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1.1 problem problem 1
Internal problem ID [10262]
Internal file name [OUTPUT/9209_Monday_June_06_2022_01_44_30_PM_30898839/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 1.

Find the eigenvalues and associated eigenvectors of the matrix 4 −2
1 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 4 −2
1 1

− λ

 1 0
0 1

 = 0

det

 4− λ −2
1 1− λ

 = 0

λ2 − 5λ+ 6 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 4 −2

1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −2

1 1

−

 2 0
0 2

 v1

v2

 =

 0
0


 2 −2

1 −1

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 2 −2 0

1 −1 0



R2 = R2 −
R1

2 =⇒

2 −2 0
0 0 0


Therefore the system in Echelon form is 2 −2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 4 −2

1 1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −2

1 1

−

 3 0
0 3

 v1

v2

 =

 0
0


 1 −2

1 −2

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 1 −2 0

1 −2 0



R2 = R2 −R1 =⇒

1 −2 0
0 0 0


Therefore the system in Echelon form is 1 −2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Or, by letting t = 1 then the eigenvector is 2t

t

 =

 2
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 2 No

 1
1


3 1 2 No

 2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 3


P =

 1 2
1 1


Therefore  4 −2

1 1

 =

 1 2
1 1

 2 0
0 3

 1 2
1 1

−1
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1.2 problem problem 2
Internal problem ID [10263]
Internal file name [OUTPUT/9210_Monday_June_06_2022_01_44_32_PM_79379111/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 2.

Find the eigenvalues and associated eigenvectors of the matrix 5 −6
3 −4


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 5 −6
3 −4

− λ

 1 0
0 1

 = 0

det

 5− λ −6
3 −4− λ

 = 0

λ2 − λ− 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −6

3 −4

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −6

3 −4

−

 −1 0
0 −1

 v1

v2

 =

 0
0


 6 −6

3 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −6 0

3 −3 0



R2 = R2 −
R1

2 =⇒

6 −6 0
0 0 0


Therefore the system in Echelon form is 6 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −6

3 −4

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −6

3 −4

−

 2 0
0 2

 v1

v2

 =

 0
0


 3 −6

3 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −6 0

3 −6 0



R2 = R2 −R1 =⇒

3 −6 0
0 0 0


Therefore the system in Echelon form is 3 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Or, by letting t = 1 then the eigenvector is 2t

t

 =

 2
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 1 2 No

 1
1


2 1 2 No

 2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 −1 0
0 2


P =

 1 2
1 1


Therefore  5 −6

3 −4

 =

 1 2
1 1

 −1 0
0 2

 1 2
1 1

−1

11



1.3 problem problem 3
Internal problem ID [10264]
Internal file name [OUTPUT/9211_Monday_June_06_2022_01_44_32_PM_35359149/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 3.

Find the eigenvalues and associated eigenvectors of the matrix 8 −6
3 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 8 −6
3 −1

− λ

 1 0
0 1

 = 0

det

 8− λ −6
3 −1− λ

 = 0

λ2 − 7λ+ 10 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 5
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 8 −6

3 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 8 −6

3 −1

−

 2 0
0 2

 v1

v2

 =

 0
0


 6 −6

3 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −6 0

3 −3 0



R2 = R2 −
R1

2 =⇒

6 −6 0
0 0 0


Therefore the system in Echelon form is 6 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 5

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 8 −6

3 −1

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 8 −6

3 −1

−

 5 0
0 5

 v1

v2

 =

 0
0


 3 −6

3 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −6 0

3 −6 0



R2 = R2 −R1 =⇒

3 −6 0
0 0 0


Therefore the system in Echelon form is 3 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Or, by letting t = 1 then the eigenvector is 2t

t

 =

 2
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 2 No

 1
1


5 1 2 No

 2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 5


P =

 1 2
1 1


Therefore  8 −6

3 −1

 =

 1 2
1 1

 2 0
0 5

 1 2
1 1

−1
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1.4 problem problem 4
Internal problem ID [10265]
Internal file name [OUTPUT/9212_Monday_June_06_2022_01_44_32_PM_7112981/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 4.

Find the eigenvalues and associated eigenvectors of the matrix 4 −3
2 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 4 −3
2 −1

− λ

 1 0
0 1

 = 0

det

 4− λ −3
2 −1− λ

 = 0

λ2 − 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 4 −3

2 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −3

2 −1

−

 1 0
0 1

 v1

v2

 =

 0
0


 3 −3

2 −2

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −3 0

2 −2 0



R2 = R2 −
2R1

3 =⇒

3 −3 0
0 0 0


Therefore the system in Echelon form is 3 −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 4 −3

2 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −3

2 −1

−

 2 0
0 2

 v1

v2

 =

 0
0


 2 −3

2 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 2 −3 0

2 −3 0



R2 = R2 −R1 =⇒

2 −3 0
0 0 0


Therefore the system in Echelon form is 2 −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Or, by letting t = 1 then the eigenvector is 3t

2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 1
1


2 1 2 No

 3
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 2


P =

 1 3
1 2


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Therefore  4 −3
2 −1

 =

 1 3
1 2

 1 0
0 2

 1 3
1 2

−1
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1.5 problem problem 5
Internal problem ID [10266]
Internal file name [OUTPUT/9213_Monday_June_06_2022_01_44_33_PM_81964955/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 5.

Find the eigenvalues and associated eigenvectors of the matrix 10 −9
6 −5


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 10 −9
6 −5

− λ

 1 0
0 1

 = 0

det

 10− λ −9
6 −5− λ

 = 0

λ2 − 5λ+ 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 4
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

4 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −9

6 −5

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −9

6 −5

−

 1 0
0 1

 v1

v2

 =

 0
0


 9 −9

6 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 9 −9 0

6 −6 0



R2 = R2 −
2R1

3 =⇒

9 −9 0
0 0 0


Therefore the system in Echelon form is 9 −9

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 4

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −9

6 −5

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −9

6 −5

−

 4 0
0 4

 v1

v2

 =

 0
0


 6 −9

6 −9

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −9 0

6 −9 0



R2 = R2 −R1 =⇒

6 −9 0
0 0 0


Therefore the system in Echelon form is 6 −9

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Or, by letting t = 1 then the eigenvector is 3t

2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 1
1


4 1 2 No

 3
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 4


P =

 1 3
1 2


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Therefore  10 −9
6 −5

 =

 1 3
1 2

 1 0
0 4

 1 3
1 2

−1
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1.6 problem problem 6
Internal problem ID [10267]
Internal file name [OUTPUT/9214_Monday_June_06_2022_01_44_34_PM_15847638/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 6.

Find the eigenvalues and associated eigenvectors of the matrix 6 −4
3 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 6 −4
3 −1

− λ

 1 0
0 1

 = 0

det

 6− λ −4
3 −1− λ

 = 0

λ2 − 5λ+ 6 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −4

3 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −4

3 −1

−

 2 0
0 2

 v1

v2

 =

 0
0


 4 −4

3 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −4 0

3 −3 0



R2 = R2 −
3R1

4 =⇒

4 −4 0
0 0 0


Therefore the system in Echelon form is 4 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −4

3 −1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −4

3 −1

−

 3 0
0 3

 v1

v2

 =

 0
0


 3 −4

3 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −4 0

3 −4 0



R2 = R2 −R1 =⇒

3 −4 0
0 0 0


Therefore the system in Echelon form is 3 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

3

}
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Hence the solution is  4t
3

t

 =

 4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

3

t

 = t

 4
3

1


Or, by letting t = 1 then the eigenvector is 4t

3

t

 =

 4
3

1


Which can be normalized to  4t

3

t

 =

 4
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 2 No

 1
1


3 1 2 No

 4
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 3


P =

 1 4
1 3


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Therefore  6 −4
3 −1

 =

 1 4
1 3

 2 0
0 3

 1 4
1 3

−1
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1.7 problem problem 7
Internal problem ID [10268]
Internal file name [OUTPUT/9215_Monday_June_06_2022_01_44_34_PM_99424410/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 7.

Find the eigenvalues and associated eigenvectors of the matrix 10 −8
6 −4


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 10 −8
6 −4

− λ

 1 0
0 1

 = 0

det

 10− λ −8
6 −4− λ

 = 0

λ2 − 6λ+ 8 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 4
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

4 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −8

6 −4

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −8

6 −4

−

 2 0
0 2

 v1

v2

 =

 0
0


 8 −8

6 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 8 −8 0

6 −6 0



R2 = R2 −
3R1

4 =⇒

8 −8 0
0 0 0


Therefore the system in Echelon form is 8 −8

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 4

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −8

6 −4

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −8

6 −4

−

 4 0
0 4

 v1

v2

 =

 0
0


 6 −8

6 −8

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −8 0

6 −8 0



R2 = R2 −R1 =⇒

6 −8 0
0 0 0


Therefore the system in Echelon form is 6 −8

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

3

}
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Hence the solution is  4t
3

t

 =

 4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

3

t

 = t

 4
3

1


Or, by letting t = 1 then the eigenvector is 4t

3

t

 =

 4
3

1


Which can be normalized to  4t

3

t

 =

 4
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 2 No

 1
1


4 1 2 No

 4
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 4


P =

 1 4
1 3


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Therefore  10 −8
6 −4

 =

 1 4
1 3

 2 0
0 4

 1 4
1 3

−1
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1.8 problem problem 8
Internal problem ID [10269]
Internal file name [OUTPUT/9216_Monday_June_06_2022_01_44_35_PM_9147535/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 8.

Find the eigenvalues and associated eigenvectors of the matrix 7 −6
12 −10


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 7 −6
12 −10

− λ

 1 0
0 1

 = 0

det

 7− λ −6
12 −10− λ

 = 0

λ2 + 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = −1
λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1

36



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 7 −6

12 −10

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 7 −6

12 −10

−

 −1 0
0 −1

 v1

v2

 =

 0
0


 8 −6

12 −9

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  8 −6 0

12 −9 0



R2 = R2 −
3R1

2 =⇒

8 −6 0
0 0 0


Therefore the system in Echelon form is 8 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

4

}
Hence the solution is  3t

4

t

 =

 3t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

4

t

 = t

 3
4

1


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Or, by letting t = 1 then the eigenvector is 3t
4

t

 =

 3
4

1


Which can be normalized to  3t

4

t

 =

 3
4


Considering λ = −2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 7 −6

12 −10

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 7 −6

12 −10

−

 −2 0
0 −2

 v1

v2

 =

 0
0


 9 −6

12 −8

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  9 −6 0

12 −8 0



R2 = R2 −
4R1

3 =⇒

9 −6 0
0 0 0


Therefore the system in Echelon form is 9 −6

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

3

}
Hence the solution is  2t

3

t

 =

 2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

3

t

 = t

 2
3

1


Or, by letting t = 1 then the eigenvector is 2t

3

t

 =

 2
3

1


Which can be normalized to  2t

3

t

 =

 2
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 1 2 No

 3
4


−2 1 2 No

 2
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =

 −1 0
0 −2


P =

 3 2
4 3


Therefore  7 −6

12 −10

 =

 3 2
4 3

 −1 0
0 −2

 3 2
4 3

−1
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1.9 problem problem 9
Internal problem ID [10270]
Internal file name [OUTPUT/9217_Monday_June_06_2022_01_44_36_PM_96430611/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 9.

Find the eigenvalues and associated eigenvectors of the matrix 8 −10
2 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 8 −10
2 −1

− λ

 1 0
0 1

 = 0

det

 8− λ −10
2 −1− λ

 = 0

λ2 − 7λ+ 12 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 4
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

4 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 8 −10

2 −1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 8 −10

2 −1

−

 3 0
0 3

 v1

v2

 =

 0
0


 5 −10

2 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 5 −10 0

2 −4 0



R2 = R2 −
2R1

5 =⇒

5 −10 0
0 0 0


Therefore the system in Echelon form is 5 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


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Or, by letting t = 1 then the eigenvector is 2t
t

 =

 2
1


Considering λ = 4

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 8 −10

2 −1

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 8 −10

2 −1

−

 4 0
0 4

 v1

v2

 =

 0
0


 4 −10

2 −5

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −10 0

2 −5 0



R2 = R2 −
R1

2 =⇒

4 −10 0
0 0 0


Therefore the system in Echelon form is 4 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

2

}
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Hence the solution is  5t
2

t

 =

 5t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

2

t

 = t

 5
2

1


Or, by letting t = 1 then the eigenvector is 5t

2

t

 =

 5
2

1


Which can be normalized to  5t

2

t

 =

 5
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

3 1 2 No

 2
1


4 1 2 No

 5
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 3 0
0 4


P =

 2 5
1 2


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Therefore  8 −10
2 −1

 =

 2 5
1 2

 3 0
0 4

 2 5
1 2

−1
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1.10 problem problem 10
Internal problem ID [10271]
Internal file name [OUTPUT/9218_Monday_June_06_2022_01_44_36_PM_67236026/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 10.

Find the eigenvalues and associated eigenvectors of the matrix 9 −10
2 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 9 −10
2 0

− λ

 1 0
0 1

 = 0

det

 9− λ −10
2 −λ

 = 0

λ2 − 9λ+ 20 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 5
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

4 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 4
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 9 −10

2 0

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 9 −10

2 0

−

 4 0
0 4

 v1

v2

 =

 0
0


 5 −10

2 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 5 −10 0

2 −4 0



R2 = R2 −
2R1

5 =⇒

5 −10 0
0 0 0


Therefore the system in Echelon form is 5 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


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Or, by letting t = 1 then the eigenvector is 2t
t

 =

 2
1


Considering λ = 5

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 9 −10

2 0

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 9 −10

2 0

−

 5 0
0 5

 v1

v2

 =

 0
0


 4 −10

2 −5

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −10 0

2 −5 0



R2 = R2 −
R1

2 =⇒

4 −10 0
0 0 0


Therefore the system in Echelon form is 4 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

2

}

48



Hence the solution is  5t
2

t

 =

 5t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

2

t

 = t

 5
2

1


Or, by letting t = 1 then the eigenvector is 5t

2

t

 =

 5
2

1


Which can be normalized to  5t

2

t

 =

 5
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

4 1 2 No

 2
1


5 1 2 No

 5
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 4 0
0 5


P =

 2 5
1 2


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Therefore  9 −10
2 0

 =

 2 5
1 2

 4 0
0 5

 2 5
1 2

−1
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1.11 problem problem 11
Internal problem ID [10272]
Internal file name [OUTPUT/9219_Monday_June_06_2022_01_44_36_PM_98956009/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 11.

Find the eigenvalues and associated eigenvectors of the matrix 19 −10
21 −10


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 19 −10
21 −10

− λ

 1 0
0 1

 = 0

det

 19− λ −10
21 −10− λ

 = 0

λ2 − 9λ+ 20 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 5
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

4 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 4

51



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 19 −10

21 −10

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 19 −10

21 −10

−

 4 0
0 4

 v1

v2

 =

 0
0


 15 −10

21 −14

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 15 −10 0

21 −14 0



R2 = R2 −
7R1

5 =⇒

15 −10 0
0 0 0


Therefore the system in Echelon form is 15 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

3

}
Hence the solution is  2t

3

t

 =

 2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

3

t

 = t

 2
3

1


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Or, by letting t = 1 then the eigenvector is 2t
3

t

 =

 2
3

1


Which can be normalized to  2t

3

t

 =

 2
3


Considering λ = 5

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 19 −10

21 −10

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 19 −10

21 −10

−

 5 0
0 5

 v1

v2

 =

 0
0


 14 −10

21 −15

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 14 −10 0

21 −15 0



R2 = R2 −
3R1

2 =⇒

14 −10 0
0 0 0


Therefore the system in Echelon form is 14 −10

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

7

}
Hence the solution is  5t

7

t

 =

 5t
7

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

7

t

 = t

 5
7

1


Or, by letting t = 1 then the eigenvector is 5t

7

t

 =

 5
7

1


Which can be normalized to  5t

7

t

 =

 5
7


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

4 1 2 No

 2
3


5 1 2 No

 5
7


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =

 4 0
0 5


P =

 2 5
3 7


Therefore  19 −10

21 −10

 =

 2 5
3 7

 4 0
0 5

 2 5
3 7

−1
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1.12 problem problem 12
Internal problem ID [10273]
Internal file name [OUTPUT/9220_Monday_June_06_2022_01_44_37_PM_29226975/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 12.

Find the eigenvalues and associated eigenvectors of the matrix 13 −15
6 −6


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 13 −15
6 −6

− λ

 1 0
0 1

 = 0

det

 13− λ −15
6 −6− λ

 = 0

λ2 − 7λ+ 12 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 4
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

4 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 13 −15

6 −6

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 13 −15

6 −6

−

 3 0
0 3

 v1

v2

 =

 0
0


 10 −15

6 −9

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 10 −15 0

6 −9 0



R2 = R2 −
3R1

5 =⇒

10 −15 0
0 0 0


Therefore the system in Echelon form is 10 −15

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
Hence the solution is  3t

2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


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Or, by letting t = 1 then the eigenvector is 3t
2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


Considering λ = 4

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 13 −15

6 −6

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 13 −15

6 −6

−

 4 0
0 4

 v1

v2

 =

 0
0


 9 −15

6 −10

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 9 −15 0

6 −10 0



R2 = R2 −
2R1

3 =⇒

9 −15 0
0 0 0


Therefore the system in Echelon form is 9 −15

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

3

}
Hence the solution is  5t

3

t

 =

 5t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

3

t

 = t

 5
3

1


Or, by letting t = 1 then the eigenvector is 5t

3

t

 =

 5
3

1


Which can be normalized to  5t

3

t

 =

 5
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

3 1 2 No

 3
2


4 1 2 No

 5
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

59



Where

D =

 3 0
0 4


P =

 3 5
2 3


Therefore  13 −15

6 −6

 =

 3 5
2 3

 3 0
0 4

 3 5
2 3

−1
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1.13 problem problem 13
Internal problem ID [10274]
Internal file name [OUTPUT/9221_Monday_June_06_2022_01_44_38_PM_65388942/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 13.

Find the eigenvalues and associated eigenvectors of the matrix
2 0 0
2 −2 −1
−2 6 3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




2 0 0
2 −2 −1
−2 6 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


2− λ 0 0
2 −2− λ −1
−2 6 3− λ

 = 0

−(−2 + λ)λ(λ− 1) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 1
λ3 = 2

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
2 −2 −1
−2 6 3

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
2 −2 −1
−2 6 3

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




2 0 0
2 −2 −1
−2 6 3




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 0 0 0
2 −2 −1 0
−2 6 3 0



R2 = R2 −R1 =⇒


2 0 0 0
0 −2 −1 0
−2 6 3 0


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R3 = R3 +R1 =⇒


2 0 0 0
0 −2 −1 0
0 6 3 0



R3 = R3 + 3R2 =⇒


2 0 0 0
0 −2 −1 0
0 0 0 0


Therefore the system in Echelon form is

2 0 0
0 −2 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

2

}
Hence the solution is 

0
− t

2

t

 =


0
− t

2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

2

t

 = t


0
−1

2

1


Or, by letting t = 1 then the eigenvector is

0
− t

2

t

 =


0
−1

2

1


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Which can be normalized to 
0
− t

2

t

 =


0
−1
2


Considering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
2 −2 −1
−2 6 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
2 −2 −1
−2 6 3

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 0 0
2 −3 −1
−2 6 2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 0 0 0
2 −3 −1 0
−2 6 2 0



R2 = R2 − 2R1 =⇒


1 0 0 0
0 −3 −1 0
−2 6 2 0



R3 = R3 + 2R1 =⇒


1 0 0 0
0 −3 −1 0
0 6 2 0


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R3 = R3 + 2R2 =⇒


1 0 0 0
0 −3 −1 0
0 0 0 0


Therefore the system in Echelon form is

1 0 0
0 −3 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

3

}
Hence the solution is 

0
− t

3

t

 =


0
− t

3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

3

t

 = t


0
−1

3

1


Or, by letting t = 1 then the eigenvector is

0
− t

3

t

 =


0
−1

3

1


Which can be normalized to 

0
− t

3

t

 =


0
−1
3


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
2 −2 −1
−2 6 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
2 −2 −1
−2 6 3

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




0 0 0
2 −4 −1
−2 6 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 0
2 −4 −1 0
−2 6 1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

2 −4 −1 0
0 0 0 0
−2 6 1 0



R3 = R3 +R1 =⇒


2 −4 −1 0
0 0 0 0
0 2 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
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row with a non-zero pivot. Swapping row 2 and row 3 gives
2 −4 −1 0
0 2 0 0
0 0 0 0


Therefore the system in Echelon form is

2 −4 −1
0 2 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = 0
}

Hence the solution is 
t
2

0
t

 =


t
2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

0
t

 = t


1
2

0
1


Or, by letting t = 1 then the eigenvector is

t
2

0
t

 =


1
2

0
1


Which can be normalized to 

t
2

0
t

 =


1
0
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 3 No


0
−1
2



1 1 3 No


0
−1
3



2 1 3 No


1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 1 0
0 0 2



P =


0 0 1
−1 −1 0
2 3 2


Therefore

2 0 0
2 −2 −1
−2 6 3

 =


0 0 1
−1 −1 0
2 3 2




0 0 0
0 1 0
0 0 2




0 0 1
−1 −1 0
2 3 2


−1
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1.14 problem problem 14
Internal problem ID [10275]
Internal file name [OUTPUT/9222_Monday_June_06_2022_01_44_39_PM_18921205/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 14.

Find the eigenvalues and associated eigenvectors of the matrix
5 0 0
4 −4 −2
−2 12 6


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




5 0 0
4 −4 −2
−2 12 6

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


5− λ 0 0
4 −4− λ −2
−2 12 6− λ

 = 0

−(−5 + λ)λ(λ− 2) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 2
λ3 = 5

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

2 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


5 0 0
4 −4 −2
−2 12 6

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





5 0 0
4 −4 −2
−2 12 6

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




5 0 0
4 −4 −2
−2 12 6




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

5 0 0 0
4 −4 −2 0
−2 12 6 0



R2 = R2 −
4R1

5 =⇒


5 0 0 0
0 −4 −2 0
−2 12 6 0


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R3 = R3 +
2R1

5 =⇒


5 0 0 0
0 −4 −2 0
0 12 6 0



R3 = R3 + 3R2 =⇒


5 0 0 0
0 −4 −2 0
0 0 0 0


Therefore the system in Echelon form is

5 0 0
0 −4 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

2

}
Hence the solution is 

0
− t

2

t

 =


0
− t

2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

2

t

 = t


0
−1

2

1


Or, by letting t = 1 then the eigenvector is

0
− t

2

t

 =


0
−1

2

1


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Which can be normalized to 
0
− t

2

t

 =


0
−1
2


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


5 0 0
4 −4 −2
−2 12 6

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





5 0 0
4 −4 −2
−2 12 6

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




3 0 0
4 −6 −2
−2 12 4




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 0 0 0
4 −6 −2 0
−2 12 4 0



R2 = R2 −
4R1

3 =⇒


3 0 0 0
0 −6 −2 0
−2 12 4 0



R3 = R3 +
2R1

3 =⇒


3 0 0 0
0 −6 −2 0
0 12 4 0



72



R3 = R3 + 2R2 =⇒


3 0 0 0
0 −6 −2 0
0 0 0 0


Therefore the system in Echelon form is

3 0 0
0 −6 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

3

}
Hence the solution is 

0
− t

3

t

 =


0
− t

3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

3

t

 = t


0
−1

3

1


Or, by letting t = 1 then the eigenvector is

0
− t

3

t

 =


0
−1

3

1


Which can be normalized to 

0
− t

3

t

 =


0
−1
3


Considering λ = 5
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


5 0 0
4 −4 −2
−2 12 6

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





5 0 0
4 −4 −2
−2 12 6

−


5 0 0
0 5 0
0 0 5





v1

v2

v3

 =


0
0
0




0 0 0
4 −9 −2
−2 12 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 0
4 −9 −2 0
−2 12 1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

4 −9 −2 0
0 0 0 0
−2 12 1 0



R3 = R3 +
R1

2 =⇒


4 −9 −2 0
0 0 0 0
0 15

2 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
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row with a non-zero pivot. Swapping row 2 and row 3 gives
4 −9 −2 0
0 15

2 0 0

0 0 0 0


Therefore the system in Echelon form is

4 −9 −2
0 15

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = 0
}

Hence the solution is 
t
2

0
t

 =


t
2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

0
t

 = t


1
2

0
1


Or, by letting t = 1 then the eigenvector is

t
2

0
t

 =


1
2

0
1


Which can be normalized to 

t
2

0
t

 =


1
0
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 3 No


0
−1
2



2 1 3 No


0
−1
3



5 1 3 No


1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 2 0
0 0 5



P =


0 0 1
−1 −1 0
2 3 2


Therefore

5 0 0
4 −4 −2
−2 12 6

 =


0 0 1
−1 −1 0
2 3 2




0 0 0
0 2 0
0 0 5




0 0 1
−1 −1 0
2 3 2


−1
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1.15 problem problem 15
Internal problem ID [10276]
Internal file name [OUTPUT/9223_Monday_June_06_2022_01_44_40_PM_54044065/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 15.

Find the eigenvalues and associated eigenvectors of the matrix
2 −2 0
2 −2 −1
−2 2 3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




2 −2 0
2 −2 −1
−2 2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


2− λ −2 0
2 −2− λ −1
−2 2 3− λ

 = 0

−λ3 + 3λ2 − 2λ = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 2
λ3 = 1

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 0
2 −2 −1
−2 2 3

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 0
2 −2 −1
−2 2 3

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




2 −2 0
2 −2 −1
−2 2 3




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −2 0 0
2 −2 −1 0
−2 2 3 0



R2 = R2 −R1 =⇒


2 −2 0 0
0 0 −1 0
−2 2 3 0


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R3 = R3 +R1 =⇒


2 −2 0 0
0 0 −1 0
0 0 3 0



R3 = R3 + 3R2 =⇒


2 −2 0 0
0 0 −1 0
0 0 0 0


Therefore the system in Echelon form is

2 −2 0
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 0
2 −2 −1
−2 2 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 0
2 −2 −1
−2 2 3

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −2 0
2 −3 −1
−2 2 2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 −2 0 0
2 −3 −1 0
−2 2 2 0



R2 = R2 − 2R1 =⇒


1 −2 0 0
0 1 −1 0
−2 2 2 0



R3 = R3 + 2R1 =⇒


1 −2 0 0
0 1 −1 0
0 −2 2 0



R3 = R3 + 2R2 =⇒


1 −2 0 0
0 1 −1 0
0 0 0 0


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Therefore the system in Echelon form is
1 −2 0
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v2 = t}

Hence the solution is 
2t
t

t

 =


2t
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
t

t

 = t


2
1
1


Or, by letting t = 1 then the eigenvector is

2t
t

t

 =


2
1
1


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 0
2 −2 −1
−2 2 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 0
2 −2 −1
−2 2 3

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




0 −2 0
2 −4 −1
−2 2 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 −2 0 0
2 −4 −1 0
−2 2 1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

2 −4 −1 0
0 −2 0 0
−2 2 1 0



R3 = R3 +R1 =⇒


2 −4 −1 0
0 −2 0 0
0 −2 0 0



R3 = R3 −R2 =⇒


2 −4 −1 0
0 −2 0 0
0 0 0 0


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Therefore the system in Echelon form is
2 −4 −1
0 −2 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = 0
}

Hence the solution is 
t
2

0
t

 =


t
2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

0
t

 = t


1
2

0
1


Or, by letting t = 1 then the eigenvector is

t
2

0
t

 =


1
2

0
1


Which can be normalized to 

t
2

0
t

 =


1
0
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 3 No


1
1
0



1 1 3 No


2
1
1



2 1 3 No


1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 1 0
0 0 2



P =


1 2 1
1 1 0
0 1 2


Therefore 

2 −2 0
2 −2 −1
−2 2 3

 =


1 2 1
1 1 0
0 1 2




0 0 0
0 1 0
0 0 2




1 2 1
1 1 0
0 1 2


−1
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1.16 problem problem 16
Internal problem ID [10277]
Internal file name [OUTPUT/9224_Monday_June_06_2022_01_44_41_PM_73663570/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 16.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 −1
−2 3 −1
−6 6 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 −1
−2 3 −1
−6 6 0

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


1− λ 0 −1
−2 3− λ −1
−6 6 −λ

 = 0

−λ3 + 4λ2 − 3λ = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 3
λ3 = 1

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 −1
−2 3 −1
−6 6 0

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 −1
−2 3 −1
−6 6 0

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




1 0 −1
−2 3 −1
−6 6 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 0 −1 0
−2 3 −1 0
−6 6 0 0



R2 = R2 + 2R1 =⇒


1 0 −1 0
0 3 −3 0
−6 6 0 0


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R3 = R3 + 6R1 =⇒


1 0 −1 0
0 3 −3 0
0 6 −6 0



R3 = R3 − 2R2 =⇒


1 0 −1 0
0 3 −3 0
0 0 0 0


Therefore the system in Echelon form is

1 0 −1
0 3 −3
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


Considering λ = 1

87



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 −1
−2 3 −1
−6 6 0

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 −1
−2 3 −1
−6 6 0

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 −1
−2 2 −1
−6 6 −1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 −1 0
−2 2 −1 0
−6 6 −1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−2 2 −1 0
0 0 −1 0
−6 6 −1 0



R3 = R3 − 3R1 =⇒


−2 2 −1 0
0 0 −1 0
0 0 2 0



R3 = R3 + 2R2 =⇒


−2 2 −1 0
0 0 −1 0
0 0 0 0


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Therefore the system in Echelon form is
−2 2 −1
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 −1
−2 3 −1
−6 6 0

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 −1
−2 3 −1
−6 6 0

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




−2 0 −1
−2 0 −1
−6 6 −3




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−2 0 −1 0
−2 0 −1 0
−6 6 −3 0



R2 = R2 −R1 =⇒


−2 0 −1 0
0 0 0 0
−6 6 −3 0



R3 = R3 − 3R1 =⇒


−2 0 −1 0
0 0 0 0
0 6 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−2 0 −1 0
0 6 0 0
0 0 0 0


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Therefore the system in Echelon form is
−2 0 −1
0 6 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = 0
}

Hence the solution is 
− t

2

0
t

 =


− t

2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

0
t

 = t


−1

2

0
1


Or, by letting t = 1 then the eigenvector is

− t
2

0
t

 =


−1

2

0
1


Which can be normalized to 

− t
2

0
t

 =


−1
0
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 3 No


1
1
1



1 1 3 No


1
1
0



3 1 3 No


−1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 1 0
0 0 3



P =


1 1 −1
1 1 0
1 0 2


Therefore 

1 0 −1
−2 3 −1
−6 6 0

 =


1 1 −1
1 1 0
1 0 2




0 0 0
0 1 0
0 0 3




1 1 −1
1 1 0
1 0 2


−1

92



1.17 problem problem 17
Internal problem ID [10278]
Internal file name [OUTPUT/9225_Monday_June_06_2022_01_44_42_PM_21226919/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 17.

Find the eigenvalues and associated eigenvectors of the matrix
3 5 −2
0 2 0
0 2 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




3 5 −2
0 2 0
0 2 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


3− λ 5 −2
0 2− λ 0
0 2 1− λ

 = 0

−(−3 + λ) (−2 + λ) (−1 + λ) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 3

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 5 −2
0 2 0
0 2 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 5 −2
0 2 0
0 2 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 5 −2
0 1 0
0 2 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 5 −2 0
0 1 0 0
0 2 0 0



R3 = R3 − 2R2 =⇒


2 5 −2 0
0 1 0 0
0 0 0 0


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Therefore the system in Echelon form is
2 5 −2
0 1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}

Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1


Or, by letting t = 1 then the eigenvector is

t

0
t

 =


1
0
1


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 5 −2
0 2 0
0 2 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 5 −2
0 2 0
0 2 1

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




1 5 −2
0 0 0
0 2 −1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 5 −2 0
0 0 0 0
0 2 −1 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

1 5 −2 0
0 2 −1 0
0 0 0 0


Therefore the system in Echelon form is

1 5 −2
0 2 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 =
t
2

}
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Hence the solution is 
− t

2
t
2

t

 =


− t

2
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

t
2

t

 = t


−1

2
1
2

1


Or, by letting t = 1 then the eigenvector is

− t
2

t
2

t

 =


−1

2
1
2

1


Which can be normalized to 

− t
2

t
2

t

 =


−1
1
2


Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 5 −2
0 2 0
0 2 1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 5 −2
0 2 0
0 2 1

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




0 5 −2
0 −1 0
0 2 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 5 −2 0
0 −1 0 0
0 2 −2 0



R2 = R2 +
R1

5 =⇒


0 5 −2 0
0 0 −2

5 0

0 2 −2 0



R3 = R3 −
2R1

5 =⇒


0 5 −2 0
0 0 −2

5 0

0 0 −6
5 0



R3 = R3 − 3R2 =⇒


0 5 −2 0
0 0 −2

5 0

0 0 0 0


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Therefore the system in Echelon form is
0 5 −2
0 0 −2

5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Or, by letting t = 1 then the eigenvector is

t

0
0

 =


1
0
0


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
0
1



2 1 3 No


−1
1
2



3 1 3 No


1
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 3



P =


1 −1 1
0 1 0
1 2 0


Therefore 

3 5 −2
0 2 0
0 2 1

 =


1 −1 1
0 1 0
1 2 0




1 0 0
0 2 0
0 0 3




1 −1 1
0 1 0
1 2 0


−1
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1.18 problem problem 18
Internal problem ID [10279]
Internal file name [OUTPUT/9226_Monday_June_06_2022_01_44_43_PM_70215540/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 18.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 0
−6 8 2
12 −15 −3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 0
−6 8 2
12 −15 −3

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


1− λ 0 0
−6 8− λ 2
12 −15 −3− λ

 = 0

−(−1 + λ)
(
λ2 − 5λ+ 6

)
= 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 3
λ3 = 2

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0
−6 8 2
12 −15 −3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 0
−6 8 2
12 −15 −3

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 0
−6 7 2
12 −15 −4




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 0
−6 7 2 0
12 −15 −4 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−6 7 2 0
0 0 0 0
12 −15 −4 0


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R3 = R3 + 2R1 =⇒


−6 7 2 0
0 0 0 0
0 −1 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−6 7 2 0
0 −1 0 0
0 0 0 0


Therefore the system in Echelon form is

−6 7 2
0 −1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

3 , v2 = 0
}

Hence the solution is 
t
3

0
t

 =


t
3

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
3

0
t

 = t


1
3

0
1


Or, by letting t = 1 then the eigenvector is

t
3

0
t

 =


1
3

0
1



103



Which can be normalized to 
t
3

0
t

 =


1
0
3


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0
−6 8 2
12 −15 −3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 0
−6 8 2
12 −15 −3

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




−1 0 0
−6 6 2
12 −15 −5




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 0 0 0
−6 6 2 0
12 −15 −5 0



R2 = R2 − 6R1 =⇒


−1 0 0 0
0 6 2 0
12 −15 −5 0



R3 = R3 + 12R1 =⇒


−1 0 0 0
0 6 2 0
0 −15 −5 0


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R3 = R3 +
5R2

2 =⇒


−1 0 0 0
0 6 2 0
0 0 0 0


Therefore the system in Echelon form is

−1 0 0
0 6 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

3

}
Hence the solution is 

0
− t

3

t

 =


0
− t

3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

3

t

 = t


0
−1

3

1


Or, by letting t = 1 then the eigenvector is

0
− t

3

t

 =


0
−1

3

1


Which can be normalized to 

0
− t

3

t

 =


0
−1
3


Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0
−6 8 2
12 −15 −3

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 0
−6 8 2
12 −15 −3

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




−2 0 0
−6 5 2
12 −15 −6




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−2 0 0 0
−6 5 2 0
12 −15 −6 0



R2 = R2 − 3R1 =⇒


−2 0 0 0
0 5 2 0
12 −15 −6 0



R3 = R3 + 6R1 =⇒


−2 0 0 0
0 5 2 0
0 −15 −6 0



R3 = R3 + 3R2 =⇒


−2 0 0 0
0 5 2 0
0 0 0 0


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Therefore the system in Echelon form is
−2 0 0
0 5 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = −2t

5

}
Hence the solution is 

0
−2t

5

t

 =


0

−2t
5

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−2t

5

t

 = t


0
−2

5

1


Or, by letting t = 1 then the eigenvector is

0
−2t

5

t

 =


0
−2

5

1


Which can be normalized to 

0
−2t

5

t

 =


0
−2
5


The following table summarises the result found above.

107



λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
0
3



2 1 3 No


0
−1
3



3 1 3 No


0
−2
5


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 3



P =


1 0 0
0 −1 −2
3 3 5


Therefore

1 0 0
−6 8 2
12 −15 −3

 =


1 0 0
0 −1 −2
3 3 5




1 0 0
0 2 0
0 0 3




1 0 0
0 −1 −2
3 3 5


−1
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1.19 problem problem 19
Internal problem ID [10280]
Internal file name [OUTPUT/9227_Monday_June_06_2022_01_44_44_PM_24262799/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 19.

Find the eigenvalues and associated eigenvectors of the matrix
3 6 −2
0 1 0
0 0 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




3 6 −2
0 1 0
0 0 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


3− λ 6 −2
0 1− λ 0
0 0 1− λ

 = 0

−(−3 + λ) (−1 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

3 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 6 −2
0 1 0
0 0 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 6 −2
0 1 0
0 0 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 6 −2
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 6 −2 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

2 6 −2
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = −3t+ s}

Hence the solution is 
−3t+ s

t

s

 =


−3t+ s

t

s


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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

−3t+ s

t

s

 =


−3t
t

0

+


s

0
s



= t


−3
1
0

+ s


1
0
1


By letting t = 1 and s = 1 then the above becomes

−3t+ s

t

s

 =


−3
1
0

+


1
0
1


Hence the two eigenvectors associated with this eigenvalue are


−3
1
0

 ,


1
0
1




Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 6 −2
0 1 0
0 0 1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 6 −2
0 1 0
0 0 1

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




0 6 −2
0 −2 0
0 0 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 6 −2 0
0 −2 0 0
0 0 −2 0



R2 = R2 +
R1

3 =⇒


0 6 −2 0
0 0 −2

3 0

0 0 −2 0



R3 = R3 − 3R2 =⇒


0 6 −2 0
0 0 −2

3 0

0 0 0 0


Therefore the system in Echelon form is

0 6 −2
0 0 −2

3

0 0 0




v1

v2

v3

 =


0
0
0


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The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Or, by letting t = 1 then the eigenvector is

t

0
0

 =


1
0
0


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 3 No


−3
1
0



3 1 3 No


1
0
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =


1 0 0
0 1 0
0 0 3



P =


−3 1 1
1 0 0
0 1 0


Therefore 

3 6 −2
0 1 0
0 0 1

 =


−3 1 1
1 0 0
0 1 0




1 0 0
0 1 0
0 0 3




−3 1 1
1 0 0
0 1 0


−1
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1.20 problem problem 20
Internal problem ID [10281]
Internal file name [OUTPUT/9228_Monday_June_06_2022_01_44_45_PM_52282663/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 20.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 0
−4 7 2
10 −15 −4


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 0
−4 7 2
10 −15 −4

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


1− λ 0 0
−4 7− λ 2
10 −15 −4− λ

 = 0

−(−1 + λ)
(
λ2 − 3λ+ 2

)
= 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

2 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0
−4 7 2
10 −15 −4

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 0
−4 7 2
10 −15 −4

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 0
−4 6 2
10 −15 −5




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 0
−4 6 2 0
10 −15 −5 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−4 6 2 0
0 0 0 0
10 −15 −5 0



R3 = R3 +
5R1

2 =⇒


−4 6 2 0
0 0 0 0
0 0 0 0


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Therefore the system in Echelon form is
−4 6 2
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = 3t

2 + s
2

}
Hence the solution is 

3t
2 + s

2

t

s

 =


3t
2 + s

2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

3t
2 + s

2

t

s

 =


3t
2

t

0

+


s
2

0
s



= t


3
2

1
0

+ s


1
2

0
1


By letting t = 1 and s = 1 then the above becomes

3t
2 + s

2

t

s

 =


3
2

1
0

+


1
2

0
1


Hence the two eigenvectors associated with this eigenvalue are


3
2

1
0

 ,


1
2

0
1



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Which can be normalized to 


3
2
0

 ,


1
0
2




Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0
−4 7 2
10 −15 −4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 0 0
−4 7 2
10 −15 −4

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




−1 0 0
−4 5 2
10 −15 −6




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 0 0 0
−4 5 2 0
10 −15 −6 0



R2 = R2 − 4R1 =⇒


−1 0 0 0
0 5 2 0
10 −15 −6 0



R3 = R3 + 10R1 =⇒


−1 0 0 0
0 5 2 0
0 −15 −6 0


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R3 = R3 + 3R2 =⇒


−1 0 0 0
0 5 2 0
0 0 0 0


Therefore the system in Echelon form is

−1 0 0
0 5 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = −2t

5

}
Hence the solution is 

0
−2t

5

t

 =


0

−2t
5

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−2t

5

t

 = t


0
−2

5

1


Or, by letting t = 1 then the eigenvector is

0
−2t

5

t

 =


0
−2

5

1


Which can be normalized to 

0
−2t

5

t

 =


0
−2
5


The following table summarises the result found above.

119



λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 3 No


3
2
0



2 1 3 No


1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 1 0
0 0 2



P =


3 1 0
2 0 −2
0 2 5


Therefore 

1 0 0
−4 7 2
10 −15 −4

 =


3 1 0
2 0 −2
0 2 5




1 0 0
0 1 0
0 0 2




3 1 0
2 0 −2
0 2 5


−1
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1.21 problem problem 21
Internal problem ID [10282]
Internal file name [OUTPUT/9229_Monday_June_06_2022_01_44_46_PM_44517223/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 21.

Find the eigenvalues and associated eigenvectors of the matrix
4 −3 1
2 −1 1
0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




4 −3 1
2 −1 1
0 0 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


4− λ −3 1
2 −1− λ 1
0 0 2− λ

 = 0

−λ3 + 5λ2 − 8λ+ 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 2 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 −3 1
2 −1 1
0 0 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





4 −3 1
2 −1 1
0 0 2

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 −3 1
2 −2 1
0 0 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 −3 1 0
2 −2 1 0
0 0 1 0



R2 = R2 −
2R1

3 =⇒


3 −3 1 0
0 0 1

3 0

0 0 1 0



R3 = R3 − 3R2 =⇒


3 −3 1 0
0 0 1

3 0

0 0 0 0


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Therefore the system in Echelon form is
3 −3 1
0 0 1

3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 −3 1
2 −1 1
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





4 −3 1
2 −1 1
0 0 2

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




2 −3 1
2 −3 1
0 0 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −3 1 0
2 −3 1 0
0 0 0 0



R2 = R2 −R1 =⇒


2 −3 1 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

2 −3 1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = 3t

2 − s
2

}
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Hence the solution is 
3t
2 − s

2

t

s

 =


3t
2 − s

2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

3t
2 − s

2

t

s

 =


3t
2

t

0

+


− s

2

0
s



= t


3
2

1
0

+ s


−1

2

0
1


By letting t = 1 and s = 1 then the above becomes

3t
2 − s

2

t

s

 =


3
2

1
0

+


−1

2

0
1


Hence the two eigenvectors associated with this eigenvalue are


3
2

1
0

 ,


−1

2

0
1




Which can be normalized to 


3
2
0

 ,


−1
0
2




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
1
0



2 2 3 No


3
2
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 2



P =


1 3 −1
1 2 0
0 0 2


Therefore 

4 −3 1
2 −1 1
0 0 2

 =


1 3 −1
1 2 0
0 0 2




1 0 0
0 2 0
0 0 2




1 3 −1
1 2 0
0 0 2


−1

126



1.22 problem problem 22
Internal problem ID [10283]
Internal file name [OUTPUT/9230_Monday_June_06_2022_01_44_46_PM_55902958/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 22.

Find the eigenvalues and associated eigenvectors of the matrix
5 −6 3
6 −7 3
6 −6 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




5 −6 3
6 −7 3
6 −6 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


5− λ −6 3
6 −7− λ 3
6 −6 2− λ

 = 0

−λ3 + 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = −1
λ3 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 2 real eigenvalue

2 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


5 −6 3
6 −7 3
6 −6 2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





5 −6 3
6 −7 3
6 −6 2

−


−1 0 0
0 −1 0
0 0 −1





v1

v2

v3

 =


0
0
0




6 −6 3
6 −6 3
6 −6 3




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

6 −6 3 0
6 −6 3 0
6 −6 3 0



R2 = R2 −R1 =⇒


6 −6 3 0
0 0 0 0
6 −6 3 0



R3 = R3 −R1 =⇒


6 −6 3 0
0 0 0 0
0 0 0 0


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Therefore the system in Echelon form is
6 −6 3
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = t− s

2

}
Hence the solution is 

t− s
2

t

s

 =


t− s

2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t− s
2

t

s

 =


t

t

0

+


− s

2

0
s



= t


1
1
0

+ s


−1

2

0
1


By letting t = 1 and s = 1 then the above becomes

t− s
2

t

s

 =


1
1
0

+


−1

2

0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
0

 ,


−1

2

0
1



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Which can be normalized to 


1
1
0

 ,


−1
0
2




Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


5 −6 3
6 −7 3
6 −6 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





5 −6 3
6 −7 3
6 −6 2

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




3 −6 3
6 −9 3
6 −6 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 −6 3 0
6 −9 3 0
6 −6 0 0



R2 = R2 − 2R1 =⇒


3 −6 3 0
0 3 −3 0
6 −6 0 0



R3 = R3 − 2R1 =⇒


3 −6 3 0
0 3 −3 0
0 6 −6 0


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R3 = R3 − 2R2 =⇒


3 −6 3 0
0 3 −3 0
0 0 0 0


Therefore the system in Echelon form is

3 −6 3
0 3 −3
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 2 3 No


1
1
0



2 1 3 No


−1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


−1 0 0
0 −1 0
0 0 2



P =


1 −1 1
1 0 1
0 2 1


Therefore 

5 −6 3
6 −7 3
6 −6 2

 =


1 −1 1
1 0 1
0 2 1




−1 0 0
0 −1 0
0 0 2




1 −1 1
1 0 1
0 2 1


−1
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1.23 problem problem 23
Internal problem ID [10284]
Internal file name [OUTPUT/9231_Monday_June_06_2022_01_44_47_PM_10020561/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 23.

Find the eigenvalues and associated eigenvectors of the matrix
1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 2 2 2
0 2− λ 2 2
0 0 3− λ 2
0 0 0 4− λ

 = 0

−(1− λ) (−2 + λ) (−3 + λ) (−4 + λ) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 3
λ4 = 4
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

4 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 2 2 2
0 1 2 2
0 0 2 2
0 0 0 3




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 2 2 2 0
0 1 2 2 0
0 0 2 2 0
0 0 0 3 0


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R2 = R2 −
R1

2 =⇒


0 2 2 2 0
0 0 1 1 0
0 0 2 2 0
0 0 0 3 0



R3 = R3 − 2R2 =⇒


0 2 2 2 0
0 0 1 1 0
0 0 0 0 0
0 0 0 3 0


Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

0 2 2 2 0
0 0 1 1 0
0 0 0 3 0
0 0 0 0 0


Therefore the system in Echelon form is

0 2 2 2
0 0 1 1
0 0 0 3
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1} and the leading variables are {v2, v3, v4}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0, v4 = 0}

Hence the solution is 
t

0
0
0

 =


t

0
0
0


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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0
0

 = t


1
0
0
0


Or, by letting t = 1 then the eigenvector is

t

0
0
0

 =


1
0
0
0


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




−1 2 2 2
0 0 2 2
0 0 1 2
0 0 0 2




v1

v2

v3

v4

 =


0
0
0
0


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We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 2 2 2 0
0 0 2 2 0
0 0 1 2 0
0 0 0 2 0



R3 = R3 −
R2

2 =⇒


−1 2 2 2 0
0 0 2 2 0
0 0 0 1 0
0 0 0 2 0



R4 = R4 − 2R3 =⇒


−1 2 2 2 0
0 0 2 2 0
0 0 0 1 0
0 0 0 0 0


Therefore the system in Echelon form is

−1 2 2 2
0 0 2 2
0 0 0 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2} and the leading variables are {v1, v3, v4}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v3 = 0, v4 = 0}

Hence the solution is 
2t
t

0
0

 =


2t
t

0
0


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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
t

0
0

 = t


2
1
0
0


Or, by letting t = 1 then the eigenvector is

2t
t

0
0

 =


2
1
0
0


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

− (3)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

−


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3






v1

v2

v3

v4

 =


0
0
0
0




−2 2 2 2
0 −1 2 2
0 0 0 2
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0


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We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−2 2 2 2 0
0 −1 2 2 0
0 0 0 2 0
0 0 0 1 0



R4 = R4 −
R3

2 =⇒


−2 2 2 2 0
0 −1 2 2 0
0 0 0 2 0
0 0 0 0 0


Therefore the system in Echelon form is

−2 2 2 2
0 −1 2 2
0 0 0 2
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3} and the leading variables are {v1, v2, v4}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 3t, v2 = 2t, v4 = 0}

Hence the solution is 
3t
2t
t

0

 =


3t
2t
t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

3t
2t
t

0

 = t


3
2
1
0


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Or, by letting t = 1 then the eigenvector is
3t
2t
t

0

 =


3
2
1
0


Considering λ = 4

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

− (4)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

−


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4






v1

v2

v3

v4

 =


0
0
0
0




−3 2 2 2
0 −2 2 2
0 0 −1 2
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−3 2 2 2 0
0 −2 2 2 0
0 0 −1 2 0
0 0 0 0 0


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Therefore the system in Echelon form is
−3 2 2 2
0 −2 2 2
0 0 −1 2
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 4t, v2 = 3t, v3 = 2t}

Hence the solution is 
4t
3t
2t
t

 =


4t
3t
2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

4t
3t
2t
t

 = t


4
3
2
1


Or, by letting t = 1 then the eigenvector is

4t
3t
2t
t

 =


4
3
2
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 4 No


1
0
0
0



2 1 4 No


2
1
0
0



3 1 4 No


3
2
1
0



4 1 4 No


4
3
2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4



P =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1


Therefore

1 2 2 2
0 2 2 2
0 0 3 2
0 0 0 4

 =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4




1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1



−1
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1.24 problem problem 24
Internal problem ID [10285]
Internal file name [OUTPUT/9232_Monday_June_06_2022_01_44_48_PM_25813954/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 24.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 0 4 0
0 1− λ 4 0
0 0 3− λ 0
0 0 0 3− λ

 = 0

−(1− λ) (−1 + λ) (−3 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1
λ3 = 3
λ4 = 3
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

3 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 4 0
0 0 4 0
0 0 2 0
0 0 0 2




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 4 0 0
0 0 4 0 0
0 0 2 0 0
0 0 0 2 0


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R2 = R2 −R1 =⇒


0 0 4 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 2 0



R3 = R3 −
R1

2 =⇒


0 0 4 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0


Since the current pivot A(2, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 4 gives

0 0 4 0 0
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

0 0 4 0
0 0 0 2
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1, v2} and the leading variables are {v3, v4}. Let v1 = t. Let
v2 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v3 = 0, v4 = 0}

Hence the solution is 
t

s

0
0

 =


t

s

0
0


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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

s

0
0

 =


t

0
0
0

+


0
s

0
0



= t


1
0
0
0

+ s


0
1
0
0


By letting t = 1 and s = 1 then the above becomes

t

s

0
0

 =


1
0
0
0

+


0
1
0
0


Hence the two eigenvectors associated with this eigenvalue are


1
0
0
0

 ,


0
1
0
0




Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

− (3)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

−


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3






v1

v2

v3

v4

 =


0
0
0
0




−2 0 4 0
0 −2 4 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−2 0 4 0 0
0 −2 4 0 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

−2 0 4 0
0 −2 4 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3, v4} and the leading variables are {v1, v2}. Let v3 = t. Let
v4 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v1 = 2t, v2 = 2t}
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Hence the solution is 
2t
2t
t

s

 =


2t
2t
t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

2t
2t
t

s

 =


2t
2t
t

0

+


0
0
0
s



= t


2
2
1
0

+ s


0
0
0
1


By letting t = 1 and s = 1 then the above becomes

2t
2t
t

s

 =


2
2
1
0

+


0
0
0
1


Hence the two eigenvectors associated with this eigenvalue are


2
2
1
0

 ,


0
0
0
1




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 4 No


1
0
0
0



3 2 4 No


0
1
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3



P =


1 0 2 0
0 1 2 0
0 0 1 0
0 0 0 1


Therefore

1 0 4 0
0 1 4 0
0 0 3 0
0 0 0 3

 =


1 0 2 0
0 1 2 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3




1 0 2 0
0 1 2 0
0 0 1 0
0 0 0 1



−1
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1.25 problem problem 25
Internal problem ID [10286]
Internal file name [OUTPUT/9233_Monday_June_06_2022_01_44_50_PM_49169769/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 25.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 0 1 0
0 1− λ 1 0
0 0 2− λ 0
0 0 0 2− λ

 = 0

−(1− λ) (−1 + λ) (−2 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1
λ3 = 2
λ4 = 2
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

2 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0


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R2 = R2 −R1 =⇒


0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0



R3 = R3 −R1 =⇒


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0


Since the current pivot A(2, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 4 gives

0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1, v2} and the leading variables are {v3, v4}. Let v1 = t. Let
v2 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v3 = 0, v4 = 0}

Hence the solution is 
t

s

0
0

 =


t

s

0
0


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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

s

0
0

 =


t

0
0
0

+


0
s

0
0



= t


1
0
0
0

+ s


0
1
0
0


By letting t = 1 and s = 1 then the above becomes

t

s

0
0

 =


1
0
0
0

+


0
1
0
0


Hence the two eigenvectors associated with this eigenvalue are


1
0
0
0

 ,


0
1
0
0




Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




−1 0 1 0
0 −1 1 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 0 1 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

−1 0 1 0
0 −1 1 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3, v4} and the leading variables are {v1, v2}. Let v3 = t. Let
v4 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v1 = t, v2 = t}
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Hence the solution is 
t

t

t

s

 =


t

t

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

t

t

s

 =


t

t

t

0

+


0
0
0
s



= t


1
1
1
0

+ s


0
0
0
1


By letting t = 1 and s = 1 then the above becomes

t

t

t

s

 =


1
1
1
0

+


0
0
0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
1
0

 ,


0
0
0
1




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 4 No


1
0
0
0



2 2 4 No


0
1
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2



P =


1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1


Therefore

1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

 =


1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2




1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1



−1
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1.26 problem problem 26
Internal problem ID [10287]
Internal file name [OUTPUT/9234_Monday_June_06_2022_01_44_50_PM_96183690/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 26.

Find the eigenvalues and associated eigenvectors of the matrix
4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


4− λ 0 0 −3
0 2− λ 0 0
0 0 −1− λ 0
6 0 0 −5− λ

 = 0

λ4 − 5λ2 + 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

− (−1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

−


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






v1

v2

v3

v4

 =


0
0
0
0




5 0 0 −3
0 3 0 0
0 0 0 0
6 0 0 −4




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

5 0 0 −3 0
0 3 0 0 0
0 0 0 0 0
6 0 0 −4 0


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R4 = R4 −
6R1

5 =⇒


5 0 0 −3 0
0 3 0 0 0
0 0 0 0 0
0 0 0 −2

5 0


Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

5 0 0 −3 0
0 3 0 0 0
0 0 0 −2

5 0

0 0 0 0 0


Therefore the system in Echelon form is

5 0 0 −3
0 3 0 0
0 0 0 −2

5

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3} and the leading variables are {v1, v2, v4}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0, v4 = 0}

Hence the solution is 
0
0
t

0

 =


0
0
t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
t

0

 = t


0
0
1
0


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Or, by letting t = 1 then the eigenvector is
0
0
t

0

 =


0
0
1
0


Considering λ = −2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

− (−2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

−


−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2






v1

v2

v3

v4

 =


0
0
0
0




6 0 0 −3
0 4 0 0
0 0 1 0
6 0 0 −3




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

6 0 0 −3 0
0 4 0 0 0
0 0 1 0 0
6 0 0 −3 0


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R4 = R4 −R1 =⇒


6 0 0 −3 0
0 4 0 0 0
0 0 1 0 0
0 0 0 0 0


Therefore the system in Echelon form is

6 0 0 −3
0 4 0 0
0 0 1 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = 0, v3 = 0
}

Hence the solution is 
t
2

0
0
t

 =


t
2

0
0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

0
0
t

 = t


1
2

0
0
1


Or, by letting t = 1 then the eigenvector is

t
2

0
0
t

 =


1
2

0
0
1


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Which can be normalized to 
t
2

0
0
t

 =


1
0
0
2


Considering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




3 0 0 −3
0 1 0 0
0 0 −2 0
6 0 0 −6




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 0 0 −3 0
0 1 0 0 0
0 0 −2 0 0
6 0 0 −6 0


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R4 = R4 − 2R1 =⇒


3 0 0 −3 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0


Therefore the system in Echelon form is

3 0 0 −3
0 1 0 0
0 0 −2 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0, v3 = 0}

Hence the solution is 
t

0
0
t

 =


t

0
0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0
t

 = t


1
0
0
1


Or, by letting t = 1 then the eigenvector is

t

0
0
t

 =


1
0
0
1


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




2 0 0 −3
0 0 0 0
0 0 −3 0
6 0 0 −7




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 0 0 −3 0
0 0 0 0 0
0 0 −3 0 0
6 0 0 −7 0



R4 = R4 − 3R1 =⇒


2 0 0 −3 0
0 0 0 0 0
0 0 −3 0 0
0 0 0 2 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
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row with a non-zero pivot. Swapping row 2 and row 3 gives
2 0 0 −3 0
0 0 −3 0 0
0 0 0 0 0
0 0 0 2 0


Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

2 0 0 −3 0
0 0 −3 0 0
0 0 0 2 0
0 0 0 0 0


Therefore the system in Echelon form is

2 0 0 −3
0 0 −3 0
0 0 0 2
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2} and the leading variables are {v1, v3, v4}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v3 = 0, v4 = 0}

Hence the solution is 
0
t

0
0

 =


0
t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

0
0

 = t


0
1
0
0


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Or, by letting t = 1 then the eigenvector is
0
t

0
0

 =


0
1
0
0


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 1 4 No


0
0
1
0



−2 1 4 No


1
0
0
2



1 1 4 No


1
0
0
1



2 1 4 No


0
1
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =


−1 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2



P =


0 1 1 0
0 0 0 1
1 0 0 0
0 2 1 0


Therefore

4 0 0 −3
0 2 0 0
0 0 −1 0
6 0 0 −5

 =


0 1 1 0
0 0 0 1
1 0 0 0
0 2 1 0




−1 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2




0 1 1 0
0 0 0 1
1 0 0 0
0 2 1 0



−1
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1.27 problem problem 27
Internal problem ID [10288]
Internal file name [OUTPUT/9235_Monday_June_06_2022_01_44_52_PM_14054475/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 27.

Find the eigenvalues and associated eigenvectors of the matrix 0 1
−1 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 1
−1 0

− λ

 1 0
0 1

 = 0

det

 −λ 1
−1 −λ

 = 0

λ2 + 1 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = i

λ2 = −i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−i 1 complex eigenvalue

i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −i
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 1

−1 0

− (−i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 1

−1 0

−

 −i 0
0 −i

 v1

v2

 =

 0
0


 i 1

−1 i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  i 1 0

−1 i 0



R2 = −iR1 +R2 =⇒

i 1 0
0 0 0


Therefore the system in Echelon form is i 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = it}

Hence the solution is  I t
t

 =

 it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I t

t

 = t

 i

1



170



Or, by letting t = 1 then the eigenvector is I t
t

 =

 i

1


Considering λ = i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 1

−1 0

− (i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 1

−1 0

−

 i 0
0 i

 v1

v2

 =

 0
0


 −i 1

−1 −i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −i 1 0

−1 −i 0



R2 = iR1 +R2 =⇒

−i 1 0
0 0 0


Therefore the system in Echelon form is −i 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −it}
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Hence the solution is  -I t
t

 =

 −it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as -I t

t

 = t

 −i

1


Or, by letting t = 1 then the eigenvector is -I t

t

 =

 −i

1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−i 1 2 No

 i

1


i 1 2 No

 −i

1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 −i 0
0 i


P =

 i −i

1 1


Therefore  0 1

−1 0

 =

 i −i

1 1

 −i 0
0 i

 i −i

1 1

−1
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1.28 problem problem 28
Internal problem ID [10289]
Internal file name [OUTPUT/9236_Monday_June_06_2022_01_44_53_PM_82695140/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 28.

Find the eigenvalues and associated eigenvectors of the matrix 0 −6
6 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 −6
6 0

− λ

 1 0
0 1

 = 0

det

 −λ −6
6 −λ

 = 0

λ2 + 36 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 6i
λ2 = −6i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

6i 1 complex eigenvalue

−6i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 6i

173



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −6

6 0

− (6i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −6

6 0

−

 6i 0
0 6i

 v1

v2

 =

 0
0


 −6i −6

6 −6i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −6i −6 0

6 −6i 0



R2 = −iR1 +R2 =⇒

−6i −6 0
0 0 0


Therefore the system in Echelon form is −6i −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = it}

Hence the solution is  I t
t

 =

 it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I t

t

 = t

 i

1


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Or, by letting t = 1 then the eigenvector is I t
t

 =

 i

1


Considering λ = −6i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −6

6 0

− (−6i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −6

6 0

−

 −6i 0
0 −6i

 v1

v2

 =

 0
0


 6i −6

6 6i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6i −6 0

6 6i 0



R2 = iR1 +R2 =⇒

6i −6 0
0 0 0


Therefore the system in Echelon form is 6i −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −it}
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Hence the solution is  -I t
t

 =

 −it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as -I t

t

 = t

 −i

1


Or, by letting t = 1 then the eigenvector is -I t

t

 =

 −i

1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

6i 1 2 No

 i

1


−6i 1 2 No

 −i

1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 6i 0
0 −6i


P =

 i −i

1 1


Therefore  0 −6

6 0

 =

 i −i

1 1

 6i 0
0 −6i

 i −i

1 1

−1
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1.29 problem problem 29
Internal problem ID [10290]
Internal file name [OUTPUT/9237_Monday_June_06_2022_01_44_53_PM_40858430/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 29.

Find the eigenvalues and associated eigenvectors of the matrix 0 −3
12 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 −3
12 0

− λ

 1 0
0 1

 = 0

det

 −λ −3
12 −λ

 = 0

λ2 + 36 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 6i
λ2 = −6i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

6i 1 complex eigenvalue

−6i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 6i
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −3

12 0

− (6i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −3

12 0

−

 6i 0
0 6i

 v1

v2

 =

 0
0


 −6i −3

12 −6i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −6i −3 0

12 −6i 0



R2 = −2iR1 +R2 =⇒

−6i −3 0
0 0 0


Therefore the system in Echelon form is −6i −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = it

2

}
Hence the solution is  I

2t

t

 =

 it
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I

2t

t

 = t

 i
2

1


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Or, by letting t = 1 then the eigenvector is I
2t

t

 =

 i
2

1


Which can be normalized to  I

2t

t

 =

 i

2


Considering λ = −6i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −3

12 0

− (−6i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −3

12 0

−

 −6i 0
0 −6i

 v1

v2

 =

 0
0


 6i −3

12 6i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6i −3 0

12 6i 0



R2 = 2iR1 +R2 =⇒

6i −3 0
0 0 0


Therefore the system in Echelon form is 6i −3

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − it

2

}
Hence the solution is  − I

2t

t

 =

 − it
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − I

2t

t

 = t

 − i
2

1


Or, by letting t = 1 then the eigenvector is − I

2t

t

 =

 − i
2

1


Which can be normalized to  − I

2t

t

 =

 −i

2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

6i 1 2 No

 i

2


−6i 1 2 No

 −i

2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =

 6i 0
0 −6i


P =

 i −i

2 2


Therefore  0 −3

12 0

 =

 i −i

2 2

 6i 0
0 −6i

 i −i

2 2

−1
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1.30 problem problem 30
Internal problem ID [10291]
Internal file name [OUTPUT/9238_Monday_June_06_2022_01_44_54_PM_24323647/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 30.

Find the eigenvalues and associated eigenvectors of the matrix 0 −12
12 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 −12
12 0

− λ

 1 0
0 1

 = 0

det

 −λ −12
12 −λ

 = 0

λ2 + 144 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 12i
λ2 = −12i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−12i 1 complex eigenvalue

12i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −12i
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −12

12 0

− (−12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −12

12 0

−

 −12i 0
0 −12i

 v1

v2

 =

 0
0


 12i −12

12 12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 12i −12 0

12 12i 0



R2 = iR1 +R2 =⇒

12i −12 0
0 0 0


Therefore the system in Echelon form is 12i −12

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −it}

Hence the solution is  -I t
t

 =

 −it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as -I t

t

 = t

 −i

1


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Or, by letting t = 1 then the eigenvector is -I t
t

 =

 −i

1


Considering λ = 12i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −12

12 0

− (12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −12

12 0

−

 12i 0
0 12i

 v1

v2

 =

 0
0


 −12i −12

12 −12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −12i −12 0

12 −12i 0



R2 = −iR1 +R2 =⇒

−12i −12 0
0 0 0


Therefore the system in Echelon form is −12i −12

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = it}
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Hence the solution is  I t
t

 =

 it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I t

t

 = t

 i

1


Or, by letting t = 1 then the eigenvector is I t

t

 =

 i

1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−12i 1 2 No

 −i

1


12i 1 2 No

 i

1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 −12i 0
0 12i


P =

 −i i

1 1


Therefore  0 −12

12 0

 =

 −i i

1 1

 −12i 0
0 12i

 −i i

1 1

−1
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1.31 problem problem 31
Internal problem ID [10292]
Internal file name [OUTPUT/9239_Monday_June_06_2022_01_44_55_PM_96866979/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 31.

Find the eigenvalues and associated eigenvectors of the matrix 0 24
−6 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 24
−6 0

− λ

 1 0
0 1

 = 0

det

 −λ 24
−6 −λ

 = 0

λ2 + 144 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 12i
λ2 = −12i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−12i 1 complex eigenvalue

12i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −12i
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 24

−6 0

− (−12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 24

−6 0

−

 −12i 0
0 −12i

 v1

v2

 =

 0
0


 12i 24

−6 12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 12i 24 0

−6 12i 0



R2 = R2 −
iR1

2 =⇒

12i 24 0
0 0 0


Therefore the system in Echelon form is 12i 24

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2it}

Hence the solution is  2 I t
t

 =

 2it
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2 I t

t

 = t

 2i
1


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Or, by letting t = 1 then the eigenvector is 2 I t
t

 =

 2i
1


Considering λ = 12i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 24

−6 0

− (12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 24

−6 0

−

 12i 0
0 12i

 v1

v2

 =

 0
0


 −12i 24

−6 −12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −12i 24 0

−6 −12i 0



R2 = R2 +
iR1

2 =⇒

−12i 24 0
0 0 0


Therefore the system in Echelon form is −12i 24

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −2it}
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Hence the solution is  −2 I t
t

 =

 −2it
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −2 I t

t

 = t

 −2i
1


Or, by letting t = 1 then the eigenvector is −2 I t

t

 =

 −2i
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−12i 1 2 No

 2i
1


12i 1 2 No

 −2i
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 −12i 0
0 12i


P =

 2i −2i
1 1


Therefore  0 24

−6 0

 =

 2i −2i
1 1

 −12i 0
0 12i

 2i −2i
1 1

−1
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1.32 problem problem 32
Internal problem ID [10293]
Internal file name [OUTPUT/9240_Monday_June_06_2022_01_44_56_PM_75504834/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 32.

Find the eigenvalues and associated eigenvectors of the matrix 0 −4
36 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 0 −4
36 0

− λ

 1 0
0 1

 = 0

det

 −λ −4
36 −λ

 = 0

λ2 + 144 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 12i
λ2 = −12i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−12i 1 complex eigenvalue

12i 1 complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −12i
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −4

36 0

− (−12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −4

36 0

−

 −12i 0
0 −12i

 v1

v2

 =

 0
0


 12i −4

36 12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 12i −4 0

36 12i 0



R2 = 3iR1 +R2 =⇒

12i −4 0
0 0 0


Therefore the system in Echelon form is 12i −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − it

3

}
Hence the solution is  − I

3t

t

 =

 − it
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − I

3t

t

 = t

 − i
3

1


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Or, by letting t = 1 then the eigenvector is − I
3t

t

 =

 − i
3

1


Which can be normalized to  − I

3t

t

 =

 −i

3


Considering λ = 12i

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 0 −4

36 0

− (12i)

 1 0
0 1

 v1

v2

 =

 0
0


 0 −4

36 0

−

 12i 0
0 12i

 v1

v2

 =

 0
0


 −12i −4

36 −12i

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −12i −4 0

36 −12i 0



R2 = −3iR1 +R2 =⇒

−12i −4 0
0 0 0


Therefore the system in Echelon form is −12i −4

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = it

3

}
Hence the solution is  I

3t

t

 =

 it
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I

3t

t

 = t

 i
3

1


Or, by letting t = 1 then the eigenvector is I

3t

t

 =

 i
3

1


Which can be normalized to  I

3t

t

 =

 i

3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−12i 1 2 No

 −i

3


12i 1 2 No

 i

3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =

 −12i 0
0 12i


P =

 −i i

3 3


Therefore  0 −4

36 0

 =

 −i i

3 3

 −12i 0
0 12i

 −i i

3 3

−1
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1.33 problem problem 40
Internal problem ID [10294]
Internal file name [OUTPUT/9241_Monday_June_06_2022_01_44_56_PM_60806489/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 40.

Find the eigenvalues and associated eigenvectors of the matrix
32 −67 47
7 −14 13
−7 15 −6


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




32 −67 47
7 −14 13
−7 15 −6

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


32− λ −67 47

7 −14− λ 13
−7 15 −6− λ

 = 0

−λ3 + 12λ2 − 47λ+ 60 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 5
λ2 = 3
λ3 = 4

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

4 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


32 −67 47
7 −14 13
−7 15 −6

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





32 −67 47
7 −14 13
−7 15 −6

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




29 −67 47
7 −17 13
−7 15 −9




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

29 −67 47 0
7 −17 13 0
−7 15 −9 0



R2 = R2 −
7R1

29 =⇒


29 −67 47 0
0 −24

29
48
29 0

−7 15 −9 0


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R3 = R3 +
7R1

29 =⇒


29 −67 47 0
0 −24

29
48
29 0

0 −34
29

68
29 0



R3 = R3 −
17R2

12 =⇒


29 −67 47 0
0 −24

29
48
29 0

0 0 0 0


Therefore the system in Echelon form is

29 −67 47
0 −24

29
48
29

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 3t, v2 = 2t}

Hence the solution is 
3t
2t
t

 =


3t
2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

3t
2t
t

 = t


3
2
1


Or, by letting t = 1 then the eigenvector is

3t
2t
t

 =


3
2
1


Considering λ = 4
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


32 −67 47
7 −14 13
−7 15 −6

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





32 −67 47
7 −14 13
−7 15 −6

−


4 0 0
0 4 0
0 0 4





v1

v2

v3

 =


0
0
0




28 −67 47
7 −18 13
−7 15 −10




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

28 −67 47 0
7 −18 13 0
−7 15 −10 0



R2 = R2 −
R1

4 =⇒


28 −67 47 0
0 −5

4
5
4 0

−7 15 −10 0



R3 = R3 +
R1

4 =⇒


28 −67 47 0
0 −5

4
5
4 0

0 −7
4

7
4 0



R3 = R3 −
7R2

5 =⇒


28 −67 47 0
0 −5

4
5
4 0

0 0 0 0


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Therefore the system in Echelon form is
28 −67 47
0 −5

4
5
4

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 5t

7 , v2 = t
}

Hence the solution is 
5t
7

t

t

 =


5t
7

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

5t
7

t

t

 = t


5
7

1
1


Or, by letting t = 1 then the eigenvector is

5t
7

t

t

 =


5
7

1
1


Which can be normalized to 

5t
7

t

t

 =


5
7
7


Considering λ = 5
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


32 −67 47
7 −14 13
−7 15 −6

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





32 −67 47
7 −14 13
−7 15 −6

−


5 0 0
0 5 0
0 0 5





v1

v2

v3

 =


0
0
0




27 −67 47
7 −19 13
−7 15 −11




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

27 −67 47 0
7 −19 13 0
−7 15 −11 0



R2 = R2 −
7R1

27 =⇒


27 −67 47 0
0 −44

27
22
27 0

−7 15 −11 0



R3 = R3 +
7R1

27 =⇒


27 −67 47 0
0 −44

27
22
27 0

0 −64
27

32
27 0



R3 = R3 −
16R2

11 =⇒


27 −67 47 0
0 −44

27
22
27 0

0 0 0 0


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Therefore the system in Echelon form is
27 −67 47
0 −44

27
22
27

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 =
t
2

}
Hence the solution is 

− t
2

t
2

t

 =


− t

2
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

t
2

t

 = t


−1

2
1
2

1


Or, by letting t = 1 then the eigenvector is

− t
2

t
2

t

 =


−1

2
1
2

1


Which can be normalized to 

− t
2

t
2

t

 =


−1
1
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

3 1 3 No


3
2
1



4 1 3 No


5
7
7



5 1 3 No


−1
1
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


3 0 0
0 4 0
0 0 5



P =


3 5 −1
2 7 1
1 7 2


Therefore 

32 −67 47
7 −14 13
−7 15 −6

 =


3 5 −1
2 7 1
1 7 2




3 0 0
0 4 0
0 0 5




3 5 −1
2 7 1
1 7 2


−1
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1.34 problem problem 41
Internal problem ID [10295]
Internal file name [OUTPUT/9242_Monday_June_06_2022_01_44_57_PM_12178831/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.1, Introduction to Eigenvalues, Eigenvalues and Eigenvectors. Page 346
Problem number: problem 41.

Find the eigenvalues and associated eigenvectors of the matrix
22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


22− λ −9 −8 −8
10 −7− λ −14 2
10 0 8− λ −10
29 −9 −3 −15− λ

 = 0

λ4 − 8λ3 + 11λ2 + 32λ− 60 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 3
λ3 = 5
λ4 = −2
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

5 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

− (−2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

−


−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2






v1

v2

v3

v4

 =


0
0
0
0




24 −9 −8 −8
10 −5 −14 2
10 0 10 −10
29 −9 −3 −13




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

24 −9 −8 −8 0
10 −5 −14 2 0
10 0 10 −10 0
29 −9 −3 −13 0



204



R2 = R2 −
5R1

12 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

10 0 10 −10 0
29 −9 −3 −13 0



R3 = R3 −
5R1

12 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

0 15
4

40
3 −20

3 0

29 −9 −3 −13 0



R4 = R4 −
29R1

24 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

0 15
4

40
3 −20

3 0

0 15
8

20
3 −10

3 0



R3 = R3 + 3R2 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

0 0 −56
3

28
3 0

0 15
8

20
3 −10

3 0



R4 = R4 +
3R2

2 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

0 0 −56
3

28
3 0

0 0 −28
3

14
3 0



R4 = R4 −
R3

2 =⇒


24 −9 −8 −8 0
0 −5

4 −32
3

16
3 0

0 0 −56
3

28
3 0

0 0 0 0 0


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Therefore the system in Echelon form is
24 −9 −8 −8
0 −5

4 −32
3

16
3

0 0 −56
3

28
3

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = 0, v3 = t
2

}
Hence the solution is 

t
2

0
t
2

t

 =


t
2

0
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

0
t
2

t

 = t


1
2

0
1
2

1


Or, by letting t = 1 then the eigenvector is

t
2

0
t
2

t

 =


1
2

0
1
2

1


Which can be normalized to 

t
2

0
t
2

t

 =


1
0
1
2


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Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




20 −9 −8 −8
10 −9 −14 2
10 0 6 −10
29 −9 −3 −17




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

20 −9 −8 −8 0
10 −9 −14 2 0
10 0 6 −10 0
29 −9 −3 −17 0



R2 = R2 −
R1

2 =⇒


20 −9 −8 −8 0
0 −9

2 −10 6 0

10 0 6 −10 0
29 −9 −3 −17 0


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R3 = R3 −
R1

2 =⇒


20 −9 −8 −8 0
0 −9

2 −10 6 0

0 9
2 10 −6 0

29 −9 −3 −17 0



R4 = R4 −
29R1

20 =⇒


20 −9 −8 −8 0
0 −9

2 −10 6 0

0 9
2 10 −6 0

0 81
20

43
5 −27

5 0



R3 = R3 +R2 =⇒


20 −9 −8 −8 0
0 −9

2 −10 6 0

0 0 0 0 0
0 81

20
43
5 −27

5 0



R4 = R4 +
9R2

10 =⇒


20 −9 −8 −8 0
0 −9

2 −10 6 0

0 0 0 0 0
0 0 −2

5 0 0


Since the current pivot A(3, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

20 −9 −8 −8 0
0 −9

2 −10 6 0

0 0 −2
5 0 0

0 0 0 0 0


Therefore the system in Echelon form is

20 −9 −8 −8
0 −9

2 −10 6

0 0 −2
5 0

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


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The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = 4t

3 , v3 = 0
}

Hence the solution is 
t

4t
3

0
t

 =


t

4t
3

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

4t
3

0
t

 = t


1
4
3

0
1


Or, by letting t = 1 then the eigenvector is

t

4t
3

0
t

 =


1
4
3

0
1


Which can be normalized to 

t

4t
3

0
t

 =


3
4
0
3


Considering λ = 3

209



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

− (3)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

−


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3






v1

v2

v3

v4

 =


0
0
0
0




19 −9 −8 −8
10 −10 −14 2
10 0 5 −10
29 −9 −3 −18




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

19 −9 −8 −8 0
10 −10 −14 2 0
10 0 5 −10 0
29 −9 −3 −18 0



R2 = R2 −
10R1

19 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

10 0 5 −10 0
29 −9 −3 −18 0


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R3 = R3 −
10R1

19 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

0 90
19

175
19 −110

19 0

29 −9 −3 −18 0



R4 = R4 −
29R1

19 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

0 90
19

175
19 −110

19 0

0 90
19

175
19 −110

19 0



R3 = R3 +
9R2

10 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

0 0 2
5 −1

5 0

0 90
19

175
19 −110

19 0



R4 = R4 +
9R2

10 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

0 0 2
5 −1

5 0

0 0 2
5 −1

5 0



R4 = R4 −R3 =⇒


19 −9 −8 −8 0
0 −100

19 −186
19

118
19 0

0 0 2
5 −1

5 0

0 0 0 0 0


Therefore the system in Echelon form is

19 −9 −8 −8
0 −100

19 −186
19

118
19

0 0 2
5 −1

5

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


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The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 3t

4 , v2 =
t
4 , v3 =

t
2

}
Hence the solution is 

3t
4
t
4
t
2

t

 =


3t
4
t
4
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

3t
4
t
4
t
2

t

 = t


3
4
1
4
1
2

1


Or, by letting t = 1 then the eigenvector is

3t
4
t
4
t
2

t

 =


3
4
1
4
1
2

1


Which can be normalized to 

3t
4
t
4
t
2

t

 =


3
1
2
4


Considering λ = 5
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

− (5)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

−


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5






v1

v2

v3

v4

 =


0
0
0
0




17 −9 −8 −8
10 −12 −14 2
10 0 3 −10
29 −9 −3 −20




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

17 −9 −8 −8 0
10 −12 −14 2 0
10 0 3 −10 0
29 −9 −3 −20 0



R2 = R2 −
10R1

17 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

10 0 3 −10 0
29 −9 −3 −20 0


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R3 = R3 −
10R1

17 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

0 90
17

131
17 −90

17 0

29 −9 −3 −20 0



R4 = R4 −
29R1

17 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

0 90
17

131
17 −90

17 0

0 108
17

181
17 −108

17 0



R3 = R3 +
15R2

19 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

0 0 7
19 0 0

0 108
17

181
17 −108

17 0



R4 = R4 +
18R2

19 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

0 0 7
19 0 0

0 0 35
19 0 0



R4 = R4 − 5R3 =⇒


17 −9 −8 −8 0
0 −114

17 −158
17

114
17 0

0 0 7
19 0 0

0 0 0 0 0


Therefore the system in Echelon form is

17 −9 −8 −8
0 −114

17 −158
17

114
17

0 0 7
19 0

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


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The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t, v3 = 0}

Hence the solution is 
t

t

0
t

 =


t

t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0
t

 = t


1
1
0
1


Or, by letting t = 1 then the eigenvector is

t

t

0
t

 =


1
1
0
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−2 1 4 No


1
0
1
2



2 1 4 No


3
4
0
3



3 1 4 No


3
1
2
4



5 1 4 No


1
1
0
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =


−2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 5



P =


1 3 3 1
0 4 1 1
1 0 2 0
2 3 4 1


Therefore

22 −9 −8 −8
10 −7 −14 2
10 0 8 −10
29 −9 −3 −15

 =


1 3 3 1
0 4 1 1
1 0 2 0
2 3 4 1




−2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 5




1 3 3 1
0 4 1 1
1 0 2 0
2 3 4 1



−1
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2.1 problem problem 1
Internal problem ID [10296]
Internal file name [OUTPUT/9243_Monday_June_06_2022_01_44_59_PM_66444117/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 1.

Find the eigenvalues and associated eigenvectors of the matrix 5 −4
2 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 5 −4
2 −1

− λ

 1 0
0 1

 = 0

det

 5− λ −4
2 −1− λ

 = 0

λ2 − 4λ+ 3 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −4

2 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −4

2 −1

−

 1 0
0 1

 v1

v2

 =

 0
0


 4 −4

2 −2

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −4 0

2 −2 0



R2 = R2 −
R1

2 =⇒

4 −4 0
0 0 0


Therefore the system in Echelon form is 4 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −4

2 −1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −4

2 −1

−

 3 0
0 3

 v1

v2

 =

 0
0


 2 −4

2 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 2 −4 0

2 −4 0



R2 = R2 −R1 =⇒

2 −4 0
0 0 0


Therefore the system in Echelon form is 2 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Or, by letting t = 1 then the eigenvector is 2t

t

 =

 2
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 1
1


3 1 2 No

 2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 3


P =

 1 2
1 1


Therefore  5 −4

2 −1

 =

 1 2
1 1

 1 0
0 3

 1 2
1 1

−1

222



2.2 problem problem 2
Internal problem ID [10297]
Internal file name [OUTPUT/9244_Monday_June_06_2022_01_45_00_PM_98617278/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 2.

Find the eigenvalues and associated eigenvectors of the matrix 6 −6
4 −4


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 6 −6
4 −4

− λ

 1 0
0 1

 = 0

det

 6− λ −6
4 −4− λ

 = 0

λ2 − 2λ = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −6

4 −4

− (0)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −6

4 −4

−

 0 0
0 0

 v1

v2

 =

 0
0


 6 −6

4 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −6 0

4 −4 0



R2 = R2 −
2R1

3 =⇒

6 −6 0
0 0 0


Therefore the system in Echelon form is 6 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −6

4 −4

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −6

4 −4

−

 2 0
0 2

 v1

v2

 =

 0
0


 4 −6

4 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −6 0

4 −6 0



R2 = R2 −R1 =⇒

4 −6 0
0 0 0


Therefore the system in Echelon form is 4 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Or, by letting t = 1 then the eigenvector is 3t

2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 2 No

 1
1


2 1 2 No

 3
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 0 0
0 2


P =

 1 3
1 2


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Therefore  6 −6
4 −4

 =

 1 3
1 2

 0 0
0 2

 1 3
1 2

−1
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2.3 problem problem 3
Internal problem ID [10298]
Internal file name [OUTPUT/9245_Monday_June_06_2022_01_45_00_PM_77891827/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 3.

Find the eigenvalues and associated eigenvectors of the matrix 5 −3
2 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 5 −3
2 0

− λ

 1 0
0 1

 = 0

det

 5− λ −3
2 −λ

 = 0

λ2 − 5λ+ 6 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −3

2 0

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −3

2 0

−

 2 0
0 2

 v1

v2

 =

 0
0


 3 −3

2 −2

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −3 0

2 −2 0



R2 = R2 −
2R1

3 =⇒

3 −3 0
0 0 0


Therefore the system in Echelon form is 3 −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1



229



Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −3

2 0

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −3

2 0

−

 3 0
0 3

 v1

v2

 =

 0
0


 2 −3

2 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 2 −3 0

2 −3 0



R2 = R2 −R1 =⇒

2 −3 0
0 0 0


Therefore the system in Echelon form is 2 −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Or, by letting t = 1 then the eigenvector is 3t

2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 2 No

 1
1


3 1 2 No

 3
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 3


P =

 1 3
1 2


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Therefore  5 −3
2 0

 =

 1 3
1 2

 2 0
0 3

 1 3
1 2

−1
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2.4 problem problem 4
Internal problem ID [10299]
Internal file name [OUTPUT/9246_Monday_June_06_2022_01_45_01_PM_52924244/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 4.

Find the eigenvalues and associated eigenvectors of the matrix 5 −4
3 −2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 5 −4
3 −2

− λ

 1 0
0 1

 = 0

det

 5− λ −4
3 −2− λ

 = 0

λ2 − 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −4

3 −2

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −4

3 −2

−

 1 0
0 1

 v1

v2

 =

 0
0


 4 −4

3 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −4 0

3 −3 0



R2 = R2 −
3R1

4 =⇒

4 −4 0
0 0 0


Therefore the system in Echelon form is 4 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 −4

3 −2

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 5 −4

3 −2

−

 2 0
0 2

 v1

v2

 =

 0
0


 3 −4

3 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 3 −4 0

3 −4 0



R2 = R2 −R1 =⇒

3 −4 0
0 0 0


Therefore the system in Echelon form is 3 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

3

}
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Hence the solution is  4t
3

t

 =

 4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

3

t

 = t

 4
3

1


Or, by letting t = 1 then the eigenvector is 4t

3

t

 =

 4
3

1


Which can be normalized to  4t

3

t

 =

 4
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 1
1


2 1 2 No

 4
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 2


P =

 1 4
1 3


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Therefore  5 −4
3 −2

 =

 1 4
1 3

 1 0
0 2

 1 4
1 3

−1
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2.5 problem problem 5
Internal problem ID [10300]
Internal file name [OUTPUT/9247_Monday_June_06_2022_01_45_02_PM_55297811/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 5.

Find the eigenvalues and associated eigenvectors of the matrix 9 −8
6 −5


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 9 −8
6 −5

− λ

 1 0
0 1

 = 0

det

 9− λ −8
6 −5− λ

 = 0

λ2 − 4λ+ 3 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 9 −8

6 −5

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 9 −8

6 −5

−

 1 0
0 1

 v1

v2

 =

 0
0


 8 −8

6 −6

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 8 −8 0

6 −6 0



R2 = R2 −
3R1

4 =⇒

8 −8 0
0 0 0


Therefore the system in Echelon form is 8 −8

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


Considering λ = 3

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 9 −8

6 −5

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 9 −8

6 −5

−

 3 0
0 3

 v1

v2

 =

 0
0


 6 −8

6 −8

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 6 −8 0

6 −8 0



R2 = R2 −R1 =⇒

6 −8 0
0 0 0


Therefore the system in Echelon form is 6 −8

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

3

}
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Hence the solution is  4t
3

t

 =

 4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

3

t

 = t

 4
3

1


Or, by letting t = 1 then the eigenvector is 4t

3

t

 =

 4
3

1


Which can be normalized to  4t

3

t

 =

 4
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 1
1


3 1 2 No

 4
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 3


P =

 1 4
1 3


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Therefore  9 −8
6 −5

 =

 1 4
1 3

 1 0
0 3

 1 4
1 3

−1
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2.6 problem problem 6
Internal problem ID [10301]
Internal file name [OUTPUT/9248_Monday_June_06_2022_01_45_02_PM_17597627/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 6.

Find the eigenvalues and associated eigenvectors of the matrix 10 −6
12 −7


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 10 −6
12 −7

− λ

 1 0
0 1

 = 0

det

 10− λ −6
12 −7− λ

 = 0

λ2 − 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −6

12 −7

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −6

12 −7

−

 1 0
0 1

 v1

v2

 =

 0
0


 9 −6

12 −8

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  9 −6 0

12 −8 0



R2 = R2 −
4R1

3 =⇒

9 −6 0
0 0 0


Therefore the system in Echelon form is 9 −6

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

3

}
Hence the solution is  2t

3

t

 =

 2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

3

t

 = t

 2
3

1


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Or, by letting t = 1 then the eigenvector is 2t
3

t

 =

 2
3

1


Which can be normalized to  2t

3

t

 =

 2
3


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 10 −6

12 −7

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 10 −6

12 −7

−

 2 0
0 2

 v1

v2

 =

 0
0


 8 −6

12 −9

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  8 −6 0

12 −9 0



R2 = R2 −
3R1

2 =⇒

8 −6 0
0 0 0


Therefore the system in Echelon form is 8 −6

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

4

}
Hence the solution is  3t

4

t

 =

 3t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

4

t

 = t

 3
4

1


Or, by letting t = 1 then the eigenvector is 3t

4

t

 =

 3
4

1


Which can be normalized to  3t

4

t

 =

 3
4


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 2
3


2 1 2 No

 3
4


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =

 1 0
0 2


P =

 2 3
3 4


Therefore  10 −6

12 −7

 =

 2 3
3 4

 1 0
0 2

 2 3
3 4

−1
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2.7 problem problem 7
Internal problem ID [10302]
Internal file name [OUTPUT/9249_Monday_June_06_2022_01_45_03_PM_99935789/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 7.

Find the eigenvalues and associated eigenvectors of the matrix 6 −10
2 −3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 6 −10
2 −3

− λ

 1 0
0 1

 = 0

det

 6− λ −10
2 −3− λ

 = 0

λ2 − 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −10

2 −3

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −10

2 −3

−

 1 0
0 1

 v1

v2

 =

 0
0


 5 −10

2 −4

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 5 −10 0

2 −4 0



R2 = R2 −
2R1

5 =⇒

5 −10 0
0 0 0


Therefore the system in Echelon form is 5 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


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Or, by letting t = 1 then the eigenvector is 2t
t

 =

 2
1


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 6 −10

2 −3

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −10

2 −3

−

 2 0
0 2

 v1

v2

 =

 0
0


 4 −10

2 −5

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 4 −10 0

2 −5 0



R2 = R2 −
R1

2 =⇒

4 −10 0
0 0 0


Therefore the system in Echelon form is 4 −10

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

2

}
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Hence the solution is  5t
2

t

 =

 5t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

2

t

 = t

 5
2

1


Or, by letting t = 1 then the eigenvector is 5t

2

t

 =

 5
2

1


Which can be normalized to  5t

2

t

 =

 5
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 2
1


2 1 2 No

 5
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 2


P =

 2 5
1 2


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Therefore  6 −10
2 −3

 =

 2 5
1 2

 1 0
0 2

 2 5
1 2

−1
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2.8 problem problem 8
Internal problem ID [10303]
Internal file name [OUTPUT/9250_Monday_June_06_2022_01_45_03_PM_78447792/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 8.

Find the eigenvalues and associated eigenvectors of the matrix 11 −15
6 −8


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 11 −15
6 −8

− λ

 1 0
0 1

 = 0

det

 11− λ −15
6 −8− λ

 = 0

λ2 − 3λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 11 −15

6 −8

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 11 −15

6 −8

−

 1 0
0 1

 v1

v2

 =

 0
0


 10 −15

6 −9

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 10 −15 0

6 −9 0



R2 = R2 −
3R1

5 =⇒

10 −15 0
0 0 0


Therefore the system in Echelon form is 10 −15

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
Hence the solution is  3t

2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


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Or, by letting t = 1 then the eigenvector is 3t
2

t

 =

 3
2

1


Which can be normalized to  3t

2

t

 =

 3
2


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 11 −15

6 −8

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 11 −15

6 −8

−

 2 0
0 2

 v1

v2

 =

 0
0


 9 −15

6 −10

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 9 −15 0

6 −10 0



R2 = R2 −
2R1

3 =⇒

9 −15 0
0 0 0


Therefore the system in Echelon form is 9 −15

0 0

 v1

v2

 =

 0
0


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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 5t

3

}
Hence the solution is  5t

3

t

 =

 5t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 5t

3

t

 = t

 5
3

1


Or, by letting t = 1 then the eigenvector is 5t

3

t

 =

 5
3

1


Which can be normalized to  5t

3

t

 =

 5
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 2 No

 3
2


2 1 2 No

 5
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

256



Where

D =

 1 0
0 2


P =

 3 5
2 3


Therefore  11 −15

6 −8

 =

 3 5
2 3

 1 0
0 2

 3 5
2 3

−1
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2.9 problem problem 9
Internal problem ID [10304]
Internal file name [OUTPUT/9251_Monday_June_06_2022_01_45_04_PM_73590790/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 9.

Find the eigenvalues and associated eigenvectors of the matrix −1 4
−1 3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 −1 4
−1 3

− λ

 1 0
0 1

 = 0

det

 −1− λ 4
−1 3− λ

 = 0

λ2 − 2λ+ 1 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 −1 4

−1 3

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 4

−1 3

−

 1 0
0 1

 v1

v2

 =

 0
0


 −2 4

−1 2

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is −2 4 0

−1 2 0



R2 = R2 −
R1

2 =⇒

−2 4 0
0 0 0


Therefore the system in Echelon form is −2 4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


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Or, by letting t = 1 then the eigenvector is 2t
t

 =

 2
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 2 No

 2
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 1 0
0 1


P =

 2
1


Therefore  −1 4

−1 3

 =

 2
1

 1 0
0 1

 2
1

−1
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2.10 problem problem 10
Internal problem ID [10305]
Internal file name [OUTPUT/9252_Monday_June_06_2022_01_45_04_PM_54819035/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 10.

Find the eigenvalues and associated eigenvectors of the matrix 3 −1
1 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 3 −1
1 1

− λ

 1 0
0 1

 = 0

det

 3− λ −1
1 1− λ

 = 0

λ2 − 4λ+ 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 3 −1

1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 3 −1

1 1

−

 2 0
0 2

 v1

v2

 =

 0
0


 1 −1

1 −1

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 1 −1 0

1 −1 0



R2 = R2 −R1 =⇒

1 −1 0
0 0 0


Therefore the system in Echelon form is 1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


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Or, by letting t = 1 then the eigenvector is t

t

 =

 1
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 2 2 No

 1
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 2


P =

 1
1


Therefore  3 −1

1 1

 =

 1
1

 2 0
0 2

 1
1

−1
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2.11 problem problem 11
Internal problem ID [10306]
Internal file name [OUTPUT/9253_Monday_June_06_2022_01_45_04_PM_89645115/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 11.

Find the eigenvalues and associated eigenvectors of the matrix 5 1
−9 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 5 1
−9 −1

− λ

 1 0
0 1

 = 0

det

 5− λ 1
−9 −1− λ

 = 0

λ2 − 4λ+ 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 5 1

−9 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 5 1

−9 −1

−

 2 0
0 2

 v1

v2

 =

 0
0


 3 1

−9 −3

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  3 1 0

−9 −3 0



R2 = R2 + 3R1 =⇒

3 1 0
0 0 0


Therefore the system in Echelon form is 3 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − t

3

}
Hence the solution is  − t

3

t

 =

 − t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − t

3

t

 = t

 −1
3

1


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Or, by letting t = 1 then the eigenvector is − t
3

t

 =

 −1
3

1


Which can be normalized to  − t

3

t

 =

 −1
3


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 2 2 No

 −1
3


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 2 0
0 2


P =

 −1
3


Therefore  5 1

−9 −1

 =

 −1
3

 2 0
0 2

 −1
3

−1
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2.12 problem problem 12
Internal problem ID [10307]
Internal file name [OUTPUT/9254_Monday_June_06_2022_01_45_05_PM_89895560/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 12.

Find the eigenvalues and associated eigenvectors of the matrix 11 9
−16 −13


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det

 11 9
−16 −13

− λ

 1 0
0 1

 = 0

det

 11− λ 9
−16 −13− λ

 = 0

λ2 + 2λ+ 1 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = −1
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0 11 9

−16 −13

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 11 9

−16 −13

−

 −1 0
0 −1

 v1

v2

 =

 0
0


 12 9

−16 −12

 v1

v2

 =

 0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is  12 9 0

−16 −12 0



R2 = R2 +
4R1

3 =⇒

12 9 0
0 0 0


Therefore the system in Echelon form is 12 9

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = −3t

4

}
Hence the solution is  −3t

4

t

 =

 −3t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −3t

4

t

 = t

 −3
4

1


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Or, by letting t = 1 then the eigenvector is −3t
4

t

 =

 −3
4

1


Which can be normalized to  −3t

4

t

 =

 −3
4


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 2 2 No

 −3
4


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =

 −1 0
0 −1


P =

 −3
4


Therefore  11 9

−16 −13

 =

 −3
4

 −1 0
0 −1

 −3
4

−1
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2.13 problem problem 13
Internal problem ID [10308]
Internal file name [OUTPUT/9255_Monday_June_06_2022_01_45_05_PM_32218091/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 13.

Find the eigenvalues and associated eigenvectors of the matrix
1 3 0
0 2 0
0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 3 0
0 2 0
0 0 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


1− λ 3 0
0 2− λ 0
0 0 2− λ

 = 0

−(−1 + λ) (−2 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 2 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 3 0
0 2 0
0 0 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 3 0
0 2 0
0 0 2

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 3 0
0 1 0
0 0 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 3 0 0
0 1 0 0
0 0 1 0



R2 = R2 −
R1

3 =⇒


0 3 0 0
0 0 0 0
0 0 1 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

0 3 0 0
0 0 1 0
0 0 0 0


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Therefore the system in Echelon form is
0 3 0
0 0 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Or, by letting t = 1 then the eigenvector is

t

0
0

 =


1
0
0


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 3 0
0 2 0
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 3 0
0 2 0
0 0 2

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




−1 3 0
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 3 0 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 3 0
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = 3t}

Hence the solution is 
3t
t

s

 =


3t
t

s


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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

3t
t

s

 =


3t
t

0

+


0
0
s



= t


3
1
0

+ s


0
0
1


By letting t = 1 and s = 1 then the above becomes

3t
t

s

 =


3
1
0

+


0
0
1


Hence the two eigenvectors associated with this eigenvalue are


3
1
0

 ,


0
0
1




The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
0
0



2 2 3 No


3
1
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1
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Where

D =


1 0 0
0 2 0
0 0 2



P =


1 3 0
0 1 0
0 0 1


Therefore 

1 3 0
0 2 0
0 0 2

 =


1 3 0
0 1 0
0 0 1




1 0 0
0 2 0
0 0 2




1 3 0
0 1 0
0 0 1


−1
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2.14 problem problem 14
Internal problem ID [10309]
Internal file name [OUTPUT/9256_Monday_June_06_2022_01_45_06_PM_9268676/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 14.

Find the eigenvalues and associated eigenvectors of the matrix
2 −2 1
2 −2 1
2 −2 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




2 −2 1
2 −2 1
2 −2 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


2− λ −2 1
2 −2− λ 1
2 −2 1− λ

 = 0

−λ3 + λ2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 0
λ3 = 0

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 2 real eigenvalue

1 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 1
2 −2 1
2 −2 1

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 1
2 −2 1
2 −2 1

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




2 −2 1
2 −2 1
2 −2 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −2 1 0
2 −2 1 0
2 −2 1 0



R2 = R2 −R1 =⇒


2 −2 1 0
0 0 0 0
2 −2 1 0



R3 = R3 −R1 =⇒


2 −2 1 0
0 0 0 0
0 0 0 0


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Therefore the system in Echelon form is
2 −2 1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = t− s

2

}
Hence the solution is 

t− s
2

t

s

 =


t− s

2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t− s
2

t

s

 =


t

t

0

+


− s

2

0
s



= t


1
1
0

+ s


−1

2

0
1


By letting t = 1 and s = 1 then the above becomes

t− s
2

t

s

 =


1
1
0

+


−1

2

0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
0

 ,


−1

2

0
1



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Which can be normalized to 


1
1
0

 ,


−1
0
2




Considering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 1
2 −2 1
2 −2 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 1
2 −2 1
2 −2 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −2 1
2 −3 1
2 −2 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 −2 1 0
2 −3 1 0
2 −2 0 0



R2 = R2 − 2R1 =⇒


1 −2 1 0
0 1 −1 0
2 −2 0 0



R3 = R3 − 2R1 =⇒


1 −2 1 0
0 1 −1 0
0 2 −2 0


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R3 = R3 − 2R2 =⇒


1 −2 1 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

1 −2 1
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 2 3 No


1
1
0



1 1 3 No


−1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 0 0
0 0 1



P =


1 −1 1
1 0 1
0 2 1


Therefore 

2 −2 1
2 −2 1
2 −2 1

 =


1 −1 1
1 0 1
0 2 1




0 0 0
0 0 0
0 0 1




1 −1 1
1 0 1
0 2 1


−1
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2.15 problem problem 15
Internal problem ID [10310]
Internal file name [OUTPUT/9257_Monday_June_06_2022_01_45_07_PM_16949892/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 15.

Find the eigenvalues and associated eigenvectors of the matrix
3 −3 1
2 −2 1
0 0 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




3 −3 1
2 −2 1
0 0 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


3− λ −3 1
2 −2− λ 1
0 0 1− λ

 = 0

−λ3 + 2λ2 − λ = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 0
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

1 2 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 0

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −3 1
2 −2 1
0 0 1

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −3 1
2 −2 1
0 0 1

−


0 0 0
0 0 0
0 0 0





v1

v2

v3

 =


0
0
0




3 −3 1
2 −2 1
0 0 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 −3 1 0
2 −2 1 0
0 0 1 0



R2 = R2 −
2R1

3 =⇒


3 −3 1 0
0 0 1

3 0

0 0 1 0



R3 = R3 − 3R2 =⇒


3 −3 1 0
0 0 1

3 0

0 0 0 0


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Therefore the system in Echelon form is
3 −3 1
0 0 1

3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −3 1
2 −2 1
0 0 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −3 1
2 −2 1
0 0 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −3 1
2 −3 1
0 0 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −3 1 0
2 −3 1 0
0 0 0 0



R2 = R2 −R1 =⇒


2 −3 1 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

2 −3 1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = 3t

2 − s
2

}
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Hence the solution is 
3t
2 − s

2

t

s

 =


3t
2 − s

2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

3t
2 − s

2

t

s

 =


3t
2

t

0

+


− s

2

0
s



= t


3
2

1
0

+ s


−1

2

0
1


By letting t = 1 and s = 1 then the above becomes

3t
2 − s

2

t

s

 =


3
2

1
0

+


−1

2

0
1


Hence the two eigenvectors associated with this eigenvalue are


3
2

1
0

 ,


−1

2

0
1




Which can be normalized to 


3
2
0

 ,


−1
0
2




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

0 1 3 No


1
1
0



1 2 3 No


3
2
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


0 0 0
0 1 0
0 0 1



P =


1 3 −1
1 2 0
0 0 2


Therefore 

3 −3 1
2 −2 1
0 0 1

 =


1 3 −1
1 2 0
0 0 2




0 0 0
0 1 0
0 0 1




1 3 −1
1 2 0
0 0 2


−1
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2.16 problem problem 16
Internal problem ID [10311]
Internal file name [OUTPUT/9258_Monday_June_06_2022_01_45_08_PM_32739529/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 16.

Find the eigenvalues and associated eigenvectors of the matrix
3 −2 0
0 1 0
−4 4 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




3 −2 0
0 1 0
−4 4 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


3− λ −2 0
0 1− λ 0
−4 4 1− λ

 = 0

−(−3 + λ) (−1 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 3
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

3 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −2 0
0 1 0
−4 4 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −2 0
0 1 0
−4 4 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −2 0
0 0 0
−4 4 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −2 0 0
0 0 0 0
−4 4 0 0



R3 = R3 + 2R1 =⇒


2 −2 0 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

2 −2 0
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = t}
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Hence the solution is 
t

t

s

 =


t

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

t

s

 =


t

t

0

+


0
0
s



= t


1
1
0

+ s


0
0
1


By letting t = 1 and s = 1 then the above becomes

t

t

s

 =


1
1
0

+


0
0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
0

 ,


0
0
1




Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −2 0
0 1 0
−4 4 1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −2 0
0 1 0
−4 4 1

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




0 −2 0
0 −2 0
−4 4 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 −2 0 0
0 −2 0 0
−4 4 −2 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 3 gives

−4 4 −2 0
0 −2 0 0
0 −2 0 0



R3 = R3 −R2 =⇒


−4 4 −2 0
0 −2 0 0
0 0 0 0


Therefore the system in Echelon form is

−4 4 −2
0 −2 0
0 0 0




v1

v2

v3

 =


0
0
0


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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = 0
}

Hence the solution is 
− t

2

0
t

 =


− t

2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

0
t

 = t


−1

2

0
1


Or, by letting t = 1 then the eigenvector is

− t
2

0
t

 =


−1

2

0
1


Which can be normalized to 

− t
2

0
t

 =


−1
0
2


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 3 No


1
1
0



3 1 3 No


0
0
1


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Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 1 0
0 0 3



P =


1 0 −1
1 0 0
0 1 2


Therefore 

3 −2 0
0 1 0
−4 4 1

 =


1 0 −1
1 0 0
0 1 2




1 0 0
0 1 0
0 0 3




1 0 −1
1 0 0
0 1 2


−1
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2.17 problem problem 17
Internal problem ID [10312]
Internal file name [OUTPUT/9259_Monday_June_06_2022_01_45_08_PM_38524352/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 17.

Find the eigenvalues and associated eigenvectors of the matrix
7 −8 3
6 −7 3
2 −2 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




7 −8 3
6 −7 3
2 −2 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


7− λ −8 3
6 −7− λ 3
2 −2 2− λ

 = 0

−λ3 + 2λ2 + λ− 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = −1

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


7 −8 3
6 −7 3
2 −2 2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





7 −8 3
6 −7 3
2 −2 2

−


−1 0 0
0 −1 0
0 0 −1





v1

v2

v3

 =


0
0
0




8 −8 3
6 −6 3
2 −2 3




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

8 −8 3 0
6 −6 3 0
2 −2 3 0



R2 = R2 −
3R1

4 =⇒


8 −8 3 0
0 0 3

4 0

2 −2 3 0


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R3 = R3 −
R1

4 =⇒


8 −8 3 0
0 0 3

4 0

0 0 9
4 0



R3 = R3 − 3R2 =⇒


8 −8 3 0
0 0 3

4 0

0 0 0 0


Therefore the system in Echelon form is

8 −8 3
0 0 3

4

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 1
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


7 −8 3
6 −7 3
2 −2 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





7 −8 3
6 −7 3
2 −2 2

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




6 −8 3
6 −8 3
2 −2 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

6 −8 3 0
6 −8 3 0
2 −2 1 0



R2 = R2 −R1 =⇒


6 −8 3 0
0 0 0 0
2 −2 1 0



R3 = R3 −
R1

3 =⇒


6 −8 3 0
0 0 0 0
0 2

3 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

6 −8 3 0
0 2

3 0 0

0 0 0 0


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Therefore the system in Echelon form is
6 −8 3
0 2

3 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = 0
}

Hence the solution is 
− t

2

0
t

 =


− t

2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

0
t

 = t


−1

2

0
1


Or, by letting t = 1 then the eigenvector is

− t
2

0
t

 =


−1

2

0
1


Which can be normalized to 

− t
2

0
t

 =


−1
0
2


Considering λ = 2

298



We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


7 −8 3
6 −7 3
2 −2 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





7 −8 3
6 −7 3
2 −2 2

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




5 −8 3
6 −9 3
2 −2 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

5 −8 3 0
6 −9 3 0
2 −2 0 0



R2 = R2 −
6R1

5 =⇒


5 −8 3 0
0 3

5 −3
5 0

2 −2 0 0



R3 = R3 −
2R1

5 =⇒


5 −8 3 0
0 3

5 −3
5 0

0 6
5 −6

5 0



R3 = R3 − 2R2 =⇒


5 −8 3 0
0 3

5 −3
5 0

0 0 0 0


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Therefore the system in Echelon form is
5 −8 3
0 3

5 −3
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 1 3 No


1
1
0



1 1 3 No


−1
0
2



2 1 3 No


1
1
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


−1 0 0
0 1 0
0 0 2



P =


1 −1 1
1 0 1
0 2 1


Therefore 

7 −8 3
6 −7 3
2 −2 2

 =


1 −1 1
1 0 1
0 2 1




−1 0 0
0 1 0
0 0 2




1 −1 1
1 0 1
0 2 1


−1
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2.18 problem problem 18
Internal problem ID [10313]
Internal file name [OUTPUT/9260_Monday_June_06_2022_01_45_09_PM_79968995/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 18.

Find the eigenvalues and associated eigenvectors of the matrix
6 −5 2
4 −3 2
2 −2 3


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




6 −5 2
4 −3 2
2 −2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


6− λ −5 2
4 −3− λ 2
2 −2 3− λ

 = 0

−λ3 + 6λ2 − 11λ+ 6 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 3

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


6 −5 2
4 −3 2
2 −2 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





6 −5 2
4 −3 2
2 −2 3

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




5 −5 2
4 −4 2
2 −2 2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

5 −5 2 0
4 −4 2 0
2 −2 2 0



R2 = R2 −
4R1

5 =⇒


5 −5 2 0
0 0 2

5 0

2 −2 2 0


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R3 = R3 −
2R1

5 =⇒


5 −5 2 0
0 0 2

5 0

0 0 6
5 0



R3 = R3 − 3R2 =⇒


5 −5 2 0
0 0 2

5 0

0 0 0 0


Therefore the system in Echelon form is

5 −5 2
0 0 2

5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


6 −5 2
4 −3 2
2 −2 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





6 −5 2
4 −3 2
2 −2 3

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




4 −5 2
4 −5 2
2 −2 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

4 −5 2 0
4 −5 2 0
2 −2 1 0



R2 = R2 −R1 =⇒


4 −5 2 0
0 0 0 0
2 −2 1 0



R3 = R3 −
R1

2 =⇒


4 −5 2 0
0 0 0 0
0 1

2 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

4 −5 2 0
0 1

2 0 0

0 0 0 0


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Therefore the system in Echelon form is
4 −5 2
0 1

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = 0
}

Hence the solution is 
− t

2

0
t

 =


− t

2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

0
t

 = t


−1

2

0
1


Or, by letting t = 1 then the eigenvector is

− t
2

0
t

 =


−1

2

0
1


Which can be normalized to 

− t
2

0
t

 =


−1
0
2


Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


6 −5 2
4 −3 2
2 −2 3

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





6 −5 2
4 −3 2
2 −2 3

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




3 −5 2
4 −6 2
2 −2 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

3 −5 2 0
4 −6 2 0
2 −2 0 0



R2 = R2 −
4R1

3 =⇒


3 −5 2 0
0 2

3 −2
3 0

2 −2 0 0



R3 = R3 −
2R1

3 =⇒


3 −5 2 0
0 2

3 −2
3 0

0 4
3 −4

3 0



R3 = R3 − 2R2 =⇒


3 −5 2 0
0 2

3 −2
3 0

0 0 0 0


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Therefore the system in Echelon form is
3 −5 2
0 2

3 −2
3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
1
0



2 1 3 No


−1
0
2



3 1 3 No


1
1
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 3



P =


1 −1 1
1 0 1
0 2 1


Therefore 

6 −5 2
4 −3 2
2 −2 3

 =


1 −1 1
1 0 1
0 2 1




1 0 0
0 2 0
0 0 3




1 −1 1
1 0 1
0 2 1


−1
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2.19 problem problem 19
Internal problem ID [10314]
Internal file name [OUTPUT/9261_Monday_June_06_2022_01_45_10_PM_43653147/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 19.

Find the eigenvalues and associated eigenvectors of the matrix
1 1 −1
−2 4 −1
−4 4 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 1 −1
−2 4 −1
−4 4 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


1− λ 1 −1
−2 4− λ −1
−4 4 1− λ

 = 0

−λ3 + 6λ2 − 11λ+ 6 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 3

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 −1
−2 4 −1
−4 4 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 1 −1
−2 4 −1
−4 4 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 1 −1
−2 3 −1
−4 4 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 1 −1 0
−2 3 −1 0
−4 4 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−2 3 −1 0
0 1 −1 0
−4 4 0 0


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R3 = R3 − 2R1 =⇒


−2 3 −1 0
0 1 −1 0
0 −2 2 0



R3 = R3 + 2R2 =⇒


−2 3 −1 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

−2 3 −1
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 −1
−2 4 −1
−4 4 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 1 −1
−2 4 −1
−4 4 1

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




−1 1 −1
−2 2 −1
−4 4 −1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 1 −1 0
−2 2 −1 0
−4 4 −1 0



R2 = R2 − 2R1 =⇒


−1 1 −1 0
0 0 1 0
−4 4 −1 0



R3 = R3 − 4R1 =⇒


−1 1 −1 0
0 0 1 0
0 0 3 0



R3 = R3 − 3R2 =⇒


−1 1 −1 0
0 0 1 0
0 0 0 0


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Therefore the system in Echelon form is
−1 1 −1
0 0 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 3
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 −1
−2 4 −1
−4 4 1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





1 1 −1
−2 4 −1
−4 4 1

−


3 0 0
0 3 0
0 0 3





v1

v2

v3

 =


0
0
0




−2 1 −1
−2 1 −1
−4 4 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−2 1 −1 0
−2 1 −1 0
−4 4 −2 0



R2 = R2 −R1 =⇒


−2 1 −1 0
0 0 0 0
−4 4 −2 0



R3 = R3 − 2R1 =⇒


−2 1 −1 0
0 0 0 0
0 2 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−2 1 −1 0
0 2 0 0
0 0 0 0


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Therefore the system in Echelon form is
−2 1 −1
0 2 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = 0
}

Hence the solution is 
− t

2

0
t

 =


− t

2

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

0
t

 = t


−1

2

0
1


Or, by letting t = 1 then the eigenvector is

− t
2

0
t

 =


−1

2

0
1


Which can be normalized to 

− t
2

0
t

 =


−1
0
2


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
1
1



2 1 3 No


1
1
0



3 1 3 No


−1
0
2


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 3



P =


1 1 −1
1 1 0
1 0 2


Therefore 

1 1 −1
−2 4 −1
−4 4 1

 =


1 1 −1
1 1 0
1 0 2




1 0 0
0 2 0
0 0 3




1 1 −1
1 1 0
1 0 2


−1
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2.20 problem problem 20
Internal problem ID [10315]
Internal file name [OUTPUT/9262_Monday_June_06_2022_01_45_11_PM_53053529/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 20.

Find the eigenvalues and associated eigenvectors of the matrix
2 0 0
−6 11 2
6 −15 0


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




2 0 0
−6 11 2
6 −15 0

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


2− λ 0 0
−6 11− λ 2
6 −15 −λ

 = 0

−(−2 + λ)
(
λ2 − 11λ+ 30

)
= 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 6
λ3 = 5

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

5 1 real eigenvalue

6 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
−6 11 2
6 −15 0

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
−6 11 2
6 −15 0

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




0 0 0
−6 9 2
6 −15 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 0
−6 9 2 0
6 −15 −2 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−6 9 2 0
0 0 0 0
6 −15 −2 0


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R3 = R3 +R1 =⇒


−6 9 2 0
0 0 0 0
0 −6 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−6 9 2 0
0 −6 0 0
0 0 0 0


Therefore the system in Echelon form is

−6 9 2
0 −6 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

3 , v2 = 0
}

Hence the solution is 
t
3

0
t

 =


t
3

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
3

0
t

 = t


1
3

0
1


Or, by letting t = 1 then the eigenvector is

t
3

0
t

 =


1
3

0
1



320



Which can be normalized to 
t
3

0
t

 =


1
0
3


Considering λ = 5

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
−6 11 2
6 −15 0

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
−6 11 2
6 −15 0

−


5 0 0
0 5 0
0 0 5





v1

v2

v3

 =


0
0
0




−3 0 0
−6 6 2
6 −15 −5




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−3 0 0 0
−6 6 2 0
6 −15 −5 0



R2 = R2 − 2R1 =⇒


−3 0 0 0
0 6 2 0
6 −15 −5 0



R3 = R3 + 2R1 =⇒


−3 0 0 0
0 6 2 0
0 −15 −5 0


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R3 = R3 +
5R2

2 =⇒


−3 0 0 0
0 6 2 0
0 0 0 0


Therefore the system in Echelon form is

−3 0 0
0 6 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = − t

3

}
Hence the solution is 

0
− t

3

t

 =


0
− t

3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
− t

3

t

 = t


0
−1

3

1


Or, by letting t = 1 then the eigenvector is

0
− t

3

t

 =


0
−1

3

1


Which can be normalized to 

0
− t

3

t

 =


0
−1
3


Considering λ = 6
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 0 0
−6 11 2
6 −15 0

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 0 0
−6 11 2
6 −15 0

−


6 0 0
0 6 0
0 0 6





v1

v2

v3

 =


0
0
0




−4 0 0
−6 5 2
6 −15 −6




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−4 0 0 0
−6 5 2 0
6 −15 −6 0



R2 = R2 −
3R1

2 =⇒


−4 0 0 0
0 5 2 0
6 −15 −6 0



R3 = R3 +
3R1

2 =⇒


−4 0 0 0
0 5 2 0
0 −15 −6 0



R3 = R3 + 3R2 =⇒


−4 0 0 0
0 5 2 0
0 0 0 0


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Therefore the system in Echelon form is
−4 0 0
0 5 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 0, v2 = −2t

5

}
Hence the solution is 

0
−2t

5

t

 =


0

−2t
5

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−2t

5

t

 = t


0
−2

5

1


Or, by letting t = 1 then the eigenvector is

0
−2t

5

t

 =


0
−2

5

1


Which can be normalized to 

0
−2t

5

t

 =


0
−2
5


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 1 3 No


1
0
3



5 1 3 No


0
−1
3



6 1 3 No


0
−2
5


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


2 0 0
0 5 0
0 0 6



P =


1 0 0
0 −1 −2
3 3 5


Therefore

2 0 0
−6 11 2
6 −15 0

 =


1 0 0
0 −1 −2
3 3 5




2 0 0
0 5 0
0 0 6




1 0 0
0 −1 −2
3 3 5


−1
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2.21 problem problem 21
Internal problem ID [10316]
Internal file name [OUTPUT/9263_Monday_June_06_2022_01_45_12_PM_89009704/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 21.

Find the eigenvalues and associated eigenvectors of the matrix
0 1 0
−1 2 0
−1 1 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




0 1 0
−1 2 0
−1 1 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


−λ 1 0
−1 2− λ 0
−1 1 1− λ

 = 0

−λ3 + 3λ2 − 3λ+ 1 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 3 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


0 1 0
−1 2 0
−1 1 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





0 1 0
−1 2 0
−1 1 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 1 0
−1 1 0
−1 1 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 1 0 0
−1 1 0 0
−1 1 0 0



R2 = R2 −R1 =⇒


−1 1 0 0
0 0 0 0
−1 1 0 0



R3 = R3 −R1 =⇒


−1 1 0 0
0 0 0 0
0 0 0 0



327



Therefore the system in Echelon form is
−1 1 0
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = t}

Hence the solution is 
t

t

s

 =


t

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

t

s

 =


t

t

0

+


0
0
s



= t


1
1
0

+ s


0
0
1


By letting t = 1 and s = 1 then the above becomes

t

t

s

 =


1
1
0

+


0
0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
0

 ,


0
0
1




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 3 3 No


1
1
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 1 0
0 0 1



P =


1 0
1 0
0 1


Therefore 

0 1 0
−1 2 0
−1 1 1

 =


1 0
1 0
0 1




1 0 0
0 1 0
0 0 1




1 0
1 0
0 1


−1
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2.22 problem problem 22
Internal problem ID [10317]
Internal file name [OUTPUT/9264_Monday_June_06_2022_01_45_13_PM_14505739/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 22.

Find the eigenvalues and associated eigenvectors of the matrix
2 −2 1
−1 2 0
−5 7 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




2 −2 1
−1 2 0
−5 7 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


2− λ −2 1
−1 2− λ 0
−5 7 −1− λ

 = 0

−λ3 + 3λ2 − 3λ+ 1 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 3 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


2 −2 1
−1 2 0
−5 7 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





2 −2 1
−1 2 0
−5 7 −1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −2 1
−1 1 0
−5 7 −2




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 −2 1 0
−1 1 0 0
−5 7 −2 0



R2 = R2 +R1 =⇒


1 −2 1 0
0 −1 1 0
−5 7 −2 0



R3 = R3 + 5R1 =⇒


1 −2 1 0
0 −1 1 0
0 −3 3 0


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R3 = R3 − 3R2 =⇒


1 −2 1 0
0 −1 1 0
0 0 0 0


Therefore the system in Echelon form is

1 −2 1
0 −1 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 3 3 No


1
1
1


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Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 1 0
0 0 1



P =


1
1
1


Therefore 

2 −2 1
−1 2 0
−5 7 −1

 =


1
1
1




1 0 0
0 1 0
0 0 1




1
1
1


−1
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2.23 problem problem 23
Internal problem ID [10318]
Internal file name [OUTPUT/9265_Monday_June_06_2022_01_45_13_PM_1205736/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 23.

Find the eigenvalues and associated eigenvectors of the matrix
−2 4 −1
−3 5 −1
−1 1 1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




−2 4 −1
−3 5 −1
−1 1 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


−2− λ 4 −1
−3 5− λ −1
−1 1 1− λ

 = 0

−λ3 + 4λ2 − 5λ+ 2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

2 1 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


−2 4 −1
−3 5 −1
−1 1 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





−2 4 −1
−3 5 −1
−1 1 1

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−3 4 −1
−3 4 −1
−1 1 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−3 4 −1 0
−3 4 −1 0
−1 1 0 0



R2 = R2 −R1 =⇒


−3 4 −1 0
0 0 0 0
−1 1 0 0



R3 = R3 −
R1

3 =⇒


−3 4 −1 0
0 0 0 0
0 −1

3
1
3 0


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Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−3 4 −1 0
0 −1

3
1
3 0

0 0 0 0


Therefore the system in Echelon form is

−3 4 −1
0 −1

3
1
3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


−2 4 −1
−3 5 −1
−1 1 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





−2 4 −1
−3 5 −1
−1 1 1

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




−4 4 −1
−3 3 −1
−1 1 −1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−4 4 −1 0
−3 3 −1 0
−1 1 −1 0



R2 = R2 −
3R1

4 =⇒


−4 4 −1 0
0 0 −1

4 0

−1 1 −1 0



R3 = R3 −
R1

4 =⇒


−4 4 −1 0
0 0 −1

4 0

0 0 −3
4 0



R3 = R3 − 3R2 =⇒


−4 4 −1 0
0 0 −1

4 0

0 0 0 0


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Therefore the system in Echelon form is
−4 4 −1
0 0 −1

4

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 3 No


1
1
1



2 1 3 No


1
1
0


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Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 1 0
0 0 2



P =


1 1
1 1
1 0


Therefore 

−2 4 −1
−3 5 −1
−1 1 1

 =


1 1
1 1
1 0




1 0 0
0 1 0
0 0 2




1 1
1 1
1 0


−1
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2.24 problem problem 24
Internal problem ID [10319]
Internal file name [OUTPUT/9266_Monday_June_06_2022_01_45_14_PM_99820673/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 24.

Find the eigenvalues and associated eigenvectors of the matrix
3 −2 1
1 0 1
−1 1 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




3 −2 1
1 0 1
−1 1 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

det


3− λ −2 1
1 −λ 1
−1 1 2− λ

 = 0

−λ3 + 5λ2 − 8λ+ 4 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 2
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 2 real eigenvalue
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For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −2 1
1 0 1
−1 1 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −2 1
1 0 1
−1 1 2

−


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −2 1
1 −1 1
−1 1 1




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 −2 1 0
1 −1 1 0
−1 1 1 0



R2 = R2 −
R1

2 =⇒


2 −2 1 0
0 0 1

2 0

−1 1 1 0



R3 = R3 +
R1

2 =⇒


2 −2 1 0
0 0 1

2 0

0 0 3
2 0


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R3 = R3 − 3R2 =⇒


2 −2 1 0
0 0 1

2 0

0 0 0 0


Therefore the system in Echelon form is

2 −2 1
0 0 1

2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

0

 =


1
1
0


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


3 −2 1
1 0 1
−1 1 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0





3 −2 1
1 0 1
−1 1 2

−


2 0 0
0 2 0
0 0 2





v1

v2

v3

 =


0
0
0




1 −2 1
1 −2 1
−1 1 0




v1

v2

v3

 =


0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

1 −2 1 0
1 −2 1 0
−1 1 0 0



R2 = R2 −R1 =⇒


1 −2 1 0
0 0 0 0
−1 1 0 0



R3 = R3 +R1 =⇒


1 −2 1 0
0 0 0 0
0 −1 1 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

1 −2 1 0
0 −1 1 0
0 0 0 0


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Therefore the system in Echelon form is
1 −2 1
0 −1 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

 =


1
1
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 1 3 No


1
1
0



2 2 3 No


1
1
1


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Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0
0 2 0
0 0 2



P =


1 1
1 1
0 1


Therefore 

3 −2 1
1 0 1
−1 1 2

 =


1 1
1 1
0 1




1 0 0
0 2 0
0 0 2




1 1
1 1
0 1


−1
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2.25 problem problem 25
Internal problem ID [10320]
Internal file name [OUTPUT/9267_Monday_June_06_2022_01_45_15_PM_97416748/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 25.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 0 −2 0
0 1− λ −2 0
0 0 −1− λ 0
0 0 0 −1− λ

 = 0

−(1− λ) (−1 + λ) (1 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = −1
λ2 = −1
λ3 = 1
λ4 = 1
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 2 real eigenvalue

1 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = −1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

− (−1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

−


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






v1

v2

v3

v4

 =


0
0
0
0




2 0 −2 0
0 2 −2 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

2 0 −2 0 0
0 2 −2 0 0
0 0 0 0 0
0 0 0 0 0


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Therefore the system in Echelon form is
2 0 −2 0
0 2 −2 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3, v4} and the leading variables are {v1, v2}. Let v3 = t. Let
v4 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

s

 =


t

t

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

t

t

s

 =


t

t

t

0

+


0
0
0
s



= t


1
1
1
0

+ s


0
0
0
1


By letting t = 1 and s = 1 then the above becomes

t

t

t

s

 =


1
1
1
0

+


0
0
0
1


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Hence the two eigenvectors associated with this eigenvalue are


1
1
1
0

 ,


0
0
0
1




Considering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 −2 0
0 0 −2 0
0 0 −2 0
0 0 0 −2




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 −2 0 0
0 0 −2 0 0
0 0 −2 0 0
0 0 0 −2 0


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R2 = R2 −R1 =⇒


0 0 −2 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 −2 0



R3 = R3 −R1 =⇒


0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −2 0


Since the current pivot A(2, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 4 gives

0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

0 0 −2 0
0 0 0 −2
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1, v2} and the leading variables are {v3, v4}. Let v1 = t. Let
v2 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v3 = 0, v4 = 0}

Hence the solution is 
t

s

0
0

 =


t

s

0
0


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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t

s

0
0

 =


t

0
0
0

+


0
s

0
0



= t


1
0
0
0

+ s


0
1
0
0


By letting t = 1 and s = 1 then the above becomes

t

s

0
0

 =


1
0
0
0

+


0
1
0
0


Hence the two eigenvectors associated with this eigenvalue are


1
0
0
0

 ,


0
1
0
0




The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

−1 2 4 No


1
1
1
0



1 2 4 No


0
0
0
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



P =


1 0 1 0
1 0 0 1
1 0 0 0
0 1 0 0


Therefore

1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

 =


1 0 1 0
1 0 0 1
1 0 0 0
0 1 0 0




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




1 0 1 0
1 0 0 1
1 0 0 0
0 1 0 0



−1
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2.26 problem problem 26
Internal problem ID [10321]
Internal file name [OUTPUT/9268_Monday_June_06_2022_01_45_16_PM_78720941/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 26.

Find the eigenvalues and associated eigenvectors of the matrix
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 0 0 1
0 1− λ 0 1
0 0 1− λ 1
0 0 0 2− λ

 = 0

−(1− λ) (−1 + λ)2 (−2 + λ) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1
λ3 = 1
λ4 = 1
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 3 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0


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R2 = R2 −R1 =⇒


0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0



R3 = R3 −R1 =⇒


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0



R4 = R4 −R1 =⇒


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1, v2, v3} and the leading variables are {v4}. Let v1 = t. Let
v2 = s. Let v3 = r. Now we start back substitution. Solving the above equation for the
leading variables in terms of free variables gives equation {v4 = 0}

Hence the solution is 
t

s

r

0

 =


t

s

r

0


Since there are three free Variable, we have found three eigenvectors associated with
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this eigenvalue. The above can be written as
t

s

r

0

 =


t

0
0
0

+


0
s

0
0



= t


1
0
0
0

+ s


0
1
0
0

+ r


0
0
1
0


By letting t = 1 and s = 1 and r = 1 then the above becomes

t

s

r

0

 =


1
0
0
0

+


0
1
0
0

+


0
0
1
0


Hence the three eigenvectors associated with this eigenvalue are


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0




Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




−1 0 0 1
0 −1 0 1
0 0 −1 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 0 0 1 0
0 −1 0 1 0
0 0 −1 1 0
0 0 0 0 0


Therefore the system in Echelon form is

−1 0 0 1
0 −1 0 1
0 0 −1 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t, v3 = t}
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Hence the solution is 
t

t

t

t

 =


t

t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

t

 = t


1
1
1
1


Or, by letting t = 1 then the eigenvector is

t

t

t

t

 =


1
1
1
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 3 4 No


1
0
0
0



2 1 4 No


0
1
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
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at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2



P =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1


Therefore

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

 =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1



−1
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2.27 problem problem 27
Internal problem ID [10322]
Internal file name [OUTPUT/9269_Monday_June_06_2022_01_45_16_PM_44340434/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 27.

Find the eigenvalues and associated eigenvectors of the matrix
1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 1 0 0
0 1− λ 1 1
0 0 1− λ 1
0 0 0 2− λ

 = 0

−(1− λ) (−1 + λ)2 (−2 + λ) = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 1
λ3 = 1
λ4 = 1
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 3 real eigenvalue

2 1 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 1 0



361



R4 = R4 −R3 =⇒


0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0


Therefore the system in Echelon form is

0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1} and the leading variables are {v2, v3, v4}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0, v4 = 0}

Hence the solution is 
t

0
0
0

 =


t

0
0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0
0

 = t


1
0
0
0


Or, by letting t = 1 then the eigenvector is

t

0
0
0

 =


1
0
0
0


Considering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




−1 1 0 0
0 −1 1 1
0 0 −1 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 1 0 0 0
0 −1 1 1 0
0 0 −1 1 0
0 0 0 0 0


Therefore the system in Echelon form is

−1 1 0 0
0 −1 1 1
0 0 −1 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v2 = 2t, v3 = t}
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Hence the solution is 
2t
2t
t

t

 =


2t
2t
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
2t
t

t

 = t


2
2
1
1


Or, by letting t = 1 then the eigenvector is

2t
2t
t

t

 =


2
2
1
1


The following table summarises the result found above.

λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 3 4 No


1
0
0
0



2 1 4 No


2
2
1
1


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
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at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2



P =


1 2
0 2
0 1
0 1


Therefore 

1 1 0 0
0 1 1 1
0 0 1 1
0 0 0 2

 =


1 2
0 2
0 1
0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2




1 2
0 2
0 1
0 1



−1
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2.28 problem problem 28
Internal problem ID [10323]
Internal file name [OUTPUT/9270_Monday_June_06_2022_01_45_17_PM_85864164/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From Differential equations and linear algebra, 4th ed., Edwards and Penney. Sec-
tion 6.2, Diagonalization of Matrices, Eigenvalues and Eigenvectors. Page 354
Problem number: problem 28.

Find the eigenvalues and associated eigenvectors of the matrix
1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det




1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

det


1− λ 1 0 1
0 1− λ 1 1
0 0 2− λ 1
0 0 0 2− λ

 = 0

−(1− λ) (−1 + λ) (−2 + λ)2 = 0

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 1
λ2 = 1
λ3 = 2
λ4 = 2
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This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 2 real eigenvalue

2 2 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 1

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

− (1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 1 0 1
0 0 1 1
0 0 1 1
0 0 0 1




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 1 0 1 0
0 0 1 1 0
0 0 1 1 0
0 0 0 1 0


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R3 = R3 −R2 =⇒


0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
0 0 0 1 0


Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

0 1 0 1 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0


Therefore the system in Echelon form is

0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v1} and the leading variables are {v2, v3, v4}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0, v4 = 0}

Hence the solution is 
t

0
0
0

 =


t

0
0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0
0

 = t


1
0
0
0


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Or, by letting t = 1 then the eigenvector is
t

0
0
0

 =


1
0
0
0


Considering λ = 2

We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0


1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0





1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2






v1

v2

v3

v4

 =


0
0
0
0




−1 1 0 1
0 −1 1 1
0 0 0 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

−1 1 0 1 0
0 −1 1 1 0
0 0 0 1 0
0 0 0 0 0


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Therefore the system in Echelon form is
−1 1 0 1
0 −1 1 1
0 0 0 1
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v3} and the leading variables are {v1, v2, v4}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t, v4 = 0}

Hence the solution is 
t

t

t

0

 =


t

t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

0

 = t


1
1
1
0


Or, by letting t = 1 then the eigenvector is

t

t

t

0

 =


1
1
1
0


The following table summarises the result found above.
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λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

1 2 4 No


1
0
0
0



2 2 4 No


1
1
1
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2



P =


1 1
0 1
0 1
0 0


Therefore 

1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

 =


1 1
0 1
0 1
0 0




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2




1 1
0 1
0 1
0 0



−1
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3.1 problem 31
Internal problem ID [10324]
Internal file name [OUTPUT/9271_Monday_June_06_2022_01_45_18_PM_65125154/index.tex]

Book: Collection of Eigenvalues and Eigenvectors problems
Section: From DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G.
ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th
edition. CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUA-
TIONS. EXERCISES 8.2. Page 346
Problem number: 31.

Find the eigenvalues and associated eigenvectors of the matrix

2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

det(A− λI) = 0

det





2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


− λ



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




= 0

det



2− λ 1 0 0 0
0 2− λ 0 0 0
0 0 2− λ 0 0
0 0 0 2− λ 1
0 0 0 0 2− λ


= 0

−(2− λ)2 (−2 + λ)3 = 0
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The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

λ1 = 2
λ2 = 2
λ3 = 2
λ4 = 2
λ5 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 5 real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Consid-
ering λ = 2
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We need now to determine the eigenvector v where

Av = λv

Av − λv = 0
(A− λI)v = 0



2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


− (2)



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







v1

v2

v3

v4

v5


=



0
0
0
0
0






2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


−



2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2







v1

v2

v3

v4

v5


=



0
0
0
0
0




0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0





v1

v2

v3

v4

v5


=



0
0
0
0
0


We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is 

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


Since the current pivot A(2, 5) is zero, then the current pivot row is replaced with a
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row with a non-zero pivot. Swapping row 2 and row 4 gives

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Therefore the system in Echelon form is

0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





v1

v2

v3

v4

v5


=



0
0
0
0
0


The free variables are {v1, v3, v4} and the leading variables are {v2, v5}. Let v1 = t. Let
v3 = s. Let v4 = r. Now we start back substitution. Solving the above equation for the
leading variables in terms of free variables gives equation {v2 = 0, v5 = 0}

Hence the solution is 

t

0
s

r

0


=



t

0
s

r

0


Since there are three free Variable, we have found three eigenvectors associated with
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this eigenvalue. The above can be written as

t

0
s

r

0


=



t

0
0
0
0


+



0
0
s

0
0



= t



1
0
0
0
0


+ s



0
0
1
0
0


+ r



0
0
0
1
0


By letting t = 1 and s = 1 and r = 1 then the above becomes

t

0
s

r

0


=



1
0
0
0
0


+



0
0
1
0
0


+



0
0
0
1
0


Hence the three eigenvectors associated with this eigenvalue are



1
0
0
0
0


,



0
0
1
0
0


,



0
0
0
1
0




The following table summarises the result found above.

377



λ algebraic geometric defective associated
multiplicity multiplicity eigenvalue? eigenvectors

2 5 5 No



1
0
0
0
0


Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose
columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues
at its diagonal. Then we can write

A = PDP−1

Where

D =



2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2



P =



1 0 0
0 0 0
0 1 0
0 0 1
0 0 0


Therefore

2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2


=



1 0 0
0 0 0
0 1 0
0 0 1
0 0 0





2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2





1 0 0
0 0 0
0 1 0
0 0 1
0 0 0



−1
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