)*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+(-2*(a+n)*x+1)*y(x)=0,y(x

```

No solution found
Solution by Mathematica
Time used: 121.038 (sec). Leaf size: 552
```

DSolve[(a*x^3+b*x^2+c*x)*y''[x]+(n*x^2+m*x+k)*y'[x]+(-2*(a+n)*x+1)*y[x]==0,y[x],x,IncludeSin

```
\[
\begin{aligned}
& y(x) \rightarrow \\
& \quad 2^{-\frac{k}{c}}\left(-\frac{a x}{\sqrt{b^{2}-4 a c}+b}\right)^{1-\frac{k}{c}}\left(a c _ { 1 } x (- 2 ^ { \frac { k } { c } }) (- \frac { a x } { \sqrt { b ^ { 2 } - 4 a c } + b }) ^ { \frac { k } { c } - 1 } \operatorname { H e u n G } \left[\frac{b-\sqrt{b^{2}-4 a c}}{\sqrt{b^{2}-4 a c}+b}, \frac{2}{\sqrt{b^{2}-4 a c}+b}, \frac{1}{2}\left(-\sqrt{\frac{(3 a+n)^{2}}{a^{2}}}+\right.\right.\right.
\end{aligned}
\]

\subsection*{31.20 problem 201}

Internal problem ID [11025]
Internal file name [OUTPUT/10281_Sunday_December_31_2023_03_57_10_PM_26080740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 201.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
\left(a x^{3}+x^{2}+b\right) y^{\prime \prime}+a^{2} x\left(x^{2}-b\right) y^{\prime}-a^{3} b x y=0
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius         -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         -> Mathieu             -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius     -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu     No special function solution was found. <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.562 (sec). Leaf size: 79
```

dsolve((a*x^3+x^2+b)*diff(y(x),x\$2)+a^2*x*(x^2-b)*diff (y(x),x)-a^3*b*x*y(x)=0,y(x), singsol=

```
\[
y(x)=\mathrm{e}^{-a x}\left(c_{2}\left(\int \mathrm{e}^{a\left(\int \frac{a^{2} x^{4}+2 a x^{3}+\left(a^{2} b+2\right) x^{2}+4 a b x+2 b}{\left(a x^{3}+x^{2}+b\right)(a x+2)} d x\right)} d x\right)+c_{1}\right)(a x+2)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\left(a * x^{\wedge} 3+x^{\wedge} 2+b\right) * y\right.\) ' \(\quad[x]+a^{\wedge} 2 * x *\left(x^{\wedge} 2-b\right) * y '[x]-a^{\wedge} 3 * b * x * y[x]==0, y[x], x\), IncludeSingularSoluti

Timed out

\subsection*{31.21 problem 202}
31.21.1 Solving as second order change of variable on \(x\) method 2 ode . 3277
31.21.2 Solving as second order change of variable on \(x\) method 1 ode . 3281
31.21.3 Solving using Kovacic algorithm 3284
31.21.4 Maple step by step solution . 3292

Internal problem ID [11026]
Internal file name [OUTPUT/10282_Sunday_December_31_2023_03_57_16_PM_16783930/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 202.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order__change__of_variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
2 y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y=0
\]

\subsection*{31.21.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
\left(2 a x^{3}+2 b x^{2}+2 c x\right) y^{\prime \prime}+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x^{2}-c}{2 a x^{3}+2 b x^{2}+2 c x} \\
q(x) & =\frac{\lambda x}{2 a x^{2}+2 b x+2 c}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{aligned}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{a x^{2}-c}{2 a x^{3}+2 b x^{2}+2 c x} d x\right)} d x \\
& =\int e^{\frac{\ln (x)}{2}-\frac{\ln \left(a x^{2}+b x+c\right)}{2}} d x \\
& =\int \frac{\sqrt{x}}{\sqrt{a x^{2}+b x+c}} d x
\end{aligned}
\]
\[
\begin{equation*}
\left(b+\sqrt{-4 a c+b^{2}}\right) \sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}+b}}{b+\sqrt{-4 a c+b^{2}}}} \sqrt{\frac{-2 a x+\sqrt{-4 a c+b^{2}}-b}{\sqrt{-4 a c+b^{2}}}} \sqrt{-\frac{a x}{b+\sqrt{-4 a c+b^{2}}}}\left(2 \sqrt{-4 a c+b^{2}}\right. \text { EllipticE } \tag{6}
\end{equation*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{\lambda x}{2 a x^{2}+2 x+2 c}}{\frac{x x^{2}}{a x^{2}+b x+c}} \\
& =\frac{\lambda}{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{\lambda y(\tau)}{2} & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=\frac{\lambda}{2}\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\frac{\lambda \mathrm{e}^{\lambda \tau}}{2}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}+\frac{\lambda}{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=\frac{\lambda}{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(\frac{\lambda}{2}\right)} \\
& = \pm \frac{\sqrt{-2 \lambda}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\frac{\sqrt{-2 \lambda}}{2} \\
& \lambda_{2}=-\frac{\sqrt{-2 \lambda}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{2} \sqrt{-\lambda}}{2} \\
& \lambda_{2}=-\frac{\sqrt{2} \sqrt{-\lambda}}{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{\left(\frac{\sqrt{2} \sqrt{ }-\lambda}{2}\right) \tau}+c_{2} e^{\left(-\frac{\sqrt{2} \sqrt{ }-\lambda}{2}\right) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\frac{\sqrt{2} \sqrt{-\lambda} \tau}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{2} \sqrt{-\lambda} \tau}{2}}
\]

The above solution is now transformed back to \(y\) using (6) which results in

\section*{Summary}

The solution(s) found are the following
\(y\)

\section*{Verification of solutions}
\(y\)

Verified OK.

\subsection*{31.21.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
\left(2 a x^{3}+2 b x^{2}+2 c x\right) y^{\prime \prime}+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{a x^{2}-c}{2 x\left(a x^{2}+b x+c\right)} \\
q(x) & =\frac{\lambda x}{2 a x^{2}+2 b x+2 c}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{\lambda x}{2 a x^{2}+2 b x+2 c}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{\frac{\lambda}{2 a x^{2}+2 b x+2 c}-\frac{\lambda x(4 a x+2 b)}{\left(2 a x^{2}+2 b x+2 c\right)^{2}}}{2 c \sqrt{\frac{\lambda x}{2 a x^{2}+2 b x+2 c}}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& \left.=\frac{\frac{\frac{\lambda}{2 a x^{2}+2 b x+2 c}-\frac{\lambda x(4 a x+2 b)}{\left(2 a x^{2}+2 b x+2 c\right)^{2}}}{2 c \sqrt{\frac{\lambda x}{2 a x^{2}+2 b x+2 c}}}+\frac{a x^{2}-c}{2 x\left(a x^{2}+b x+c\right)} \frac{\sqrt{\frac{\lambda x}{2 a x^{2}+2 b x+2 c}}}{c}}{\left(\frac{\sqrt{2 a x^{2}+2 b x+2 c}}{c}\right.}\right)^{2} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{\lambda x}{2 a x^{2}+2 b x+2 c}} d x}{c}
\end{aligned}
\]
\[
\sqrt{\frac{\lambda x}{a x^{2}+b x+c}}\left(a x^{2}+b x+c\right)\left(b+\sqrt{-4 a c+b^{2}}\right) \sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{b+\sqrt{-4 a c+b^{2}}}} \sqrt{\frac{-2 a x+\sqrt{-4 a c+b^{2}}-b}{\sqrt{-4 a c+b^{2}}}} \sqrt{-\frac{2 a x}{b+\sqrt{-4 a c+b^{2}}}}
\]

Substituting the above into the solution obtained gives

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(\begin{aligned} &=c_{1} \cos \left(\frac{\sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{b+\sqrt{-4 a c+b^{2}}}}\left(\frac{\left(b-\sqrt{-4 a c+b^{2}}\right) \operatorname{EllipticF}\left(\sqrt{\left.\frac{2 a x+\sqrt{-4 a c+b^{2}+b}}{b+\sqrt{-4 a c+b^{2}}}, \frac{\sqrt{2 b+2 \sqrt{-4 a c+b^{2}}}}{2\left(-4 a c+b^{2}\right)^{\frac{1}{4}}}\right)}\right.}{2}+\sqrt{-4 a c+b^{2}} \text { EllipticE }\right.}{}\right. \\ &-c_{2} \sin \left(\frac{\sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}}}{b+\sqrt{-4 a c+b^{2}}}}\left(\frac{\left(b-\sqrt{-4 a c+b^{2}}\right) \operatorname{EllipticF}\left(\sqrt{\left.\frac{2 a x+\sqrt{-4 a c+b^{2}+b}}{b+\sqrt{-4 a c+b^{2}}}, \frac{\sqrt{2 b+2 \sqrt{-4 a c+b^{2}}}}{2\left(-4 a c+b^{2}\right)^{\frac{1}{4}}}\right)}\right.}{2}+\sqrt{-4 a c+b^{2}} \text { Elliptic }\right.}{2 \sqrt{a x^{2}-}}\right. \\ &\end{aligned}\)

\section*{Verification of solutions}
\(y\)

Warning, solution could not be verified

\subsection*{31.21.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(2 a x^{3}+2 b x^{2}+2 c x\right) y^{\prime \prime}+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=2 a x^{3}+2 b x^{2}+2 c x \\
& B=a x^{2}-c \tag{3}\\
& C=\lambda x^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-8 a \lambda x^{5}-3 a^{2} x^{4}-8 b \lambda x^{4}-8 c \lambda x^{3}+14 a c x^{2}+8 b c x+5 c^{2}}{16\left(a x^{3}+b x^{2}+c x\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-8 a \lambda x^{5}-3 a^{2} x^{4}-8 b \lambda x^{4}-8 c \lambda x^{3}+14 a c x^{2}+8 b c x+5 c^{2} \\
& t=16\left(a x^{3}+b x^{2}+c x\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-8 a \lambda x^{5}-3 a^{2} x^{4}-8 b \lambda x^{4}-8 c \lambda x^{3}+14 a c x^{2}+8 b c x+5 c^{2}}{16\left(a x^{3}+b x^{2}+c x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 188: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =6-5 \\
& =1
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=16\left(a x^{3}+b x^{2}+c x\right)^{2}\). There is a pole at \(x=0\) of order 2 . There is a pole at \(x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\) of order 2 . There is a pole at \(x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\) of order 2. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[2]
\]

Attempting to find a solution using case \(n=2\).

Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
\begin{aligned}
r & =\frac{\frac{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3} b}{4 a}-\frac{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3} c \lambda}{a^{2}}-2\left(-b+\sqrt{-4 a c+b^{2}}\right)^{2} c+\frac{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{2} b^{2}}{a}-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right)^{2} b c \lambda}{a^{2}}}{16 c\left(-4 a c+b^{2}\right)\left(x-\frac{-b+\sqrt{-4 a c}}{2 a}\right.} \\
& +\frac{-\frac{\left(b+\sqrt{-4 a c+b^{2}}\right)^{3} b}{4 a}+\frac{\left(b+\sqrt{-4 a c+b^{2}}\right)^{3} c \lambda}{a^{2}}-2\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} c+\frac{\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} b^{2}}{a}-\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} b c \lambda}{a^{2}}+3}{16 c\left(-4 a c+b^{2}\right)\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right.} \\
& +\frac{\frac{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3} b}{2}-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3} c \lambda}{a}-2 a\left(-b+\sqrt{-4 a c+b^{2}}\right)^{2} c+\frac{7\left(-b+\sqrt{-4 a c+b^{2}}\right)^{2} b^{2}}{4}-\frac{5\left(-b+\sqrt{-4 a c+b^{2}}\right.}{a}}{a} \\
& -\frac{-\frac{\left(b+\sqrt{-4 a c+b^{2}}\right)^{3} b}{2}+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right)^{3} c \lambda}{a}-2\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} a c+\frac{7\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} b^{2}}{4}-\frac{5\left(b+\sqrt{-4 a c+b^{2}}\right)^{2} b c \lambda}{a}-b^{2}}{8 c\left(-4 a c+b^{2}\right)^{\frac{3}{2}}}- \\
& +\frac{5}{16 x^{2}}-\frac{b}{8 c x}
\end{aligned}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{5}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{-1,2,5\}
\end{aligned}
\]

For the pole at \(x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

For the pole at \(x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\) let \(b\) be the coefficient of \(\frac{1}{\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{3}{16}\). Hence
\[
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(1<2\) then
\[
E_{\infty}=\{1\}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) for case 2 of Kovacic algorithm.
\begin{tabular}{|c|c|c|}
\hline pole \(c\) location & pole order & \(E_{c}\) \\
\hline 0 & 2 & \(\{-1,2,5\}\) \\
\hline\(-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\) & 2 & \(\{1,2,3\}\) \\
\hline\(-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\) & 2 & \(\{1,2,3\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Order of \(r\) at \(\infty\) & \(E_{\infty}\) \\
\hline 1 & \(\{1\}\) \\
\hline
\end{tabular}

Using the family \(\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}\) given by
\[
e_{1}=-1, e_{2}=1, e_{3}=1, e_{\infty}=1
\]

Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is generated using
\[
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(1-(-1+(1)+(1))) \\
& =0
\end{aligned}
\]

We now form the following rational function
\[
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{-1}{(x-(0))}+\frac{1}{\left(x-\left(-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)\right)}+\frac{1}{\left(x-\left(-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)\right)}\right) \\
& =-\frac{1}{2 x}+\frac{1}{2 x+\frac{b-\sqrt{-4 a c+b^{2}}}{a}}+\frac{1}{2 x+\frac{b+\sqrt{-4 a c+b^{2}}}{a}}
\end{aligned}
\]

Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
\]

Since \(d=0\), then letting
\[
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
\]

Substituting \(p\) and \(\theta\) into Eq. (1A) gives
\[
0=0
\]

And solving for \(p\) gives
\[
p=1
\]

Now that \(p(x)\) is found let
\[
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =-\frac{1}{2 x}+\frac{1}{2 x+\frac{b-\sqrt{-4 a c+b^{2}}}{a}}+\frac{1}{2 x+\frac{b+\sqrt{-4 a c+b^{2}}}{a}}
\end{aligned}
\]

Let \(\omega\) be the solution of
\[
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
\]

Substituting the values for \(\phi\) and \(r\) into the above equation gives
\[
\begin{aligned}
& w^{2}-\left(-\frac{1}{2 x}+\frac{1}{2 x+\frac{b-\sqrt{-4 a c+b^{2}}}{a}}+\frac{1}{2 x+\frac{b+\sqrt{-4 a c+b^{2}}}{a}}\right) w \\
& +\frac{\left(8 a \lambda x^{5}+\left(a^{2}+8 b \lambda\right) x^{4}+8 c \lambda x^{3}-2 a c x^{2}+c^{2}\right) a^{2}}{x^{2}\left(2 a x+b-\sqrt{-4 a c+b^{2}}\right)^{2}\left(2 a x+\sqrt{-4 a c+b^{2}}+b\right)^{2}}=0
\end{aligned}
\]

Solving for \(\omega\) gives
\[
\omega=\frac{a x^{2}+2 x \sqrt{2} \sqrt{-\lambda x\left(a x^{2}+b x+c\right)}-c}{4 x\left(a x^{2}+b x+c\right)}
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\(z_{1}(x)=e^{\int \omega d x}\)
\[
=\mathrm{e}^{\int \frac{a x^{2}+2 x \sqrt{2} \sqrt{-\lambda x\left(a x^{2}+b x+c\right)}-c}{4 x\left(a x^{2}+b x+c\right)} d x}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{a x^{2}-c}{2 a x^{3}+2 b x^{2}+2 c x} d x} \\
& =z_{1} e^{\ln (x)} 4-\frac{\ln \left(a x^{2}+b x+c\right)}{4} \\
& =z_{1}\left(\frac{x^{\frac{1}{4}}}{\left(a x^{2}+b x+c\right)^{\frac{1}{4}}}\right)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& y_{1}\left(\frac { (b - \sqrt { - 4 a c + b ^ { 2 } }) \text { EllipticF } (\sqrt { \frac { 2 a x + \sqrt { - 4 a c + b ^ { 2 } } + b } { b + \sqrt { - 4 a c + b ^ { 2 } } } , \frac { (- (4 a c - b ^ { 2 }) ^ { 3 }) ^ { \frac { 1 } { 4 } \sqrt { 2 b + 2 \sqrt { - 4 a c + b ^ { 2 } } } } 8 } { 8 a c - 2 b ^ { 2 } } }) } { 2 } + \sqrt { - 4 a c + b ^ { 2 } } \text { EllipticE } \left(\sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}+b}}{b+\sqrt{-4 a c+b^{2}}}, \frac{\left(-\left(4 a c-b^{2}\right)\right.}{3}}\right.\right. \\
& =\mathrm{e}^{\frac{a^{2}}{2}}
\end{aligned}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{a x^{2}-c}{2 a x^{3}+2 b x^{2}+2 c x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}-\frac{\ln \left(a x^{2}+b x+c\right)}{2}}{\left(y_{1}\right)^{2}} d x
\end{aligned}
\]

Therefore the solution is
\(y=c_{1} y_{1}+c_{2} y_{2}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1) \(\sqrt{2}\left(\frac{\left(b-\sqrt{-4 a c+b^{2}}\right) \text { EllipticF }\left(\sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{b+\sqrt{-4 a c+b^{2}}}, \frac{\left(-\left(4 a c-b^{2}\right)^{3}\right)^{\frac{1}{4}} \sqrt{2 b+2 \sqrt{-4 a c+b^{2}}}}{8 a c-2 b^{2}}}\right)}{2}+\sqrt{-4 a c+b^{2}}\right.\) EllipticE \(\left(\sqrt{\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{b+\sqrt{-4 a c+b^{2}}}, \frac{(-(4 a c-b}{}}=c_{1} \mathrm{e}^{\frac{a^{2}}{}}\right.\)
\[
+c_{2} \underbrace{a^{2}}_{\sqrt{2}\left(\frac{\left(b-\sqrt{-4 a c+b^{2}}\right) \text { ElipipticF }\left(\sqrt{\frac{2 a x+\sqrt{-4 a c+b b^{2}}}{b+\sqrt{-4 a c+b},}, \frac{\left(-\left(4 a c-b^{2}\right)^{3}\right)^{\frac{1}{4}} \sqrt{2 b+2 \sqrt{-4 a c+b^{2}}}}{8 a c-2 b^{2}}}\right)}{2}+\sqrt{-4 a c+b^{2}}\right)}
\]

\section*{Verification of solutions}
\(y\)

Verified OK.

\subsection*{31.21.4 Maple step by step solution}

\section*{Let's solve}
\[
\left(2 a x^{3}+2 b x^{2}+2 c x\right) y^{\prime \prime}+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\lambda x y}{2\left(a x^{2}+b x+c\right)}-\frac{\left(a x^{2}-c\right) y^{\prime}}{2 x\left(a x^{2}+b x+c\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{\left(a x^{2}-c\right) y^{\prime}}{2 x\left(a x^{2}+b x+c\right)}+\frac{\lambda x y}{2\left(a x^{2}+b x+c\right)}=0
\]Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{a x^{2}-c}{2 x\left(a x^{2}+b x+c\right)}, P_{3}(x)=\frac{\lambda x}{2\left(a x^{2}+b x+c\right)}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{1}{2}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
2 y^{\prime \prime} x\left(a x^{2}+b x+c\right)+\left(a x^{2}-c\right) y^{\prime}+\lambda x^{2} y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{2} \cdot y\) to series expansion
\[
x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+2}
\]
- Shift index using \(k->k-2\)
\(x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
c a_{0} r(-3+2 r) x^{-1+r}+\left(c a_{1}(1+r)(-1+2 r)+2 a_{0} r(-1+r) b\right) x^{r}+\left(c a_{2}(2+r)(1+2 r)+2 a_{1}(\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
c r(-3+2 r)=0
\]
- Values of \(r\) that satisfy the indicial equation \(r \in\left\{0, \frac{3}{2}\right\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[c a_{1}(1+r)(-1+2 r)+2 a_{0} r(-1+r) b=0, c a_{2}(2+r)(1+2 r)+2 a_{1}(1+r) r b+a a_{0} r(-1+2 r)\right.
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=-\frac{2 a_{0} r(-1+r) b}{c\left(2 r^{2}+r-1\right)}, a_{2}=-\frac{a_{0} r\left(4 a c r^{2}-4 b^{2} r^{2}-4 a c r+4 b^{2} r+a c\right)}{c^{2}\left(4 r^{3}+8 r^{2}-r-2\right)}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
c a_{k+1}(k+1+r)(2 k+2 r-1)+2 a_{k}(k+r)(k+r-1) b+a a_{k-1}(k+r-1)(2 k+2 r-3)+\lambda a
\]
- \(\quad\) Shift index using \(k->k+2\)
\(c a_{k+3}(k+3+r)(2 k+3+2 r)+2 a_{k+2}(k+r+2)(k+1+r) b+a a_{k+1}(k+1+r)(2 k+1+2 r\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{2 a k^{2} a_{k+1}+4 a k r a_{k+1}+2 a r^{2} a_{k+1}+2 b k^{2} a_{k+2}+4 b k r a_{k+2}+2 b r^{2} a_{k+2}+3 a k a_{k+1}+3 a r a_{k+1}+6 b k a_{k+2}+6 b r a_{k+2}+a a_{k+1}-}{c(k+3+r)(2 k+3+2 r)}\)
- Recursion relation for \(r=0\)
\(a_{k+3}=-\frac{2 a k^{2} a_{k+1}+2 b k^{2} a_{k+2}+3 a k a_{k+1}+6 b k a_{k+2}+a a_{k+1}+4 b a_{k+2}+\lambda a_{k}}{c(k+3)(2 k+3)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{2 a k^{2} a_{k+1}+2 b k^{2} a_{k+2}+3 a k a_{k+1}+6 b k a_{k+2}+a a_{k+1}+4 b a_{k+2}+\lambda a_{k}}{c(k+3)(2 k+3)}, a_{1}=0, a_{2}=0\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{3}{2}\)
\[
a_{k+3}=-\frac{2 a k^{2} a_{k+1}+2 b k^{2} a_{k+2}+9 a k a_{k+1}+12 b k a_{k+2}+10 a a_{k+1}+\frac{35}{2} b a_{k+2}+\lambda a_{k}}{c\left(k+\frac{9}{2}\right)(2 k+6)}
\]
- \(\quad\) Solution for \(r=\frac{3}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+3}=-\frac{2 a k^{2} a_{k+1}+2 b k^{2} a_{k+2}+9 a k a_{k+1}+12 b k a_{k+2}+10 a a_{k+1}+\frac{35}{2} b a_{k+2}+\lambda a_{k}}{c\left(k+\frac{9}{2}\right)(2 k+6)}, a_{1}=-\frac{3 a_{0} b}{10 c}, a_{2}=\right.
\]
- \(\quad\) Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} d_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{3}{2}}\right), d_{k+3}=-\frac{2 a k^{2} d_{1+k}+2 b k^{2} d_{k+2}+3 a k d_{1+k}+6 b k d_{k+2}+a d_{1+k}+4 b d_{k+2}+\lambda d_{k}}{c(k+3)(2 k+3)}, d_{1}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     Solution is available but has integrals. Trying a simpler solution using Kovacics algorit     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Group is reducible or imprimitive         Solution has integrals. Trying a special function solution free of integrals...         -> Trying a solution in terms of special functions:             -> Bessel             -> elliptic             -> Legendre             -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius             -> hypergeometric             -> heuristic approach             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius                 -> Mathieu                     -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius             -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe         No special function solution was found.     <- Kovacics algorithm successful     Solution via Kovacic is not simpler. Returning default solution     <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 7.125 (sec). Leaf size: 65
dsolve \(\left(2 * x *\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2-c\right) * \operatorname{diff}(y(x), x)+l a m b d a * x^{\wedge} 2 * y(x)=0, y(x)\right.\), sings
\[
y(x)=c_{1} \mathrm{e}^{\frac{i \sqrt{2} \sqrt{\lambda}\left(\int \frac{\sqrt{x}}{\sqrt{a x^{2}+b x+c}} d x\right)}{2}}+c_{2} \mathrm{e}^{-\frac{i \sqrt{2} \sqrt{\lambda}\left(\int \frac{\sqrt{x}}{\sqrt{a x^{2}+b x+c}} d x\right)}{2}}
\]

\section*{Solution by Mathematica}

Time used: 144.69 (sec). Leaf size: 501
DSolve \(\left[2 * x *\left(a * x^{\wedge} 2+b * x+c\right) * y^{\prime} \quad[x]+\left(a * x^{\wedge} 2-c\right) * y '[x]+\backslash[\right.\) Lambda \(] * x^{\wedge} 2 * y[x]==0, y[x], x\), IncludeSingular
\(y(x)\)
\(\rightarrow c_{1} \cosh \left(\frac{\sqrt{\lambda}\left(\sqrt{b^{2}-4 a c}-b\right) \sqrt{\sqrt{b^{2}-4 a c}+2 a x+b} \sqrt{\frac{2 a x}{b-\sqrt{b^{2}-4 a c}}+1}\left(E\left(i \operatorname{arcsinh}\left(\frac{\sqrt{2} \sqrt{a} \sqrt{x}}{\left.\sqrt{b+\sqrt{b^{2}-4 a c}}\right) \left\lvert\, \frac{b+\sqrt{b^{2}}}{b-\sqrt{b^{2}-}}\right.}\right.\right.\right.}{2 a^{3 / 2} \sqrt{x(a x+b)+c}}\right.\) \(+i c_{2} \sinh \left(\frac{\sqrt{\lambda}\left(\sqrt{b^{2}-4 a c}-b\right) \sqrt{\sqrt{b^{2}-4 a c}+2 a x+b} \sqrt{\frac{2 a x}{b-\sqrt{b^{2}-4 a c}}+1}\left(E\left(\left.i \operatorname{arcsinh}\left(\frac{\sqrt{2} \sqrt{a} \sqrt{x}}{\sqrt{b+\sqrt{b^{2}-4 a c}}}\right) \right\rvert\, \frac{b+\sqrt{ }}{b-\sqrt{ }}\right.\right.}{2 a^{3 / 2} \sqrt{x(a x+b)+c}}\right.\)

\subsection*{31.22 problem 203}

Internal problem ID [11027]
Internal file name [OUTPUT/10283_Sunday_December_31_2023_03_59_55_PM_84761429/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form \(\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0\)
Problem number: 203.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x\left(a x^{2}+b x+1\right) y^{\prime \prime}+\left(\alpha x^{2}+\beta x+\gamma\right) y^{\prime}+(x n+m) y=0
\]
\(X\) Solution by Maple
```

dsolve(x*(a*x^2+b*x+1)*\operatorname{diff}(y(x),x\$2)+(alpha*x^2+beta*x+gamma)*diff (y (x),x)+(n*x+m)*y (x)=0,y

```

No solution found
Solution by Mathematica
Time used: 108.623 (sec). Leaf size: 524
```

DSolve[x*(a*x^2+b*x+1)*y''[x]+($$
Alpha]*x^2+\[Beta]*x+\[Gamma])*y'[x] +(n*x+m)*y[x]==0,y[x], x
```
\[
\begin{aligned}
& y(x) \rightarrow \\
& \quad 2^{-\gamma}\left(-\frac{a x}{\sqrt{b^{2}-4 a}+b}\right)^{1-\gamma}\left(a (- 2 ^ { \gamma }) c _ { 1 } x (- \frac { a x } { \sqrt { b ^ { 2 } - 4 a } + b }) ^ { \gamma - 1 } \text { HeunG } \left[\frac{b-\sqrt{b^{2}-4 a}}{\sqrt{b^{2}-4 a}+b}, \frac{2 m}{\sqrt{b^{2}-4 a}+b}, \frac{1}{2}\left(-\sqrt{\frac{a^{2}+\alpha^{2}-2 a(\alpha+2 n)}{a^{2}}}-\right.\right.\right.
\end{aligned}
$$

31.23 problem 204

31.23.1 Maple step by step solution . 3298

Internal problem ID [11028]
Internal file name [OUTPUT/10284_Sunday_December_31_2023_03_59_58_PM_34416455/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 204.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x(x-1)(x-a) y^{\prime \prime}+\left((\alpha+\beta+1) x^{2}-(\alpha+\beta+1+a(\gamma+d)-a) x+a \gamma\right) y^{\prime}+(\alpha \beta x-q) y=0
$$

31.23.1 Maple step by step solution

Let's solve

$$
-y^{\prime \prime} x(x-1)(a-x)+\left((\alpha+\beta+1) x^{2}+((-d-\gamma+1) a-\beta-\alpha-1) x+a \gamma\right) y^{\prime}+(\alpha \beta x-q) y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(\alpha \beta x-q) y}{x(x-1)(a-x)}-\frac{\left(a d x+a \gamma x-\alpha x^{2}-\beta x^{2}-a \gamma-a x+x \alpha+\beta x-x^{2}+x\right) y^{\prime}}{x(x-1)(a-x)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{\left(a d x+a \gamma x-\alpha x^{2}-\beta x^{2}-a \gamma-a x+x \alpha+\beta x-x^{2}+x\right) y^{\prime}}{x(x-1)(a-x)}-\frac{(\alpha \beta x-q) y}{x(x-1)(a-x)}=0
$$

$\square \quad$ Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{a d x+a \gamma x-\alpha x^{2}-\beta x^{2}-a \gamma-a x+x \alpha+\beta x-x^{2}+x}{x(x-1)(a-x)}, P_{3}(x)=-\frac{\alpha \beta x-q}{x(x-1)(a-x)}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\gamma
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x(x-1)(a-x)+\left(a d x+a \gamma x-\alpha x^{2}-\beta x^{2}-a \gamma-a x+x \alpha+\beta x-x^{2}+x\right) y^{\prime}+y(-\alpha \beta x+
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=1 . .3$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}$
Rewrite ODE with series expansions

$$
-a a_{0} r(-1+r+\gamma) x^{-1+r}+\left(-a a_{1}(1+r)(r+\gamma)+a_{0}\left(a d r+a \gamma r+a r^{2}-2 a r+\alpha r+\beta r+r^{2}+\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-a r(-1+r+\gamma)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,-\gamma+1\}$
- \quad Each term must be 0
$-a a_{1}(1+r)(r+\gamma)+a_{0}\left(a d r+a \gamma r+a r^{2}-2 a r+\alpha r+\beta r+r^{2}+q\right)=0$
- Each term in the series must be 0, giving the recursion relation
$-a a_{k+1}(k+1+r)(k+r+\gamma)+a_{k}\left((k+r)(k+d+r+\gamma-2) a+k^{2}+(2 r+\beta+\alpha) k+r^{2}+\right.$
- \quad Shift index using $k->k+1$
$-a a_{k+2}(k+2+r)(k+1+r+\gamma)+a_{k+1}\left((k+1+r)(k-1+d+r+\gamma) a+(k+1)^{2}+(2 r+\right.$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{a d k a_{k+1}+a d r a_{k+1}+a \gamma k a_{k+1}+a \gamma r a_{k+1}+a k^{2} a_{k+1}+2 a k r a_{k+1}+a r^{2} a_{k+1}+a d a_{k+1}+a \gamma a_{k+1}-a_{k} \alpha \beta-a_{k} \alpha k+\alpha k a_{k+1}-a_{k} c}{}$
- Recursion relation for $r=0$
$a_{k+2}=\frac{a d k a_{k+1}+a \gamma k a_{k+1}+a k^{2} a_{k+1}+a d a_{k+1}+a \gamma a_{k+1}-a_{k} \alpha \beta-a_{k} \alpha k+\alpha k a_{k+1}-a_{k} \beta k+\beta k a_{k+1}-k^{2} a_{k}+k^{2} a_{k+1}-a a_{k+1}+\alpha a_{k+1}}{a(k+2)(k+1+\gamma)}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a d k a_{k+1}+a \gamma k a_{k+1}+a k^{2} a_{k+1}+a d a_{k+1}+a \gamma a_{k+1}-a_{k} \alpha \beta-a_{k} \alpha k+\alpha k a_{k+1}-a_{k} \beta k+\beta k a_{k+1}-k^{2} a_{k}+k^{2} c}{a(k+2)(k+1+\gamma)}\right.
$$

- \quad Recursion relation for $r=-\gamma+1$

$$
a_{k+2}=\frac{-(-\gamma+1)^{2} a_{k}+(-\gamma+1)^{2} a_{k+1}+2(-\gamma+1) a_{k+1}+a d k a_{k+1}+k^{2} a_{k+1}+\alpha a_{k+1}+\beta a_{k+1}+2 k a_{k+1}+q a_{k+1}-k^{2} a_{k}-a a_{k+1}+a \gamma k a_{k}}{}
$$

- \quad Solution for $r=-\gamma+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{-\gamma+k+1}, a_{k+2}=\frac{-(-\gamma+1)^{2} a_{k}+(-\gamma+1)^{2} a_{k+1}+2(-\gamma+1) a_{k+1}+a d k a_{k+1}+k^{2} a_{k+1}+\alpha a_{k+1}+\beta a_{k+1}+2 k a_{k+1}+}{}\right.
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{-\gamma+k+1}\right), b_{k+2}=\frac{a d k b_{1+k}+a \gamma k b_{1+k}+a k^{2} b_{1+k}+a d b_{1+k}+a \gamma b_{1+k}-\alpha \beta b_{k}-\alpha k b_{k}+\alpha k b_{1}-}{a(}\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g
```


Solution by Maple

Time used: 0.578 (sec). Leaf size: 82

```
dsolve(x*(x-1)*(x-a)*diff (y(x), x$2)+((alpha+beta+1)*x^2-(alpha+beta+1+a*(gamma+d)-a)*x+a*gam
```

$$
\begin{aligned}
y(x)= & c_{1} \operatorname{HeunG}\left(a, q, \alpha, \beta, \gamma, \frac{a(d-1)}{a-1}, x\right)+c_{2} x^{1-\gamma} \operatorname{HeunG}(a, q \\
& \left.-(-1+\gamma)(a(d-1)+\alpha+\beta-\gamma+1), \beta+1-\gamma, \alpha+1-\gamma, 2-\gamma, \frac{a(d-1)}{a-1}, x\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.215 (sec). Leaf size: 85
DSolve $\left[\mathrm{x} *(\mathrm{x}-1) *(\mathrm{x}-\mathrm{a}) * \mathrm{y}^{\prime} \mathrm{C}[\mathrm{x}]+\left((\backslash[\right.\right.$ Alpha $]+\backslash[$ Beta $]+1) * \mathrm{x}^{\wedge} 2-(\backslash[$ Alpha $]+\backslash[$ Beta $]+1+\mathrm{a} *(\backslash[$ Gamma $]+\mathrm{d})-\mathrm{a}) *$

$$
\begin{array}{r}
y(x) \rightarrow c_{2} x^{1-\gamma} \text { HeunG }[a, q-(\gamma-1)(a(d-1)+\alpha+\beta-\gamma+1), \alpha-\gamma+1, \beta-\gamma+1,2 \\
\left.-\gamma, \frac{a(d-1)}{a-1}, x\right]+c_{1} \operatorname{HeunG}\left[a, q, \alpha, \beta, \gamma, \frac{a(d-1)}{a-1}, x\right]
\end{array}
$$

31.24 problem 205

31.24.1 Maple step by step solution . 3303

Internal problem ID [11029]
Internal file name [OUTPUT/10285_Sunday_December_31_2023_04_00_00_PM_67352977/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 205.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}-\left(-\lambda^{2}+x^{2}\right) y^{\prime}+(\lambda+x) y=0
$$

31.24.1 Maple step by step solution

Let's solve
$\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\lambda^{2}-x^{2}\right) y^{\prime}+(\lambda+x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(\lambda+x) y}{a x^{3}+b x^{2}+c x+d}-\frac{\left(\lambda^{2}-x^{2}\right) y^{\prime}}{a x^{3}+b x^{2}+c x+d}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(\lambda^{2}-x^{2}\right) y^{\prime}}{a x^{3}+b x^{2}+c x+d}+\frac{(\lambda+x) y}{a x^{3}+b x^{2}+c x+d}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\begin{aligned}
& {\left[P_{2}(x)=\frac{\lambda^{2}-x^{2}}{a x^{3}+b x^{2}+c x+d}, P_{3}(x)=\frac{\lambda+x}{a x^{3}+b x^{2}+c x+d}\right]} \\
& \circ \quad\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}\right.}\right.\right. \\
& \circ\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b}\right.}\right.\right. \\
& \circ \quad x=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-1\right.}
\end{aligned}
$$

Check to see if x_{0} is a regular singular point
$x_{0}=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.}$

- Multiply by denominators
$\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\lambda^{2}-x^{2}\right) y^{\prime}+(\lambda+x) y=0$
- Change variables using $x=u+\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{}{3 a(12 \sqrt{3} \sqrt{ }}$ $\left(\frac{d}{2}-\frac{8 u c b^{2}}{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{2}{3}}}+\frac{\sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}}{18 a}+\frac{u b^{2}}{3 a}\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
0=0
$$

- Values of r that satisfy the indicial equation

$$
r=r
$$

- The coefficients of each power of u must be 0

$$
\left[\begin{array}{l}
a_{0} r\left(240 b^{2} c a-48 b^{4}-48 a b^{4}-432 a^{3} c^{2}-\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}}-12\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}}\right.\right.
\end{array}\right.
$$

- Each term in the series must be 0 , giving the recursion relation

$$
-{ }^{54\left(\left(-\frac{a_{k-1}(k+r-1)(k-2+r) a^{3}}{54}+\left(\frac{(k+1+r)\left(c k+c r-\lambda^{2}\right) a_{k+1}}{54}+\frac{k a_{k-1}}{54}-\frac{a_{k} \lambda}{54}+\frac{r a_{k-1}}{54}-\frac{a_{k-1}}{27}\right) a^{2}+\left(-\frac{(k+1+r)\left((k+r) b^{2}+2 c\right) a_{k+1}}{162}-.\right.\right.\right.}
$$

- \quad Shift index using $k->k+1$

$$
54\left(-\frac{a_{k}(k+r)(k+r-1) a^{3}}{54}+\left(\frac{(k+2+r)\left(c(k+1)+c r-\lambda^{2}\right) a_{k+2}}{54}+\frac{(k+1) a_{k}}{54}-\frac{a_{k+1} \lambda}{54}+\frac{a_{k} r}{54}-\frac{a_{k}}{27}\right) a^{2}+\left(-\frac{(k+2+r)\left((k+1+r) b^{2}+2 c\right) a_{k+2}}{162}-\right.\right.
$$

- Recursion relation that defines series solution to ODE
- Recursion relation for $r=r$
- \quad Solution for $r=r$
- Revert the change of variables $u=x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{-}{-}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    No special function solution was found.
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.5 (sec). Leaf size: 84
dsolve ($\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * \operatorname{diff}(y(x), x \$ 2)-\left(x^{\wedge} 2-\operatorname{lambda}{ }^{\wedge} 2\right) * \operatorname{diff}(y(x), x)+(x+l a m b d a) * y(x)=0, y(x)$

$$
y(x)=(\lambda-x)\left(\left(\int \mathrm{e}^{\int \frac{(1-2 a) x^{3}+(-2 b-\lambda) x^{2}+\left(-\lambda^{2}-2 c\right) x+\lambda^{3}-2 d}{\left(a x^{3}+x^{2} b+c x+d\right)(-\lambda+x)} d x} d x\right) c_{2}-c_{1}\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * y{ }^{\prime \prime}[x]-\left(x^{\wedge} 2-\backslash[L a m b d a] \wedge 2\right) * y '[x]+(x+\backslash[\right.$ Lambda $]) * y[x]==0, y[x], x$, Inclu

Timed out

31.25 problem 206

31.25.1 Solving as second order change of variable on x method 2 ode . 3309
31.25.2 Solving as second order change of variable on x method 1 ode . 3312
31.25.3 Maple step by step solution . 3314

Internal problem ID [11030]
Internal file name [OUTPUT/10286_Sunday_December_31_2023_04_01_02_PM_82853361/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 206.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of__variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
2\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(3 a x^{2}+2 b x+c\right) y^{\prime}+y \lambda=0
$$

31.25.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(3 a x^{2}+2 b x+c\right) y^{\prime}+y \lambda=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3 a x^{2}+2 b x+c}{2 a x^{3}+2 b x^{2}+2 c x+2 d} \\
& q(x)=\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3 a x^{2}+2 b x+c}{2 a x^{3}+2 b x^{2}+2 c x+2 d} d x\right)} d x \\
& =\int e^{-\frac{\ln \left(a x^{3}+b x^{2}+c x+d\right)}{2}} d x \\
& =\int \frac{1}{\sqrt{a x^{3}+b x^{2}+c x+d}} d x \\
& =\text { Expression too large to display } \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}{\frac{1}{a x^{3}+b x^{2}+c x+d}} \\
& =\frac{\lambda}{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{\lambda y(\tau)}{2}=0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=\frac{\lambda}{2}$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\frac{\lambda \mathrm{e}^{\lambda \tau}}{2}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+\frac{\lambda}{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=\frac{\lambda}{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(\frac{\lambda}{2}\right)} \\
& = \pm \frac{\sqrt{-2 \lambda}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{\sqrt{-2 \lambda}}{2} \\
& \lambda_{2}=-\frac{\sqrt{-2 \lambda}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{2} \sqrt{-\lambda}}{2} \\
& \lambda_{2}=-\frac{\sqrt{2} \sqrt{-\lambda}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{\left(\frac{\sqrt{2} \sqrt{ }-\lambda}{2}\right) \tau}+c_{2} e^{\left(-\frac{\sqrt{2} \sqrt{ }-\lambda}{2}\right) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\frac{\sqrt{2} \sqrt{-\lambda} \tau}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{2} \sqrt{-\lambda} \tau}{2}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\text { Expression too large to display }
$$

Summary
The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

31.25.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(3 a x^{2}+2 b x+c\right) y^{\prime}+y \lambda=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3 a x^{2}+2 b x+c}{2 a x^{3}+2 b x^{2}+2 c x+2 d} \\
& q(x)=\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\lambda\left(6 a x^{2}+4 b x+2 c\right)}{2 c \sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)^{2}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\lambda\left(6 a x^{2}+4 b x+2 c\right)}{2 c \sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)^{2}}+\frac{3 a x^{2}+2 b x+c}{2 a x^{3}+2 b x^{2}+2 c x+2 d} \frac{\sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}}{c}}{\left(\frac{\sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{\lambda}{2 a x^{3}+2 b x^{2}+2 c x+2 d}} d x}{c} \\
& =\text { Expression too large to display }
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\text { Expression too large to display }
$$

Summary

The solution(s) found are the following
Expression too large to display

Verification of solutions

Expression too large to display
Warning, solution could not be verified

31.25.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(3 a x^{2}+2 b x+c\right) y^{\prime}+y \lambda=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\lambda y}{2\left(a x^{3}+b x^{2}+c x+d\right)}-\frac{\left(3 a x^{2}+2 b x+c\right) y^{\prime}}{2\left(a x^{3}+b x^{2}+c x+d\right)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(3 a x^{2}+2 b x+c\right) y^{\prime}}{2\left(a x^{3}+b x^{2}+c x+d\right)}+\frac{\lambda y}{2\left(a x^{3}+b x^{2}+c x+d\right)}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\begin{aligned}
& {\left[P_{2}(x)=\frac{3 a x^{2}+2 b x+c}{2\left(a x^{3}+b x^{2}+c x+d\right)}, P_{3}(x)=\frac{\lambda}{2\left(a x^{3}+b x^{2}+c x+d\right)}\right] } \\
\circ & \left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}\right.}\right.\right. \\
\circ & \left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b}\right.}\right.\right. \\
\circ & x=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-1\right.}
\end{aligned}
$$

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.}
$$

- Multiply by denominators

$$
y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(3 a x^{2}+2 b x+c\right) y^{\prime}+y \lambda=0
$$

- \quad Change variables using $x=u+\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{}{3 a(12 \sqrt{3} \sqrt{ }}$

$$
\left(d+\frac{\sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}}{9 a}+\frac{16 b^{6}}{27 a^{2}\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)}-\right.
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
\frac{a_{0} r\left(\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}}-12 c a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-10\right.\right.}{12 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a}\right.}
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$0=0$
- Values of r that satisfy the indicial equation

$$
r=r
$$

- The coefficients of each power of u must be 0
$\left[\frac{a_{0} r\left(\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}}-12 c a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.\right.}{12 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}}\right.}\right.$
- Each term in the series must be 0, giving the recursion relation

- \quad Shift index using $k->k+1$

- Recursion relation that defines series solution to ODE
- Recursion relation for $r=r$
- \quad Solution for $r=r$
- Revert the change of variables $u=x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{-}{3}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
    Solution is available but has integrals. Trying a simpler solution using Kovacics algorit
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
        Solution has integrals. Trying a special function solution free of integrals...
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
                -> Mathieu
                    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        No special function solution was found.
    <- Kovacics algorithm successful
    Solution via Kovacic is not simpler. Returning default solution
    <- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.453 (sec). Leaf size: 67

```
dsolve(2*(a*x^3+b*x^2+c*x+d)*diff(y(x),x$2)+(3*a*x^2+2*b*x+c)*diff(y(x),x)+lambda*y(x)=0,y(x
```

$$
y(x)=c_{1} \mathrm{e}^{i \sqrt{2} \sqrt{\lambda}\left(\int \frac{1}{\sqrt{a x^{3}+x^{2} b+c x+d}}{ }^{2}\right)}+c_{2} \mathrm{e}^{-\frac{i \sqrt{2} \sqrt{\lambda}\left(\int \frac{1}{\sqrt{a x^{3}+x^{2} b+c x+d}} d x\right)}{2}}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[2 *\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * y{ }^{\prime \prime}[x]+\left(3 * a * x^{\wedge} 2+2 * b * x+c\right) * y '[x]+l a m b d a * y[x]==0, y[x], x\right.$, IncludeSin

Timed out

31.26 problem 207

31.26.1 Maple step by step solution . 3319

Internal problem ID [11031]
Internal file name [OUTPUT/10287_Sunday_December_31_2023_04_01_34_PM_76722025/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 207.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
2\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+3\left(3 a x^{2}+2 b x+c\right) y^{\prime}+(6 a x+2 b+\lambda) y=0
$$

31.26.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(9 a x^{2}+6 b x+3 c\right) y^{\prime}+(6 a x+2 b+\lambda) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(6 a x+2 b+\lambda) y}{2\left(a x^{3}+b x^{2}+c x+d\right)}-\frac{3\left(3 a x^{2}+2 b x+c\right) y^{\prime}}{2\left(a x^{3}+b x^{2}+c x+d\right)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3\left(3 a x^{2}+2 b x+c\right) y^{\prime}}{2\left(a x^{3}+b x^{2}+c x+d\right)}+\frac{(6 a x+2 b+\lambda) y}{2\left(a x^{3}+b x^{2}+c x+d\right)}=0
$$

$\square \quad$ Check to see if x_{0} is a regular singular point

- Define functions

$$
\begin{aligned}
& {\left[P_{2}(x)=\frac{3\left(3 a x^{2}+2 b x+c\right)}{2\left(a x^{3}+b x^{2}+c x+d\right)}, P_{3}(x)=\frac{6 a x+2 b+\lambda}{2\left(a x^{3}+b x^{2}+c x+d\right)}\right]} \\
& \circ \quad\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}\right.}\right.\right. \\
& \circ\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b}\right.}\right.\right. \\
& \bigcirc \quad x=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-1\right.}
\end{aligned}
$$

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.}
$$

- Multiply by denominators
$y^{\prime \prime}\left(2 a x^{3}+2 b x^{2}+2 c x+2 d\right)+\left(9 a x^{2}+6 b x+3 c\right) y^{\prime}+(6 a x+2 b+\lambda) y=0$
Change variables using $x=u+\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-$
$\overline{3 a(12 \sqrt{3} \sqrt{ }}$ $\left(d+\frac{\sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}}{9 a}+\frac{16 b^{6}}{27 a^{2}\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)}-\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions

$$
\frac{a_{o} r\left(\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}}-12 c a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-10\right.\right.}{12 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a a^{2}}\right.}
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$0=0$
- Values of r that satisfy the indicial equation

$$
r=r
$$

- The coefficients of each power of u must be 0

$$
\left[\frac{a_{0} r\left(\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}}-12 c a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.\right.}{12 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a} c^{3}\right.}\right.
$$

- Each term in the series must be 0 , giving the recursion relation
$-108\left(\frac{\left(-(k+1+r) a_{k-1}\left(k+r+\frac{1}{2}\right) a^{2}+\left((k+1+r) c\left(k+r+\frac{3}{2}\right) a_{k+1}-\frac{a_{k} \lambda}{2}\right) a-\frac{(k+1+r) a_{k+1} b^{2}\left(k+r+\frac{3}{2}\right)}{3}\right)\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}+\left(-18 a b c+4 b^{3}\right) d+4 a}\right.}{5^{54}}\right.$
- \quad Shift index using $k->k+1$

- Recursion relation that defines series solution to ODE
- Recursion relation for $r=r$
- \quad Solution for $r=r$
- Revert the change of variables $u=x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{-}{3}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    No special function solution was found.
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.531 (sec). Leaf size: 101

```
dsolve(2*(a*x^3+b*x^2+c*x+d)*diff(y(x),x$2)+3*(3*a*x^2+2*b*x+c)*diff (y (x),x)+(6*a*x+2*b+lamb
```

$$
\frac{\mathrm{e}^{\left.\frac{\sqrt{2} \sqrt{-\frac{\lambda}{a}}\left(\int \frac{1}{\sqrt{\underline{a x^{3}+x^{2} b+c x+d}}} \frac{2}{a}\right.}{}+c_{2} \mathrm{e}^{-\frac{\sqrt{2} \sqrt{-\frac{\lambda}{a}}}{}\left(\int \frac{1}{\sqrt{\frac{a^{3}+x^{2} b+c x+d}{a}}} d x\right.}\right)}}{\sqrt{a x^{3}+x^{2} b+c x+d}}
$$

\checkmark Solution by Mathematica
Time used: 135.727 (sec). Leaf size: 3202
DSolve $\left[2 *\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * y{ }^{\prime} \quad[x]+3 *\left(3 * a * x^{\wedge} 2+2 * b * x+c\right) * y '[x]+(6 * a * x+2 * b+\backslash[\right.$ Lambda $]) * y[x]==0$,
Too large to display

31.27 problem 208

31.27.1 Maple step by step solution . 3325

Internal problem ID [11032]
Internal file name [OUTPUT/10288_Sunday_December_31_2023_04_01_43_PM_42673453/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 208.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\alpha x^{2}+(\alpha \gamma+\beta) x+\beta \lambda\right) y^{\prime}-(x \alpha+\beta) y=0
$$

31.27.1 Maple step by step solution

Let's solve
$\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\alpha x^{2}+(\alpha \gamma+\beta) x+\beta \lambda\right) y^{\prime}+(-x \alpha-\beta) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(x \alpha+\beta) y}{a x^{3}+b x^{2}+c x+d}-\frac{\left(\alpha \gamma x+\alpha x^{2}+\beta \lambda+\beta x\right) y^{\prime}}{a x^{3}+b x^{2}+c x+d}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(\alpha \gamma x+\alpha x^{2}+\beta \lambda+\beta x\right) y^{\prime}}{a x^{3}+b x^{2}+c x+d}-\frac{(x \alpha+\beta) y}{a x^{3}+b x^{2}+c x+d}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\begin{aligned}
& {\left[P_{2}(x)=\frac{\alpha \gamma x+\alpha x^{2}+\beta \lambda+\beta x}{a x^{3}+b x^{2}+c x+d}, P_{3}(x)=-\frac{x \alpha+\beta}{a x^{3}+b x^{2}+c x+d}\right]} \\
& \circ \quad\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}\right.}\right.\right. \\
& \bigcirc \quad\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a\right.}\right. \\
& \left(\left(x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b}\right.}\right.\right. \\
& \circ \quad x=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-1\right.}
\end{aligned}
$$

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{2\left(3 a c-b^{2}\right)}{3 a\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-\right.}
$$

- Multiply by denominators
$\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\alpha \gamma x+\alpha x^{2}+\beta \lambda+\beta x\right) y^{\prime}+(-x \alpha-\beta) y=0$
- \quad Change variables using $x=u+\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}-\frac{}{3 a(12 \sqrt{3} \sqrt{ }}$ $\left(\frac{d}{2}+a u^{3}+\frac{\sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}}}{18 a}+\frac{8 b^{6}}{27 a^{2}\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8\right.}\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
0=0
$$

- Values of r that satisfy the indicial equation

$$
r=r
$$

- The coefficients of each power of u must be 0
$\left[a_{0} r\left(-48 \beta a b^{3}-48 a b^{4}-432 a^{3} c^{2}-3\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{4}{3}} a-648 a^{3} \alpha d \gamma-48 a \alpha b^{3} \gamma\right.\right.$
- Each term in the series must be 0, giving the recursion relation

- \quad Shift index using $k->k+1$
$54\left(\frac{\left(-\frac{a_{k}(k+r)(k+r-1) a^{3}}{2}+\left(-\frac{(k+2+r)(\beta \lambda-c(k+1)-c r) a_{k+2}}{2}+\frac{\left(\left(-\gamma a_{k+1}-a_{k}\right) \alpha-a_{k+1} \beta\right)(k+1)}{2}+\frac{\left(\left(-\gamma a_{k+1}-a_{k}\right) \alpha-a_{k+1} \beta\right) r}{2}+a_{k} \alpha+\frac{a}{}\right.\right.}{}\right.$
- Recursion relation that defines series solution to ODE
- Recursion relation for $r=r$
- \quad Solution for $r=r$
- Revert the change of variables $u=x-\frac{\left(12 \sqrt{3} \sqrt{27 a^{2} d^{2}-18 a b c d+4 a c^{3}+4 b^{3} d-c^{2} b^{2}} a-108 d a^{2}+36 a b c-8 b^{3}\right)^{\frac{1}{3}}}{6 a}+-$

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear $\mathrm{QDF}_{2} 9^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
X Solution by Maple
dsolve ((a*x^3+b*x^2+c*x+d)*diff(y(x),x\$2)+(alpha*x^2+(alpha*gamma+beta)*x+beta*lambda)*diff(

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

Timed out

31.28 problem 209

Internal problem ID [11033]
Internal file name [OUTPUT/10289_Sunday_December_31_2023_04_04_24_PM_7610360/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 209.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{3}+b x^{2}+c x+d\right) y^{\prime \prime}+\left(\lambda^{3}+x^{3}\right) y^{\prime}-\left(\lambda^{2}-\lambda x+x^{2}\right) y=0
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    No special function solution was found.
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.532 (sec). Leaf size: 76
dsolve($\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * \operatorname{diff}(y(x), x \$ 2)+\left(x^{\wedge} 3+l a m b d a^{\wedge} 3\right) * \operatorname{diff}(y(x), x)-\left(x^{\wedge} 2-l a m b d a * x+l a m b d a \wedge 2\right.$

$$
\left.y(x)=(x+\lambda)\left(\left(\int \mathrm{e}^{-\left(\int \frac{x^{4}+(2 a+\lambda) x^{3}+2 x^{2} b+\left(\lambda^{3}+2 c\right) x+\lambda^{4}+2 d}{\left(a x^{3}+x^{2} b+c x+d\right)(x+\lambda)} d x\right.}\right) d x\right) c_{2}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.343 (sec). Leaf size: 240
DSolve $\left[\left(a * x^{\wedge} 3+b * x^{\wedge} 2+c * x+d\right) * y^{\prime \prime}[x]+\left(x^{\wedge} 3+\backslash\left[\right.\right.\right.$ Lambda $\left.{ }^{\wedge} 3\right) * y$ ' $[x]-\left(x^{\wedge} 2-\backslash[\right.$ Lambda $\left.] * x+\backslash[L a m b d a] \wedge 2\right) * y[x]$
$y(x)$

$$
\begin{aligned}
& c_{2}(\lambda+x) \int_{1}^{x} \exp \left(-\frac{\lambda+K[1]+2 a \log (\lambda+K[1])+\operatorname{RootSum}\left[-a \lambda^{3}+b \lambda^{2}+3 a \# 1 \lambda^{2}-3 a \# 1^{2} \lambda-c \lambda-2 b \# 1 \lambda+a \# 1^{3}+b \# 1^{2}+d+c \neq 7\right.}{}\right. \\
& \quad+\frac{c_{1}(\lambda+x)}{\lambda}
\end{aligned}
$$

31.29 problem 210

Internal problem ID [11034]
Internal file name [OUTPUT/10290_Sunday_December_31_2023_04_06_32_PM_17535480/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-6 Equation of form $\left(a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 210.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
2 x\left(a x^{2}+b x+c\right) y^{\prime \prime}+\left(a(2-k) x^{2}+b(-k+1) x-c k\right) y^{\prime}+\lambda x^{1+k} y=0
$$

X Solution by Maple
dsolve ($2 * x\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)+\left(a *(2-k) * x^{\wedge} 2+b *(1-k) * x-c * k\right) * \operatorname{diff}(y(x), x)+\left(l a m b d a * x^{\wedge}(k\right.$

No solution found

Solution by Mathematica

Time used: 157.344 (sec). Leaf size: 790
DSolve $\left[2 * \mathrm{x}\left(\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right) * \mathrm{y}^{\prime} \cdot[\mathrm{x}]+\left(\mathrm{a} *(2-\mathrm{k}) * \mathrm{x}^{\wedge} 2+\mathrm{b} *(1-\mathrm{k}) * \mathrm{x}-\mathrm{c} * \mathrm{k}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\left(\backslash[\right.\right.$ Lambda $\left.] * \mathrm{x}^{\wedge}(\mathrm{k}+1)\right) * \mathrm{y}[\mathrm{x}]==0$
$y(x)$
$\rightarrow \frac{\sqrt{2} \sqrt{c_{1}} \tan \left(\frac{\sqrt{2} x \sqrt{\frac{-\sqrt{b^{2}-4 a c}+2 a x+b}{b-\sqrt{b^{2}-4 a c}}} \sqrt{\frac{\sqrt{b^{2}-4 a c}+2 a x+b}{\sqrt{b^{2}-4 a c+b}}} \operatorname{AppellF1}\left(\frac{k+2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{k+4}{2},-\frac{2 a x}{b+\sqrt{b^{2}-4 a c}}, \frac{2 a x}{\sqrt{b^{2}-4 a c-b}}\right)}{\left.(k+2) \sqrt{\frac{x^{-k(x(a x+b)+c)}}{\lambda}}-c_{2}\right)}\right.}{\sqrt{-1-\tan ^{2}\left(\frac{\sqrt{2 x} \sqrt{\frac{-\sqrt{b^{2}-4 a c}+2 a x+b}{b-\sqrt{b^{2}-4 a c}}} \sqrt{\frac{\sqrt{b^{2}-4 a c+2 a x+b}}{\sqrt{b^{2}-4 a c+b}}} \operatorname{AppellF}\left(\frac{k+2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{k+4}{2},-\frac{2 a x}{b+\sqrt{b^{2}-4 a c}}, \frac{2 a x}{\sqrt{b^{2}-4 a c}-b}\right.}{(k+2) \sqrt{\frac{x^{-k}(x(a x+b)+c)}{\lambda}}}-c_{2}\right)}}$
$y(x) \rightarrow$
$y(x) \rightarrow$

$$
\frac{\sqrt{2} \sqrt{c_{1}} \tan \left(\frac{\sqrt{2 x} \sqrt{\frac{-\sqrt{b^{2}-4 a c}+2 a x+b}{b-\sqrt{b^{2}-4 a c}}} \sqrt{\frac{\sqrt{b^{2}-4 a c}+2 a x+b}{\sqrt{b^{2}-4 a c+b}}} \operatorname{AppellF}\left(\frac{k+2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{k+4}{2},-\frac{2 a x}{b+\sqrt{b^{2}-4 a c}}, \frac{2 a x}{\sqrt{b^{2}-4 a c-b}}\right)}{(k+2) \sqrt{\frac{x^{-k}(x(a x+b)+c)}{\lambda}}}+c_{2}\right)}{\sqrt{-1-\tan ^{2}\left(\frac{\sqrt{2} x \sqrt{\frac{-\sqrt{b^{2}-4 a c+2 a x+b}}{b-\sqrt{b^{2}-4 a c}}} \sqrt{\frac{\sqrt{b^{2}-4 a c}+2 a x+b}{\sqrt{b^{2}-4 a c+b}}} \operatorname{AppellF1}\left(\frac{k+2}{2}, \frac{1}{2}, \frac{1}{2}, \frac{k+4}{2},-\frac{2 a x}{b+\sqrt{b^{2}-4 a c}}, \frac{2 a x}{\sqrt{b^{2}-4 a c-b}}\right)}{(k+2) \sqrt{\frac{x^{-k}(x(a x+b)+c)}{\lambda}}}+c_{2}\right)}}
$$

32 Chapter 2, Second-Order DifferentialEquations. section 2.1.2-7 Equation of form
$\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
32.1 problem 211 3337
32.2 problem 212 3345
32.3 problem 213 3348
32.4 problem 214 3356
32.5 problem 215 3366
32.6 problem 216 3369
32.7 problem 217 3380
32.8 problem 218 3397
32.9 problem 219 3403
32.10problem 220 3408
32.11problem 221 3416
32.12problem 222 A 3427
32.13problem 222 B 3437
32.14 problem 223 3447
32.15problem 224 3455
32.16 problem 225 3467
32.17problem 226 3472
32.18problem 227 3477
32.19problem 228 3482
32.20problem 229 3493
32.21 problem 230 3500
32.22problem 231 3503
32.23problem 232 3506
32.24problem 233 3517
32.25 problem 234 3531
32.26 problem 235 3544
32.27 problem 236 3550
32.28problem 237 3553

32.1 problem 211

32.1.1 Solving as second order bessel ode ode 3337
32.1.2 Solving using Kovacic algorithm 3338

Internal problem ID [11035]
Internal file name [OUTPUT/10291_Wednesday_January_24_2024_10_06_22_PM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 211.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode" Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x^{4} y^{\prime \prime}+a y=0
$$

32.1.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{a y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{a} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Verified OK.

32.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{4} y^{\prime \prime}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{4} \\
& B=0 \tag{3}\\
& C=a
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-a}{x^{4}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-a \\
& t=x^{4}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{a}{x^{4}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi- | no condition |
| tion is satisfied. Hence the following | | |
| set of pole orders are all allowed. | | |
| $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 195: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{4}$. There is a pole at $x=0$ of order 4 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one).Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(x-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of \sqrt{r} expanded around each pole c. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
$$

Let a be the coefficient of the term $\frac{1}{(x-c)^{v}}$ in the above where v is the pole order divided by 2 . Let b be the coefficient of $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of $\frac{1}{(x-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of r is

$$
r=-\frac{a}{x^{4}}
$$

There is pole in r at $x=0$ of order 4 , hence $v=2$. Expanding \sqrt{r} as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{i \sqrt{a}}{x^{2}}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=2$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{i \sqrt{a}}{x^{2}} \tag{3B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(x-0)^{2}}$ is

$$
a=i \sqrt{a}
$$

Now we need to find b. let b be the coefficient of the term $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of the same term but in the sum $[\sqrt{r}]_{c}$ found in eq. (3B). Here c is current pole which is $c=0$. This term becomes $\frac{1}{x^{3}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term r is found from the partial fraction decomposition from above to be 0 . Therefore

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& {[\sqrt{r}]_{c} }=\frac{i \sqrt{a}}{x^{2}} \\
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{0}{i \sqrt{a}}+2\right)=1 \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{0}{i \sqrt{a}}+2\right)=1
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{a}{x^{4}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 4 | $\frac{i \sqrt{a}}{x^{2}}$ | 1 | 1 |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{i \sqrt{a}}{x^{2}}+\frac{1}{x}+(-)(0) \\
& =-\frac{i \sqrt{a}}{x^{2}}+\frac{1}{x} \\
& =\frac{-i \sqrt{a}+x}{x^{2}}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{i \sqrt{a}}{x^{2}}+\frac{1}{x}\right)(0)+\left(\left(\frac{2 i \sqrt{a}}{x^{3}}-\frac{1}{x^{2}}\right)+\left(-\frac{i \sqrt{a}}{x^{2}}+\frac{1}{x}\right)^{2}-\left(-\frac{a}{x^{4}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{i \sqrt{a}}{x^{2}}+\frac{1}{x}\right) d x} \\
& =x \mathrm{e}^{\frac{i \sqrt{a}}{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =x \mathrm{e}^{\frac{i \sqrt{a}}{x}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x \mathrm{e}^{\frac{i \sqrt{a}}{x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =x \mathrm{e}^{\frac{i \sqrt{a}}{x}} \int \frac{1}{x^{2} \mathrm{e}^{\frac{2 i \sqrt{a}}{x}}} d x \\
& =x \mathrm{e}^{\frac{i \sqrt{a}}{x}}\left(-\frac{i \mathrm{e}^{-\frac{2 i \sqrt{a}}{x}}}{2 \sqrt{a}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{\frac{i \sqrt{a}}{x}}\right)+c_{2}\left(x \mathrm{e}^{\frac{i \sqrt{a}}{x}}\left(-\frac{i \mathrm{e}^{-\frac{2 i \sqrt{a}}{x}}}{2 \sqrt{a}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{i \sqrt{a}}{x}}-\frac{i c_{2} x \mathrm{e}^{-\frac{i \sqrt{a}}{x}}}{2 \sqrt{a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{\frac{i \sqrt{a}}{x}}-\frac{i c_{2} x \mathrm{e}^{-\frac{i \sqrt{a}}{x}}}{2 \sqrt{a}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

```
dsolve(x^4*diff(y(x),x$2)+a*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x\left(c_{1} \sinh \left(\frac{\sqrt{-a}}{x}\right)+c_{2} \cosh \left(\frac{\sqrt{-a}}{x}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 52

```
DSolve[x^4*y''[x]+a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} x e^{\frac{i \sqrt{a}}{x}}-\frac{i c_{2} x e^{-\frac{i \sqrt{a}}{x}}}{2 \sqrt{a}}
$$

32.2 problem 212

32.2.1 Solving as second order bessel ode ode

3345
Internal problem ID [11036]
Internal file name [OUTPUT/10292_Wednesday_January_24_2024_10_06_23_PM_69199443/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 212.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{4} y^{\prime \prime}+\left(a x^{2}+b x+c\right) y=0
$$

32.2.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(a+\frac{b}{x}+\frac{c}{x^{2}}\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =\sqrt{1-4 a} \\
\gamma & =\frac{1}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{1-4 a}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{1-4 a}, 2 \sqrt{x})
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{1-4 a}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{1-4 a}, 2 \sqrt{x}) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}(\sqrt{1-4 a}, 2 \sqrt{x})+c_{2} \sqrt{x} \operatorname{BesselY}(\sqrt{1-4 a}, 2 \sqrt{x})
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 63
dsolve $\left(x^{\wedge} 4 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} 2+b * x+c\right) * y(x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=x\left(c_{1} \text { WhittakerM }\left(-\frac{i b}{2 \sqrt{c}}, \frac{\sqrt{-4 a+1}}{2}, \frac{2 i \sqrt{c}}{x}\right)\right. \\
&\left.+c_{2} \text { WhittakerW }\left(-\frac{i b}{2 \sqrt{c}}, \frac{\sqrt{-4 a+1}}{2}, \frac{2 i \sqrt{c}}{x}\right)\right)
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[x^4*y' ' $[x]+\left(a * x^{\wedge} 2+b * x+c\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
Not solved

32.3 problem 213

32.3.1 Solving using Kovacic algorithm 3348

Internal problem ID [11037]
Internal file name [OUTPUT/10293_Wednesday_January_24_2024_10_06_24_PM_85874191/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 213.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{4} y^{\prime \prime}-(a+b) x^{2} y^{\prime}+((a+b) x+a b) y=0
$$

32.3.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{4} y^{\prime \prime}-(a+b) x^{2} y^{\prime}+(a(x+b)+b x) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{4} \\
& B=-x^{2}(a+b) \tag{3}\\
& C=a(x+b)+b x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{a^{2}-2 a b+b^{2}}{4 x^{4}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=a^{2}-2 a b+b^{2} \\
& t=4 x^{4}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2}-2 a b+b^{2}}{4 x^{4}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 196: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{4}$. There is a pole at $x=0$ of order 4 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one). Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(x-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of \sqrt{r} expanded around each pole c. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
$$

Let a be the coefficient of the term $\frac{1}{(x-c)^{v}}$ in the above where v is the pole order divided by 2 . Let b be the coefficient of $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of $\frac{1}{(x-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of r is

$$
r=\frac{\frac{1}{4} a^{2}-\frac{1}{2} a b+\frac{1}{4} b^{2}}{x^{4}}
$$

There is pole in r at $x=0$ of order 4 , hence $v=2$. Expanding \sqrt{r} as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=2$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}} \tag{3B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(x-0)^{2}}$ is

$$
a=\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2}
$$

Now we need to find b. let b be the coefficient of the term $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of the same term but in the sum $[\sqrt{r}]_{c}$ found in eq. (3B). Here c is current pole which is $c=0$. This term becomes $\frac{1}{x^{3}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term r is found from the partial fraction decomposition from above to be 0 . Therefore

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& {[\sqrt{r}]_{c} }=\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}} \\
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \quad \\
&=\frac{1}{2}\left(\frac{0}{\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2}}+2\right)=1 \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right) \quad=\frac{1}{2}\left(-\frac{0}{\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2}}+2\right)=1
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{a^{2}-2 a b+b^{2}}{4 x^{4}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 4 | $\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}$ | 1 | 1 |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\frac{1}{x}+(-)(0) \\
& =-\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\frac{1}{x} \\
& =\frac{-\sqrt{(a-b)^{2}}+2 x}{2 x^{2}}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\frac{1}{x}\right)(0)+\left(\left(\frac{\sqrt{a^{2}-2 a b+b^{2}}}{x^{3}}-\frac{1}{x^{2}}\right)+\left(-\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\frac{1}{x}\right)^{2}-\left(\frac{a^{2}-}{}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{\sqrt{a^{2}-2 a b+b^{2}}}{2 x^{2}}+\frac{1}{x}\right) d x} \\
& =x \mathrm{e}^{\frac{\operatorname{csgn}(a-b)(a-b)}{2 x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-x^{2}(a+b)}{x^{4}} d x} \\
& =z_{1} e^{-\frac{a}{2}+\frac{b}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a+b}{2 x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x \mathrm{e}^{\frac{\operatorname{csgn}(a-b)(a-b)-b-a}{2 x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x^{2}(a+b)}{x^{4}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{-a-b}{x}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{-\frac{\operatorname{csgn}(a-b)(a-b)}{x}} \operatorname{csgn}(a-b)}{a-b}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{\frac{\operatorname{csgn}(a-b)(a-b)-b-a}{2 x}}\right)+c_{2}\left(x \mathrm{e}^{\frac{\operatorname{csgn}(a-b)(a-b)-b-a}{2 x}}\left(\frac{\mathrm{e}^{-\frac{\operatorname{csgn}(a-b)(a-b)}{x}} \operatorname{csgn}(a-b)}{a-b}\right)\right)
\end{aligned}
$$

Simplifying the solution $y=c_{1} x \mathrm{e}^{\frac{\operatorname{cssn}(a-b)(a-b)-b-a}{2 x}}+\frac{c_{2} x \mathrm{e}^{\frac{(b-a) \operatorname{csgn}(a-b)-b-a}{2 x}}}{\sqrt{(a-b)^{2}}}$ to $y=c_{1} x \mathrm{e}^{-\frac{b}{x}}+$ Summary
The solution(s) found are the following

$$
\frac{c_{2} x \mathrm{e}^{-\frac{a}{x}}}{\sqrt{(a-b)^{2}}}
$$

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{b}{x}}+\frac{c_{2} x \mathrm{e}^{-\frac{a}{x}}}{\sqrt{(a-b)^{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{b}{x}}+\frac{c_{2} x \mathrm{e}^{-\frac{a}{x}}}{\sqrt{(a-b)^{2}}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

```
dsolve(x^4*\operatorname{diff (y (x),x$2)-(a+b)*x^2*diff (y (x), x) +((a+b)*x+a*b)*y (x)=0,y(x), singsol=all)}
```

$$
y(x)=x\left(\mathrm{e}^{-\frac{a}{x}} c_{1}+\mathrm{e}^{-\frac{b}{x}} c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 37
DSolve $\left[x^{\wedge} 4 * y^{\prime}{ }^{\prime}[\mathrm{x}]-(\mathrm{a}+\mathrm{b}) * \mathrm{x}^{\wedge} 2 * \mathrm{y}\right.$ ' $[\mathrm{x}]+((\mathrm{a}+\mathrm{b}) * \mathrm{x}+\mathrm{a} * \mathrm{~b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow T

$$
y(x) \rightarrow \frac{c_{2} x e^{-\frac{a}{x}}}{a-b}+c_{1} x e^{-\frac{b}{x}}
$$

32.4 problem 214

32.4.1 Solving as second order change of variable on x method 2 ode . 3356
32.4.2 Solving using Kovacic algorithm 3359

Internal problem ID [11038]
Internal file name [OUTPUT/10294_Wednesday_January_24_2024_10_06_25_PM_38663670/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 214.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_cvariable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{4} y^{\prime \prime}+2 x^{2}(x+a) y^{\prime}+y b=0
$$

32.4.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{4} y^{\prime \prime}+2 x^{2}(x+a) y^{\prime}+y b=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 x+2 a}{x^{2}} \\
& q(x)=\frac{b}{x^{4}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2 x+2 a}{x^{2}} d x\right)} d x \\
& =\int e^{\frac{2 a}{x}-2 \ln (x)} d x \\
& =\int \frac{\mathrm{e}^{\frac{2 a}{x}}}{x^{2}} d x \\
& =-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{b}{x^{4}}}{\frac{e^{\frac{4 a}{x}}}{x^{4}}} \\
& =b \mathrm{e}^{-\frac{4 a}{x}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b \mathrm{e}^{-\frac{4 a}{x}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
b \mathrm{e}^{-\frac{4 a}{x}}=\frac{b}{4 a^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{b y(\tau)}{4 a^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) a^{2} \tau^{2}+b y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 a^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+b \tau^{r}=0
$$

Simplifying gives

$$
4 a^{2} r(r-1) \tau^{r}+0 \tau^{r}+b \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 a^{2} r(r-1)+0+b=0
$$

Or

$$
\begin{equation*}
4 a^{2} r^{2}-4 a^{2} r+b=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-a+\sqrt{a^{2}-b}}{2 a} \\
& r_{2}=\frac{a+\sqrt{a^{2}-b}}{2 a}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-a+\sqrt{a^{2}-b}}{2 a}}+c_{2} \tau^{\frac{a+\sqrt{a^{2}-b}}{2 a}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{-\frac{-a+\sqrt{a^{2}-b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{\frac{a+\sqrt{a^{2}-b}}{2 a}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{-\frac{-a+\sqrt{a^{2}-b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{\frac{a+\sqrt{a^{2}-b}}{2 a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{-\frac{-a+\sqrt{a^{2}-b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{2 a}{x}}}{2 a}\right)^{\frac{a+\sqrt{a^{2}-b}}{2 a}}
$$

Verified OK.

32.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{4} y^{\prime \prime}+2 x^{2}(x+a) y^{\prime}+y b & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{4} \\
& B=2 x^{2}(x+a) \tag{3}\\
& C=b
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{a^{2}-b}{x^{4}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=a^{2}-b \\
& t=x^{4}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a^{2}-b}{x^{4}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is | no condition |
| allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 197: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{4}$. There is a pole at $x=0$ of order 4 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one).Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(x-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of \sqrt{r} expanded around each pole c. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
$$

Let a be the coefficient of the term $\frac{1}{(x-c)^{v}}$ in the above where v is the pole order divided by 2 . Let b be the coefficient of $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of $\frac{1}{(x-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of r is

$$
r=\frac{a^{2}-b}{x^{4}}
$$

There is pole in r at $x=0$ of order 4 , hence $v=2$. Expanding \sqrt{r} as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{\sqrt{a^{2}-b}}{x^{2}}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=2$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{\sqrt{a^{2}-b}}{x^{2}} \tag{3B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(x-0)^{2}}$ is

$$
a=\sqrt{a^{2}-b}
$$

Now we need to find b. let b be the coefficient of the term $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of the same term but in the sum $[\sqrt{r}]_{c}$ found in eq. (3B). Here c is current pole which is $c=0$. This term becomes $\frac{1}{x^{3}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term r is found from the partial fraction decomposition from above to be 0 . Therefore

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =\frac{\sqrt{a^{2}-b}}{x^{2}} \\
\alpha_{c}^{+} & =\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{0}{\sqrt{a^{2}-b}}+2\right)=1 \\
\alpha_{c}^{-} & =\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{0}{\sqrt{a^{2}-b}}+2\right)=1
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{a^{2}-b}{x^{4}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 4 | $\frac{\sqrt{a^{2}-b}}{x^{2}}$ | 1 | 1 |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{\sqrt{a^{2}-b}}{x^{2}}+\frac{1}{x}+(-)(0) \\
& =-\frac{\sqrt{a^{2}-b}}{x^{2}}+\frac{1}{x} \\
& =\frac{-\sqrt{a^{2}-b}+x}{x^{2}}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{\sqrt{a^{2}-b}}{x^{2}}+\frac{1}{x}\right)(0)+\left(\left(\frac{2 \sqrt{a^{2}-b}}{x^{3}}-\frac{1}{x^{2}}\right)+\left(-\frac{\sqrt{a^{2}-b}}{x^{2}}+\frac{1}{x}\right)^{2}-\left(\frac{a^{2}-b}{x^{4}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{\sqrt{a^{2}-b}}{x^{2}}+\frac{1}{x}\right) d x} \\
& =x \mathrm{e}^{\frac{\sqrt{a^{2}-b}}{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x^{2}(x+a)}{x^{4}} d x} \\
& =z_{1} e^{\frac{a}{x}-\ln (x)} \\
& =z_{1}\left(\frac{\mathrm{e}^{\frac{a}{x}}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x^{2}(x+a)}{x^{4}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{2 a}{x}-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{-\frac{2 \sqrt{a^{2}-b}}{x}}}{2 \sqrt{a^{2}-b}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}\right)+c_{2}\left(\mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}\left(\frac{\mathrm{e}^{-\frac{2 \sqrt{a^{2}-b}}{x}}}{2 \sqrt{a^{2}-b}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}+\frac{c_{2} \mathrm{e}^{\frac{a-\sqrt{a^{2}-b}}{x}}}{2 \sqrt{a^{2}-b}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}+\frac{c_{2} \mathrm{e}^{\frac{a-\sqrt{a^{2}-b}}{x}}}{2 \sqrt{a^{2}-b}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(x^4*\operatorname{diff}(y(x),x$2)+2*x^2*(x+a)*diff(y(x),x)+b*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{a-\sqrt{a^{2}-b}}{x}}+c_{2} \mathrm{e}^{\frac{a+\sqrt{a^{2}-b}}{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 51
DSolve $\left[x^{\wedge} 4 * y\right.$ ' ' $[x]+2 * x^{\wedge} 2 *(x+a) * y$ ' $[x]+b * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{\frac{a-\sqrt{a^{2}-b}}{x}}\left(c_{1} e^{\frac{2 \sqrt{a^{2}-b}}{x}}+c_{2}\right)
$$

32.5 problem 215

Internal problem ID [11039]
Internal file name [OUTPUT/10295_Wednesday_January_24_2024_10_06_25_PM_81868881/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 215.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x^{4} y^{\prime \prime}+a x^{n} y^{\prime}-\left(a x^{n-1}+a b x^{n-2}+b^{2}\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationalfform of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve ($x^{\wedge} 4 * \operatorname{diff}(y(x), x \$ 2)+a * x^{\wedge} n * \operatorname{diff}(y(x), x)-\left(a * x^{\wedge}(n-1)+a * b * x^{\wedge}(n-2)+b^{\wedge} 2\right) * y(x)=0, y(x)$, singso

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 4 * y{ }^{\prime \prime}[x]+a * x^{\wedge} n * y{ }^{\prime}[x]-\left(a * x^{\wedge}(n-1)+a * b * x^{\wedge}(n-2)+b^{\wedge} 2\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolu

Not solved

32.6 problem 216

32.6.1 Solving as second order bessel ode ode 3369
32.6.2 Solving using Kovacic algorithm 3370
32.6.3 Maple step by step solution . 3376

Internal problem ID [11040]
Internal file name [OUTPUT/10296_Wednesday_January_24_2024_10_06_26_PM_32998932/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 216.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2}(x-a)^{2} y^{\prime \prime}+y b=0
$$

32.6.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{b y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{b} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}
$$

Verified OK.

32.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}(a-x)^{2}+y b & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}(a-x)^{2} \\
& B=0 \tag{3}\\
& C=b
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-b}{\left(a x-x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-b \\
& t=\left(a x-x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{b}{\left(a x-x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 198: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a x-x^{2}\right)^{2}$. There is a pole at $x=0$ of order 2 . There is a pole at $x=a$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{b}{a^{2} x^{2}}-\frac{b}{a^{2}(x-a)^{2}}+\frac{2 b}{a^{3}(x-a)}-\frac{2 b}{a^{3} x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b}{a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

For the pole at $x=a$ let b be the coefficient of $\frac{1}{(x-a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b}{a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{b}{\left(a x-x^{2}\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}$ |
| a | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $\left[\sqrt{r}_{c}\right.$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a} \\
& =\frac{\sqrt{a^{2}-4 b}-a+2 x}{2 x(x-a)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{(x-a)^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{x-a}}{x-a}\right.}\right) d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \int \frac{1}{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{a}}} d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\right) \\
& +c_{2}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \\
& +c_{2} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \\
& +c_{2} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

Verified OK.

32.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}(a-x)^{2}+y b=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{b y}{x^{2}(a-x)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{b y}{x^{2}(a-x)^{2}}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=\frac{b}{x^{2}(a-x)^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{b}{a^{2}}$
- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}(a-x)^{2}+y b=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .4$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}$
- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}\left(a^{2} r^{2}-a^{2} r+b\right) x^{r}+\left(\left(a^{2} r^{2}+a^{2} r+b\right) a_{1}-2 a_{0} r(-1+r) a\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}\left(a^{2} k^{2}+2 a^{2} k r+a\right.\right.\right.$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$a^{2} r^{2}-a^{2} r+b=0$
- Values of r that satisfy the indicial equation
$r \in\left\{\frac{\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}}{a}, \frac{\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}}{a}\right\}$
- \quad Each term must be 0
$\left(a^{2} r^{2}+a^{2} r+b\right) a_{1}-2 a_{0} r(-1+r) a=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{2 a_{0} r(-1+r) a}{a^{2} r^{2}+a^{2} r+b}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r)(k+r-1) a^{2}-2 a_{k-1}(k+r-1)(k-2+r) a+k^{2} a_{k-2}+a_{k-2}(2 r-5) k+r^{2} a_{k-2}+c$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+2+r)(k+1+r) a^{2}-2 a_{k+1}(k+1+r)(k+r) a+(k+2)^{2} a_{k}+a_{k}(2 r-5)(k+2)+$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{2 a k^{2} a_{k+1}+4 a k r a_{k+1}+2 a r^{2} a_{k+1}+2 a k a_{k+1}+2 a r a_{k+1}-k^{2} a_{k}-2 k r a_{k}-r^{2} a_{k}+a_{k} k+a_{k} r}{a^{2} k^{2}+2 a^{2} k r+a^{2} r^{2}+3 a^{2} k+3 a^{2} r+2 a^{2}+b}$
- Recursion relation for $r=\frac{\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}}{a}$

$$
a_{k+2}=\frac{2 a k^{2} a_{k+1}+4 k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}+\frac{2\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2} a_{k+1}}{a}+2 a k a_{k+1}+2\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}-k^{2} a_{k}-\frac{2 k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k}}{a}}{a^{2} k^{2}+2 a k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)+\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2}+3 a^{2} k+3 a\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)+2 a^{2}+t}
$$

- Solution for $r=\frac{\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}}{a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}}{a}}, a_{k+2}=\frac{2 a k^{2} a_{k+1}+4 k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}+\frac{2\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2} a_{k+1}}{a}+2 a k a_{k+1}+2\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)}{a^{2} k^{2}+2 a k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)+\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right)}\right.
$$

- Recursion relation for $r=\frac{\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}}{a}$

$$
a_{k+2}=\frac{2 a k^{2} a_{k+1}+4 k\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}+\frac{2\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2} a_{k+1}}{a}+2 a k a_{k+1}+2\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}-k^{2} a_{k}-\frac{2 k\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k}}{a}-}{a^{2} k^{2}+2 a k\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)+\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2}+3 a^{2} k+3 a\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)+2 a^{2}+b}
$$

- Solution for $r=\frac{\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}}{a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}}{a}}, a_{k+2}=\frac{2 a k^{2} a_{k+1}+4 k\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right) a_{k+1}+\frac{2\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)^{2} a_{k+1}}{a}+2 a k a_{k+1}+2\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)}{a^{2} k^{2}+2 a k\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)+\left(\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}\right)}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} c_{k} x^{k+\frac{\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}}{a}}\right)+\left(\sum_{k=0}^{\infty} d_{k} x^{k+\frac{\frac{a}{2}+\frac{\sqrt{a^{2}-4 b}}{2}}{a}}\right), c_{k+2}=\frac{2 a k^{2} c_{1+k}+4 k\left(\frac{a}{2}-\frac{\sqrt{a^{2}-4 b}}{2}\right) c_{1+k}+\frac{2\left(\frac{a}{2}-\frac{\sqrt{a^{2}}}{2}\right.}{a^{2} k^{2}}}{a^{2}}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 67

```
dsolve(x^2*(x-a)^2*diff(y(x),x$2)+b*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x(a-x)}\left(\left(\frac{x}{a-x}\right)^{\frac{\sqrt{a^{2}-4 b}}{2 a}} c_{2}+\left(\frac{a-x}{x}\right)^{\frac{\sqrt{a^{2}-4 b}}{2 a}} c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.487 (sec). Leaf size: 121
DSolve $\left[x^{\wedge} 2 *(x-a) \wedge 2 * y\right.$ ' ' $[x]+b * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}}}(x-a)^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}}}\left(a c_{1} \sqrt{1-\frac{4 b}{a^{2}}} x^{\sqrt{1-\frac{4 b}{a^{2}}}}+c_{2}(x-a)^{\sqrt{1-\frac{4 b}{a^{2}}}}\right)}{a \sqrt{1-\frac{4 b}{a^{2}}}}
$$

32.7 problem 217

32.7.1 Solving as second order bessel ode ode 3380
32.7.2 Solving using Kovacic algorithm 3385

Internal problem ID [11041]
Internal file name [OUTPUT/10297_Wednesday_January_24_2024_10_06_27_PM_84057678/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 217.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2}(x-a)^{2} y^{\prime \prime}+y b=c x^{2}(x-a)^{2}
$$

32.7.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{b y}{x^{2}}=c(a-x)^{2} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{b} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \\
& y_{2}=-\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} & -\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \\
\frac{d}{d x}\left(\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} & -\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \\
\frac{\sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{2 \sqrt{x} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}+\frac{\sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right) \sqrt{b}}{2 x^{\frac{3}{2}} \sqrt{\pi}\left(\frac{\sqrt{b}}{x}\right)^{\frac{3}{2}}}-\frac{\sqrt{2} \sqrt{b} \cos \left(\frac{\sqrt{b}}{x}\right)}{x^{\frac{3}{2} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}} & -\frac{\sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{2 \sqrt{x} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{\sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right) \sqrt{b}}{2 x^{\frac{3}{2}} \sqrt{\pi}\left(\frac{\sqrt{b}}{x}\right)^{\frac{3}{2}}}-\frac{\sqrt{2} \sqrt{b} \sin \left(\frac{\sqrt{b}}{x}\right)}{x^{\frac{3}{2} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right)\left(-\frac{\sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{2 \sqrt{x} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{\sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right) \sqrt{b}}{2 x^{\frac{3}{2}} \sqrt{\pi}\left(\frac{\sqrt{b}}{x}\right)^{\frac{3}{2}}}-\frac{\sqrt{2} \sqrt{b} \sin \left(\frac{\sqrt{b}}{x}\right)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right) \\
& -\left(-\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right)\left(\frac{\sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{2 \sqrt{x} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}+\frac{\sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right) \sqrt{b}}{2 x^{\frac{3}{2}} \sqrt{\pi}\left(\frac{\sqrt{b}}{x}\right)^{\frac{3}{2}}}-\frac{\sqrt{2} \sqrt{b} \cos \left(\frac{\sqrt{b}}{x}\right)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2\left(\sin \left(\frac{\sqrt{b}}{x}\right)^{2}+\cos \left(\frac{\sqrt{b}}{x}\right)^{2}\right)}{\pi}
$$

Which simplifies to

$$
W=-\frac{2}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right) c(a-x)^{2}}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}}{-\frac{2 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{2} \sqrt{\pi} \cos \left(\frac{\sqrt{b}}{x}\right) c(a-x)^{2}}{2 x^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{x}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\sqrt{2} \sqrt{\pi} \cos \left(\frac{\sqrt{b}}{\alpha}\right) c(a-\alpha)^{2}}{2 \alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right) c(a-x)^{2}}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}}{-\frac{2 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\sqrt{2} \sqrt{\pi} \sin \left(\frac{\sqrt{b}}{x}\right) c(a-x)^{2}}{2 x^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{x}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{\sqrt{2} \sqrt{\pi} \sin \left(\frac{\sqrt{b}}{\alpha}\right) c(a-\alpha)^{2}}{2 \alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\sqrt{2} \sqrt{\pi} c\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right)}{2} \\
& u_{2}=-\frac{\sqrt{2} \sqrt{\pi} c\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{c\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sqrt{x} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\frac{\sqrt{b}}{x}}}+\frac{c\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sqrt{x} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\frac{\sqrt{b}}{x}}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{c \sqrt{x}\left(-\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sin \left(\frac{\sqrt{b}}{x}\right)+\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \cos \left(\frac{\sqrt{b}}{x}\right)\right)}{\sqrt{\frac{\sqrt{b}}{x}}}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}\right) \\
& +\left(\frac{c \sqrt{x}\left(-\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sin \left(\frac{\sqrt{b}}{x}\right)+\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \cos \left(\frac{\sqrt{b}}{x}\right)\right)}{\sqrt{\frac{\sqrt{b}}{x}}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \\
& +\frac{c \sqrt{x}\left(-\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sin \left(\frac{\sqrt{b}}{x}\right)+\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \cos \left(\frac{\sqrt{b}}{x}\right)\right)^{(}}{\sqrt{\frac{\sqrt{b}}{x}}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{b}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b}}{x}}} \\
& +\frac{c \sqrt{x}\left(-\left(\int_{0}^{x} \frac{\cos \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \sin \left(\frac{\sqrt{b}}{x}\right)+\left(\int_{0}^{x} \frac{\sin \left(\frac{\sqrt{b}}{\alpha}\right)(a-\alpha)^{2}}{\alpha^{\frac{3}{2}} \sqrt{\frac{\sqrt{b}}{\alpha}}} d \alpha\right) \cos \left(\frac{\sqrt{b}}{x}\right)\right)}{\sqrt{\frac{\sqrt{b}}{x}}}
\end{aligned}
$$

Verified OK.

32.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}(a-x)^{2}+y b & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}(a-x)^{2} \\
& B=0 \tag{3}\\
& C=b
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-b}{\left(a x-x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-b \\
& t=\left(a x-x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{b}{\left(a x-x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 200: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a x-x^{2}\right)^{2}$. There is a pole at $x=0$ of order 2 . There is a pole at $x=a$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{b}{a^{2} x^{2}}-\frac{b}{a^{2}(x-a)^{2}}+\frac{2 b}{a^{3}(x-a)}-\frac{2 b}{a^{3} x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b}{a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

For the pole at $x=a$ let b be the coefficient of $\frac{1}{(x-a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b}{a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{b}{\left(a x-x^{2}\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}$ |
| a | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $\left[\sqrt{r}_{c}\right.$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a} \\
& =\frac{\sqrt{a^{2}-4 b}-a+2 x}{2 x(x-a)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{(x-a)^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{2 a}}{x-a}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-4 b}}{2 a}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-4 b}}{x-a}}{x-a}\right.}\right) d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \int \frac{1}{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{a}}} d x \\
& =x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\right) \\
& +c_{2}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}(a-x)^{2}+y b=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
\begin{aligned}
y_{h}= & c_{1} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \\
& +c_{2} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \\
& y_{2}=x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence
$W=\left\lvert\, \begin{array}{cc}x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} & x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right. \\ \frac{d}{d x}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\right) & \frac{d}{d x}\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} a\right.\right.\end{array}\right.$
Which gives
$W=\left\lvert\, \begin{gathered}x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \\ -\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}\left(-a+\sqrt{a^{2}-4 b}\right)(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}}{2 a x}+\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(a+\sqrt{a^{2}-4 b}\right)}{2 a(x-a)}-\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}\left(-a+\sqrt{a^{2}}\right.}{}\end{gathered}\right.$

Therefore

$$
\begin{aligned}
& W=\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x\right. \\
&-\left.a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\right)\left(-\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}\left(-a+\sqrt{a^{2}-4 b}\right)(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)}{2 a x}\right. \\
&+\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(a+\sqrt{a^{2}-4 b}\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)}{2 a(x-a)} \\
&\left.+x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}}\right)-\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x\right. \\
&\left.-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right)\left(-\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}\left(-a+\sqrt{a^{2}-4 b}\right)(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}}{2 a x}\right. \\
&\left.+\frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(a+\sqrt{a^{2}-4 b}\right)}{2 a(x-a)}\right)
\end{aligned}
$$

Which simplifies to

$$
W=(x-a)^{-\frac{a+\sqrt{a^{2}-4 b}}{a}} x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{a}}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes
$u_{1}=-\int \frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right) c x^{2}(a-x)^{2}}{x^{2}(a-x)^{2}} d x$
Which simplifies to

$$
u_{1}=-\int x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right) c d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) c d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c x^{2}(a-x)^{2}}{x^{2}(a-x)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right) c \\
& u_{2}=c\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}\right.(\alpha \\
&\left.-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right) c x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
&-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}+c\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right) x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
&\quad-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
&-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c\left(\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right. \\
&\left.-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\right. \\
& \left.+c_{2} x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right) \\
& +\left(x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x\right. \\
& -a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c\left(\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right. \\
& \left.\left.-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(c_{1}+c_{2}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right) \\
+ & x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
- & a^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c\left(\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right. \\
& \left.-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(c_{1}+c_{2}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right) \tag{1}\\
+ & x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
& -a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c\left(\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right. \\
& \left.-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y= x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(c_{1}+c_{2}\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right) \\
&+ x^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(x \\
&-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} c\left(\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} d \alpha\right)\left(\int x^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(x-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d x\right)\right. \\
&\left.-\left(\int_{0}^{x} \alpha^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}(\alpha-a)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}\left(\int \alpha^{\frac{-a+\sqrt{a^{2}-4 b}}{a}}(\alpha-a)^{\frac{-a-\sqrt{a^{2}-4 b}}{a}} d \alpha\right) d \alpha\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 219
dsolve $\left(x^{\wedge} 2 *(x-a)^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+b * y(x)=c * x^{\wedge} 2 *(x-a)^{\wedge} 2, y(x)\right.$, singsol=all)
$y(x)$
$=\frac{\sqrt{x(a-x)}\left(\left(\frac{x}{a-x}\right)^{\frac{\sqrt{a^{2}-4 b}}{2 a}} c_{1} \sqrt{a^{2}-4 b}+\left(\frac{a-x}{x}\right)^{\frac{\sqrt{a^{2}-4 b}}{2 a}} c_{2} \sqrt{a^{2}-4 b}+\left(\frac{x}{a-x}\right)^{\frac{\sqrt{a^{2}-4 b}}{2 a}}\left(\int \sqrt{x(a-x)}\left(\frac{x}{a-x}\right)^{-\sqrt{2}}\right.\right.}{\sqrt{a^{2}-4 b}}$
\checkmark Solution by Mathematica
Time used: 0.958 (sec). Leaf size: 371

```
DSolve[x^2*(x-a)^2*y''[x]+b*y[x]==c*x^2*(x-a)^2,y[x],x,IncludeSingularSolutions -> True]
y(x)
    acx
```

 \(+c_{1} x^{\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}+\frac{1}{2}}}(x-a)^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}}}+\frac{c_{2} x^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}}}(x-a)^{\frac{1}{2} \sqrt{1-\frac{4 b}{a^{2}}+\frac{1}{2}}}}{a \sqrt{1-\frac{4 b}{a^{2}}}}\)

32.8 problem 218

32.8.1 Solving as second order bessel ode ode 3397
32.8.2 Maple step by step solution . 3398

Internal problem ID [11042]
Internal file name [OUTPUT/10298_Wednesday_January_24_2024_10_06_33_PM_44604537/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 218.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
a x^{2}(x-1)^{2} y^{\prime \prime}+\left(b x^{2}+c x+d\right) y=0
$$

32.8.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(\frac{b}{a}+\frac{c}{x a}+\frac{d}{x^{2} a}\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =\frac{\sqrt{a(a-4 b)}}{a} \\
\gamma & =\frac{1}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{a(a-4 b)}}{a}, 2 \sqrt{x}\right)
$$

Verified OK.

32.8.2 Maple step by step solution

Let's solve

$$
a x^{2}(x-1)^{2} y^{\prime \prime}+\left(b x^{2}+c x+d\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{\left(b x^{2}+c x+d\right) y}{a x^{2}(x-1)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(b x^{2}+c x+d\right) y}{a x^{2}(x-1)^{2}}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=\frac{b x^{2}+c x+d}{a x^{2}(x-1)^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{d}{a}$
- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=0$

- Multiply by denominators
$a x^{2}(x-1)^{2} y^{\prime \prime}+\left(b x^{2}+c x+d\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .4$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}$
- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}\left(a r^{2}-a r+d\right) x^{r}+\left(\left(a r^{2}+a r+d\right) a_{1}-a_{0}\left(2 a r^{2}-2 a r-c\right)\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a _ { k } \left(a k^{2}+2 a k r+\right.\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$a r^{2}-a r+d=0$
- Values of r that satisfy the indicial equation
$r \in\left\{\frac{a+\sqrt{a^{2}-4 a d}}{2 a},-\frac{-a+\sqrt{a^{2}-4 a d}}{2 a}\right\}$
- \quad Each term must be 0
$\left(a r^{2}+a r+d\right) a_{1}-a_{0}\left(2 a r^{2}-2 a r-c\right)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0}\left(2 a r^{2}-2 a r-c\right)}{a r^{2}+a r+d}$
- Each term in the series must be 0, giving the recursion relation

$$
\left(\left(a_{k}+a_{k-2}-2 a_{k-1}\right) k^{2}+\left(\left(2 a_{k}+2 a_{k-2}-4 a_{k-1}\right) r-a_{k}-5 a_{k-2}+6 a_{k-1}\right) k+\left(a_{k}+a_{k-2}-2 a_{k-}\right.\right.
$$

- \quad Shift index using $k->k+2$

$$
\left(\left(a_{k+2}+a_{k}-2 a_{k+1}\right)(k+2)^{2}+\left(\left(2 a_{k+2}+2 a_{k}-4 a_{k+1}\right) r-a_{k+2}-5 a_{k}+6 a_{k+1}\right)(k+2)+\left(a_{k+2}\right.\right.
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a k^{2} a_{k}-2 a k^{2} a_{k+1}+2 a k r a_{k}-4 a k r a_{k+1}+a r^{2} a_{k}-2 a r^{2} a_{k+1}-a k a_{k}-2 a k a_{k+1}-a r a_{k}-2 a r a_{k+1}+a_{k} b+c a_{k+1}}{a k^{2}+2 a k r+a r^{2}+3 a k+3 a r+2 a+d}$
- Recursion relation for $r=\frac{a+\sqrt{a^{2}-4 a d}}{2 a}$
$a_{k+2}=-\frac{a k^{2} a_{k}-2 a k^{2} a_{k+1}+k\left(a+\sqrt{a^{2}-4 a d}\right) a_{k}-2 k\left(a+\sqrt{a^{2}-4 a d}\right) a_{k+1}+\frac{\left(a+\sqrt{a^{2}-4 a d}\right)^{2} a_{k}}{4 a}-\frac{\left(a+\sqrt{a^{2}-4 a d}\right)^{2} a_{k+1}}{2 a}-a k a_{k}-2 a k}{a k^{2}+k\left(a+\sqrt{a^{2}-4 a d}\right)+\frac{\left(a+\sqrt{a^{2}-4 a d}\right)^{2}}{4 a}+3 a k+\frac{7 a}{2}+\frac{3 \sqrt{a^{2}-4 a d}}{2}}$
- \quad Solution for $r=\frac{a+\sqrt{a^{2}-4 a d}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a+\sqrt{a^{2}-4 a d}}{2 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-2 a k^{2} a_{k+1}+k\left(a+\sqrt{a^{2}-4 a d}\right) a_{k}-2 k\left(a+\sqrt{a^{2}-4 a d}\right) a_{k+1}+\frac{\left(a+\sqrt{a^{2}-4 a d}\right)^{2} a_{k}}{4 a}}{a k^{2}+k\left(a+\sqrt{a^{2}-4 a d}\right)+\frac{(a-}{}}\right.
$$

- \quad Recursion relation for $r=-\frac{-a+\sqrt{a^{2}-4 a d}}{2 a}$

$$
a_{k+2}=-\frac{a k^{2} a_{k}-2 a k^{2} a_{k+1}-k\left(-a+\sqrt{a^{2}-4 a d}\right) a_{k}+2 k\left(-a+\sqrt{a^{2}-4 a d}\right) a_{k+1}+\frac{\left(-a+\sqrt{a^{2}-4 a d}\right)^{2} a_{k}}{4 a}-\frac{\left(-a+\sqrt{a^{2}-4 a d}\right)^{2} a_{k+1}}{2 a}-a k a}{a k^{2}-k\left(-a+\sqrt{a^{2}-4 a d}\right)+\frac{\left(-a+\sqrt{a^{2}-4 a d}\right.}{4 a}+3 a k+\frac{7 a}{2}-\frac{3 \sqrt{a}}{4 a}}
$$

- \quad Solution for $r=-\frac{-a+\sqrt{a^{2}-4 a d}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{-a+\sqrt{a^{2}-4 a d}}{2 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-2 a k^{2} a_{k+1}-k\left(-a+\sqrt{a^{2}-4 a d}\right) a_{k}+2 k\left(-a+\sqrt{a^{2}-4 a d}\right) a_{k+1}+\frac{\left(-a+\sqrt{a^{2}-4}\right.}{4 a}}{a k^{2}-k\left(-a+\sqrt{a^{2}-4 a a}\right.}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k+\frac{a+\sqrt{a^{2}-4 a d}}{2 a}}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k-\frac{-a+\sqrt{a^{2}-4 a d}}{2 a}}\right), e_{k+2}=-\frac{a k^{2} e_{k}-2 a k^{2} e_{1+k}+k\left(a+\sqrt{a^{2}-4 a d}\right) e_{k}-2 k}{}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 267
dsolve ($a * x^{\wedge} 2 *(x-1) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+\left(b * x^{\wedge} 2+c * x+d\right) * y(x)=0, y(x)$, singsol=all)
$y(x)=(-1$
$+x)^{-\frac{\sqrt{a-4 b-4 c-4 d}-\sqrt{a}}{2 \sqrt{a}}}\left(c_{1} x^{\frac{\sqrt{a}+\sqrt{a-4 d}}{2 \sqrt{a}}}\right.$ hypergeom $\left(\left[\frac{-\sqrt{a-4 b-4 c-4 d}+\sqrt{a}+\sqrt{a-4 d}+\sqrt{a-4 b}}{2 \sqrt{a}},-\frac{\sqrt{ }}{}\right.\right.$
$+c_{2} x^{-\frac{-\sqrt{a}+\sqrt{a-4 d}}{2 \sqrt{a}}}$ hypergeom $\left(\left[\frac{-\sqrt{a-4 b-4 c-4 d}+\sqrt{a}-\sqrt{a-4 d}+\sqrt{a-4 b}}{2 \sqrt{a}},-\frac{\sqrt{a-4 b-4 c-4 a}}{}\right.\right.$
\checkmark Solution by Mathematica
Time used: 135.53 (sec). Leaf size: 413606
DSolve $\left[a * x^{\wedge} 2 *(x-1)^{\wedge} 2 * y{ }^{\prime} '[x]+\left(b * x^{\wedge} 2+c * x+d\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Too large to display

32.9 problem 219

32.9.1 Maple step by step solution . 3403

Internal problem ID [11043]
Internal file name [OUTPUT/10299_Wednesday_January_24_2024_10_06_52_PM_19035987/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 219.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{2}\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) x y^{\prime}+y d=0
$$

32.9.1 Maple step by step solution

Let's solve
$x^{2}\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) x y^{\prime}+y d=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{d y}{x^{2}\left(x^{2}+a\right)}-\frac{\left(b x^{2}+c\right) y^{\prime}}{x\left(x^{2}+a\right)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(b x^{2}+c\right) y^{\prime}}{x\left(x^{2}+a\right)}+\frac{d y}{x^{2}\left(x^{2}+a\right)}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{b x^{2}+c}{x\left(x^{2}+a\right)}, P_{3}(x)=\frac{d}{x^{2}\left(x^{2}+a\right)}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{c}{a}
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{d}{a}$
- $\quad x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2}\left(x^{2}+a\right) y^{\prime \prime}+\left(b x^{2}+c\right) x y^{\prime}+y d=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .3$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .4$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}\left(a r^{2}-a r+c r+d\right) x^{r}+a_{1}\left(a r^{2}+a r+c r+c+d\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a _ { k } \left(a k^{2}+2 a k r+a r^{2}-a k-\right.\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$a r^{2}-a r+c r+d=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}, \frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}\right\}$
- Each term must be 0
$a_{1}\left(a r^{2}+a r+c r+c+d\right)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k-2}(k-2+r)(k-3+r+b)+a_{k}\left(a k^{2}+(2 a r-a+c) k+a r^{2}+(c-a) r+d\right)=0$
- \quad Shift index using $k->k+2$
$a_{k}(k+r)(k+r-1+b)+a_{k+2}\left(a(k+2)^{2}+(2 a r-a+c)(k+2)+a r^{2}+(c-a) r+d\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}(k+r)(k+r-1+b)}{a k^{2}+2 a k r+a r^{2}+3 a k+3 a r+c k+c r+2 a+2 c+d}$
- Recursion relation for $r=-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}$

$$
a_{k+2}=-\frac{a_{k}\left(k-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}\right)\left(k-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}-1+b\right)}{a k^{2}-k\left(-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)+\frac{\left(-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)^{2}}{4 a}+3 a k+\frac{7 a}{2}+\frac{c}{2}-\frac{3 \sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2}+c k-\frac{c\left(-a+c+\sqrt{a^{2}}\right.}{2}}
$$

- Solution for $r=-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}}, a_{k+2}=-\frac{a_{k}\left(k-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}\right)(k-}{a k^{2}-k\left(-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)+\frac{\left(-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)^{2}}{4 a}+3 a k}\right.
$$

- Recursion relation for $r=\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}$

$$
a_{k+2}=-\frac{a_{k}\left(k+\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}\right)\left(k+\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}-1+b\right)}{a k^{2}+k\left(a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)+\frac{\left(a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)^{2}}{4 a}+3 a k+\frac{7 a}{2}+\frac{c}{2}+\frac{3 \sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2}+c k+\frac{c\left(a-c+\sqrt{a^{2}-2 a c}\right.}{2 a}}
$$

- Solution for $r=\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}}, a_{k+2}=-\frac{a_{k}\left(k+\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}\right)\left(k+\frac{a-c}{2 a}\right.}{a k^{2}+k\left(a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)+\frac{\left(a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}\right)^{2}}{4 a}+3 a k+\frac{7 a}{2} .}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} e_{k} x^{k-\frac{-a+c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}}\right)+\left(\sum_{k=0}^{\infty} f_{k} x^{k+\frac{a-c+\sqrt{a^{2}-2 a c-4 a d+c^{2}}}{2 a}}\right), e_{k+2}=-\frac{a k^{2}-k\left(-a+c+\sqrt{a^{2}-}\right.}{}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 286
dsolve $\left(x^{\wedge} 2 *\left(x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x \$ 2)+\left(b * x^{\wedge} 2+c\right) * x * \operatorname{diff}(y(x), x)+d * y(x)=0, y(x), \quad\right.$ singsol=all $)$

$$
\begin{aligned}
& y(x)=\left(x^{2}\right. \\
& +a)^{\frac{(-b+2) a+c}{2 a}}\left(c _ { 2 } x ^ { - \frac { - a + c + \sqrt { a ^ { 2 } + (- 2 c - 4 d) a + c ^ { 2 } } } { 2 a } } \text { hypergeom } \left(\left[-\frac{-3 a-c+\sqrt{a^{2}+(-2 c-4 d) a+c^{2}}}{4 a}, \frac{-\sqrt{a^{2}+}}{4 a}\right.\right.\right. \\
& +c_{1} x^{\frac{a-c+\sqrt{a^{2}+(-2 c-4 d) a+c^{2}}}{2 a}} \text { hypergeom }\left(\left[\frac{3 a+c+\sqrt{a^{2}+(-2 c-4 d) a+c^{2}}}{4 a}, \frac{\sqrt{a^{2}}}{a}\right)\right. \\
& 4 a
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.385 (sec). Leaf size: 336
DSolve $\left[x^{\wedge} 2 *\left(x^{\wedge} 2+a\right) * y^{\prime \prime}[x]+\left(b * x^{\wedge} 2+c\right) * x * y^{\prime}[x]+d * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru
$y(x)$
$\rightarrow a^{-\frac{\sqrt{a^{2}-2 a(c+2 d)+c^{2}}+a-c}{4 a}} x^{-\frac{\sqrt{a^{2}-2 a(c+2 d)+c^{2}}-a+c}{2 a}}\left(c_{2} x^{\frac{\sqrt{a^{2}-2 a(c+2 d)+c^{2}}}{a}}\right.$ Hypergeometric2F1 $\left(-\frac{-2 b a+a+c-\sqrt{a}}{4}\right.$

$$
\begin{array}{r}
\left.+1,-\frac{x^{2}}{a}\right) \\
+c_{1} a^{\frac{\sqrt{a^{2}-2 a(c+2 d)+c^{2}}}{2 a}} \text { Hypergeometric2F1 }\left(-\frac{-a+c+\sqrt{a^{2}-2(c+2 d) a+c^{2}}}{4 a},\right. \\
\left.\left.-\frac{-2 b a+a+c+\sqrt{a^{2}-2(c+2 d) a+c^{2}}}{4 a}, 1-\frac{\sqrt{a^{2}-2(c+2 d) a+c^{2}}}{2 a},-\frac{x^{2}}{a}\right)\right)
\end{array}
$$

32.10 problem 220

32.10.1 Solving as second order bessel ode ode 3408
32.10.2 Solving using Kovacic algorithm 3409

Internal problem ID [11044]
Internal file name [OUTPUT/10300_Wednesday_January_24_2024_10_06_53_PM_49965746/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 220.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode" Maple gives the following as the ode type
[_Halm]

$$
\left(x^{2}+1\right)^{2} y^{\prime \prime}+a y=0
$$

32.10.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{a y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{a} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Verified OK.

32.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}+1\right)^{2} y^{\prime \prime}+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(x^{2}+1\right)^{2} \\
& B=0 \tag{3}\\
& C=a
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-a}{\left(x^{2}+1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-a \\
& t=\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{a}{\left(x^{2}+1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 203: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}+1\right)^{2}$. There is a pole at $x=i$ of order 2 . There is a pole at $x=-i$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{a}{4(x-i)^{2}}+\frac{a}{4(x+i)^{2}}+\frac{i a}{4 x-4 i}-\frac{i a}{4(x+i)}
$$

For the pole at $x=i$ let b be the coefficient of $\frac{1}{(x-i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{a}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a+1}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a+1}}{2}
\end{aligned}
$$

For the pole at $x=-i$ let b be the coefficient of $\frac{1}{(x+i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{a}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a+1}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a+1}}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{a}{\left(x^{2}+1\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| i | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a+1}}{2}$ | $\frac{1}{2}-\frac{\sqrt{a+1}}{2}$ |
| $-i$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a+1}}{2}$ | $\frac{1}{2}-\frac{\sqrt{a+1}}{2}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{x-i}+\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{x+i}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{x-i}+\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{x+i} \\
& =\frac{-i \sqrt{a+1}+x}{x^{2}+1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{x-i}+\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{x+i}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{(x-i)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{(x+i)^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{x-i}+\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{x+i}\right)^{2}-(-\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{a+1}}{2}}{x-i}+\frac{\frac{1}{2}+\frac{\sqrt{a+1}}{2}}{x+i}\right) d x} \\
& =\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)} \int \frac{1}{\left(x^{2}+1\right) \mathrm{e}^{-2 i \sqrt{a+1} \arctan (x)}} d x \\
& =\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}\left(-\frac{i \mathrm{e}^{2 i \sqrt{a+1} \arctan (x)}}{2 \sqrt{a+1}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}\right)+c_{2}\left(\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}\left(-\frac{i \mathrm{e}^{2 i \sqrt{a+1} \arctan (x)}}{2 \sqrt{a+1}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}-\frac{i c_{2} \sqrt{x^{2}+1} \mathrm{e}^{i \sqrt{a+1} \arctan (x)}}{2 \sqrt{a+1}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a+1} \arctan (x)}-\frac{i c_{2} \sqrt{x^{2}+1} \mathrm{e}^{i \sqrt{a+1} \arctan (x)}}{2 \sqrt{a+1}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
dsolve $\left(\left(x^{\wedge} 2+1\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+a * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\left(\left(\frac{x+i}{-x+i}\right)^{-\frac{\sqrt{a+1}}{2}} c_{2}+\left(\frac{x+i}{-x+i}\right)^{\frac{\sqrt{a+1}}{2}} c_{1}\right) \sqrt{x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 83
DSolve[($\left.x^{\wedge} 2+1\right)^{\wedge} 2 * y^{\prime}$ ' $[x]+a * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{2} \sqrt{x^{2}+1} e^{i \sqrt{a+1} \arctan (x)}\left(\frac{i c_{2}(1-i x)^{\sqrt{a+1}}(1+i x)^{-\sqrt{a+1}}}{\sqrt{a+1}}+2 c_{1}\right)
$$

32.11 problem 221

32.11.1 Solving as second order bessel ode ode
32.11.2 Solving using Kovacic algorithm 3417
32.11.3 Maple step by step solution . 3423

Internal problem ID [11045]
Internal file name [OUTPUT/10301_Wednesday_January_24_2024_10_06_53_PM_54231854/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 221.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}-1\right)^{2} y^{\prime \prime}+a y=0
$$

32.11.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{a y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{a} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{a}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x}}}
$$

Verified OK.

32.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+a y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{4}-2 x^{2}+1 \\
& B=0 \tag{3}\\
& C=a
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-a}{\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-a \\
& t=\left(x^{2}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{a}{\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 204: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}-1\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2 . The partial fractions decomposition of r is

$$
r=\frac{a}{4 x-4}-\frac{a}{4(x-1)^{2}}-\frac{a}{4(1+x)^{2}}-\frac{a}{4(1+x)}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{a}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{-a+1}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{-a+1}}{2}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{a}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{-a+1}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{-a+1}}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{a}{\left(x^{2}-1\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{-a+1}}{2}$ | $\frac{1}{2}-\frac{\sqrt{-a+1}}{2}$ |
| -1 | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{-a+1}}{2}$ | $\frac{1}{2}-\frac{\sqrt{-a+1}}{2}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}{x-1}+\frac{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}{1+x}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}{x-1}+\frac{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}{1+x} \\
& =\frac{-\sqrt{-a+1}+x}{x^{2}-1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}{x-1}+\frac{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}{1+x}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}{(x-1)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}{(1+x)^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}{x-1}+\frac{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}{1+x}\right)\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{-a+1}}{2-1}}{x-\frac{1}{2}+\frac{\sqrt{-a+1}}{1+x}}\right) d x} \\
& =(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}} \int \frac{1}{(1+x)^{1+\sqrt{-a+1}}(x-1)^{1-\sqrt{-a+1}}} d x \\
& =(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\left(\int(1+x)^{-1-\sqrt{-a+1}}(x-1)^{-1+\sqrt{-a+1}} d x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left((1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\right) \\
& +c_{2}\left((1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\left(\int(1+x)^{-1-\sqrt{-a+1}}(x-1)^{-1+\sqrt{-a+1}} d x\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}} \\
& +c_{2}(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\left(\int(1+x)^{-1-\sqrt{-a+1}}(x-1)^{-1+\sqrt{-a+1}} d x\right)^{(1)} \tag{}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}} \\
& +c_{2}(1+x)^{\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}(x-1)^{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\left(\int(1+x)^{-1-\sqrt{-a+1}}(x-1)^{-1+\sqrt{-a+1}} d x\right)
\end{aligned}
$$

Verified OK.

32.11.3 Maple step by step solution

Let's solve
$y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+a y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{a y}{x^{4}-2 x^{2}+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{a y}{x^{4}-2 x^{2}+1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=\frac{a}{x^{4}-2 x^{2}+1}\right]$
- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=0$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=\frac{a}{4}$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+a y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{4}-4 u^{3}+4 u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+a y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}\left(4 r^{2}+a-4 r\right) u^{r}+\left(\left(4 r^{2}+a+4 r\right) a_{1}-4 a_{0} r(-1+r)\right) u^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a _ { k } \left(4 k^{2}+8 k r+4 r^{2}+a-\right.\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
4 r^{2}+a-4 r=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{\frac{1}{2}-\frac{\sqrt{-a+1}}{2}, \frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right\}
$$

- Each term must be 0

$$
\left(4 r^{2}+a+4 r\right) a_{1}-4 a_{0} r(-1+r)=0
$$

- \quad Solve for the dependent coefficient(s)

$$
a_{1}=\frac{4 a_{0} r(-1+r)}{4 r^{2}+a+4 r}
$$

- Each term in the series must be 0 , giving the recursion relation
$\left(4 a_{k}+a_{k-2}-4 a_{k-1}\right) k^{2}+\left(\left(8 a_{k}+2 a_{k-2}-8 a_{k-1}\right) r-4 a_{k}-5 a_{k-2}+12 a_{k-1}\right) k+\left(4 a_{k}+a_{k-2}-\right.$
- \quad Shift index using $k->k+2$
$\left(4 a_{k+2}+a_{k}-4 a_{k+1}\right)(k+2)^{2}+\left(\left(8 a_{k+2}+2 a_{k}-8 a_{k+1}\right) r-4 a_{k+2}-5 a_{k}+12 a_{k+1}\right)(k+2)+(4 a$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k r a_{k}-8 k r a_{k+1}+r^{2} a_{k}-4 r^{2} a_{k+1}-k a_{k}-4 k a_{k+1}-r a_{k}-4 r a_{k+1}}{4 k^{2}+8 k r+4 r^{2}+a+12 k+12 r+8}$
- Recursion relation for $r=\frac{1}{2}-\frac{\sqrt{-a+1}}{2}$

$$
a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k}-4\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k+1}-k a_{k}-4 k a_{k+1}-(}{4 k^{2}+8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)^{2}+a+12 k+14-6 \sqrt{-a+1}}
$$

- \quad Solution for $r=\frac{1}{2}-\frac{\sqrt{-a+1}}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k}-4}{4 k^{2}+8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}-\frac{\sqrt{-a-}}{2}\right.}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)^{2} a}{4 k^{2}+8 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}-1\right.}\right.
$$

- Recursion relation for $r=\frac{1}{2}+\frac{\sqrt{-a+1}}{2}$

$$
a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k}-4\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k+1}-k a_{k}-4 k a_{k+1}-(}{4 k^{2}+8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)^{2}+a+12 k+14+6 \sqrt{-a+1}}
$$

- \quad Solution for $r=\frac{1}{2}+\frac{\sqrt{-a+1}}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)^{2} a_{k}-4}{4 k^{2}+8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}+\frac{\sqrt{-a-}}{2}\right.}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}-4 k^{2} a_{k+1}+2 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k}-8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right) a_{k+1}+\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)^{2} a}{4 k^{2}+8 k\left(\frac{1}{2}+\frac{\sqrt{-a+1}}{2}\right)+4\left(\frac{1}{2}+1\right.}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}-\frac{\sqrt{-a+1}}{2}}\right)+\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k+\frac{1}{2}+\frac{\sqrt{-a+1}}{2}}\right), b_{k+2}=-\frac{k^{2} b_{k}-4 k^{2} b_{1+k}+2 k\left(\frac{1}{2}-\frac{\sqrt{-a+1}}{2}\right)}{}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 55
dsolve $\left(\left(x^{\wedge} 2-1\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+a * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\sqrt{x^{2}-1}\left(\left(\frac{-1+x}{1+x}\right)^{\frac{\sqrt{-a+1}}{2}} c_{1}+\left(\frac{-1+x}{1+x}\right)^{-\frac{\sqrt{-a+1}}{2}} c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 88
DSolve[($\left.x^{\wedge} 2-1\right)^{\wedge} 2 * y^{\prime \prime}[x]+a * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{\left(1-x^{2}\right)^{\frac{1}{2}-\frac{\sqrt{1-a}}{2}}\left(2 \sqrt{1-a} c_{1}(1-x)^{\sqrt{1-a}}+c_{2}(x+1)^{\sqrt{1-a}}\right)}{2 \sqrt{1-a}}
$$

32.12 problem 222 A

32.12.1 Solving as second order bessel ode ode 3427
32.12.2 Solving using Kovacic algorithm 3428
32.12.3 Maple step by step solution . 3434

Internal problem ID [11046]
Internal file name [OUTPUT/10302_Wednesday_January_24_2024_10_06_54_PM_92506048/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 222 A.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel__ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
\left(a^{2}+x^{2}\right)^{2} y^{\prime \prime}+y b^{2}=0
$$

32.12.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{b^{2} y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =b \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}
$$

Verified OK.

32.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(a^{2}+x^{2}\right)^{2} y^{\prime \prime}+y b^{2} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(a^{2}+x^{2}\right)^{2} \\
& B=0 \tag{3}\\
& C=b^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-b^{2}}{\left(a^{2}+x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-b^{2} \\
& t=\left(a^{2}+x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{b^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 206: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a^{2}+x^{2}\right)^{2}$. There is a pole at $x=i a$ of order 2 . There is a pole at $x=-i a$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Unable to find solution using case one
Attempting to find a solution using case $n=2$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{b^{2}}{4 a^{2}\left(x-\sqrt{-a^{2}}\right)^{2}}+\frac{b^{2}}{4 a^{2}\left(x+\sqrt{-a^{2}}\right)^{2}}+\frac{b^{2}}{4\left(-a^{2}\right)^{\frac{3}{2}}\left(x-\sqrt{-a^{2}}\right)}-\frac{b^{2}}{4\left(-a^{2}\right)^{\frac{3}{2}}\left(x+\sqrt{-a^{2}}\right)}
$$

For the pole at $x=i a$ let b be the coefficient of $\frac{1}{(-i a+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

For the pole at $x=-i a$ let b be the coefficient of $\frac{1}{(i a+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

Now since the order of r at ∞ is $4>2$ then

$$
E_{\infty}=\{0,2,4\}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ for case 2 of Kovacic algorithm.

| pole c location | pole order | E_{c} |
| :---: | :---: | :---: |
| $i a$ | 2 | $\{0,2,4\}$ |
| $-i a$ | 2 | $\{0,2,4\}$ |

| Order of r at ∞ | E_{∞} |
| :---: | :---: |
| 4 | $\{0,2,4\}$ |

Using the family $\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}$ given by

$$
e_{1}=2, e_{2}=2, e_{\infty}=4
$$

Gives a non negative integer d (the degree of the polynomial $p(x)$), which is generated using

$$
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(4-(2+(2))) \\
& =0
\end{aligned}
$$

We now form the following rational function

$$
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{(x-(i a))}+\frac{2}{(x-(-i a))}\right) \\
& =\frac{1}{-i a+x}+\frac{1}{i a+x}
\end{aligned}
$$

Now we search for a monic polynomial $p(x)$ of degree $d=0$ such that

$$
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1~A}
\end{equation*}
$$

Since $d=0$, then letting

$$
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
$$

Substituting p and θ into Eq. (1A) gives

$$
0=0
$$

And solving for p gives

$$
p=1
$$

Now that $p(x)$ is found let

$$
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{-i a+x}+\frac{1}{i a+x}
\end{aligned}
$$

Let ω be the solution of

$$
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
$$

Substituting the values for ϕ and r into the above equation gives

$$
w^{2}-\left(\frac{1}{-i a+x}+\frac{1}{i a+x}\right) w+\frac{a^{2}+b^{2}+x^{2}}{\left(a^{2}+x^{2}\right)^{2}}=0
$$

Solving for ω gives

$$
\omega=\frac{x+\sqrt{-a^{2}-b^{2}}}{a^{2}+x^{2}}
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x+\sqrt{-a^{2}-b^{2}}}{a^{2}+x^{2}} d x} \\
& =\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}} \int \frac{1}{\left(a^{2}+x^{2}\right) \mathrm{e}^{\frac{2 \sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}} d x \\
& =\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}\left(-\frac{\mathrm{e}^{-\frac{2 \sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}}{2 \sqrt{-a^{2}-b^{2}}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}\right) \\
& +c_{2}\left(\sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}\left(-\frac{\mathrm{e}^{-\frac{2 \sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}}{2 \sqrt{-a^{2}-b^{2}}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}-\frac{c_{2} \sqrt{a^{2}+x^{2}} \mathrm{e}^{-\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}}{2 \sqrt{-a^{2}-b^{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{a^{2}+x^{2}} \mathrm{e}^{\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}-\frac{c_{2} \sqrt{a^{2}+x^{2}} \mathrm{e}^{-\frac{\sqrt{-a^{2}-b^{2}} \arctan \left(\frac{x}{a}\right)}{a}}}{2 \sqrt{-a^{2}-b^{2}}}
$$

Verified OK.

32.12.3 Maple step by step solution

Let's solve
$\left(a^{2}+x^{2}\right)^{2} y^{\prime \prime}+y b^{2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y b^{2}}{\left(a^{2}+x^{2}\right)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y b^{2}}{\left(a^{2}+x^{2}\right)^{2}}=0$
- Multiply by denominators of the ODE
$\left(a^{2}+x^{2}\right)^{2} y^{\prime \prime}+y b^{2}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the $2 n d$ derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(a^{2}+x^{2}\right)^{2}\left(\frac{d^{2}}{d t^{2}} x^{2}(t)-\frac{d}{d t} y(t), y(t) b^{2}=0\right.$
- \quad Simplify
$\frac{\left(a^{2}+x^{2}\right)^{2}\left(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)\right)}{x^{2}}+y(t) b^{2}=0$
- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=-\frac{b^{2} x^{2} y(t)}{\left(a^{2}+x^{2}\right)^{2}}+\frac{d}{d t} y(t)
$$

- \quad Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)+\frac{b^{2} x^{2} y(t)}{\left(a^{2}+x^{2}\right)^{2}}-\frac{d}{d t} y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{b^{2} x^{2}}{\left(a^{2}+x^{2}\right)^{2}}-r=0$
- Factor the characteristic polynomial
$\frac{a^{4} r^{2}+2 a^{2} r^{2} x^{2}+r^{2} x^{4}-a^{4} r-2 a^{2} r x^{2}-r x^{4}+b^{2} x^{2}}{\left(a^{2}+x^{2}\right)^{2}}=0$
- Roots of the characteristic polynomial
$r=\left(\frac{\frac{a^{2}}{2}+\frac{x^{2}}{2}+\frac{\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}}{a^{2}+x^{2}}, \frac{\frac{a^{2}}{2}+\frac{x^{2}}{2}-\frac{\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}}{a^{2}+x^{2}}\right)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}+\frac{\left.\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) t}{a^{2}+x^{2}}\right.}{}{ }^{2}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{\frac{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}-\frac{\left.\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) t}{a^{2}+x^{2}}\right.}{} . t={ }^{2}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{\frac{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}+\frac{\left.\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) t}{a^{2}+x^{2}}\right.}{a^{2}}+c_{2} \mathrm{e}^{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}-\frac{\left.\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) t}{a^{2}+x^{2}}\right.}, ~}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} \mathrm{e}^{\frac{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}+\frac{\sqrt{a^{4}}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}{2}\right) \ln (x)}{a^{2}+x^{2}}}+c_{2} \mathrm{e}^{\frac{\left(\frac{a^{2}}{2}+\frac{x^{2}}{2}-\frac{\sqrt{a^{4}+2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}\right) \ln (x)}{a^{2}+x^{2}}}$
- Simplify
$y=c_{1} x^{\frac{a^{2}+x^{2}+\sqrt{a^{4}+2 x^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2 a^{2}+2 x^{2}}}+x^{\frac{a^{2}+x^{2}-\sqrt{a^{4}+2 x^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2 a^{2}+2 x^{2}}} c_{2}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 83

```
dsolve((x^2+a^2)^2*diff(y(x),x$2)+b^2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(\left(\frac{i x-a}{i x+a}\right)^{\frac{\sqrt{a^{2}+b^{2}}}{2 a}} c_{1}+\left(\frac{i x-a}{i x+a}\right)^{-\frac{\sqrt{a^{2}+b^{2}}}{2 a}} c_{2}\right) \sqrt{a^{2}+x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.489 (sec). Leaf size: 97
DSolve[($\left.x^{\wedge} 2+a \wedge 2\right) \wedge 2 * y$ ' $[x]+b \wedge 2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} \sqrt{a^{2}+x^{2}} e^{-i \sqrt{\frac{b^{2}}{a^{2}}+1} \arctan \left(\frac{a}{x}\right)}\left(\frac{i c_{2} e^{2 i \sqrt{\frac{b^{2}}{a^{2}}+1} \arctan \left(\frac{a}{x}\right)}}{a \sqrt{\frac{b^{2}}{a^{2}}+1}}+2 c_{1}\right)
$$

32.13 problem 222 B

32.13.1 Solving as second order bessel ode ode 3437
32.13.2 Solving using Kovacic algorithm 3438
32.13.3 Maple step by step solution . 3444

Internal problem ID [11047]
Internal file name [OUTPUT/10303_Wednesday_January_24_2024_10_06_55_PM_99934314/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 222 B.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(-a^{2}+x^{2}\right)^{2} y^{\prime \prime}+y b^{2}=0
$$

32.13.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{b^{2} y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =b \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{b}{x}\right)}{\sqrt{\pi} \sqrt{\frac{b}{x}}}
$$

Verified OK.

32.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}(a-x)^{2}(x+a)^{2}+y b^{2} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(a-x)^{2}(x+a)^{2} \\
& B=0 \tag{3}\\
& C=b^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-b^{2}}{\left(a^{2}-x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-b^{2} \\
& t=\left(a^{2}-x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{b^{2}}{\left(a^{2}-x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 208: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a^{2}-x^{2}\right)^{2}$. There is a pole at $x=a$ of order 2 . There is a pole at $x=-a$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{b^{2}}{4 a^{2}(x+a)^{2}}-\frac{b^{2}}{4 a^{3}(x+a)}-\frac{b^{2}}{4 a^{2}(x-a)^{2}}+\frac{b^{2}}{4 a^{3}(x-a)}
$$

For the pole at $x=a$ let b be the coefficient of $\frac{1}{(x-a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b^{2}}{4 a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}
\end{aligned}
$$

For the pole at $x=-a$ let b be the coefficient of $\frac{1}{(x+a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{b^{2}}{4 a^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{b^{2}}{\left(a^{2}-x^{2}\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| a | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}$ |
| $-a$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x+a}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x+a} \\
& =\frac{\sqrt{a^{2}-b^{2}}-x}{a^{2}-x^{2}}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x+a}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{(x-a)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{(x+a)^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{2 a}}{x+a}\right.\right.
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\mathrm{e}^{\int\left(\frac{1}{2}-\frac{\sqrt{a^{2}-b^{2}}}{x-a}\right.}+\frac{1}{2}+\frac{\sqrt{a^{2}-b^{2}}}{x+a}\right) d x \\
& =(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}} \int \frac{1}{(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{a}} d x} \\
& =(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}\left(\int(x-a)^{\frac{-a+\sqrt{a^{2}-b^{2}}}{a}}(x+a)^{\frac{-a-\sqrt{a^{2}-b^{2}}}{a}} d x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left((x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}\right) \\
& +c_{2}\left((x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}\left(\int(x-a)^{\frac{-a+\sqrt{a^{2}-b^{2}}}{a}}(x+a)^{\frac{-a-\sqrt{a^{2}-b^{2}}}{a}} d x\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1}(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}} \\
& +c_{2}(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}\left(\int(x-a)^{\frac{-a+\sqrt{a^{2}-b^{2}}}{a}}(x+a)^{\frac{-a-\sqrt{a^{2}-b^{2}}}{a}} d x\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}} \\
& +c_{2}(x-a)^{-\frac{-a+\sqrt{a^{2}-b^{2}}}{2 a}}(x+a)^{\frac{a+\sqrt{a^{2}-b^{2}}}{2 a}}\left(\int(x-a)^{\frac{-a+\sqrt{a^{2}-b^{2}}}{a}}(x+a)^{\frac{-a-\sqrt{a^{2}-b^{2}}}{a}} d x\right)
\end{aligned}
$$

Verified OK.

32.13.3 Maple step by step solution

Let's solve
$y^{\prime \prime}(a-x)^{2}(x+a)^{2}+y b^{2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{b^{2} y}{(a-x)^{2}(x+a)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{b^{2} y}{(a-x)^{2}(x+a)^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime}(a-x)^{2}(x+a)^{2}+y b^{2}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)(a-x)^{2}(x+a)^{2}+y(t) b^{2}=0
$$

- \quad Simplify

$$
\frac{\left(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)\right)(a-x)^{2}(x+a)^{2}}{x^{2}}+y(t) b^{2}=0
$$

- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=-\frac{b^{2} x^{2} y(t)}{(a-x)^{2}(x+a)^{2}}+\frac{d}{d t} y(t)
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)+\frac{b^{2} x^{2} y(t)}{(a-x)^{2}(x+a)^{2}}-\frac{d}{d t} y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{b^{2} x^{2}}{(a-x)^{2}(x+a)^{2}}-r=0$
- Factor the characteristic polynomial
$\frac{a^{4} r^{2}-2 a^{2} r^{2} x^{2}+r^{2} x^{4}-a^{4} r+2 a^{2} r x^{2}-r x^{4}+b^{2} x^{2}}{(a-x)^{2}(x+a)^{2}}=0$
- Roots of the characteristic polynomial
$r=\left(\frac{\frac{a^{2}}{2}-\frac{x^{2}}{2}+\frac{\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}}{(x+a)(a-x)}, \frac{\frac{a^{2}}{2}-\frac{x^{2}}{2}-\frac{\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}}{(x+a)(a-x)}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{\left(\frac{a^{2}}{2}-\frac{x^{2}}{2}+\frac{\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}\right) t}{(x+a)(a-x)}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{\frac{\left(\frac{a^{2}}{2}-\frac{x^{2}}{2}-\frac{\left.\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) t}{(x+a)(a-x)}\right.}{}{ }^{(a)}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

- \quad Change variables back using $t=\ln (x)$
$y=c_{1} \mathrm{e}^{\frac{\left(\frac{a^{2}}{2}-\frac{x^{2}}{2}+\frac{\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2}\right) \ln (x)}{(x+a)(a-x)}+c_{2} \mathrm{e}^{\frac{\left(\frac{a^{2}}{2}-\frac{x^{2}}{2}-\frac{\left.\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}\right) \ln (x)}{2}\right.}{(x+a)(a-x)}} \text { (ax)}}$
- \quad Simplify
$y=c_{1} x^{\frac{a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2 a^{2}-2 x^{2}}}+x^{\frac{a^{2}-x^{2}-\sqrt{a^{4}-2 a^{2} x^{2}-4 b^{2} x^{2}+x^{4}}}{2 a^{2}-2 x^{2}}} c_{2}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 77

```
dsolve((x^2-a^2)^2*diff(y(x),x$2)+b^2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{a^{2}-x^{2}}\left(\left(\frac{a-x}{a+x}\right)^{-\frac{\sqrt{a^{2}-b^{2}}}{2 a}} c_{2}+\left(\frac{a-x}{a+x}\right)^{\frac{\sqrt{a^{2}-b^{2}}}{2 a}} c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.529 (sec). Leaf size: 142

```
DSolve[(x^2-a^2)^2*y''[x]+b^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$

$$
\rightarrow \frac{(x-a)^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{b^{2}}{a^{2}}}}(a+x)^{\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{b^{2}}{a^{2}}}}\left(2 a c_{1} \sqrt{1-\frac{b^{2}}{a^{2}}}(x-a)^{\sqrt{1-\frac{b^{2}}{a^{2}}}}-c_{2}(a+x)^{\sqrt{1-\frac{b^{2}}{a^{2}}}}\right)}{2 a \sqrt{1-\frac{b^{2}}{a^{2}}}}
$$

32.14 problem 223

32.14.1 Solving as second order bessel ode ode 3447
32.14.2 Solving using Kovacic algorithm 3448

Internal problem ID [11048]
Internal file name [OUTPUT/10304_Wednesday_January_24_2024_10_06_55_PM_42614464/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 223.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode" Maple gives the following as the ode type
[_Halm]

$$
4\left(x^{2}+1\right)^{2} y^{\prime \prime}+\left(a x^{2}+a-3\right) y=0
$$

32.14.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(\frac{a}{4}+\frac{a}{4 x^{2}}-\frac{3}{4 x^{2}}\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
& \alpha=\frac{1}{2} \\
& \beta=\frac{\sqrt{-3+a}}{2} \\
& n=\frac{\sqrt{-a+1}}{2} \\
& \gamma=-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)(1)
$$

Verification of solutions

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{\sqrt{-a+1}}{2}, \frac{\sqrt{-3+a}}{2 x}\right)
$$

Verified OK.

32.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4\left(x^{2}+1\right)^{2} y^{\prime \prime}+\left(a x^{2}+a-3\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4\left(x^{2}+1\right)^{2} \\
& B=0 \tag{3}\\
& C=a x^{2}+a-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-a x^{2}-a+3}{4\left(x^{2}+1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-a x^{2}-a+3 \\
& t=4\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-a x^{2}-a+3}{4\left(x^{2}+1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 210: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}+1\right)^{2}$. There is a pole at $x=i$ of order 2 . There is a pole at $x=-i$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Unable to find solution using case one
Attempting to find a solution using case $n=2$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3}{16(x-i)^{2}}-\frac{3}{16(x+i)^{2}}+\frac{i\left(\frac{a}{8}-\frac{3}{16}\right)}{x-i}-\frac{i\left(\frac{a}{8}-\frac{3}{16}\right)}{x+i}
$$

For the pole at $x=i$ let b be the coefficient of $\frac{1}{(x-i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
$$

For the pole at $x=-i$ let b be the coefficient of $\frac{1}{(x+i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
$$

Since the order of r at ∞ is 2 then let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{-a x^{2}-a+3}{4\left(x^{2}+1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ for case 2 of Kovacic algorithm.

| pole c location | pole order | E_{c} |
| :---: | :---: | :---: |
| i | 2 | $\{1,2,3\}$ |
| $-i$ | 2 | $\{1,2,3\}$ |

| Order of r at ∞ | E_{∞} |
| :---: | :---: |
| 2 | $\{2\}$ |

Using the family $\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}$ given by

$$
e_{1}=1, e_{2}=1, e_{\infty}=2
$$

Gives a non negative integer d (the degree of the polynomial $p(x)$), which is generated using

$$
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
$$

We now form the following rational function

$$
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(i))}+\frac{1}{(x-(-i))}\right) \\
& =\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}
\end{aligned}
$$

Now we search for a monic polynomial $p(x)$ of degree $d=0$ such that

$$
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
$$

Since $d=0$, then letting

$$
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
$$

Substituting p and θ into Eq. (1A) gives

$$
0=0
$$

And solving for p gives

$$
p=1
$$

Now that $p(x)$ is found let

$$
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}
\end{aligned}
$$

Let ω be the solution of

$$
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
$$

Substituting the values for ϕ and r into the above equation gives

$$
w^{2}-\left(\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}\right) w+\frac{a x^{2}+a-1}{4(-x+i)^{2}(x+i)^{2}}=0
$$

Solving for ω gives

$$
\omega=\frac{x+\sqrt{-\left(x^{2}+1\right)(a-1)}}{2 x^{2}+2}
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x+\sqrt{-\left(x^{2}+1\right)(a-1)}}{2 x^{2}+2} d x} \\
& =\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{\sqrt{a-1} \arctan \left(\frac{\sqrt{a-1} x}{\sqrt{x^{2}+1 \sqrt{-a+1}}}\right)}{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2} \int \frac{1}{\sqrt{x^{2}+1} \mathrm{e}^{-i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}} d x} \\
& =\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}\left(-\frac{i \mathrm{e}^{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}}{\sqrt{a-1}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{\left.-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}\right)}\right. \\
& +c_{2}\left(\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}\left(-\frac{i \mathrm{e}^{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}}{\sqrt{a-1}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}-\frac{i c_{2}\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}}{\sqrt{a-1}} . \frac{x^{2}}{}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}-\frac{i c_{2}\left(x^{2}+1\right)^{\frac{1}{4}} \mathrm{e}^{\frac{i \sqrt{a-1} \operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{2}}}{\sqrt{a-1}} . \frac{x^{a-1}}{2}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 55

```
dsolve(4*(x^2+1)^2*diff(y(x),x$2)+(a*x^2+a-3)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(x^{2}+1\right)^{\frac{1}{4}}\left(\left(x+\sqrt{x^{2}+1}\right)^{-\frac{\sqrt{-a+1}}{2}} c_{2}+\left(x+\sqrt{x^{2}+1}\right)^{\frac{\sqrt{-a+1}}{2}} c_{1}\right)
$$

Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 70
DSolve $\left[4 *\left(x^{\wedge} 2+1\right)^{\wedge} 2 * y^{\prime} '[x]+\left(a * x^{\wedge} 2+a-3\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{x^{2}+1}\left(c_{1} P_{\frac{1}{2}(\sqrt{1-a}-1)}^{\frac{1}{2}}(i x)+c_{2} Q_{\frac{1}{2}(\sqrt{1-a}-1)}^{\frac{1}{2}}(i x)\right)
$$

32.15 problem 224

32.15.1 Solving as second order change of variable on x method 2 ode . 3455
32.15.2 Solving as second order change of variable on x method 1 ode . 3458
32.15.3 Solving using Kovacic algorithm 3460

Internal problem ID [11049]
Internal file name [OUTPUT/10305_Wednesday_January_24_2024_10_06_58_PM_32395236/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 224 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+2 a x\left(a x^{2}+b\right) y^{\prime}+y c=0
$$

32.15.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+\left(2 x^{3} a^{2}+2 a b x\right) y^{\prime}+y c=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 a x}{a x^{2}+b} \\
& q(x)=\frac{c}{\left(a x^{2}+b\right)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2 a x}{a x^{2}+b} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln \left(a x^{2}+b\right)} d x \\
& =\int \frac{1}{a x^{2}+b} d x \\
& =\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{c}{\left(a x^{2}+b\right)^{2}}}{\frac{1}{\left(a x^{2}+b\right)^{2}}} \\
& =c \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=c$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+c \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+c=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=c$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(c)} \\
& = \pm \sqrt{-c}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-c} \\
& \lambda_{2}=-\sqrt{-c}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-c} \\
& \lambda_{2}=-\sqrt{-c}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-c}) \tau}+c_{2} e^{(-\sqrt{-c}) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-c} \tau}+c_{2} \mathrm{e}^{-\sqrt{-c} \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{2 b}}\right)}{\sqrt{a b}}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}
$$

Verified OK.
32.15.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+\left(2 x^{3} a^{2}+2 a b x\right) y^{\prime}+y c=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 a x}{a x^{2}+b} \\
q(x) & =\frac{c}{\left(a x^{2}+b\right)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2 c a x}{c \sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}\left(a x^{2}+b\right)^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2 c a x}{c \sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}\left(a x^{2}+b\right)^{3}}+\frac{2 a x}{a x^{2}+b} \frac{\sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}}{c}}{\left(\frac{\sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{c}{\left(a x^{2}+b\right)^{2}}}\left(a x^{2}+b\right) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{c \sqrt{a b}}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)
$$

Verified OK.

32.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+\left(2 x^{3} a^{2}+2 a b x\right) y^{\prime}+y c & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(a x^{2}+b\right)^{2} \\
& B=2 x^{3} a^{2}+2 a b x \tag{3}\\
& C=c
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{a b-c}{\left(a x^{2}+b\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=a b-c \\
& t=\left(a x^{2}+b\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{a b-c}{\left(a x^{2}+b\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 211: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a x^{2}+b\right)^{2}$. There is a pole at $x=\frac{\sqrt{-a b}}{a}$ of order 2 . There is a pole at $x=-\frac{\sqrt{-a b}}{a}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Unable to find solution using case one
Attempting to find a solution using case $n=2$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & -\frac{a b-c}{4 a b\left(x-\sqrt{-\frac{b}{a}}\right)^{2}}-\frac{a b-c}{4 a b\left(x+\sqrt{-\frac{b}{a}}\right)^{2}} \\
& +\frac{-a b+c}{4\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x-\sqrt{-\frac{b}{a}}\right)}-\frac{-a b+c}{4\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x+\sqrt{-\frac{b}{a}}\right)}
\end{aligned}
$$

For the pole at $x=\frac{\sqrt{-a b}}{a}$ let b be the coefficient of $\frac{1}{\left(x-\frac{\sqrt{-a b}}{a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

For the pole at $x=-\frac{\sqrt{-a b}}{a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{\sqrt{-a b}}{a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

Now since the order of r at ∞ is $4>2$ then

$$
E_{\infty}=\{0,2,4\}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ for case 2 of Kovacic algorithm.

| pole c location | pole order | E_{c} |
| :---: | :---: | :---: |
| $\frac{\sqrt{-a b}}{a}$ | 2 | $\{0,2,4\}$ |
| $-\frac{\sqrt{-a b}}{a}$ | 2 | $\{0,2,4\}$ |

| Order of r at ∞ | E_{∞} |
| :---: | :---: |
| 4 | $\{0,2,4\}$ |

Using the family $\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}$ given by

$$
e_{1}=2, e_{2}=2, e_{\infty}=4
$$

Gives a non negative integer d (the degree of the polynomial $p(x)$), which is generated using

$$
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(4-(2+(2))) \\
& =0
\end{aligned}
$$

We now form the following rational function

$$
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{\left(x-\left(\frac{\sqrt{-a b}}{a}\right)\right)}+\frac{2}{\left(x-\left(-\frac{\sqrt{-a b}}{a}\right)\right)}\right) \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}
\end{aligned}
$$

Now we search for a monic polynomial $p(x)$ of degree $d=0$ such that

$$
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
$$

Since $d=0$, then letting

$$
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
$$

Substituting p and θ into Eq. (1A) gives

$$
0=0
$$

And solving for p gives

$$
p=1
$$

Now that $p(x)$ is found let

$$
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}
\end{aligned}
$$

Let ω be the solution of

$$
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
$$

Substituting the values for ϕ and r into the above equation gives

$$
w^{2}-\left(\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}\right) w+\frac{a^{2} x^{2}+c}{\left(a x^{2}+b\right)^{2}}=0
$$

Solving for ω gives

$$
\omega=\frac{a x+\sqrt{-c}}{a x^{2}+b}
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{a x+\sqrt{-c}}{a x^{2}+b} d x} \\
& =\sqrt{a x^{2}+b} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x^{3} a^{2}+2 a b x}{\left(a x^{2}+b\right)^{2}} d x} \\
& =z_{1} e^{-\frac{\ln \left(a x^{2}+b\right)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{a x^{2}+b}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{2 a b}}\right)}{\sqrt{a b}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x^{3} a^{2}+2 a b x}{\left(a x^{2}+b\right)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln \left(a x^{2}+b\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-\frac{2 \sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{2 \sqrt{-c}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}\right)+c_{2}\left(\mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}\left(-\frac{\mathrm{e}^{-\frac{2 \sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{2 \sqrt{-c}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}-\frac{c_{2} \mathrm{e}^{-\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{2 \sqrt{-c}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}-\frac{c_{2} \mathrm{e}^{-\frac{\sqrt{-c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{2 \sqrt{-c}}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
dsolve((a*x^2+b)^2*diff (y(x),x$2)+2*a*x*(a*x^2+b)*\operatorname{diff}(y(x),x)+c*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin \left(\frac{\sqrt{c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}\right)+c_{2} \cos \left(\frac{\sqrt{c} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}\right)
$$

\checkmark Solution by Mathematica
Time used: 2.133 (sec). Leaf size: 72
DSolve[(a*x^2+b) $2 * y^{\prime \prime}{ }^{\prime}[x]+2 * a * x *\left(a * x^{\wedge} 2+b\right) * y '[x]+c * y[x]==0, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow c_{1} \cos \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)+c_{2} \sin \left(\frac{\sqrt{c} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}\right)
$$

32.16 problem 225

32.16.1 Maple step by step solution . 3467

Internal problem ID [11050]
Internal file name [OUTPUT/10306_Wednesday_January_24_2024_10_07_00_PM_65258785/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 225 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(x^{2}-1\right)^{2} y^{\prime \prime}+2 x\left(x^{2}-1\right) y^{\prime}-\left(\nu(\nu+1)\left(x^{2}-1\right)+n^{2}\right) y=0
$$

32.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+\left(2 x^{3}-2 x\right) y^{\prime}+\left(-x^{2} \nu^{2}-x^{2} \nu-n^{2}+\nu^{2}+\nu\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{\left(x^{2} \nu^{2}+x^{2} \nu+n^{2}-\nu^{2}-\nu\right) y}{x^{4}-2 x^{2}+1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{\left(x^{2} \nu^{2}+x^{2} \nu+n^{2}-\nu^{2}-\nu\right) y}{x^{4}-2 x^{2}+1}=0$Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{x^{2} \nu^{2}+x^{2} \nu+n^{2}-\nu^{2}-\nu}{x^{4}-2 x^{2}+1}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=-\frac{n^{2}}{4}$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators

$$
y^{\prime \prime}\left(x^{2}-1\right)\left(x^{4}-2 x^{2}+1\right)+2 y^{\prime} x\left(x^{4}-2 x^{2}+1\right)-\left(x^{2} \nu^{2}+x^{2} \nu+n^{2}-\nu^{2}-\nu\right)\left(x^{2}-1\right) y=0
$$

- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{6}-6 u^{5}+12 u^{4}-8 u^{3}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(2 u^{5}-10 u^{4}+16 u^{3}-8 u^{2}\right)\left(\frac{d}{d u} y(u)\right)+\left(-\nu^{2} u^{4}+4 \nu^{2} u^{3}-\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=1 . .4$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=2 . .5$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=3 . .6$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0}(n+2 r)(-n+2 r) u^{1+r}+\left(-2 a_{1}(2+n+2 r)(2-n+2 r)+a_{0}\left(-n^{2}-4 \nu^{2}+12 r^{2}-4 \nu+\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-2(n+2 r)(-n+2 r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{n}{2}, \frac{n}{2}\right\}
$$

- The coefficients of each power of u must be 0

$$
\left[-2 a_{1}(2+n+2 r)(2-n+2 r)+a_{0}\left(-n^{2}-4 \nu^{2}+12 r^{2}-4 \nu+4 r\right)=0,-2 a_{2}(4+n+2 r)(4-n\right.
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=\frac{a_{0}\left(n^{2}+4 \nu^{2}-12 r^{2}+4 \nu-4 r\right)}{2\left(n^{2}-4 r^{2}-8 r-4\right)}, a_{2}=\frac{a_{0}\left(n^{4}-12 n^{2} r^{2}+16 \nu^{4}-64 \nu^{2} r^{2}+96 r^{4}-24 n^{2} r+32 \nu^{3}-64 \nu^{2} r-64 \nu r^{2}+256 r^{3}-16 n^{2}-164\right.}{4\left(n^{4}-8 n^{2} r^{2}+16 r^{4}-24 n^{2} r+96 r^{3}-20 n^{2}+208 r^{2}+192 r+64\right)}\right.
$$

- Each term in the series must be 0, giving the recursion relation

$$
\left(a_{k-4}-6 a_{k-3}+12 a_{k-2}-8 a_{k-1}\right) k^{2}+\left(2\left(a_{k-4}-6 a_{k-3}+12 a_{k-2}-8 a_{k-1}\right) r-7 a_{k-4}+32 a_{k-3}-\right.
$$

- \quad Shift index using $k->k+4$

$$
\left(a_{k}-6 a_{k+1}+12 a_{k+2}-8 a_{k+3}\right)(k+4)^{2}+\left(2\left(a_{k}-6 a_{k+1}+12 a_{k+2}-8 a_{k+3}\right) r-7 a_{k}+32 a_{k+1}-4\right.
$$

- Recursion relation that defines series solution to ODE
$a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+2 k r a_{k}-12 k r a_{k+1}+24 k r a_{k+2}-n^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+r^{2} a_{k}-6 r^{2} a_{k+1}+12 r^{2} a_{k-}}{2\left(4 k^{2}+8 k r-n^{2}+4 r^{2}+24 k+24\right.}$
- \quad Recursion relation for $r=-\frac{n}{2}$
$a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k n a_{k}+6 k n a_{k+1}-12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+k a_{k}-}{2\left(4 k^{2}-4 k n+24 k-12 n+36\right)}$
- \quad Solution for $r=-\frac{n}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{n}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k n a_{k}+6 k n a_{k+1}-12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-a_{k} \nu^{2}}{2}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{n}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k n a_{k}+6 k n a_{k+1}-12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-}{}\right.
$$

- Recursion relation for $r=\frac{n}{2}$

$$
a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k n a_{k}-6 k n a_{k+1}+12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+k a_{k}-}{2\left(4 k^{2}+4 k n+24 k+12 n+36\right)}
$$

- \quad Solution for $r=\frac{n}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{n}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k n a_{k}-6 k n a_{k+1}+12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-a_{k} \nu^{2}}{2}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{n}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k n a_{k}-6 k n a_{k+1}+12 k n a_{k+2}+\frac{1}{4} a_{k} n^{2}-\frac{3}{2} n^{2} a_{k+1}+2 n^{2} a_{k+2}-}{}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{n}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{n}{2}}\right), a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{1+k}+12 k^{2} a_{k+2}-k n a_{k}+6 k n a_{1+k}-12 k n a}{}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 17
dsolve $\left(\left(x^{\wedge} 2-1\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+2 * x *\left(x^{\wedge} 2-1\right) * \operatorname{diff}(y(x), x)-\left(n u *(n u+1) *\left(x^{\wedge} 2-1\right)+n-2\right) * y(x)=0, y(x)\right.$

$$
y(x)=c_{1} \text { LegendreP }(\nu, n, x)+c_{2} \text { LegendreQ }(\nu, n, x)
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 20
DSolve $\left[\left(x^{\wedge} 2-1\right)^{\wedge} 2 * y^{\prime} '[x]+2 * x *\left(x^{\wedge} 2-1\right) * y^{\prime}[x]-\left(\backslash[N u] *(\backslash[N u]+1) *\left(x^{\wedge} 2-1\right)+n^{\wedge} 2\right) * y[x]=0, y[x], x\right.$, Inclu

$$
y(x) \rightarrow c_{1} P_{\nu}^{n}(x)+c_{2} Q_{\nu}^{n}(x)
$$

32.17 problem 226

32.17.1 Maple step by step solution . 3472

Internal problem ID [11051]
Internal file name [OUTPUT/10307_Wednesday_January_24_2024_10_07_00_PM_26256630/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 226.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
\left(-x^{2}+1\right)^{2} y^{\prime \prime}-2 x\left(-x^{2}+1\right) y^{\prime}+\left(\nu(\nu+1)\left(-x^{2}+1\right)-\mu^{2}\right) y=0
$$

32.17.1 Maple step by step solution

Let's solve
$y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+\left(2 x^{3}-2 x\right) y^{\prime}+\left(-x^{2} \nu^{2}-x^{2} \nu-\mu^{2}+\nu^{2}+\nu\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{\left(x^{2} \nu^{2}+x^{2} \nu+\mu^{2}-\nu^{2}-\nu\right) y}{x^{4}-2 x^{2}+1}-\frac{2 x y^{\prime}}{x^{2}-1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{\left(x^{2} \nu^{2}+x^{2} \nu+\mu^{2}-\nu^{2}-\nu\right) y}{x^{4}-2 x^{2}+1}=0$Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{x^{2} \nu^{2}+x^{2} \nu+\mu^{2}-\nu^{2}-\nu}{x^{4}-2 x^{2}+1}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=-\frac{\mu^{2}}{4}
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators

$$
y^{\prime \prime}\left(x^{2}-1\right)\left(x^{4}-2 x^{2}+1\right)+2 y^{\prime} x\left(x^{4}-2 x^{2}+1\right)-\left(x^{2} \nu^{2}+x^{2} \nu+\mu^{2}-\nu^{2}-\nu\right)\left(x^{2}-1\right) y=0
$$

- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{6}-6 u^{5}+12 u^{4}-8 u^{3}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(2 u^{5}-10 u^{4}+16 u^{3}-8 u^{2}\right)\left(\frac{d}{d u} y(u)\right)+\left(-\nu^{2} u^{4}+4 \nu^{2} u^{3}-\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=1 . .4$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=2 . .5$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=3 . .6$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0}(\mu+2 r)(-\mu+2 r) u^{1+r}+\left(-2 a_{1}(2+\mu+2 r)(2-\mu+2 r)+a_{0}\left(-\mu^{2}-4 \nu^{2}+12 r^{2}-4 \nu+\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-2(\mu+2 r)(-\mu+2 r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{\mu}{2}, \frac{\mu}{2}\right\}
$$

- The coefficients of each power of u must be 0

$$
\left[-2 a_{1}(2+\mu+2 r)(2-\mu+2 r)+a_{0}\left(-\mu^{2}-4 \nu^{2}+12 r^{2}-4 \nu+4 r\right)=0,-2 a_{2}(4+\mu+2 r)(4-\mu\right.
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=\frac{a_{0}\left(\mu^{2}+4 \nu^{2}-12 r^{2}+4 \nu-4 r\right)}{2\left(\mu^{2}-4 r^{2}-8 r-4\right)}, a_{2}=\frac{a_{0}\left(\mu^{4}-12 \mu^{2} r^{2}+16 \nu^{4}-64 \nu^{2} r^{2}+96 r^{4}-24 \mu^{2} r+32 \nu^{3}-64 \nu^{2} r-64 \nu r^{2}+256 r^{3}-16 \mu^{2}-161\right.}{4\left(\mu^{4}-8 \mu^{2} r^{2}+16 r^{4}-24 \mu^{2} r+96 r^{3}-20 \mu^{2}+208 r^{2}+192 r+64\right)}\right.
$$

- Each term in the series must be 0, giving the recursion relation

$$
\left(a_{k-4}-6 a_{k-3}+12 a_{k-2}-8 a_{k-1}\right) k^{2}+\left(2\left(a_{k-4}-6 a_{k-3}+12 a_{k-2}-8 a_{k-1}\right) r-7 a_{k-4}+32 a_{k-3}-\right.
$$

- \quad Shift index using $k->k+4$

$$
\left(a_{k}-6 a_{k+1}+12 a_{k+2}-8 a_{k+3}\right)(k+4)^{2}+\left(2\left(a_{k}-6 a_{k+1}+12 a_{k+2}-8 a_{k+3}\right) r-7 a_{k}+32 a_{k+1}-4\right.
$$

- Recursion relation that defines series solution to ODE
$a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+2 k r a_{k}-12 k r a_{k+1}+24 k r a_{k+2}-\mu^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+r^{2} a_{k}-6 r^{2} a_{k+1}+12 r^{2} a_{k-}}{2\left(4 k^{2}+8 k r-\mu^{2}+4 r^{2}+24 k+24\right.}$
- Recursion relation for $r=-\frac{\mu}{2}$
$a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k \mu a_{k}+6 k \mu a_{k+1}-12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+k a_{k}-}{2\left(4 k^{2}-4 k \mu+24 k-12 \mu+36\right)}$
- \quad Solution for $r=-\frac{\mu}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{\mu}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k \mu a_{k}+6 k \mu a_{k+1}-12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-a_{k} \nu^{2}}{2}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{\mu}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}-k \mu a_{k}+6 k \mu a_{k+1}-12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-\varepsilon}{}\right.
$$

- Recursion relation for $r=\frac{\mu}{2}$

$$
a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k \mu a_{k}-6 k \mu a_{k+1}+12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-a_{k} \nu^{2}+4 \nu^{2} a_{k+1}-4 \nu^{2} a_{k+2}+k a_{k}-}{2\left(4 k^{2}+4 k \mu+24 k+12 \mu+36\right)}
$$

- \quad Solution for $r=\frac{\mu}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{\mu}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k \mu a_{k}-6 k \mu a_{k+1}+12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-a_{k} \nu^{2}}{2}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{\mu}{2}}, a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+12 k^{2} a_{k+2}+k \mu a_{k}-6 k \mu a_{k+1}+12 k \mu a_{k+2}+\frac{1}{4} a_{k} \mu^{2}-\frac{3}{2} \mu^{2} a_{k+1}+2 \mu^{2} a_{k+2}-}{}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{\mu}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{\mu}{2}}\right), a_{k+3}=\frac{k^{2} a_{k}-6 k^{2} a_{1+k}+12 k^{2} a_{k+2}-k \mu a_{k}+6 k \mu a_{1+k}-12 k \mu a}{}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 17

```
dsolve((1-x^2)^2*diff (y(x),x$2)-2*x*(1-x^2)*diff (y(x),x)+(nu*(nu+1)*(1-x^2)-mu^2)*y(x)=0,y(x
```

$$
y(x)=c_{1} \text { LegendreP }(\nu, \mu, x)+c_{2} \text { LegendreQ }(\nu, \mu, x)
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 20
DSolve $\left[\left(1-x^{\wedge} 2\right)^{\wedge} 2 * y^{\prime} \cdot[x]-2 * x *\left(1-x^{\wedge} 2\right) * y^{\prime}[x]+\left(\backslash[N u] *(\backslash[N u]+1) *\left(1-x^{\wedge} 2\right)-\backslash[M u]^{\wedge} 2\right) * y[x]==0, y[x], x, I\right.$

$$
y(x) \rightarrow c_{1} P_{\nu}^{\mu}(x)+c_{2} Q_{\nu}^{\mu}(x)
$$

32.18 problem 227

32.18.1 Maple step by step solution . 3477

Internal problem ID [11052]
Internal file name [OUTPUT/10308_Wednesday_January_24_2024_10_07_01_PM_84430845/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 227.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
a\left(x^{2}-1\right)^{2} y^{\prime \prime}+b x\left(x^{2}-1\right) y^{\prime}+\left(c x^{2}+d x+e\right) y=0
$$

32.18.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} a(x-1)^{2}(1+x)^{2}+b\left(x^{3}-x\right) y^{\prime}+\left(c x^{2}+d x+e\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(c x^{2}+d x+e\right) y}{a(x-1)^{2}(1+x)^{2}}-\frac{b x y^{\prime}}{a(x-1)(1+x)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{b x y^{\prime}}{a(x-1)(1+x)}+\frac{\left(c x^{2}+d x+e\right) y}{a(x-1)^{2}(1+x)^{2}}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{b x}{a(x-1)(1+x)}, P_{3}(x)=\frac{c x^{2}+d x+e}{a(x-1)^{2}(1+x)^{2}}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{b}{2 a}
$$

- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=\frac{e-d+c}{4 a}
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$y^{\prime \prime} a(x-1)^{2}(1+x)^{2}+b x y^{\prime}(x-1)(1+x)+\left(c x^{2}+d x+e\right) y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(a u^{4}-4 a u^{3}+4 a u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(b u^{3}-3 b u^{2}+2 b u\right)\left(\frac{d}{d u} y(u)\right)+\left(c u^{2}-2 c u+d u+c-d+e\right)$,
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .2$
$u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}$
- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=1 . .3$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}\left(4 a r^{2}-4 a r+2 b r+c-d+e\right) u^{r}+\left(\left(4 a r^{2}+4 a r+2 b r+2 b+c-d+e\right) a_{1}-a_{0}\left(4 a r^{2}-4 a r\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
4 a r^{2}-4 a r+2 b r+c-d+e=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}, \frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}\right\}
$$

- \quad Each term must be 0

$$
\left(4 a r^{2}+4 a r+2 b r+2 b+c-d+e\right) a_{1}-a_{0}\left(4 a r^{2}-4 a r+3 b r+2 c-d\right)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0}\left(4 a r^{2}-4 a r+3 b r+2 c-d\right)}{4 a r^{2}+4 a r+2 b r+2 b+c-d+e}$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(\left(-4 a_{k-1}+4 a_{k}+a_{k-2}\right) k^{2}+\left(\left(-8 a_{k-1}+8 a_{k}+2 a_{k-2}\right) r+12 a_{k-1}-4 a_{k}-5 a_{k-2}\right) k+\left(-4 a_{k-1}+\right.\right.
$$

- \quad Shift index using $k->k+2$

$$
\left(\left(-4 a_{k+1}+4 a_{k+2}+a_{k}\right)(k+2)^{2}+\left(\left(-8 a_{k+1}+8 a_{k+2}+2 a_{k}\right) r+12 a_{k+1}-4 a_{k+2}-5 a_{k}\right)(k+2)\right.
$$

- Recursion relation that defines series solution to ODE $a_{k+2}=-\frac{a k^{2} a_{k}-4 a k^{2} a_{k+1}+2 a k r a_{k}-8 a k r a_{k+1}+a r^{2} a_{k}-4 a r^{2} a_{k+1}-a k a_{k}-4 a k a_{k+1}-a r a_{k}-4 a r a_{k+1}+a_{k} b k-3 b k a_{k+1}+a_{k} b r-}{4 a k^{2}+8 a k r+4 a r^{2}+12 a k+12 a r+2 b k+2 b r+8 a+4 b+c-d+e}$
- Recursion relation for $r=-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}$
$a_{k+2}=-\frac{\left.a k^{2} a_{k}-4 a k^{2} a_{k+1}-\frac{k\left(-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}\right) a_{k}}{2}+2 k\left(-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}\right) a_{k+1}+\frac{(-2}{2}\right)}{2}$
- Solution for $r=-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-4 a k^{2} a_{k+1}-\frac{k\left(-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+}\right.}{2}}{}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-4 a k^{2} a_{k+1}-\frac{k\left(-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4}\right.}{2}}{}\right.
$$

- Recursion relation for $r=\frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}$

- \quad Solution for $r=\frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-4 a k^{2} a_{k+1}+\frac{k\left(2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}\right)}{2}}{2}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}, a_{k+2}=-\frac{a k^{2} a_{k}-4 a k^{2} a_{k+1}+\frac{k\left(2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e-}\right.}{2}}{}\right.
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} f_{k}(1+x)^{k-\frac{-2 a+b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}\right)+\left(\sum_{k=0}^{\infty} g_{k}(1+x)^{k+\frac{2 a-b+\sqrt{4 a^{2}-4 a b-4 a c+4 a d-4 a e+b^{2}}}{4 a}}\right)\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
    <- hypergeometric successful
<- special function solution successful
```


Solution by Maple

Time used: 0.141 (sec). Leaf size: 562

$$
\begin{aligned}
& \text { dsolve }\left(\mathrm{a} *\left(\mathrm{x}^{\wedge} 2-1\right)^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{b} * \mathrm{x} *\left(\mathrm{x}^{\wedge} 2-1\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{c} * \mathrm{x}^{\wedge} 2+\mathrm{d} * \mathrm{x}+\mathrm{e}\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\right. \text {, singso } \\
& y(x) \\
& =\frac{\left(x^{2}-1\right)^{-\frac{b}{4 a}} \sqrt{2+2 x}\left(c _ { 1 } \text { hypergeom } \left(\left[-\frac{-\sqrt{4 a^{2}+(-4 b-4 c-4 d-4 e) a+b^{2}}+2 \sqrt{a^{2}+(-2 b-4 c) a+b^{2}}+\sqrt{4 a^{2}+(-4 b-4 c+4 d-4 e)}}{4 a}\right.\right.\right.}{}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[a *\left(x^{\wedge} 2-1\right)^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+b * x *\left(x^{\wedge} 2-1\right) * y '[x]+\left(c * x^{\wedge} 2+d * x+e\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolu

Timed out

32.19 problem 228

32.19.1 Solving as second order change of variable on x method 2 ode . 3482
32.19.2 Solving using Kovacic algorithm 3485

Internal problem ID [11053]
Internal file name [OUTPUT/10309_Wednesday_January_24_2024_10_07_01_PM_39341230/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 228.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+(2 a x+c)\left(a x^{2}+b\right) y^{\prime}+y k=0
$$

32.19.1 Solving as second order change of variable on x method 2 ode In normal form the ode

$$
\begin{equation*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+(2 a x+c)\left(a x^{2}+b\right) y^{\prime}+y k=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 a x+c}{a x^{2}+b} \\
q(x) & =\frac{k}{\left(a x^{2}+b\right)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2 a x+c}{a x^{2}+b} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln \left(a x^{2}+b\right)-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}} d x \\
& =\int \frac{\mathrm{e}^{-\frac{\operatorname{carctan}\left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{a x^{2}+b} d x \\
& =-\frac{\mathrm{e}^{-\frac{c \operatorname{carctan}\left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{k}{\left(a x^{2}+b\right)^{2}}}{\frac{\mathrm{e}^{-\frac{2 c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{\left(a x^{2}+b\right)^{2}}} \\
& =k \mathrm{e}^{\frac{2 \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+k \mathrm{e}^{\frac{2 c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
k \mathrm{e}^{\frac{2 c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}=\frac{k}{c^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{k y(\tau)}{c^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) c^{2} \tau^{2}+k y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
c^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+k \tau^{r}=0
$$

Simplifying gives

$$
c^{2} r(r-1) \tau^{r}+0 \tau^{r}+k \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
c^{2} r(r-1)+0+k=0
$$

Or

$$
\begin{equation*}
c^{2} r^{2}-c^{2} r+k=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-c+\sqrt{c^{2}-4 k}}{2 c} \\
& r_{2}=\frac{c+\sqrt{c^{2}-4 k}}{2 c}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-c+\sqrt{c^{2}-4 k}}{2 c}}+c_{2} \tau^{\frac{c+\sqrt{c^{2}-4 k}}{2 c}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{-\frac{-c+\sqrt{c^{2}-4 k}}{2 c}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{\frac{c+\sqrt{c^{2}-4 k}}{2 c}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{-\frac{-c+\sqrt{c^{2}-4 k}}{2 c}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{\frac{c+\sqrt{c^{2}-4 k}}{2 c}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{-\frac{-c+\sqrt{c^{2}-4 k}}{2 c}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{c}\right)^{\frac{c+\sqrt{c^{2}-4 k}}{2 c}}
$$

Verified OK.

32.19.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+(2 a x+c)\left(a x^{2}+b\right) y^{\prime}+y k & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(a x^{2}+b\right)^{2} \\
& B=(2 a x+c)\left(a x^{2}+b\right) \tag{3}\\
& C=k
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 a b+c^{2}-4 k}{4\left(a x^{2}+b\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 a b+c^{2}-4 k \\
& t=4\left(a x^{2}+b\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 a b+c^{2}-4 k}{4\left(a x^{2}+b\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 \{1, | |
| 3 | $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |

Table 215: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(a x^{2}+b\right)^{2}$. There is a pole at $x=\frac{\sqrt{-a b}}{a}$ of order 2 . There is a pole at $x=-\frac{\sqrt{-a b}}{a}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Unable to find solution using case one
Attempting to find a solution using case $n=2$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & -\frac{4 a b+c^{2}-4 k}{16 a b\left(x-\sqrt{-\frac{b}{a}}\right)^{2}}-\frac{4 a b+c^{2}-4 k}{16 a b\left(x+\sqrt{-\frac{b}{a}}\right)^{2}} \\
& +\frac{-4 a b-c^{2}+4 k}{16\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x-\sqrt{-\frac{b}{a}}\right)}-\frac{-4 a b-c^{2}+4 k}{16\left(-\frac{b}{a}\right)^{\frac{3}{2}} a^{2}\left(x+\sqrt{-\frac{b}{a}}\right)}
\end{aligned}
$$

For the pole at $x=\frac{\sqrt{-a b}}{a}$ let b be the coefficient of $\frac{1}{\left(x-\frac{\sqrt{-a b}}{a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

For the pole at $x=-\frac{\sqrt{-a b}}{a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{\sqrt{-a b}}{a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=0$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{0,2,4\}
\end{aligned}
$$

Now since the order of r at ∞ is $4>2$ then

$$
E_{\infty}=\{0,2,4\}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ for case 2 of Kovacic algorithm.

| pole c location | pole order | E_{c} |
| :---: | :---: | :---: |
| $\frac{\sqrt{-a b}}{a}$ | 2 | $\{0,2,4\}$ |
| $-\frac{\sqrt{-a b}}{a}$ | 2 | $\{0,2,4\}$ |

| Order of r at ∞ | E_{∞} |
| :---: | :---: |
| 4 | $\{0,2,4\}$ |

Using the family $\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}$ given by

$$
e_{1}=2, e_{2}=2, e_{\infty}=4
$$

Gives a non negative integer d (the degree of the polynomial $p(x)$), which is generated using

$$
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(4-(2+(2))) \\
& =0
\end{aligned}
$$

We now form the following rational function

$$
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{2}{\left(x-\left(\frac{\sqrt{-a b}}{a}\right)\right)}+\frac{2}{\left(x-\left(-\frac{\sqrt{-a b}}{a}\right)\right)}\right) \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}
\end{aligned}
$$

Now we search for a monic polynomial $p(x)$ of degree $d=0$ such that

$$
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
$$

Since $d=0$, then letting

$$
\begin{equation*}
p=1 \tag{2~A}
\end{equation*}
$$

Substituting p and θ into Eq. (1A) gives

$$
0=0
$$

And solving for p gives

$$
p=1
$$

Now that $p(x)$ is found let

$$
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}
\end{aligned}
$$

Let ω be the solution of

$$
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
$$

Substituting the values for ϕ and r into the above equation gives

$$
w^{2}-\left(\frac{1}{x-\frac{\sqrt{-a b}}{a}}+\frac{1}{x+\frac{\sqrt{-a b}}{a}}\right) w+\frac{4 a^{2} x^{2}-c^{2}+4 k}{4\left(a x^{2}+b\right)^{2}}=0
$$

Solving for ω gives

$$
\omega=\frac{2 a x+\sqrt{c^{2}-4 k}}{2 a x^{2}+2 b}
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{2 a x+\sqrt{c^{2}-4 k}}{2 a x^{2}+2 b} d x} \\
& =\sqrt{a x^{2}+b} \mathrm{e}^{\frac{\sqrt{c^{2}-4 k} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 \sqrt{a b}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{(2 a x+c)\left(a x^{2}+b\right)}{\left(a x^{2}+b\right)^{2}} d x} \\
& =z_{1} e^{-\frac{\ln \left(a x^{2}+b\right)}{2}-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{2 \sqrt{a b}}} \\
& =z_{1}\left(\frac{\mathrm{e}^{-\frac{\operatorname{carctan}\left(\frac{a x}{\sqrt{a b}}\right)}{2 \sqrt{a b}}}}{\sqrt{a x^{2}+b}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(-c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{(2 a x+c)\left(a x^{2}+b\right)}{\left(a x^{2}+b\right)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln \left(a x^{2}+b\right)-\frac{c \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-\frac{\sqrt{c^{2}-4 k} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{\sqrt{c^{2}-4 k}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\left.\begin{array}{rl}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(-c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}\right)+c_{2}\left(\mathrm{e}^{\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(-c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}\left(-\frac{\mathrm{e}^{-\frac{\sqrt{c^{2}-4 k} \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{\sqrt{a b}}}}{\sqrt{c^{2}-4 k}}\right)\right.
\end{array}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(-c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}-\frac{c_{2} \mathrm{e}^{-\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}}{\sqrt{c^{2}-4 k}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(-c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}-\frac{c_{2} \mathrm{e}^{-\frac{\arctan \left(\frac{a x}{\sqrt{a b}}\right)\left(c+\sqrt{c^{2}-4 k}\right)}{2 \sqrt{a b}}}}{\sqrt{c^{2}-4 k}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 162
dsolve $\left(\left(a * x^{\wedge} 2+b\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+(2 * a * x+c) *\left(a * x^{\wedge} 2+b\right) * \operatorname{diff}(y(x), x)+k * y(x)=0, y(x)\right.$, singsol $=a l$

$$
y(x)=c_{1}\left(\frac{-i \sqrt{a b}+a x}{i \sqrt{a b}+a x}\right)^{\frac{i \sqrt{a b} c \sqrt{-a b}+a^{2} \sqrt{\frac{c^{2}-4 k}{a^{2}}} b}{4 a b \sqrt{-a b}}}+c_{2}\left(\frac{-i \sqrt{a b}+a x}{i \sqrt{a b}+a x}\right)^{\frac{i \sqrt{a b} c \sqrt{-a b}-a^{2} \sqrt{\frac{c^{2}-4 k}{a^{2}}}}{4 a b \sqrt{-a b}}}
$$

\checkmark Solution by Mathematica
Time used: 2.188 (sec). Leaf size: 91
DSolve $\left[\left(a * x^{\wedge} 2+b\right) \wedge 2 * y^{\prime \prime}[x]+(2 * a * x+c) *\left(a * x^{\wedge} 2+b\right) * y{ }^{\prime}[x]+k * y[x]==0, y[x], x\right.$, IncludeSingularSolution

$$
y(x) \rightarrow e^{-\frac{\left(\sqrt{c^{2}-4 k}+c\right) \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{2 \sqrt{a} \sqrt{b}}}\left(c_{2} e^{\frac{\sqrt{c^{2}-4 k} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)}{\sqrt{a} \sqrt{b}}}+c_{1}\right)
$$

32.20 problem 229

32.20.1 Solving as second order ode lagrange adjoint equation method od 3493

Internal problem ID [11054]
Internal file name [OUTPUT/10310_Wednesday_January_24_2024_10_07_02_PM_22005237/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 229.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+\left(a x^{2}+b\right)\left(c x^{2}+d\right) y^{\prime}+2(-a d+b c) x y=0
$$

32.20.1 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

$$
\begin{equation*}
\left(a x^{2}+b\right)^{2} y^{\prime \prime}+\left(a x^{2}+b\right)\left(c x^{2}+d\right) y^{\prime}+(-2 a d x+2 b c x) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{c x^{2}+d}{a x^{2}+b} \\
& q(x)=-\frac{2(a d-b c) x}{\left(a x^{2}+b\right)^{2}} \\
& r(x)=0
\end{aligned}
$$

The Lagrange adjoint ode is given by

$$
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-\left(\frac{\left(c x^{2}+d\right) \xi(x)}{a x^{2}+b}\right)^{\prime}+\left(-\frac{2(a d-b c) x \xi(x)}{\left(a x^{2}+b\right)^{2}}\right) & =0 \\
\xi^{\prime \prime}(x)-\frac{\left(c x^{2}+d\right) \xi^{\prime}(x)}{a x^{2}+b}+\left(-\frac{2 c x}{a x^{2}+b}+\frac{2\left(c x^{2}+d\right) a x}{\left(a x^{2}+b\right)^{2}}-\frac{2(a d-b c) x}{\left(a x^{2}+b\right)^{2}}\right) \xi(x) & =0
\end{aligned}
$$

Which is solved for $\xi(x)$. This is second order ode with missing dependent variable $\xi(x)$.
Let

$$
p(x)=\xi^{\prime}(x)
$$

Then

$$
p^{\prime}(x)=\xi^{\prime \prime}(x)
$$

Hence the ode becomes

$$
p^{\prime}(x)\left(a x^{2}+b\right)+\left(-c x^{2}-d\right) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p\left(c x^{2}+d\right)}{a x^{2}+b}
\end{aligned}
$$

Where $f(x)=\frac{c x^{2}+d}{a x^{2}+b}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{c x^{2}+d}{a x^{2}+b} d x \\
\int \frac{1}{p} d p & =\int \frac{c x^{2}+d}{a x^{2}+b} d x \\
\ln (p) & =\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}+c_{1} \\
p & =\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}}
\end{aligned}
$$

Since $p=\xi^{\prime}(x)$ then the new first order ode to solve is

$$
\xi^{\prime}(x)=c_{1} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}}
$$

Integrating both sides gives

$$
\begin{aligned}
\xi(x) & =\int c_{1} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} \mathrm{~d} x \\
& =\int c_{1} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x+c_{2}
\end{aligned}
$$

The original ode (2) now reduces to first order ode

$$
\begin{aligned}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(\frac{c x^{2}+d}{a x^{2}+b}-\frac{c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}}}{\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b})}\right.}{a \sqrt{a b}}} d x+c_{2}}\right) & =0
\end{aligned}
$$

Which is now a first order ode. This is now solved for y. In canonical form the ODE is

$$
\begin{aligned}
& y^{\prime}= F(x, y) \\
&= f(x) g(y) \\
& y\left(\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}} c_{3} a x^{2}-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x\right) c x^{2}-c x^{2} c_{2}+\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} b}\right. \\
&\left(a x^{2}+b\right)\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{a \sqrt{a b}}\right)}{\sqrt[a b]{a b}}} d x+c_{2}\right)
\end{aligned}
$$

and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
& =\frac{\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} a x^{2}-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x\right) c x^{2}-c x^{2} c_{2}+\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}},}{\left(a x^{2}+b\right)\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x+c_{2}\right)} \\
& \int \frac{1}{y} d y=\int \frac{\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} a x^{2}-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x\right) c x^{2}-c x^{2} c_{2}+\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a}}\right.}{a \sqrt{a b}}}}{\left(a x^{2}+b\right)\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{a b}\right)}{a \sqrt{a b}}} d x+c_{2}\right)}
\end{aligned}
$$

Hence, the solution found using Lagrange adjoint equation method is

$$
\begin{aligned}
& y \\
& \left.\int \frac{\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} a x^{2}-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x\right) c x^{2}-c x^{2} c_{2}+\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} b-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \operatorname{arcta2}}{a \sqrt{a b}}}\right.}{\left(a x^{2}+b\right)\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x+c_{2}\right.}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)

Verification of solutions

y

$$
\begin{aligned}
& \quad \int \frac{\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}} c_{3} a x^{2}-\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}} d x}\right) c x^{2}-c x^{2} c_{2}+\mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} c_{3} b-}\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \operatorname{arctar}}{a \sqrt{a b}}} \quad\left(a x^{2}+b\right)\left(\int c_{3} \mathrm{e}^{\frac{c x}{a}+\frac{(a d-b c) \arctan \left(\frac{a x}{\sqrt{a b}}\right)}{a \sqrt{a b}}} d x+c_{2}\right)\right.}{} \quad=c_{3} \mathrm{e}
\end{aligned}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        <- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <>
    <- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.312 (sec). Leaf size: 866

```
dsolve((a*x^2+b)^2*diff (y(x),x$2)+(a*x^2+b)*(c*x^2+d)*diff(y(x),x)+2*(b*c-a*d)*x*y(x)=0,y(x)
```

$$
\begin{aligned}
& y(x)=(-a x+\sqrt{-a b})^{\frac{2 a^{2} b+\sqrt{-a b\left(4 \sqrt{-a b} a^{2} d-4 \sqrt{\left.-a b a b c-4 a^{3} b+a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)}\right.}}{4 a^{2} b}}\left(c_{1}(a x\right. \\
& +\sqrt{-a b})^{\frac{2 a^{2} b+\sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+4 a^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}}{4 a^{2} b}} \mathrm{e}^{\frac{\sqrt{-a b} c}{2 a^{2}}-\frac{\arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right) d}{2 \sqrt{a} \sqrt{b}}+\frac{\sqrt{b} \arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right) c}{2 a^{\frac{3}{2}}}} \operatorname{HeunC}\left(\frac{2 \sqrt{-\frac{b}{a}} c}{a}\right. \\
& \left.-\frac{d^{2}}{8 a b}-\frac{c d}{4 a^{2}}+\frac{3 b c^{2}}{8 a^{3}}, \frac{a x}{2 \sqrt{-a b}}+\frac{1}{2}\right) \\
& +c_{2}(a x+\sqrt{-a b})^{-\frac{-2 a^{2} b+\sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+4 a^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}}{4 a^{2} b}} \operatorname{HeunC}\left(\frac{2 \sqrt{-\frac{b}{a}} c}{a},\right. \\
& -\frac{\sqrt{4 a^{2} b(a d-b c) \sqrt{-a b}+4 a^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}}{2 a^{2} b}, \frac{\sqrt{-a b\left(4 \sqrt{-a b} a^{2} d-4 \sqrt{-a b} a b c-4 a^{3}\right.}}{2 a^{2} b} \\
& -\frac{d^{2}}{8 a b}-\frac{c d}{4 a^{2}}+\frac{3 b c^{2}}{8 a^{3}}, \frac{a x}{2 \sqrt{-a b}} \\
& \left.+\frac{1}{2}\right) \mathrm{e}^{\frac{i \pi \sqrt{4 a^{2} b(a d-b c) \sqrt{ }-a b+4 a^{4} b^{2}-a^{3} b d^{2}+2 d b^{2} c a^{2}-b^{3} c^{2} a}-i \pi \sqrt{-a b\left(4 \sqrt{\left.-a b a^{2} d-4 \sqrt{ }-a b a b c-4 a^{3} b+a^{2} d^{2}-2 a b c d+b^{2} c^{2}\right)}-4\left(a^{2}\left(\frac{d}{\sqrt{b} \sqrt{a}}-\frac{\sqrt{b} c}{a^{\frac{3}{2}}}\right)\right.\right.}}{8 a^{2} b}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 104
DSolve $\left[\left(a * x^{\wedge} 2+b\right)^{\wedge} 2 * y^{\prime}[x]+\left(a * x^{\wedge} 2+b\right) *\left(c * x^{\wedge} 2+d\right) * y^{\prime}[x]+2 *(b * c-a * d) * x * y[x]==0, y[x], x\right.$, IncludeSing

$$
\begin{aligned}
y(x) \rightarrow \exp & \left(\frac{\arctan \left(\frac{\sqrt{a} x}{\sqrt{b}}\right)(b c-a d)}{a^{3 / 2} \sqrt{b}}\right. \\
& \left.-\frac{c x}{a}\right)\left(\int_{1}^{x} \exp \left(\frac{(a d-b c) \arctan \left(\frac{\sqrt{a} K[1]}{\sqrt{b}}\right)}{a^{3 / 2} \sqrt{b}}+\frac{c K[1]}{a}\right) c_{1} d K[1]+c_{2}\right)
\end{aligned}
$$

32.21 problem 230

Internal problem ID [11055]
Internal file name [OUTPUT/10311_Wednesday_January_24_2024_10_07_03_PM_50427788/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 230.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(x^{2}+a\right)^{2} y^{\prime \prime}+b x^{n}\left(x^{2}+a\right) y^{\prime}-\left(b x^{n+1}+a\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(\left(x^{\wedge} 2+a\right)^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+b * x^{\wedge} n *\left(x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x)-\left(b * x^{\wedge}(n+1)+a\right) * y(x)=0, y(x)\right.$, singso

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} 2+a\right)^{\wedge} 2 * y{ }^{\prime}\right.$ ' $[x]+b * x^{\wedge} n *\left(x^{\wedge} 2+a\right) * y '[x]-\left(b * x^{\wedge}(n+1)+a\right) * y[x]==0, y[x], x$, IncludeSingularSolu

Not solved

32.22 problem 231

Internal problem ID [11056]
Internal file name [OUTPUT/10312_Wednesday_January_24_2024_10_07_04_PM_36399781/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 231.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(x^{2}+a\right)^{2} y^{\prime \prime}+b x^{n}\left(x^{2}+a\right) y^{\prime}-m\left(b x^{n+1}+(m-1) x^{2}+a\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(\left(x^{\wedge} 2+a\right)^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+b * x^{\wedge} n *\left(x^{\wedge} 2+a\right) * \operatorname{diff}(y(x), x)-m *\left(b * x^{\wedge}(n+1)+(m-1) * x^{\wedge} 2+a\right) * y(x)=0\right.$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} 2+a\right)^{\wedge} 2 * y{ }^{\prime}[x]+b * x^{\wedge} n *\left(x^{\wedge} 2+a\right) * y^{\prime}[x]-m *\left(b * x^{\wedge}(n+1)+(m-1) * x^{\wedge} 2+a\right) * y[x]==0, y[x], x\right.$, Include

Not solved

32.23 problem 232

32.23.1 Solving as second order bessel ode ode
32.23.2 Solving using Kovacic algorithm 3507
32.23.3 Maple step by step solution . 3513

Internal problem ID [11057]
Internal file name [OUTPUT/10313_Wednesday_January_24_2024_10_07_04_PM_71850249/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 232.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x-a)^{2}(x-b)^{2} y^{\prime \prime}-y c=0
$$

32.23.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-\frac{c y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{-c} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{-c}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{-c}}{x}}}
$$

Verified OK.

32.23.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}(a-x)^{2}(-x+b)^{2}-y c & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(a-x)^{2}(-x+b)^{2} \\
& B=0 \tag{3}\\
& C=-c
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{c}{\left(a b-a x-b x+x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=c \\
& t=\left(a b-a x-b x+x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{c}{\left(a b-a x-b x+x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 216: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a b-a x-b x+x^{2}\right)^{2}$. There is a pole at $x=a$ of order 2 . There is a pole at $x=b$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{c}{(a-b)^{2}(x-b)^{2}}+\frac{c}{(a-b)^{2}(x-a)^{2}}+\frac{2 c}{(a-b)^{3}(x-b)}-\frac{2 c}{(a-b)^{3}(x-a)}
$$

For the pole at $x=a$ let b be the coefficient of $\frac{1}{(x-a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{c}{(a-b)^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}
\end{aligned}
$$

For the pole at $x=b$ let b be the coefficient of $\frac{1}{(x-b)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{c}{(a-b)^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{c}{\left(a b-a x-b x+x^{2}\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| a | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}$ |
| b | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}{x-b}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}{x-b} \\
& =\frac{-a-\sqrt{a^{2}-2 a b+b^{2}+4 c}+2 x-b}{2(x-a)(x-b)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}{x-b}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}}{(x-a)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}{(x-b)^{2}}\right)+\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2(a-b)}}{x-a}+\frac{\frac{1}{+}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}{x-b}\right) d x} \\
& =\mathrm{e}^{\frac{(-\ln (x-a)+\ln (x-b)) \sqrt{a^{2}-2 a b+b^{2}+4 c}+(\ln (x-a)+\ln (x-b))(a-b)}{2 a-2 b}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}} \int \frac{1}{(a-x)(-x+b)\left(\frac{-x+b}{a-x}\right)^{\frac{2 \sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}} d x \\
& =\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}\left(\frac{\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}}{\sqrt{a^{2}-2 a b+b^{2}+4 c}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}\right) \\
& +c_{2}\left(\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}\left(\frac{\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}}{\sqrt{a^{2}-2 a b+b^{2}+4 c}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}} \tag{1}\\
& +\frac{c_{2} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}}{\sqrt{a^{2}-2 a b+b^{2}+4 c}}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}} \\
& +\frac{c_{2} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}}}{\sqrt{a^{2}-2 a b+b^{2}+4 c}}
\end{aligned}
$$

Verified OK.

32.23.3 Maple step by step solution

Let's solve
$y^{\prime \prime}(a-x)^{2}(-x+b)^{2}-y c=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{c y}{(a-x)^{2}(-x+b)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{c y}{(a-x)^{2}(-x+b)^{2}}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=-\frac{c}{(a-x)^{2}(-x+b)^{2}}\right]
$$

- $(x-a) \cdot P_{2}(x)$ is analytic at $x=a$
$\left.\left((x-a) \cdot P_{2}(x)\right)\right|_{x=a}=0$
- $\quad(x-a)^{2} \cdot P_{3}(x)$ is analytic at $x=a$
$\left.\left((x-a)^{2} \cdot P_{3}(x)\right)\right|_{x=a}=-\frac{c}{(b-a)^{2}}$
- $x=a$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=a$

- Multiply by denominators
$y^{\prime \prime}(a-x)^{2}(-x+b)^{2}-y c=0$
- \quad Change variables using $x=u+a$ so that the regular singular point is at $u=0$ $\left(a^{2} u^{2}-2 a b u^{2}+2 a u^{3}+b^{2} u^{2}-2 b u^{3}+u^{4}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)-c y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}$
- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0}\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}-a^{2} r+2 a b r-b^{2} r-c\right) u^{r}+\left(\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+a^{2} r-2 a b r+b^{2} r-\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}-a^{2} r+2 a b r-b^{2} r-c=0$
- Values of r that satisfy the indicial equation
$r \in\left\{\frac{-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}}{a-b}, \frac{-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}}{a-b}\right\}$
- Each term must be 0

$$
\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+a^{2} r-2 a b r+b^{2} r-c\right) a_{1}+2 a_{0} r(-1+r)(a-b)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{2 a_{0} r(r a-r b-a+b)}{a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+a^{2} r-2 a b r+b^{2} r-c}$
- Each term in the series must be 0, giving the recursion relation

$$
\left((a-b)^{2} a_{k}+2 a a_{k-1}-2 b a_{k-1}+a_{k-2}\right) k^{2}+\left(\left(2(a-b)^{2} a_{k}+4 a a_{k-1}-4 b a_{k-1}+2 a_{k-2}\right) r-(a-\right.
$$

- \quad Shift index using $k->k+2$

$$
\left((a-b)^{2} a_{k+2}+2 a a_{k+1}-2 b a_{k+1}+a_{k}\right)(k+2)^{2}+\left(\left(2(a-b)^{2} a_{k+2}+4 a a_{k+1}-4 b a_{k+1}+2 a_{k}\right) r-\right.
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{2 a k^{2} a_{k+1}+4 a k r a_{k+1}+2 a r^{2} a_{k+1}-2 b k^{2} a_{k+1}-4 b k r a_{k+1}-2 b r^{2} a_{k+1}+2 a k a_{k+1}+2 a r a_{k+1}-2 b k a_{k+1}-2 b r a_{k+1}+k^{2} a_{k}+}{a^{2} k^{2}+2 a^{2} k r+a^{2} r^{2}-2 a b k^{2}-4 a b k r-2 a b r^{2}+b^{2} k^{2}+2 b^{2} k r+b^{2} r^{2}+3 a^{2} k+3 a^{2} r-6 a b k-6 a b r+3 b^{2} k+3 b^{2} r+2 a^{2}-}$
- Recursion relation for $r=\frac{-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}}{a-b}$
- Solution for $r=\frac{-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}{a-}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}{a}}, a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right) a_{k+1}}{a-b}+\frac{2 a\left(-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}}}{(a}\right.}{a^{2} k^{2}+\frac{2 a^{2} k\left(-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right)}{a-b}}+\frac{a^{2}\left(-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a}}{a}\right.}{(a-} . \frac{2}{a}}{}\right.
$$

- \quad Revert the change of variables $u=x-a$
- Recursion relation for $r=\frac{-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}{a}$

$$
a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right) a_{k+1}}{a-b}+\frac{2 a\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right.}{(a-b)^{2}} a_{k+1}}{\left(a^{2}\right.}-2 b k^{2} a_{k+1}-\frac{4 b k\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-}}{a-}\right.}{a a^{2} k\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right)} a^{2-b}+\frac{a^{2}\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2}\right)^{2}}{(a-b)^{2}}-2 a b k^{2}-\frac{4 a b k\left(-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}}}{a-b}\right.}{a-b}
$$

- Solution for $r=\frac{-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2-b}}{a-b}$
- \quad Revert the change of variables $u=x-a$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} d_{k}(x-a)^{k+\frac{-\frac{b}{2}+\frac{a}{2}-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}{a}}\right)+\left(\sum_{k=0}^{\infty} e_{k}(x-a)^{k+\frac{-\frac{b}{2}+\frac{a}{2}+\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{a-b}}{2}}\right), d_{k+2}=-\frac{2 c}{}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 104

```
dsolve((x-a)^2*(x-b)^2*diff(y(x), x$2)-c*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{(a-x)(b-x)}\left(\left(\frac{a-x}{b-x}\right)^{\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}} c_{1}+\left(\frac{a-x}{b-x}\right)^{-\frac{\sqrt{a^{2}-2 a b+b^{2}+4 c}}{2 a-2 b}} c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.085 (sec). Leaf size: 141
DSolve[($x-a)^{\wedge} 2 *(x-b)^{\wedge} 2 * y$ ' ' $[x]-c * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow(x-a)^{\frac{1}{2}\left(1-\sqrt{\frac{4 c}{(a-b)^{2}}+1}\right)}(x-b)^{\frac{1}{2}\left(1-\sqrt{\frac{4 c}{(a-b)^{2}}+1}\right)}\left(c_{1}(x-a)^{\sqrt{\frac{4 c}{(a-b)^{2}}+1}}\right. \\
& \left.-\frac{c_{2}(x-b) \sqrt{\frac{4 c}{(a-b)^{2}}+1}}{(a-b) \sqrt{\frac{4 c}{(a-b)^{2}}+1}}\right)
\end{aligned}
$$

32.24 problem 233

32.24.1 Solving as second order change of variable on x method 2 ode . 3517
32.24.2 Solving using Kovacic algorithm 3520
32.24.3 Maple step by step solution . 3526

Internal problem ID [11058]
Internal file name [OUTPUT/10314_Wednesday_January_24_2024_10_07_05_PM_75631971/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 233 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x-a)^{2}(x-b)^{2} y^{\prime \prime}+(x-a)(x-b)(2 x+\lambda) y^{\prime}+\mu y=0
$$

32.24.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}(a-x)^{2}(-x+b)^{2}+(2 x+\lambda) y^{\prime}(a-x)(-x+b)+\mu y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 x+\lambda}{(a-x)(-x+b)} \\
q(x) & =\frac{\mu}{(a-x)^{2}(-x+b)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2 x+\lambda}{(a-x)(-x+b)} d x\right)} d x \\
& =\int e^{\frac{(-2 a-\lambda) \ln (x-a)+2\left(b+\frac{\lambda}{2}\right) \ln (x-b)}{a-b}} d x \\
& =\int(x-a)^{\frac{-2 a-\lambda}{a-b}}(x-b)^{\frac{2 b+\lambda}{a-b}} d x \\
& =-\frac{(x-b)^{1+\frac{2 b+\lambda}{a-b}}(x-a)^{1-\frac{2 a+\lambda}{a-b}}}{a+b+\lambda} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\mu}{(x-b)^{\frac{4 b+2 \lambda}{a-b}}(x-a)^{\frac{-4 a-2 \lambda}{a-b}}} \\
& =\mu(x-a)^{\frac{2 a+2+2 \lambda}{a-b}}(x-b)^{\frac{-2 a-2 b-2 \lambda}{a-b}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\mu(x-a)^{\frac{2 a+2 b+2 \lambda}{a-b}}(x-b)^{\frac{-2 a-2 b-2 \lambda}{a-b}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
\mu(x-a)^{\frac{2 a+2 b+2 \lambda}{a-b}}(x-b)^{\frac{-2 a-2 b-2 \lambda}{a-b}}=\frac{\mu}{(a+b+\lambda)^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{\mu y(\tau)}{(a+b+\lambda)^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right)(a+b+\lambda)^{2} \tau^{2}+\mu y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
(a+b+\lambda)^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\mu \tau^{r}=0
$$

Simplifying gives

$$
(a+b+\lambda)^{2} r(r-1) \tau^{r}+0 \tau^{r}+\mu \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
(a+b+\lambda)^{2} r(r-1)+0+\mu=0
$$

Or

$$
\begin{equation*}
\left(a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}\right) r^{2}+\left(-a^{2}-2 a b-2 a \lambda-b^{2}-2 b \lambda-\lambda^{2}\right) r+\mu=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-a-b-\lambda+\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a+b+\lambda)} \\
& r_{2}=\frac{a+b+\lambda+\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a+2 b+2 \lambda}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-a-b-\lambda+\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a+b+\lambda)}}+c_{2} \tau^{\frac{a+b+\lambda+\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a+2 b+2 \lambda}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right)^{\frac{a+b+\lambda-\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a+2 b+2 \lambda}}+c_{2}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right)^{\frac{a}{5}}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right)^{\frac{a+b+\lambda-\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a+2 b+2 \lambda}} \tag{1}\\
& +c_{2}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right) \frac{a+b+\lambda+\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a+2 b+2 \lambda}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right)^{\frac{a+b+\lambda-\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a+2 b+2 \lambda}} \\
& +c_{2}\left(-\frac{(x-b)^{\frac{a+b+\lambda}{a-b}}(x-a)^{\frac{-a-b-\lambda}{a-b}}}{a+b+\lambda}\right) \frac{a+b+\lambda+\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a+2 b+2 \lambda}
\end{aligned}
$$

Verified OK.

32.24.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}(a-x)^{2}(-x+b)^{2}+(2 x+\lambda) y^{\prime}(a-x)(-x+b)+\mu y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(a-x)^{2}(-x+b)^{2} \\
& B=(2 x+\lambda)(a-x)(-x+b) \tag{3}\\
& C=\mu
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{4\left(a b-a x-b x+x^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu \\
& t=4\left(a b-a x-b x+x^{2}\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{4\left(a b-a x-b x+x^{2}\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 218: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(a b-a x-b x+x^{2}\right)^{2}$. There is a pole at $x=a$ of order 2 . There is a pole at $x=b$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & \frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{4(a-b)^{2}(x-a)^{2}}-\frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{2(a-b)^{3}(x-a)} \\
& +\frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{4(a-b)^{2}(x-b)^{2}}-\frac{-4 a b-2 a \lambda-2 b \lambda-\lambda^{2}+4 \mu}{2(a-b)^{3}(x-b)}
\end{aligned}
$$

For the pole at $x=a$ let b be the coefficient of $\frac{1}{(x-a)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{\lambda^{2}+(2 b+2 a) \lambda+4 a b-4 \mu}{4(a-b)^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}
\end{aligned}
$$

For the pole at $x=b$ let b be the coefficient of $\frac{1}{(x-b)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{\lambda^{2}+(2 b+2 a) \lambda+4 a b-4 \mu}{4(a-b)^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{4 a b+2 a \lambda+2 b \lambda+\lambda^{2}-4 \mu}{4\left(a b-a x-b x+x^{2}\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| a | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}$ |
| b | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}$ | $\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}}{x-b}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}}{x-b} \\
& =\frac{-a-\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}+2 x-b}{2(x-a)(x-b)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}}{x-a}+\frac{\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}}{x-b}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+}}{2(a-b)}}{(x-a)^{2}}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2(a-b)}}{x-a}+\frac{1}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2 a-2 b}\right.}\right) d x \\
& =\mathrm{e}^{\frac{(-\ln (x-a)+\ln (x-b)) \sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}+(\ln (x-a)+\ln (x-b))(a-b)}{2 a-2 b}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{(2 x+\lambda)(a-x)(-x+b)}{(a-x)^{2}(-x+b)^{2}} d x} \\
& =z_{1} e^{-\frac{(-2 b-\lambda) \ln (x-b)}{2(a-b)}-\frac{(2 a+\lambda) \ln (x-a)}{2(a-b)}} \\
& =z_{1}\left((x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{(2 x+\lambda)(a-x)(-x+b)}{(a-x)^{2}(-x+b)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{(-2 a-\lambda) \ln (x-a)+2\left(b+\frac{\lambda}{2}\right) \ln (x-b)}{a-b}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{a-b}}}{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\left.\left.\begin{array}{rl}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}}\right) \\
& +c_{2}\left(\sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x\right. \\
& -a)^{\frac{-2 a-\lambda}{2 a-2 b}}\left(\frac{\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{a-b}}}{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}\right)
\end{array}\right)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}} \\
& +\frac{c_{2} \sqrt{(a-x)(-x+b)}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}}{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{(a-x)(-x+b)}\left(\frac{-x+b}{a-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}} \\
& +\frac{c_{2} \sqrt{(a-x)(-x+b)}(x-a)^{\frac{-2 a-\lambda}{2 a-2 b}}(x-b)^{\frac{2 b+\lambda}{2 a-2 b}}\left(\frac{-x+b}{a-x}\right)^{-\frac{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}}}{\sqrt{\lambda^{2}+(2 b+2 a) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}
\end{aligned}
$$

Verified OK.

32.24.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}(a-x)^{2}(-x+b)^{2}+(2 x+\lambda) y^{\prime}(a-x)(-x+b)+\mu y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(2 x+\lambda) y^{\prime}}{(a-x)(-x+b)}-\frac{\mu y}{(a-x)^{2}(-x+b)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(2 x+\lambda) y^{\prime}}{(a-x)(-x+b)}+\frac{\mu y}{(a-x)^{2}(-x+b)^{2}}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2 x+\lambda}{(a-x)(-x+b)}, P_{3}(x)=\frac{\mu}{(a-x)^{2}(-x+b)^{2}}\right]
$$

- $(x-a) \cdot P_{2}(x)$ is analytic at $x=a$
$\left.\left((x-a) \cdot P_{2}(x)\right)\right|_{x=a}=-\frac{2 a+\lambda}{b-a}$
- $(x-a)^{2} \cdot P_{3}(x)$ is analytic at $x=a$

$$
\left.\left((x-a)^{2} \cdot P_{3}(x)\right)\right|_{x=a}=\frac{\mu}{(b-a)^{2}}
$$

- $x=a$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=a$

- Multiply by denominators

$$
y^{\prime \prime}(a-x)^{2}(-x+b)^{2}+(2 x+\lambda) y^{\prime}(a-x)(-x+b)+\mu y=0
$$

- Change variables using $x=u+a$ so that the regular singular point is at $u=0$

$$
\left(a^{2} u^{2}-2 a b u^{2}+2 a u^{3}+b^{2} u^{2}-2 b u^{3}+u^{4}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(2 a^{2} u-2 a b u+a \lambda u+4 a u^{2}-b \lambda u-2 l\right.
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=1 . .3$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions $a_{0}\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+a^{2} r+a \lambda r-b^{2} r-b \lambda r+\mu\right) u^{r}+\left(\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+3 a^{2} r-4 a b r\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+a^{2} r+a \lambda r-b^{2} r-b \lambda r+\mu=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}}{a-b}, \frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}}{a-b}\right\}
$$

- \quad Each term must be 0
$\left(a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+3 a^{2} r-4 a b r+a \lambda r+b^{2} r-b \lambda r+2 a^{2}-2 a b+a \lambda-b \lambda+\mu\right) a_{1}+a_{0} r(2 a r$
- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{a_{0} r(2 a r-2 r b+2 a+\lambda)}{a^{2} r^{2}-2 a b r^{2}+b^{2} r^{2}+3 a^{2} r-4 a b r+a \lambda r+b^{2} r-b \lambda r+2 a^{2}-2 a b+a \lambda-b \lambda+\mu}$
- Each term in the series must be 0 , giving the recursion relation

$$
\left((a-b)^{2} a_{k}+2 a a_{k-1}-2 b a_{k-1}+a_{k-2}\right) k^{2}+\left(\left(2(a-b)^{2} a_{k}+4 a a_{k-1}-4 b a_{k-1}+2 a_{k-2}\right) r+(a-\right.
$$

- \quad Shift index using $k->k+2$

$$
\left((a-b)^{2} a_{k+2}+2 a a_{k+1}-2 b a_{k+1}+a_{k}\right)(k+2)^{2}+\left(\left(2(a-b)^{2} a_{k+2}+4 a a_{k+1}-4 b a_{k+1}+2 a_{k}\right) r\right.
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{2 a k^{2} a_{k+1}+4 a k r a_{k+1}+2 a r^{2} a_{k+1}-2 b k^{2} a_{k+1}-4 b k r a_{k+1}-2 b r^{2} a_{k+1}+6 a k a_{k+1}+6 a r a_{k+1}-4 b k a_{k+1}-4 b r a_{k+1}+k^{2} a_{k}+1}{a^{2} k^{2}+2 a^{2} k r+a^{2} r^{2}-2 a b k^{2}-4 a b k r-2 a b r^{2}+b^{2} k^{2}+2 b^{2} k r+b^{2} r^{2}+5 a^{2} k+5 a^{2} r-8 a b k-8 a b r+a k \lambda+a \lambda r+}
$$

- Recursion relation for $r=\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}}{a-b}$

$$
\left.a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right) a_{k+1}}{a-b}+\frac{2 a\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right.}{(a-b)^{2}}}{\mu+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b k \lambda-8 a b k+\frac{a^{2}\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right)^{2}}{b^{2}\left(-\frac{a}{2}-\frac{b}{2}-\right.}}+\frac{(a-b)^{2}}{}+\frac{2}{2}\right)
$$

- \quad Solution for $r=\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}}{a-b}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{2}}, a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+}}{2}\right.}{a-b}}{\mu+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b k \lambda-\varepsilon}\right.
$$

- \quad Revert the change of variables $u=x-a$

$$
y=\sum_{k=0}^{\infty} a_{k}(x-a)^{k+\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{2}}, a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}-\frac{\sqrt{a^{2}+2 a b+3}}{a-}\right.}{\mu+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b l}}{}
$$

Recursion relation for $r=\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{a}$

$$
a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right) a_{k+1}}{a-b}+\frac{2 a\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right.}{\left(a+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b k \lambda-8 a b k+\frac{a^{2}\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{2}\right.}{2}\right)^{2}}(a-b)^{2}}{b^{2}\left(-\frac{a}{2}-\frac{b}{2}-\right.}
$$

- \quad Solution for $r=\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{a}$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{2}}, a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+}}{2}\right.}{\mu+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b k \lambda-\varepsilon}}{2}
$$

Revert the change of variables $u=x-a$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-a)^{k+\frac{-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2 a \lambda+b^{2}+2 b \lambda+\lambda^{2}-4 \mu}}{a-b}}{2}}, a_{k+2}=-\frac{2 a k^{2} a_{k+1}+\frac{4 a k\left(-\frac{a}{2}-\frac{b}{2}-\frac{\lambda}{2}+\frac{\sqrt{a^{2}+2 a b+2}}{a-}\right.}{\mu+2 b^{2}+6 a^{2}+2 a \lambda-2 b \lambda-8 a b-2 a b k^{2}+a k \lambda-b k}}{a}\right.
$$

- Combine solutions and rename parameters

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 143

```
dsolve((x-a)^2*(x-b)^2*diff(y(x),x$2)+(x-a)*(x-b)*(2*x+lambda)*diff (y(x),x)+mu*y(x)=0,y(x),
```

$$
\begin{aligned}
& y(x)=\left(\left(\frac{a-x}{b-x}\right)^{-\frac{\sqrt{\lambda^{2}+(2 a+2 b) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}} c_{2}\right. \\
&\left.+\left(\frac{a-x}{b-x}\right)^{\frac{\sqrt{\lambda^{2}+(2 a+2 b) \lambda+a^{2}+2 a b+b^{2}-4 \mu}}{2 a-2 b}} c_{1}\right)\left(\frac{b-x}{a-x}\right)^{\frac{a+b+\lambda}{2 a-2 b}}
\end{aligned}
$$

Solution by Mathematica
Time used: 2.299 (sec). Leaf size: 152

```
DSolve[(x-a)^2*(x-b)^2*y''[x]+(x-a)*(x-b)*(2*x+\[Lambda])*y'[x]+mu*y[x]==0,y[x],x, IncludeSin
```

$$
y(x)
$$

$$
\rightarrow e^{-\frac{(a+b+\lambda)(\log (x-a)-\log (x-b))}{a-b}}\left(c_{1} \exp \left(\frac{\left(\sqrt{\mu} \sqrt{\frac{(a+b+\lambda)^{2}}{\mu}-4}+a+b+\lambda\right)(\log (x-a)-\log (x-b))}{2(a-b)}\right)\right.
$$

$$
\left.+c_{2} \exp \left(\frac{\left(-\sqrt{\mu} \sqrt{\frac{(a+b+\lambda)^{2}}{\mu}-4}+a+b+\lambda\right)(\log (x-a)-\log (x-b))}{2(a-b)}\right)\right)
$$

32.25 problem 234

32.25.1 Solving as second order bessel ode ode
32.25.2 Solving using Kovacic algorithm 3532
32.25.3 Maple step by step solution . 3539

Internal problem ID [11059]
Internal file name [OUTPUT/10315_Wednesday_January_24_2024_10_07_07_PM_94785127/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 234.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order__bessel__ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+A y=0
$$

32.25.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\frac{A y}{x^{2}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\sqrt{A} \\
n & =\frac{1}{2} \\
\gamma & =-1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{x} \sqrt{2} \sin \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}}-\frac{c_{2} \sqrt{x} \sqrt{2} \cos \left(\frac{\sqrt{A}}{x}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{A}}{x}}}
$$

Verified OK.

32.25.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+A y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(a x^{2}+b x+c\right)^{2} \\
& B=0 \tag{3}\\
& C=A
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-A}{\left(a x^{2}+b x+c\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-A \\
& t=\left(a x^{2}+b x+c\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{A}{\left(a x^{2}+b x+c\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 220: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(a x^{2}+b x+c\right)^{2}$. There is a pole at $x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ of order 2. There is a pole at $x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & -\frac{A}{\left(-4 a c+b^{2}\right)\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}-\frac{A}{\left(-4 a c+b^{2}\right)\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}} \\
& +\frac{2 a A}{\left(-4 a c+b^{2}\right)^{\frac{3}{2}}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)}-\frac{2 a A}{\left(-4 a c+b^{2}\right)^{\frac{3}{2}}\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)}
\end{aligned}
$$

For the pole at $x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{A}{4 a c-b^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}
\end{aligned}
$$

For the pole at $x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}$ in the partial
fractions decomposition of r given above. Therefore $b=\frac{A}{4 a c-b^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{A}{\left(a x^{2}+b x+c\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| $-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}$ | $\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}$ |
| $-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c b^{2}}}}{2}$ | $\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}$ |

| Order of r at ∞ | $[\sqrt{r}]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $\left[\sqrt{r}_{c}\right.$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}} \\
& =\frac{2 a x-\sqrt{-4 a c+b^{2}} \sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}+b}{2 a x^{2}+2 b x+2 c}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{\left(x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}{\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}\right)+(\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
z_{1}(x)=p e^{\int \omega d x}
$$

$$
=\mathrm{e}^{\int\left(\frac{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}}{x}+\frac{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a}}}{4 a-b^{2}}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}\right) d x}
$$

$$
=\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{a c-b^{2}}}}{2}} \sqrt{\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{-\frac{\sqrt{4 a}}{a}}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a-b^{2}}}}{2}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}} \int \frac{}{\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{1}} \\
& =\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\left(\int \left(\frac{2 a x+b-\sqrt{-}}{a}\right.\right.
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}\right) \\
& +c_{2}\left((\frac { 2 a x + b - \sqrt { - 4 a c + b ^ { 2 } } } { a }) ^ { \frac { 1 } { 2 } - \frac { \sqrt { \frac { 4 a c - b ^ { 2 } + 4 A } { 4 a c - b ^ { 2 } } } } { 2 } } (\frac { 2 a x + \sqrt { - 4 a c + b ^ { 2 } } + b } { a }) ^ { \frac { 1 } { 2 } + \frac { \sqrt { \frac { 4 a c - b ^ { 2 } + 4 A } { 4 a c - b ^ { 2 } } } } { 2 } } \left(\int \left(\frac{2 a x+b-}{}\right.\right.\right.
\end{aligned}
$$

Summary
The solution(s) found are the following
$-c_{2}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}} \sqrt{\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{-\frac{\sqrt{\frac{4 a c-}{4 a}}}{4}}$
$\left.-\frac{\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{-\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}}{4 a\left(a x^{2}+b x+c\right)} d x\right)$

Verification of solutions

$$
\begin{aligned}
& y=c_{1}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}} \\
&-c_{2}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}} \sqrt{\left.\frac{2 a x+b-\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}{2}}} \\
& a \sqrt{-4 a c+b^{2}} \\
&\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{-\frac{\sqrt{\frac{4 a c-}{4 a}},}{2}} \\
&\left.-\frac{\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{-\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\sqrt{\frac{4 a c-b^{2}+4 A}{4 a c-b^{2}}}}}{4 a\left(a x^{2}+b x+c\right)}\right)
\end{aligned}
$$

Verified OK.

32.25.3 Maple step by step solution

Let's solve
$\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+A y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{A y}{\left(a x^{2}+b x+c\right)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{A y}{\left(a x^{2}+b x+c\right)^{2}}=0$

Check to see if x_{0} is a regular singular point

- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=\frac{A}{\left(a x^{2}+b x+c\right)^{2}}\right]$
- $\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)$ is analytic at $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$
$\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0$
- $\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
$$

- $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

- Multiply by denominators

$$
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+A y=0
$$

- Change variables using $x=u+\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$ so that the regular singular point is at $u=0$

$$
\left(a^{2} u^{4}+2 a u^{3} \sqrt{-4 a c+b^{2}}-4 a c u^{2}+b^{2} u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+A y(u)=0
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}$
- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0}\left(-4 a c r^{2}+b^{2} r^{2}+4 a c r-b^{2} r+A\right) u^{r}+\left(\left(-4 a c r^{2}+b^{2} r^{2}-4 a c r+b^{2} r+A\right) a_{1}+2 a_{0} r(-1+r)\right.$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$-4 a c r^{2}+b^{2} r^{2}+4 a c r-b^{2} r+A=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}, \frac{4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}\right\}
$$

- \quad Each term must be 0

$$
\left(-4 a c r^{2}+b^{2} r^{2}-4 a c r+b^{2} r+A\right) a_{1}+2 a_{0} r(-1+r) a \sqrt{-4 a c+b^{2}}=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{2 a_{0} r(-1+r) a \sqrt{-4 a c+b^{2}}}{-4 a c r^{2}+b^{2} r^{2}-4 a c r+b^{2} r+A}$
- Each term in the series must be 0 , giving the recursion relation
$2 a_{k-1}(k+r-1)(k-2+r) a \sqrt{-4 a c+b^{2}}+a_{k-2}(k-2+r)(k-3+r) a^{2}-4 c a_{k}(k+r)(k+r$
- \quad Shift index using $k->k+2$
$2 a_{k+1}(k+1+r)(k+r) a \sqrt{-4 a c+b^{2}}+a_{k}(k+r)(k+r-1) a^{2}-4 c a_{k+2}(k+2+r)(k+1+r$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}+4 \sqrt{-4 a c+b^{2}} k r a_{k+1}+2 \sqrt{-4 a c+b^{2}} r^{2} a_{k+1}+a k^{2} a_{k}+2 a k r a_{k}+a r^{2} a_{k}+2 \sqrt{-4 a c+b^{2}} k a_{k+1}+2 \sqrt{-}\right.}{-4 a c k^{2}-8 a c k r-4 a c r^{2}+b^{2} k^{2}+2 b^{2} k r+b^{2} r^{2}-12 a c k-12 a c r+3 b^{2} k+3 b^{2} r-8 a c+2 b^{2}+A}
$$

- Recursion relation for $r=-\frac{-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}$
$a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}-\frac{2 \sqrt{-4 a c+b^{2}} k\left(-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}\right) a_{k+1}}{4 a c-b^{2}}+\frac{\sqrt{-4 a c+b^{2}}\left(-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}}\right.}{2(4 a}\right.}{-4 a c k^{2}+\frac{4 a c k\left(-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}\right)}{4 a c-b^{2}}-\frac{a c\left(-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a}\right.}{\left(4 a c-b^{2}\right)}}$
- Solution for $r=-\frac{-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}$
- Revert the change of variables $u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k-\frac{-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}-\frac{2 \sqrt{-}-}{}\right.}{-}\right.
$$

- Recursion relation for $r=\frac{4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}$

$$
a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}+\frac{2 \sqrt{-4 a c+b^{2}} k\left(4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}\right) a_{k+1}}{4 a c-b^{2}}+\frac{\sqrt{-4 a c+b^{2}}\left(4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b}\right.}{2(4 a c-1}\right.}{-4 a c k^{2}-\frac{4 a c k\left(4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}\right)}{4 a c-b^{2}}-\frac{a c\left(4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b}\right.}{\left(4 a c-b^{2}\right)^{2}}}
$$

- \quad Solution for $r=\frac{4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}+\frac{2 \sqrt{-4 a c+b^{2}} k\left(4 a c-b^{2}+\sqrt{16}\right.}{-4 a c k^{2}-\frac{4 a c k(4 a c-b}{}}\right.}{\text { 位 }}\right.
$$

- \quad Revert the change of variables $u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k+\frac{4 a c-b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} c a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=-\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}+\frac{2 \sqrt{-4}}{}\right.}{}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} d_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k-\frac{-4 a c+b^{2}+\sqrt{16 c^{2} a^{2}-8 b^{2} a+b^{4}+16 A a c-4 A b^{2}}}{2\left(4 a c-b^{2}\right)}}\right)+\left(\sum_{k=0}^{\infty} e_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)\right.\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 178

```
dsolve((a*x^2+b*x+c)^2*diff(y(x),x$2)+A*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(\begin{array}{l}
\left(\frac{-b+i \sqrt{4 a c-b^{2}}-2 a x}{i \sqrt{4 a c-b^{2}}+2 a x+b}\right)^{-\frac{a \sqrt{\frac{-4 a c+b^{2}-4 A}{a^{2}}}}{2 \sqrt{-4 a c+b^{2}}}} c_{2} \\
\\
\left.\quad+\left(\frac{-b+i \sqrt{4 a c-b^{2}}-2 a x}{i \sqrt{4 a c-b^{2}}+2 a x+b}\right)^{\frac{a \sqrt{\frac{-4 a c+b^{2}-4 A}{a}}}{2 \sqrt{-4 a c+b^{2}}}} c_{1}\right) \sqrt{a x^{2}+b x+c}
\end{array}\right.
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.154 (sec). Leaf size: 199
DSolve[($\left.\mathrm{a} * \mathrm{x}^{\wedge} 2+\mathrm{b} * \mathrm{x}+\mathrm{c}\right)^{\wedge} 2 * \mathrm{y}^{\prime \prime}[\mathrm{x}]+\mathrm{A} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \sqrt{x(a x+b)+c} \exp \left(-\frac{\sqrt{4 a c-b^{2}} \sqrt{1-\frac{4 A}{b^{2}-4 a c}} \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{b^{2}-4 a c}}\right)\left(c_{1} \exp \left(\frac{2 \sqrt{4 a c-b^{2}} \sqrt{1-\frac{4 A}{b^{2}-4 a c}}}{\sqrt{b^{2}-4 a}}\right.\right.$

$$
\left.+\frac{c_{2}}{\sqrt{b^{2}-4 a c} \sqrt{1-\frac{4 A}{b^{2}-4 a c}}}\right)
$$

32.26 problem 235

32.26.1 Maple step by step solution

3544
Internal problem ID [11060]
Internal file name [OUTPUT/10316_Wednesday_January_24_2024_10_07_08_PM_15066980/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 235 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
\left(x^{2}-1\right)^{2} y^{\prime \prime}+2 x\left(x^{2}-1\right) y^{\prime}+\left(\left(x^{2}-1\right)\left(a^{2} x^{2}-\lambda\right)-m^{2}\right) y=0
$$

32.26.1 Maple step by step solution

Let's solve
$y^{\prime \prime}\left(x^{4}-2 x^{2}+1\right)+\left(2 x^{3}-2 x\right) y^{\prime}+\left(a^{2} x^{4}+\left(-a^{2}-\lambda\right) x^{2}-m^{2}+\lambda\right) y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(a^{2} x^{4}-a^{2} x^{2}-\lambda x^{2}-m^{2}+\lambda\right) y}{x^{4}-2 x^{2}+1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}+\frac{\left(a^{2} x^{4}-a^{2} x^{2}-\lambda x^{2}-m^{2}+\lambda\right) y}{x^{4}-2 x^{2}+1}=0
$$

\square
Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=\frac{a^{2} x^{4}-a^{2} x^{2}-\lambda x^{2}-m^{2}+\lambda}{x^{4}-2 x^{2}+1}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=-\frac{m^{2}}{4}
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators

$$
y^{\prime \prime}\left(x^{2}-1\right)\left(x^{4}-2 x^{2}+1\right)+2 y^{\prime} x\left(x^{4}-2 x^{2}+1\right)+\left(a^{2} x^{4}-a^{2} x^{2}-\lambda x^{2}-m^{2}+\lambda\right)\left(x^{2}-1\right) y=0
$$

- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{6}-6 u^{5}+12 u^{4}-8 u^{3}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(2 u^{5}-10 u^{4}+16 u^{3}-8 u^{2}\right)\left(\frac{d}{d u} y(u)\right)+\left(a^{2} u^{6}-6 a^{2} u^{5}+13\right.$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=1 . .6$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=2 . .5$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=3 . .6$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0}(m+2 r)(-m+2 r) u^{1+r}+\left(-2 a_{1}(2+m+2 r)(2-m+2 r)+a_{0}\left(4 a^{2}-m^{2}+12 r^{2}-4 \lambda+\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-2(m+2 r)(-m+2 r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{m}{2}, \frac{m}{2}\right\}
$$

- The coefficients of each power of u must be 0

$$
\left[-2 a_{1}(2+m+2 r)(2-m+2 r)+a_{0}\left(4 a^{2}-m^{2}+12 r^{2}-4 \lambda+4 r\right)=0,-2 a_{2}(4+m+2 r)(4-1\right.
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=-\frac{a_{0}\left(4 a^{2}-m^{2}+12 r^{2}-4 \lambda+4 r\right)}{2\left(m^{2}-4 r^{2}-8 r-4\right)}, a_{2}=\frac{a_{0}\left(16 a^{4}+16 a^{2} m^{2}+m^{4}-12 m^{2} r^{2}+96 r^{4}-32 \lambda a^{2}-64 a^{2} r-64 \lambda r^{2}-24 m^{2} r+256 r^{3}-32\right.}{4\left(m^{4}-8 m^{2} r^{2}+16 r^{4}-24 m^{2} r+96 r^{3}-20 m^{2}+208 r^{2}\right.}\right.
$$

- Each term in the series must be 0, giving the recursion relation

$$
\left(12 a_{k-2}-8 a_{k-1}+a_{k-4}-6 a_{k-3}\right) k^{2}+\left(2\left(12 a_{k-2}-8 a_{k-1}+a_{k-4}-6 a_{k-3}\right) r-44 a_{k-2}+16 a_{k-1}-\right.
$$

- \quad Shift index using $k->k+6$
$\left(12 a_{k+4}-8 a_{k+5}+a_{k+2}-6 a_{k+3}\right)(k+6)^{2}+\left(2\left(12 a_{k+4}-8 a_{k+5}+a_{k+2}-6 a_{k+3}\right) r-44 a_{k+4}+16\right.$
- Recursion relation that defines series solution to ODE
$a_{k+5}=\frac{a_{k} a^{2}-6 a^{2} a_{k+1}+13 a^{2} a_{k+2}-12 a^{2} a_{k+3}+4 a^{2} a_{k+4}+k^{2} a_{k+2}-6 k^{2} a_{k+3}+12 k^{2} a_{k+4}+2 k r a_{k+2}-12 k r a_{k+3}+24 k r a_{k+4}-m^{2} a_{k}}{2(4 k}$
- Recursion relation for $r=-\frac{m}{2}$
$a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}-\frac{5}{2} m a_{k+2}+20 m a_{k+3}-50 m a_{k+4}+208 a_{k+4}-6 a^{2} a_{k+1}+13 a^{2} a_{k+2}-12 a^{2} a_{k+}}{2(}$
- \quad Solution for $r=-\frac{m}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{m}{2}}, a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}-\frac{5}{2} m a_{k+2}+20 m a_{k+3}-50 m a_{k+4}+208 a_{k+4}-6 c}{c}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{m}{2}}, a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}-\frac{5}{2} m a_{k+2}+20 m a_{k+3}-50 m a_{k+4}+208 a_{k+4}}{}\right.
$$

- \quad Recursion relation for $r=\frac{m}{2}$
$a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}+\frac{5}{2} m a_{k+2}-20 m a_{k+3}+50 m a_{k+4}+208 a_{k+4}-6 a^{2} a_{k+1}+13 a^{2} a_{k+2}-12 a^{2} a_{k+}}{2(}$
- \quad Solution for $r=\frac{m}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{m}{2}}, a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}+\frac{5}{2} m a_{k+2}-20 m a_{k+3}+50 m a_{k+4}+208 a_{k+4}-6 c}{}\right.
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{m}{2}}, a_{k+5}=\frac{a_{k} a^{2}+6 a_{k+2}-66 a_{k+3}+\frac{1}{4} m^{2} a_{k+2}-\frac{3}{2} m^{2} a_{k+3}+\frac{5}{2} m a_{k+2}-20 m a_{k+3}+50 m a_{k+4}+208 a_{k+4}}{}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k-\frac{m}{2}}\right)+\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k+\frac{m}{2}}\right), b_{k+5}=\frac{-6 a^{2} b_{1+k}+13 a^{2} b_{k+2}-12 a^{2} b_{k+3}+4 a^{2} b_{4+k}+k^{2} b_{k+2}}{}\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```

Solution by Maple
Time used: 0.5 (sec). Leaf size: 64

```
dsolve((x^2-1)^2*diff(y(x),x$2)+2*x*(x^2-1)*diff (y(x),x)+( (x^2-1)*(a^2*x^2-1ambda)-m^2)*y(x
```

$$
\begin{aligned}
y(x)=(\operatorname{HeunC} & \left(0, \frac{1}{2}, m, \frac{a^{2}}{4}, \frac{1}{4}+\frac{m^{2}}{4}-\frac{\lambda}{4}, x^{2}\right) c_{2} x \\
& \left.+\operatorname{HeunC}\left(0,-\frac{1}{2}, m, \frac{a^{2}}{4}, \frac{1}{4}+\frac{m^{2}}{4}-\frac{\lambda}{4}, x^{2}\right) c_{1}\right)\left(x^{2}-1\right)^{\frac{m}{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.602 (sec). Leaf size: 234
DSolve $\left[\left(x^{\wedge} 2-1\right)^{\wedge} 2 * y^{\prime} \cdot[x]+2 * x *\left(x^{\wedge} 2-1\right) * y '[x]+\left(\left(x^{\wedge} 2-1\right) *\left(a^{\wedge} 2 * x^{\wedge} 2-\backslash[\right.\right.\right.$ Lambda $\left.\left.]\right)-m^{\wedge} 2\right) * y[x]==0, y[x], x$,

$$
\begin{array}{r}
y(x) \rightarrow e^{i \sqrt{a^{2}} x}\left(\frac{x+1}{x-1}\right)^{\frac{\sqrt{m^{2}}}{2}}\left(c _ { 2 } (x - 1) ^ { \sqrt { m ^ { 2 } } } \operatorname { H e u n C } \left[-\left(\sqrt{m^{2}}+1\right)\left(\sqrt{m^{2}}+2 i \sqrt{a^{2}}\right)-a^{2}\right.\right. \\
\left.+\lambda,-4 i \sqrt{a^{2}}\left(\sqrt{m^{2}}+1\right), \sqrt{m^{2}}+1, \sqrt{m^{2}}+1,-4 i \sqrt{a^{2}}, \frac{1-x}{2}\right] \\
+c_{1} \operatorname{HeunC}\left[2 i \sqrt{a^{2}}\left(\sqrt{m^{2}}-1\right)-a^{2}+\lambda,-4 i \sqrt{a^{2}}, 1-\sqrt{m^{2}}, \sqrt{m^{2}}+1\right. \\
\left.\left.-4 i \sqrt{a^{2}}, \frac{1-x}{2}\right]\right)
\end{array}
$$

32.27 problem 236

Internal problem ID [11061]
Internal file name [OUTPUT/10317_Wednesday_January_24_2024_10_07_09_PM_18207104/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 236.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(x^{2}+1\right)^{2} y^{\prime \prime}+2 x\left(x^{2}+1\right) y^{\prime}+\left(\left(x^{2}+1\right)\left(a^{2} x^{2}-\lambda\right)+m^{2}\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```

Solution by Maple
Time used: 0.5 (sec). Leaf size: 68

```
dsolve((x^2+1)^2*diff(y(x),x$2)+2*x*(x^2+1)*diff (y(x),x)+( (x^2+1)*(a^2*x^2-1ambda)+m^2)*y(x
```

$$
\begin{aligned}
y(x)=(\text { HeunC } & \left(0, \frac{1}{2}, m,-\frac{a^{2}}{4}, \frac{1}{4}+\frac{m^{2}}{4}-\frac{\lambda}{4},-x^{2}\right) c_{2} x \\
& \left.+\operatorname{HeunC}\left(0,-\frac{1}{2}, m,-\frac{a^{2}}{4}, \frac{1}{4}+\frac{m^{2}}{4}-\frac{\lambda}{4},-x^{2}\right) c_{1}\right)\left(x^{2}+1\right)^{\frac{m}{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.605 (sec). Leaf size: 124
DSolve $\left[\left(x^{\wedge} 2+1\right)^{\wedge} 2 * y^{\prime} \cdot[x]+2 * x *\left(x^{\wedge} 2+1\right) * y '[x]+\left(\left(x^{\wedge} 2+1\right) *\left(a^{\wedge} 2 * x^{\wedge} 2-\backslash[\right.\right.\right.$ Lambda $\left.\left.]\right)+m^{\wedge} 2\right) * y[x]==0, y[x], x$,

$$
\begin{array}{r}
y(x) \rightarrow\left(x^{2}+1\right)^{\frac{\sqrt{m^{2}}}{2}}\left(c_{2} x \operatorname{HeunC}\left[\frac{1}{4}\left(\lambda-m^{2}-3 \sqrt{m^{2}}-2\right),-\frac{a^{2}}{4}, \frac{3}{2}, \sqrt{m^{2}}+1,0,-x^{2}\right]\right. \\
\left.+c_{1} \operatorname{HeunC}\left[\frac{1}{4}\left(\lambda-m^{2}-\sqrt{m^{2}}\right),-\frac{a^{2}}{4}, \frac{1}{2}, \sqrt{m^{2}}+1,0,-x^{2}\right]\right)
\end{array}
$$

32.28 problem 237

32.28.1 Solving as second order change of variable on x method 2 ode . 3553
32.28.2 Solving using Kovacic algorithm 3557
32.28.3 Maple step by step solution . 3563

Internal problem ID [11062]
Internal file name [OUTPUT/10318_Wednesday_January_24_2024_10_07_09_PM_44762735/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-7 Equation of form $\left(a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2} x+a_{1} x+a_{0}\right) y^{\prime \prime}+f(x) y^{\prime}+g(x) y=0$
Problem number: 237.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+(2 a x+k)\left(a x^{2}+b x+c\right) y^{\prime}+y m=0
$$

32.28.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+(2 a x+k)\left(a x^{2}+b x+c\right) y^{\prime}+y m=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 a x+k}{a x^{2}+b x+c} \\
q(x) & =\frac{m}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2 a x+k}{a x^{2}+b x+c} d x\right)} d x \\
& =\int e^{-\ln \left(a x^{2}+b x+c\right)+\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}} d x \\
& =\int \frac{\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{a x^{2}+b x+c} d x \\
& =\frac{\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{b-k} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{m}{\left(a x^{2}+b x+c\right)^{2}}}{\frac{\mathrm{e}^{\frac{4(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{\left(a x^{2}+b x+c\right)^{2}}} \\
& =m \mathrm{e}^{-\frac{4(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+m \mathrm{e}^{-\frac{4(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}} y(\tau)}=0
\end{aligned}
$$

But in terms of τ

$$
m \mathrm{e}^{-\frac{4(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}=\frac{m}{(b-k)^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{m y(\tau)}{(b-k)^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right)(b-k)^{2} \tau^{2}+m y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
(b-k)^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+m \tau^{r}=0
$$

Simplifying gives

$$
(b-k)^{2} r(r-1) \tau^{r}+0 \tau^{r}+m \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
(b-k)^{2} r(r-1)+0+m=0
$$

Or

$$
\begin{equation*}
\left(b^{2}-2 b k+k^{2}\right) r^{2}+\left(-b^{2}+2 b k-k^{2}\right) r+m=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-b+k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2(b-k)} \\
& r_{2}=\frac{b-k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-b+k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2(b-k)}}+c_{2} \tau^{\frac{b-k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}
$$

The above solution is now transformed back to y using (6) which results in
$y=c_{1}\left(\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}\right)^{\frac{b-k-\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}+c_{2}\left(\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}\right)^{\frac{b-k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}$
Summary
The solution(s) found are the following

$$
\left.\begin{array}{rl}
y= & c_{1}\left(\frac{\left.\left.\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}\right)\right)^{\frac{b-k-\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}}{}\right)^{\left(c_{2}\right.}\left(\frac{\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}}{b-k}\right) \frac{b-k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k} \tag{1}
\end{array}\right)
$$

Verification of solutions

$y=c_{1}\left(\frac{\left.\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}\right)^{\frac{b-k-\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}}{)^{\frac{b}{2}}}+c_{2}\left(\mathrm{e}^{\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}\right)^{\frac{b-k+\sqrt{b^{2}-2 b k+k^{2}-4 m}}{2 b-2 k}}\right.$
Verified OK.

32.28.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+(2 a x+k)\left(a x^{2}+b x+c\right) y^{\prime}+y m & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\left(a x^{2}+b x+c\right)^{2} \\
& B=\left(a x^{2}+b x+c\right)(2 a x+k) \tag{3}\\
& C=m
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 a c-2 b k+k^{2}-4 m}{4\left(a x^{2}+b x+c\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 a c-2 b k+k^{2}-4 m \\
& t=4\left(a x^{2}+b x+c\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 a c-2 b k+k^{2}-4 m}{4\left(a x^{2}+b x+c\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 223: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(a x^{2}+b x+c\right)^{2}$. There is a pole at $x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ of order 2. There is a pole at $x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.

Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & \frac{4 a c-2 b k+k^{2}-4 m}{4\left(-4 a c+b^{2}\right)\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}+\frac{4 a c-2 b k+k^{2}-4 m}{4\left(-4 a c+b^{2}\right)\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}} \\
& -\frac{\left(4 a c-2 b k+k^{2}-4 m\right) a}{2\left(-4 a c+b^{2}\right)^{\frac{3}{2}}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)}+\frac{\left(4 a c-2 b k+k^{2}-4 m\right) a}{2\left(-4 a c+b^{2}\right)^{\frac{3}{2}}\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)}
\end{aligned}
$$

For the pole at $x=-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{-4 a c+2 b k-k^{2}+4 m}{16 a c-4 b^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}
\end{aligned}
$$

For the pole at $x=-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ let b be the coefficient of $\frac{1}{\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{-4 a c+2 b k-k^{2}+4 m}{16 a c-4 b^{2}}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{4 a c-2 b k+k^{2}-4 m}{4\left(a x^{2}+b x+c\right)^{2}}
$$

| pole c location | pole order | $[\sqrt{r}]_{c}$ | α_{c}^{+} | α_{c}^{-} |
| :---: | :---: | :---: | :---: | :---: |
| $-\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b+k+k^{2}-4 m}{4 a c-b^{2}}}}{2}$ | $\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b+k^{2}-4 m}{4 a c-b^{2}}}}{2}$ |
| $-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}$ | 2 | 0 | $\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b+k^{2}-4 m}{4 a c-b^{2}}}}{2}$ | $\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b+k^{2}-4 m}{4 a c-b^{2}}}}{2}$ |

| Order of r at ∞ | $[\sqrt{ }]_{\infty}$ | α_{∞}^{+} | α_{∞}^{-} |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{ }]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}} \\
& =\frac{2 a x-\sqrt{-4 a c+b^{2}}}{2 a x^{2}+2 b x+2 c} \sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}+b
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{4 a c-b^{2}}}}{2}}{\left(x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2}}-\frac{\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4}{4 a c-b^{2}}}}{2}}{\left(x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}\right.}\right)\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& \left.=\mathrm{e}^{\int\left(\frac{\left.\frac{1}{2}-\frac{\sqrt{b^{2}-2 b k+k^{2}-4 m}-\frac{2 a-b^{2}}{2}}{x+\frac{b-\sqrt{-4 a c+b^{2}}}{2 a}}+\frac{\frac{1}{2}+\frac{\sqrt{-\frac{b^{2}-2 b k+k^{2}-4 m}{2 a c-b^{2}}}}{x+\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}}}{}\right) d x}{a}\right)^{\frac{\frac{1}{2}+\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}}{a}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}}}} \begin{array}{l}
\end{array}\right) \\
& =\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right.
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{\left(a x^{2}+b x+c\right)(2 a x+k)}{\left(a x^{2}+b x+c\right)^{2}} d x} \\
& =z_{1} e^{-\frac{\ln \left(a x^{2}+b x+c\right)}{2}-\frac{(-b+k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}} \\
& =z_{1}\left(\frac{e^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{\sqrt{a x^{2}+b x+c}}\right)
\end{aligned}
$$

Which simplifies to

$$
=\frac{\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{-b^{2}+2 b k-k^{2}+4 m}}{4 a c-b^{2}}}}{2}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}} \mathrm{e}^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{\left(a x^{2}+b x+c\right)(2 a x+k)}{\left(a x^{2}+b x+c\right)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln \left(a x^{2}+b x+c\right)+\frac{2(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\int\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{-1-\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{-1+\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}} d x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y= c_{1} y_{1}+c_{2} y_{2} \\
&= c_{1}\left(\frac{\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{-b^{2}+2 b k-k^{2}+4 m}}{4 a c-b^{2}}}}{2}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}} \mathrm{e}^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}\right) \\
& \sqrt{a x^{2}+b x+c} \\
&+c_{2}\left(\frac{\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{-b^{2}+2 b k-k^{2}+4 m}}{4 a c-b^{2}}}}{2}\right. \\
&\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{-b^{2}+2 b k-k^{2}+4 m}}{4 a c-b^{2}}} 2 \\
& \sqrt{a x^{2}+b x+c} \mathrm{e}^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}}\left(\int\left(\frac{2}{}\right)\right.
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)
$=\frac{c_{1}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}} \mathrm{e}^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}}}{\sqrt{a x^{2}+b x+c}}$
$-\frac{c_{2}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{a}\right)^{\frac{1}{2}+\frac{\sqrt{-b^{2}+2 b k-k^{2}+4 m}}{4 a c-b^{2}}} 2}{2}\left(\frac{2 a x+b-\sqrt{-4 a c+b^{2}}}{a}\right)^{\frac{1}{2}-\frac{\sqrt{\frac{-b^{2}+2 b k-k^{2}+4 m}{4 a c-b^{2}}}}{2}} \mathrm{e}^{\frac{(b-k) \arctan \left(\frac{2 a x+b}{\left.\sqrt{4 a c-b^{2}}\right)}\right.}{\sqrt{4 a c-b^{2}}}} a^{2}\left(\int-\frac{\left(\frac{2 a}{}\right.}{\sqrt{a x^{2}+b x+c}}\right.$
Verification of solutions
y

Verified OK.

32.28.3 Maple step by step solution

Let's solve
$\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+(2 a x+k)\left(a x^{2}+b x+c\right) y^{\prime}+y m=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(2 a x+k) y^{\prime}}{a x^{2}+b x+c}-\frac{m y}{\left(a x^{2}+b x+c\right)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(2 a x+k) y^{\prime}}{a x^{2}+b x+c}+\frac{m y}{\left(a x^{2}+b x+c\right)^{2}}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2 a x+k}{a x^{2}+b x+c}, P_{3}(x)=\frac{m}{\left(a x^{2}+b x+c\right)^{2}}\right]
$$

- $\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)$ is analytic at $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
$$

- $\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left.\left(\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}}=0
$$

- $x=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}
$$

- Multiply by denominators

$$
\left(a x^{2}+b x+c\right)^{2} y^{\prime \prime}+(2 a x+k)\left(a x^{2}+b x+c\right) y^{\prime}+y m=0
$$

- Change variables using $x=u+\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$ so that the regular singular point is at $u=0$ $\left(a^{2} u^{4}+2 a u^{3} \sqrt{-4 a c+b^{2}}-4 a c u^{2}+b^{2} u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(2 a^{2} u^{3}-a u^{2} b+3 a u^{2} \sqrt{-4 a c+b^{2}}+a\right.$
- \quad Assume series solution for $y(u)$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
$$

Rewrite ODE with series expansions

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions
$-a_{0}\left(4 a c r^{2}-b^{2} r^{2}+\sqrt{-4 a c+b^{2}} b r-\sqrt{-4 a c+b^{2}} k r-m\right) u^{r}+\left(-a_{1}\left(4 a c+8 a c r+4 a c r^{2}-b^{2}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-4 a c r^{2}+b^{2} r^{2}-\sqrt{-4 a c+b^{2}} b r+\sqrt{-4 a c+b^{2}} k r+m=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)},-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-}}{}\right.$
- \quad Each term must be 0
$-a_{1}\left(4 a c+8 a c r+4 a c r^{2}-b^{2}-2 b^{2} r-b^{2} r^{2}+b \sqrt{-4 a c+b^{2}}+\sqrt{-4 a c+b^{2}} b r-k \sqrt{-4 a c+b^{2}}-\right.$
- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0} a r\left(2 \sqrt{-4 a c+b^{2}} r+\sqrt{-4 a c+b^{2}}-b+k\right)}{4 a c+8 a c r+4 a c r^{2}-b^{2}-2 b^{2} r-b^{2} r^{2}+b \sqrt{-4 a c+b^{2}}+\sqrt{-4 a c+b^{2}} b r-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 a c+b^{2}} k r-m}$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(2\left(k+r-\frac{1}{2}\right) a_{k-1}(k+r-1) a-a_{k}(k+r)(b-k)\right) \sqrt{-4 a c+b^{2}}+a^{2} a_{k-2}(k-2+r)(k+r-1
$$

- \quad Shift index using $k->k+2$

$$
\left(2\left(k+\frac{3}{2}+r\right) a_{k+1}(k+r+1) a-a_{k+2}(k+2+r)(b-k)\right) \sqrt{-4 a c+b^{2}}+a^{2} a_{k}(k+r)(k+r+1
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}+4 \sqrt{-4 a c+b^{2}} k r a_{k+1}+2 \sqrt{-4 a c+b^{2}} r^{2} a_{k+1}+a k^{2} a_{k}+2 a k r a_{k}+a r^{2} a_{k}+5 \sqrt{-4 a c+b^{2}} k a_{k+1}+5 \sqrt{-4 c}\right.}{4 a c k^{2}+4 a c r^{2}-2 b^{2} k r+16 a c k+16 a c r+\sqrt{-4 a c+b^{2}} b k+\sqrt{-4 a c+b^{2}} b r-b^{2} k^{2}-b^{2} r^{2}-4 b^{2} k-4 b^{2} r+16 a c-}
$$

- Recursion relation for $r=-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}$

$$
a_{k+2}=\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}-\frac{2 \sqrt{-4 a c+b^{2}} k\left(b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}\right) a}{4 a c-b^{2}}\right.}{\left.4 a c k^{2}+\frac{a c\left(b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}\right)^{2}}{\left(4 a c-b^{2}\right)^{2}}+\frac{b^{2} k(b \sqrt{2}}{(4 a}\right)}
$$

- \quad Solution for $r=-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=\frac{a\left(2 \sqrt{-4 a c+b^{2}} k\right.}{}\right.
$$

- \quad Revert the change of variables $u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}-\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=\right.
$$

- Recursion relation for $r=-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}$

$$
a_{k+2}=\frac{a\left(2 \sqrt{-4 a c+b^{2}} k^{2} a_{k+1}-\frac{2 \sqrt{-4 a c+b^{2}} k\left(b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}\right) a_{k+1}}{4 a c-b^{2}}\right.}{4 a c k^{2}+\frac{a c\left(b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}\right)^{2}}{\left(4 a c-b^{2}\right)^{2}}+\frac{b^{2} k(b v}{}}
$$

- Solution for $r=-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=\frac{a\left(2 \sqrt{-4 a c+b^{2}} k\right.}{}\right.
$$

- \quad Revert the change of variables $u=x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{-b+\sqrt{-4 a c+b^{2}}}{2 a}\right)^{k-\frac{b \sqrt{-4 a c+b^{2}}-k \sqrt{-4 a c+b^{2}}+\sqrt{-4 b^{2} c a+8 k a b c-4 k^{2} a c+b^{4}-2 k b^{3}+k^{2} b^{2}+16 a c m-4 b^{2} m}}{2\left(4 a c-b^{2}\right)}}, a_{k+2}=\right.
$$

- Combine solutions and rename parameters

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 274
dsolve $\left(\left(a * x^{\wedge} 2+b * x+c\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+(2 * a * x+k) *\left(a * x^{\wedge} 2+b * x+c\right) * \operatorname{diff}(y(x), x)+m * y(x)=0, y(x), s\right.$
$y(x)$
$\begin{aligned} &=\left(\frac{-2 a x-b+\sqrt{-4 a c+b^{2}}}{2 a x+\sqrt{-4 a c+b^{2}}+b}\right)^{-\frac{k}{2 \sqrt{-4 a c+b^{2}}}}\left(\frac{2 a x+\sqrt{-4 a c+b^{2}}+b}{-2 a x-b+\sqrt{-4 a c+b^{2}}}\right)^{-\frac{b}{2 \sqrt{-4 a c+b^{2}}}}\left(c_{1}\left(\frac{-b+i \sqrt{4 a c-b^{2}}-}{i \sqrt{4 a c-b^{2}}+2 a x}\right.\right. \\ &\left.+c_{2}\left(\frac{-b+i \sqrt{4 a c-b^{2}}-2 a x}{i \sqrt{4 a c-b^{2}}+2 a x+b}\right)^{-\frac{a \sqrt{\frac{b^{2}-2 k b+k^{2}-4 m}{a^{2}}}}{2 \sqrt{-4 a c+b^{2}}}}\right)\end{aligned}$
\checkmark Solution by Mathematica
Time used: 2.382 (sec). Leaf size: 157
DSolve $\left[\left(a * x^{\wedge} 2+b * x+c\right) \wedge 2 * y '^{\prime}[x]+(2 * a * x+k) *\left(a * x^{\wedge} 2+b * x+c\right) * y '[x]+m * y[x]==0, y[x], x\right.$, IncludeSingular

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \exp \left(\frac{\left(-\sqrt{m} \sqrt{\frac{b^{2}-2 b k+k^{2}-4 m}{m}}+b-k\right) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}\right) \\
& +c_{2} \exp \left(\frac{\left(\sqrt{m} \sqrt{\frac{b^{2}-2 b k+k^{2}-4 m}{m}}+b-k\right) \arctan \left(\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right)}{\sqrt{4 a c-b^{2}}}\right)
\end{aligned}
$$

33 Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.

33.1 problem 238 3569
33.2 problem 239 3572
33.3 problem 241 3577
33.4 problem 242 3580
33.5 problem 243 3583
33.6 problem 244 3588
33.7 problem 245 3590
33.8 problem 246 3593
33.9 problem 247 3596
33.10problem 248 3599
33.11problem 249 3602
33.12problem 250 3605
33.13problem 251 3613
33.14problem 252 3615
33.15problem 253 3619
33.16problem 254 3621
33.17problem 255 3624
33.18problem 256 3629
33.19problem 257 3641
33.20problem 258 3644
33.21 problem 259 3647
33.22problem 260 3649
33.23problem 261 3650
33.24problem 262 3661
33.25problem 263 3664
33.26problem 264 3667

33.1 problem 238

33.1.1 Solving as second order bessel ode ode 3569

Internal problem ID [11063]
Internal file name [OUTPUT/10319_Wednesday_January_24_2024_10_07_11_PM_18886836/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 238.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{6} y^{\prime \prime}-x^{5} y^{\prime}+a y=0
$$

33.1.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y^{\prime} x+\frac{a y}{x^{4}}=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =1 \\
\beta & =\frac{\sqrt{a}}{2} \\
n & =\frac{1}{2} \\
\gamma & =-2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{2 c_{1} x \sin \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}}-\frac{2 c_{2} x \cos \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{1} x \sin \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}}-\frac{2 c_{2} x \cos \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{1} x \sin \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}}-\frac{2 c_{2} x \cos \left(\frac{\sqrt{a}}{2 x^{2}}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{a}}{x^{2}}}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
dsolve ($x^{\wedge} 6 * \operatorname{diff}(y(x), x \$ 2)-x^{\wedge} 5 * \operatorname{diff}(y(x), x)+a * y(x)=0, y(x)$, singsol=all)

$$
y(x)=x^{2}\left(c_{1} \sinh \left(\frac{\sqrt{-a}}{2 x^{2}}\right)+c_{2} \cosh \left(\frac{\sqrt{-a}}{2 x^{2}}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 58

$$
y(x) \rightarrow \frac{1}{2} x^{2} e^{-\frac{i \sqrt{a}}{2 x^{2}}}\left(2 c_{1} e^{\frac{i \sqrt{a}}{x^{2}}}-\frac{i c_{2}}{\sqrt{a}}\right)
$$

33.2 problem 239

33.2.1 Solving as second order change of variable on x method 2 ode . 3572

Internal problem ID [11064]
Internal file name [OUTPUT/10320_Wednesday_January_24_2024_10_07_12_PM_79551424/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 239.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable__on_x_method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{6} y^{\prime \prime}+\left(3 x^{2}+a\right) x^{3} y^{\prime}+y b=0
$$

33.2.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{6} y^{\prime \prime}+\left(3 x^{2}+a\right) x^{3} y^{\prime}+y b=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3 x^{2}+a}{x^{3}} \\
& q(x)=\frac{b}{x^{6}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3 x^{2}+a}{x^{3}} d x\right)} d x \\
& =\int e^{\frac{a}{2 x^{2}}-3 \ln (x)} d x \\
& =\int \frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{x^{3}} d x \\
& =-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{b}{x^{6}}}{\frac{\mathrm{e}^{2}}{x^{2}}} \\
& =b \mathrm{e}^{-\frac{a}{x^{2}}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b \mathrm{e}^{-\frac{a}{x^{2}}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
b \mathrm{e}^{-\frac{a}{x^{2}}}=\frac{b}{a^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{b y(\tau)}{a^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) a^{2} \tau^{2}+b y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
a^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+b \tau^{r}=0
$$

Simplifying gives

$$
a^{2} r(r-1) \tau^{r}+0 \tau^{r}+b \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
a^{2} r(r-1)+0+b=0
$$

Or

$$
\begin{equation*}
a^{2} r^{2}-a^{2} r+b=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-a+\sqrt{a^{2}-4 b}}{2 a} \\
& r_{2}=\frac{a+\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2} \tau^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{\frac{a}{2 x^{2}}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45
dsolve $\left(x^{\wedge} 6 * \operatorname{diff}(y(x), x \$ 2)+\left(3 * x^{\wedge} 2+a\right) * x^{\wedge} 3 * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-\frac{-a+\sqrt{a^{2}-4 b}}{4 x^{2}}}+c_{2} \mathrm{e}^{\frac{a+\sqrt{a^{2}-4 b}}{4 x^{2}}}
$$

\checkmark Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 56
DSolve $\left[x^{\wedge} 6 * y\right.$ ' ' $[\mathrm{x}]+\left(3 * \mathrm{x}^{\wedge} 2+\mathrm{a}\right) * \mathrm{x}^{\wedge} 3 * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{\frac{a-\sqrt{a^{2}-4 b}}{4 x^{2}}}\left(c_{1} e^{\frac{\sqrt{a^{2}-4 b}}{2 x^{2}}}+c_{2}\right)
$$

33.3 problem 241

Internal problem ID [11065]
Internal file name [OUTPUT/10321_Wednesday_January_24_2024_10_07_12_PM_56094527/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations. Problem number: 241.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+c(a x+b)^{n-4} y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying differential order: 2; exact nonlinear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```

X Solution by Maple

```
dsolve(x^n*diff(y(x),x$2)+c*(a*x+b)^(n-4)*y(x)=0,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[x^n*y''[x]+c*(a*x+b)^(n-4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

Not solved

33.4 problem 242

Internal problem ID [11066]
Internal file name [OUTPUT/10322_Wednesday_January_24_2024_10_07_12_PM_98034743/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations. Problem number: 242.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+a x y^{\prime}-\left(b^{2} x^{n}+2 b x^{n-1}+a b x+a\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational ${ }^{2} 81$ form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve ($x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+a * x * \operatorname{diff}(y(x), x)-\left(b^{\wedge} 2 * x^{\wedge} n+2 * b * x^{\wedge}(n-1)+a * b * x+a\right) * y(x)=0, y(x)$, singso

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} n * y^{\prime \prime}[x]+a * x * y '[x]-\left(b^{\wedge} 2 * x^{\wedge} n+2 * b * x^{\wedge}(n-1)+a * b * x+a\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolu

Not solved

33.5 problem 243

33.5.1 Solving as second order ode non constant coeff transformation on B ode . 3583

Internal problem ID [11067]
Internal file name [OUTPUT/10323_Wednesday_January_24_2024_10_07_13_PM_55005500/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 243.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{n} y^{\prime \prime}+(a x+b) y^{\prime}-a y=0
$$

33.5.1 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{n} \\
& B=a x+b \\
& C=-a \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{n}\right)(0)+(a x+b)(a)+(-a)(a x+b) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{n}(a x+b) v^{\prime \prime}+\left(2 a x^{n}+(a x+b)^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{n}(a x+b) u^{\prime}(x)+\left(2 a x^{n}+(a x+b)^{2}\right) u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(a^{2} x^{2}+2 a b x+2 a x^{n}+b^{2}\right) x^{-n}}{a x+b}
\end{aligned}
$$

Where $f(x)=-\frac{\left(a^{2} x^{2}+2 a b x+2 a x^{n}+b^{2}\right) x^{-n}}{a x+b}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{\left(a^{2} x^{2}+2 a b x+2 a x^{n}+b^{2}\right) x^{-n}}{a x+b} d x \\
\int \frac{1}{u} d u & =\int-\frac{\left(a^{2} x^{2}+2 a b x+2 a x^{n}+b^{2}\right) x^{-n}}{a x+b} d x \\
\ln (u) & =\left(\frac{a x^{2}}{n-2}+\frac{b x}{n-1}\right) \mathrm{e}^{-n \ln (x)}-2 \ln (a x+b)+c_{1} \\
u & =\mathrm{e}^{\left(\frac{a x^{2}}{n-2}+\frac{b x}{n-1}\right) \mathrm{e}^{-n \ln (x)}-2 \ln (a x+b)+c_{1}} \\
& =c_{1} \mathrm{e}^{\left(\frac{a x^{2}}{n-2}+\frac{b x}{n-1}\right)} \mathrm{e}^{-n \ln (x)}-2 \ln (a x+b)
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} \mathrm{e}^{\frac{x^{2} a x^{-n}}{n-2}} \mathrm{e}^{\frac{x^{-n}-b_{b x}}{n-1}}}{(a x+b)^{2}}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} \mathrm{e}^{\frac{x^{2} a x^{-n}}{n-2}} \mathrm{e}^{\frac{x^{-n}-n_{b x}}{n-1}}}{(a x+b)^{2}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} \mathrm{e}^{\frac{x^{2} a x^{-n}}{n-2}} \mathrm{e}^{\frac{x^{-n}-n_{b x}}{n-1}}}{(a x+b)^{2}} \mathrm{~d} x \\
& =\int \frac{c_{1} \mathrm{e}^{\frac{x^{2} a x^{-n}}{n-2}} \mathrm{e}^{\frac{x^{-n}}{n-1}}}{(a x+b)^{2}} d x+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(a x+b)\left(\int \frac{c_{1} \mathrm{e}^{\frac{x^{2} a x^{-n}}{n-2}} \mathrm{e}^{\frac{x^{-n}-n}{n-1}}}{(a x+b)^{2}} d x+c_{2}\right) \\
& =(a x+b)\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{(a(n-1) x+b(n-2)) x^{1-n}}{(n-2)(n-1)}}}{(a x+b)^{2}} d x\right)+c_{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(a x+b)\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{(a(n-1) x+b(n-2)) x^{1-n}}{(n-2)(n-1)}}}{(a x+b)^{2}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(a x+b)\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{(a(n-1) x+b(n-2)) x^{1-n}}{(n-2)(n-1)}}}{(a x+b)^{2}} d x\right)+c_{2}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying differential order: 2; exact nonlinear
    trying symmetries linear in x and y(x)
    <- linear symmetries successful`
```

\checkmark Solution by Maple
Time used: 0.375 (sec). Leaf size: 56
dsolve $\left(x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+(a * x+b) * \operatorname{diff}(y(x), x)-a * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=-\left(c_{1}\left(\int \frac{\mathrm{e}^{\frac{x^{-n+1}(a x(n-1)+b(n-2))}{(n-2)(n-1)}}}{(a x+b)^{2}} d x\right)+c_{2}\right)(a x+b)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[x^n*y' $[x]+(a * x+b) * y^{\prime}[x]-a * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]
Not solved

33.6 problem 244

Internal problem ID [11068]
Internal file name [OUTPUT/10324_Wednesday_January_24_2024_10_07_14_PM_89762227/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 244.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+\left(a x^{n-1}+b x\right) y^{\prime}+(a-1) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.782 (sec). Leaf size: 137

```
dsolve(x^n*diff(y(x),x$2)+(a*x^(n-1)+b*x)*diff(y(x),x)+(a-1)*y(x)=0,y(x), singsol=all)
```

$$
\begin{array}{r}
y(x)=x^{-\frac{a}{2}-\frac{1}{2}+\frac{n}{2}} \mathrm{e}^{\frac{b x^{2-n}}{-4+2 n}}\left(\text { WhittakerM }\left(\frac{(-b+2) a-2+b(n-1)}{2 b(n-2)}, \frac{a-1}{-4+2 n}, \frac{b x^{2-n}}{n-2}\right) c_{1}\right. \\
\left.+ \text { WhittakerW }\left(\frac{(-b+2) a-2+b(n-1)}{2 b(n-2)}, \frac{a-1}{-4+2 n}, \frac{b x^{2-n}}{n-2}\right) c_{2}\right)
\end{array}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} n * y^{\prime \prime}[x]+\left(a * x^{\wedge}(n-1)+b * x\right) * y y^{\prime}[x]+(a-1) * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

Not solved

33.7 problem 245

Internal problem ID [11069]
Internal file name [OUTPUT/10325_Wednesday_January_24_2024_10_07_15_PM_54178152/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 245.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+\left(2 x^{n-1}+a x^{2}+b x\right) y^{\prime}+y b=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational 9 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\checkmark Solution by Maple
Time used: 0.454 (sec). Leaf size: 76
dsolve $\left(x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+\left(2 * x^{\wedge}(n-1)+a * x^{\wedge} 2+b * x\right) * \operatorname{diff}(y(x), x)+b * y(x)=0, y(x)\right.$, singsol=all)

$$
\left.\left.y(x)=\frac{(a x+b)\left(c _ { 2 } \left(\int \frac{\mathrm{e}^{\frac{b(n-3) x^{2-n}+(n-2)\left(a x^{3-n}-2(n-3) \ln (x)\right)}{(n-3)(n-2)}}}{(a x+b)^{2}}\right.\right.}{x^{2}} d x\right)+c_{1}\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} n * y\right.$ ' $'[x]+\left(2 * x^{\wedge}(n-1)+a * x^{\wedge} 2+b * x\right) * y{ }^{\prime}[x]+b * y[x]==0, y[x], x$, IncludeSingularSolutions $->$
Not solved

33.8 problem 246

Internal problem ID [11070]
Internal file name [OUTPUT/10326_Wednesday_January_24_2024_10_07_15_PM_36620420/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations. Problem number: 246.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}+c\left((a-c) x^{n}+b\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+c *\left((a-c) * x^{\wedge} n+b\right) * y(x)=0, y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0 DSolve $\left[x^{\wedge} n * y^{\prime \prime}[\mathrm{x}]+\left(\mathrm{a} * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{c} *\left((\mathrm{a}-\mathrm{c}) * \mathrm{x}^{\wedge} \mathrm{n}+\mathrm{b}\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions

Not solved

33.9 problem 247

Internal problem ID [11071]
Internal file name [OUTPUT/10327_Wednesday_January_24_2024_10_07_16_PM_37914138/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 247.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+\left(a x^{n}-x^{n-1}+a b x+b\right) y^{\prime}+a^{2} b x y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationalfform of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n-x^{\wedge}(n-1)+a * b * x+b\right) * \operatorname{diff}(y(x), x)+a^{\wedge} 2 * b * x * y(x)=0, y(x)\right.$, singsol=

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} n * y{ }^{\prime} \cdot[x]+\left(a * x^{\wedge} n-x^{\wedge}(n-1)+a * b * x+b\right) * y '[x]+a^{\wedge} 2 * b * x * y[x]==0, y[x], x\right.$, IncludeSingularSoluti

Not solved

33.10 problem 248

Internal problem ID [11072]
Internal file name [OUTPUT/10328_Wednesday_January_24_2024_10_07_16_PM_18572700/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 248.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{n} y^{\prime \prime}+\left(a x^{m+n}+1\right) y^{\prime}+a x^{m}\left(1+x^{n-1} m\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationa 360 form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(x^{\wedge} n * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge}(n+m)+1\right) * \operatorname{diff}(y(x), x)+a * x^{\wedge} m *\left(1+m * x^{\wedge}(n-1)\right) * y(x)=0, y(x)\right.$, singso

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} n * y^{\prime \prime}[x]+\left(a * x^{\wedge}(n+m)+1\right) * y '[x]+a * x^{\wedge} m *\left(1+m * x^{\wedge}(n-1)\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolu

Not solved

33.11 problem 249

Internal problem ID [11073]
Internal file name [OUTPUT/10329_Wednesday_January_24_2024_10_07_17_PM_72162890/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 249.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{n}+b\right) y^{\prime \prime}+\left(x^{n} c+d\right) y^{\prime}+\lambda\left((-a \lambda+c) x^{n}+d-b \lambda\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rationat form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x \$ 2)+\left(c * x^{\wedge} n+d\right) * \operatorname{diff}(y(x), x)+l a m b d a *((c-a * l a m b d a) * x \wedge n+d-b * l a m b d a) *\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b\right) * y^{\prime} \quad[x]+\left(c * x^{\wedge} n+d\right) * y^{\prime}[x]+\backslash[\right.$ Lambda $] *\left((c-a * \backslash[\right.$ Lambda $]) * x^{\wedge} n+d-b * \backslash[$ Lambda $\left.]\right) * y[x]==$

Not solved

33.12 problem 250

33.12.1 Solving as second order integrable as is ode
33.12.2 Solving as type second_order_integrable_as_is (not using ABC version) . 3607
33.12.3 Solving as exact linear second order ode ode 3609

Internal problem ID [11074]
Internal file name [OUTPUT/10330_Wednesday_January_24_2024_10_07_18_PM_82271614/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 250.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
\left(a x^{n}+b x+c\right) y^{\prime \prime}-a n(n-1) x^{n-2} y=0
$$

33.12.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(\left(a x^{n}+b x+c\right) y^{\prime \prime}-a n(n-1) x^{n-2} y\right) d x=0 \\
& -\frac{\left(x^{n} n a+b x\right) y}{x}-\left(-a x^{n}-b x-c\right) y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} \\
& q(x)=\frac{c_{1}}{a x^{n}+b x+c}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(x^{n} n a+b x\right) y}{\left(a x^{n}+b x+c\right) x}=\frac{c_{1}}{a x^{n}+b x+c}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} d x} \\
& =\frac{1}{a \mathrm{e}^{n \ln (x)}+b x+c}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{a x^{n}+b x+c}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{1}{a x^{n}+b x+c}\right)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\mathrm{d}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives
$\frac{y}{a x^{n}+b x+c}=\int \frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}} \mathrm{~d} x$
$\frac{y}{a x^{n}+b x+c}=\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right) c_{1}+$
Dividing both sides by the integrating factor $\mu=\frac{1}{a x^{n}+b x+c}$ results in
$y=\left(a x^{n}+b x+c\right)\left(\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right)\right.$ which simplifies to
$y=\left(a x^{n}+b x+c\right)\left(c_{1}\left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right.\right.$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)
\end{aligned}
$$

Verified OK.

33.12.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\left(a x^{n}+b x+c\right) y^{\prime \prime}-a n(n-1) x^{n-2} y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(\left(a x^{n}+b x+c\right) y^{\prime \prime}-a n(n-1) x^{n-2} y\right) d x=0 \\
& -\frac{\left(x^{n} n a+b x\right) y}{x}-\left(-a x^{n}-b x-c\right) y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} \\
& q(x)=\frac{c_{1}}{a x^{n}+b x+c}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(x^{n} n a+b x\right) y}{\left(a x^{n}+b x+c\right) x}=\frac{c_{1}}{a x^{n}+b x+c}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} d x} \\
& =\frac{1}{a \mathrm{e}^{n \ln (x)}+b x+c}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{a x^{n}+b x+c}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{1}{a x^{n}+b x+c}\right)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\mathrm{d}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{a x^{n}+b x+c}=\int \frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}} \mathrm{~d} x \\
& \frac{y}{a x^{n}+b x+c}=\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right) c_{1}-
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{a x^{n}+b x+c}$ results in
$y=\left(a x^{n}+b x+c\right)\left(\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right)\right.$
which simplifies to

$$
y=\left(a x^{n}+b x+c\right)\left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right.\right.
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)
\end{aligned}
$$

Verified OK.

33.12.3 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=a x^{n}+b x+c \\
& q(x)=0 \\
& r(x)=-a n(n-1) x^{n-2} \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =\frac{a x^{n} n^{2}}{x^{2}}-\frac{a n x^{n}}{x^{2}} \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
\frac{a x^{n} n^{2}}{x^{2}}-\frac{a n x^{n}}{x^{2}}-(0)+\left(-a n(n-1) x^{n-2}\right)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
\left(a x^{n}+b x+c\right) y^{\prime}+\left(-\frac{a n x^{n}}{x}-b\right) y=c_{1}
$$

We now have a first order ode to solve which is

$$
\left(a x^{n}+b x+c\right) y^{\prime}+\left(-\frac{a n x^{n}}{x}-b\right) y=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} \\
& q(x)=\frac{c_{1}}{a x^{n}+b x+c}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(x^{n} n a+b x\right) y}{\left(a x^{n}+b x+c\right) x}=\frac{c_{1}}{a x^{n}+b x+c}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x^{n} n a+b x}{\left(a x^{n}+b x+c\right) x} d x} \\
& =\frac{1}{a \mathrm{e}^{n \ln (x)}+b x+c}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{a x^{n}+b x+c}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{1}{a x^{n}+b x+c}\right)\left(\frac{c_{1}}{a x^{n}+b x+c}\right) \\
\mathrm{d}\left(\frac{y}{a x^{n}+b x+c}\right) & =\left(\frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$\frac{y}{a x^{n}+b x+c}=\int \frac{c_{1}}{\left(a x^{n}+b x+c\right)^{2}} \mathrm{~d} x$
$\frac{y}{a x^{n}+b x+c}=\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right) c_{1}+$
Dividing both sides by the integrating factor $\mu=\frac{1}{a x^{n}+b x+c}$ results in
$y=\left(a x^{n}+b x+c\right)\left(\frac{x c_{1}}{(n b x-b x+c n)\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)}+\left(\int \frac{n(n b x-b x+c n-c)}{(n b x-b x+c n)^{2}\left(a \mathrm{e}^{n \ln (x)}+b x+c\right)} d x\right)\right.$
which simplifies to
$y=\left(a x^{n}+b x+c\right)\left(c_{1}\left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right.\right.$
Summary
The solution(s) found are the following

$$
\begin{align*}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)^{1}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y=\left(a x^{n}+b x+c\right) & \left(c _ { 1 } \left(\frac{x}{\left(a x^{n}+b x+c\right)(n b x-b x+c n)}\right.\right. \\
& \left.\left.+n\left(\int \frac{(n-1)(b x+c)}{(x(n-1) b+c n)^{2}\left(a x^{n}+b x+c\right)} d x\right)\right)+c_{2}\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve $\left(\left(a * x^{\wedge} n+b * x+c\right) * \operatorname{diff}(y(x), x \$ 2)=a * n *(n-1) * x^{\wedge}(n-2) * y(x), y(x)\right.$, singsol=all)

$$
y(x)=\left(\left(\int \frac{1}{\left(a x^{n}+b x+c\right)^{2}} d x\right) c_{1}+c_{2}\right)\left(a x^{n}+b x+c\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b * x+c\right) * y{ }^{\prime}\right.$ ' $[x]==a * n *(n-1) * x^{\wedge}(n-2) * y[x], y[x], x$, IncludeSingularSolutions $->$ True]

Not solved

33.13 problem 251

Internal problem ID [11075]
Internal file name [OUTPUT/10331_Wednesday_January_24_2024_10_07_29_PM_64080441/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 251.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x\left(x^{n}+1\right) y^{\prime \prime}+\left((a-b) x^{n}+a-n\right) y^{\prime}+b(-a+1) x^{n-1} y=0
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 65
dsolve $\left(x *\left(x^{\wedge} n+1\right) * \operatorname{diff}(y(x), x \$ 2)+\left((a-b) * x^{\wedge} n+a-n\right) * \operatorname{diff}(y(x), x)+b *(1-a) * x^{\wedge}(n-1) * y(x)=0, y(x)\right.$,
$y(x)=\left(x^{-a+n+1} c_{2}\right.$ hypergeom $\left.\left(\left[\frac{b+n}{n}, \frac{-a+n+1}{n}\right],\left[\frac{2 n-a+1}{n}\right],-x^{n}\right)+c_{1}\right)\left(x^{n}\right.$ $+1)^{\frac{b}{n}}$
\checkmark Solution by Mathematica
Time used: 0.164 (sec). Leaf size: 69
DSolve $\left[x *\left(x^{\wedge} n+1\right) * y{ }^{\prime}\right.$ ' $[x]+\left((a-b) * x^{\wedge} n+a-n\right) * y '[x]+b *(1-a) * x^{\wedge}(n-1) * y[x]==0, y[x], x$, IncludeSingular

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(x^{n}\right)^{\frac{-a+n+1}{n}} \text { Hypergeometric2F1 }\left(1, \frac{-a-b+n+1}{n}, \frac{-a+2 n+1}{n},-x^{n}\right) \\
& +c_{1}\left(x^{n}+1\right)^{b / n}
\end{aligned}
$$

33.14 problem 252

33.14.1 Solving as second order change of variable on x method 1 ode . 3615

Internal problem ID [11076]
Internal file name [OUTPUT/10332_Wednesday_January_24_2024_10_07_30_PM_78114833/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 252.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_x_method_1"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, 
    _with_symmetry_[0,F(x)]`]]
```

$$
x\left(x^{2 n}+a\right) y^{\prime \prime}+\left(x^{2 n}+a-a n\right) y^{\prime}-b^{2} x^{-1+2 n} y=0
$$

33.14.1 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x\left(x^{2 n}+a\right) y^{\prime \prime}+\left(x^{2 n}+a-a n\right) y^{\prime}-b^{2} x^{-1+2 n} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x^{2 n}+a-a n}{x\left(x^{2 n}+a\right)} \\
& q(x)=-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{-\frac{b^{2} x^{2 n-2}(2 n-2)}{x\left(x^{2 n}+a\right)}+\frac{2 b^{2} x^{2 n-2} x^{2 n} n}{\left(x^{2 n}+a\right)^{2} x}}{2 c \sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
& p_{1}(\tau)= \frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
&= \frac{-\frac{b^{2} x^{2 n-2}(2 n-2)}{x\left(x^{2 n}+a\right)}+\frac{2 b^{2} x^{2 n-2} x^{2 n} n}{\left(x^{2 n}+a\right)^{2} x}}{2 c \sqrt{-\frac{b^{2} x^{2 n-a}}{x^{2 n}+a}}+\frac{x^{2 n}+a-a n}{x\left(x^{2 n}+a\right)} \frac{\sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}}}{c}}\left(\frac{\sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}}}{c}\right)^{2} \\
&=0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}} d x}{c} \\
& =\frac{\int \sqrt{-\frac{b^{2} x^{2 n-2}}{x^{2 n}+a}} d x}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)+i c_{2} \sinh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cosh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)+i c_{2} \sinh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cosh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)+i c_{2} \sinh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
Solution is available but has integrals. Trying a simpler solution using Kovacics algorit
Solution via Kovacic is not simpler. Returning default solution
<- linear_1 successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 61
dsolve $\left(x *\left(x^{\wedge}(2 * n)+a\right) * \operatorname{diff}(y(x), x \$ 2)+\left(x^{\wedge}(2 * n)+a-a * n\right) * \operatorname{diff}(y(x), x)-b^{\wedge} 2 * x^{\wedge}(2 * n-1) * y(x)=0, y(x)\right.$,

$$
y(x)=c_{1} \mathrm{e}^{i b\left(\int x^{n-1} \sqrt{-\frac{1}{x^{2 n}+a}} d x\right)}+c_{2} \mathrm{e}^{-i b\left(\int x^{n-1} \sqrt{-\frac{1}{x^{2 n}+a}} d x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.458 (sec). Leaf size: 47
DSolve $\left[x *\left(x^{\wedge}(2 * n)+a\right) * y^{\prime \prime}[x]+\left(x^{\wedge}(2 * n)+a-a * n\right) * y '[x]-b^{\wedge} 2 * x^{\wedge}(2 * n-1) * y[x]==0, y[x], x\right.$, IncludeSingul

$$
y(x) \rightarrow c_{1} \cosh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)+i c_{2} \sinh \left(\frac{b \operatorname{arcsinh}\left(\frac{x^{n}}{\sqrt{a}}\right)}{n}\right)
$$

33.15 problem 253

Internal problem ID [11077]
Internal file name [OUTPUT/10333_Wednesday_January_24_2024_10_16_49_PM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 253.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x^{2}\left(x^{2 n} a^{2}-1\right) y^{\prime \prime}+x\left(a^{2}(n+1) x^{2 n}+n-1\right) y^{\prime}-\nu(\nu+1) a^{2} n^{2} x^{2 n} y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.157 (sec). Leaf size: 23
dsolve $\left(x^{\wedge} 2 *\left(a^{\wedge} 2 * x^{\wedge}(2 * n)-1\right) * \operatorname{diff}(y(x), x \$ 2)+x *\left(a^{\wedge} 2 *(n+1) * x^{\wedge}(2 * n)+n-1\right) * \operatorname{diff}(y(x), x)-n u *(n u+1) * a\right.$

$$
y(x)=c_{1} \text { LegendreP }\left(\nu, a x^{n}\right)+c_{2} \text { LegendreQ }\left(\nu, a x^{n}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 79
DSolve $\left[x^{\wedge} 2 *\left(a^{\wedge} 2 * x^{\wedge}(2 * n)-1\right) * y^{\prime} \cdot[x]+x *\left(a^{\wedge} 2 *(n+1) * x^{\wedge}(2 * n)+n-1\right) * y^{\prime}[x]-\backslash[N u] *(\backslash[N u]+1) * a^{\wedge} 2 * n^{\wedge} 2 * x^{\prime}\right.$

$$
\begin{aligned}
y(x) \rightarrow & i a c_{2} \sqrt{x^{2 n}} \text { Hypergeometric2F1 }\left(\frac{1}{2}-\frac{\nu}{2}, \frac{\nu}{2}+1, \frac{3}{2}, a^{2} x^{2 n}\right) \\
& +c_{1} \text { Hypergeometric2F1 }\left(-\frac{\nu}{2}, \frac{\nu+1}{2}, \frac{1}{2}, a^{2} x^{2 n}\right)
\end{aligned}
$$

33.16 problem 254

Internal problem ID [11078]
Internal file name [OUTPUT/10334_Wednesday_January_24_2024_10_16_50_PM_90181001/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 254.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{2}\left(x^{2 n} a^{2}-1\right) y^{\prime \prime}+x\left(a p x^{n}+q\right) y^{\prime}+\left(a r x^{n}+s\right) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
        -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g
```

\checkmark Solution by Maple
Time used: 1.734 (sec). Leaf size: 273
dsolve $\left(x^{\wedge} 2 *\left(a^{\wedge} 2 * x^{\wedge}(2 * n)-1\right) * \operatorname{diff}(y(x), x \$ 2)+x *\left(a * p * x^{\wedge} n+q\right) * \operatorname{diff}(y(x), x)+\left(a * r * x^{\wedge} n+s\right) * y(x)=0, y(x)\right.$
$y(x)$
$=x^{\frac{q}{2}+\frac{1}{2}}\left(c_{1} x^{\frac{\sqrt{q^{2}+2 q+4 s+1}}{2}} \operatorname{HeunG}\left(-1, \frac{p q+\sqrt{q^{2}+2 q+4 s+1} p+p+2 r}{2 n^{2}}, \frac{\sqrt{q^{2}+2 q+4 s+1}+q-1}{2 n}, \frac{\sqrt{q^{2}}}{2 n}\right.\right.$ $\left.-\frac{p-q}{2 n},-a x^{n}\right)$
$+c_{2} x^{-\frac{\sqrt{q^{2}+2 q+4 s+1}}{2}}$ HeunG $\left(-1, \frac{-\sqrt{q^{2}+2 q+4 s+1} p+(q+1) p+2 r}{2 n^{2}}\right.$,
$-\frac{\sqrt{q^{2}+2 q+4 s+1}-q-1}{2 n},-\frac{\sqrt{q^{2}+2 q+4 s+1}-q+1}{2 n}, \frac{n-\sqrt{q^{2}+2 q+4 s+1}}{n}$,

$$
\left.\left.-\frac{p-q}{2 n},-a x^{n}\right)\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 *\left(\mathrm{a}^{\wedge} 2 * x^{\wedge}(2 * n)-1\right) * y^{\prime} '[x]+x *\left(a * p * x^{\wedge} n+q\right) * y^{\prime}[x]+\left(a * r * x^{\wedge} n+s\right) * y[x]==0, y[x], x\right.$, IncludeSing

Not solved

33.17 problem 255

33.17.1 Solving as second order bessel ode ode 3624

Internal problem ID [11079]
Internal file name [OUTPUT/10335_Wednesday_January_24_2024_10_17_11_PM_46271332/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 255.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{n}+a\right)^{2} y^{\prime \prime}-b x^{n-2}\left((b-1) x^{n}+(n-1) a\right) y=0
$$

33.17.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-\frac{b^{2} x^{2 n}}{x^{2}}-\frac{x^{n} a b n}{x^{2}}+\frac{x^{2 n} b}{x^{2}}+\frac{a b x^{n}}{x^{2}}\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
& \alpha=\frac{1}{2} \\
& \beta=\frac{2 \ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)} \\
& n=-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)} \\
& \gamma=\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{2 \ln (x)}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as
$y=c_{1} \sqrt{x}$ BesselJ $\left(-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}, \frac{2 \ln (x) x^{\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{2 \ln (x)}} \ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{)}\right.$.

Summary

The solution(s) found are the following

$$
\left.\begin{array}{rl}
y \\
= & c_{1} \sqrt{x} \text { BesselJ }\left(-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}, \frac{2 \ln (x) x^{\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n} \ln (x)-a\right)}{x^{2}}\right)+n \ln (x)}{2 \ln (x)}} \ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{}\right) \\
& +c_{2} \sqrt{x} \text { BesselY }\left(-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}, \frac{2 \ln (x) x^{\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{2 \ln (x)}}}{\ln \left(-\frac{b\left(b \mathrm{e}^{\left.n \ln (x)+a n-\mathrm{e}^{n \ln (x)}-a\right)}\right.}{x^{2}}\right)+n \ln (x)}\right.
\end{array}\right)
$$

Verification of solutions

$$
\begin{aligned}
& y \\
&= c_{1} \sqrt{x} \text { BesselJ }\left(-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}, \frac{2 \ln (x) x^{\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{2 \ln (x)}} \ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{x^{2}}\right) \\
&+c_{2} \sqrt{x} \text { BesselY }\left(-\frac{\ln (x)}{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}, \frac{2 \ln (x) x^{\frac{\ln \left(-\frac{b\left(b \mathrm{e}^{n \ln (x)}+a n-\mathrm{e}^{n \ln (x)}-a\right)}{x^{2}}\right)+n \ln (x)}{\ln (x)}}}{\ln \left(-\frac{b\left(b \mathrm{e}^{\left.n \ln (x)+a n-\mathrm{e}^{n \ln (x)}-a\right)}\right.}{x^{2}}\right)+n \ln (x)}\right)
\end{aligned}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
        Solution has integrals. Trying a special function solution free of integrals...
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Whittaker
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
            <- hypergeometric successful
        <- special function solution successful
            -> Trying to convert hypergeometric functions to elementary form...
            <- elementary form could result into a too large expression - returning special fun
        <- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful`
```

\checkmark Solution by Maple
Time used: 0.391 (sec). Leaf size: 75
dsolve ($\left(x^{\wedge} n+a\right)^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-b * x^{\wedge}(n-2) *\left((b-1) * x^{\wedge} n+a *(n-1)\right) * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(c_{2}\left(a x+x^{n+1}\right) \text { hypergeom }\left(\left[1, \frac{n-2 b+1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{x^{n}}{a}\right)\right. \\
& \left.+\left(\frac{x^{n}+a}{a}\right)^{\frac{2 b}{n}} a c_{1}\right)\left(x^{n}+a\right)^{-\frac{b}{n}}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} n+a\right) \wedge 2 * y{ }^{\prime} \quad[x]-b * x^{\wedge}(n-2) *\left((b-1) * x^{\wedge} n+a *(n-1)\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolutio

Not solved

33.18 problem 256

33.18.1 Solving as second order ode lagrange adjoint equation method od 3629

Internal problem ID [11080]
Internal file name [OUTPUT/10336_Wednesday_January_24_2024_10_17_58_PM_43209986/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 256.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(a x^{n}+b\right)^{2} y^{\prime \prime}+\left(a x^{n}+b\right)\left(x^{n} c+d\right) y^{\prime}+n(-a d+b c) x^{n-1} y=0
$$

33.18.1 Solving as second order ode lagrange adjoint equation method ode

 In normal form the ode$$
\begin{equation*}
y^{\prime \prime}\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right)+\left(x^{2 n} a c+d a x^{n}+b c x^{n}+b d\right) y^{\prime}+n(-a d+b c) x^{n-1} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x^{2 n} a c+d a x^{n}+b c x^{n}+b d}{x^{2 n} a^{2}+2 a b x^{n}+b^{2}} \\
q(x) & =\frac{n x^{n-1}(-a d+b c)}{x^{2 n} a^{2}+2 a b x^{n}+b^{2}} \\
r(x) & =0
\end{aligned}
$$

The Lagrange adjoint ode is given by

$$
\begin{array}{r}
\xi^{\prime \prime}-\left(\frac{\left(x^{2 n} a c+d a x^{n}+l\right.}{x^{2 n} a^{2}+2 a l}\right. \\
\xi^{\prime \prime}(x)-\frac{\left(x^{2 n} a c+d a x^{n}+b c x^{n}+b d\right) \xi^{\prime}(x)}{x^{2 n} a^{2}+2 a b x^{n}+b^{2}}+\left(\frac{\left(x^{2 n} a c+d a x^{n}+b c x^{n}+b d\right)\left(\frac{2 x^{2 n} n a^{2}}{x}+\frac{2 a b n x^{n}}{x}\right)}{\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right)^{2}}-\frac{\frac{2 x^{2 n} n a c}{x}}{x^{2 n} a}\right.
\end{array}
$$

Which is solved for $\xi(x)$. The ODE is
$x\left(x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}\right) \xi^{\prime \prime}(x)-x\left(\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3}\right.$
Or
$x\left(6 x^{2 n} \xi^{\prime \prime}(x) a^{2} b^{2}-3 x^{2 n} \xi^{\prime}(x) a^{2} b d-3 x^{2 n} \xi^{\prime}(x) a b^{2} c+4 x^{n} \xi^{\prime \prime}(x) a b^{3}-3 x^{n} \xi^{\prime}(x) a b^{2} d-x^{n} \xi^{\prime}(x) b^{3} c+4 x^{3 n} \xi\right.$
For $x \neq 0$ the above simplifies to
$\xi^{\prime \prime}(x)\left(x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}\right)-\left(\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\right.$ This is second order ode with missing dependent variable $\xi(x)$. Let

$$
p(x)=\xi^{\prime}(x)
$$

Then

$$
p^{\prime}(x)=\xi^{\prime \prime}(x)
$$

Hence the ode becomes
$x\left(x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}\right) p^{\prime}(x)-x\left(\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3}\right.$
Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p\left(x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d\right)}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}
\end{aligned}
$$

Where $f(x)=\frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}$ and $g(p)=p$.
Integrating both sides gives

$$
\begin{aligned}
& \frac{1}{p} d p=\frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x \\
& \int \frac{1}{p} d p=\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x \\
& \ln (p)=\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x+c_{1} \\
& p=\mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+46 x^{3} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x+c_{1}} \\
& =c_{1} \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}} d x
\end{aligned}
$$

Since $p=\xi^{\prime}(x)$ then the new first order ode to solve is

$$
\xi^{\prime}(x)=c_{1} \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x}
$$

Writing the ode as

$$
\begin{aligned}
& \xi^{\prime}(x)=c_{1} \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x} \\
& \xi^{\prime}(x)=\omega(x, \xi)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{\xi}-\xi_{x}\right)-\omega^{2} \xi_{\xi}-\omega_{x} \xi-\omega_{\xi} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+\xi a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+\xi b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives
$b_{2}+c_{1} \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{n n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a^{3} b^{3} x^{n}+b^{4}}} d x\left(b_{3}-a_{2}\right)$
$-c_{1}^{2} \mathrm{e}^{\int \frac{2 x^{4 n} a^{3} c+2 d x^{3 n} a^{3}+6 b c x^{3 n} a^{2}+6 x^{2 n} a^{2} b d+6 x^{2 n} a b^{2} c+6 a b^{2} x^{n} d+2 b^{3} c x^{n}+2 b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}} d x a_{3}$
$-\frac{c_{1}\left(x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d\right) \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c^{3 n} a}{x^{3 n}} a^{4}+4 b}}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}$
$=0$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, \xi\}$ in them.

$$
\left\{x, \xi, x^{n}, x^{2 n}, x^{3 n}, x^{4 n}, \int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} a\right.
$$

The following substitution is now made to be able to collect on all terms with $\{x, \xi\}$ in them
$\left\{x=v_{1}, \xi=v_{2}, x^{n}=v_{3}, x^{2 n}=v_{4}, x^{3 n}=v_{5}, x^{4 n}=v_{6}, \int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a b^{2}}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a}\right.$
The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{4} c_{1}^{2} a_{3} v_{3}^{4} v_{8}-a^{3} c c_{1} a_{2} v_{1} v_{3}^{4} v_{9}-a^{3} c c_{1} a_{3} v_{2} v_{3}^{4} v_{9}-a^{4} c_{1} a_{2} v_{3}^{4} v_{9} \\
& +a^{4} c_{1} b_{3} v_{3}^{4} v_{9}-4 a^{3} b c_{1}^{2} a_{3} v_{3}^{3} v_{8}-a^{3} c c_{1} a_{1} v_{3}^{4} v_{9}-a^{3} c_{1} d a_{2} v_{1} v_{3}^{3} v_{9} \\
& \quad-a^{3} c_{1} d a_{3} v_{2} v_{3}^{3} v_{9}-3 a^{2} b c c_{1} a_{2} v_{1} v_{3}^{3} v_{9}-3 a^{2} b c c_{1} a_{3} v_{2} v_{3}^{3} v_{9}-4 a^{3} b c_{1} a_{2} v_{3}^{3} v_{9} \\
& +4 a^{3} b c_{1} b_{3} v_{3}^{3} v_{9}-a^{3} c_{1} d a_{1} v_{3}^{3} v_{9}-6 a^{2} b^{2} c_{1}^{2} a_{3} v_{3}^{2} v_{8}-3 a^{2} b c c_{1} a_{1} v_{3}^{3} v_{9} \\
& \quad-3 a^{2} b c_{1} d a_{2} v_{1} v_{3}^{2} v_{9}-3 a^{2} b c_{1} d a_{3} v_{2} v_{3}^{2} v_{9}-3 a b^{2} c c_{1} a_{2} v_{1} v_{3}^{2} v_{9} \tag{7E}\\
& -3 a b^{2} c c_{1} a_{3} v_{2} v_{3}^{2} v_{9}+v_{3}^{4} a^{4} b_{2}-6 a^{2} b^{2} c_{1} a_{2} v_{3}^{2} v_{9}+6 a^{2} b^{2} c_{1} b_{3} v_{3}^{2} v_{9} \\
& -3 a^{2} b c_{1} d a_{1} v_{3}^{2} v_{9}-4 a b^{3} c_{1}^{2} a_{3} v_{3} v_{8}-3 a b^{2} c c_{1} a_{1} v_{3}^{2} v_{9}-3 a b^{2} c_{1} d a_{2} v_{1} v_{3} v_{9} \\
& -3 a b^{2} c_{1} d a_{3} v_{2} v_{3} v_{9}-b^{3} c c_{1} a_{2} v_{1} v_{3} v_{9}-b^{3} c c_{1} a_{3} v_{2} v_{3} v_{9}+4 v_{3}^{3} a^{3} b b_{2} \\
& -4 a b^{3} c_{1} a_{2} v_{3} v_{9}+4 a b^{3} c_{1} b_{3} v_{3} v_{9}-3 a b^{2} c_{1} d a_{1} v_{3} v_{9}-b^{4} c_{1}^{2} a_{3} v_{8} \\
& -b^{3} c c_{1} a_{1} v_{3} v_{9}-b^{3} c_{1} d a_{2} v_{1} v_{9}-b^{3} c_{1} d a_{3} v_{2} v_{9}+6 v_{3}^{2} a^{2} b^{2} b_{2} \\
& -b^{4} c_{1} a_{2} v_{9}+b^{4} c_{1} b_{3} v_{9}-b^{3} c_{1} d a_{1} v_{9}+4 v_{3} a b^{3} b_{2}+b^{4} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}
$$

Equation (7E) now becomes

$$
\begin{aligned}
& -b^{4} c_{1}^{2} a_{3} v_{8}+b^{4} b_{2}+\left(-a^{3} c_{1} d a_{2}-3 a^{2} b c c_{1} a_{2}\right) v_{1} v_{3}^{3} v_{9} \\
& +\left(-3 a^{2} b c_{1} d a_{2}-3 a b^{2} c c_{1} a_{2}\right) v_{1} v_{3}^{2} v_{9}+\left(-3 a b^{2} c_{1} d a_{2}-b^{3} c c_{1} a_{2}\right) v_{1} v_{3} v_{9} \\
& +\left(-a^{3} c_{1} d a_{3}-3 a^{2} b c c_{1} a_{3}\right) v_{2} v_{3}^{3} v_{9}+\left(-b^{4} c_{1} a_{2}+b^{4} c_{1} b_{3}-b^{3} c_{1} d a_{1}\right) v_{9} \\
& +\left(-3 a^{2} b c_{1} d a_{3}-3 a b^{2} c c_{1} a_{3}\right) v_{2} v_{3}^{2} v_{9} \\
& +\left(-3 a b^{2} c_{1} d a_{3}-b^{3} c c_{1} a_{3}\right) v_{2} v_{3} v_{9}+v_{3}^{4} a^{4} b_{2}+6 v_{3}^{2} a^{2} b^{2} b_{2} \\
& +\left(-4 a b^{3} c_{1} a_{2}+4 a b^{3} c_{1} b_{3}-3 a b^{2} c_{1} d a_{1}-b^{3} c c_{1} a_{1}\right) v_{3} v_{9} \\
& +\left(-a^{4} c_{1} a_{2}+a^{4} c_{1} b_{3}-a^{3} c c_{1} a_{1}\right) v_{3}^{4} v_{9} \\
& +\left(-4 a^{3} b c_{1} a_{2}+4 a^{3} b c_{1} b_{3}-a^{3} c_{1} d a_{1}-3 a^{2} b c c_{1} a_{1}\right) v_{3}^{3} v_{9} \\
& +\left(-6 a^{2} b^{2} c_{1} a_{2}+6 a^{2} b^{2} c_{1} b_{3}-3 a^{2} b c_{1} d a_{1}-3 a b^{2} c c_{1} a_{1}\right) v_{3}^{2} v_{9} \\
& +4 v_{3}^{3} a^{3} b b_{2}+4 v_{3} a b^{3} b_{2}-a^{4} c_{1}^{2} a_{3} v_{3}^{4} v_{8}-a^{3} c c_{1} a_{2} v_{1} v_{3}^{4} v_{9} \\
& -a^{3} c c_{1} a_{3} v_{2} v_{3}^{4} v_{9}-4 a^{3} b c_{1}^{2} a_{3} v_{3}^{3} v_{8}-6 a^{2} b^{2} c_{1}^{2} a_{3} v_{3}^{2} v_{8} \\
& -4 a b^{3} c_{1}^{2} a_{3} v_{3} v_{8}-b^{3} c_{1} d a_{2} v_{1} v_{9}-b^{3} c_{1} d a_{3} v_{2} v_{9}=0
\end{aligned}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a^{4} b_{2} & =0 \\
b^{4} b_{2} & =0 \\
-c_{1}^{2} a^{4} a_{3} & =0 \\
-c_{1}^{2} b^{4} a_{3} & =0 \\
4 a b^{3} b_{2} & =0 \\
6 a^{2} b^{2} b_{2} & =0 \\
4 a^{3} b b_{2} & =0 \\
-c_{1} a^{3} c a_{2} & =0 \\
-c_{1} a^{3} c a_{3} & =0 \\
-c_{1} b^{3} d a_{3} & =0 \\
-4 c_{1}^{2} a b^{3} a_{3} & =0 \\
-6 c_{1}^{2} a^{2} b^{2} a_{3} & =0 \\
-4 c_{1}^{2} a^{3} b a_{3} & =0 \\
-b^{3} d a_{2} c_{1} & =0 \\
-3 a b^{2} c_{1} d a_{2}-b^{3} c c_{1} a_{2} & =0 \\
-3 a^{2} b c_{1} d a_{2}-3 a b^{2} c c_{1} a_{2} & =0 \\
-a^{3} c_{1} d a_{2}-3 a^{2} b c c_{1} a_{2} & =0 \\
-3 a b^{2} c_{1} d a_{3}-b^{3} c c_{1} a_{3} & =0 \\
-3 a^{2} b c_{1} d a_{3}-3 a b^{2} c c_{1} a_{3} & =0 \\
-a^{3} c_{1} d a_{3}-3 a^{2} b c c_{1} a_{3} & =0 \\
-a^{4} c_{1} a_{2}+a^{4} c_{1} b_{3}-a^{3} c c_{1} a_{1} & =0 \\
-b^{4} c_{1} a_{2}+b^{4} c_{1} b_{3}-b^{3} c_{1} d a_{1} & =0 \\
-4 a b^{2} c_{1} d a_{1}-b^{3} c c_{1} a_{1} & =0 \\
-4 a^{2} b^{2} c_{1} a_{2}+6 a_{1} a_{2} b^{2} c_{1} b_{3}-3 a^{2} b c_{1} d a_{1}-3 a b^{2} c c_{1} a_{1} & =0 \\
-4 a^{3} b c_{1} a_{2}+4 a^{3} b c_{1} b_{3}-a^{3} c_{1} d a_{1}-3 a^{2} b c c_{1} a_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=0 \\
& b_{1}=b_{1} \\
& b_{2}=0 \\
& b_{3}=0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=1
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, \xi) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d \xi}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial \xi}\right) S(x, \xi)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1} d y
\end{aligned}
$$

Which results in

$$
S=\xi
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, \xi) S_{\xi}}{R_{x}+\omega(x, \xi) R_{\xi}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{\xi}, S_{x}, S_{\xi}$ are all partial derivatives and $\omega(x, \xi)$ is the right hand side of the original ode given by

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{\xi} & =0 \\
S_{x} & =0 \\
S_{\xi} & =1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int \frac{\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}} d x \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, ξ in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int \frac{\left(3 a^{2} b d+3 b^{2} c a\right) R^{2 n}+\left(a^{3} d+3 a^{2} b c\right) R^{3 n}+R^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) R^{n}+b^{3} d}{R^{4 n} a^{4}+4 b R^{3 n} a^{3}+6 R^{2 n} a^{2} b^{2}+4 a b^{3} R^{n}+b^{4}} d R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int c_{1} \mathrm{e}^{\frac{3 R^{2 n} a^{2} b d+3 R^{2 n} a b^{2} c+R^{3 n} a^{3} d+3 R^{3 n} a^{2} b c+R^{4} a^{3} c+3 R^{n} a b^{2} d+R^{n} b^{3} c+b^{3} d}{R^{4 n} a^{4}+4 b R^{3 n} a^{3}+6 R^{2 n} a^{2} b^{2}+4 a b^{3} R^{n}+b^{4}} d R} d R+c_{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, ξ coordinates. This results in

$$
\xi(x)=\int c_{1} \mathrm{e}^{\int \frac{x^{4 n} a^{3} c+d x^{3 n} a^{3}+3 b c x^{3 n} a^{2}+3 x^{2 n} a^{2} b d+3 x^{2 n} a^{2} c+3 a b^{2} x^{n} d+b^{3} c x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x} d x+c_{2}
$$

Which simplifies to

$$
\xi(x)-c_{1}\left(\int \mathrm{e}^{\int \frac{\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}} d x} d x\right)-c_{2}=0
$$

Which gives

$$
\xi(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}} d x\right)+c_{2}
$$

The original ode (2) now reduces to first order ode

$$
\begin{array}{r}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) \\
y^{\prime}+y\left(\frac{x^{2 n} a c+d a x^{n}+b c x^{n}+b d}{x^{2 n} a^{2}+2 a b x^{n}+b^{2}}-\frac{y^{\prime}+p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}}{c_{3}\left(\int \mathrm{e}^{\int \frac{\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) x^{n}+b^{3} d}{x^{4 n} a^{4}+4 b x^{3 n} a^{3}+6 x^{2 n} a^{2} b^{2}+4 a b^{3} x^{n}+b^{4}}} d x\right)+c_{2}} \begin{array}{r}
c^{\frac{\left(3 a^{2} b d+3 b^{2} c a\right) x^{2 n}+\left(a^{3} d+3 a^{2} b c\right) x^{3 n}+x^{4 n} a^{3} c+\left(3 a b^{2} d+b^{3} c\right) x^{n}+b^{3} d}{x^{4 n}}} d x
\end{array}\right.
\end{array}
$$

Which is now a first order ode. This is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here
$p(x)=-\frac{-c_{3}\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right)\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{3}\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right) \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x}-\left(x^{2 n} a c+\right.}{\left(c_{3}\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{2}\right)\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right)}$
$q(x)=0$
Hence the ode is

$$
y^{\prime}-\frac{\left(-c_{3}\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right)\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{3}\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right) \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x}-\left(x^{2 n} a c+(a\right.\right.}{\left(c_{3}\left(\int \mathrm{e}^{\int \frac{x^{n} c+d d x}{a x^{n}+b} d x} d x\right)+c_{2}\right)\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right)}
$$

The integrating factor μ is
$\left.\mu=\mathrm{e}^{\int-\frac{-c_{3}\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right)}{}\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b^{d}} d x}\right)+c_{3}\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right) \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x}-\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right) c_{2}}\right)\left(c_{3}\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{2}\right)\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right) \quad d x$
The ode becomes

Integrating gives

Dividing both sides by the integrating factor $\mu=\mathrm{e}$ results in

Hence, the solution found using Lagrange adjoint equation method is

Summary

The solution(s) found are the following
$y=c_{3} \mathrm{e}$

$$
\begin{equation*}
\int \frac{-c_{3}\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right)\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{3}\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right) \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b^{2}} d x}-\left(x^{2 n} a c+(a d+b c) x^{n}+b d\right) c_{2}}{\left(c_{3}\left(\int \mathrm{e}^{\int \frac{x^{n} c+d}{a x^{n}+b} d x} d x\right)+c_{2}\right)\left(x^{2 n} a^{2}+2 a b x^{n}+b^{2}\right)} d x \tag{1}
\end{equation*}
$$

Verification of solutions

$y=c_{3} \mathrm{e}$

Verified OK.

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational ${ }_{3} 39$ form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\checkmark Solution by Maple
Time used: 0.406 (sec). Leaf size: 53
dsolve $\left(\left(a * x^{\wedge} n+b\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) *\left(c * x^{\wedge} n+d\right) * \operatorname{diff}(y(x), x)+n *(b * c-a * d) * x^{\wedge}(n-1) * y(x)=\right.$

$$
y(x)=\mathrm{e}^{-\left(\int \frac{c x^{n}+d}{a x^{n}+b} d x\right.}\left(c_{1}+\left(\int \mathrm{e}^{\int \frac{c x^{n}+d}{a x^{n}+b} d x} d x\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.923 (sec). Leaf size: 106

```
DSolve[(a*x^n+b)^2*y''[x]+(a*x^n+b)*(c*x^n+d)*y'[x]+n*(b*c-a*d)*x^(n-1)*y[x]==0,y[x],x,Inclu
```

$y(x)$
$\rightarrow \exp \left(-\frac{x\left((a d-b c) \text { Hypergeometric2F1 }\left(1, \frac{1}{n}, 1+\frac{1}{n},-\frac{a x^{n}}{b}\right)+b c\right)}{a b}\right)\left(\int_{1}^{x} \exp \left(\frac{(b c+(a d-b c) \text { Hyper }}{}\right.\right.$ $\left.+c_{2}\right)$

33.19 problem 257

Internal problem ID [11081]
Internal file name [OUTPUT/10337_Wednesday_January_24_2024_10_17_59_PM_53634759/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(x^{n}+a\right)^{2} y^{\prime \prime}+b x^{m}\left(x^{n}+a\right) y^{\prime}-x^{n-2}\left(b x^{m+1}+a n-a\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1([a$
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(\left(x^{\wedge} n+a\right)^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+b * x^{\wedge} m *\left(x^{\wedge} n+a\right) * \operatorname{diff}(y(x), x)-x^{\wedge}(n-2) *\left(b * x^{\wedge}(m+1)+a * n-a\right) * y(x)=0\right.$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} n+a\right)^{\wedge} 2 * y{ }^{\prime} '[x]+b * x^{\wedge} m *\left(x^{\wedge} n+a\right) * y^{\prime}[x]-x^{\wedge}(n-2) *\left(b * x^{\wedge}(m+1)+a * n-a\right) * y[x]==0, y[x], x\right.$, Include

Not solved

33.20 problem 258

Internal problem ID [11082]
Internal file name [OUTPUT/10338_Wednesday_January_24_2024_10_18_00_PM_40001740/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations. Problem number: 258.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{n}+b\right)^{2} y^{\prime \prime}+c x^{m}\left(a x^{n}+b\right) y^{\prime}+\left(c x^{m}-a n x^{n-1}-1\right) y=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve $\left(\left(a * x^{\wedge} n+b\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+c * x^{\wedge} m *\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)+\left(c * x^{\wedge} m-a * n * x^{\wedge}(n-1)-1\right) * y(x)=0\right.$,

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b\right) \wedge 2 * y^{\prime \prime}[x]+c * x^{\wedge} m *\left(a * x^{\wedge} n+b\right) * y '[x]+\left(c * x^{\wedge} m-a * n * x^{\wedge}(n-1)-1\right) * y[x]==0, y[x], x\right.$, Include

Not solved

33.21 problem 259

Internal problem ID [11083]
Internal file name [OUTPUT/10339_Wednesday_January_24_2024_10_18_01_PM_37857849/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition

Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 259.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x^{2}\left(a x^{n}+b\right)^{2} y^{\prime \prime}+(n+1) x\left(x^{2 n} a^{2}-b^{2}\right) y^{\prime}+y c=0
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
    <- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 127
dsolve $\left(x^{\wedge} 2 *\left(a * x^{\wedge} n+b\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+(n+1) * x *\left(a^{\wedge} 2 * x^{\wedge}(2 * n)-b^{\wedge} 2\right) * \operatorname{diff}(y(x), x)+c * y(x)=0, y(x)\right.$,

$$
\begin{array}{r}
y(x)=\sqrt{a x^{2 n}+b x^{n}}\left(a x^{n}+b\right)^{\frac{-n-1}{n}} x\binom{\left(\frac{x^{n}}{a x^{n}+b}\right)^{-\frac{\sqrt{\frac{(n+2)^{2} b^{2}-4 c}{n^{2} a^{2}} a}}{2 b}} c_{2}}{\quad+\left(\frac{x^{n}}{a x^{n}+b}\right)^{\frac{\sqrt{\frac{(n+2)^{2} b^{2}-4 c}{n^{2} a^{2}} a}}{2 b}} c_{1}}
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 0.407 (sec). Leaf size: 149
DSolve $\left[x^{\wedge} 2 *\left(a * x^{\wedge} n+b\right) \wedge 2 * y^{\prime} \cdot[x]+(n+1) * x *\left(a^{\wedge} 2 * x^{\wedge}(2 * n)-b^{\wedge} 2\right) * y y^{\prime}[x]+c * y[x]==0, y[x], x\right.$, IncludeSingul
$y(x)$
$\rightarrow c_{1} \exp \left(\frac{\left(b(n+2)-\sqrt{c} \sqrt{\frac{b^{2}(n+2)^{2}-4 c}{c}}\right)\left(-\log \left(a x^{n}+b\right)-\log (b)+n \log (x)-\log (n)\right)}{2 b n}\right)$
$+c_{2} \exp \left(\frac{\left(\sqrt{c} \sqrt{\frac{b^{2}(n+2)^{2}-4 c}{c}}+b(n+2)\right)\left(-\log \left(a x^{n}+b\right)-\log (b)+n \log (x)-\log (n)\right)}{2 b n}\right)$

33.22 problem 260

Internal problem ID [11084]
Internal file name [OUTPUT/10340_Wednesday_January_24_2024_10_18_01_PM_17636971/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and
Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 260.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
\left(a x^{n+1}+b x^{n}+c\right)^{2} y^{\prime \prime}+\left(\alpha x^{n}+\beta x^{n-1}+\gamma\right) y^{\prime}+\left(n(-a n-a+\alpha) x^{n-1}+(n-1)(-n b+\beta) x^{n-2}\right) y=
$$

X Solution by Maple
dsolve $\left(\left(a * x^{\wedge}(n+1)+b * x^{\wedge} n+c\right) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)+\left(a l p h a * x^{\wedge} n+b e t a * x^{\wedge}(n-1)+\operatorname{gamma}\right) * \operatorname{diff}(y(x), x)+(n *(\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[(a*x^(n+1)+b*x^n+c)^2*y''[x]+(\[Alpha]*x^n+\[Beta]*x^(n-1)+\[Gamma])*y' [x]+(n*(\[Alph
```

Not solved

33.23 problem 261

33.23.1 Solving as second order ode non constant coeff transformation on B ode

Internal problem ID [11085]
Internal file name [OUTPUT/10341_Wednesday_January_24_2024_10_18_04_PM_71204093/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 261.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(a x^{n}+b x^{m}+c\right) y^{\prime \prime}+(\lambda-x) y^{\prime}+y=0
$$

33.23.1 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=a x^{n}+b x^{m}+c \\
& B=\lambda-x \\
& C=1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(a x^{n}+b x^{m}+c\right)(0)+(\lambda-x)(-1)+(1)(\lambda-x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
\left(a x^{n}+b x^{m}+c\right)(\lambda-x) v^{\prime \prime}+\left(-2 a x^{n}-2 b x^{m}-2 c+(\lambda-x)^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(a x^{n}+b x^{m}+c\right)(\lambda-x) u^{\prime}(x)-2\left(a x^{n}+b x^{m}-\frac{x^{2}}{2}+\lambda x-\frac{\lambda^{2}}{2}+c\right) u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c\right)}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x}
\end{aligned}
$$

Where $f(x)=\frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x \\
\int \frac{1}{u} d u & =\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x \\
\ln (u) & =\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x+c_{1} \\
u & =\mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} m x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x+c c_{1}} \\
& =c_{1} \mathrm{e}^{\int \frac{2 x^{m}+2 x^{n}-\lambda^{2}+2 x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} \mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x}
\end{aligned}
$$

Which is now solved for v. Writing the ode as

$$
\begin{aligned}
& v^{\prime}(x)=c_{1} \mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x} \\
& v^{\prime}(x)=\omega(x, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{v}-\xi_{x}\right)-\omega^{2} \xi_{v}-\omega_{x} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=v a_{3}+x a_{2}+a_{1} \tag{1E}\\
\eta=v b_{3}+x b_{2}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives
$b_{2}+c_{1} \mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x}\left(b_{3}-a_{2}\right)-c_{1}^{2} \mathrm{e}^{\int \frac{4 b x^{m}+4 a x^{n}-2 \lambda^{2}+4 \lambda x-2 x^{2}+4 c}{x^{m} b \lambda-b x^{m+1}+x^{n} a \lambda-a x^{n+1}+c \lambda-c x} d x} a_{3}$
$-\frac{c_{1}\left(2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c\right) \mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x}\left(v a_{3}+x a_{2}+a_{1}\right)}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x}$
$=0$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{v, x\}$ in them.

$$
\left\{v, x, x^{m}, x^{n}, \int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x, \mathrm{e}^{2\left(\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x\right.}\right), \mathrm{e}^{\int \frac{2 b x^{m}+2 a x}{x^{m} b \lambda-x^{m} b x}}
$$

The following substitution is now made to be able to collect on all terms with $\{v, x\}$ in them

$$
\left\{v=v_{1}, x=v_{2}, x^{m}=v_{3}, x^{n}=v_{4}, \int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x=v_{5}, \mathrm{e}^{2\left(\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda \lambda}{x^{m} b \lambda-x^{m} b x+x^{n} a \lambda-a x}\right.}\right.
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a c_{1}^{2} \lambda a_{3} v_{4} v_{6}+a c_{1}^{2} a_{3} v_{2} v_{4} v_{6}-b c_{1}^{2} \lambda a_{3} v_{3} v_{6}+b c_{1}^{2} a_{3} v_{2} v_{3} v_{6}-a c_{1} \lambda a_{2} v_{4} v_{7} \\
& +a c_{1} \lambda b_{3} v_{4} v_{7}-a c_{1} a_{2} v_{2} v_{4} v_{7}-2 a c_{1} a_{3} v_{1} v_{4} v_{7}-a c_{1} b_{3} v_{2} v_{4} v_{7}-b c_{1} \lambda a_{2} v_{3} v_{7} \\
& +b c_{1} \lambda b_{3} v_{3} v_{7}-b c_{1} a_{2} v_{2} v_{3} v_{7}-2 b c_{1} a_{3} v_{1} v_{3} v_{7}-b c_{1} b_{3} v_{2} v_{3} v_{7}-c c_{1}^{2} \lambda a_{3} v_{6} \tag{7E}\\
& +c c_{1}^{2} a_{3} v_{2} v_{6}+c_{1} \lambda^{2} a_{2} v_{2} v_{7}+c_{1} \lambda^{2} a_{3} v_{1} v_{7}-2 c_{1} \lambda a_{2} v_{2}^{2} v_{7}-2 c_{1} \lambda a_{3} v_{1} v_{2} v_{7} \\
& +c_{1} a_{2} v_{2}^{3} v_{7}+c_{1} a_{3} v_{1} v_{2}^{2} v_{7}-2 a c_{1} a_{1} v_{4} v_{7}-2 b c_{1} a_{1} v_{3} v_{7}-c c_{1} \lambda a_{2} v_{7}+c c_{1} \lambda b_{3} v_{7} \\
& -c c_{1} a_{2} v_{2} v_{7}-2 c c_{1} a_{3} v_{1} v_{7}-c c_{1} b_{3} v_{2} v_{7}+c_{1} \lambda^{2} a_{1} v_{7}-2 c_{1} \lambda a_{1} v_{2} v_{7}+c_{1} a_{1} v_{2}^{2} 7_{7} \\
& +v_{4} a \lambda b_{2}-v_{4} a v_{2} b_{2}+v_{3} b \lambda b_{2}-v_{3} b v_{2} b_{2}-2 c c_{1} a_{1} v_{7}+c \lambda b_{2}-c v_{2} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}
$$

Equation (7E) now becomes

$$
\begin{aligned}
& \left(-b c_{1} a_{2}-b c_{1} b_{3}\right) v_{2} v_{3} v_{7}+\left(-a c_{1} a_{2}-a c_{1} b_{3}\right) v_{2} v_{4} v_{7}+c \lambda b_{2} \\
& \quad-a c_{1}^{2} \lambda a_{3} v_{4} v_{6}+a c_{1}^{2} a_{3} v_{2} v_{4} v_{6}-b c_{1}^{2} \lambda a_{3} v_{3} v_{6}+b c_{1}^{2} a_{3} v_{2} v_{3} v_{6} \\
& \quad+c_{1} a_{3} v_{1} v_{2}^{2} v_{7}-2 a c_{1} a_{3} v_{1} v_{4} v_{7}-2 b c_{1} a_{3} v_{1} v_{3} v_{7}-2 c_{1} \lambda a_{3} v_{1} v_{2} v_{7} \\
& \quad-c c_{1}^{2} \lambda a_{3} v_{6}+c c_{1}^{2} a_{3} v_{2} v_{6}-c v_{2} b_{2}+\left(c_{1} \lambda^{2} a_{3}-2 c c_{1} a_{3}\right) v_{1} v_{7} \\
& \quad+\left(-2 c_{1} \lambda a_{2}+c_{1} a_{1}\right) v_{2}^{2} v_{7}+\left(c_{1} \lambda^{2} a_{2}-c c_{1} a_{2}-c c_{1} b_{3}-2 c_{1} \lambda a_{1}\right) v_{2} v_{7} \\
& \quad+\left(-b c_{1} \lambda a_{2}+b c_{1} \lambda b_{3}-2 b c_{1} a_{1}\right) v_{3} v_{7}+\left(-a c_{1} \lambda a_{2}+a c_{1} \lambda b_{3}-2 a c_{1} a_{1}\right) v_{4} v_{7} \\
& \quad+v_{3} b \lambda b_{2}-v_{3} b v_{2} b_{2}+v_{4} a \lambda b_{2}-v_{4} a v_{2} b_{2}+c_{1} a_{2} v_{2}^{3} v_{7} \\
& \quad+\left(-c c_{1} \lambda a_{2}+c c_{1} \lambda b_{3}+c_{1} \lambda^{2} a_{1}-2 c c_{1} a_{1}\right) v_{7}=0
\end{aligned}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
c_{1} a_{2} & =0 \\
c_{1} a_{3} & =0 \\
c_{1}^{2} a a_{3} & =0 \\
c_{1}^{2} b a_{3} & =0 \\
a \lambda b_{2} & =0 \\
b \lambda b_{2} & =0 \\
c c_{1}^{2} a_{3} & =0 \\
c \lambda b_{2} & =0 \\
-a b_{2} & =0 \\
-b b_{2} & =0 \\
-b_{2} c & =0 \\
-2 c_{1} a a_{3} & =0 \\
-2 c_{1} b a_{3} & =0 \\
-2 c_{1} \lambda a_{3} & =0 \\
-c_{1}^{2} a \lambda a_{3} & =0 \\
-c_{1}^{2} b \lambda a_{3} & =0 \\
-c_{1}^{2} c \lambda a_{3} & =0 \\
-a c_{1} a_{2}-a c_{1} b_{3} & =0 \\
-b c_{1} a_{2}-b c_{1} b_{3} & =0 \\
c_{1} \lambda^{2} a_{3}-2 c c_{1} a_{3} & =0 \\
-2 c_{1} \lambda a_{2}+c_{1} a_{1} & =0 \\
l_{1} & \\
c_{1} \lambda^{2} a_{2}-c c_{1} a_{2}-c c_{1} b_{3}-2 c_{1} \lambda a_{1} & =0 \\
-c c_{1} \lambda a_{2}+c c_{1} \lambda b_{3}+c_{1} \lambda^{2} a_{1}-2 c c_{1} a_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=1
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial v}\right) S(x, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1} d y
\end{aligned}
$$

Which results in

$$
S=v
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, v) S_{v}}{R_{x}+\omega(x, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{v}, S_{x}, S_{v}$ are all partial derivatives and $\omega(x, v)$ is the right hand side of the original ode given by

$$
\omega(x, v)=c_{1} \mathrm{e}^{\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{x^{m b} b-x^{m} b x+x^{n} a \lambda-a x x^{n}+c \lambda-c x} d x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{v} & =0 \\
S_{x} & =0 \\
S_{v} & =1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c(-c)(-\lambda+x)\right.}} d x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int \frac{-2 b R^{m}-2 a R^{n}+\lambda^{2}-2 \lambda R+R^{2}-2 c}{\left(a R^{n}+b R^{m}+c\right)(-\lambda+R)} d R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int c_{1} \mathrm{e}^{-\left(\int \frac{2 b R^{m}+2 a R^{n}-R^{2}+2 \lambda R-\lambda^{2}+2 c}{\left(a R^{n}+b R^{m}+c\right)(-\lambda+R)} d R\right)} d R+c_{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, v coordinates. This results in

$$
\left.v(x)=\int c_{1} \mathrm{e}^{-\left(\int \frac{2 b x^{m}+2 a x^{n}-\lambda^{2}+2 \lambda x-x^{2}+2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)}\right.} d x\right) d x+c_{2}
$$

Which simplifies to

$$
v(x)-c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)}} d x\right)-c_{2}=0
$$

Which gives

$$
v(x)=c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)} d x} d x\right)+c_{2}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(\lambda-x)\left(c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)} d x} d x\right)+c_{2}\right) \\
& =(\lambda-x)\left(c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)} d x} d x\right)+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(\lambda-x)\left(c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)} d x} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(\lambda-x)\left(c_{1}\left(\int \mathrm{e}^{\int \frac{-2 b x^{m}-2 a x^{n}+\lambda^{2}-2 \lambda x+x^{2}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)}} d x d x\right)+c_{2}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying differential order: 2; exact nonlinear
    trying symmetries linear in x and y(x)
    <- linear symmetries successful`
```


Solution by Maple

Time used: 0.781 (sec). Leaf size: 68

```
dsolve((a*x^n+b*x^m+c)*diff(y(x),x$2)+(lambda-x)*diff (y (x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=-\left(\left(\int \mathrm{e}^{\int \frac{-2 a x^{n}-2 b x^{m}-2 c+x^{2}-2 x \lambda+\lambda^{2}}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)} d x} d x\right) c_{1}+c_{2}\right)(\lambda-x)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y^{\prime}[x]+(\backslash[\right.$ Lambda $]-x) * y '[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$

Not solved

33.24 problem 262

Internal problem ID [11086]
Internal file name [OUTPUT/10342_Wednesday_January_24_2024_10_18_09_PM_19808305/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 262.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\left(a x^{n}+b x^{m}+c\right) y^{\prime \prime}+\left(\lambda^{2}-x^{2}\right) y^{\prime}+(\lambda+x) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
    to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying differential order: 2; exact nonlinear
    trying symmetries linear in x and y(x)
    <- linear symmetries successful`
```


Solution by Maple

Time used: 1.0 (sec). Leaf size: 76

```
dsolve((a*x^n+b*x^m+c)*diff(y(x),x$2)+(lambda^2-x^2)*diff (y (x),x)+(x+lambda)*y (x)=0,y(x), si
```

$$
\left.y(x)=-\left(\left(\int \mathrm{e}^{\int \frac{\lambda^{3}-x \lambda^{2}-x^{2} \lambda+x^{3}-2 a x^{n}-2 b x^{m}-2 c}{\left(a x^{n}+b x^{m}+c\right)(-\lambda+x)}} d x\right) ~ d x\right) c_{1}+c_{2}\right)(\lambda-x)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y^{\prime \prime}[x]+\left(\backslash\left[\right.\right.\right.$ Lambda $\left.{ }^{\wedge} 2-x^{\wedge} 2\right) * y^{\prime}[x]+(x+\backslash[$ Lambda $]) * y[x]==0, y[x], x$, IncludeSi

Not solved

33.25 problem 263

Internal problem ID [11087]
Internal file name [OUTPUT/10343_Wednesday_January_24_2024_10_18_09_PM_83448012/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 263.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
2\left(a x^{n}+b x^{m}+c\right) y^{\prime \prime}+a n x^{n-1} b m x^{m-1} y^{\prime}+y d=0
$$

-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx}))$ * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius -> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power © Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

X Solution by Maple
dsolve (2*(a*x^n+b*x^m+c)*diff(y(x),x\$2)+(a*n*x^(n-1)*b*m*x^(m-1))*diff(y(x),x)+d*y(x)=0,y(x)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[2 *\left(a * x^{\wedge} n+b * x^{\wedge} m+c\right) * y^{\prime \prime}[x]+\left(a * n * x^{\wedge}(n-1) * b * m * x^{\wedge}(m-1)\right) * y{ }^{\prime}[x]+d * y[x]==0, y[x], x\right.$, IncludeSing

Not solved

33.26 problem 264

33.26.1 Solving as second order ode lagrange adjoint equation method od 3667

Internal problem ID [11088]
Internal file name [OUTPUT/10344_Wednesday_January_24_2024_10_18_10_PM_59869510/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-8. Other equations.
Problem number: 264.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
\left(a x^{n}+b\right)^{m+1} y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}-a n m x^{n-1} y=0
$$

33.26.1 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

$$
\begin{equation*}
\left(a x^{n}+b\right)^{m+1} y^{\prime \prime}+\left(a x^{n}+b\right) y^{\prime}-a n m x^{n-1} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\left(a x^{n}+b\right)^{-m} \\
q(x) & =-a n m x^{n-1}\left(a x^{n}+b\right)^{-m-1} \\
r(x) & =0
\end{aligned}
$$

The Lagrange adjoint ode is given by

$$
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-\left(\left(a x^{n}+b\right)^{-m} \xi(x)\right)^{\prime}+\left(-a n m x^{n-1}\left(a x^{n}+b\right)^{-m-1} \xi(x)\right) & =0 \\
\xi^{\prime \prime}(x)-\left(a x^{n}+b\right)^{-m} \xi^{\prime}(x)+\left(\frac{a n m x^{n}\left(a x^{n}+b\right)^{-m}}{x\left(a x^{n}+b\right)}-a n m x^{n-1}\left(a x^{n}+b\right)^{-m-1}\right) \xi(x) & =0
\end{aligned}
$$

Which is solved for $\xi(x)$. This is second order ode with missing dependent variable $\xi(x)$. Let

$$
p(x)=\xi^{\prime}(x)
$$

Then

$$
p^{\prime}(x)=\xi^{\prime \prime}(x)
$$

Hence the ode becomes

$$
x\left(-a x^{n}-b\right) p^{\prime}(x)+x\left(a x^{n}+b\right)^{-m+1} p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{\left(a x^{n}+b\right)^{-m+1} p}{a x^{n}+b}
\end{aligned}
$$

Where $f(x)=\frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x \\
\int \frac{1}{p} d p & =\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x \\
\ln (p) & =\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x+c_{1} \\
p & =\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x+c_{1}} \\
& =c_{1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x}
\end{aligned}
$$

Since $p=\xi^{\prime}(x)$ then the new first order ode to solve is

$$
\xi^{\prime}(x)=c_{1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b}} d x
$$

Writing the ode as

$$
\begin{aligned}
\xi^{\prime}(x) & =c_{1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} \\
\xi^{\prime}(x) & =\omega(x, \xi)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{\xi}-\xi_{x}\right)-\omega^{2} \xi_{\xi}-\omega_{x} \xi-\omega_{\xi} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+\xi a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+\xi b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+c_{1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x}\left(b_{3}-a_{2}\right)-c_{1}^{2} \mathrm{e}^{\int 2\left(a x^{n}+b\right)^{-m} d x} a_{3} \tag{5E}\\
& -\frac{c_{1}\left(a x^{n}+b\right)^{-m+1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x}\left(x a_{2}+\xi a_{3}+a_{1}\right)}{a x^{n}+b}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\mathrm{e}^{\int 2\left(a x^{n}+b\right)^{-m} d x} x^{n} c_{1}^{2} a a_{3}+\mathrm{e}^{\int 2\left(a x^{n}+b\right)^{-m} d x} c_{1}^{2} b a_{3}+\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} x^{n} c_{1} a a_{2}-\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} x^{n} c_{1} a b_{3}+\mathrm{e}^{\int \frac{(a}{}}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\mathrm{e}^{\int 2\left(a x^{n}+b\right)^{-m} d x} x^{n} c_{1}^{2} a a_{3}-\mathrm{e}^{\int 2\left(a x^{n}+b\right)^{-m} d x} c^{2} b a_{3}-\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} x^{n} c_{1} a a_{2} \\
& +\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} x^{n} c_{1} a b_{3}-\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x}\left(a x^{n}+b\right)^{-m+1} c_{1} x a_{2} \tag{6E}\\
& -\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x}\left(a x^{n}+b\right)^{-m+1} c_{1} \xi a_{3}-\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x}\left(a x^{n}+b\right)^{-m+1} c_{1} a_{1} \\
& -\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} b a_{2}+\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} c_{1} b b_{3}+x^{n} a b_{2}+b b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{n} \mathrm{e}^{2\left(\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x\right.}\right) c_{1}^{2} a a_{3}\left(a x^{n}+b\right)^{m} \\
& +x^{n} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a a^{n}+b} d x} c_{1} a a_{2}\left(a x^{n}+b\right)^{m} \\
& -x^{n} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} c_{1} a b_{3}\left(a x^{n}+b\right)^{m}+x^{n} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} a x a_{2} \\
& +x^{n} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} a \xi a_{3}+\mathrm{e}^{2\left(\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x\right)} c_{1}^{2} b a_{3}\left(a x^{n}+b\right)^{m} \tag{6E}\\
& +x^{n} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} a a_{1}+\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} c_{1} b a_{2}\left(a x^{n}+b\right)^{m} \\
& -\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} c_{1} b b_{3}\left(a x^{n}+b\right)^{m}+\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x} c_{1} b x a_{2} \\
& +\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} b \xi a_{3}-x^{n} a b_{2}\left(a x^{n}+b\right)^{m} \\
& \left.+\mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x} c_{1} b a_{1}-b b_{2}\left(a x^{n}+b\right)^{m}\right)\left(a x^{n}+b\right)^{-m}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, \xi\}$ in them.

$$
\begin{aligned}
& \left\{x, \xi, x^{n},\left(a x^{n}+b\right)^{m},\left(a x^{n}\right.\right. \\
& \left.+b)^{-m+1}, \int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x, \mathrm{e}^{2\left(\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x\right)}, \mathrm{e}^{\int \frac{\left(a x^{n}+b-m+1\right.}{a x^{n}+b} d x}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, \xi\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, \xi=v_{2}, x^{n}=v_{3},\left(a x^{n}+b\right)^{m}=v_{4},\left(a x^{n}\right.\right. \\
& +b)^{-m+1}=v_{5}, \int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x=v_{6}, \mathrm{e}^{2\left(\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x\right)}=v_{7}, \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)^{-m+1}}{a x^{n}+b} d x}=v_{8}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -\frac{a c_{1}^{2} a_{3} v_{3} v_{4} v_{7}+a c_{1} a_{2} v_{1} v_{3} v_{8}+a c_{1} a_{2} v_{3} v_{4} v_{8}+a c_{1} a_{3} v_{2} v_{3} v_{8}-a c_{1} b_{3} v_{3} v_{4} v_{8}+b c_{1}^{2} a_{3} v_{4} v_{7}(7 \underset{E}{ })^{a} a c_{1} a_{1} v_{3} v_{8}+b c_{1} a_{2}}{v_{4}} \\
& =0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
- & \frac{c_{1} a a_{2} v_{8} v_{1} v_{3}}{v_{4}}-\frac{c_{1} b a_{2} v_{8} v_{1}}{v_{4}}-\frac{c_{1} a a_{3} v_{8} v_{2} v_{3}}{v_{4}}-\frac{c_{1} b a_{3} v_{8} v_{2}}{v_{4}} \\
& -c_{1}^{2} a a_{3} v_{7} v_{3}+\left(-a c_{1} a_{2}+a c_{1} b_{3}\right) v_{8} v_{3}+a b_{2} v_{3}-\frac{c_{1} a a_{1} v_{8} v_{3}}{v_{4}} \tag{8E}\\
& -c_{1}^{2} b a_{3} v_{7}+\left(-b c_{1} a_{2}+b c_{1} b_{3}\right) v_{8}+b b_{2}-\frac{v_{8} c_{1} b a_{1}}{v_{4}}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a b_{2} & =0 \\
b b_{2} & =0 \\
-c_{1} a a_{1} & =0 \\
-a c_{1} a_{2} & =0 \\
-c_{1} a a_{3} & =0 \\
-c_{1} b a_{1} & =0 \\
-b c_{1} a_{2} & =0 \\
-c_{1} b a_{3} & =0 \\
-c_{1}^{2} a a_{3} & =0 \\
-c_{1}^{2} b a_{3} & =0 \\
-a c_{1} a_{2}+a c_{1} b_{3} & =0 \\
-b c_{1} a_{2}+b c_{1} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=1
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, \xi) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d \xi}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial \xi}\right) S(x, \xi)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1} d y
\end{aligned}
$$

Which results in

$$
S=\xi
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, \xi) S_{\xi}}{R_{x}+\omega(x, \xi) R_{\xi}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{\xi}, S_{x}, S_{\xi}$ are all partial derivatives and $\omega(x, \xi)$ is the right hand side of the original ode given by

$$
\omega(x, \xi)=c_{1} \mathrm{e}^{\int \frac{\left(a x^{n}+b\right)-m+1}{a x^{n}+b} d x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{\xi} & =0 \\
S_{x} & =0 \\
S_{\xi} & =1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, ξ in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=c_{1} \mathrm{e}^{\int\left(a R^{n}+b\right)^{-m} d R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int c_{1} \mathrm{e}^{\int\left(a R^{n}+b\right)^{-m} d R} d R+c_{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, ξ coordinates. This results in

$$
\xi(x)=\int c_{1} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x+c_{2}
$$

Which simplifies to

$$
\xi(x)=\int c_{1} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x+c_{2}
$$

Which gives

$$
\xi(x)=\int c_{1} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x+c_{2}
$$

The original ode (2) now reduces to first order ode

$$
\begin{aligned}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(\left(a x^{n}+b\right)^{-m}-\frac{c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{\int c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x+c_{2}}\right) & =0
\end{aligned}
$$

Which is now a first order ode. This is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}-\left(a x^{n}+b\right)^{-m} c_{2}+c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right)+c_{2}} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(-\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}-\left(a x^{n}+b\right)^{-m} c_{2}+c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}\right) y}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right)+c_{2}}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{-\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}-\left(a x^{n}+b\right)^{-m} c_{2}+c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right)+c_{2}} d x}
$$

The ode becomes

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \mu y=0 \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{-\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}-\left(a x^{n}+b\right)^{-m} c_{2}+c_{3} e^{f\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x d x}\right)+c_{2}} d x} y\right)=0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\int-\frac{-\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}-\left(a x^{n}+b\right)^{-m} c_{2}+c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m}} d x}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right)+c_{2}}} d x y=c_{3}
$$

 results in

$$
y=c_{3} \mathrm{e}^{-\left(\int \frac{\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)}-m_{d x} d x\right) c_{3}+\left(a x^{n}+b\right)^{-m} c_{2}-c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x d x}\right)+c_{2}} d x\right)}
$$

Hence, the solution found using Lagrange adjoint equation method is

$$
y=c_{3} \mathrm{e}^{-\left(\int \frac{\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}+\left(a x^{n}+b\right)^{-m} c_{2}-c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x d x}\right)+c_{2}} d x\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} \mathrm{e}^{-\left(\int \frac{\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{f\left(a x^{n}+b\right)-m} d x_{d x}\right) c_{3}+\left(a x^{n}+b\right)^{-m} c_{c_{2}-c_{3} \mathrm{e}^{f}\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int^{\left.\int\left(a x^{n}+b\right)^{-m} d x d x\right)+c_{2}}\right.} d x\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} \mathrm{e}^{-\left(\int \frac{\left(a x^{n}+b\right)^{-m}\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{3}+\left(a x^{n}+b\right)^{-m} c_{2}-c_{3} \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x}}{c_{3}\left(\int \mathrm{e}^{\left.\int\left(a x^{n}+b\right)^{-m} d x d x\right)+c_{2}}\right.} d x\right)}
$$

Verified OK.

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying differential order: 2; exact nonlinear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
        -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 41
dsolve $\left(\left(a * x^{\wedge} n+b\right)^{\wedge}(m+1) * \operatorname{diff}(y(x), x \$ 2)+\left(a * x^{\wedge} n+b\right) * \operatorname{diff}(y(x), x)-a * n * m * x^{\wedge}(n-1) * y(x)=0, y(x)\right.$, sing

$$
y(x)=\mathrm{e}^{-\left(\int\left(a x^{n}+b\right)^{-m} d x\right)}\left(c_{1}+\left(\int \mathrm{e}^{\int\left(a x^{n}+b\right)^{-m} d x} d x\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 116

```
DSolve[(a*x^n+b)^(m+1)*y''[x]+(a*x^n+b)*y'[x]-a*n*m*x^(n-1)*y[x]==0,y[x],x, IncludeSingularSo
```

$$
\begin{aligned}
& y(x) \rightarrow \exp \left(- x (a x ^ { n } + b) ^ { - m } (\frac { a x ^ { n } } { b } + 1) ^ { m } \text { Hypergeometric2F1 } \left(m, \frac{1}{n}, 1+\frac{1}{n},\right.\right. \\
& \left.\left.-\frac{a x^{n}}{b}\right)\right)\left(\int _ { 1 } ^ { x } \operatorname { e x p } \left(\text { Hypergeometric } 2 \mathrm{~F} 1\left(m, \frac{1}{n}, 1+\frac{1}{n},-\frac{a K[1]^{n}}{b}\right) K[1]\left(a K[1]^{n}+b\right)^{-m}\left(\frac{a K[1]^{n}}{b}+1\right)\right.\right. \\
& \left.+c_{2}\right)
\end{aligned}
$$

34 Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
34.1 problem 1 3679
34.2 problem 2 3685
34.3 problem 3 3690
34.4 problem 4 3692
34.5 problem 5 3695
34.6 problem 6 3698
34.7 problem 7 3701
34.8 problem 8 3704
34.9 problem 9 3709
34.10problem 10 3718
34.11problem 11 3724
34.12problem 12 3727
34.13problem 13 3730
34.14problem 14 3737
34.15problem 15 3739
34.16problem 16 3741
34.17problem 17 3744
34.18problem 18 3751
34.19problem 19 3754
34.20problem 20 3759
34.21 problem 21 3762
34.22problem 22 3763
34.23problem 23 3766
34.24problem 24 3769
34.25problem 25 3774
34.26problem 26 3776
34.27problem 27 3779
34.28problem 28 3782
34.29problem 29 3785
34.30problem 30 3788
34.31problem 31 3791
34.32problem 32 3794
34.33problem 33 3801

34.1 problem 1

34.1.1 Solving as second order bessel ode form A ode 3679

Internal problem ID [11089]
Internal file name [OUTPUT/10345_Wednesday_January_24_2024_10_18_11_PM_93345610/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__bessel_ode_form_A"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\mathrm{e}^{\lambda x} y a=0
$$

34.1.1 Solving as second order bessel ode form A ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime}+\mathrm{e}^{\lambda x} y a=0 \tag{1}
\end{equation*}
$$

An ode of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0 \tag{1}
\end{equation*}
$$

can be transformed to Bessel ode using the transformation

$$
\begin{aligned}
x & =\ln (t) \\
e^{x} & =t
\end{aligned}
$$

Where a, b, c, m are not functions of x and where b and m are allowed to be be zero. Using this transformation gives

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} e^{x} \\
& =t \frac{d y}{d t} \tag{2}
\end{align*}
$$

And

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d}{d t} \frac{d t}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d t}{d x} \frac{d}{d t}\left(t t \frac{d y}{d t}\right) \\
& =t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{align*}
a t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+b t \frac{d y}{d t}+\left(c e^{r x}+m\right) y & =0 \\
\left(a t y^{\prime}+a t^{2} y^{\prime \prime}\right)+b t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
a t^{2} y^{\prime \prime}+(b+a) t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
t^{2} y^{\prime \prime}+\frac{b+a}{a} t y^{\prime}+\left(\frac{c}{a} t^{r}+\frac{m}{a}\right) y & =0 \tag{4}
\end{align*}
$$

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel ode which is

$$
\begin{equation*}
t^{2} y^{\prime \prime}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-\left(n^{2} \gamma^{2}-\alpha^{2}\right)\right) y=0 \tag{C}
\end{equation*}
$$

And now comparing (4) and (C) shows that

$$
\begin{align*}
(1-2 \alpha) & =\frac{b+a}{a} \tag{5}\\
\beta^{2} \gamma^{2} & =\frac{c}{a} \tag{6}\\
2 \gamma & =r \tag{7}\\
\left(n^{2} \gamma^{2}-\alpha^{2}\right) & =-\frac{m}{a} \tag{8}
\end{align*}
$$

(5) gives $\alpha=\frac{1}{2}-\frac{b+a}{2 a}$. (7) gives $\gamma=\frac{r}{2}$. (8) now becomes $\left(n^{2}\left(\frac{r}{2}\right)^{2}-\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}\right)=-\frac{m}{a}$ or $n^{2}=\frac{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}{\left(\frac{r}{2}\right)^{2}}$. Hence $n=\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}$ by taking the positive root.

And finally (6) gives $\beta^{2}=\frac{c}{a \gamma^{2}}$ or $\beta=\sqrt{\frac{c}{a}} \frac{1}{\gamma}=\sqrt{\frac{c}{a}} \frac{2}{r}$ (also taking the positive root). Hence

$$
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{b+a}{2 a} \\
n & =\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}} \\
\beta & =\sqrt{\frac{c}{a}} \frac{2}{r} \\
\gamma & =\frac{r}{2}
\end{aligned}
$$

But the solution to (C) which is general form of Bessel ode is known and given by

$$
y(t)=t^{\alpha}\left(c_{1} J_{n}\left(\beta t^{\gamma}\right)+c_{2} Y_{n}\left(\beta t^{\gamma}\right)\right)
$$

Substituting the above values found into this solution gives

$$
y(t)=t^{\frac{1}{2}-\frac{b+a}{2 a}}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 t^{\frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 \frac{2}{r} t^{\frac{r}{2}}\right)\right)
$$

Since $e^{x}=t$ then the above becomes

$$
\begin{align*}
& y(x)=e^{x\left(\frac{1}{2}-\frac{b+a}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \tag{9}
\end{align*}
$$

Equation (9) above is the solution to $a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0$. Therefore we just need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =a \\
r & =\lambda \\
m & =0
\end{aligned}
$$

Substituting these in (9) gives the solution as

$$
y=c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        a*u(t)+lambda^2*diff(u(t),t)+lambda^2*t*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 39

```
dsolve(diff(y(x),x$2)+a*exp(lambda*x)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right)+c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 55
DSolve[y'' $[\mathrm{x}]+\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} \operatorname{BesselJ}\left(0, \frac{2 \sqrt{a} \sqrt{e^{x \lambda}}}{\lambda}\right)+2 c_{2} \operatorname{BesselY}\left(0, \frac{2 \sqrt{a} \sqrt{e^{x \lambda}}}{\lambda}\right)
$$

34.2 problem 2

34.2.1 Solving as second order bessel ode form A ode 3685

Internal problem ID [11090]
Internal file name [OUTPUT/10346_Wednesday_January_24_2024_10_18_11_PM_62097031/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__bessel_ode_form_A"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\left(a \mathrm{e}^{x}-b\right) y=0
$$

34.2.1 Solving as second order bessel ode form A ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime}+\left(a \mathrm{e}^{x}-b\right) y=0 \tag{1}
\end{equation*}
$$

An ode of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0 \tag{1}
\end{equation*}
$$

can be transformed to Bessel ode using the transformation

$$
\begin{aligned}
x & =\ln (t) \\
e^{x} & =t
\end{aligned}
$$

Where a, b, c, m are not functions of x and where b and m are allowed to be be zero. Using this transformation gives

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} e^{x} \\
& =t \frac{d y}{d t} \tag{2}
\end{align*}
$$

And

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d}{d t} \frac{d t}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d t}{d x} \frac{d}{d t}\left(t t \frac{d y}{d t}\right) \\
& =t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{align*}
a t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+b t \frac{d y}{d t}+\left(c e^{r x}+m\right) y & =0 \\
\left(a t y^{\prime}+a t^{2} y^{\prime \prime}\right)+b t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
a t^{2} y^{\prime \prime}+(b+a) t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
t^{2} y^{\prime \prime}+\frac{b+a}{a} t y^{\prime}+\left(\frac{c}{a} t^{r}+\frac{m}{a}\right) y & =0 \tag{4}
\end{align*}
$$

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel ode which is

$$
\begin{equation*}
t^{2} y^{\prime \prime}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-\left(n^{2} \gamma^{2}-\alpha^{2}\right)\right) y=0 \tag{C}
\end{equation*}
$$

And now comparing (4) and (C) shows that

$$
\begin{align*}
(1-2 \alpha) & =\frac{b+a}{a} \tag{5}\\
\beta^{2} \gamma^{2} & =\frac{c}{a} \tag{6}\\
2 \gamma & =r \tag{7}\\
\left(n^{2} \gamma^{2}-\alpha^{2}\right) & =-\frac{m}{a} \tag{8}
\end{align*}
$$

(5) gives $\alpha=\frac{1}{2}-\frac{b+a}{2 a}$. (7) gives $\gamma=\frac{r}{2}$. (8) now becomes $\left(n^{2}\left(\frac{r}{2}\right)^{2}-\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}\right)=-\frac{m}{a}$ or $n^{2}=\frac{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}{\left(\frac{r}{2}\right)^{2}}$. Hence $n=\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}$ by taking the positive root.

And finally (6) gives $\beta^{2}=\frac{c}{a \gamma^{2}}$ or $\beta=\sqrt{\frac{c}{a}} \frac{1}{\gamma}=\sqrt{\frac{c}{a}} \frac{2}{r}$ (also taking the positive root). Hence

$$
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{b+a}{2 a} \\
n & =\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}} \\
\beta & =\sqrt{\frac{c}{a}} \frac{2}{r} \\
\gamma & =\frac{r}{2}
\end{aligned}
$$

But the solution to (C) which is general form of Bessel ode is known and given by

$$
y(t)=t^{\alpha}\left(c_{1} J_{n}\left(\beta t^{\gamma}\right)+c_{2} Y_{n}\left(\beta t^{\gamma}\right)\right)
$$

Substituting the above values found into this solution gives

$$
y(t)=t^{\frac{1}{2}-\frac{b+a}{2 a}}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 t^{\frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 \frac{2}{r} t^{\frac{r}{2}}\right)\right)
$$

Since $e^{x}=t$ then the above becomes

$$
\begin{align*}
& y(x)=e^{x\left(\frac{1}{2}-\frac{b+a}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \tag{9}
\end{align*}
$$

Equation (9) above is the solution to $a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0$. Therefore we just need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =a \\
r & =1 \\
m & =-b
\end{aligned}
$$

Substituting these in (9) gives the solution as

$$
y=c_{1} \operatorname{BesselJ}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)+c_{2} \operatorname{Bessel} Y\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \operatorname{BesselJ}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)+c_{2} \operatorname{BesselY}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \operatorname{BesselJ}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)+c_{2} \operatorname{BesselY}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)]
    Linear ODE actually solved:
        (a*t-b)*u(t)+t*diff(u(t),t)+t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 39
dsolve(diff $(y(x), x \$ 2)+(a * \exp (x)-b) * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=c_{1} \operatorname{BesselJ}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)+c_{2} \operatorname{BesselY}\left(2 \sqrt{b}, 2 \sqrt{a} \mathrm{e}^{\frac{x}{2}}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 76
DSolve $\left[y^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\mathrm{x}]-\mathrm{b}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \operatorname{Gamma}(1-2 \sqrt{b}) \operatorname{BesselJ}\left(-2 \sqrt{b}, 2 \sqrt{a} \sqrt{e^{x}}\right) \\
& +c_{2} \operatorname{Gamma}(2 \sqrt{b}+1) \operatorname{BesselJ}\left(2 \sqrt{b}, 2 \sqrt{a} \sqrt{e^{x}}\right)
\end{aligned}
$$

34.3 problem 3

Internal problem ID [11091]
Internal file name [OUTPUT/10347_Wednesday_January_24_2024_10_18_11_PM_29877762/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+a\left(\lambda \mathrm{e}^{\lambda x}-a \mathrm{e}^{2 \lambda x}\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t}) /$ lambda]
Linear ODE actually solved:
$(-a \wedge 2 * t+a * l a m b d a) * u(t)+l a m b d a \wedge 2 * \operatorname{diff}(u(t), t)+l a m b d a \wedge 2 * t * \operatorname{diff}(\operatorname{diff}(u(t), t), t)=0$
<- change of variables successful-

Solution by Maple
Time used: 0.125 (sec). Leaf size: 32

```
dsolve(diff (y (x), x$2)+a*(lambda*exp(lambda*x) -a*exp(2*lambda*x))*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{a e^{x \lambda}}{\lambda}}\left(c_{1}+\operatorname{expIntegral}{ }_{1}\left(-\frac{2 a \mathrm{e}^{x \lambda}}{\lambda}\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.32 (sec). Leaf size: 37
DSolve[y' $[\mathrm{x}]+\mathrm{a} *(\backslash[$ Lambda] $* \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}]-\mathrm{a} * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSing

$$
y(x) \rightarrow e^{-\frac{a e^{\lambda x}}{\lambda}}\left(c_{2} \operatorname{ExpIntegralEi}\left(\frac{2 a e^{x \lambda}}{\lambda}\right)+c_{1}\right)
$$

34.4 problem 4

Internal problem ID [11092]
Internal file name [OUTPUT/10348_Wednesday_January_24_2024_10_18_11_PM_34915829/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}-\left(a^{2} \mathrm{e}^{2 x}+a(1+2 b) \mathrm{e}^{x}+b^{2}\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
$[x=\ln (t)]$
Linear ODE actually solved:

```
    \(\left(-\mathrm{a}^{\wedge} 2 * \mathrm{t} \wedge 2-2 * a * b * t-\mathrm{a} * \mathrm{t}-\mathrm{b} \wedge 2\right) * \mathrm{u}(\mathrm{t})+\mathrm{t} * \operatorname{diff}(\mathrm{u}(\mathrm{t}), \mathrm{t})+\mathrm{t}{ }^{\wedge} 2 * \operatorname{diff}(\operatorname{diff}(\mathrm{u}(\mathrm{t}), \mathrm{t}), \mathrm{t})=0\)
```

<- change of variables successful-
\checkmark Solution by Maple
Time used: 0.297 (sec). Leaf size: 76

```
dsolve(diff(y(x),x$2)-(a^2*exp(2*x)+a*(2*b+1)*exp (x)+b^2)*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & -c_{2} a^{-2 b} \text { WhittakerM }\left(-b, \frac{1}{2}-b, 2 a \mathrm{e}^{x}\right) \\
& +c_{1} \mathrm{e}^{b x+a \mathrm{e}^{x}}+\left(a \mathrm{e}^{x}\right)^{-b} \mathrm{e}^{-a \mathrm{e}^{x}} c_{2} a^{-2 b}\left(b 2^{-b+1}-2^{-b}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.8 (sec). Leaf size: 57
DSolve[y'' $[\mathrm{x}]-\left(\mathrm{a}^{\wedge} 2 * \operatorname{Exp}[2 * \mathrm{x}]+\mathrm{a} *(2 * \mathrm{~b}+1) * \operatorname{Exp}[\mathrm{x}]+\mathrm{b}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions

$$
y(x) \rightarrow e^{a e^{x}}\left(e^{x}\right)^{-b}\left(c_{1}\left(e^{x}\right)^{2 b}-4^{b} c_{2}\left(a e^{x}\right)^{2 b} \Gamma\left(-2 b, 2 a e^{x}\right)\right)
$$

34.5 problem 5

Internal problem ID [11093]
Internal file name [OUTPUT/10349_Wednesday_January_24_2024_10_18_11_PM_29171069/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}-\left(a \mathrm{e}^{2 \lambda x}+b \mathrm{e}^{\lambda x}+c\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Whittaker successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (-a*t^2-b*t-c)*u(t)+lambda^2*t*diff(u(t),t)+lambda^2*t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

Solution by Maple
Time used: 0.343 (sec). Leaf size: 73

```
dsolve(diff(y(x),x$2)-(a*exp(2*lambda*x)+b*exp(lambda*x)+c)*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
y(x)=\mathrm{e}^{-\frac{x \lambda}{2}}(\text { WhittakerM } & \left(-\frac{b}{2 \lambda \sqrt{a}}, \frac{\sqrt{c}}{\lambda}, \frac{2 \sqrt{a} \mathrm{e}^{x \lambda}}{\lambda}\right) c_{1} \\
& \left.+ \text { WhittakerW }\left(-\frac{b}{2 \lambda \sqrt{a}}, \frac{\sqrt{c}}{\lambda}, \frac{2 \sqrt{a} \mathrm{e}^{x \lambda}}{\lambda}\right) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.158 (sec). Leaf size: 145
DSolve $[\mathrm{y}$ ' $\quad[\mathrm{x}]-(\mathrm{a} * \operatorname{Exp}[2 * \backslash[$ Lambda $] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{c}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolu

$$
\left.\begin{array}{r}
y(x) \rightarrow e^{-\frac{\sqrt{a} e^{\lambda x}}{\lambda}}\left(e^{\lambda x}\right)^{\frac{\sqrt{c}}{\lambda}}\left(c_{1} \text { HypergeometricU }\left(\frac{\frac{b}{\sqrt{a}}+\lambda+2 \sqrt{c}}{2 \lambda}, \frac{2 \sqrt{c}}{\lambda}+1, \frac{2 \sqrt{a} e^{x \lambda}}{\lambda}\right)\right. \\
+c_{2} L^{\frac{2 \sqrt{c}}{\lambda}} \\
-\frac{b}{\sqrt{a}+\lambda+2 \sqrt{c}} \\
2 \lambda
\end{array}\left(\frac{2 \sqrt{a} e^{x \lambda}}{\lambda}\right)\right)
$$

34.6 problem 6

Internal problem ID [11094]
Internal file name [OUTPUT/10350_Wednesday_January_24_2024_10_18_11_PM_91888170/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{4 \lambda x}+b \mathrm{e}^{3 \lambda x}+\mathrm{e}^{2 \lambda x} c-\frac{\lambda^{2}}{4}\right) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is reso
        <- hypergeometric successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (4*a*t^4+4*b*t^3+4*c*t^2-lambda^2)*u(t) +4*lambda^2*t*diff (u(t),t)+4*lambda^2*t^2*diff
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.36 (sec). Leaf size: 221
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \exp (4 * \operatorname{lambda} * \mathrm{x})+\mathrm{b} * \exp (3 * \operatorname{lambda} * \mathrm{x})+\mathrm{c} * \exp (2 * \operatorname{lambda} * \mathrm{x})-1 / 4 * \operatorname{lambda} _2\right) * y\right.$

$$
\begin{array}{r}
y(x)=c_{1} \text { hypergeom }\left(\left[\frac{4 \lambda a^{\frac{3}{2}}+4 i a c-i b^{2}}{16 \lambda a^{\frac{3}{2}}}\right],\left[\frac{1}{2}\right], \frac{i\left(2 \mathrm{e}^{x \lambda} a+b\right)^{2}}{4 \lambda a^{\frac{3}{2}}}\right) \mathrm{e}^{-\frac{i \mathrm{e}^{2 x \lambda} a+\lambda^{2} x \sqrt{a}+i b \mathrm{e}^{x \lambda}}{2 \lambda \sqrt{a}}} \\
+c_{2} \text { hypergeom }\left(\left[\frac{12 \lambda a^{\frac{3}{2}}+4 i a c-i b^{2}}{16 \lambda a^{\frac{3}{2}}}\right],\left[\frac{3}{2}\right], \frac{i\left(2 \mathrm{e}^{x \lambda} a+b\right)^{2}}{4 \lambda a^{\frac{3}{2}}}\right)\left(2 a \mathrm{e}^{-\frac{i \mathrm{e}^{2 x \lambda} a-\lambda^{2} x \sqrt{a}+i \mathrm{e}^{x \lambda}}{2 \lambda \sqrt{a}}}\right. \\
\left.+b \mathrm{e}^{-\frac{i \mathrm{e}^{2 x \lambda} a+\lambda^{2} x \sqrt{a}+i b \mathrm{e}^{x \lambda}}{2 \lambda \sqrt{a}}}\right)
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 1.895 (sec). Leaf size: 178
DSolve $\left[\mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[4 * \backslash[\right.$ Lambda] $* \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[3 * \backslash[$ Lambda] $* \mathrm{x}]+\mathrm{c} * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]-1 / 4 * \backslash[$ Lambda]
$y(x)$
$\rightarrow \frac{e^{-\frac{i e^{\lambda x}\left(a e^{\lambda x}+b\right.}{2 \sqrt{a} \lambda}}\left(c_{1} \text { HermiteH }\left(\frac{i\left(b^{2}-4 a c+4 i a^{3 / 2} \lambda\right)}{8 a^{3 / 2} \lambda}, \frac{\sqrt[4]{-1}\left(2 e^{x \lambda} a+b\right)}{2 a^{3 / 4} \sqrt{\lambda}}\right)+c_{2} \text { Hypergeometric1F1 }\left(\frac{-i b^{2}+4 i a c+4 a^{3 / 2} \lambda}{16 a^{3 / 2} \lambda}\right.\right.}{\sqrt{e^{\lambda x}}}$

34.7 problem 7

Internal problem ID [11095]
Internal file name [OUTPUT/10351_Wednesday_January_24_2024_10_18_11_PM_18234304/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{2 \lambda x}\left(b \mathrm{e}^{\lambda x}+c\right)^{n}-\frac{\lambda^{2}}{4}\right) y=0
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the OF1 ODE
<- Whittaker successful
<- special function solution successful
Change of variables used: [$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{lambda}]$
Linear ODE actually solved:
$(4 * a * t \wedge 2 *(b * t+c) \wedge n-l a m b d a \wedge 2) * u(t)+4 * l a m b d a \wedge 2 * t * d i f f(u(t), t)+4 * l a m b d a \wedge 2 * t _2 * \operatorname{diff}(\operatorname{diff}(u$
<- change of variables successful`
\checkmark Solution by Maple
Time used: 0.844 (sec). Leaf size: 218
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(\mathrm{a} * \exp (2 * \operatorname{lambda} * \mathrm{x}) *(\mathrm{~b} * \exp (\operatorname{lambda} * \mathrm{x})+\mathrm{c}) \wedge \mathrm{n}-1 / 4 * \operatorname{lambda}{ }^{2} 2\right) * y(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\right.$, si
$y(x)$
$=\frac{\mathrm{e}^{-\frac{x \lambda}{2}} \Gamma\left(\frac{n+1}{n+2}\right)^{2}\left(-\frac{a\left(b \mathrm{e}^{x \lambda}+c\right)^{n+2}}{\lambda^{2} b^{2}(n+2)^{2}}\right)^{\frac{1}{2 n+4}} c_{1}(n+2) \operatorname{BesselI}\left(-\frac{1}{n+2}, 2 \sqrt{-\frac{a\left(b \mathbf{e}^{x \lambda}+c\right)^{n+2}}{\lambda^{2} b^{2}(n+2)^{2}}}\right)+\csc \left(\frac{\pi(n+1)}{n+2}\right)\left(-\frac{a\left(b \mathrm{e}^{x \lambda}\right.}{\lambda^{2} b^{2}(r}\right.}{(n+2) \Gamma\left(\frac{n+1}{n+2}\right)}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

Not solved

34.8 problem 8

34.8.1 Solving as second order bessel ode form A ode 3704

Internal problem ID [11096]
Internal file name [OUTPUT/10352_Wednesday_January_24_2024_10_18_11_PM_64980096/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__bessel_ode_form_A"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+a y^{\prime}+b \mathrm{e}^{2 a x} y=0
$$

34.8.1 Solving as second order bessel ode form A ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime}+a y^{\prime}+b \mathrm{e}^{2 a x} y=0 \tag{1}
\end{equation*}
$$

An ode of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0 \tag{1}
\end{equation*}
$$

can be transformed to Bessel ode using the transformation

$$
\begin{aligned}
x & =\ln (t) \\
e^{x} & =t
\end{aligned}
$$

Where a, b, c, m are not functions of x and where b and m are allowed to be be zero. Using this transformation gives

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} e^{x} \\
& =t \frac{d y}{d t} \tag{2}
\end{align*}
$$

And

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d}{d t} \frac{d t}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d t}{d x} \frac{d}{d t}\left(t t \frac{d y}{d t}\right) \\
& =t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{align*}
a t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+b t \frac{d y}{d t}+\left(c e^{r x}+m\right) y & =0 \\
\left(a t y^{\prime}+a t^{2} y^{\prime \prime}\right)+b t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
a t^{2} y^{\prime \prime}+(b+a) t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
t^{2} y^{\prime \prime}+\frac{b+a}{a} t y^{\prime}+\left(\frac{c}{a} t^{r}+\frac{m}{a}\right) y & =0 \tag{4}
\end{align*}
$$

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel ode which is

$$
\begin{equation*}
t^{2} y^{\prime \prime}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-\left(n^{2} \gamma^{2}-\alpha^{2}\right)\right) y=0 \tag{C}
\end{equation*}
$$

And now comparing (4) and (C) shows that

$$
\begin{align*}
(1-2 \alpha) & =\frac{b+a}{a} \tag{5}\\
\beta^{2} \gamma^{2} & =\frac{c}{a} \tag{6}\\
2 \gamma & =r \tag{7}\\
\left(n^{2} \gamma^{2}-\alpha^{2}\right) & =-\frac{m}{a} \tag{8}
\end{align*}
$$

(5) gives $\alpha=\frac{1}{2}-\frac{b+a}{2 a}$. (7) gives $\gamma=\frac{r}{2}$. (8) now becomes $\left(n^{2}\left(\frac{r}{2}\right)^{2}-\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}\right)=-\frac{m}{a}$ or $n^{2}=\frac{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}{\left(\frac{r}{2}\right)^{2}}$. Hence $n=\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}$ by taking the positive root.

And finally (6) gives $\beta^{2}=\frac{c}{a \gamma^{2}}$ or $\beta=\sqrt{\frac{c}{a}} \frac{1}{\gamma}=\sqrt{\frac{c}{a}} \frac{2}{r}$ (also taking the positive root). Hence

$$
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{b+a}{2 a} \\
n & =\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}} \\
\beta & =\sqrt{\frac{c}{a}} \frac{2}{r} \\
\gamma & =\frac{r}{2}
\end{aligned}
$$

But the solution to (C) which is general form of Bessel ode is known and given by

$$
y(t)=t^{\alpha}\left(c_{1} J_{n}\left(\beta t^{\gamma}\right)+c_{2} Y_{n}\left(\beta t^{\gamma}\right)\right)
$$

Substituting the above values found into this solution gives

$$
y(t)=t^{\frac{1}{2}-\frac{b+a}{2 a}}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 t^{\frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 \frac{2}{r} t^{\frac{r}{2}}\right)\right)
$$

Since $e^{x}=t$ then the above becomes

$$
\begin{align*}
& y(x)=e^{x\left(\frac{1}{2}-\frac{b+a}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \tag{9}
\end{align*}
$$

Equation (9) above is the solution to $a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0$. Therefore we just need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

$$
\begin{aligned}
a & =1 \\
b & =a \\
c & =b \\
r & =2 a \\
m & =0
\end{aligned}
$$

Substituting these in (9) gives the solution as

$$
y=\frac{c_{1} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} a^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{-\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}
$$

Verified OK.

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{a}]$
Linear ODE actually solved:
$\mathrm{b} * \mathrm{t} * \mathrm{u}(\mathrm{t})+2 * \mathrm{a}^{\wedge} 2 * \operatorname{diff}(\mathrm{u}(\mathrm{t}), \mathrm{t})+\mathrm{a}^{\wedge} 2 * \mathrm{t} * \operatorname{diff}(\operatorname{diff}(\mathrm{u}(\mathrm{t}), \mathrm{t}), \mathrm{t})=0$
<- change of variables successful`
\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 39

```
dsolve(diff(y(x),x$2)+a*diff(y(x),x)+b*exp(2*a*x)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-a x}\left(c_{1} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)+c_{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)\right)
$$

Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 78

$$
\text { DSolve }\left[y{ }^{\prime} \text { ' }[x]+a * y \text { ' }[x]+b * \operatorname{Exp}[2 * a * x] * y[x]==0, y[x], x, \text { IncludeSingularSolutions }->\right.\text { True] }
$$

$$
y(x) \rightarrow \frac{\sqrt{a} e^{-\frac{a x}{2}}\left(2 c_{1} \cos \left(\frac{\sqrt{b e^{2 a x}}}{a}\right)+c_{2} \sin \left(\frac{\sqrt{b e^{2 a x}}}{a}\right)\right)}{\sqrt{2} \sqrt[4]{b e^{2 a x}}}
$$

34.9 problem 9

34.9.1 Solving as second order change of variable on x method 2 ode . 3709
34.9.2 Solving as second order change of variable on x method 1 ode . 3712
34.9.3 Solving as second order bessel ode form A ode 3714

Internal problem ID [11097]
Internal file name [OUTPUT/10353_Wednesday_January_24_2024_10_18_12_PM_31832114/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_bessel_ode_form_A", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
y^{\prime \prime}-a y^{\prime}+b \mathrm{e}^{2 a x} y=0
$$

34.9.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}-a y^{\prime}+b \mathrm{e}^{2 a x} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-a \\
q(x) & =b \mathrm{e}^{2 a x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-a d x\right)} d x \\
& =\int \mathrm{e}^{a x} d x \\
& =\int \mathrm{e}^{a x} d x \\
& =\frac{\mathrm{e}^{a x}}{a} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{b \mathrm{e}^{2 a x}}{\mathrm{e}^{2 a x}} \\
& =b \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=b$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+b \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+b=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=b$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(b)} \\
& = \pm \sqrt{-b}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-b} \\
& \lambda_{2}=-\sqrt{-b}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-b} \\
& \lambda_{2}=-\sqrt{-b}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{-b}) \tau}+c_{2} e^{(-\sqrt{-b}) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\sqrt{-b} \tau}+c_{2} \mathrm{e}^{-\sqrt{-b} \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \mathrm{e}^{\frac{\sqrt{-b} a^{a x}}{a}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-b} \mathrm{e}^{a x}}{a}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\sqrt{-b} a^{a x}}{a}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-b} \mathrm{e}^{a x}}{a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{\sqrt{-b} a^{a x}}{a}}+c_{2} \mathrm{e}^{-\frac{\sqrt{-b} \mathrm{e}^{a x}}{a}}
$$

Verified OK.

34.9.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}-a y^{\prime}+b \mathrm{e}^{2 a x} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-a \\
& q(x)=b \mathrm{e}^{2 a x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{b \mathrm{e}^{2 a x}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{b \mathrm{e}^{2 a x} a}{c \sqrt{b \mathrm{e}^{2 a x}}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{b \mathrm{e}^{2 a x} a}{c \sqrt{b \mathrm{e}^{2 a x}}}-a \frac{\sqrt{b \mathrm{e}^{2 a x}}}{c}}{\left(\frac{\sqrt{b \mathrm{e}^{2 a x}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{b \mathrm{e}^{2 a x}} d x}{c} \\
& =\frac{\sqrt{b \mathrm{e}^{2 a x}}}{c a}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)+c_{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)+c_{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)+c_{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)
$$

Verified OK.

34.9.3 Solving as second order bessel ode form A ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime}-a y^{\prime}+b \mathrm{e}^{2 a x} y=0 \tag{1}
\end{equation*}
$$

An ode of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0 \tag{1}
\end{equation*}
$$

can be transformed to Bessel ode using the transformation

$$
\begin{aligned}
x & =\ln (t) \\
e^{x} & =t
\end{aligned}
$$

Where a, b, c, m are not functions of x and where b and m are allowed to be be zero.
Using this transformation gives

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} e^{x} \\
& =t \frac{d y}{d t} \tag{2}
\end{align*}
$$

And

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d}{d t} \frac{d t}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d t}{d x} \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{align*}
a t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+b t \frac{d y}{d t}+\left(c e^{r x}+m\right) y & =0 \\
\left(a t y^{\prime}+a t^{2} y^{\prime \prime}\right)+b t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
a t^{2} y^{\prime \prime}+(b+a) t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
t^{2} y^{\prime \prime}+\frac{b+a}{a} t y^{\prime}+\left(\frac{c}{a} t^{r}+\frac{m}{a}\right) y & =0 \tag{4}
\end{align*}
$$

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel ode which is

$$
\begin{equation*}
t^{2} y^{\prime \prime}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-\left(n^{2} \gamma^{2}-\alpha^{2}\right)\right) y=0 \tag{C}
\end{equation*}
$$

And now comparing (4) and (C) shows that

$$
\begin{align*}
(1-2 \alpha) & =\frac{b+a}{a} \tag{5}\\
\beta^{2} \gamma^{2} & =\frac{c}{a} \tag{6}\\
2 \gamma & =r \tag{7}\\
\left(n^{2} \gamma^{2}-\alpha^{2}\right) & =-\frac{m}{a} \tag{8}
\end{align*}
$$

(5) gives $\alpha=\frac{1}{2}-\frac{b+a}{2 a}$. (7) gives $\gamma=\frac{r}{2}$. (8) now becomes $\left(n^{2}\left(\frac{r}{2}\right)^{2}-\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}\right)=-\frac{m}{a}$ or $n^{2}=\frac{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}{\left(\frac{r}{2}\right)^{2}}$. Hence $n=\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}$ by taking the positive root. And finally (6) gives $\beta^{2}=\frac{c}{a \gamma^{2}}$ or $\beta=\sqrt{\frac{c}{a}} \frac{1}{\gamma}=\sqrt{\frac{c}{a}} \frac{2}{r}$ (also taking the positive root). Hence

$$
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{b+a}{2 a} \\
n & =\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}} \\
\beta & =\sqrt{\frac{c}{a}} \frac{2}{r} \\
\gamma & =\frac{r}{2}
\end{aligned}
$$

But the solution to (C) which is general form of Bessel ode is known and given by

$$
y(t)=t^{\alpha}\left(c_{1} J_{n}\left(\beta t^{\gamma}\right)+c_{2} Y_{n}\left(\beta t^{\gamma}\right)\right)
$$

Substituting the above values found into this solution gives

$$
y(t)=t^{\frac{1}{2}-\frac{b+a}{2 a}}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} t^{\frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} t^{\frac{r}{2}}\right)\right)
$$

Since $e^{x}=t$ then the above becomes

$$
\begin{align*}
& y(x)=e^{x\left(\frac{1}{2}-\frac{b+a}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \tag{9}
\end{align*}
$$

Equation (9) above is the solution to $a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0$. Therefore we just need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

$$
\begin{aligned}
a & =1 \\
b & =-a \\
c & =b \\
r & =2 a \\
m & =0
\end{aligned}
$$

Substituting these in (9) gives the solution as

$$
y=\frac{c_{1} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} e^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} \mathrm{e}^{a x}}{a}}}-\frac{c_{2} \mathrm{e}^{\frac{a x}{2}} \sqrt{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)}{\sqrt{\pi} \sqrt{\frac{\sqrt{b} e^{a x}}{a}}}
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve(diff(y(x),x$2)-a*diff(y(x),x)+b*exp(2*a*x)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)+c_{2} \cos \left(\frac{\sqrt{b} \mathrm{e}^{a x}}{a}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 42
DSolve [y''[x]-a*y'[x]+b*Exp[2*a*x]*y[x]==0,y[x],x, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos \left(\frac{\sqrt{b} e^{a x}}{a}\right)+c_{2} \sin \left(\frac{\sqrt{b} e^{a x}}{a}\right)
$$

34.10 problem 10

34.10.1 Solving as second order bessel ode form A ode 3718

Internal problem ID [11098]
Internal file name [OUTPUT/10354_Wednesday_January_24_2024_10_18_13_PM_80628882/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__bessel__ode_form_A"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+a y^{\prime}+\left(b \mathrm{e}^{\lambda x}+c\right) y=0
$$

34.10.1 Solving as second order bessel ode form A ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime}+a y^{\prime}+\left(b \mathrm{e}^{\lambda x}+c\right) y=0 \tag{1}
\end{equation*}
$$

An ode of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0 \tag{1}
\end{equation*}
$$

can be transformed to Bessel ode using the transformation

$$
\begin{aligned}
x & =\ln (t) \\
e^{x} & =t
\end{aligned}
$$

Where a, b, c, m are not functions of x and where b and m are allowed to be be zero. Using this transformation gives

$$
\begin{align*}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} e^{x} \\
& =t \frac{d y}{d t} \tag{2}
\end{align*}
$$

And

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d}{d t} \frac{d t}{d x}\left(t \frac{d y}{d t}\right) \\
& =\frac{d t}{d x} \frac{d}{d t}\left(t t \frac{d y}{d t}\right) \\
& =t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right) \tag{3}
\end{align*}
$$

Substituting (2,3) into (1) gives

$$
\begin{align*}
a t\left(\frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+b t \frac{d y}{d t}+\left(c e^{r x}+m\right) y & =0 \\
\left(a t y^{\prime}+a t^{2} y^{\prime \prime}\right)+b t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
a t^{2} y^{\prime \prime}+(b+a) t y^{\prime}+\left(c t^{r}+m\right) y & =0 \\
t^{2} y^{\prime \prime}+\frac{b+a}{a} t y^{\prime}+\left(\frac{c}{a} t^{r}+\frac{m}{a}\right) y & =0 \tag{4}
\end{align*}
$$

Which is Bessel ODE. Comparing the above to the general known Bowman form of Bessel ode which is

$$
\begin{equation*}
t^{2} y^{\prime \prime}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-\left(n^{2} \gamma^{2}-\alpha^{2}\right)\right) y=0 \tag{C}
\end{equation*}
$$

And now comparing (4) and (C) shows that

$$
\begin{align*}
(1-2 \alpha) & =\frac{b+a}{a} \tag{5}\\
\beta^{2} \gamma^{2} & =\frac{c}{a} \tag{6}\\
2 \gamma & =r \tag{7}\\
\left(n^{2} \gamma^{2}-\alpha^{2}\right) & =-\frac{m}{a} \tag{8}
\end{align*}
$$

(5) gives $\alpha=\frac{1}{2}-\frac{b+a}{2 a}$. (7) gives $\gamma=\frac{r}{2}$. (8) now becomes $\left(n^{2}\left(\frac{r}{2}\right)^{2}-\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}\right)=-\frac{m}{a}$ or $n^{2}=\frac{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}{\left(\frac{r}{2}\right)^{2}}$. Hence $n=\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}$ by taking the positive root.

And finally (6) gives $\beta^{2}=\frac{c}{a \gamma^{2}}$ or $\beta=\sqrt{\frac{c}{a}} \frac{1}{\gamma}=\sqrt{\frac{c}{a}} \frac{2}{r}$ (also taking the positive root). Hence

$$
\begin{aligned}
\alpha & =\frac{1}{2}-\frac{b+a}{2 a} \\
n & =\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}} \\
\beta & =\sqrt{\frac{c}{a}} \frac{2}{r} \\
\gamma & =\frac{r}{2}
\end{aligned}
$$

But the solution to (C) which is general form of Bessel ode is known and given by

$$
y(t)=t^{\alpha}\left(c_{1} J_{n}\left(\beta t^{\gamma}\right)+c_{2} Y_{n}\left(\beta t^{\gamma}\right)\right)
$$

Substituting the above values found into this solution gives

$$
y(t)=t^{\frac{1}{2}-\frac{b+a}{2 a}}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 t^{\frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} 2 \frac{2}{r} t^{\frac{r}{2}}\right)\right)
$$

Since $e^{x}=t$ then the above becomes

$$
\begin{align*}
& y(x)=e^{x\left(\frac{1}{2}-\frac{b+a}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{1}{2}-\frac{b+a}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r} \sqrt{-\frac{m}{a}+\left(\frac{-b}{2 a}\right)^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{m}{a}+\frac{b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{2}{r} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{2}{r}} \sqrt{-\frac{4 m a+b^{2}}{4 a^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \\
& =e^{x\left(\frac{-b}{2 a}\right)}\left(c_{1} J_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)+c_{2} Y_{\frac{1}{r a} \sqrt{-4 m a+b^{2}}}\left(\sqrt{\frac{c}{a}} \frac{2}{r} e^{x \frac{r}{2}}\right)\right) \tag{9}
\end{align*}
$$

Equation (9) above is the solution to $a y^{\prime \prime}+b y^{\prime}+\left(c e^{r x}+m\right) y=0$. Therefore we just need now to compare this form to the ode given and use (9) to obtain the final solution.

Comparing form (1) to the ode we are solving shows that

$$
\begin{aligned}
a & =1 \\
b & =a \\
c & =b \\
r & =\lambda \\
m & =c
\end{aligned}
$$

Substituting these in (9) gives the solution as

$$
y=c_{1} \mathrm{e}^{-\frac{a x}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \mathrm{e}^{-\frac{a x}{2}} \operatorname{Bessel}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \mathrm{e}^{-\frac{a x}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \mathrm{e}^{-\frac{a x}{2}} \operatorname{BesselY}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)(1)
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{a x}{2}} \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)+c_{2} \mathrm{e}^{-\frac{a x}{2}} \operatorname{BesselY}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{\lambda x}{2}}}{\lambda}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (b*t+c)*u(t)+(a*lambda*t+lambda^2*t)*diff(u(t),t)+lambda^2*t^2*diff(diff(u(t),t),t) =
<- change of variables successful`
```

Solution by Maple
Time used: 0.344 (sec). Leaf size: 69

```
dsolve(diff(y(x),x$2)+a*diff(y(x),x)+(b*exp(lambda*x)+c)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{a x}{2}}\left(\operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b} \mathrm{e}^{\frac{x \lambda}{2}}}{\lambda}\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.185 (sec). Leaf size: 123
DSolve $[y$ '' $[\mathrm{x}]+\mathrm{a} * \mathrm{y}$ ' $[\mathrm{x}]+(\mathrm{b} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{c}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow e^{-\frac{a x}{2}}\left(c_{1} \text { Gamma }\left(1-\frac{\sqrt{a^{2}-4 c}}{\lambda}\right) \operatorname{BesselJ}\left(-\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b e^{x \lambda}}}{\lambda}\right)\right. \\
&\left.+c_{2} \operatorname{Gamma}\left(\frac{\lambda+\sqrt{a^{2}-4 c}}{\lambda}\right) \operatorname{BesselJ}\left(\frac{\sqrt{a^{2}-4 c}}{\lambda}, \frac{2 \sqrt{b e^{x \lambda}}}{\lambda}\right)\right)
\end{aligned}
$$

34.11 problem 11

Internal problem ID [11099]
Internal file name [OUTPUT/10355_Wednesday_January_24_2024_10_18_13_PM_46931920/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-y^{\prime}+\left(\mathrm{e}^{3 \lambda x} a+b \mathrm{e}^{2 \lambda x}+\frac{1}{4}-\frac{\lambda^{2}}{4}\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (4*a*t^3+4*b*t^2-lambda^2+1)*u(t)+(4*lambda^2*t-4*lambda*t)*diff (u(t),t)+4*lambda^2*t`
<- change of variables successful`
```


Solution by Maple

Time used: 0.234 (sec). Leaf size: 51

```
dsolve(diff(y(x),x$2)-diff(y(x),x)+(a*exp(3*lambda*x)+b*exp(2*lambda*x)+1/4-1/4*lambda^2 )*
```

$$
y(x)=\mathrm{e}^{-\frac{x(\lambda-1)}{2}}\left(\operatorname{AiryAi}\left(-\frac{\mathrm{e}^{x \lambda} a+b}{\lambda^{\frac{2}{3}} a^{\frac{2}{3}}}\right) c_{1}+\operatorname{AiryBi}\left(-\frac{\mathrm{e}^{x \lambda} a+b}{\lambda^{\frac{2}{3}} a^{\frac{2}{3}}}\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.332 (sec). Leaf size: 77
DSolve $\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]-\mathrm{y}\right.$ ' $[\mathrm{x}]+\left(\mathrm{a} * \operatorname{Exp}[3 * \backslash[\right.$ Lambda $] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[2 * \backslash[$ Lambda $\left.] * \mathrm{x}]+1 / 4-1 / 4 * \backslash[\text { Lambda }]^{\sim} 2\right) * y[\mathrm{x}]==$

$$
y(x) \rightarrow \frac{e^{x / 2}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(e^{x \lambda} a+b\right) \sqrt[3]{-\frac{a}{\lambda^{2}}}}{a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(e^{x \lambda} a+b\right) \sqrt[3]{-\frac{a}{\lambda^{2}}}}{a}\right)\right)}{\sqrt{e^{\lambda x}}}
$$

34.12 problem 12

Internal problem ID [11100]
Internal file name [OUTPUT/10356_Wednesday_January_24_2024_10_18_13_PM_71465684/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}-y^{\prime}+\left(a \mathrm{e}^{2 \lambda x}\left(b \mathrm{e}^{\lambda x}+c\right)^{n}+\frac{1}{4}-\frac{\lambda^{2}}{4}\right) y=0
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations, to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the OF1 ODE
<- Whittaker successful
<- special function solution successful
Change of variables used: [$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{lambda}]$
Linear ODE actually solved:
$(4 * a * t \wedge 2 *(b * t+c) \wedge n-l a m b d a \wedge 2+1) * u(t)+(4 * l a m b d a \wedge 2 * t-4 * l a m b d a * t) * d i f f(u(t), t)+4 * l a m b d a \wedge 2 *$
<- change of variables successful`

Solution by Maple
Time used: 0.796 (sec). Leaf size: 224

```
dsolve(diff(y(x),x$2)-diff(y(x),x)+(a*exp(2*lambda*x)*(b*exp(lambda*x)+c)^n+1/4-1/4*lambda^2
```

$y(x)$
$=\frac{\Gamma\left(\frac{n+1}{n+2}\right)^{2} \mathrm{e}^{-\frac{x(\lambda-1)}{2}}\left(-\frac{a\left(b \mathrm{e}^{x \lambda}+c\right)^{n+2}}{\lambda^{2} b^{2}(n+2)^{2}}\right)^{\frac{1}{2 n+4}} c_{1}(n+2) \operatorname{BesselI}\left(-\frac{1}{n+2}, 2 \sqrt{-\frac{a\left(b \mathrm{e}^{x \lambda}+c\right)^{n+2}}{\lambda^{2} b^{2}(n+2)^{2}}}\right)+\csc \left(\frac{\pi(n+1)}{n+2}\right)\left(-\frac{a(b}{\lambda^{2}}\right.}{(n+2) \Gamma\left(\frac{n+1}{n+2}\right)}$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]-y'[x]+(a*Exp[2*\[Lambda]*x]*(b*Exp[\[Lambda]*x]+c)^n+1/4-1/4*\[Lambda]^2)*y[

Not solved

34.13 problem 13

34.13.1 Solving as linear second order ode solved by an integrating factor ode . 3730
34.13.2 Solving as second order change of variable on y method 1 ode . 3731
34.13.3 Solving using Kovacic algorithm 3733

Internal problem ID [11101]
Internal file name [OUTPUT/10357_Wednesday_January_24_2024_10_18_13_PM_34806798/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_1", "linear_second_order_ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+2 a \mathrm{e}^{\lambda x} y^{\prime}+a \mathrm{e}^{\lambda x}\left(a \mathrm{e}^{\lambda x}+\lambda\right) y=0
$$

34.13.1 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2 a \mathrm{e}^{\lambda x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 a \mathrm{e}^{\lambda x} d x} \\
& =\mathrm{e}^{\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{\frac{a \lambda^{\lambda x}}{\lambda}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{a \mathrm{e}^{\lambda x}}{\lambda}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(e^{\frac{a^{\lambda x}}{\lambda}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{a^{\lambda} \lambda x}{\lambda}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}+c_{2} \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}+c_{2} \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}+c_{2} \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

Verified OK.

34.13.2 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=2 a \mathrm{e}^{\lambda x} \\
& q(x)=a^{2} \mathrm{e}^{2 \lambda x}+a \lambda \mathrm{e}^{\lambda x}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =a^{2} \mathrm{e}^{2 \lambda x}+a \lambda \mathrm{e}^{\lambda x}-\frac{\left(2 a \mathrm{e}^{\lambda x}\right)^{\prime}}{2}-\frac{\left(2 a \mathrm{e}^{\lambda x}\right)^{2}}{4} \\
& =a^{2} \mathrm{e}^{2 \lambda x}+a \lambda \mathrm{e}^{\lambda x}-\frac{\left(2 a \lambda \mathrm{e}^{\lambda x}\right)}{2}-\frac{\left(4 a^{2} \mathrm{e}^{2 \lambda x}\right)}{4} \\
& =a^{2} \mathrm{e}^{2 \lambda x}+a \lambda \mathrm{e}^{\lambda x}-\left(a \lambda \mathrm{e}^{\lambda x}\right)-a^{2} \mathrm{e}^{2 \lambda x} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 a e^{\lambda x}}{2}} \\
& =\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x) \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

Hence (7) becomes

$$
y=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(c_{1} x+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(c_{1} x+c_{2}\right)
$$

Verified OK.

34.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 a \mathrm{e}^{\lambda x} y^{\prime}+a \mathrm{e}^{\lambda x}\left(a \mathrm{e}^{\lambda x}+\lambda\right) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 a \mathrm{e}^{\lambda x} \tag{3}\\
& C=\mathrm{e}^{\lambda x} a\left(a \mathrm{e}^{\lambda x}+\lambda\right)
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

| Case | Allowed pole order for r | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that
 is either order 2 or odd order greater
 than 2. Any other pole order is
 allowed as long as the above condi-
 tion is satisfied. Hence the following
 set of pole orders are all allowed.
 $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. | |
| 3 | $\{1,2\}$ | no condition |

Table 225: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a e^{\lambda x}}{1} d x} \\
& =z_{1} e^{-\frac{e^{\lambda x}}{\lambda}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{a e^{\lambda x}}{\lambda}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a e^{\lambda x}}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2 a e^{\lambda x}}{\lambda}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\ln \left(\mathrm{e}^{\lambda x}\right)}{\lambda}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\right)+c_{2}\left(\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}\left(\frac{\ln \left(\mathrm{e}^{\lambda x}\right)}{\lambda}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} c_{1}+\frac{c_{2} \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} \ln \left(\mathrm{e}^{\lambda x}\right)}{\lambda} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} c_{1}+\frac{c_{2} \mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}} \ln \left(\mathrm{e}^{\lambda x}\right)}{\lambda}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * a * \exp (\operatorname{lambda} \mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} * \exp (\mathrm{l} a \mathrm{mbda} \mathrm{x}) *(\mathrm{a} * \exp (\mathrm{lambda} \mathrm{x})+1 \mathrm{ambda}$

$$
y(x)=\mathrm{e}^{-\frac{a \mathrm{e}^{x \lambda}}{\lambda}}\left(c_{2} x+c_{1}\right)
$$

Solution by Mathematica
Time used: 0.109 (sec). Leaf size: 26
DSolve [y ' ' $[\mathrm{x}]+2 * \mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] *(\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}]+\backslash[$ Lambda] $) * \mathrm{y}$

$$
y(x) \rightarrow\left(c_{2} x+c_{1}\right) e^{-\frac{a e^{\lambda x}}{\lambda}}
$$

34.14 problem 14

Internal problem ID [11102]
Internal file name [OUTPUT/10358_Wednesday_January_24_2024_10_18_14_PM_71707269/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+(a+b) \mathrm{e}^{\lambda x} y^{\prime}+a \mathrm{e}^{\lambda x}\left(b \mathrm{e}^{\lambda x}+\lambda\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{l}$ ambda]
Linear ODE actually solved:
$(a * b * t+a * l a m b d a) * u(t)+(a * l a m b d a * t+b * l a m b d a * t+l a m b d a \wedge 2) * \operatorname{diff}(u(t), t)+l a m b d a \wedge 2 * t * d i f f(d i$
<- change of variables successful-

Solution by Maple
Time used: 0.125 (sec). Leaf size: 36
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a}+\mathrm{b}) * \exp (\operatorname{lambda} \mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} * \exp (\mathrm{lambda} \mathrm{x}) *(\mathrm{~b} * \exp (\mathrm{lambda} \mathrm{x})+l a m b$

$$
y(x)=\mathrm{e}^{-\frac{a \mathrm{e}^{x \lambda}}{\lambda}}\left(c_{1}+\operatorname{expIntegral} 1\left(-\frac{\mathrm{e}^{x \lambda}(a-b)}{\lambda}\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 2.377 (sec). Leaf size: 40
DSolve[y' $\quad[\mathrm{x}]+(\mathrm{a}+\mathrm{b}) * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] *(\mathrm{~b} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}]+\backslash[$ Lambda] $)$

$$
y(x) \rightarrow e^{-\frac{a e^{\lambda x}}{\lambda}}\left(c_{2} \text { ExpIntegralEi }\left(\frac{(a-b) e^{x \lambda}}{\lambda}\right)+c_{1}\right)
$$

34.15 problem 15

Internal problem ID [11103]
Internal file name [OUTPUT/10359_Wednesday_January_24_2024_10_18_14_PM_13126995/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+a \mathrm{e}^{\lambda x} y^{\prime}-b \mathrm{e}^{\mu x}\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+\mu\right) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 46
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{a} * \exp (\operatorname{lambda} \mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{b} * \exp (\mathrm{mu} * \mathrm{x}) *(\mathrm{a} * \exp (\operatorname{lambda} * \mathrm{x})+\mathrm{b} * \exp (\mathrm{mu} * \mathrm{x})+$

$$
y(x)=\left(\left(\int \mathrm{e}^{\frac{-2 b \mathrm{e}^{x \mu} \lambda-\mathrm{e}^{x \lambda} a \mu}{\mu \lambda}} d x\right) c_{1}+c_{2}\right) \mathrm{e}^{\frac{b \mathrm{e}^{x \mu}}{\mu}}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y' $[\mathrm{x}]+\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]-\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] *(\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]+\backslash[\mathrm{M}$

Not solved

34.16 problem 16

Internal problem ID [11104]
Internal file name [OUTPUT/10360_Wednesday_January_24_2024_10_18_15_PM_73998394/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+2 k \mathrm{e}^{\mu x} y^{\prime}+\left(a \mathrm{e}^{2 \lambda x}+b \mathrm{e}^{\lambda x}+k^{2} \mathrm{e}^{2 \mu x}+k \mu \mathrm{e}^{\mu x}+c\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * \mathrm{k} * \exp (\operatorname{mu} * \mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(\mathrm{a} * \exp (2 * \operatorname{lambda} * \mathrm{x})+\mathrm{b} * \exp (\mathrm{l} a \mathrm{mbda} \mathrm{x})+\mathrm{k} \wedge 2 * \exp ($

No solution found
\checkmark Solution by Mathematica
Time used: 2.531 (sec). Leaf size: 232
DSolve $\left[\mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+2 * \mathrm{k} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}] * \mathrm{y}\right.$ ' $[\mathrm{x}]+\left(\mathrm{a} * \operatorname{Exp}\left[2 * \backslash[\right.\right.$ Lambda] $* \mathrm{x}]+\mathrm{b} * \operatorname{Exp}\left[\backslash[\right.$ Lambda] $* \mathrm{x}]+\mathrm{k}^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[\mathrm{Mu}$
$y(x)$
$\rightarrow 2^{\frac{1}{2}-\frac{i \sqrt{c}}{\lambda}}\left(e^{x}\right)^{\frac{1}{2}-\frac{\lambda}{2}}\left(\left(e^{x}\right)^{\mu}\right)^{-\frac{1}{2} / \mu}\left(\left(e^{x}\right)^{\lambda}\right)^{\frac{1}{2}-\frac{i \sqrt{c}}{\lambda}} e^{-\frac{k\left(e^{x}\right)^{\mu}}{\mu}+\frac{i \sqrt{a}\left(e^{x}\right)^{\lambda}}{\lambda}}\left(c_{1}\right.$ Hypergeometric $\mathrm{U}\left(-\frac{\frac{i b}{\sqrt{a}}-\lambda+2 i \sqrt{c}}{2 \lambda}, 1\right.$
$\left.\left.-\frac{2 i \sqrt{c}}{\lambda},-\frac{2 i \sqrt{a}\left(e^{x}\right)^{\lambda}}{\lambda}\right)+c_{2} L^{-\frac{2 i \sqrt{c}}{\lambda}} \frac{\frac{i b}{\sqrt{a}}-\lambda+2 i \sqrt{c}}{2 \lambda}\left(-\frac{2 i \sqrt{a}\left(e^{x}\right)^{\lambda}}{\lambda}\right)\right)$

34.17 problem 17

34.17.1 Solving as second order change of variable on x method 2 ode . 3744
34.17.2 Solving as second order change of variable on y method 1 ode . 3747

Internal problem ID [11105]
Internal file name [OUTPUT/10361_Wednesday_January_24_2024_10_18_15_PM_64620218/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_x_method_2", "second_order__change__of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-\left(a+2 \mathrm{e}^{a x} b\right) y^{\prime}+b^{2} \mathrm{e}^{2 a x} y=0
$$

34.17.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+\left(-2 \mathrm{e}^{a x} b-a\right) y^{\prime}+b^{2} \mathrm{e}^{2 a x} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-2 \mathrm{e}^{a x} b-a \\
& q(x)=b^{2} \mathrm{e}^{2 a x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int\left(-2 \mathrm{e}^{a x} b-a\right) d x\right)} d x \\
& =\int e^{\frac{a^{2} x+2 e^{a x_{b}}}{a}} d x \\
& =\int \mathrm{e}^{\frac{a^{2} x+2 \mathrm{e}^{a x_{b}}}{a}} d x \\
& =\frac{\mathrm{e}^{\frac{2 e^{a x}}{a}}}{2 b} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{b^{2} \mathrm{e}^{2 a x}}{\mathrm{e}^{\frac{2 a^{2} x+4 \mathrm{e}^{a x_{b}}}{a}}} \\
& =b^{2} \mathrm{e}^{-\frac{-4 \mathrm{e}^{a x}}{a}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b^{2} \mathrm{e}^{-\frac{4 b \mathrm{e}^{a x}}{a}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
b^{2} \mathrm{e}^{-\frac{4 b e^{a x}}{a}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{\frac{e^{\frac{2 b a x}{a}}}{b}}\left(c_{1}+c_{2} \ln \left(\frac{\mathrm{e}^{\frac{2 b e^{a x}}{a}}}{b}\right)-c_{2} \ln (2)\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} \sqrt{\frac{e^{\frac{2 b a x}{a}}}{b}}\left(c_{1}+c_{2} \ln \left(\frac{\mathrm{e}^{\frac{2 b e^{a x}}{a}}}{b}\right)-c_{2} \ln (2)\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} \sqrt{\frac{e^{\frac{2 b a x}{a}}}{b}}\left(c_{1}+c_{2} \ln \left(\frac{\mathrm{e}^{\frac{2 b e^{a x}}{a}}}{b}\right)-c_{2} \ln (2)\right)}{2}
$$

Verified OK.

34.17.2 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-2 \mathrm{e}^{a x} b-a \\
& q(x)=b^{2} \mathrm{e}^{2 a x}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =b^{2} \mathrm{e}^{2 a x}-\frac{\left(-2 \mathrm{e}^{a x} b-a\right)^{\prime}}{2}-\frac{\left(-2 \mathrm{e}^{a x} b-a\right)^{2}}{4} \\
& =b^{2} \mathrm{e}^{2 a x}-\frac{\left(-2 a \mathrm{e}^{a x} b\right)}{2}-\frac{\left(\left(-2 \mathrm{e}^{a x} b-a\right)^{2}\right)}{4} \\
& =b^{2} \mathrm{e}^{2 a x}-\left(-a \mathrm{e}^{a x} b\right)-\frac{\left(-2 \mathrm{e}^{a x} b-a\right)^{2}}{4} \\
& =-\frac{a^{2}}{4}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2 e^{a x_{b-a}}}{2}} \\
& =\mathrm{e}^{\frac{a^{2} x+2 e^{a x}}{2 a}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \mathrm{e}^{\frac{a^{2} x+2 \mathrm{e}^{a x_{b}}}{2 a}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
\mathrm{e}^{\frac{a^{2} x+2 e^{a x_{b}}}{2 a}}\left(-a^{2} v(x)+4 v^{\prime \prime}(x)\right)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=4, B=0, C=-a^{2}$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-a^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
-a^{2}+4 \lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-a^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)\left(-a^{2}\right)} \\
& = \pm \frac{\sqrt{a^{2}}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{\sqrt{a^{2}}}{2} \\
& \lambda_{2}=-\frac{\sqrt{a^{2}}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{a^{2}}}{2} \\
& \lambda_{2}=-\frac{\sqrt{a^{2}}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(\frac{\sqrt{a^{2}}}{2}\right) x}+c_{2} e^{\left(-\frac{\sqrt{a^{2}}}{2}\right) x}
\end{aligned}
$$

Or

$$
v(x)=c_{1} \mathrm{e}^{\frac{\sqrt{a^{2}} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{a^{2}} x}{2}}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{\frac{\sqrt{a^{2}} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{a^{2}} x}{2}}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\mathrm{e}^{\frac{a^{2} x+2 e^{a x_{b}}}{2 a}}
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{a^{2}} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{a^{2}} x}{2}}\right) \mathrm{e}^{\frac{a^{2} x+2 e^{a x_{b}}}{2 a}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{a^{2}} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{a^{2}} x}{2}}\right) \mathrm{e}^{\frac{a^{2} x+2 e^{a x_{b}}}{2 a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{a^{2}} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{a^{2}} x}{2}}\right) \mathrm{e}^{\frac{a^{2} x+2 e^{a x_{b}}}{2 a}}
$$

Verified OK.

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-(\mathrm{a}+2 * \mathrm{~b} * \exp (\mathrm{a} * \mathrm{x})) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{b}^{\wedge} 2 * \exp (2 * a * \mathrm{x}) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\right.$, singsol=all)

$$
y(x)=\mathrm{e}^{\frac{a^{2} x+2 e^{a a_{b}}}{2 a}}\left(c_{1} \sinh \left(\frac{a x}{2}\right)+c_{2} \cosh \left(\frac{a x}{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 35
DSolve $[y$ '' $[x]-(a+2 * b * \operatorname{Exp}[a * x]) * y$ ' $[x]+b \sim 2 * \operatorname{Exp}[2 * a * x] * y[x]==0, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{e^{\frac{b e^{a x}}{a}}\left(b c_{2} e^{a x}+a c_{1}\right)}{a}
$$

34.18 problem 18

Internal problem ID [11106]
Internal file name [OUTPUT/10362_Wednesday_January_24_2024_10_18_16_PM_88334329/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{2 \lambda x}+\lambda\right) y^{\prime}-a \lambda \mathrm{e}^{2 \lambda x} y=0
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
        <- special function solution successful
            -> Trying to convert hypergeometric functions to elementary form...
            <- elementary form is not straightforward to achieve - returning special function s
    <- Kovacics algorithm successful
    Change of variables used:
    [x = ln(t)/lambda]
    Linear ODE actually solved:
    -t*a*u(t)+(a*t^2+2*lambda)*diff(u(t),t)+t*lambda*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.593 (sec). Leaf size: 79
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a} * \exp (2 * \operatorname{lambda} \mathrm{x})+\operatorname{lambda}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{a} * \operatorname{lambda*exp}(2 * \operatorname{lambda} \mathrm{x}) * \mathrm{y}(\mathrm{x})=$
$y(x)=c_{2} \sqrt{\pi}\left(\mathrm{e}^{x \lambda} a+\mathrm{e}^{-x \lambda} \lambda\right) \operatorname{erf}\left(\frac{\sqrt{2} \mathrm{e}^{x \lambda} \sqrt{a}}{2 \sqrt{\lambda}}\right)+\sqrt{a} \sqrt{\lambda} \mathrm{e}^{-\frac{a \mathrm{e}^{2 x \lambda}}{2 \lambda}} \sqrt{2} c_{2}+c_{1}\left(\mathrm{e}^{x \lambda} a+\mathrm{e}^{-x \lambda} \lambda\right)$
\checkmark Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 129
DSolve $\left[\mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{a} * \operatorname{Exp}\left[2 * \backslash[\right.\right.\right.$ Lambda] $* \mathrm{x}]+\backslash[$ Lambda] $) * \mathrm{y}^{\prime}[\mathrm{x}]-\mathrm{a} * \backslash[$ Lambda $] * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}] * y[\mathrm{x}]==0$,
$y(x) \rightarrow \frac{\sqrt{2 \pi} c_{2}\left(a e^{2 \lambda x}+\lambda\right) \operatorname{erf}\left(\frac{\sqrt{a \lambda e^{2 \lambda x}}}{\sqrt{2 \lambda}}\right)-4 i \sqrt{2} a c_{1} e^{2 \lambda x}+2 c_{2} e^{-\frac{a e^{2 \lambda x}}{2 \lambda}} \sqrt{a \lambda e^{2 \lambda x}}-4 i \sqrt{2} c_{1} \lambda}{4 \sqrt{a \lambda e^{2 \lambda x}}}$

34.19 problem 19

34.19.1 Solving as second order change of variable on x method 2 ode . 3754

Internal problem ID [11107]
Internal file name [OUTPUT/10363_Wednesday_January_24_2024_10_18_16_PM_44683069/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}-\lambda\right) y^{\prime}+y b \mathrm{e}^{2 \lambda x}=0
$$

34.19.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}-\lambda\right) y^{\prime}+y b \mathrm{e}^{2 \lambda x}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =a \mathrm{e}^{\lambda x}-\lambda \\
q(x) & =b \mathrm{e}^{2 \lambda x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int\left(a \mathrm{e}^{\lambda x}-\lambda\right) d x\right)} d x \\
& =\int e^{\frac{x \lambda^{2}-a \mathrm{e}^{\lambda x}}{\lambda}} d x \\
& =\int \mathrm{e}^{\frac{x \lambda^{2}-a \mathrm{e}^{\lambda x}}{\lambda}} d x \\
& =-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{b \mathrm{e}^{2 \lambda x}}{\mathrm{e}^{\frac{2 x \lambda^{2}-2 a e^{\lambda x}}{\lambda}}} \\
& =b \mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+b \mathrm{e}^{\frac{2 a e^{\lambda x}}{\lambda}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
b \mathrm{e}^{\frac{2 a e_{\mathrm{e}}^{\lambda x}}{\lambda}}=\frac{b}{a^{2} \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{b y(\tau)}{a^{2} \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) a^{2} \tau^{2}+b y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
a^{2} \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+b \tau^{r}=0
$$

Simplifying gives

$$
a^{2} r(r-1) \tau^{r}+0 \tau^{r}+b \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
a^{2} r(r-1)+0+b=0
$$

Or

$$
\begin{equation*}
a^{2} r^{2}-a^{2} r+b=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{-a+\sqrt{a^{2}-4 b}}{2 a} \\
& r_{2}=\frac{a+\sqrt{a^{2}-4 b}}{2 a}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2} \tau^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{-\frac{-a+\sqrt{a^{2}-4 b}}{2 a}}+c_{2}\left(-\frac{\mathrm{e}^{-\frac{a \mathrm{e}^{\lambda x}}{\lambda}}}{a}\right)^{\frac{a+\sqrt{a^{2}-4 b}}{2 a}}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    <- constant coefficients successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        b*u(t)+a*lambda*diff(u(t),t)+lambda^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 53
dsolve(diff $(y(x), x \$ 2)+(a * \exp (l a m b d a * x)-l a m b d a) * \operatorname{diff}(y(x), x)+b * \exp (2 * \operatorname{lambda} * x) * y(x)=0, y(x)$,

$$
y(x)=c_{1} \mathrm{e}^{\frac{\left(-a+\sqrt{a^{2}-4 b}\right)^{x \lambda}}{2 \lambda}}+c_{2} \mathrm{e}^{-\frac{\left(a+\sqrt{a^{2}-4 b}\right) \mathrm{e}^{\pi \lambda}}{2 \lambda}}
$$

\checkmark Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 61

DSolve [y' '[x]+(a*Exp[$$
Lambda] *x]-\[Lambda]) \(* y^{\prime}[x]+b * E x p[2 * \backslash[\) Lambda] \(* x] * y[x]=0, y[x], x\), Inclu
\[
y(x) \rightarrow e^{-\frac{\left(\sqrt{\left.a^{2}-4 b+a\right)} e^{\lambda x}\right.}{2 \lambda}}\left(c_{2} e^{\frac{\sqrt{a^{2}-4 b}{ }^{2} x}{\lambda}}+c_{1}\right)
$$

34.20 problem 20

Internal problem ID [11108]
Internal file name [OUTPUT/10364_Wednesday_January_24_2024_10_18_17_PM_66837224/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+b\right) y^{\prime}+c\left(a \mathrm{e}^{\lambda x}+b-c\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{l}$ ambda]
Linear ODE actually solved:
$(\mathrm{a} * \mathrm{c} * \mathrm{t}+\mathrm{b} * \mathrm{c}-\mathrm{c} \wedge 2) * \mathrm{u}(\mathrm{t})+(\mathrm{a} * \mathrm{l}$ ambda*t^2+b*lambda*t+lambda^2*t)*diff(u(t),t)+lambda^2*t^2*di
<- change of variables successful-
\checkmark Solution by Maple
Time used: 0.297 (sec). Leaf size: 176

```
dsolve(diff(y(x),x$2)+(a*exp(lambda*x)+b)*diff (y (x) ,x)+c*(a*exp(lambda*x)+b-c)*y(x)=0,y(x),
```

$$
\begin{aligned}
y(x)= & \mathrm{e}^{\frac{-\mathrm{e}^{x \lambda} a-(b+3 \lambda) x \lambda}{2 \lambda}} c_{2}(-\lambda-2 c+b)^{2} \text { WhittakerM }\left(-\frac{-\lambda-2 c+b}{2 \lambda}\right. \\
& \left.-\frac{-2 \lambda-2 c+b}{2 \lambda}, \frac{a \mathrm{e}^{x \lambda}}{\lambda}\right) \\
& +\left((\lambda+2 c-b) \mathrm{e}^{\frac{-\mathrm{e}^{x \lambda} a-(b+3 \lambda) x \lambda}{2 \lambda}}+a \mathrm{e}^{\frac{-\mathrm{e}^{x \lambda} a-x \lambda(b+\lambda)}{2 \lambda}}\right) c_{2} \lambda \text { WhittakerM }\left(-\frac{b-2 c+\lambda}{2 \lambda},\right. \\
& \left.-\frac{-2 \lambda-2 c+b}{2 \lambda}, \frac{a \mathrm{e}^{x \lambda}}{\lambda}\right)+c_{1} \mathrm{e}^{-c x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 96
DSolve $\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\backslash[\right.$ Lambda $\left.] * \mathrm{x}]+\mathrm{b}) * \mathrm{y} \mathrm{I}^{[\mathrm{x}}\right]+\mathrm{c} *(\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{b}-\mathrm{c}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, Include

$$
y(x) \rightarrow(-1)^{-\frac{c}{\lambda}} c^{c / \lambda} \lambda^{\frac{c}{\lambda}-1} a^{-\frac{c}{\lambda}}\left(c e^{\lambda x}\right)^{-\frac{c}{\lambda}}\left(c_{2}(2 c-b)(-1)^{c / \lambda} \Gamma\left(-\frac{b-2 c}{\lambda}, 0, \frac{a e^{x \lambda}}{\lambda}\right)+c_{1} \lambda\right)
$$

34.21 problem 21

Internal problem ID [11109]
Internal file name [OUTPUT/10365_Wednesday_January_24_2024_10_18_17_PM_27204558/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a+b \mathrm{e}^{2 \lambda x}\right) y^{\prime}+\lambda\left(a-\lambda-b \mathrm{e}^{2 \lambda x}\right) y=0
$$

X Solution by Maple
dsolve(diff $(y(x), x \$ 2)+(a+b * \exp (2 * l a m b d a * x)) * \operatorname{diff}(y(x), x)+l a m b d a *(a-l a m b d a-b * e x p(2 * l a m b d a * x))$

No solution found
Solution by Mathematica
Time used: 0.513 (sec). Leaf size: 248
DSolve[y' $[\mathrm{x}]+(\mathrm{a}+\mathrm{b} * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]+\backslash[$ Lambda] $*(\mathrm{a}-\backslash[$ Lambda] $-\mathrm{b} * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]) * y[$
$y(x)$
$\rightarrow \frac{-\frac{1}{2} c_{2}(a-2 \lambda) e^{-\frac{b e^{2 \lambda x}}{2 \lambda}}\left(b \lambda e^{2 \lambda x}\right)^{-\frac{a}{2 \lambda}}\left(b 2^{\frac{a}{2 \lambda}} \lambda^{a / \lambda} e^{2 \lambda x}+\operatorname{Gamma}\left(1-\frac{a}{2 \lambda}\right) e^{\frac{b e^{2 \lambda x}}{2 \lambda}}\left(a+b e^{2 \lambda x}\right)\left(b \lambda e^{2 \lambda x}\right)^{\frac{a}{2 \lambda}}-e^{\frac{b e^{2 \lambda}}{2 \lambda}}\right.}{\sqrt{2} \lambda \sqrt{b \lambda e^{2 \lambda x}}}$

34.22 problem 22

Internal problem ID [11110]
Internal file name [OUTPUT/10366_Wednesday_January_24_2024_10_18_17_PM_14375704/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a+b \mathrm{e}^{\lambda x}+b-3 \lambda\right) y^{\prime}+a^{2} \lambda(-\lambda+b) \mathrm{e}^{2 \lambda x} y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (a^2*b*t-a^2*lambda*t)*u(t)+(b*t+a+b-2*lambda)*diff(u(t),t)+t*lambda*diff(diff(u(t),t)
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.406 (sec). Leaf size: 205
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a}+\mathrm{b} * \exp (\operatorname{lambda*x})+\mathrm{b}-3 * \operatorname{lambda}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a}^{\wedge} 2 * \operatorname{lambda} *(\mathrm{~b}-\mathrm{l}$ ambda $) * \exp ($
$y(x)$
$=\mathrm{e}^{-\frac{\mathrm{e}^{x \lambda}\left(b+\sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}}\right)}{2 \lambda}}\left(\operatorname{KummerU}\left(\frac{\left(b+\sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}}\right)(-2 \lambda+b+a)}{2 \sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}} \lambda}, \frac{-2 \lambda+b+a}{\lambda}, \frac{\sqrt{-4 \lambda}}{}\right.\right.$ $+\operatorname{KummerM}\left(\frac{\left(b+\sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}}\right)(-2 \lambda+b+a)}{2 \sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}} \lambda}, \frac{-2 \lambda+b+a}{\lambda}, \frac{\sqrt{-4 \lambda(b-\lambda) a^{2}+b^{2}} \mathrm{e}^{x \lambda}}{\lambda}\right)$
\checkmark Solution by Mathematica
Time used: 3.799 (sec). Leaf size: 260
DSolve $\left[y\right.$ ' $\quad[\mathrm{x}]+(\mathrm{a}+\mathrm{b} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{b}-3 * \backslash[$ Lambda $]) * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{a}^{\wedge} 2 * \backslash[$ Lambda $] *(\mathrm{~b}-\backslash[$ Lambda $]) * \operatorname{Exp}[2 *$
$y(x)$

$$
\begin{gathered}
\rightarrow \exp \left(-\frac{e^{\lambda x}\left(\sqrt{-4 a^{2} b \lambda+4 a^{2} \lambda^{2}+b^{2}}+b\right)}{2 \lambda}\right)\left(c _ { 1 } \text { HypergeometricU } \left(\frac{(a+b-2 \lambda)\left(b+\sqrt{4 \lambda^{2} a^{2}-4 b \lambda a^{2}}\right.}{2 \lambda \sqrt{4 \lambda^{2} a^{2}-4 b \lambda a^{2}+b^{2}}}\right.\right. \\
\left.+c_{2} L^{\frac{a+b-3 \lambda}{\lambda}}-\frac{(a+b-2 \lambda)\left(b+\sqrt{\left.4 \lambda^{2} a^{2}-4 b \lambda a^{2}+b^{2}\right)}\right.}{2 \lambda \sqrt{4 \lambda^{2} a^{2}-4 b \lambda a^{2}+b^{2}}}\left(\frac{e^{x \lambda} \sqrt{4 \lambda^{2} a^{2}-4 b \lambda a^{2}+b^{2}}}{\lambda}\right)\right)
\end{gathered}
$$

34.23 problem 23

Internal problem ID [11111]
Internal file name [OUTPUT/10367_Wednesday_January_24_2024_10_18_18_PM_71646621/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(2 a \mathrm{e}^{\lambda x}-\lambda\right) y^{\prime}+\left(a^{2} \mathrm{e}^{2 \lambda x}+\mathrm{e}^{\mu x} c\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

dsolve (diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(2 * a * \exp (\mathrm{lambda} \mathrm{x})-\mathrm{lambda}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{a}^{\wedge} 2 * \exp (2 * \operatorname{lambda} \mathrm{x})+\mathrm{c} * \exp (\operatorname{mu} *\right.$

No solution found
\checkmark Solution by Mathematica
Time used: 1.858 (sec). Leaf size: 164
DSolve $\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+\left(2 * \mathrm{a} * \operatorname{Exp}[\backslash[\right.\right.$ Lambda $] * \mathrm{x}]-\backslash[$ Lambda] $) * \mathrm{y}^{\prime}[\mathrm{x}]+\left(\mathrm{a}^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[\right.$ Lambda $\left.] * \mathrm{x}]+c * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]\right)$
$y(x)$
$\rightarrow(-1)^{-\frac{\lambda}{\mu}} 2^{\frac{\lambda+\mu}{2 \mu}}\left(\left(e^{x}\right)^{\lambda}\right)^{\frac{\lambda-1}{2 \lambda}}\left(e^{x}\right)^{\frac{1}{2}-\frac{\mu}{2}} e^{-\frac{a\left(e^{x}\right)^{\lambda}}{\lambda}}\left(\left(e^{x}\right)^{\mu}\right)^{\frac{\lambda+\mu}{2 \mu}}\left(-\frac{c\left(e^{x}\right)^{\mu}}{\mu^{2}}\right)^{-\frac{\lambda}{2 \mu}}\left(c_{1}(-1)^{\lambda / \mu} \operatorname{BesselI}\left(\frac{\lambda}{\mu}, 2 \sqrt{-\frac{c\left(e^{x}\right)}{\mu^{2}}}\right.\right.$ $\left.+c_{2} K_{\frac{\lambda}{\mu}}\left(2 \sqrt{-\frac{c\left(e^{x}\right)^{\mu}}{\mu^{2}}}\right)\right)$

34.24 problem 24

34.24.1 Solving as second order change of variable on y method 1 ode . 3769

Internal problem ID [11112]
Internal file name [OUTPUT/10368_Wednesday_January_24_2024_10_18_18_PM_3875151/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\left(2 a \mathrm{e}^{\lambda x}+b\right) y^{\prime}+\left(a^{2} \mathrm{e}^{2 \lambda x}+a(b+\lambda) \mathrm{e}^{\lambda x}+c\right) y=0
$$

34.24.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=2 a \mathrm{e}^{\lambda x}+b \\
& q(x)=a b \mathrm{e}^{\lambda x}+a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{2 \lambda x}+c
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =a b \mathrm{e}^{\lambda x}+a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{2 \lambda x}+c-\frac{\left(2 a \mathrm{e}^{\lambda x}+b\right)^{\prime}}{2}-\frac{\left(2 a \mathrm{e}^{\lambda x}+b\right)^{2}}{4} \\
& =a b \mathrm{e}^{\lambda x}+a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{2 \lambda x}+c-\frac{\left(2 a \lambda \mathrm{e}^{\lambda x}\right)}{2}-\frac{\left(\left(2 a \mathrm{e}^{\lambda x}+b\right)^{2}\right)}{4} \\
& =a b \mathrm{e}^{\lambda x}+a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{2 \lambda x}+c-\left(a \lambda \mathrm{e}^{\lambda x}\right)-\frac{\left(2 a \mathrm{e}^{\lambda x}+b\right)^{2}}{4} \\
& =c-\frac{b^{2}}{4}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 a e^{\lambda x}+b}{2}} \\
& =\mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
\mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}}\left(-b^{2} v(x)+4 c v(x)+4 v^{\prime \prime}(x)\right)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=4, B=0, C=-b^{2}+4 c$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+\left(-b^{2}+4 c\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
-b^{2}+4 \lambda^{2}+4 c=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-b^{2}+4 c$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)\left(-b^{2}+4 c\right)} \\
& = \pm \frac{\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{\sqrt{b^{2}-4 c}}{2} \\
& \lambda_{2}=-\frac{\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{b^{2}-4 c}}{2} \\
& \lambda_{2}=-\frac{\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(\frac{\sqrt{b^{2}-4 c}}{2}\right) x}+c_{2} e^{\left(-\frac{\sqrt{b^{2}-4 c}}{2}\right) x}
\end{aligned}
$$

Or

$$
v(x)=c_{1} \mathrm{e}^{\frac{\sqrt{b^{2}-4 c} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{b^{2}-4 c} x}{2}}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{\frac{\sqrt{b^{2}-4 c} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{b^{2}-4 c} x}{2}}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}}
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{b^{2}-4 c} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{b^{2}-4 c} x}{2}}\right) \mathrm{e}^{-\frac{\lambda b x+2 a}{2 \lambda} \mathrm{e}^{\lambda x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{b^{2}-4 c} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{b^{2}-4 c} x}{2}}\right) \mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \mathrm{e}^{\frac{\sqrt{b^{2}-4 c} x}{2}}+c_{2} \mathrm{e}^{-\frac{\sqrt{b^{2}-4 c} x}{2}}\right) \mathrm{e}^{-\frac{\lambda b x+2 a \mathrm{e}^{\lambda x}}{2 \lambda}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

 Solution by Maple
 Time used: 0.016 (sec). Leaf size: 54
dsolve $(\operatorname{diff}(y(x), x \$ 2)+(2 * a * \exp (\operatorname{lambda} * x)+b) * \operatorname{diff}(y(x), x)+(a \wedge 2 * \exp (2 * \operatorname{lambda} * x)+a *(b+l a m b d a) * e$

$$
y(x)=\mathrm{e}^{-\frac{b \lambda x+2 \mathrm{e}^{x \lambda} a}{2 \lambda}}\left(c_{1} \sinh \left(\frac{\sqrt{b^{2}-4 c} x}{2}\right)+c_{2} \cosh \left(\frac{\sqrt{b^{2}-4 c} x}{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.589 (sec). Leaf size: 82

$$
y(x) \rightarrow \frac{\left.\left(c_{2} e^{x \sqrt{b^{2}-4 c}}+c_{1} \sqrt{b^{2}-4 c}\right) e^{-\frac{a e^{\lambda x} \lambda}{\lambda}-\frac{1}{2} x\left(\sqrt{b^{2}-4 c}+b\right.}\right)}{\sqrt{b^{2}-4 c}}
$$

34.25 problem 25

Internal problem ID [11113]
Internal file name [OUTPUT/10369_Wednesday_January_24_2024_10_18_18_PM_66780811/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+2 b-\lambda\right) y^{\prime}+\left(\mathrm{e}^{2 \lambda x} c+a b \mathrm{e}^{\lambda x}+b^{2}-b \lambda\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t}) / \mathrm{lambda}]$
Linear ODE actually solved:
($\mathrm{a} * \mathrm{~b} * \mathrm{t}+\mathrm{c} * \mathrm{t} \wedge 2+\mathrm{b} \wedge 2-\mathrm{b} * \mathrm{l}$ ambda) $) \mathrm{u}(\mathrm{t})+(\mathrm{a} * \mathrm{l}$ ambda*t^2+2*b*lambda*t)*diff(u(t),t)+lambda^2*t^2*
<- change of variables successful`
\checkmark Solution by Maple
Time used: 0.484 (sec). Leaf size: 74

```
dsolve(diff(y(x),x$2)+(a*exp(lambda*x)+2*b-lambda)*diff(y(x),x)+(c*exp(2*lambda*x)+a*b*exp(l
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{-2 b \lambda x+\mathrm{e}^{x \lambda} \sqrt{a^{2}-4 c}-\mathrm{e}^{x \lambda} a}{2 \lambda}}+c_{2} \mathrm{e}^{-\frac{2 b \lambda x+\mathrm{e}^{x \lambda} \sqrt{a^{2}-4 c}+\mathrm{e}^{x \lambda} a}{2 \lambda}}
$$

Solution by Mathematica

Time used: 2.119 (sec). Leaf size: 97
DSolve $\left[y\right.$ ' $\quad[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+2 * \mathrm{~b}-\backslash[$ Lambda $]) * \mathrm{y}^{\prime}[\mathrm{x}]+(\mathrm{c} * \operatorname{Exp}[2 * \backslash[$ Lambda $] * \mathrm{x}]+\mathrm{a} * \mathrm{~b} * \operatorname{Exp}[\backslash[$ Lambd

$$
y(x) \rightarrow \frac{\left(e^{\lambda x}\right)^{-\frac{b}{\lambda}} e^{-\frac{\left(\sqrt{a^{2}-4 c}+a\right) e^{\lambda x}}{2 \lambda}}\left(c_{2} \lambda e^{\frac{\sqrt{a^{2}-4 c e^{\lambda x}}}{\lambda}}+c_{1} \sqrt{a^{2}-4 c}\right)}{\sqrt{a^{2}-4 c}}
$$

34.26 problem 26

Internal problem ID [11114]
Internal file name [OUTPUT/10370_Wednesday_January_24_2024_10_18_19_PM_28952538/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{x}+b\right) y^{\prime}+\left(c(a-c) \mathrm{e}^{2 x}+(a k+b c-2 c k+c) \mathrm{e}^{x}+k(b-k)\right) y=0
$$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=\ln (\mathrm{t})$]
Linear ODE actually solved:
$(\mathrm{a} * \mathrm{c} * \mathrm{t} \wedge 2-\mathrm{c} \wedge 2 * \mathrm{t} \wedge 2+\mathrm{a} * \mathrm{k} * \mathrm{t}+\mathrm{b} * \mathrm{c} * \mathrm{t}-2 * \mathrm{c} * \mathrm{k} * \mathrm{t}+\mathrm{b} * \mathrm{k}+\mathrm{c} * \mathrm{t}-\mathrm{k} \wedge 2) * \mathrm{u}(\mathrm{t})+(\mathrm{a} * \mathrm{t} \wedge 2+\mathrm{b} * \mathrm{t}+\mathrm{t}) * \operatorname{diff}(\mathrm{u}(\mathrm{t}), \mathrm{t})+\mathrm{t}{ }^{\wedge} 2 *$
<- change of variables successful`
\checkmark Solution by Maple
Time used: 0.391 (sec). Leaf size: 114

```
dsolve(diff(y(x),x$2)+(a*exp(x)+b)*diff(y(x),x)+( c*(a-c)*exp(2*x)+(a*k+b*c+c-2*c*k)*exp(x)
```

$$
\begin{aligned}
y(x)= & - \text { WhittakerM }\left(-\frac{b}{2}+k,-\frac{b}{2}+k+\frac{1}{2},(-2 c+a) \mathrm{e}^{x}\right) \mathrm{e}^{-\frac{a \mathrm{e}^{x}}{2}-\frac{b x}{2}}(-2 c+a)^{-b+2 k} c_{2} \\
& +\left((-2 c+a) \mathrm{e}^{x}\right)^{-\frac{b}{2}+k} c_{2}(-2 c+a)^{-b+2 k}(-1+b-2 k) \mathrm{e}^{(-a+c) \mathrm{e}^{x}-\frac{b x}{2}}+c_{1} \mathrm{e}^{-k x-\mathrm{e}^{x} c}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 3.806 (sec). Leaf size: 71
DSolve $\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\mathrm{x}]+\mathrm{b}) * \mathrm{y}^{\prime}[\mathrm{x}]+(\mathrm{c} *(\mathrm{a}-\mathrm{c}) * \operatorname{Exp}[2 * \mathrm{x}]+(\mathrm{a} * \mathrm{k}+\mathrm{b} * \mathrm{c}+\mathrm{c}-2 * \mathrm{c} * \mathrm{k}) * \operatorname{Exp}[\mathrm{x}]+\mathrm{k} *(\mathrm{~b}-\mathrm{k})) * \mathrm{y}[\right.$

$$
y(x) \rightarrow e^{-c e^{x}}\left(e^{x}\right)^{-k}\left(c_{1}-c_{2}\left(e^{x}\right)^{2 k-b}\left(e^{x}(a-2 c)\right)^{b-2 k} \Gamma\left(2 k-b,(a-2 c) e^{x}\right)\right)
$$

34.27 problem 27

Internal problem ID [11115]
Internal file name [OUTPUT/10371_Wednesday_January_24_2024_10_18_19_PM_37319352/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+b\right) y^{\prime}+\left(\alpha \mathrm{e}^{2 \lambda x}+\beta \mathrm{e}^{\lambda x}+\gamma\right) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Whittaker successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)/lambda]
    Linear ODE actually solved:
        (alpha*t^2+beta*t+gamma)*u(t)+(a*lambda*t^2+b*lambda*t+lambda^2*t)*diff (u(t),t)+lambda
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.422 (sec). Leaf size: 141
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a} * \exp (\mathrm{lambda} \mathrm{x})+\mathrm{b}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+($ alpha*exp$(2 * \operatorname{lambda} * \mathrm{x})+$ beta*exp(lam

$$
\begin{aligned}
y(x)=\mathrm{e}^{\frac{-\mathrm{e}^{x \lambda} a-x \lambda(b+\lambda)}{2 \lambda}} & \left(\text { WhittakerM }\left(-\frac{a(b+\lambda)-2 \beta}{2 \sqrt{a^{2}-4 \alpha} \lambda}, \frac{\sqrt{b^{2}-4 \gamma}}{2 \lambda}, \frac{\sqrt{a^{2}-4 \alpha} \mathrm{e}^{x \lambda}}{\lambda}\right) c_{1}\right. \\
& \left.+ \text { WhittakerW }\left(-\frac{a(b+\lambda)-2 \beta}{2 \sqrt{a^{2}-4 \alpha} \lambda}, \frac{\sqrt{b^{2}-4 \gamma}}{2 \lambda}, \frac{\sqrt{a^{2}-4 \alpha} \mathrm{e}^{x \lambda}}{\lambda}\right) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.375 (sec). Leaf size: 248
DSolve $\left[\mathrm{y}{ }^{\prime}\right.$ ' $[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{b}) * \mathrm{y}^{\prime}[\mathrm{x}]+(\mathrm{alpha} \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]+\backslash[$ Beta $] * \operatorname{Exp}[\backslash[$ Lambda $]$
$y(x)$
$\rightarrow e^{-\frac{\left(\sqrt{a^{2}-4 \alpha}+a\right) e^{\lambda x}}{2 \lambda}}\left(e^{\lambda x}\right)^{\frac{\sqrt{b^{2}-4 \gamma}-b}{2 \lambda}}\left(c_{1}\right.$ HypergeometricU $\left(\frac{-2 \beta+a(b+\lambda)+\sqrt{a^{2}-4 \alpha}\left(\lambda+\sqrt{b^{2}-4 \gamma}\right)}{2 \sqrt{a^{2}-4 \alpha} \lambda}, \frac{\lambda+}{}\right.$ $\left.+c_{2} L^{\frac{\sqrt{b^{2}-4 \gamma}}{\lambda}}\left(\frac{\sqrt{a^{2}-4 \alpha} e^{x \lambda}}{\lambda}\right)\right)$

34.28 problem 28

Internal problem ID [11116]
Internal file name [OUTPUT/10372_Wednesday_January_24_2024_10_18_19_PM_40025974/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(2 a \mathrm{e}^{\lambda x}-\lambda\right) y^{\prime}+\left(a^{2} \mathrm{e}^{2 \lambda x}+\mathrm{e}^{2 \mu x} b+\mathrm{e}^{\mu x} c+k\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

```
dsolve(diff(y(x),x$2)+(2*a*exp(lambda*x)-lambda)*diff(y(x),x)+( a^2*exp(2*lambda*x) + b*exp(
```

No solution found
\checkmark Solution by Mathematica
Time used: 2.29 (sec). Leaf size: 290
DSolve [y' $\quad[\mathrm{x}]+\left(2 * a * \operatorname{Exp}[\backslash[\right.$ Lambda $] * \mathrm{x}]-\backslash[$ Lambda] $) * \mathrm{y}^{\prime}[\mathrm{x}]+\left(\mathrm{a}^{\wedge} 2 * \operatorname{Exp}[2 * \backslash[\right.$ Lambda] $* \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[2 * \backslash[\mathrm{Mu}$
$y(x)$
$\rightarrow\left(\left(e^{x}\right)^{\lambda}\right)^{\frac{\lambda-1}{2 \lambda}}\left(e^{x}\right)^{\frac{1}{2}-\frac{\mu}{2}} 2^{\frac{\sqrt{\mu^{2}\left(\lambda^{2}-4 k\right)}+\mu^{2}}{2 \mu^{2}}}\left(\left(e^{x}\right)^{\mu}\right)^{\frac{\sqrt{\mu^{2}\left(\lambda^{2}-4 k\right)}+\mu^{2}}{2 \mu^{2}}} e^{-\frac{a\left(e^{x}\right) \lambda}{\lambda}+\frac{i \sqrt{b}\left(e^{x}\right)^{\mu}}{\mu}}\left(c_{1}\right.$ HypergeometricU $\left(\frac{\mu^{2}-\frac{i c \mu}{\sqrt{b}}}{}\right.$
$\left.\left.-\frac{2 i \sqrt{b}\left(e^{x}\right)^{\mu}}{\mu}\right)+c_{2} L^{\frac{\sqrt{\left(\lambda^{2}-4 k\right) \mu^{2}}}{\mu^{2}}}{\frac{i c}{2 \sqrt{b} \mu}-\frac{\mu^{2}+\sqrt{\left(\lambda^{2}-4 k\right) \mu^{2}}}{2 \mu^{2}}}^{2}\left(-\frac{2 i \sqrt{b}\left(e^{x}\right)^{\mu}}{\mu}\right)\right)$

34.29 problem 29

Internal problem ID [11117]
Internal file name [OUTPUT/10373_Wednesday_January_24_2024_10_18_20_PM_10546755/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(2 a \mathrm{e}^{\lambda x}+b-\lambda\right) y^{\prime}+\left(a^{2} \mathrm{e}^{2 \lambda x}+a b \mathrm{e}^{\lambda x}+\mathrm{e}^{2 \mu x} c+d \mathrm{e}^{\mu x}+k\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

dsolve (diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(2 * a * \exp (\mathrm{lambda} \mathrm{x})+\mathrm{b}-\mathrm{lambda}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(\mathrm{a}^{\wedge} 2 * \exp (2 * \operatorname{lambda} \mathrm{x})+\mathrm{a} \mathrm{b} *\right.$

No solution found
\checkmark Solution by Mathematica
Time used: 2.625 (sec). Leaf size: 332
DSolve $\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+\left(2 * \mathrm{a} * \operatorname{Exp}\left[\backslash[\right.\right.\right.$ Lambda] $* \mathrm{x}]+\mathrm{b}-\backslash[$ Lambda] $) * \mathrm{y}^{\prime}[\mathrm{x}]+(\mathrm{a} \sim 2 * \operatorname{Exp}[2 * \backslash[$ Lambda] $* \mathrm{x}]+\mathrm{a} * \mathrm{~b} * \operatorname{Exp}[\backslash[$
$y(x)$
$\left.\left.\rightarrow\left(e^{x}\right)^{\frac{1}{2}-\frac{\mu}{2}}\left(\left(e^{x}\right)^{\lambda}\right)^{-\frac{b-\lambda+1}{2 \lambda}} 2^{\frac{1}{2}\left(\frac{\sqrt{\mu^{2}\left(b^{2}-2 b \lambda+\lambda^{2}-4 k\right)}}{\mu^{2}}+1\right.}\right) e^{-\frac{a\left(e^{x}\right)^{\lambda}}{\lambda}+\frac{i \sqrt{c}\left(e^{x}\right)^{\mu}}{\mu}}\left(\left(e^{x}\right)^{\mu}\right)^{\frac{1}{2}\left(\frac{\sqrt{\mu^{2}\left(b^{2}-2 b \lambda+\lambda^{2}-4 k\right)}}{\mu^{2}}+1\right.}\right)\left(c_{1}\right.$ Hyper

$$
\left.\left.-\frac{2 i \sqrt{c}\left(e^{x}\right)^{\mu}}{\mu}\right)+c_{2} L \frac{\frac{\sqrt{\left(b^{2}-2 \lambda b+\lambda^{2}-4 k\right) \mu^{2}}}{\mu^{2}}}{-\frac{\mu^{2}-\frac{i d \mu}{\sqrt{c}}+\sqrt{\left(b^{2}-2 \lambda b+\lambda^{2}-4 k\right) \mu^{2}}}{2 \mu^{2}}}\left(-\frac{2 i \sqrt{c}\left(e^{x}\right)^{\mu}}{\mu}\right)\right)
$$

34.30 problem 30

Internal problem ID [11118]
Internal file name [OUTPUT/10374_Wednesday_January_24_2024_10_18_20_PM_27959611/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b\right) y^{\prime}+a \mathrm{e}^{\lambda x}\left(\mathrm{e}^{\mu x} b+\lambda\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a} * \exp (\mathrm{lambda} \mathrm{x})+\mathrm{b} * \exp (\mathrm{mu} * \mathrm{x})) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{a} * \exp (\operatorname{lambda} \mathrm{x}) *\left(\mathrm{~b} * \exp \left(\mathrm{mu} \mathrm{m}_{\mathrm{x}}\right.\right.\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\backslash[\right.$ Lambda $] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{a} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}] *(\mathrm{~b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]+$

Not solved

34.31 problem 31

Internal problem ID [11119]
Internal file name [OUTPUT/10375_Wednesday_January_24_2024_10_18_20_PM_62185204/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\mathrm{e}^{\lambda x}\left(a \mathrm{e}^{2 \mu x}+b\right) y^{\prime}+\mu\left(\mathrm{e}^{\lambda x}\left(b-a \mathrm{e}^{2 \mu x}\right)-\mu\right) y=0
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
$->$ trying a symmetry pattern of the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
--- Trying Lie symmetry methods, 2nd order ---
-, --> Computing symmetries using: way $=3 `[0, y]$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 81
dsolve $\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\exp (\operatorname{lambda} \mathrm{x}) *\left(\mathrm{a} * \exp \left(2 * \mathrm{~m}_{\mathrm{u}} * \mathrm{x}\right)+\mathrm{b}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\operatorname{mu} *(\exp (\operatorname{lambda} * \mathrm{x}) *(\mathrm{~b}-\mathrm{a} * \operatorname{ex}\right.$

$$
y(x)=\left(\left(\int \frac{\mathrm{e}^{\frac{-\mathrm{e}^{x(\lambda+2 \mu)_{a \lambda-2}\left(\frac{\lambda}{2}+\mu\right)\left(-2 \lambda \mu x+b \mathrm{e}^{x \lambda}\right)}}{\lambda(\lambda+2 \mu)}}}{\left(\mathrm{e}^{2 x \mu} a+b\right)^{2}} d x\right) c_{2}+c_{1}\right)\left(a \mathrm{e}^{x \mu}+\mathrm{e}^{-x \mu} b\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+\operatorname{Exp}[\backslash[\right.$ Lambda] $* \mathrm{x}] *(\mathrm{a} * \operatorname{Exp}[2 * \backslash[\mathrm{Mu}] * \mathrm{x}]+\mathrm{b}) * \mathrm{y}$ ' $[\mathrm{x}]+\backslash[\mathrm{Mu}] *(\operatorname{Exp}[\backslash[$ Lambda] $* \mathrm{x}] *(\mathrm{~b}-\mathrm{a} * \operatorname{Exp}[2$

Not solved

34.32 problem 32

34.32.1 Solving as second order integrable as is ode
34.32.2 Solving as type second_order_integrable_as_is (not using ABC version)
34.32.3 Solving as exact linear second order ode ode 3798

Internal problem ID [11120]
Internal file name [OUTPUT/10376_Wednesday_January_31_2024_08_14_02_PM_16279652/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y^{\prime}+\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right) y=0
$$

34.32.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{array}{r}
\int\left(y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y^{\prime}+\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right) y\right) d x=0 \\
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
\end{array}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c \\
& q(x)=c_{1}
\end{aligned}
$$

Hence the ode is

$$
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) d x} \\
& =\mathrm{e}^{c x+\frac{a \mathrm{e}^{\lambda x}}{\lambda}+\frac{b \mathrm{e}^{\mu x}}{\mu}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} y\right) & =\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} x_{b \lambda}}{\lambda \mu}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x}}{\lambda \mu}} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} d x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}}$ results in

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right)}{\mu \lambda}}\left(\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2} \mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right)}{\mu \lambda}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+\mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2}\right)
$$

Summary

The solution(s) found are the following

Verification of solutions

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} x_{\mu+\mathrm{e}^{\mu x_{b \lambda}}}^{\lambda \mu}}{\mu}} d x\right)+c_{2}\right)
$$

Verified OK.

34.32.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y^{\prime}+\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right) y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{array}{r}
\int\left(y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y^{\prime}+\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right) y\right) d x=0 \\
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
\end{array}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c \\
& q(x)=c_{1}
\end{aligned}
$$

Hence the ode is

$$
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) d x} \\
& =\mathrm{e}^{c x+\frac{a \mathrm{e}^{\lambda x}}{\lambda}+\frac{b \mathrm{e}^{\mu x}}{\mu}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b_{b \lambda}}{\lambda \mu}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} y\right) & =\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{c x \lambda \mu+e^{\lambda x}}{\lambda \mu+\mathrm{e}^{\mu x_{b \lambda}}}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x_{\mu}} \mu \mathrm{e}^{\mu x} x_{b \lambda}}{\lambda \mu}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} x_{\mu+\mathrm{e}^{\mu x_{b \lambda}}}^{\lambda \mu}}{} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} \mathrm{~d} x} \\
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a e^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{c x \lambda \mu+a e^{\lambda x} \mu+e^{\mu x_{b \lambda}}}{\lambda \mu}}$ results in

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right)}{\mu \lambda}}\left(\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x_{\mu}} \mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2} \mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x_{\mu}} \mu \lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right.}{\mu \lambda}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right.}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+\mathrm{e}^{\lambda x} \mathrm{e}_{\mu+\mathrm{e}^{\mu x_{b \lambda}}}^{\lambda \mu}}{}} d x\right)+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} x_{\mu+} \mu \mathrm{e}^{\mu \lambda}}{\lambda \mu}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} d x\right)+c_{2}\right)
$$

Verified OK.

34.32.3 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c \\
r(x) & =a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b
\end{aligned}
$$

Therefore (1) becomes

$$
0-\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right)+\left(a \lambda \mathrm{e}^{\lambda x}+\mu \mathrm{e}^{\mu x} b\right)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c \\
& q(x)=c_{1}
\end{aligned}
$$

Hence the ode is

$$
\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y+y^{\prime}=c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) d x} \\
& =\mathrm{e}^{c x+\frac{a \mathrm{e}^{\lambda x}}{\lambda}+\frac{b \mathrm{e}^{\mu x}}{\mu}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} y\right) & =\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}}\right)\left(c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} y\right) & =\left(c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} x_{b \lambda}}{\lambda \mu}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x}}{\lambda \mu}} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} y=\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x} b \lambda}{\lambda \mu}} d x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}}$ results in

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right)}{\mu \lambda}}\left(\int c_{1} \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2} \mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right)}{\mu \lambda}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+\mathrm{e}^{\lambda x} \mu+\mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x_{b}}\right.}{\mu \lambda}}\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} x_{\mu} \mathrm{e}^{\mu x_{b \lambda}}}{\lambda \mu}} d x\right)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{-a \mathrm{e}^{\lambda x} \mu-\lambda\left(c x \mu+\mathrm{e}^{\mu x} b\right)}{\mu \lambda}}\left(c _ { 1 } \left(\int \mathrm{e}^{\left.\left.\left.\frac{c x \lambda \mu+a \mathrm{e}^{\lambda x} x_{\mu+\mathrm{e}^{\mu x_{b \lambda}}}^{\lambda \mu}}{\mu \lambda}\right)+c_{2}\right) .{ }^{\frac{1}{2}}\right)} d x\right.\right.
$$

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integral
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
No hypergeometric solution was found.
<- linear_1 successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 70

```
dsolve(diff(y(x),x$2)+(a*exp(lambda*x)+b*exp(mu*x)+c)*diff (y (x),x)+(a*lambda*exp(lambda*x)+b
```

$$
y(x)=\left(c_{1}\left(\int \mathrm{e}^{\frac{c x \mu \lambda+\mathrm{e}^{x \lambda} a \mu+b \mathrm{e}^{x \mu} \lambda}{\mu \lambda}} d x\right)+c_{2}\right) \mathrm{e}^{\frac{-\mathrm{e}^{x \lambda} \lambda_{a \mu-\lambda}\left(c x \mu+b \mathrm{e}^{x \mu}\right)}{\mu \lambda}}
$$

Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 77
DSolve[y' $\quad[\mathrm{x}]+\left(\mathrm{a} * \operatorname{Exp}[\backslash[\right.$ Lambda] $* \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]+\mathrm{c}) * \mathrm{y}{ }^{\prime}[\mathrm{x}]+(\mathrm{a} * \backslash[$ Lambda $] * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}]+\mathrm{b} * \backslash[$

$$
y(x) \rightarrow e^{-\frac{a e^{\lambda x}}{\lambda}-\frac{b e^{\mu x}}{\mu}-c x}\left(\int_{1}^{x} e^{\frac{e^{\lambda K[1]}}{\lambda}}+c K[1]+\frac{b e^{\mu K[1]}}{\mu} c_{1} d K[1]+c_{2}\right)
$$

34.33 problem 33

Internal problem ID [11121]
Internal file name [OUTPUT/10377_Wednesday_January_31_2024_08_14_04_PM_76338301/index.tex]
Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number: 33.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\left(a \mathrm{e}^{\lambda x}+\mathrm{e}^{\mu x} b+c\right) y^{\prime}+\left(a b \mathrm{e}^{x(\lambda+\mu)}+\mathrm{e}^{\lambda x} a c+\mu \mathrm{e}^{\mu x} b\right) y=0
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    trying 2nd order, integrating factor of the form mu(x,y)
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
    <- unable to find a useful change of variables
        trying a symmetry of the form [xi=0, eta=F(x)]
    trying to convert to an ODE of Bessel type
    -> trying reduction of order to Riccati
        trying Riccati sub-methods:
        trying Riccati_symmetries
        -> trying a symmetry pattern of the form [F(x)*G(y), 0]
        -> trying a symmetry pattern of the form [0, F(x)*G(y)]
        -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]
```


X Solution by Maple

dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{a} * \exp (\operatorname{lambda} \mathrm{x})+\mathrm{b} * \exp (\operatorname{mu*x})+\mathrm{c}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(\mathrm{a} * \mathrm{~b} * \exp ((\mathrm{l} \operatorname{ambda} \mathrm{mu}) * \mathrm{x})+\mathrm{a}$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\mathrm{y}^{\prime \prime}[\mathrm{x}]+(\mathrm{a} * \operatorname{Exp}[\backslash[\right.$ Lambda $] * \mathrm{x}]+\mathrm{b} * \operatorname{Exp}[\backslash[\mathrm{Mu}] * \mathrm{x}]+\mathrm{c}) * \mathrm{y}$ ' $[\mathrm{x}]+(\mathrm{a} * \mathrm{~b} * \operatorname{Exp}[(\backslash[$ Lambda $]+\backslash[\mathrm{Mu}]) * \mathrm{x}]+\mathrm{a} * \mathrm{c} *$
Not solved

