A Solution Manual For

An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906

AN ELEMENTARY TREATISE

ON
DIFFERENTIAL EQUATIONS

By
ABRAHAM COHEN, РH.D.
ASSOCIATE PROFRSSOR OF Mathematics
JOHNS HopKINS UNIVERITYY
D. C. HEATH \& CO., PUBLISHERS
bOSTON NEW YORK CHICAGO

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11

2 Chapter 2, differential equations of the first order and the first degree. Article 9. Variables searated or separable. Page 13

3 Chapter 2, differential equations of the first order and the first degree. Article 10. Homogeneous equations. Page 15

4 Chapter 2, differential equations of the first order and the first degree. Article 11. Equations in which M and N are linear but not homogeneous. Page 16

5 Chapter 2, differential equations of the first order and the first degree. Article 12. Equations of form $y f_{1}(x y)+x f_{2}(x y) y^{\prime}=0$. Page 18 237

6 Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19

7 Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21

8 Chapter 2, differential equations of the first order and the first degree. Article 15. Page 22

9 Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23

10 Chapter 2, differential equations of the first order and the first degree. Article 17. Other forms which Integrating factors can be found. Page 25

11 Chapter 2, differential equations of the first order and the first degree. Article 18. Transformation of variables. Page 26

12 Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29

13 Chapter IV, differential equations of the first order and higher degree than the first. Article 24. Equations solvable for p. Page 49 948

14 Chapter IV, differential equations of the first order and higher degree than the first. Article 25. Equations solvable for y. Page 52

15 Chapter IV, differential equations of the first order and higher degree than the first. Article 26. Equations solvable for x. Page 551019

16 Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56

1065
17 Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59

18 Chapter V, Singular solutions. Article 30. Page 63
19 Chapter V, Singular solutions. Article 32. Page 69
1226
20 Chapter V, Singular solutions. Article 33. Page 73
1233
21 Chapter VII, Linear differential equations with constant coefficients. Article 43. Page 92

22 Chapter VII, Linear differential equations with constant coefficients. Article 44. Roots of auxiliary equation repeated. Page 94

23 Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95

24 Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100

25 Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103

26 Chapter VII, Linear differential equations with constant coefficients. Article 49. Variation of parameters. Page 106

27 Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107

28 Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114

29 Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary. Page 117

30 Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125

31 Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

32 Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129

1881
33 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 57. Dependent variable absent. Page 1321987

34 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 58. Independent variable absent. Page 1352031

35 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 59. Linear equations with particular integral known. Page 136

36 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139

37 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 61. Transformation of variables. Page 1432166

38 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 62. Summary. Page 144

39 Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150
1 Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11
1.1 problem Ex 1 5
1.2 problem Ex 2 14
1.3 problem Ex 3 29
1.4 problem Ex 4 42
1.5 problem Ex 5 57

1.1 problem Ex 1

1.1.1 Solving as homogeneousTypeD2 ode 5
1.1.2 Solving as exact ode . 7
1.1.3 Maple step by step solution . 11

Internal problem ID [11122]
Internal file name [OUTPUT/10107_Wednesday_November_23_2022_11_50_40_AM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 8.
Exact differential equations. Page 11
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2"
Maple gives the following as the ode type
[[_homogeneous, `class D`], _exact, _rational, [_Abel, `2nd type`, `class A`]

$$
\frac{2 y x+1}{y}+\frac{(y-x) y^{\prime}}{y^{2}}=0
$$

1.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\frac{2 u(x) x^{2}+1}{u(x) x}+\frac{(u(x) x-x)\left(u^{\prime}(x) x+u(x)\right)}{u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}\left(2 x^{2}+1\right)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{2 x^{2}+1}{x}$ and $g(u)=\frac{u^{2}}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{u-1}} d u & =-\frac{2 x^{2}+1}{x} d x \\
\int \frac{1}{\frac{u^{2}}{u-1}} d u & =\int-\frac{2 x^{2}+1}{x} d x \\
\frac{1}{u}+\ln (u) & =-x^{2}-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{1}{u(x)}+\ln (u(x))+x^{2}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{x}{y}+\ln \left(\frac{y}{x}\right)+x^{2}+\ln (x)-c_{2}=0 \\
& \frac{x}{y}+\ln \left(\frac{y}{x}\right)+x^{2}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x}{y}+\ln \left(\frac{y}{x}\right)+x^{2}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
\frac{x}{y}+\ln \left(\frac{y}{x}\right)+x^{2}+\ln (x)-c_{2}=0
$$

Verified OK.

1.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y-x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{2 x y+1}{y}\right) \mathrm{d} x \\
\left(\frac{2 x y+1}{y}\right) \mathrm{d} x+\left(\frac{y-x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{2 x y+1}{y} \\
& N(x, y)=\frac{y-x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x y+1}{y}\right) \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y-x}{y^{2}}\right) \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x y+1}{y} \mathrm{~d} x \\
\phi & =\frac{x(x y+1)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{y}-\frac{x(x y+1)}{y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y-x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y-x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x y+1)}{y}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x y+1)}{y}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-x^{2}+\operatorname{LambertW}\left(-x \mathrm{e}^{x^{2}-c_{1}}\right)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x^{2}+\operatorname{LambertW}\left(-x \mathrm{e}^{x^{2}-c_{1}}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x^{2}+\operatorname{LambertW}\left(-x \mathrm{e}^{x^{2}-c_{1}}\right)+c_{1}}
$$

Verified OK.

1.1.3 Maple step by step solution

Let's solve

$$
\frac{2 y x+1}{y}+\frac{(y-x) y^{\prime}}{y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{2 x}{y}-\frac{2 x y+1}{y^{2}}=-\frac{1}{y^{2}}
$$

- Simplify
$-\frac{1}{y^{2}}=-\frac{1}{y^{2}}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int \frac{2 x y+1}{y} d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{x^{2} y+x}{y}+f_{1}(y)$
- Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\frac{y-x}{y^{2}}=-\frac{x^{2} y+x}{y^{2}}+\frac{x^{2}}{y}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\frac{y-x}{y^{2}}+\frac{x^{2} y+x}{y^{2}}-\frac{x^{2}}{y}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\ln (y)$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{x^{2} y+x}{y}+\ln (y)$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{x^{2} y+x}{y}+\ln (y)=c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{-x^{2}+\operatorname{Lambert} W\left(-x x^{x^{2}-c_{1}}\right)+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 18
dsolve $\left((2 * x * y(x)+1) / y(x)+(y(x)-x) / y(x)^{\wedge} 2 * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=-\frac{x}{\text { LambertW }\left(-\mathrm{e}^{x^{2}} c_{1} x\right)}
$$

\checkmark Solution by Mathematica
Time used: 7.151 (sec). Leaf size: 29
DSolve $[(2 * x * y[x]+1) / y[x]+(y[x]-x) / y[x] \sim 2 * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{W\left(x\left(-e^{x^{2}-c_{1}}\right)\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.2 problem Ex 2

1.2.1 Solving as homogeneousTypeD2 ode 14
1.2.2 Solving as first order ode lie symmetry calculated ode 16
1.2.3 Solving as exact ode . 22
1.2.4 Maple step by step solution . 26

Internal problem ID [11123]
Internal file name [OUTPUT/10108_Wednesday_November_23_2022_11_50_42_AM_71634107/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 8.
Exact differential equations. Page 11
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

$$
\frac{y^{2}-2 x^{2}}{y^{2} x-x^{3}}+\frac{\left(2 y^{2}-x^{2}\right) y^{\prime}}{y^{3}-x^{2} y}=0
$$

1.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\frac{u(x)^{2} x^{2}-2 x^{2}}{u(x)^{2} x^{3}-x^{3}}+\frac{\left(2 u(x)^{2} x^{2}-x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)}{u(x)^{3} x^{3}-x^{3} u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3\left(u^{3}-u\right)}{x\left(2 u^{2}-1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=\frac{u^{3}-u}{2 u^{2}-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}-u}{2 u^{2}-1}} d u & =-\frac{3}{x} d x \\
\int \frac{1}{\frac{u^{3}-u}{2 u^{2}-1}} d u & =\int-\frac{3}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2}+\ln (u) & =-3 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2}+\ln (u)}=\mathrm{e}^{-3 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u-1} \sqrt{u+1} u=\frac{c_{3}}{x^{3}}
$$

The solution is

$$
\sqrt{u(x)-1} \sqrt{u(x)+1} u(x)=\frac{c_{3}}{x^{3}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{\sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} y}{x} & =\frac{c_{3}}{x^{3}} \\
\frac{\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y}{x} & =\frac{c_{3}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}}
$$

Verified OK.

1.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(-2 x^{2}+y^{2}\right)\left(b_{3}-a_{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}-\frac{y^{2}\left(-2 x^{2}+y^{2}\right)^{2} a_{3}}{x^{2}\left(-x^{2}+2 y^{2}\right)^{2}} \\
& -\left(\frac{4 y}{-x^{2}+2 y^{2}}+\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{2}\left(-x^{2}+2 y^{2}\right)}-\frac{2 y\left(-2 x^{2}+y^{2}\right)}{\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{-2 x^{2}+y^{2}}{x\left(-x^{2}+2 y^{2}\right)}-\frac{2 y^{2}}{x\left(-x^{2}+2 y^{2}\right)}\right. \\
& \left.+\frac{4 y^{2}\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{6} b_{2}-6 x^{4} y^{2} a_{3}-3 x^{4} y^{2} b_{2}-6 x^{3} y^{3} a_{2}+6 x^{3} y^{3} b_{3}+3 x^{2} y^{4} a_{3}+6 x^{2} y^{4} b_{2}-3 y^{6} a_{3}+2 x^{5} b_{1}-2 x^{4} y a_{1}+x^{3} y^{2} b_{1}}{\left(x^{2}-2 y^{2}\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{6} b_{2}-6 x^{4} y^{2} a_{3}-3 x^{4} y^{2} b_{2}-6 x^{3} y^{3} a_{2}+6 x^{3} y^{3} b_{3}+3 x^{2} y^{4} a_{3}+6 x^{2} y^{4} b_{2} \tag{6E}\\
& -3 y^{6} a_{3}+2 x^{5} b_{1}-2 x^{4} y a_{1}+x^{3} y^{2} b_{1}-x^{2} y^{3} a_{1}+2 x y^{4} b_{1}-2 y^{5} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -6 a_{2} v_{1}^{3} v_{2}^{3}-6 a_{3} v_{1}^{4} v_{2}^{2}+3 a_{3} v_{1}^{2} v_{2}^{4}-3 a_{3} v_{2}^{6}+3 b_{2} v_{1}^{6}-3 b_{2} v_{1}^{4} v_{2}^{2}+6 b_{2} v_{1}^{2} v_{2}^{4} \tag{7E}\\
& +6 b_{3} v_{1}^{3} v_{2}^{3}-2 a_{1} v_{1}^{4} v_{2}-a_{1} v_{1}^{2} v_{2}^{3}-2 a_{1} v_{2}^{5}+2 b_{1} v_{1}^{5}+b_{1} v_{1}^{3} v_{2}^{2}+2 b_{1} v_{1} v_{2}^{4}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{6}+2 b_{1} v_{1}^{5}+\left(-6 a_{3}-3 b_{2}\right) v_{1}^{4} v_{2}^{2}-2 a_{1} v_{1}^{4} v_{2}+\left(-6 a_{2}+6 b_{3}\right) v_{1}^{3} v_{2}^{3} \tag{8E}\\
& \quad+b_{1} v_{1}^{3} v_{2}^{2}+\left(3 a_{3}+6 b_{2}\right) v_{1}^{2} v_{2}^{4}-a_{1} v_{1}^{2} v_{2}^{3}+2 b_{1} v_{1} v_{2}^{4}-3 a_{3} v_{2}^{6}-2 a_{1} v_{2}^{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
-3 a_{3} & =0 \\
2 b_{1} & =0 \\
3 b_{2} & =0 \\
-6 a_{2}+6 b_{3} & =0 \\
-6 a_{3}-3 b_{2} & =0 \\
3 a_{3}+6 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}\right)(x) \\
& =\frac{3 x^{2} y-3 y^{3}}{x^{2}-2 y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2} y-3 y^{3}}{x^{2}-2 y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{3 x^{2}-3 y^{2}} \\
S_{y} & =\frac{x^{2}-2 y^{2}}{3 x^{2} y-3 y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		为
	$R=x$	$\rightarrow+$
	$S=\underline{\ln (y-x)}+\underline{\ln (y)}$	
at 9 - ${ }^{\text {a }}$	$S=\frac{m(9)}{6}+\frac{m(9)}{3}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}\right) \mathrm{d} y & =\left(-\frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}}\right) \mathrm{d} x \\
\left(\frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}}\right) \mathrm{d} x+\left(\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}} \\
N(x, y) & =\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}}\right) \\
& =\frac{2 y x}{\left(x^{2}-y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}\right) \\
& =\frac{2 y x}{\left(x^{2}-y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{1}{2 y+2 x}-\frac{1}{2(-y+x)}+f^{\prime}(y) \tag{4}\\
& =-\frac{y}{x^{2}-y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}=-\frac{y}{x^{2}-y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+\ln (y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+\ln (y)=c_{1}
$$

Verified OK.

1.2.4 Maple step by step solution

Let's solve

$$
\frac{y^{2}-2 x^{2}}{y^{2} x-x^{3}}+\frac{\left(2 y^{2}-x^{2}\right) y^{\prime}}{y^{3}-x^{2} y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{2 y}{-x^{3}+x y^{2}}-\frac{2\left(-2 x^{2}+y^{2}\right) x y}{\left(-x^{3}+x y^{2}\right)^{2}}=-\frac{2 x}{-x^{2} y+y^{3}}+\frac{2\left(-x^{2}+2 y^{2}\right) x y}{\left(-x^{2} y+y^{3}\right)^{2}}
$$

- Simplify
$\frac{2 y x}{\left(x^{2}-y^{2}\right)^{2}}=\frac{2 y x}{\left(x^{2}-y^{2}\right)^{2}}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int \frac{-2 x^{2}+y^{2}}{-x^{3}+x y^{2}} d x+f_{1}(y)$
- \quad Evaluate integral
$F(x, y)=\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (-y+x)}{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}=\frac{1}{2(y+x)}-\frac{1}{2(-y+x)}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{-x^{2}+2 y^{2}}{-x^{2} y+y^{3}}-\frac{1}{2(y+x)}+\frac{1}{2(-y+x)}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=-\frac{\ln (-y+x)}{2}+\frac{\ln (y-x)}{2}+\ln (y)
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (y-x)}{2}+\ln (y)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{\ln (y+x)}{2}+\ln (x)+\frac{\ln (y-x)}{2}+\ln (y)=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{-2 x^{2}+\sqrt{2 x^{4}-2 \sqrt{x^{8}+4\left(\mathrm{e}^{\left.c_{1}\right)^{2} x^{2}}\right.}}}{2 x}+x, y=-\frac{2 x^{2}+\sqrt{2 x^{4}-2 \sqrt{x^{8}+4\left(\mathrm{e}^{\left.c_{1}\right)^{2} x^{2}}\right.}}}{2 x}+x, y=\frac{\sqrt{2} \sqrt{x^{4}+\sqrt{x^{8}+4\left(\mathrm{e}^{\left.c_{1}\right)^{2} x^{2}}-2\right.}}}{2 x}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.266 (sec). Leaf size: 71

```
dsolve((y(x)^2-2*x^2)/(x*y(x)^2-x^3)+(2*y(x)^2-x^2)/(y(x)^3-x^2*y(x))*diff (y(x),x)=0,y(x),
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\frac{2 c_{1} x^{3}-2 \sqrt{c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}} x}{2} \\
& y(x)=\frac{\sqrt{2} \sqrt{\frac{c_{1} x^{3}+\sqrt{c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}} x}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 15.598 (sec). Leaf size: 277
DSolve $\left[\left(y[x] \wedge 2-2 * x^{\wedge} 2\right) /\left(x * y[x] \wedge 2-x^{\wedge} 3\right)+\left(2 * y[x] \wedge 2-x^{\wedge} 2\right) /\left(y[x] \sim 3-x^{\wedge} 2 * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, Inclu

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{\sqrt{x^{6}}+x^{3}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{\sqrt{x^{6}+x^{3}}}{x}}}{\sqrt{2}}
\end{aligned}
$$

1.3 problem Ex 3

1.3.1 Solving as first order ode lie symmetry calculated ode 29
1.3.2 Solving as exact ode . 35
1.3.3 Maple step by step solution . 39

Internal problem ID [11124]
Internal file name [OUTPUT/10109_Wednesday_November_23_2022_11_50_44_AM_4922352/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 8. Exact differential equations. Page 11
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type

$$
\begin{gathered}
\text { [[_homogeneous, } \left.\left.c l a s s A^{`}\right], ~ _e x a c t, ~ _r a t i o n a l, ~ _d A l e m b e r t\right] \\
\qquad \frac{1}{\sqrt{x^{2}+y^{2}}}+\left(\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}\right) y^{\prime}=0
\end{gathered}
$$

1.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{\sqrt{x^{2}+y^{2}}-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(b_{3}-a_{2}\right)}{\sqrt{x^{2}+y^{2}}-x}-\frac{y^{2} a_{3}}{\left(\sqrt{x^{2}+y^{2}}-x\right)^{2}}-\frac{y\left(\frac{x}{\sqrt{x^{2}+y^{2}}}-1\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(\sqrt{x^{2}+y^{2}}-x\right)^{2}} \tag{5E}\\
& -\left(-\frac{1}{\sqrt{x^{2}+y^{2}}-x}+\frac{y^{2}}{\left(\sqrt{x^{2}+y^{2}}-x\right)^{2} \sqrt{x^{2}+y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{2}-x^{3} b_{2}-x y^{2} a_{3}-2 x y^{2} b_{2}+y^{3} a_{2}-y^{3} b_{3}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+x^{2} b_{1}-x y a_{1}}{\left(\sqrt{x^{2}+y^{2}}-x\right)^{2} \sqrt{x^{2}+y^{2}}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{2}-x^{3} b_{2}-x y^{2} a_{3}-2 x y^{2} b_{2}+y^{3} a_{2}-y^{3} b_{3} \tag{6E}\\
-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+x^{2} b_{1}-x y a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& \left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{2}-\left(x^{2}+y^{2}\right) x b_{2}+\left(x^{2}+y^{2}\right) y a_{2}-x^{2} y a_{2}-x y^{2} a_{3}-x y^{2} b_{2} \tag{6E}\\
& \quad-y^{3} b_{3}+\left(x^{2}+y^{2}\right) b_{1}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x y a_{1}-y^{2} b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}} x^{2} b_{2}+\sqrt{x^{2}+y^{2}} y^{2} b_{2}-x^{3} b_{2}-x y^{2} a_{3}-2 x y^{2} b_{2}+y^{3} a_{2} \\
& -y^{3} b_{3}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+x^{2} b_{1}-x y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{gather*}
v_{2}^{3} a_{2}-v_{1} v_{2}^{2} a_{3}-v_{1}^{3} b_{2}+v_{3} v_{1}^{2} b_{2}-2 v_{1} v_{2}^{2} b_{2}+v_{3} v_{2}^{2} b_{2} \tag{7E}\\
-v_{2}^{3} b_{3}-v_{1} v_{2} a_{1}+v_{3} v_{2} a_{1}+v_{1}^{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{gather*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{gather*}
-v_{1}^{3} b_{2}+v_{3} v_{1}^{2} b_{2}+v_{1}^{2} b_{1}+\left(-a_{3}-2 b_{2}\right) v_{1} v_{2}^{2}-v_{1} v_{2} a_{1} \tag{8E}\\
-v_{3} v_{1} b_{1}+\left(-b_{3}+a_{2}\right) v_{2}^{3}+v_{3} v_{2}^{2} b_{2}+v_{3} v_{2} a_{1}=0
\end{gather*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-a_{3}-2 b_{2} & =0 \\
-b_{3}+a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{\sqrt{x^{2}+y^{2}}-x}\right)(x) \\
& =\frac{y \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}-x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}-x}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)+\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{x^{2}+y^{2}}}{y}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{\sqrt{x^{2}+y^{2}}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sqrt{x^{2}+y^{2}}+x}{\sqrt{x^{2}+y^{2}} x} \\
S_{y} & =\frac{y}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{\sqrt{x^{2}+y^{2}}-x}$	$\begin{aligned} R & =x \\ S & =\ln (2)+\ln (x) \end{aligned}$	$\frac{d S}{d R}=\frac{1}{R}$
aravidtidtydt		- xad dit
		$\cdots \times \rightarrow 0 \rightarrow \infty$
$y[x]$		$-s(R)+1+$
$\rightarrow \rightarrow x^{2}$		
$\rightarrow \rightarrow x^{+}$		\therefore - ${ }^{\text {a }}$
		+ + +
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		为
		: ${ }^{\text {¢ }}$ 分
		¢
		${ }_{4}^{10} 9$
		$\rightarrow \rightarrow$ -

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (2)+\ln (x)+\ln \left(\sqrt{x^{2}+y^{2}}+x\right)=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
\ln (2)+\ln (x)+\ln \left(\sqrt{x^{2}+y^{2}}+x\right)=\ln (x)+c_{1}
$$

Verified OK.

1.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}\right) \mathrm{d} y & =\left(-\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \mathrm{d} x \\
\left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \mathrm{d} x+\left(\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}} \\
& N(x, y)=\frac{x}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \\
& =-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}\right) \\
& =-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} x \\
\phi & =\ln \left(\sqrt{x^{2}+y^{2}}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}=\frac{y}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln \left(\sqrt{x^{2}+y^{2}}+x\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln \left(\sqrt{x^{2}+y^{2}}+x\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln \left(\sqrt{x^{2}+y^{2}}+x\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
\ln \left(\sqrt{x^{2}+y^{2}}+x\right)=c_{1}
$$

Verified OK.

1.3.3 Maple step by step solution

Let's solve
$\frac{1}{\sqrt{x^{2}+y^{2}}}+\left(\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=-\frac{1}{y \sqrt{x^{2}+y^{2}}}+\frac{x^{2}}{y\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

- Simplify

$$
-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=-\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int \frac{1}{\sqrt{x^{2}+y^{2}}} d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}+x\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}=\frac{y}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{1}{y}-\frac{x}{y \sqrt{x^{2}+y^{2}}}-\frac{y}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}+x\right)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\ln \left(\sqrt{x^{2}+y^{2}}+x\right)=c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{-2 \mathrm{e}^{c_{1}} x+\left(\mathrm{e}^{c_{1}}\right)^{2}}, y=-\sqrt{-2 \mathrm{e}^{c_{1}} x+\left(\mathrm{e}^{c_{1}}\right)^{2}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 18

```
dsolve(1/sqrt( (x^2+y(x)^2)+( 1/y(x)-(x/(y(x)*sqrt (x^2+y(x)^2))))*diff (y(x),x)=0,y(x), singso
```

$$
-c_{1}+\sqrt{y(x)^{2}+x^{2}}+x=0
$$

\checkmark Solution by Mathematica
Time used: 0.893 (sec). Leaf size: 62
DSolve $11 /$ Sqrt $\left[x^{\wedge} 2+y[x] \wedge 2\right]+\left(1 / y[x]-\left(x /\left(y[x] * \operatorname{Sqrt}\left[x^{\wedge} 2+y[x] \sim 2\right]\right)\right)\right) * y{ }^{\prime}[x]==0, y[x], x$, IncludeSing

$$
\begin{aligned}
& y(x) \rightarrow-e^{\frac{c_{1}}{2}} \sqrt{-2 x+e^{c_{1}}} \\
& y(x) \rightarrow e^{\frac{c_{1}}{2}} \sqrt{-2 x+e^{c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \text { ComplexInfinity }
\end{aligned}
$$

1.4 problem Ex 4

1.4.1 Solving as linear ode . 42
1.4.2 Solving as homogeneousTypeD2 ode 44
1.4.3 Solving as differentialType ode 46
1.4.4 Solving as first order ode lie symmetry lookup ode 47
1.4.5 Solving as exact ode . 51
1.4.6 Maple step by step solution . 55

Internal problem ID [11125]
Internal file name [OUTPUT/10110_Wednesday_November_23_2022_11_50_45_AM_26166275/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 8.
Exact differential equations. Page 11
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_linear]
```

$$
y+y^{\prime} x=-x
$$

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)(-1) \\
\mathrm{d}(x y) & =(-x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int-x \mathrm{~d} x \\
& x y=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=-\frac{x}{2}+\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{2}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot
Verification of solutions

$$
y=-\frac{x}{2}+\frac{c_{1}}{x}
$$

Verified OK.

1.4.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+\left(u^{\prime}(x) x+u(x)\right) x=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-2 u-1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-2 u-1$. Integrating both sides gives

$$
\frac{1}{-2 u-1} d u=\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{-2 u-1} d u & =\int \frac{1}{x} d x \\
-\frac{\ln (-2 u-1)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{-2 u-1}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{-2 u-1}}=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =-\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} x^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} x^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot

Verification of solutions

$$
y=-\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} x^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}}
$$

Verified OK.

1.4.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-y-x}{x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-x) d y+(-x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-x-y) d x=d\left(-\frac{1}{2} x^{2}-x y\right)
$$

Hence (2) becomes

$$
0=d\left(-\frac{1}{2} x^{2}-x y\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{2}+2 c_{1}}{2 x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot
Verification of solutions

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}+c_{1}
$$

Verified OK.

1.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y+x}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=x y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y+x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x=-\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
y x=-\frac{x^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y+x}{x}$		$\frac{d S}{d R}=-R$
		¢facta分
		+ 4
x_{0}		
	$R=x$	
	$S=x y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{2}+2 c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot
Verification of solutions

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}
$$

Verified OK.

1.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(-x-y) \mathrm{d} x \\
(y+x) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y+x \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y+x \mathrm{~d} x \\
\phi & =\frac{x(2 y+x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(2 y+x)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(2 y+x)}{2}
$$

The solution becomes

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{2}+2 c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=\frac{-x^{2}+2 c_{1}}{2 x}
$$

Verified OK.

1.4.6 Maple step by step solution

Let's solve
$y+y^{\prime} x=-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-1-\frac{y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x}=-1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=-\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int-x d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{x^{2}}{2}+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve((y(x)+x)+ x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{x}{2}+\frac{c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 17
DSolve $[(y[x]+x)+x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\frac{x}{2}+\frac{c_{1}}{x}
$$

1.5 problem Ex 5

1.5.1 Solving as differentialType ode 57
1.5.2 Solving as homogeneousTypeMapleC ode 59
1.5.3 Solving as first order ode lie symmetry calculated ode 62
1.5.4 Solving as exact ode . 68
1.5.5 Maple step by step solution . 72

Internal problem ID [11126]
Internal file name [OUTPUT/10111_Wednesday_November_23_2022_11_50_46_AM_71070688/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 8.
Exact differential equations. Page 11
Problem number: Ex 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
-2 y+(2 y-2 x-3) y^{\prime}=-6 x-1
$$

1.5.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-6 x+2 y-1}{2 y-2 x-3} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-2 y+3) d y=(-2 x) d y+(6 x-2 y+1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-2 x) d y+(6 x-2 y+1) d x=d\left(3 x^{2}-2 x y+x\right)
$$

Hence (2) becomes

$$
(-2 y+3) d y=d\left(3 x^{2}-2 x y+x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\frac{3}{2}+\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1} \\
& y=x+\frac{3}{2}-\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+\frac{3}{2}+\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1} \tag{1}\\
& y=x+\frac{3}{2}-\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1} \tag{2}
\end{align*}
$$

Figure 13: Slope field plot

Verification of solutions

$$
y=x+\frac{3}{2}+\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1}
$$

Verified OK.

$$
y=x+\frac{3}{2}-\frac{\sqrt{-8 x^{2}-4 c_{1}+8 x+9}}{2}+c_{1}
$$

Verified OK.

1.5.2 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{-6 X-6 x_{0}+2 Y(X)+2 y_{0}-1}{2 Y(X)+2 y_{0}-2 X-2 x_{0}-3}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=\frac{1}{2} \\
& y_{0}=2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{-6 X+2 Y(X)}{2 Y(X)-2 X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{-3 X+Y}{Y-X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=3 X-Y$ and $N=-Y+X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{u-3}{u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{u(X)-3}{u(X)-1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{u(X)-3}{u(X)-1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)-\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}-2 u(X)+3=0
$$

Or

$$
X(u(X)-1)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}-2 u(X)+3=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-2 u+3}{X(u-1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-2 u+3}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-2 u+3}{u-1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-2 u+3}{u-1}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}-2 u+3\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}-2 u+3}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}-2 u+3}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\sqrt{u(X)^{2}-2 u(X)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\sqrt{u(X)^{2}-2 u(X)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\sqrt{\frac{Y(X)^{2}}{X^{2}}-\frac{2 Y(X)}{X}+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\sqrt{\frac{Y(X)^{2}-2 Y(X) X+3 X^{2}}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+2 \\
& X=x+\frac{1}{2}
\end{aligned}
$$

Then the solution in y becomes

$$
\sqrt{\frac{(y-2)^{2}-2(y-2)\left(x-\frac{1}{2}\right)+3\left(x-\frac{1}{2}\right)^{2}}{\left(x-\frac{1}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-\frac{1}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{(y-2)^{2}-2(y-2)\left(x-\frac{1}{2}\right)+3\left(x-\frac{1}{2}\right)^{2}}{\left(x-\frac{1}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-\frac{1}{2}} \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot
Verification of solutions

$$
\sqrt{\frac{(y-2)^{2}-2(y-2)\left(x-\frac{1}{2}\right)+3\left(x-\frac{1}{2}\right)^{2}}{\left(x-\frac{1}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-\frac{1}{2}}
$$

Verified OK.

1.5.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-6 x+2 y-1}{2 y-2 x-3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{equation*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}
\end{equation*}
$$

$$
\begin{equation*}
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{equation*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-6 x+2 y-1)\left(b_{3}-a_{2}\right)}{2 y-2 x-3}-\frac{(-6 x+2 y-1)^{2} a_{3}}{(2 y-2 x-3)^{2}} \\
& -\left(-\frac{6}{2 y-2 x-3}+\frac{-12 x+4 y-2}{(2 y-2 x-3)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2}{2 y-2 x-3}-\frac{2(-6 x+2 y-1)}{(2 y-2 x-3)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{12 x^{2} a_{2}+36 x^{2} a_{3}+4 x^{2} b_{2}-12 x^{2} b_{3}-24 x y a_{2}-24 x y a_{3}+8 x y b_{2}+24 x y b_{3}+4 y^{2} a_{2}-4 y^{2} a_{3}-4 y^{2} b_{2}-4 y}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -12 x^{2} a_{2}-36 x^{2} a_{3}-4 x^{2} b_{2}+12 x^{2} b_{3}+24 x y a_{2}+24 x y a_{3}-8 x y b_{2}-24 x y b_{3} \tag{6E}\\
& -4 y^{2} a_{2}+4 y^{2} a_{3}+4 y^{2} b_{2}+4 y^{2} b_{3}-36 x a_{2}-12 x a_{3}-8 x b_{1}+16 x b_{2}+20 x b_{3} \\
& +8 y a_{1}+8 y a_{2}-12 y a_{3}-12 y b_{2}-4 y b_{3}-16 a_{1}-3 a_{2}-a_{3}+4 b_{1}+9 b_{2}+3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -12 a_{2} v_{1}^{2}+24 a_{2} v_{1} v_{2}-4 a_{2} v_{2}^{2}-36 a_{3} v_{1}^{2}+24 a_{3} v_{1} v_{2}+4 a_{3} v_{2}^{2}-4 b_{2} v_{1}^{2}-8 b_{2} v_{1} v_{2} \tag{7E}\\
& +4 b_{2} v_{2}^{2}+12 b_{3} v_{1}^{2}-24 b_{3} v_{1} v_{2}+4 b_{3} v_{2}^{2}+8 a_{1} v_{2}-36 a_{2} v_{1}+8 a_{2} v_{2}-12 a_{3} v_{1}-12 a_{3} v_{2} \\
& \quad-8 b_{1} v_{1}+16 b_{2} v_{1}-12 b_{2} v_{2}+20 b_{3} v_{1}-4 b_{3} v_{2}-16 a_{1}-3 a_{2}-a_{3}+4 b_{1}+9 b_{2}+3 b_{3} \\
& =0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-12 a_{2}-36 a_{3}-4 b_{2}+12 b_{3}\right) v_{1}^{2}+\left(24 a_{2}+24 a_{3}-8 b_{2}-24 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-36 a_{2}-12 a_{3}-8 b_{1}+16 b_{2}+20 b_{3}\right) v_{1}+\left(-4 a_{2}+4 a_{3}+4 b_{2}+4 b_{3}\right) v_{2}^{2} \\
& \quad+\left(8 a_{1}+8 a_{2}-12 a_{3}-12 b_{2}-4 b_{3}\right) v_{2}-16 a_{1}-3 a_{2}-a_{3}+4 b_{1}+9 b_{2}+3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-12 a_{2}-36 a_{3}-4 b_{2}+12 b_{3} & =0 \\
-4 a_{2}+4 a_{3}+4 b_{2}+4 b_{3} & =0 \\
24 a_{2}+24 a_{3}-8 b_{2}-24 b_{3} & =0 \\
8 a_{1}+8 a_{2}-12 a_{3}-12 b_{2}-4 b_{3}= & 0 \\
-36 a_{2}-12 a_{3}-8 b_{1}+16 b_{2}+20 b_{3}= & 0 \\
-16 a_{1}-3 a_{2}-a_{3}+4 b_{1}+9 b_{2}+3 b_{3}= & 0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=a_{1} \\
& a_{2}=-4 a_{3}-2 a_{1} \\
& a_{3}=a_{3} \\
& b_{1}=4 a_{1}+\frac{11 a_{3}}{2} \\
& b_{2}=-3 a_{3} \\
& b_{3}=-2 a_{1}-2 a_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-4 x+y \\
& \eta=-3 x+\frac{11}{2}-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-3 x+\frac{11}{2}-2 y-\left(\frac{-6 x+2 y-1}{2 y-2 x-3}\right)(-4 x+y) \\
& =\frac{36 x^{2}-24 x y+12 y^{2}+12 x-36 y+33}{-4 y+4 x+6} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{36 x^{2}-24 x y+12 y^{2}+12 x-36 y+33}{-4 y+4 x+6}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(12 x^{2}-8 x y+4 y^{2}+4 x-12 y+11\right)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-6 x+2 y-1}{2 y-2 x-3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-12 x+4 y-2}{36 x^{2}+(-24 y+12) x+12 y^{2}-36 y+33} \\
S_{y} & =\frac{-4 y+4 x+6}{36 x^{2}+(-24 y+12) x+12 y^{2}-36 y+33}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(12 x^{2}+(-8 y+4) x+4 y^{2}-12 y+11\right)}{6}=c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(12 x^{2}+(-8 y+4) x+4 y^{2}-12 y+11\right)}{6}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-6 x+2 y-1}{2 y-2 x-3}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow+]{ }$
A A A A A		$\xrightarrow{+S(R) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		,
	$R=x$	\rightarrow
	$\ln \left(12 x^{2}+\right.$	
	$S=-\underline{\ln \left(12 x^{2}+\right.}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(12 x^{2}+(-8 y+4) x+4 y^{2}-12 y+11\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(12 x^{2}+(-8 y+4) x+4 y^{2}-12 y+11\right)}{6}=c_{1}
$$

Verified OK.

1.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y-2 x-3) \mathrm{d} y & =(-6 x+2 y-1) \mathrm{d} x \\
(6 x-2 y+1) \mathrm{d} x+(2 y-2 x-3) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{array}{r}
M(x, y)=6 x-2 y+1 \\
N(x, y)=2 y-2 x-3
\end{array}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(6 x-2 y+1) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y-2 x-3) \\
& =-2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 x-2 y+1 \mathrm{~d} x \\
\phi & =x(3 x-2 y+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-2 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y-2 x-3$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y-2 x-3=-2 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y-3
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y-3) \mathrm{d} y \\
f(y) & =y^{2}-3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x(3 x-2 y+1)+y^{2}-3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x(3 x-2 y+1)+y^{2}-3 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x(3 x-2 y+1)+y^{2}-3 y=c_{1} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot
Verification of solutions

$$
x(3 x-2 y+1)+y^{2}-3 y=c_{1}
$$

Verified OK.

1.5.5 Maple step by step solution

Let's solve

$$
-2 y+(2 y-2 x-3) y^{\prime}=-6 x-1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-2=-2
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(6 x-2 y+1) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=3 x^{2}-2 x y+x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$2 y-2 x-3=-2 x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=2 y-3$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{2}-3 y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=3 x^{2}-2 x y+y^{2}+x-3 y
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$3 x^{2}-2 x y+y^{2}+x-3 y=c_{1}$
- \quad Solve for y

$$
\left\{y=x+\frac{3}{2}-\frac{\sqrt{-8 x^{2}+4 c_{1}+8 x+9}}{2}, y=x+\frac{3}{2}+\frac{\sqrt{-8 x^{2}+4 c_{1}+8 x+9}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.469 (sec). Leaf size: 33

```
dsolve((6*x-2*y(x)+1)+(2*y(x)-2*x-3)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{-\sqrt{1-8\left(x-\frac{1}{2}\right)^{2} c_{1}^{2}}+(2 x+3) c_{1}}{2 c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 67
DSolve $\left[(6 * x-2 * y[x]+1)+(2 * y[x]-2 * x-3) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2} i \sqrt{8 x^{2}-8 x-9-4 c_{1}}+x+\frac{3}{2} \\
& y(x) \rightarrow \frac{1}{2} i \sqrt{8 x^{2}-8 x-9-4 c_{1}}+x+\frac{3}{2}
\end{aligned}
$$

2 Chapter 2, differential equations of the first order and the first degree. Article 9. Variables searated or separable. Page 13
2.1 problem Ex 1 76
2.2 problem Ex 2 88
2.3 problem Ex 3 102
2.4 problem Ex 4 114

2.1 problem Ex 1

2.1.1 Solving as separable ode . 76
2.1.2 Solving as first order ode lie symmetry lookup ode 78
2.1.3 Solving as exact ode . 82
2.1.4 Maple step by step solution . 86

Internal problem ID [11127]
Internal file name [OUTPUT/10112_Wednesday_November_23_2022_11_50_47_AM_67654846/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 9.
Variables searated or separable. Page 13
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sec (x) \cos (y)^{2}-\cos (x) \sin (y) y^{\prime}=0
$$

2.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sec (x) \cos (y) \cot (y)}{\cos (x)}
\end{aligned}
$$

Where $f(x)=\frac{\sec (x)}{\cos (x)}$ and $g(y)=\cos (y) \cot (y)$. Integrating both sides gives

$$
\frac{1}{\cos (y) \cot (y)} d y=\frac{\sec (x)}{\cos (x)} d x
$$

$$
\begin{aligned}
\int \frac{1}{\cos (y) \cot (y)} d y & =\int \frac{\sec (x)}{\cos (x)} d x \\
\frac{1}{\cos (y)} & =\tan (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\arccos \left(\frac{1}{\tan (x)+c_{1}}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\frac{1}{\tan (x)+c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=\arccos \left(\frac{1}{\tan (x)+c_{1}}\right)
$$

Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sec (x) \cos (y)^{2}}{\cos (x) \sin (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\cos (x)}{\sec (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\cos (x)}{\sec (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\tan (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sec (x) \cos (y)^{2}}{\cos (x) \sin (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\sec (x)^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\tan (y) \sec (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R) \sec (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sec (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\tan (x)=\sec (y)+c_{1}
$$

Which simplifies to

$$
\tan (x)=\sec (y)+c_{1}
$$

Which gives

$$
y=\pi-\operatorname{arcsec}\left(-\tan (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sec (x) \cos (y)^{2}}{\cos (x) \sin (y)}$		$\frac{d S}{d R}=\tan (R) \sec (R)$
	$R=y$	
	$S=\tan (x)$	
		¢ $\rightarrow \underbrace{+\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\pi-\operatorname{arcsec}\left(-\tan (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot
Verification of solutions

$$
y=\pi-\operatorname{arcsec}\left(-\tan (x)+c_{1}\right)
$$

Verified OK.

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{\sin (y)}{\cos (y)^{2}}\right) \mathrm{d} y & =\left(\frac{\sec (x)}{\cos (x)}\right) \mathrm{d} x \\
\left(-\frac{\sec (x)}{\cos (x)}\right) \mathrm{d} x+\left(\frac{\sin (y)}{\cos (y)^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\sec (x)}{\cos (x)} \\
& N(x, y)=\frac{\sin (y)}{\cos (y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sec (x)}{\cos (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\sin (y)}{\cos (y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sec (x)}{\cos (x)} \mathrm{d} x \\
\phi & =-\tan (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sin (y)}{\cos (y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sin (y)}{\cos (y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\sin (y)}{\cos (y)^{2}} \\
& =\tan (y) \sec (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\tan (y) \sec (y)) \mathrm{d} y \\
f(y) & =\sec (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\tan (x)+\sec (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\tan (x)+\sec (y)
$$

The solution becomes

$$
y=\operatorname{arcsec}\left(\tan (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

Figure 19: Slope field plot

Verification of solutions

$$
y=\operatorname{arcsec}\left(\tan (x)+c_{1}\right)
$$

Verified OK.

2.1.4 Maple step by step solution

Let's solve

$$
\sec (x) \cos (y)^{2}-\cos (x) \sin (y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime} \sin (y)}{\cos (y)^{2}}=\frac{\sec (x)}{\cos (x)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} \sin (y)}{\cos (y)^{2}} d x=\int \frac{\sec (x)}{\cos (x)} d x+c_{1}
$$

- Evaluate integral

$$
\frac{1}{\cos (y)}=\tan (x)+c_{1}
$$

- \quad Solve for y
$y=\arccos \left(\frac{1}{\tan (x)+c_{1}}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve($\left(\sec (x) * \cos (y(x))^{\wedge} 2\right)-(\cos (x) * \sin (y(x))) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\arccos \left(\frac{1}{\tan (x)+c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.366 (sec). Leaf size: 45
DSolve $\left[(\operatorname{Sec}[x] * \operatorname{Cos}[y[x]] \sim 2)-(\operatorname{Cos}[x] * \operatorname{Sin}[y[x]]) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow I

$$
\begin{aligned}
& y(x) \rightarrow-\sec ^{-1}\left(\tan (x)+2 c_{1}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(\tan (x)+2 c_{1}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

2.2 problem Ex 2

2.2.1 Solving as separable ode . 88
2.2.2 Solving as first order ode lie symmetry lookup ode 90
2.2.3 Solving as exact ode . 94
2.2.4 Solving as riccati ode . 98
2.2.5 Maple step by step solution . 100

Internal problem ID [11128]
Internal file name [OUTPUT/10113_Wednesday_November_23_2022_11_50_49_AM_47658040/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 9.
Variables searated or separable. Page 13
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(1+x) y^{2}-y^{\prime} x^{3}=0
$$

2.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(1+x) y^{2}}{x^{3}}
\end{aligned}
$$

Where $f(x)=\frac{1+x}{x^{3}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\frac{1}{y^{2}} d y=\frac{1+x}{x^{3}} d x
$$

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =\int \frac{1+x}{x^{3}} d x \\
-\frac{1}{y} & =-\frac{1}{2 x^{2}}-\frac{1}{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1}
$$

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{(1+x) y^{2}}{x^{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{3}}{1+x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{3}}{1+x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 x^{2}}-\frac{1}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{(1+x) y^{2}}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1+x}{x^{3}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-2 x-1}{2 x^{2}}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{-2 x-1}{2 x^{2}}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{2 x^{2}}{2 c_{1} x^{2}+2 x+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{(1+x) y^{2}}{x^{3}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
$\rightarrow \rightarrow \rightarrow \pm \rightarrow \pm$ -		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=y$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$	$R=y$	
	$S=\underline{-2 x-1}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$=\frac{2 x^{2}}{}$	
		他 ${ }_{\text {a }}$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{2}}{2 c_{1} x^{2}+2 x+1} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=\frac{2 x^{2}}{2 c_{1} x^{2}+2 x+1}
$$

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{1+x}{x^{3}}\right) \mathrm{d} x \\
\left(-\frac{1+x}{x^{3}}\right) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1+x}{x^{3}} \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1+x}{x^{3}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1+x}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{2 x+1}{2 x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{2 x+1}{2 x^{2}}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{2 x+1}{2 x^{2}}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot
Verification of solutions

$$
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1}
$$

Verified OK.

2.2.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{(1+x) y^{2}}{x^{3}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{x^{3}}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=\frac{1+x}{x^{3}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{(1+x) u}{x^{3}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{1}{x^{3}}-\frac{3(1+x)}{x^{4}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{(1+x) u^{\prime \prime}(x)}{x^{3}}-\left(\frac{1}{x^{3}}-\frac{3(1+x)}{x^{4}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\frac{(2 x+1) c_{2}}{x^{2}}
$$

The above shows that

$$
u^{\prime}(x)=-\frac{2 c_{2}(1+x)}{x^{3}}
$$

Using the above in (1) gives the solution

$$
y=\frac{2 c_{2}}{c_{1}+\frac{(2 x+1) c_{2}}{x^{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{2 x^{2}}{c_{3} x^{2}+2 x+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{2}}{c_{3} x^{2}+2 x+1} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=\frac{2 x^{2}}{c_{3} x^{2}+2 x+1}
$$

Verified OK.

2.2.5 Maple step by step solution

Let's solve

$$
(1+x) y^{2}-y^{\prime} x^{3}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=\frac{1+x}{x^{3}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{1+x}{x^{3}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-\frac{1}{2 x^{2}}-\frac{1}{x}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{2 x^{2}}{2 c_{1} x^{2}-2 x-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve((1+x)*y(x)^2-x^3*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{2 x^{2}}{2 c_{1} x^{2}+2 x+1}
$$

\checkmark Solution by Mathematica
Time used: 0.231 (sec). Leaf size: 29
DSolve[(1+x)*y[x] $2-x^{\wedge} 3 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 x^{2}}{-2 c_{1} x^{2}+2 x+1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.3 problem Ex 3

2.3.1 Solving as separable ode . 102
2.3.2 Solving as first order ode lie symmetry lookup ode 104
2.3.3 Solving as exact ode . 108
2.3.4 Maple step by step solution . 112

Internal problem ID [11129]
Internal file name [OUTPUT/10114_Wednesday_November_23_2022_11_50_50_AM_16874930/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 9.
Variables searated or separable. Page 13
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2\left(1-y^{2}\right) x y+\left(x^{2}+1\right)\left(1+y^{2}\right) y^{\prime}=0
$$

2.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x\left(2 y^{3}-2 y\right)}{\left(x^{2}+1\right)\left(y^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+1}$ and $g(y)=\frac{2 y^{3}-2 y}{y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{2 y^{3}-2 y}{y^{2}+1}} d y=\frac{x}{x^{2}+1} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{2 y^{3}-2 y}{y^{2}+1}} d y & =\int \frac{x}{x^{2}+1} d x \\
\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2} & =\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (y-1)+\ln (y+1)-\ln (y)) & =\frac{\ln \left(x^{2}+1\right)}{2}+2 c_{1} \\
\ln (y-1)+\ln (y+1)-\ln (y) & =(2)\left(\frac{\ln \left(x^{2}+1\right)}{2}+2 c_{1}\right) \\
& =\ln \left(x^{2}+1\right)+4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)+\ln (y+1)-\ln (y)}=\mathrm{e}^{\ln \left(x^{2}+1\right)+2 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{y^{2}-1}{y} & =2 c_{1}\left(x^{2}+1\right) \\
& =c_{2}\left(x^{2}+1\right)
\end{aligned}
$$

The solution is

$$
\frac{y^{2}-1}{y}=c_{2}\left(x^{2}+1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}-1}{y}=c_{2}\left(x^{2}+1\right) \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot
Verification of solutions

$$
\frac{y^{2}-1}{y}=c_{2}\left(x^{2}+1\right)
$$

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x y\left(y^{2}-1\right)}{x^{2} y^{2}+x^{2}+y^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 14: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{2}+1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}+1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+1\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x y\left(y^{2}-1\right)}{x^{2} y^{2}+x^{2}+y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x}{x^{2}+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}+1}{2 y^{3}-2 y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}+1}{2 R^{3}-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-1)}{2}+\frac{\ln (R+1)}{2}-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+1\right)}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+1\right)}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x y\left(y^{2}-1\right)}{x^{2} y^{2}+x^{2}+y^{2}+1}$		$\frac{d S}{d R}=\frac{R^{2}+1}{2 R^{3}-2 R}$
		$\rightarrow \rightarrow$ 为 +1
- ¢ -		$\therefore+$ + + +
		$S(R)+1+\square \rightarrow \rightarrow \rightarrow \rightarrow \infty$
$\cdots x^{\circ}$		$\cdots{ }^{1}+9$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow$	$R=y$	$\rightarrow \rightarrow \rightarrow+1$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow-\infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm]{ }$	$\ln \left(x^{2}+1\right)$	$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow \infty]{ }$
$\rightarrow \rightarrow \rightarrow-0$	2	
		-1守:
		- 1 - $+1+\beta \rightarrow \rightarrow \rightarrow \rightarrow$ -

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+1\right)}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
\frac{\ln \left(x^{2}+1\right)}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1}
$$

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y^{2}+1}{2 y^{3}-2 y}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{y^{2}+1}{2 y^{3}-2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =\frac{y^{2}+1}{2 y^{3}-2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y^{2}+1}{2 y^{3}-2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{2}+1}{2 y^{3}-2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{2}+1}{2 y^{3}-2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{2}+1}{2 y\left(y^{2}-1\right)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{2}+1}{2 y^{3}-2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\frac{\ln (y)}{2}=c_{1}
$$

Verified OK.

2.3.4 Maple step by step solution

Let's solve

$$
2\left(1-y^{2}\right) x y+\left(x^{2}+1\right)\left(1+y^{2}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}\left(1+y^{2}\right)}{\left(1-y^{2}\right) y}=-\frac{2 x}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}\left(1+y^{2}\right)}{\left(1-y^{2}\right) y} d x=\int-\frac{2 x}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral

$$
-\ln (y-1)-\ln (y+1)+\ln (y)=-\ln \left(x^{2}+1\right)+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{-x^{2}+\sqrt{x^{4}+4\left(\mathrm{e}^{c_{1}}\right)^{2}+2 x^{2}+1}-1}{2 \mathrm{e}^{c_{1}}}, y=\frac{x^{2}+1+\sqrt{x^{4}+4\left(\mathrm{e}^{c_{1}}\right)^{2}+2 x^{2}+1}}{2 \mathrm{e}^{c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 61

```
dsolve(2*(1-y(x)^2)*x*y(x)+(1+x^2)*(1+y(x)^2)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1} x^{2}}{2}+\frac{c_{1}}{2}-\frac{\sqrt{4+\left(x^{2}+1\right)^{2} c_{1}^{2}}}{2} \\
& y(x)=\frac{c_{1} x^{2}}{2}+\frac{c_{1}}{2}+\frac{\sqrt{4+\left(x^{2}+1\right)^{2} c_{1}^{2}}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 8.437 (sec). Leaf size: 98
DSolve $\left[2 *(1-y[x] \sim 2) * x * y[x]+\left(1+x^{\wedge} 2\right) *(1+y[x] \sim 2) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-e^{c_{1}}\left(x^{2}+1\right)-\sqrt{4+e^{2 c_{1}}\left(x^{2}+1\right)^{2}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{4+e^{2 c_{1}}\left(x^{2}+1\right)^{2}}-e^{c_{1}}\left(x^{2}+1\right)\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.4 problem Ex 4

2.4.1 Solving as separable ode . 114
2.4.2 Solving as first order ode lie symmetry lookup ode 116
2.4.3 Solving as exact ode . 120
2.4.4 Maple step by step solution . 124

Internal problem ID [11130]
Internal file name [OUTPUT/10115_Wednesday_November_23_2022_11_50_51_AM_23588908/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 9.
Variables searated or separable. Page 13
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sin (x) \cos (y)^{2}+\cos (x)^{2} y^{\prime}=0
$$

2.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\sin (x) \cos (y)^{2}}{\cos (x)^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{\sin (x)}{\cos (x)^{2}}$ and $g(y)=\cos (y)^{2}$. Integrating both sides gives

$$
\frac{1}{\cos (y)^{2}} d y=-\frac{\sin (x)}{\cos (x)^{2}} d x
$$

$$
\begin{aligned}
\int \frac{1}{\cos (y)^{2}} d y & =\int-\frac{\sin (x)}{\cos (x)^{2}} d x \\
\tan (y) & =-\frac{1}{\cos (x)}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\arctan \left(\frac{c_{1} \cos (x)-1}{\cos (x)}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan \left(\frac{c_{1} \cos (x)-1}{\cos (x)}\right) \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=\arctan \left(\frac{c_{1} \cos (x)-1}{\cos (x)}\right)
$$

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sin (x) \cos (y)^{2}}{\cos (x)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\cos (x)^{2}}{\sin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\cos (x)^{2}}{\sin (x)}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{\cos (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sin (x) \cos (y)^{2}}{\cos (x)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\sec (x) \tan (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sec (y)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sec (R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\tan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\sec (x)=\tan (y)+c_{1}
$$

Which simplifies to

$$
-\sec (x)=\tan (y)+c_{1}
$$

Which gives

$$
y=-\arctan \left(\sec (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\sin (x) \cos (y)^{2}}{\cos (x)^{2}}$		$\frac{d S}{d R}=\sec (R)^{2}$
7		
$\xrightarrow[\rightarrow \rightarrow-4)]{ } \rightarrow$	$S=-\sec (x)$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\arctan \left(\sec (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot
Verification of solutions

$$
y=-\arctan \left(\sec (x)+c_{1}\right)
$$

Verified OK.

2.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{\cos (y)^{2}}\right) \mathrm{d} y & =\left(\frac{\sin (x)}{\cos (x)^{2}}\right) \mathrm{d} x \\
\left(-\frac{\sin (x)}{\cos (x)^{2}}\right) \mathrm{d} x+\left(-\frac{1}{\cos (y)^{2}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\sin (x)}{\cos (x)^{2}} \\
& N(x, y)=-\frac{1}{\cos (y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sin (x)}{\cos (x)^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{\cos (y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sin (x)}{\cos (x)^{2}} \mathrm{~d} x \\
\phi & =-\sec (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{\cos (y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{\cos (y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{\cos (y)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\sec (y)^{2}\right) \mathrm{d} y \\
f(y) & =-\tan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sec (x)-\tan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sec (x)-\tan (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\sec (x)-\tan (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
-\sec (x)-\tan (y)=c_{1}
$$

Verified OK.

2.4.4 Maple step by step solution

Let's solve

$$
\sin (x) \cos (y)^{2}+\cos (x)^{2} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)^{2}}=-\frac{\sin (x)}{\cos (x)^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\cos (y)^{2}} d x=\int-\frac{\sin (x)}{\cos (x)^{2}} d x+c_{1}
$$

- Evaluate integral

$$
\tan (y)=-\frac{1}{\cos (x)}+c_{1}
$$

- \quad Solve for y

$$
y=\arctan \left(\frac{c_{1} \cos (x)-1}{\cos (x)}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(\operatorname{sin}(x)*\operatorname{cos}(y(x))^2+\operatorname{cos}(x)^2*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\arctan \left(\sec (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 2.833 (sec). Leaf size: 31
DSolve $[\operatorname{Sin}[x] * \operatorname{Cos}[y[x]] \sim 2+\operatorname{Cos}[x] \sim 2 * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) & \rightarrow \arctan \left(-\sec (x)+c_{1}\right) \\
y(x) & \rightarrow-\frac{\pi}{2} \\
y(x) & \rightarrow \frac{\pi}{2}
\end{aligned}
$$

3 Chapter 2, differential equations of the first order and the first degree. Article 10. Homogeneous equations. Page 15
3.1 problem Ex 1 127
3.2 problem Ex 2 138
3.3 problem Ex 3 148
3.4 problem Ex 4 166
3.5 problem Ex 5 177]
3.6 problem Ex 6 191

3.1 problem Ex 1

3.1.1 Solving as homogeneousTypeD ode 127
3.1.2 Solving as homogeneousTypeD2 ode 129
3.1.3 Solving as first order ode lie symmetry lookup ode 131

Internal problem ID [11131]
Internal file name [OUTPUT/10116_Wednesday_November_23_2022_11_50_52_AM_1551047/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
x \mathrm{e}^{\frac{y}{x}}+y-y^{\prime} x=0
$$

3.1.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\mathrm{e}^{\frac{y}{x}}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\mathrm{e}^{\frac{y}{x}}
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{\mathrm{e}^{u(x)}}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Verified OK.

3.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x \mathrm{e}^{u(x)}+u(x) x-\left(u^{\prime}(x) x+u(x)\right) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \\
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
$$

Verified OK.

3.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x \mathrm{e}^{\frac{y}{x}}+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x \mathrm{e}^{\frac{y}{x}}+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{y}{x}}}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{\mathrm{e}^{-R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\frac{y}{x}}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\frac{y}{x}}
$$

Which gives

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x e^{\frac{y}{x}}+y}{x}$		$\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}$
	$R=\underline{y}$	
		$\mathrm{H}_{4}+\frac{1}{4}+\mathrm{P}$
	$S=-\frac{1}{x}$	阶 \uparrow
	x	¢ $\uparrow+$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve($(x * \exp (y(x) / x)+y(x))-x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\ln \left(-\frac{1}{\ln (x)+c_{1}}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.527 (sec). Leaf size: 18
DSolve[($x * \operatorname{Exp}[y[x] / x]+y[x])-x * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \log \left(-\log (x)-c_{1}\right)
$$

3.2 problem Ex 2

3.2.1 Solving as homogeneousTypeD2 ode 138
3.2.2 Solving as first order ode lie symmetry calculated ode 140

Internal problem ID [11132]
Internal file name [OUTPUT/10117_Wednesday_November_23_2022_11_50_53_AM_96544115/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
2 x^{2} y+3 y^{3}-\left(x^{3}+2 y^{2} x\right) y^{\prime}=0
$$

3.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{3} u(x)+3 u(x)^{3} x^{3}-\left(x^{3}+2 u(x)^{2} x^{3}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(u^{2}+1\right)}{\left(2 u^{2}+1\right) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u\left(u^{2}+1\right)}{2 u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u\left(u^{2}+1\right)}{2 u^{2}+1}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u\left(u^{2}+1\right)}{2 u^{2}+1}} d u & =\int \frac{1}{x} d x \\
\ln (u)+\frac{\ln \left(u^{2}+1\right)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u)+\frac{\ln \left(u^{2}+1\right)}{2}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
u \sqrt{u^{2}+1}=c_{3} x
$$

The solution is

$$
u(x) \sqrt{u(x)^{2}+1}=c_{3} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{gathered}
\frac{y \sqrt{\frac{y^{2}}{x^{2}}+1}}{x}=c_{3} x \\
\frac{y \sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}{x}=c_{3} x
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y \sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}{x}=c_{3} x \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot
Verification of solutions

$$
\frac{y \sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}{x}=c_{3} x
$$

Verified OK.

3.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(2 x^{2}+3 y^{2}\right)}{x\left(x^{2}+2 y^{2}\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y\left(2 x^{2}+3 y^{2}\right)\left(b_{3}-a_{2}\right)}{x\left(x^{2}+2 y^{2}\right)}-\frac{y^{2}\left(2 x^{2}+3 y^{2}\right)^{2} a_{3}}{x^{2}\left(x^{2}+2 y^{2}\right)^{2}} \\
& -\left(\frac{4 y}{x^{2}+2 y^{2}}-\frac{y\left(2 x^{2}+3 y^{2}\right)}{x^{2}\left(x^{2}+2 y^{2}\right)}-\frac{2 y\left(2 x^{2}+3 y^{2}\right)}{\left(x^{2}+2 y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 x^{2}+3 y^{2}}{x\left(x^{2}+2 y^{2}\right)}+\frac{6 y^{2}}{x\left(x^{2}+2 y^{2}\right)}-\frac{4 y^{2}\left(2 x^{2}+3 y^{2}\right)}{x\left(x^{2}+2 y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{6} b_{2}+2 x^{4} y^{2} a_{3}+x^{4} y^{2} b_{2}+2 x^{3} y^{3} a_{2}-2 x^{3} y^{3} b_{3}+7 x^{2} y^{4} a_{3}+2 x^{2} y^{4} b_{2}+3 y^{6} a_{3}+2 x^{5} b_{1}-2 x^{4} y a_{1}+5 x^{3} y^{2} b_{1}}{\left(x^{2}+2 y^{2}\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{6} b_{2}-2 x^{4} y^{2} a_{3}-x^{4} y^{2} b_{2}-2 x^{3} y^{3} a_{2}+2 x^{3} y^{3} b_{3}-7 x^{2} y^{4} a_{3}-2 x^{2} y^{4} b_{2} \tag{6E}\\
& \quad-3 y^{6} a_{3}-2 x^{5} b_{1}+2 x^{4} y a_{1}-5 x^{3} y^{2} b_{1}+5 x^{2} y^{3} a_{1}-6 x y^{4} b_{1}+6 y^{5} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{3} v_{2}^{3}-2 a_{3} v_{1}^{4} v_{2}^{2}-7 a_{3} v_{1}^{2} v_{2}^{4}-3 a_{3} v_{2}^{6}-b_{2} v_{1}^{6}-b_{2} v_{1}^{4} v_{2}^{2}-2 b_{2} v_{1}^{2} v_{2}^{4} \tag{7E}\\
& +2 b_{3} v_{1}^{3} v_{2}^{3}+2 a_{1} v_{1}^{4} v_{2}+5 a_{1} v_{1}^{2} v_{2}^{3}+6 a_{1} v_{2}^{5}-2 b_{1} v_{1}^{5}-5 b_{1} v_{1}^{3} v_{2}^{2}-6 b_{1} v_{1} v_{2}^{4}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{6}-2 b_{1} v_{1}^{5}+\left(-2 a_{3}-b_{2}\right) v_{1}^{4} v_{2}^{2}+2 a_{1} v_{1}^{4} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1}^{3} v_{2}^{3} \tag{8E}\\
& \quad-5 b_{1} v_{1}^{3} v_{2}^{2}+\left(-7 a_{3}-2 b_{2}\right) v_{1}^{2} v_{2}^{4}+5 a_{1} v_{1}^{2} v_{2}^{3}-6 b_{1} v_{1} v_{2}^{4}-3 a_{3} v_{2}^{6}+6 a_{1} v_{2}^{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
5 a_{1} & =0 \\
6 a_{1} & =0 \\
-3 a_{3} & =0 \\
-6 b_{1} & =0 \\
-5 b_{1} & =0 \\
-2 b_{1} & =0 \\
-b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-7 a_{3}-2 b_{2} & =0 \\
-2 a_{3}-b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y\left(2 x^{2}+3 y^{2}\right)}{x\left(x^{2}+2 y^{2}\right)}\right)(x) \\
& =\frac{-x^{2} y-y^{3}}{x^{2}+2 y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2} y-y^{3}}{x^{2}+2 y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(2 x^{2}+3 y^{2}\right)}{x\left(x^{2}+2 y^{2}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{x^{2}+y^{2}} \\
S_{y} & =-\frac{y}{x^{2}+y^{2}}-\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\ln (y)=-3 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\ln (y)=-3 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(2 x^{2}+3 y^{2}\right)}{x\left(x^{2}+2 y^{2}\right)}$		$\frac{d S}{d R}=-\frac{3}{R}$
-1-1		
	$R=x$	
	$\ln \left(x^{2}+y^{2}\right)$	
	$S=-\frac{\ln \left(x^{2}+y^{2}\right)}{2}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\ln (y)=-3 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\ln (y)=-3 \ln (x)+c_{1}
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.641 (sec). Leaf size: 89
dsolve($\left(2 * x^{\wedge} 2 * y(x)+3 * y(x) \wedge 3\right)-\left(x^{\wedge} 3+2 * x * y(x) \wedge 2\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{-2-2 \sqrt{4 c_{1} x^{2}+1} x}}{2} \\
& y(x)=\frac{\sqrt{-2-2 \sqrt{4 c_{1} x^{2}+1} x}}{2} \\
& y(x)=-\frac{\sqrt{-2+2 \sqrt{4 c_{1} x^{2}+1}} x}{2} \\
& y(x)=\frac{\sqrt{-2+2 \sqrt{4 c_{1} x^{2}+1} x}}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 47.499 (sec). Leaf size: 277
DSolve $\left[\left(2 * x^{\wedge} 2 * y[x]+3 * y[x] \wedge 3\right)-\left(x^{\wedge} 3+2 * x * y[x] \sim 2\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{2}-\sqrt{x^{4}+4 e^{2 c_{1}} x^{6}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{2}-\sqrt{x^{4}+4 e^{2 c_{1}} x^{6}}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{-x^{2}+\sqrt{x^{4}+4 e^{2 c_{1}} x^{6}}}}{\sqrt{2}} \\
& y(x) \rightarrow \sqrt{-\frac{x^{2}}{2}+\frac{1}{2} \sqrt{x^{4}+4 e^{2 c_{1}} x^{6}}} \\
& y(x) \rightarrow-\frac{\sqrt{-\sqrt{x^{4}}-x^{2}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-\sqrt{x^{4}}-x^{2}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\sqrt{x^{4}}-x^{2}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\sqrt{x^{4}}-x^{2}}}{\sqrt{2}}
\end{aligned}
$$

3.3 problem Ex 3

3.3.1 Solving as homogeneousTypeD2 ode 148
3.3.2 Solving as first order ode lie symmetry lookup ode 150
3.3.3 Solving as bernoulli ode . 154
3.3.4 Solving as exact ode . 158
3.3.5 Solving as riccati ode . 163

Internal problem ID [11133]
Internal file name [OUTPUT/10118_Wednesday_November_23_2022_11_50_55_AM_49001000/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{2}-y x+y^{\prime} x^{2}=0
$$

3.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}-u(x) x^{2}+\left(u^{\prime}(x) x+u(x)\right) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u^{2}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{u} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}+\ln (x)-c_{2}=0 \\
& -\frac{x}{y}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
-\frac{x}{y}+\ln (x)-c_{2}=0
$$

Verified OK.

3.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(y-x)}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(y-x)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=-\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(y-x)}{x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\xrightarrow[\rightarrow+\infty]{ }$
		$\xrightarrow{\rightarrow+\infty}$
		mos, 分t
$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm \rightarrow-4,]{ }$		$\xrightarrow{\rightarrow+\infty}$
$\xrightarrow[\rightarrow+\infty]{\rightarrow+\infty}$	$S=-\bar{y}$	$\xrightarrow{+\infty+\infty}$
$\xrightarrow[\rightarrow+\infty]{\rightarrow+\infty}$		
		$\xrightarrow[\rightarrow+\infty]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Verified OK.

3.3.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-x)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y-\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =-\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{x y}-\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}-\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}+\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}(w x) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int \frac{1}{x} \mathrm{~d} x \\
& w x=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=\frac{\ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{\ln (x)+c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{\ln (x)+c_{1}}{x}
$$

Or

$$
y=\frac{x}{\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)+c_{1}}
$$

Verified OK.

3.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(x y-y^{2}\right) \mathrm{d} x \\
\left(-x y+y^{2}\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y+y^{2} \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x y+y^{2}\right) \\
& =-x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=y^{2}-y x$ and $N=x^{2}$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y^{2}-y x}{x y^{2}} \\
N & =\frac{x}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{-x y+y^{2}}{x y^{2}}\right) \mathrm{d} x \\
\left(\frac{-x y+y^{2}}{x y^{2}}\right) \mathrm{d} x+\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{-x y+y^{2}}{x y^{2}} \\
& N(x, y)=\frac{x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-x y+y^{2}}{x y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x y+y^{2}}{x y^{2}} \mathrm{~d} x \\
\phi & =\ln (x)-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x)-\frac{x}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x)-\frac{x}{y}
$$

The solution becomes

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Verified OK.

3.3.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-x)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}-\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=-\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2}{x^{3}} \\
f_{1} f_{2} & =-\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{x^{2}}-\frac{u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2} x}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x}{\ln (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)+c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve((y(x)~ 2-x*y(x))+x^2*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{\ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 19

```
DSolve[(y[x]^2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.4 problem Ex 4

3.4.1 Solving as homogeneousTypeD2 ode 166
3.4.2 Solving as first order ode lie symmetry lookup ode 168
3.4.3 Solving as bernoulli ode . 172

Internal problem ID [11134]
Internal file name [OUTPUT/10119_Wednesday_November_23_2022_11_50_56_AM_16570338/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
2 x^{2} y+y^{3}-y^{\prime} x^{3}=0
$$

3.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{3} u(x)+u(x)^{3} x^{3}-\left(u^{\prime}(x) x+u(x)\right) x^{3}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(u^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u\left(u^{2}+1\right)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u\left(u^{2}+1\right)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u\left(u^{2}+1\right)} d u & =\int \frac{1}{x} d x \\
\ln (u)-\frac{\ln \left(u^{2}+1\right)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u)-\frac{\ln \left(u^{2}+1\right)}{2}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u}{\sqrt{u^{2}+1}}=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x^{2} c_{3} \sqrt{-\frac{1}{c_{3}^{2} x^{2}-1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} c_{3} \sqrt{-\frac{1}{c_{3}^{2} x^{2}-1}} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot
Verification of solutions

$$
y=x^{2} c_{3} \sqrt{-\frac{1}{c_{3}^{2} x^{2}-1}}
$$

Verified OK.

3.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(2 x^{2}+y^{2}\right)}{x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{gather*}
\xi(x, y)=0 \\
\eta(x, y)=\frac{y^{3}}{x^{4}} \tag{A1}
\end{gather*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{4}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{4}}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(2 x^{2}+y^{2}\right)}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 x^{3}}{y^{2}} \\
S_{y} & =\frac{x^{4}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{4}}{2 y^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{4}}{2 y^{2}}=\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(2 x^{2}+y^{2}\right)}{x^{3}}$		$\frac{d S}{d R}=R$
$\pm \sim 1$	$R=x$	
$\xrightarrow{\rightarrow \rightarrow-\infty}$,
	$S=-\frac{x^{4}}{2 y^{2}}$	11,

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{4}}{2 y^{2}}=\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot
Verification of solutions

$$
-\frac{x^{4}}{2 y^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

3.4.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(2 x^{2}+y^{2}\right)}{x^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{2}{x} y+\frac{1}{x^{3}} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{2}{x} \\
f_{1}(x) & =\frac{1}{x^{3}} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=\frac{2}{x y^{2}}+\frac{1}{x^{3}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =\frac{2 w(x)}{x}+\frac{1}{x^{3}} \\
w^{\prime} & =-\frac{4 w}{x}-\frac{2}{x^{3}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=-\frac{2}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{4 w(x)}{x}=-\frac{2}{x^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4}{x} d x} \\
& =x^{4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{2}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} w\right) & =\left(x^{4}\right)\left(-\frac{2}{x^{3}}\right) \\
\mathrm{d}\left(x^{4} w\right) & =(-2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{4} w=\int-2 x \mathrm{~d} x \\
& x^{4} w=-x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{4}$ results in

$$
w(x)=-\frac{1}{x^{2}}+\frac{c_{1}}{x^{4}}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=-\frac{1}{x^{2}}+\frac{c_{1}}{x^{4}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \\
& y(x)=-\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \tag{1}\\
& y=-\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \tag{2}
\end{align*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}}
$$

Verified OK.

$$
y=-\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
dsolve $\left(2 * x^{\wedge} 2 * y(x)+y(x) \wedge 3-x^{\wedge} 3 * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \\
& y(x)=-\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.181 (sec). Leaf size: 47
DSolve $\left[2 * x^{\wedge} 2 * y[x]+y[x] \wedge 3-x^{\wedge} 3 * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \\
& y(x) \rightarrow \frac{x^{2}}{\sqrt{-x^{2}+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.5 problem Ex 5

3.5.1 Solving as separable ode
177
3.5.2 Solving as homogeneousTypeD2 ode 179
3.5.3 Solving as first order ode lie symmetry lookup ode 181
3.5.4 Solving as exact ode . 185
3.5.5 Maple step by step solution . 189

Internal problem ID [11135]
Internal file name [OUTPUT/10120_Wednesday_November_23_2022_11_50_57_AM_90587072/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{3}+y^{\prime} x^{3}=0
$$

3.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{3}}{x^{3}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x^{3}}$ and $g(y)=y^{3}$. Integrating both sides gives

$$
\frac{1}{y^{3}} d y=-\frac{1}{x^{3}} d x
$$

$$
\begin{aligned}
\int \frac{1}{y^{3}} d y & =\int-\frac{1}{x^{3}} d x \\
-\frac{1}{2 y^{2}} & =\frac{1}{2 x^{2}}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{x}{\sqrt{-2 c_{1} x^{2}-1}} \\
& y=\frac{x}{\sqrt{-2 c_{1} x^{2}-1}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x}{\sqrt{-2 c_{1} x^{2}-1}} \tag{1}\\
& y=\frac{x}{\sqrt{-2 c_{1} x^{2}-1}} \tag{2}
\end{align*}
$$

Figure 43: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\sqrt{-2 c_{1} x^{2}-1}}
$$

Verified OK.

$$
y=\frac{x}{\sqrt{-2 c_{1} x^{2}-1}}
$$

Verified OK.

3.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{3} x^{3}+\left(u^{\prime}(x) x+u(x)\right) x^{3}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(u^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u\left(u^{2}+1\right)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u\left(u^{2}+1\right)} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u\left(u^{2}+1\right)} d u & =\int-\frac{1}{x} d x \\
\ln (u)-\frac{\ln \left(u^{2}+1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u)-\frac{\ln \left(u^{2}+1\right)}{2}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u}{\sqrt{u^{2}+1}}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{u(x)}{\sqrt{u(x)^{2}+1}}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y}{x \sqrt{\frac{y^{2}}{x^{2}}+1}}=\frac{c_{3}}{x} \\
& \frac{y}{x \sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}=\frac{c_{3}}{x}
\end{aligned}
$$

Which simplifies to

$$
\frac{y}{\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}=c_{3} \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot
Verification of solutions

$$
\frac{y}{\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}}=c_{3}
$$

Verified OK.

3.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{3}}{x^{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 26: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-x^{3} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-x^{3}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2 x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{3}}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{1}{x^{3}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{2 x^{2}}=-\frac{1}{2 y^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{1}{2 x^{2}}=-\frac{1}{2 y^{2}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{3}}{x^{3}}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ -
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1}$	$R=y$	
$\rightarrow \rightarrow \rightarrow$ 为 ${ }_{\text {a }}$	$S=\overline{2 x^{2}}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow-]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{2 x^{2}}=-\frac{1}{2 y^{2}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot
Verification of solutions

$$
\frac{1}{2 x^{2}}=-\frac{1}{2 y^{2}}+c_{1}
$$

Verified OK.

3.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{3}}\right) \mathrm{d} y & =\left(\frac{1}{x^{3}}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{3}}\right) \mathrm{d} x+\left(-\frac{1}{y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x^{3}} \\
& N(x, y)=-\frac{1}{y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{3}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{3}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{1}{2 x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{3}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{3}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{2 y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{2 x^{2}}+\frac{1}{2 y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{2 x^{2}}+\frac{1}{2 y^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{2 x^{2}}+\frac{1}{2 y^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 46: Slope field plot
Verification of solutions

$$
\frac{1}{2 x^{2}}+\frac{1}{2 y^{2}}=c_{1}
$$

Verified OK.

3.5.5 Maple step by step solution

Let's solve
$y^{3}+y^{\prime} x^{3}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{3}}=-\frac{1}{x^{3}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{3}} d x=\int-\frac{1}{x^{3}} d x+c_{1}$
- Evaluate integral

$$
-\frac{1}{2 y^{2}}=\frac{1}{2 x^{2}}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{x}{\sqrt{-2 c_{1} x^{2}-1}}, y=-\frac{x}{\sqrt{-2 c_{1} x^{2}-1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(y(x)^3+x^3*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{x}{\sqrt{c_{1} x^{2}-1}} \\
& y(x)=-\frac{x}{\sqrt{c_{1} x^{2}-1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.356 (sec). Leaf size: 45
DSolve[y[x] $3+x^{\wedge} 3 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{\sqrt{-1-2 c_{1} x^{2}}} \\
& y(x) \rightarrow \frac{x}{\sqrt{-1-2 c_{1} x^{2}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.6 problem Ex 6

3.6.1 Solving as homogeneousTypeD ode 191
3.6.2 Solving as homogeneousTypeD2 ode 193
3.6.3 Solving as first order ode lie symmetry lookup ode 195
3.6.4 Solving as exact ode . 200

Internal problem ID [11136]
Internal file name [OUTPUT/10121_Wednesday_November_23_2022_11_50_57_AM_10851037/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 10.
Homogeneous equations. Page 15
Problem number: Ex 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y \cos \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right) y^{\prime}=-x
$$

3.6.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+\frac{1}{\cos \left(\frac{y}{x}\right)} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\cos \left(\frac{y}{x}\right)
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{1}{x \cos (u(x))}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{1}{x \cos (u)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{1}{\cos (u)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{\cos (u)}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{\cos (u)}} d u & =\int \frac{1}{x} d x \\
\sin (u) & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
\sin (u(x))-\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
\sin \left(\frac{y}{x}\right)-\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

Figure 47: Slope field plot

Verification of solutions

$$
\sin \left(\frac{y}{x}\right)-\ln (x)-c_{1}=0
$$

Verified OK.

3.6.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x \cos (u(x))-x \cos (u(x))\left(u^{\prime}(x) x+u(x)\right)=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{1}{\cos (u) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{1}{\cos (u)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{\cos (u)}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{\cos (u)}} d u & =\int \frac{1}{x} d x \\
\sin (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\sin (u(x))-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \sin \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \\
& \sin \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 48: Slope field plot

Verification of solutions

$$
\sin \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.

3.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x+y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 29: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\cos \left(\frac{y}{x}\right)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\cos (R) S(R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{-\sin (R)} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\sin \left(\frac{y}{x}\right)}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\sin \left(\frac{y}{x}\right)}
$$

Which gives

$$
y=-\arcsin \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x+y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)}$		$\frac{d S}{d R}=-\cos (R) S(R)$
		$\xrightarrow[\rightarrow]{\rightarrow-4}$
	$S=-\frac{1}{x}$	\rightarrow -

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\arcsin \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot

Verification of solutions

$$
y=-\arcsin \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.

3.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x \cos \left(\frac{y}{x}\right)\right) \mathrm{d} y & =\left(-x-y \cos \left(\frac{y}{x}\right)\right) \mathrm{d} x \\
\left(x+y \cos \left(\frac{y}{x}\right)\right) \mathrm{d} x+\left(-x \cos \left(\frac{y}{x}\right)\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x+y \cos \left(\frac{y}{x}\right) \\
N(x, y) & =-x \cos \left(\frac{y}{x}\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x+y \cos \left(\frac{y}{x}\right)\right) \\
& =\cos \left(\frac{y}{x}\right)-\frac{y \sin \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x \cos \left(\frac{y}{x}\right)\right) \\
& =-\cos \left(\frac{y}{x}\right)-\frac{y \sin \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{\sec \left(\frac{y}{x}\right)}{x}\left(\left(\cos \left(\frac{y}{x}\right)-\frac{y \sin \left(\frac{y}{x}\right)}{x}\right)-\left(-\cos \left(\frac{y}{x}\right)-\frac{y \sin \left(\frac{y}{x}\right)}{x}\right)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x+y \cos \left(\frac{y}{x}\right)\right) \\
& =\frac{x+y \cos \left(\frac{y}{x}\right)}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(-x \cos \left(\frac{y}{x}\right)\right) \\
& =-\frac{\cos \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x+y \cos \left(\frac{y}{x}\right)}{x^{2}}\right)+\left(-\frac{\cos \left(\frac{y}{x}\right)}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x+y \cos \left(\frac{y}{x}\right)}{x^{2}} \mathrm{~d} x \\
\phi & =-\ln \left(\frac{1}{x}\right)-\sin \left(\frac{y}{x}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{\cos \left(\frac{y}{x}\right)}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\cos \left(\frac{y}{x}\right)}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\cos \left(\frac{y}{x}\right)}{x}=-\frac{\cos \left(\frac{y}{x}\right)}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln \left(\frac{1}{x}\right)-\sin \left(\frac{y}{x}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln \left(\frac{1}{x}\right)-\sin \left(\frac{y}{x}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln \left(\frac{1}{x}\right)-\sin \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 50: Slope field plot
Verification of solutions

$$
-\ln \left(\frac{1}{x}\right)-\sin \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve $((x+y(x) * \cos (y(x) / x))-x * \cos (y(x) / x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\arcsin \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.395 (sec). Leaf size: 13
DSolve $[(x+y[x] * \operatorname{Cos}[y[x] / x])-x * \operatorname{Cos}[y[x] / x] * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \arcsin \left(\log (x)+c_{1}\right)
$$

4 Chapter 2, differential equations of the first order and the first degree. Article 11. Equations in which M and N are linear but not homogeneous. Page 16
4.1 problem Ex 1 207
4.2 problem Ex 2 218
4.3 problem Ex 3 229

4.1 problem Ex 1

4.1.1 Solving as homogeneousTypeMapleC ode 207
4.1.2 Solving as first order ode lie symmetry calculated ode 210

Internal problem ID [11137]
Internal file name [OUTPUT/10122_Wednesday_November_23_2022_11_50_59_AM_15601945/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 11.
Equations in which M and N are linear but not homogeneous. Page 16
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
3 y+(x+y+1) y^{\prime}=-4 x-1
$$

4.1.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{4 X+4 x_{0}+3 Y(X)+3 y_{0}+1}{X+x_{0}+Y(X)+y_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =2 \\
y_{0} & =-3
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{4 X+3 Y(X)}{X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{4 X+3 Y}{X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-4 X-3 Y$ and $N=X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-3 u-4}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-3 u(X)-4}{u(X)+1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-3 u(X)-4}{u(X)+1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+4 u(X)+4=0
$$

Or

$$
X(u(X)+1)\left(\frac{d}{d X} u(X)\right)+(u(X)+2)^{2}=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{(u+2)^{2}}{X(u+1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{(u+2)^{2}}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u+2)^{2}}{u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{(u+2)^{2}}{u+1}} d u & =\int-\frac{1}{X} d X \\
\frac{1}{u+2}+\ln (u+2) & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{1}{u(X)+2}+\ln (u(X)+2)+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{1}{\frac{Y(X)}{X}+2}+\ln \left(\frac{Y(X)}{X}+2\right)+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{X}{Y(X)+2 X}+\ln \left(\frac{Y(X)+2 X}{X}\right)+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
Y & =y-3 \\
X & =x+2
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{x-2}{y-1+2 x}+\ln \left(\frac{y-1+2 x}{x-2}\right)+\ln (x-2)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x-2}{y-1+2 x}+\ln \left(\frac{y-1+2 x}{x-2}\right)+\ln (x-2)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
\frac{x-2}{y-1+2 x}+\ln \left(\frac{y-1+2 x}{x-2}\right)+\ln (x-2)-c_{2}=0
$$

Verified OK.

4.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{4 x+3 y+1}{x+y+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(4 x+3 y+1)\left(b_{3}-a_{2}\right)}{x+y+1}-\frac{(4 x+3 y+1)^{2} a_{3}}{(x+y+1)^{2}} \\
& -\left(-\frac{4}{x+y+1}+\frac{4 x+3 y+1}{(x+y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{x+y+1}+\frac{4 x+3 y+1}{(x+y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+2 x y b_{2}-8 x y b_{3}+3 y^{2} a_{2}-8 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+8 x a_{2}-8 x}{(x+y+1)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+2 x y b_{2}-8 x y b_{3}+3 y^{2} a_{2} \tag{6E}\\
& -8 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+8 x a_{2}-8 x a_{3}-x b_{1}+4 x b_{2}-5 x b_{3}+y a_{1} \\
& +4 y a_{2}-3 y a_{3}+2 y b_{2}-2 y b_{3}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-16 a_{3} v_{1}^{2}-24 a_{3} v_{1} v_{2}-8 a_{3} v_{2}^{2}+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-4 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}+a_{1} v_{2}+8 a_{2} v_{1}+4 a_{2} v_{2}-8 a_{3} v_{1}-3 a_{3} v_{2}-b_{1} v_{1} \\
& +4 b_{2} v_{1}+2 b_{2} v_{2}-5 b_{3} v_{1}-2 b_{3} v_{2}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-16 a_{3}-4 b_{3}\right) v_{1}^{2}+\left(8 a_{2}-24 a_{3}+2 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(8 a_{2}-8 a_{3}-b_{1}+4 b_{2}-5 b_{3}\right) v_{1}+\left(3 a_{2}-8 a_{3}+b_{2}-3 b_{3}\right) v_{2}^{2} \\
& \quad+\left(a_{1}+4 a_{2}-3 a_{3}+2 b_{2}-2 b_{3}\right) v_{2}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
4 a_{2}-16 a_{3}-4 b_{3}=0 \\
3 a_{2}-8 a_{3}+b_{2}-3 b_{3}=0 \\
8 a_{2}-24 a_{3}+2 b_{2}-8 b_{3}=0 \\
a_{1}+4 a_{2}-3 a_{3}+2 b_{2}-2 b_{3}=0 \\
8 a_{2}-8 a_{3}-b_{1}+4 b_{2}-5 b_{3}=0 \\
3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-5 a_{3}-2 b_{3} \\
& a_{2}=4 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=8 a_{3}+3 b_{3} \\
& b_{2}=-4 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-2 \\
& \eta=y+3
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+3-\left(-\frac{4 x+3 y+1}{x+y+1}\right)(x-2) \\
& =\frac{4 x^{2}+4 x y+y^{2}-4 x-2 y+1}{x+y+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x^{2}+4 x y+y^{2}-4 x-2 y+1}{x+y+1}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (2 x+y-1)-\frac{-x+2}{2 x+y-1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x+3 y+1}{x+y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x+3 y+1}{(2 x+y-1)^{2}} \\
S_{y} & =\frac{x+y+1}{(2 x+y-1)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(y-1+2 x) \ln (y-1+2 x)+x-2}{y-1+2 x}=c_{1}
$$

Which simplifies to

$$
\frac{(y-1+2 x) \ln (y-1+2 x)+x-2}{y-1+2 x}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-(x-2) \mathrm{e}^{-c_{1}}\right)+c_{1}}-2 x+1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x+3 y+1}{x+y+1}$		$\frac{d S}{d R}=0$
$40 \rightarrow+1$		
$190 \times x)+1.1+1$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow{ }^{2}]{ }$
$1.11+1-2+1+1+1$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$S=\frac{(2 x+y-1) \ln (2 x+}{2 x+y}$	
	$S=\frac{2 x+y}{}$	
		,
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(-(x-2) \mathrm{e}^{-c_{1}}\right)+c_{1}}-2 x+1 \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-(x-2) \mathrm{e}^{-c_{1}}\right)+c_{1}}-2 x+1
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 29
dsolve $((4 * x+3 * y(x)+1)+(x+y(x)+1) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=-3-\frac{(x-2)\left(2 \text { LambertW }\left(c_{1}(x-2)\right)+1\right)}{\operatorname{LambertW}\left(c_{1}(x-2)\right)}
$$

\checkmark Solution by Mathematica
Time used: 1.385 (sec). Leaf size: 159
DSolve $[(4 * x+3 * y[x]+1)+(x+y[x]+1) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Solve $\left[\frac{(-2)^{2 / 3}\left(-2 x \log \left(\frac{3(-2)^{2 / 3}(y(x)+2 x-1)}{y(x)+x+1}\right)+(2 x-1) \log \left(-\frac{3(-2)^{2 / 3}(x-2)}{y(x)+x+1}\right)+\log \left(\frac{3(-2)^{2 / 3}(y(x)+2 x-1)}{y(x)+x+1}\right)+\right.}{9(y(x)+2 x-1)}\right.$

4.2 problem Ex 2

4.2.1 Solving as homogeneousTypeMapleC ode 218
4.2.2 Solving as first order ode lie symmetry calculated ode 221

Internal problem ID [11138]
Internal file name [OUTPUT/10123_Wednesday_November_23_2022_11_51_00_AM_73242900/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 11.
Equations in which M and N are linear but not homogeneous. Page 16
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
-y+(x+y+3) y^{\prime}=-4 x-2
$$

4.2.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{-4 X-4 x_{0}+Y(X)+y_{0}-2}{X+x_{0}+Y(X)+y_{0}+3}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =-2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{-4 X+Y(X)}{X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{-4 X+Y}{X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-4 X+Y$ and $N=X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{u-4}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{u(X)-4}{u(X)+1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{u(X)-4}{u(X)+1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+4=0
$$

Or

$$
X(u(X)+1)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+4=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+4}{X(u+1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+4}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+4}{u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+4}{u+1}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+4\right)}{2}+\frac{\arctan \left(\frac{u}{2}\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+4\right)}{2}+\frac{\arctan \left(\frac{u(X)}{2}\right)}{2}+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+4\right)}{2}+\frac{\arctan \left(\frac{Y(X)}{2 X}\right)}{2}+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+4\right)}{2}+\frac{\arctan \left(\frac{Y(X)}{2 X}\right)}{2}+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-2 \\
& X=x-1
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y+2)^{2}}{(1+x)^{2}}+4\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}+\ln (1+x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{(y+2)^{2}}{(1+x)^{2}}+4\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}+\ln (1+x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{(y+2)^{2}}{(1+x)^{2}}+4\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}+\ln (1+x)-c_{2}=0
$$

Verified OK.

4.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-4 x+y-2}{x+y+3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-4 x+y-2)\left(b_{3}-a_{2}\right)}{x+y+3}-\frac{(-4 x+y-2)^{2} a_{3}}{(x+y+3)^{2}} \\
& -\left(-\frac{4}{x+y+3}-\frac{-4 x+y-2}{(x+y+3)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{x+y+3}-\frac{-4 x+y-2}{(x+y+3)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{2}-4 x^{2} b_{3}+8 x y a_{2}+8 x y a_{3}+2 x y b_{2}-8 x y b_{3}-y^{2} a_{2}+4 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+24 x a_{2}}{(x+?}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{2}-4 x^{2} b_{3}+8 x y a_{2}+8 x y a_{3}+2 x y b_{2}-8 x y b_{3}-y^{2} a_{2} \tag{6E}\\
& +4 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+24 x a_{2}-16 x a_{3}-5 x b_{1}+x b_{2}-14 x b_{3}+5 y a_{1} \\
& \quad-y a_{2}+14 y a_{3}+6 y b_{2}-4 y b_{3}+10 a_{1}+6 a_{2}-4 a_{3}-5 b_{1}+9 b_{2}-6 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-16 a_{3} v_{1}^{2}+8 a_{3} v_{1} v_{2}+4 a_{3} v_{2}^{2}-4 b_{2} v_{1}^{2}+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-4 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}+b_{3} v_{2}^{2}+5 a_{1} v_{2}+24 a_{2} v_{1}-a_{2} v_{2}-16 a_{3} v_{1}+14 a_{3} v_{2}-5 b_{1} v_{1} \\
& +b_{2} v_{1}+6 b_{2} v_{2}-14 b_{3} v_{1}-4 b_{3} v_{2}+10 a_{1}+6 a_{2}-4 a_{3}-5 b_{1}+9 b_{2}-6 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-16 a_{3}-4 b_{2}-4 b_{3}\right) v_{1}^{2}+\left(8 a_{2}+8 a_{3}+2 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(24 a_{2}-16 a_{3}-5 b_{1}+b_{2}-14 b_{3}\right) v_{1}+\left(-a_{2}+4 a_{3}+b_{2}+b_{3}\right) v_{2}^{2} \\
& \quad+\left(5 a_{1}-a_{2}+14 a_{3}+6 b_{2}-4 b_{3}\right) v_{2}+10 a_{1}+6 a_{2}-4 a_{3}-5 b_{1}+9 b_{2}-6 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-a_{2}+4 a_{3}+b_{2}+b_{3}=0 \\
4 a_{2}-16 a_{3}-4 b_{2}-4 b_{3}=0 \\
8 a_{2}+8 a_{3}+2 b_{2}-8 b_{3}=0 \\
5 a_{1}-a_{2}+14 a_{3}+6 b_{2}-4 b_{3}=0 \\
24 a_{2}-16 a_{3}-5 b_{1}+b_{2}-14 b_{3}=0 \\
10 a_{1}+6 a_{2}-4 a_{3}-5 b_{1}+9 b_{2}-6 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =2 a_{3}+b_{3} \\
a_{2} & =b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =-4 a_{3}+2 b_{3} \\
b_{2} & =-4 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1+x \\
& \eta=y+2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+2-\left(\frac{-4 x+y-2}{x+y+3}\right)(1+x) \\
& =\frac{4 x^{2}+y^{2}+8 x+4 y+8}{x+y+3} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x^{2}+y^{2}+8 x+4 y+8}{x+y+3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(4 x^{2}+y^{2}+8 x+4 y+8\right)}{2}+\frac{2(1+x) \arctan \left(\frac{2 y+4}{4+4 x}\right)}{4+4 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-4 x+y-2}{x+y+3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x-y+2}{4 x^{2}+y^{2}+8 x+4 y+8} \\
S_{y} & =\frac{x+y+3}{4 x^{2}+y^{2}+8 x+4 y+8}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+4 x^{2}+4 y+8 x+8\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+4 x^{2}+4 y+8 x+8\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-4 x+y-2}{x+y+3}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$.
	$S=\ln \left(4 x^{2}+y^{2}+8 x\right.$	$\xrightarrow[-2 \rightarrow \rightarrow 0]{\rightarrow \rightarrow \rightarrow 0}$
+1, $\rightarrow^{2}+1 . L^{+1}+1$	$S=\frac{2}{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow-=_{-2}^{2} \rightarrow \longrightarrow}$
$\rightarrow 4{ }^{4}+{ }^{\text {a }}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+4 x^{2}+4 y+8 x+8\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{2}+4 x^{2}+4 y+8 x+8\right)}{2}+\frac{\arctan \left(\frac{y+2}{2+2 x}\right)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 36

```
dsolve((4*x-y(x)+2)+(x+y(x)+3)*diff (y (x), x)=0,y(x), singsol=all)
```

$y(x)=-2+\tan \left(\right.$ RootOf $\left.\left(2 \ln (2)+\ln \left(\sec \left(_Z\right)^{2}\right)-_Z+2 \ln (1+x)+2 c_{1}\right)\right)(-2 x-2)$
Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 67

```
DSolve[(4*x-y[x]+2)+(x+y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[2 \arctan \left(\frac{1}{2}-\frac{5(x+1)}{2(y(x)+x+3)}\right)\right.$

$$
\left.+2 \log \left(\frac{4 x^{2}+y(x)^{2}+4 y(x)+8 x+8}{5(x+1)^{2}}\right)+4 \log (x+1)+5 c_{1}=0, y(x)\right]
$$

4.3 problem Ex 3

4.3.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11139]
Internal file name [OUTPUT/10124_Wednesday_November_23_2022_11_51_01_AM_89746317/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 11.
Equations in which M and N are linear but not homogeneous. Page 16
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y-(4 x+2 y-1) y^{\prime}=-2 x
$$

4.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x+y}{4 x+2 y-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(2 x+y)\left(b_{3}-a_{2}\right)}{4 x+2 y-1}-\frac{(2 x+y)^{2} a_{3}}{(4 x+2 y-1)^{2}} \\
& -\left(\frac{2}{4 x+2 y-1}-\frac{4(2 x+y)}{(4 x+2 y-1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{4 x+2 y-1}-\frac{2(2 x+y)}{(4 x+2 y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{8 x^{2} a_{2}+4 x^{2} a_{3}-16 x^{2} b_{2}-8 x^{2} b_{3}+8 x y a_{2}+4 x y a_{3}-16 x y b_{2}-8 x y b_{3}+2 y^{2} a_{2}+y^{2} a_{3}-4 y^{2} b_{2}-2 y^{2} b_{3}-}{(4 x+2 y-1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -8 x^{2} a_{2}-4 x^{2} a_{3}+16 x^{2} b_{2}+8 x^{2} b_{3}-8 x y a_{2}-4 x y a_{3}+16 x y b_{2}+8 x y b_{3}-2 y^{2} a_{2} \tag{6E}\\
& -y^{2} a_{3}+4 y^{2} b_{2}+2 y^{2} b_{3}+4 x a_{2}-7 x b_{2}-2 x b_{3}+y a_{2}+2 y a_{3}-4 y b_{2}+2 a_{1}+b_{1}+b_{2} \\
& =0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -8 a_{2} v_{1}^{2}-8 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}-a_{3} v_{2}^{2}+16 b_{2} v_{1}^{2} \tag{7E}\\
& +16 b_{2} v_{1} v_{2}+4 b_{2} v_{2}^{2}+8 b_{3} v_{1}^{2}+8 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}+4 a_{2} v_{1} \\
& +a_{2} v_{2}+2 a_{3} v_{2}-7 b_{2} v_{1}-4 b_{2} v_{2}-2 b_{3} v_{1}+2 a_{1}+b_{1}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3}\right) v_{1}^{2}+\left(-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3}\right) v_{1} v_{2}+\left(4 a_{2}-7 b_{2}\right. \tag{8E}\\
& \left.-2 b_{3}\right) v_{1}+\left(-2 a_{2}-a_{3}+4 b_{2}+2 b_{3}\right) v_{2}^{2}+\left(a_{2}+2 a_{3}-4 b_{2}\right) v_{2}+2 a_{1}+b_{1}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
2 a_{1}+b_{1}+b_{2}=0 \\
a_{2}+2 a_{3}-4 b_{2}=0 \\
4 a_{2}-7 b_{2}-2 b_{3}=0 \\
-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3}=0 \\
-2 a_{2}-a_{3}+4 b_{2}+2 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =2 b_{2} \\
a_{3} & =b_{2} \\
b_{1} & =-2 a_{1}-b_{2} \\
b_{2} & =b_{2} \\
b_{3} & =\frac{b_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=-2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =-2-\left(\frac{2 x+y}{4 x+2 y-1}\right) \tag{1}\\
& =\frac{-10 x-5 y+2}{4 x+2 y-1} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-10 x-5 y+2}{4 x+2 y-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 y}{5}+\frac{\ln (10 x+5 y-2)}{25}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x+y}{4 x+2 y-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{50 x+25 y-10} \\
S_{y} & =\frac{-4 x-2 y+1}{10 x+5 y-2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{5} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{5}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 y}{5}+\frac{\ln (10 x+5 y-2)}{25}=-\frac{x}{5}+c_{1}
$$

Which simplifies to

$$
-\frac{2 y}{5}+\frac{\ln (10 x+5 y-2)}{25}=-\frac{x}{5}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-\mathrm{LambertW}\left(-2 \mathrm{e}^{-25 x+4+25 c_{1}}\right)-25 x+4+25 c_{1}}}{5}-2 x+\frac{2}{5}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x+y}{4 x+2 y-1}$		$\frac{d S}{d R}=-\frac{1}{5}$
\rightarrow ハップーハー		
－	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{\rightarrow \rightarrow \rightarrow \infty}$
－	$S=2 y \quad \ln (10 x+5 y$	为
	$S=-\frac{29}{5}+\frac{25}{25}$	
		$\cdots \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\cdots \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\operatorname{LambertW}\left(-2 \mathrm{e}^{-25 x+4+25 c_{1}}\right)-25 x+4+25 c_{1}}}{5}-2 x+\frac{2}{5} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot

Verification of solutions
$y=\frac{\mathrm{e}^{-\operatorname{LambertW}\left(-2 \mathrm{e}^{-25 x+4+25 c_{1}}\right)-25 x+4+25 c_{1}}}{5}-2 x+\frac{2}{5}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -2, y(x)` *** Sublevel 2
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

```
dsolve((2*x+y(x))-(4*x+2*y(x)-1)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{4-25 x+25 c_{1}}\right)}{10}+\frac{2}{5}-2 x
$$

Solution by Mathematica

Time used: 4.725 (sec). Leaf size: 39
DSolve[(2*x+y[x])-(4*x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{10} W\left(-e^{-25 x-1+c_{1}}\right)-2 x+\frac{2}{5} \\
& y(x) \rightarrow \frac{2}{5}-2 x
\end{aligned}
$$

5 Chapter 2, differential equations of the first order and the first degree. Article 12. Equations of form $y f_{1}(x y)+x f_{2}(x y) y^{\prime}=0$. Page 18
5.1 problem Ex 1 238
5.2 problem Ex 2 253
5.3 problem Ex 3 265

5.1 problem Ex 1

5.1.1 Solving as first order ode lie symmetry calculated ode 238
5.1.2 Solving as exact ode . 244
5.1.3 Solving as riccati ode . 249

Internal problem ID [11140]
Internal file name [OUTPUT/10125_Wednesday_November_23_2022_11_51_02_AM_64659519/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 12.
Equations of form $y f_{1}(x y)+x f_{2}(x y) y^{\prime}=0$. Page 18
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Riccati]

$$
y+2 y^{2} x-y^{3} x^{2}+2 x^{2} y y^{\prime}=0
$$

5.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2} y^{2}-2 x y-1}{2 x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2} y^{2}-2 x y-1\right)\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{\left(x^{2} y^{2}-2 x y-1\right)^{2} a_{3}}{4 x^{4}} \\
& -\left(\frac{2 x y^{2}-2 y}{2 x^{2}}-\frac{x^{2} y^{2}-2 x y-1}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(2 x^{2} y-2 x\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{2 x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{x^{4} y^{4} a_{3}+4 x^{5} y b_{2}+2 x^{4} y^{2} a_{2}+2 x^{4} y^{2} b_{3}-4 x^{3} y^{3} a_{3}+4 x^{4} y b_{1}-8 b_{2} x^{4}+6 x^{2} y^{2} a_{3}-4 x^{3} b_{1}+4 x^{2} y a_{1}+2 x^{2} a_{2}}{4 x^{4}}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} y^{4} a_{3}-4 x^{5} y b_{2}-2 x^{4} y^{2} a_{2}-2 x^{4} y^{2} b_{3}+4 x^{3} y^{3} a_{3}-4 x^{4} y b_{1}+8 b_{2} x^{4} \tag{6E}\\
& \quad-6 x^{2} y^{2} a_{3}+4 x^{3} b_{1}-4 x^{2} y a_{1}-2 x^{2} a_{2}-2 x^{2} b_{3}-8 x y a_{3}-4 x a_{1}-a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4} v_{2}^{4}-2 a_{2} v_{1}^{4} v_{2}^{2}+4 a_{3} v_{1}^{3} v_{2}^{3}-4 b_{2} v_{1}^{5} v_{2}-2 b_{3} v_{1}^{4} v_{2}^{2}-4 b_{1} v_{1}^{4} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad+8 b_{2} v_{1}^{4}-4 a_{1} v_{1}^{2} v_{2}+4 b_{1} v_{1}^{3}-2 a_{2} v_{1}^{2}-8 a_{3} v_{1} v_{2}-2 b_{3} v_{1}^{2}-4 a_{1} v_{1}-a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -4 b_{2} v_{1}^{5} v_{2}-a_{3} v_{1}^{4} v_{2}^{4}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{4} v_{2}^{2}-4 b_{1} v_{1}^{4} v_{2}+8 b_{2} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}^{3}+4 b_{1} v_{1}^{3} \tag{8E}\\
& -6 a_{3} v_{1}^{2} v_{2}^{2}-4 a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2}-8 a_{3} v_{1} v_{2}-4 a_{1} v_{1}-a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
-8 a_{3} & =0 \\
-6 a_{3} & =0 \\
-a_{3} & =0 \\
4 a_{3} & =0 \\
-4 b_{1} & =0 \\
4 b_{1} & =0 \\
-4 b_{2} & =0 \\
8 b_{2} & =0 \\
-2 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{2} y^{2}-2 x y-1}{2 x^{2}}\right)(-x) \\
& =\frac{x^{2} y^{2}-1}{2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2} y^{2}-1}{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (x y+1)+\ln (x y-1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2} y^{2}-2 x y-1}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 y}{x^{2} y^{2}-1} \\
S_{y} & =\frac{2 x}{x^{2} y^{2}-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y x+1)+\ln (y x-1)=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (y x+1)+\ln (y x-1)=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)} \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot
Verification of solutions

$$
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)}
$$

Verified OK.

5.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x^{2} y\right) \mathrm{d} y & =\left(y^{3} x^{2}-2 x y^{2}-y\right) \mathrm{d} x \\
\left(-y^{3} x^{2}+2 x y^{2}+y\right) \mathrm{d} x+\left(2 x^{2} y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-y^{3} x^{2}+2 x y^{2}+y \\
& N(x, y)=2 x^{2} y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{3} x^{2}+2 x y^{2}+y\right) \\
& =-3 x^{2} y^{2}+4 x y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x^{2} y\right) \\
& =4 x y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x^{2} y}\left(\left(-3 x^{2} y^{2}+4 x y+1\right)-(4 x y)\right) \\
& =\frac{-3 x^{2} y^{2}+1}{2 x^{2} y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-y^{3} x^{2}+2 x y^{2}+y}\left((4 x y)-\left(-3 x^{2} y^{2}+4 x y+1\right)\right) \\
& =\frac{-3 x^{2} y^{2}+1}{y\left(x^{2} y^{2}-2 x y-1\right)}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(4 x y)-\left(-3 x^{2} y^{2}+4 x y+1\right)}{x\left(-y^{3} x^{2}+2 x y^{2}+y\right)-y\left(2 x^{2} y\right)} \\
& =\frac{-3 x^{2} y^{2}+1}{x y\left(x^{2} y^{2}-1\right)}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-3 t^{2}+1}{t\left(t^{2}-1\right)}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-3 t^{2}+1}{t\left(t^{2}-1\right)}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln \left(t\left(t^{2}-1\right)\right)} \\
& =\frac{1}{t^{3}-t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{3} y^{3}-x y}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3} y^{3}-x y}\left(-y^{3} x^{2}+2 x y^{2}+y\right) \\
& =\frac{-x^{2} y^{2}+2 x y+1}{y^{2} x^{3}-x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3} y^{3}-x y}\left(2 x^{2} y\right) \\
& =\frac{2 x}{x^{2} y^{2}-1}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{2} y^{2}+2 x y+1}{y^{2} x^{3}-x}\right)+\left(\frac{2 x}{x^{2} y^{2}-1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2} y^{2}+2 x y+1}{y^{2} x^{3}-x} \mathrm{~d} x \\
\phi & =\ln (x y-1)-\ln (x y+1)-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x}{x y+1}+\frac{x}{x y-1}+f^{\prime}(y) \tag{4}\\
& =\frac{2 x}{x^{2} y^{2}-1}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 x}{x^{2} y^{2}-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x}{x^{2} y^{2}-1}=\frac{2 x}{x^{2} y^{2}-1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x y-1)-\ln (x y+1)-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x y-1)-\ln (x y+1)-\ln (x)
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)} \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{c_{1}} x+1}{x\left(\mathrm{e}^{c_{1}} x-1\right)}
$$

Verified OK.

5.1.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2} y^{2}-2 x y-1}{2 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{2}-\frac{y}{x}-\frac{1}{2 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{1}{2 x^{2}}, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=\frac{1}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\frac{1}{2 x} \\
f_{2}^{2} f_{0} & =-\frac{1}{8 x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{2}+\frac{u^{\prime}(x)}{2 x}-\frac{u(x)}{8 x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1} x+c_{2}}{\sqrt{x}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{1} x-c_{2}}{2 x^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} x-c_{2}}{x\left(c_{1} x+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} x+1}{x\left(c_{3} x+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} x+1}{x\left(c_{3} x+1\right)} \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot

Verification of solutions

$$
y=\frac{-c_{3} x+1}{x\left(c_{3} x+1\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $\left(\left(y(x)+2 * x * y(x)^{\wedge}-2-x^{\wedge} 2 * y(x)^{\wedge} 3\right)+\left(2 * x^{\wedge} 2 * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\tanh \left(-\frac{\ln (x)}{2}+\frac{c_{1}}{2}\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.44 (sec). Leaf size: 71
DSolve $\left[\left(y[x]+2 * x * y[x] \wedge 2-x^{\wedge} 2 * y[x] \wedge 3\right)+\left(2 * x^{\wedge} 2 * y[x]\right) * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \frac{i \tan \left(\frac{1}{2} i \log (x)+c_{1}\right)}{x} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \frac{-x+e^{2 i \operatorname{Interval}[\{0, \pi\}]}}{x^{2}+x e^{2 i \operatorname{Interval}[\{0, \pi\}]}}
\end{aligned}
$$

5.2 problem Ex 2

5.2.1 Solving as first order ode lie symmetry calculated ode 253
5.2.2 Solving as exact ode . 259

Internal problem ID [11141]
Internal file name [OUTPUT/10126_Wednesday_November_23_2022_11_51_04_AM_56554848/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 12.
Equations of form $y f_{1}(x y)+x f_{2}(x y) y^{\prime}=0$. Page 18
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
2 y+3 y^{2} x+\left(x+2 x^{2} y\right) y^{\prime}=0
$$

5.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(3 x y+2)}{x(2 x y+1)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(3 x y+2)\left(b_{3}-a_{2}\right)}{x(2 x y+1)}-\frac{y^{2}(3 x y+2)^{2} a_{3}}{x^{2}(2 x y+1)^{2}} \\
& -\left(-\frac{3 y^{2}}{x(2 x y+1)}+\frac{y(3 x y+2)}{x^{2}(2 x y+1)}+\frac{2 y^{2}(3 x y+2)}{x(2 x y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x y+2}{x(2 x y+1)}-\frac{3 y}{2 x y+1}+\frac{2 y(3 x y+2)}{(2 x y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{10 x^{4} y^{2} b_{2}-15 x^{2} y^{4} a_{3}+6 x^{3} y^{2} b_{1}-6 x^{2} y^{3} a_{1}+10 x^{3} y b_{2}-x^{2} y^{2} a_{2}-x^{2} y^{2} b_{3}-20 x y^{3} a_{3}+6 x^{2} y b_{1}-8 x y^{2} a_{1}+}{x^{2}(2 x y+1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 10 x^{4} y^{2} b_{2}-15 x^{2} y^{4} a_{3}+6 x^{3} y^{2} b_{1}-6 x^{2} y^{3} a_{1}+10 x^{3} y b_{2}-x^{2} y^{2} a_{2}-x^{2} y^{2} b_{3} \tag{6E}\\
& -20 x y^{3} a_{3}+6 x^{2} y b_{1}-8 x y^{2} a_{1}+3 b_{2} x^{2}-6 y^{2} a_{3}+2 x b_{1}-2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -15 a_{3} v_{1}^{2} v_{2}^{4}+10 b_{2} v_{1}^{4} v_{2}^{2}-6 a_{1} v_{1}^{2} v_{2}^{3}+6 b_{1} v_{1}^{3} v_{2}^{2}-a_{2} v_{1}^{2} v_{2}^{2}-20 a_{3} v_{1} v_{2}^{3}+10 b_{2} v_{1}^{3} v_{2} \tag{7E}\\
& \quad-b_{3} v_{1}^{2} v_{2}^{2}-8 a_{1} v_{1} v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}-6 a_{3} v_{2}^{2}+3 b_{2} v_{1}^{2}-2 a_{1} v_{2}+2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{gather*}
10 b_{2} v_{1}^{4} v_{2}^{2}+6 b_{1} v_{1}^{3} v_{2}^{2}+10 b_{2} v_{1}^{3} v_{2}-15 a_{3} v_{1}^{2} v_{2}^{4}-6 a_{1} v_{1}^{2} v_{2}^{3}+\left(-a_{2}-b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
+6 b_{1} v_{1}^{2} v_{2}+3 b_{2} v_{1}^{2}-20 a_{3} v_{1} v_{2}^{3}-8 a_{1} v_{1} v_{2}^{2}+2 b_{1} v_{1}-6 a_{3} v_{2}^{2}-2 a_{1} v_{2}=0
\end{gather*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-8 a_{1} & =0 \\
-6 a_{1} & =0 \\
-2 a_{1} & =0 \\
-20 a_{3} & =0 \\
-15 a_{3} & =0 \\
-6 a_{3} & =0 \\
2 b_{1} & =0 \\
6 b_{1} & =0 \\
3 b_{2} & =0 \\
10 b_{2} & =0 \\
-a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(3 x y+2)}{x(2 x y+1)}\right)(-x) \\
& =\frac{-x y^{2}-y}{2 x y+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x y^{2}-y}{2 x y+1}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y(x y+1))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(3 x y+2)}{x(2 x y+1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x y+1} \\
S_{y} & =\frac{-2 x y-1}{y(x y+1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y)-\ln (y x+1)=2 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (y)-\ln (y x+1)=2 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(3 x y+2)}{x(2 x y+1)}$		$\frac{d S}{d R}=\frac{2}{R}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0 \times \pm$	$R=x$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+4}$		
	$S=-\ln (y)-\ln ($	- vovidy

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (y)-\ln (y x+1)=2 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot

Verification of solutions

$$
-\ln (y)-\ln (y x+1)=2 \ln (x)+c_{1}
$$

Verified OK.

5.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x^{2} y+x\right) \mathrm{d} y & =\left(-3 x y^{2}-2 y\right) \mathrm{d} x \\
\left(3 x y^{2}+2 y\right) \mathrm{d} x+\left(2 x^{2} y+x\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x y^{2}+2 y \\
N(x, y) & =2 x^{2} y+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{2}+2 y\right) \\
& =6 x y+2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x^{2} y+x\right) \\
& =4 x y+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x^{2} y+x}((6 x y+2)-(4 x y+1)) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(3 x y^{2}+2 y\right) \\
& =3 x^{2} y^{2}+2 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x\left(2 x^{2} y+x\right) \\
& =2 y x^{3}+x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3 x^{2} y^{2}+2 x y\right)+\left(2 y x^{3}+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2} y^{2}+2 x y \mathrm{~d} x \\
\phi & =y x^{2}(x y+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{2}(x y+1)+y x^{3}+f^{\prime}(y) \tag{4}\\
& =2 y x^{3}+x^{2}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y x^{3}+x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y x^{3}+x^{2}=2 y x^{3}+x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}(x y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}(x y+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y x^{2}(y x+1)=c_{1} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
y x^{2}(y x+1)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

```
dsolve((2*y(x)+3*x*y(x)^2)+(x+2*x^2*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-x+\sqrt{x\left(4 c_{1}+x\right)}}{2 x^{2}} \\
& y(x)=\frac{-x-\sqrt{x\left(4 c_{1}+x\right)}}{2 x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.888 (sec). Leaf size: 69
DSolve $\left[(2 * y[x]+3 * x * y[x] \sim 2)+\left(x+2 * x^{\wedge} 2 * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{3 / 2}+\sqrt{x^{2}\left(x+4 c_{1}\right)}}{2 x^{5 / 2}} \\
& y(x) \rightarrow \frac{-x^{3 / 2}+\sqrt{x^{2}\left(x+4 c_{1}\right)}}{2 x^{5 / 2}}
\end{aligned}
$$

5.3 problem Ex 3

5.3.1 Solving as first order ode lie symmetry calculated ode 265
5.3.2 Solving as exact ode . 271

Internal problem ID [11142]
Internal file name [OUTPUT/10127_Wednesday_November_23_2022_11_51_05_AM_56605166/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 12.
Equations of form $y f_{1}(x y)+x f_{2}(x y) y^{\prime}=0$. Page 18
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y+y^{2} x+\left(x-x^{2} y\right) y^{\prime}=0
$$

5.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(x y+1)}{x(x y-1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y(x y+1)\left(b_{3}-a_{2}\right)}{x(x y-1)}-\frac{y^{2}(x y+1)^{2} a_{3}}{x^{2}(x y-1)^{2}} \\
& -\left(\frac{y^{2}}{x(x y-1)}-\frac{y(x y+1)}{x^{2}(x y-1)}-\frac{y^{2}(x y+1)}{x(x y-1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x y+1}{x(x y-1)}+\frac{y}{x y-1}-\frac{y(x y+1)}{(x y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{3} y^{2} b_{1}-x^{2} y^{3} a_{1}-2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} b_{3}-2 x^{2} y b_{1}-2 x y^{2} a_{1}-2 b_{2} x^{2}+2 y^{2} a_{3}-x b_{1}+y a_{1}}{x^{2}(x y-1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-x^{3} y^{2} b_{1}+x^{2} y^{3} a_{1}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3}+2 x^{2} y b_{1}+2 x y^{2} a_{1}+2 b_{2} x^{2}-2 y^{2} a_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes
$a_{1} v_{1}^{2} v_{2}^{3}-b_{1} v_{1}^{3} v_{2}^{2}+2 a_{2} v_{1}^{2} v_{2}^{2}+2 b_{3} v_{1}^{2} v_{2}^{2}+2 a_{1} v_{1} v_{2}^{2}+2 b_{1} v_{1}^{2} v_{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-a_{1} v_{2}+b_{1} v_{1}=0$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}^{3}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{2}+2 b_{1} v_{1}^{2} v_{2}+2 b_{2} v_{1}^{2}+2 a_{1} v_{1} v_{2}^{2}+b_{1} v_{1}-2 a_{3} v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
-2 a_{3} & =0 \\
-b_{1} & =0 \\
2 b_{1} & =0 \\
2 b_{2} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y(x y+1)}{x(x y-1)}\right)(-x) \\
& =\frac{2 y^{2} x}{x y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y^{2} x}{x y-1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2 x y}+\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x y+1)}{x(x y-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 x^{2} y} \\
S_{y} & =\frac{x y-1}{2 y^{2} x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y) x y+1}{2 x y}=\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y) x y+1}{2 x y}=\frac{\ln (x)}{2}+c_{1}
$$

Which gives

$$
y=-\frac{1}{x \text { LambertW }\left(-\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x y+1)}{x(x y-1)}$		$\frac{d S}{d R}=\frac{1}{2 R}$
		$\rightarrow \rightarrow+\infty \times+\cdots$
		$\rightarrow S_{0}(R)$
	$R=x$	$\rightarrow \rightarrow \rightarrow-\infty$
$\xrightarrow[\rightarrow \rightarrow \rightarrow 0]{ }$		$\rightarrow \rightarrow \rightarrow+\cdots+1$
	$S=\underline{\ln (y) x y+1}$	$\rightarrow \rightarrow \rightarrow-\infty$
	$2 x y$	1
		vi, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		- $+1, \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow+\cdots$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x \text { LambertW }\left(-\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}\right)} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x \operatorname{LambertW}\left(-\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}\right)}
$$

Verified OK.

5.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2} y+x\right) \mathrm{d} y & =\left(-x y^{2}-y\right) \mathrm{d} x \\
\left(x y^{2}+y\right) \mathrm{d} x+\left(-x^{2} y+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=x y^{2}+y \\
& N(x, y)=-x^{2} y+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{2}+y\right) \\
& =2 x y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2} y+x\right) \\
& =-2 x y+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-x^{2} y+x}((2 x y+1)-(-2 x y+1)) \\
& =-\frac{4 y}{x y-1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{x y^{2}+y}((-2 x y+1)-(2 x y+1)) \\
& =-\frac{4 x}{x y+1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(-2 x y+1)-(2 x y+1)}{x\left(x y^{2}+y\right)-y\left(-x^{2} y+x\right)} \\
& =-\frac{2}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{2}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{2} y^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2} y^{2}}\left(x y^{2}+y\right) \\
& =\frac{x y+1}{y x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2} y^{2}}\left(-x^{2} y+x\right) \\
& =\frac{-x y+1}{x y^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x y+1}{y x^{2}}\right)+\left(\frac{-x y+1}{x y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y+1}{y x^{2}} \mathrm{~d} x \\
\phi & =-\frac{1}{x y}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x y+1}{x y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x y+1}{x y^{2}}=\frac{1}{x y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{x y}+\ln (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{x y}+\ln (x)-\ln (y)
$$

The solution becomes

$$
y=-\frac{1}{x \text { LambertW }\left(-\frac{\mathrm{e}^{c_{1}}}{x^{2}}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x \text { LambertW }\left(-\frac{\mathrm{e}^{c_{1}}}{x^{2}}\right)} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x \text { LambertW }\left(-\frac{\mathrm{e}^{c_{1}}}{x^{2}}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

```
dsolve((y(x)+x*y(x)~2)+(x-x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{1}{\text { LambertW }\left(-\frac{c_{1}}{x^{2}}\right) x}
$$

\checkmark Solution by Mathematica
Time used: 8.358 (sec). Leaf size: 35
DSolve $\left[(y[x]+x * y[x] \sim 2)+\left(x-x^{\wedge} 2 * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{x W\left(\frac{e^{-1+\frac{9 c}{2^{2} / 3}}}{x^{2}}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6 Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19
6.1 problem Ex 1 279
6.2 problem Ex 2 292
6.3 problem Ex 3 305
6.4 problem Ex 4 318
6.5 problem Ex 5 332

6.1 problem Ex 1

6.1.1 Solving as linear ode . 279
6.1.2 Solving as first order ode lie symmetry lookup ode 281
6.1.3 Solving as exact ode . 285
6.1.4 Maple step by step solution . 289

Internal problem ID [11143]
Internal file name [OUTPUT/10128_Wednesday_November_23_2022_11_51_06_AM_91300626/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 13.
Linear equations of first order. Page 19
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cot (x)=\sec (x)
$$

6.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cot (x) \\
q(x) & =\sec (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cot (x)=\sec (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (x) d x} \\
& =\sin (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sec (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin (x) y) & =(\sin (x))(\sec (x)) \\
\mathrm{d}(\sin (x) y) & =\tan (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (x) y=\int \tan (x) \mathrm{d} x \\
& \sin (x) y=-\ln (\cos (x))+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x)$ results in

$$
y=-\csc (x) \ln (\cos (x))+c_{1} \csc (x)
$$

which simplifies to

$$
y=\csc (x)\left(-\ln (\cos (x))+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\csc (x)\left(-\ln (\cos (x))+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 63: Slope field plot
Verification of solutions

$$
y=\csc (x)\left(-\ln (\cos (x))+c_{1}\right)
$$

Verified OK.

6.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-y \cot (x)+\sec (x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 31: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\sin (x) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cot (x)+\sec (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) y \\
S_{y} & =\sin (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\tan (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sin (x) y=-\ln (\cos (x))+c_{1}
$$

Which simplifies to

$$
\sin (x) y=-\ln (\cos (x))+c_{1}
$$

Which gives

$$
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cot (x)+\sec (x)$		$\frac{d S}{d R}=\tan (R)$
	$R=x$	
-	$S=\sin (x) y$	
	$S=\sin (x) y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)} \tag{1}
\end{equation*}
$$

Figure 64: Slope field plot

Verification of solutions

$$
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)}
$$

Verified OK.

6.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y \cot (x)+\sec (x)) \mathrm{d} x \\
(y \cot (x)-\sec (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \cot (x)-\sec (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y \cot (x)-\sec (x)) \\
& =\cot (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cot (x))-(0)) \\
& =\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\sin (x))} \\
& =\sin (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (x)(y \cot (x)-\sec (x)) \\
& =\cos (x) y-\tan (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (x)(1) \\
& =\sin (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
(\cos (x) y-\tan (x))+(\sin (x)) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x) y-\tan (x) \mathrm{d} x \\
\phi & =\sin (x) y+\ln (\cos (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (x)=\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x) y+\ln (\cos (x))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x) y+\ln (\cos (x))
$$

The solution becomes

$$
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)} \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot

Verification of solutions

$$
y=-\frac{\ln (\cos (x))-c_{1}}{\sin (x)}
$$

Verified OK.

6.1.4 Maple step by step solution

Let's solve
$y^{\prime}+y \cot (x)=\sec (x)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cot (x)+\sec (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y \cot (x)=\sec (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=\mu(x) \sec (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cot (x)$
- \quad Solve to find the integrating factor
$\mu(x)=\sin (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sec (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sec (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sec (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sin (x)$
$y=\frac{\int \sec (x) \sin (x) d x+c_{1}}{\sin (x)}$
- Evaluate the integrals on the rhs
$y=\frac{\ln (\sec (x))+c_{1}}{\sin (x)}$
- Simplify
$y=\csc (x)\left(\ln (\sec (x))+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(diff (y(x),x)+y(x)*\operatorname{cot}(x)=sec(x),y(x), singsol=all)
```

$$
y(x)=\csc (x)\left(-\ln (\cos (x))+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 16

```
DSolve[y'[x]+y[x]*Cot[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \csc (x)\left(-\log (\cos (x))+c_{1}\right)
$$

6.2 problem Ex 2

6.2.1 Solving as linear ode . 292
6.2.2 Solving as first order ode lie symmetry lookup ode 294
6.2.3 Solving as exact ode . 298
6.2.4 Maple step by step solution . 302

Internal problem ID [11144]
Internal file name [OUTPUT/10129_Wednesday_November_23_2022_11_51_06_AM_3118788/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 13.
Linear equations of first order. Page 19
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x+y(1+x)=\mathrm{e}^{x}
$$

6.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x-1}{x} \\
& q(x)=\frac{\mathrm{e}^{x}}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-x-1) y}{x}=\frac{\mathrm{e}^{x}}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x-1}{x} d x} \\
& =\mathrm{e}^{x+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x \mathrm{e}^{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{x}}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \mathrm{e}^{x} y\right) & =\left(x \mathrm{e}^{x}\right)\left(\frac{\mathrm{e}^{x}}{x}\right) \\
\mathrm{d}\left(x \mathrm{e}^{x} y\right) & =\mathrm{e}^{2 x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x \mathrm{e}^{x} y=\int \mathrm{e}^{2 x} \mathrm{~d} x \\
& x \mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x \mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{2 x}}{2 x}+\frac{c_{1} \mathrm{e}^{-x}}{x}
$$

which simplifies to

$$
y=\frac{2 c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot

Verification of solutions

$$
y=\frac{2 c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x}}{2 x}
$$

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x y+\mathrm{e}^{x}-y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 34: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x-\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x-\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=x \mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x y+\mathrm{e}^{x}-y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y(1+x) \\
S_{y} & =x \mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x \mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which simplifies to

$$
x \mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x y+\mathrm{e}^{x}-y}{x}$		$\frac{d S}{d R}=\mathrm{e}^{2 R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-1}$
	$S=x \mathrm{e}^{x} y$	
		+

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x}
$$

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-y(1+x)+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(y(1+x)-\mathrm{e}^{x}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y(1+x)-\mathrm{e}^{x} \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y(1+x)-\mathrm{e}^{x}\right) \\
& =1+x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((1+x)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y(1+x)-\mathrm{e}^{x}\right) \\
& =\left(y(1+x)-\mathrm{e}^{x}\right) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(x) \\
& =x \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(y(1+x)-\mathrm{e}^{x}\right) \mathrm{e}^{x}\right)+\left(x \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y(1+x)-\mathrm{e}^{x}\right) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =x \mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
x \mathrm{e}^{x}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x \mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x \mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2 x}
$$

Verified OK.

6.2.4 Maple step by step solution

Let's solve

$$
y^{\prime} x+y(1+x)=\mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(1+x) y}{x}+\frac{\mathrm{e}^{x}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(1+x) y}{x}=\frac{\mathrm{e}^{x}}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(1+x) y}{x}\right)=\frac{\mu(x) \mathrm{e}^{x}}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(1+x) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(1+x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x \mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \mathrm{e}^{x}}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \mathrm{e}^{x}}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \mathrm{e}^{x}}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x \mathrm{e}^{x}$
$y=\frac{\int\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{x \mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{x}\right)^{2}}{2}+c_{1}}{x \mathrm{e}^{x}}$
- Simplify
$y=\frac{2 c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x}}{2 x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x*diff(y(x),x)+(1+x)*y(x)=exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}+2 c_{1} \mathrm{e}^{-x}}{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 25
DSolve $[x * y '[x]+(1+x) * y[x]==\operatorname{Exp}[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{e^{x}+2 c_{1} e^{-x}}{2 x}
$$

6.3 problem Ex 3

6.3.1 Solving as linear ode . 305
6.3.2 Solving as first order ode lie symmetry lookup ode 307]
6.3.3 Solving as exact ode . 311
6.3.4 Maple step by step solution . 316

Internal problem ID [11145]
Internal file name [OUTPUT/10130_Wednesday_November_23_2022_11_51_07_AM_33825994/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 13.
Linear equations of first order. Page 19
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 y}{1+x}=(1+x)^{3}
$$

6.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{1+x} \\
& q(x)=(1+x)^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{1+x}=(1+x)^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{1+x} d x} \\
& =\frac{1}{(1+x)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left((1+x)^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{(1+x)^{2}}\right) & =\left(\frac{1}{(1+x)^{2}}\right)\left((1+x)^{3}\right) \\
\mathrm{d}\left(\frac{y}{(1+x)^{2}}\right) & =(1+x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{(1+x)^{2}}=\int 1+x \mathrm{~d} x \\
& \frac{y}{(1+x)^{2}}=x+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(1+x)^{2}}$ results in

$$
y=(1+x)^{2}\left(x+\frac{1}{2} x^{2}\right)+c_{1}(1+x)^{2}
$$

which simplifies to

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot
Verification of solutions

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

Verified OK.

6.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{4}+4 x^{3}+6 x^{2}+4 x+2 y+1}{1+x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=(1+x)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{(1+x)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{(1+x)^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{4}+4 x^{3}+6 x^{2}+4 x+2 y+1}{1+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y}{(1+x)^{3}} \\
S_{y} & =\frac{1}{(1+x)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1+x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1+R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2} R^{2}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{(1+x)^{2}}=x+\frac{1}{2} x^{2}+c_{1}
$$

Which simplifies to

$$
\frac{y}{(1+x)^{2}}=x+\frac{1}{2} x^{2}+c_{1}
$$

Which gives

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{4}+4 x^{3}+6 x^{2}+4 x+2 y+1}{1+x}$		$\frac{d S}{d R}=1+R$
		:
¢1:		
	$S=\frac{y}{}$	
	$S=\overline{(1+x)^{2}}$	-
$4{ }_{4}^{4} x^{2}+x^{4}$		
		Lf

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2} \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot
Verification of solutions

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

Verified OK.

6.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{2 y}{1+x}+(1+x)^{3}\right) \mathrm{d} x \\
\left(-\frac{2 y}{1+x}-(1+x)^{3}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{2 y}{1+x}-(1+x)^{3} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 y}{1+x}-(1+x)^{3}\right) \\
& =-\frac{2}{1+x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{2}{1+x}\right)-(0)\right) \\
& =-\frac{2}{1+x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{1+x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (1+x)} \\
& =\frac{1}{(1+x)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(1+x)^{2}}\left(-\frac{2 y}{1+x}-(1+x)^{3}\right) \\
& =\frac{-x^{4}-4 x^{3}-6 x^{2}-4 x-2 y-1}{(1+x)^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(1+x)^{2}}(1) \\
& =\frac{1}{(1+x)^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{4}-4 x^{3}-6 x^{2}-4 x-2 y-1}{(1+x)^{3}}\right)+\left(\frac{1}{(1+x)^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{4}-4 x^{3}-6 x^{2}-4 x-2 y-1}{(1+x)^{3}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}-x+\frac{y}{(1+x)^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{(1+x)^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{(1+x)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{(1+x)^{2}}=\frac{1}{(1+x)^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-x+\frac{y}{(1+x)^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-x+\frac{y}{(1+x)^{2}}
$$

The solution becomes

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2} \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot

Verification of solutions

$$
y=\frac{(1+x)^{2}\left(x^{2}+2 c_{1}+2 x\right)}{2}
$$

Verified OK.

6.3.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{2 y}{1+x}=(1+x)^{3}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{1+x}+(1+x)^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{1+x}=(1+x)^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{1+x}\right)=\mu(x)(1+x)^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{1+x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{1+x}$
- Solve to find the integrating factor

$$
\mu(x)=\frac{1}{(1+x)^{2}}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(1+x)^{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(1+x)^{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(1+x)^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{(1+x)^{2}}$

$$
y=(1+x)^{2}\left(\int(1+x) d x+c_{1}\right)
$$

- Evaluate the integrals on the rhs

$$
y=(1+x)^{2}\left(x+\frac{1}{2} x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(diff(y(x),x)-2*y(x)/(1+x)=(x+1)^3,y(x), singsol=all)
```

$$
y(x)=\left(x+\frac{1}{2} x^{2}+c_{1}\right)(1+x)^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 22
DSolve[y' $[x]-2 * y[x] /(1+x)==(x+1) \wedge 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow(x+1)^{2}\left(\frac{x^{2}}{2}+x+c_{1}\right)
$$

6.4 problem Ex 4

6.4.1 Solving as linear ode . 318
6.4.2 Solving as first order ode lie symmetry lookup ode 320
6.4.3 Solving as exact ode . 324
6.4.4 Maple step by step solution . 329

Internal problem ID [11146]
Internal file name [OUTPUT/10131_Wednesday_November_23_2022_11_51_08_AM_5086682/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 13.
Linear equations of first order. Page 19
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\left(x^{3}+x\right) y^{\prime}+4 x^{2} y=2
$$

6.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{4 x}{x^{2}+1} \\
q(x) & =\frac{2}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 x y}{x^{2}+1}=\frac{2}{x\left(x^{2}+1\right)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4 x}{x^{2}+1} d x} \\
& =\left(x^{2}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2}{x\left(x^{2}+1\right)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right)^{2} y\right) & =\left(\left(x^{2}+1\right)^{2}\right)\left(\frac{2}{x\left(x^{2}+1\right)}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right)^{2} y\right) & =\left(\frac{2 x^{2}+2}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right)^{2} y=\int \frac{2 x^{2}+2}{x} \mathrm{~d} x \\
& \left(x^{2}+1\right)^{2} y=x^{2}+2 \ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(x^{2}+1\right)^{2}$ results in

$$
y=\frac{x^{2}+2 \ln (x)}{\left(x^{2}+1\right)^{2}}+\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

which simplifies to

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot
Verification of solutions

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

6.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2\left(2 x^{2} y-1\right)}{x\left(x^{2}+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 40: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\left(x^{2}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(x^{2}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(x^{2}+1\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2\left(2 x^{2} y-1\right)}{x\left(x^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =4\left(x^{2}+1\right) y x \\
S_{y} & =\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 x^{2}+2}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 R^{2}+2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(x^{2}+1\right)^{2} y=x^{2}+2 \ln (x)+c_{1}
$$

Which simplifies to

$$
\left(x^{2}+1\right)^{2} y=x^{2}+2 \ln (x)+c_{1}
$$

Which gives

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2\left(2 x^{2} y-1\right)}{x\left(x^{2}+1\right)}$		$\frac{d S}{d R}=\frac{2 R^{2}+2}{R}$
$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow+\infty}$		
	$S=\left(x^{2}+1\right)^{2} y$	
		-19 $4+9$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

6.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{3}+x\right) \mathrm{d} y & =\left(-4 x^{2} y+2\right) \mathrm{d} x \\
\left(4 x^{2} y-2\right) \mathrm{d} x+\left(x^{3}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =4 x^{2} y-2 \\
N(x, y) & =x^{3}+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 x^{2} y-2\right) \\
& =4 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{3}+x\right) \\
& =3 x^{2}+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{3}+x}\left(\left(4 x^{2}\right)-\left(3 x^{2}+1\right)\right) \\
& =\frac{x^{2}-1}{x^{3}+x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{x^{2}-1}{x^{3}+x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)+\ln \left(x^{2}+1\right)} \\
& =\frac{x^{2}+1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{x^{2}+1}{x}\left(4 x^{2} y-2\right) \\
& =\frac{\left(4 x^{2} y-2\right)\left(x^{2}+1\right)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{x^{2}+1}{x}\left(x^{3}+x\right) \\
& =\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\left(4 x^{2} y-2\right)\left(x^{2}+1\right)}{x}\right)+\left(\left(x^{2}+1\right)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\left(4 x^{2} y-2\right)\left(x^{2}+1\right)}{x} \mathrm{~d} x \\
\phi & =-2 \ln (x)+x^{4} y+(2 y-1) x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{4}+2 x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(x^{2}+1\right)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(x^{2}+1\right)^{2}=x^{4}+2 x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 \ln (x)+x^{4} y+(2 y-1) x^{2}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 \ln (x)+x^{4} y+(2 y-1) x^{2}+y
$$

The solution becomes

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{x^{4}+2 x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+2 \ln (x)+c_{1}}{x^{4}+2 x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot
Verification of solutions

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{x^{4}+2 x^{2}+1}
$$

Verified OK.

6.4.4 Maple step by step solution

Let's solve
$\left(x^{3}+x\right) y^{\prime}+4 x^{2} y=2$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{4 x y}{x^{2}+1}+\frac{2}{x\left(x^{2}+1\right)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{4 x y}{x^{2}+1}=\frac{2}{x\left(x^{2}+1\right)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{4 x y}{x^{2}+1}\right)=\frac{2 \mu(x)}{x\left(x^{2}+1\right)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$ $\mu(x)\left(y^{\prime}+\frac{4 x y}{x^{2}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{4 \mu(x) x}{x^{2}+1}$
- Solve to find the integrating factor

$$
\mu(x)=\left(x^{2}+1\right)^{2}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{2 \mu(x)}{x\left(x^{2}+1\right)} d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{2 \mu(x)}{x\left(x^{2}+1\right)} d x+c_{1}$
- \quad Solve for y

$$
y=\frac{\int \frac{2 \mu(x)}{x\left(x^{2}+1\right)} d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\left(x^{2}+1\right)^{2}$
$y=\frac{\int \frac{2\left(x^{2}+1\right)}{x} d x+c_{1}}{\left(x^{2}+1\right)^{2}}$
- Evaluate the integrals on the rhs

$$
y=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $\left(\left(x+x^{\wedge} 3\right) * \operatorname{diff}(y(x), x)+4 * x^{\wedge} 2 * y(x)=2, y(x)\right.$, singsol=all)

$$
y(x)=\frac{x^{2}+2 \ln (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 23
DSolve $\left[\left(x+x^{\wedge} 3\right) * y^{\prime}[x]+4 * x^{\wedge} 2 * y[x]==2, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x^{2}+2 \log (x)+c_{1}}{\left(x^{2}+1\right)^{2}}
$$

6.5 problem Ex 5

6.5.1 Solving as linear ode 332
6.5.2 Solving as first order ode lie symmetry lookup ode 334
6.5.3 Solving as exact ode 338
6.5.4 Maple step by step solution 343

Internal problem ID [11147]

Internal file name [OUTPUT/10132_Wednesday_November_23_2022_11_51_09_AM_65944221/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 13.
Linear equations of first order. Page 19
Problem number: Ex 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x^{2}+(-2 x+1) y=x^{2}
$$

6.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x-1}{x^{2}} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(2 x-1) y}{x^{2}}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x-1}{x^{2}} d x} \\
& =\mathrm{e}^{-\frac{1}{x}-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}\right) & =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}} \\
\mathrm{~d}\left(\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}\right) & =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}=\int \frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}=\mathrm{e}^{-\frac{1}{x}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}$ results in

$$
y=x^{2} \mathrm{e}^{\frac{1}{x}} \mathrm{e}^{-\frac{1}{x}}+c_{1} x^{2} \mathrm{e}^{\frac{1}{x}}
$$

which simplifies to

$$
y=x^{2}\left(1+c_{1} \mathrm{e}^{\frac{1}{x}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+c_{1} \mathrm{e}^{\frac{1}{x}}\right) \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot
Verification of solutions

$$
y=x^{2}\left(1+c_{1} \mathrm{e}^{\frac{1}{x}}\right)
$$

Verified OK.

6.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}+2 x y-y}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 43: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{1}{x}+2 \ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{x}+2 \ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+2 x y-y}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{y(-2 x+1) \mathrm{e}^{-\frac{1}{x}}}{x^{4}} \\
& S_{y}=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{R}}}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{-\frac{1}{R}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}=\mathrm{e}^{-\frac{1}{x}}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}}=\mathrm{e}^{-\frac{1}{x}}+c_{1}
$$

Which gives

$$
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+2 x y-y}{x^{2}}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{R}}}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow$ ¢
		他 $\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		他 $\rightarrow \rightarrow \rightarrow \infty$
$\rightarrow \rightarrow \rightarrow x^{\rightarrow \rightarrow-\infty}$		
		,
	$R=x$	01
	$\mathrm{e}^{-\frac{1}{x}} y$	
	$S=\frac{\mathrm{e} x y}{x^{2}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	x^{2}	,
$\xrightarrow{+1}$		1
4t		-
		$\rightarrow \ggg+14$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}} \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
$$

Verified OK.

6.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(-(-2 x+1) y+x^{2}\right) \mathrm{d} x \\
\left((-2 x+1) y-x^{2}\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =(-2 x+1) y-x^{2} \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left((-2 x+1) y-x^{2}\right) \\
& =-2 x+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}}((-2 x+1)-(2 x)) \\
& =\frac{-4 x+1}{x^{2}}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{-4 x+1}{x^{2}} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{1}{x}-4 \ln (x)} \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{4}}\left((-2 x+1) y-x^{2}\right) \\
& =-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}+2 x y-y\right)}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{4}}\left(x^{2}\right) \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}+2 x y-y\right)}{x^{4}}\right)+\left(\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}+2 x y-y\right)}{x^{4}} \mathrm{~d} x \\
\phi & =-\frac{\left(x^{2}-y\right) \mathrm{e}^{-\frac{1}{x}}}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(x^{2}-y\right) \mathrm{e}^{-\frac{1}{x}}}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(x^{2}-y\right) \mathrm{e}^{-\frac{1}{x}}}{x^{2}}
$$

The solution becomes

$$
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}} \tag{1}
\end{equation*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
y=x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
$$

Verified OK.

6.5.4 Maple step by step solution

Let's solve

$$
y^{\prime} x^{2}+(-2 x+1) y=x^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=1+\frac{(2 x-1) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{(2 x-1) y}{x^{2}}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{(2 x-1) y}{x^{2}}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{(2 x-1) y}{x^{2}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)(2 x-1)}{x^{2}}$
- Solve to find the integrating factor
$\mu(x)=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}$

$$
y=\frac{x^{2}\left(\int \frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}} d x+c_{1}\right)}{\mathrm{e}^{-\frac{1}{x}}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{x^{2}\left(\mathrm{e}^{-\frac{1}{x}}+c_{1}\right)}{\mathrm{e}^{-\frac{1}{x}}}
$$

- Simplify

$$
y=x^{2}\left(1+c_{1} \mathrm{e}^{\frac{1}{x}}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x^2*diff(y(x),x)+(1-2*x)*y(x)=x^2,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(1+\mathrm{e}^{\frac{1}{x}} c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 19
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]+(1-2 * x) * y[x]==x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x^{2}\left(1+c_{1} e^{\frac{1}{x}}\right)
$$

7 Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21
7.1 problem Ex 1 346
7.2 problem Ex 2 357
7.3 problem Ex 3 372
7.4 problem Ex 4 384
7.5 problem Ex 5 395

7.1 problem Ex 1

7.1.1 Solving as first order ode lie symmetry lookup ode 346
7.1.2 Solving as bernoulli ode . 350

Internal problem ID [11148]
Internal file name [OUTPUT/10133_Wednesday_November_23_2022_11_51_10_AM_42627324/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 14.
Equations reducible to linear equations (Bernoulli). Page 21
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational, _Bernoulli]

$$
\left(-x^{2}+1\right) y^{\prime}-2 y(1+x)-y^{\frac{5}{2}}=0
$$

7.1.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{\frac{5}{2}}+2 x y+2 y}{x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 46: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{\frac{5}{2}}(x-1)^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{\frac{5}{2}}(x-1)^{3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{\frac{5}{2}}+2 x y+2 y}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{y^{\frac{3}{2}}(x-1)^{4}} \\
S_{y} & =\frac{1}{y^{\frac{5}{2}}(x-1)^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{(x-1)^{4}(1+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{(R-1)^{4}(1+R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{6(R-1)^{3}}-\frac{1}{8(R-1)^{2}}+\frac{1}{8 R-8}+\frac{\ln (R-1)}{16}-\frac{\ln (1+R)}{16}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}}=\frac{1}{6(x-1)^{3}}-\frac{1}{8(x-1)^{2}}+\frac{1}{8 x-8}+\frac{\ln (x-1)}{16}-\frac{\ln (1+x)}{16}+c_{1}
$$

Which simplifies to

$$
-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}}=\frac{1}{6(x-1)^{3}}-\frac{1}{8(x-1)^{2}}+\frac{1}{8 x-8}+\frac{\ln (x-1)}{16}-\frac{\ln (1+x)}{16}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{\frac{5}{2}}+2 x y+2 y}{x^{2}-1}$		$\frac{d S}{d R}=-\frac{1}{(R-1)^{4}(1+R)}$
	$\begin{aligned} & R=x \\ & S=-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}} \end{aligned}$	

Summary

The solution(s) found are the following

$$
-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}}=\frac{1}{6(x-1)^{3}}-\frac{1}{8(x-1)^{2}}+\frac{1}{8 x-8}+\frac{\ln (x-1)}{16}-\frac{\ln (1+x)}{16}+c_{1}(1)
$$

Figure 78: Slope field plot
Verification of solutions

$$
-\frac{2}{3 y^{\frac{3}{2}}(x-1)^{3}}=\frac{1}{6(x-1)^{3}}-\frac{1}{8(x-1)^{2}}+\frac{1}{8 x-8}+\frac{\ln (x-1)}{16}-\frac{\ln (1+x)}{16}+c_{1}
$$

Verified OK.

7.1.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{\frac{5}{2}}+2 x y+2 y}{x^{2}-1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2+2 x}{x^{2}-1} y-\frac{1}{x^{2}-1} y^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2+2 x}{x^{2}-1} \\
f_{1}(x) & =-\frac{1}{x^{2}-1} \\
n & =\frac{5}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{5}{2}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{5}{2}}}=-\frac{2+2 x}{\left(x^{2}-1\right) y^{\frac{3}{2}}}-\frac{1}{x^{2}-1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{\frac{3}{2}}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{2 y^{\frac{5}{2}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{2 w^{\prime}(x)}{3} & =-\frac{(2+2 x) w(x)}{x^{2}-1}-\frac{1}{x^{2}-1} \\
w^{\prime} & =\frac{3(2+2 x) w}{2\left(x^{2}-1\right)}+\frac{3}{2\left(x^{2}-1\right)} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x-1} \\
& q(x)=\frac{3}{2 x^{2}-2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x-1}=\frac{3}{2 x^{2}-2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x-1} d x} \\
& =\frac{1}{(x-1)^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{3}{2 x^{2}-2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{(x-1)^{3}}\right) & =\left(\frac{1}{(x-1)^{3}}\right)\left(\frac{3}{2 x^{2}-2}\right) \\
\mathrm{d}\left(\frac{w}{(x-1)^{3}}\right) & =\left(\frac{3}{2(x-1)^{4}(1+x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{(x-1)^{3}}=\int \frac{3}{2(x-1)^{4}(1+x)} \mathrm{d} x \\
& \frac{w}{(x-1)^{3}}=-\frac{1}{4(x-1)^{3}}+\frac{3}{16(x-1)^{2}}-\frac{3}{16(x-1)}-\frac{3 \ln (x-1)}{32}+\frac{3 \ln (1+x)}{32}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(x-1)^{3}}$ results in

$$
w(x)=(x-1)^{3}\left(-\frac{1}{4(x-1)^{3}}+\frac{3}{16(x-1)^{2}}-\frac{3}{16(x-1)}-\frac{3 \ln (x-1)}{32}+\frac{3 \ln (1+x)}{32}\right)+c_{1}(x-1)^{3}
$$

Replacing w in the above by $\frac{1}{y^{\frac{3}{2}}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{\frac{3}{2}}}=(x-1)^{3}\left(-\frac{1}{4(x-1)^{3}}+\frac{3}{16(x-1)^{2}}-\frac{3}{16(x-1)}-\frac{3 \ln (x-1)}{32}+\frac{3 \ln (1+x)}{32}\right)+c_{1}(x-1)^{3}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}}{128\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}} \\
& y(x)=-\frac{2^{\frac{1}{3}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}}}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}} \\
& y(x)=-\frac{2^{\frac{1}{3}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}}}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
\end{aligned}
$$

Summary

The solution(s) found are the following
y
$=\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}}{128\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}$
$y=$

$$
-\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}(i-1}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
$$

$y=$

$$
-\frac{2^{\frac{1}{3}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}(\sqrt{3}}}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
$$

Figure 79: Slope field plot

Verification of solutions

y

$$
=\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}}{128\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
$$

Verified OK.
$y=$

$$
-\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}(i-1}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
$$

Verified OK.
$y=$

$$
-\frac{2^{\frac{1}{3}}\left(-1024\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}\right)^{\frac{2}{3}}(\sqrt{3}}{512\left(\frac{3(x-1)^{3} \ln (1+x)}{32}-\frac{3(x-1)^{3} \ln (x-1)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right)^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 64

```
dsolve((1-x^2)*diff (y(x),x)-2*(1+x)*y(x)=y(x)^(5/2),y(x), singsol=all)
```

$$
\begin{aligned}
& -\frac{-1+\left(-\frac{3(-1+x)^{3} \ln (-1+x)}{32}+\frac{3(-1+x)^{3} \ln (1+x)}{32}+c_{1} x^{3}+\left(-3 c_{1}-\frac{3}{16}\right) x^{2}+\left(3 c_{1}+\frac{9}{16}\right) x-c_{1}-\frac{5}{8}\right) y(x)^{\frac{3}{2}}}{y(x)^{\frac{3}{2}}} \\
& =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.042 (sec). Leaf size: 76
DSolve[(1- $\left.x^{\wedge} 2\right) * y^{\prime}[x]-2 *(1+x) * y[x]==y[x] \sim(5 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \frac{8 \sqrt[3]{2}}{\left(32 c_{1} x^{3}-6 x^{2}-96 c_{1} x^{2}+18 x-3(x-1)^{3} \log (x-1)+3(x-1)^{3} \log (x+1)+96 c_{1} x-20-32 c_{1}\right)^{2 / 3}}$ $y(x) \rightarrow 0$

7.2 problem Ex 2

7.2.1 Solving as separable ode . 357
7.2.2 Solving as first order ode lie symmetry lookup ode 359
7.2.3 Solving as bernoulli ode . 363
7.2.4 Solving as exact ode . 366
7.2.5 Maple step by step solution . 370

Internal problem ID [11149]
Internal file name [OUTPUT/10134_Wednesday_November_23_2022_11_51_33_AM_58770289/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 14.
Equations reducible to linear equations (Bernoulli). Page 21
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y y^{\prime}+y^{2} x=x
$$

7.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x\left(y^{2}-1\right)}{y}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{y^{2}-1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{y^{2}-1}{y}} d y=-x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{y^{2}-1}{y}} d y & =\int-x d x \\
\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2} & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (y-1)+\ln (y+1)) & =-\frac{x^{2}}{2}+2 c_{1} \\
\ln (y-1)+\ln (y+1) & =(2)\left(-\frac{x^{2}}{2}+2 c_{1}\right) \\
& =-x^{2}+4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)+\ln (y+1)}=\mathrm{e}^{-x^{2}+2 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
y^{2}-1 & =2 c_{1} \mathrm{e}^{-x^{2}} \\
& =c_{2} \mathrm{e}^{-x^{2}}
\end{aligned}
$$

The solution is

$$
y^{2}-1=c_{2} \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2}-1=c_{2} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
y^{2}-1=c_{2} \mathrm{e}^{-x^{2}}
$$

Verified OK.

7.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x\left(y^{2}-1\right)}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 48: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x\left(y^{2}-1\right)}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-1)}{2}+\frac{\ln (R+1)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x\left(y^{2}-1\right)}{y}$		$\frac{d S}{d R}=\frac{R}{R^{2}-1}$
		- - - -
		\cdots
		\rightarrow -
	$R=y$	-
	$S=-\frac{x^{2}}{2}$	为
	$\overline{2}$	-
		\cdots

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}+c_{1}
$$

Verified OK.

7.2.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x\left(y^{2}-1\right)}{y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-x y+x \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-x \\
f_{1}(x) & =x \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-x y^{2}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-w(x) x+x \\
w^{\prime} & =-2 w x+2 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=2 x \\
& q(x)=2 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+2 w(x) x=2 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(2 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} w\right) & =\left(\mathrm{e}^{x^{2}}\right)(2 x) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} w\right) & =\left(2 x \mathrm{e}^{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} w=\int 2 x \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} w=\mathrm{e}^{x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
w(x)=\mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
w(x)=1+c_{1} \mathrm{e}^{-x^{2}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=1+c_{1} \mathrm{e}^{-x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}} \\
& y(x)=-\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}} \tag{1}\\
& y=-\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}} \tag{2}
\end{align*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}}
$$

Verified OK.

$$
y=-\sqrt{1+c_{1} \mathrm{e}^{-x^{2}}}
$$

Verified OK.

7.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y}{y^{2}-1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y}{y^{2}-1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =-\frac{y}{y^{2}-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y}{y^{2}-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y}{y^{2}-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y}{y^{2}-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{y^{2}-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{y^{2}-1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y-1)}{2}-\frac{\ln (y+1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (y-1)}{2}-\frac{\ln (y+1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (y-1)}{2}-\frac{\ln (y+1)}{2}
$$

Summary

The solution(s) found are the following

Figure 83: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{\ln (y-1)}{2}-\frac{\ln (y+1)}{2}=c_{1}
$$

Verified OK.

7.2.5 Maple step by step solution

Let's solve

$$
y y^{\prime}+y^{2} x=x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y}{(y-1)(y+1)}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y}{(y-1)(y+1)} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln ((y-1)(y+1))}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{1+\mathrm{e}^{-x^{2}+2 c_{1}}}, y=-\sqrt{1+\mathrm{e}^{-x^{2}+2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve(y(x)*diff(y(x),x)+x*y(x)^2=x,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\mathrm{e}^{-x^{2}} c_{1}+1} \\
& y(x)=-\sqrt{\mathrm{e}^{-x^{2}} c_{1}+1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.1 (sec). Leaf size: 57
DSolve [y [x]*y' $[x]+x * y[x] \sim 2==x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{1+e^{-x^{2}+2 c_{1}}} \\
& y(x) \rightarrow \sqrt{1+e^{-x^{2}+2 c_{1}}} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1
\end{aligned}
$$

7.3 problem Ex 3

7.3.1 Solving as separable ode . 372
7.3.2 Solving as first order ode lie symmetry lookup ode 374
7.3.3 Solving as exact ode . 378
7.3.4 Maple step by step solution . 382

Internal problem ID [11150]
Internal file name [OUTPUT/10135_Wednesday_November_23_2022_11_51_34_AM_79946896/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 14.
Equations reducible to linear equations (Bernoulli). Page 21
Problem number: Ex 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} \sin (y)+\sin (x) \cos (y)=\sin (x)
$$

7.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\sin (x)(-\csc (y)+\cot (y))
\end{aligned}
$$

Where $f(x)=-\sin (x)$ and $g(y)=-\csc (y)+\cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-\csc (y)+\cot (y)} d y & =-\sin (x) d x \\
\int \frac{1}{-\csc (y)+\cot (y)} d y & =\int-\sin (x) d x \\
-\ln (-1+\cos (y)) & =\cos (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-1+\cos (y)}=\mathrm{e}^{\cos (x)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-1+\cos (y)}=c_{2} \mathrm{e}^{\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\frac{\left(c_{2} \mathrm{e}^{\cos (x)+c_{1}}+1\right) \mathrm{e}^{-\cos (x)-c_{1}}}{c_{2}}\right) \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
y=\arccos \left(\frac{\left(c_{2} \mathrm{e}^{\cos (x)+c_{1}}+1\right) \mathrm{e}^{-\cos (x)-c_{1}}}{c_{2}}\right)
$$

Verified OK.

7.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sin (x)(-1+\cos (y))}{\sin (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 51: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y					
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$				
$a_{1} b_{2}-a_{2} b_{1}$				$\underline{\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					
$-\int(n-1) f(x) d x y^{n}$							

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{\sin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{\sin (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\cos (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sin (x)(-1+\cos (y))}{\sin (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\sin (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sin (y)}{-1+\cos (y)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sin (R)}{-1+\cos (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (-1+\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\cos (x)=-\ln (-1+\cos (y))+c_{1}
$$

Which simplifies to

$$
\cos (x)=-\ln (-1+\cos (y))+c_{1}
$$

Which gives

$$
y=\arccos \left(\mathrm{e}^{c_{1}-\cos (x)}+1\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\mathrm{e}^{c_{1}-\cos (x)}+1\right) \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
y=\arccos \left(\mathrm{e}^{c_{1}-\cos (x)}+1\right)
$$

Verified OK.

7.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\sin (y)}{-1+\cos (y)}\right) \mathrm{d} y & =(\sin (x)) \mathrm{d} x \\
(-\sin (x)) \mathrm{d} x+\left(-\frac{\sin (y)}{-1+\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\sin (x) \\
& N(x, y)=-\frac{\sin (y)}{-1+\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\sin (y)}{-1+\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sin (x) \mathrm{d} x \\
\phi & =\cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\sin (y)}{-1+\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\sin (y)}{-1+\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{\sin (y)}{-1+\cos (y)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{\sin (y)}{-1+\cos (y)}\right) \mathrm{d} y \\
f(y) & =\ln (-1+\cos (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\cos (x)+\ln (-1+\cos (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\cos (x)+\ln (-1+\cos (y))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\cos (x)+\ln (-1+\cos (y))=c_{1} \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
\cos (x)+\ln (-1+\cos (y))=c_{1}
$$

Verified OK.

7.3.4 Maple step by step solution

Let's solve

$$
y^{\prime} \sin (y)+\sin (x) \cos (y)=\sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime} \sin (y)}{-1+\cos (y)}=-\sin (x)$
- Integrate both sides with respect to x
$\int \frac{y^{\prime} \sin (y)}{-1+\cos (y)} d x=\int-\sin (x) d x+c_{1}$
- Evaluate integral
$-\ln (-1+\cos (y))=\cos (x)+c_{1}$
- \quad Solve for y
$y=\arccos \left(\mathrm{e}^{-\cos (x)-c_{1}}+1\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 14

```
dsolve(sin}(y(x))*\operatorname{diff}(y(x),x)+\operatorname{sin}(x)*\operatorname{cos}(y(x))=\operatorname{sin}(x),y(x), singsol=all
```

$$
y(x)=\arccos \left(\mathrm{e}^{-\cos (x)} c_{1}+1\right)
$$

\checkmark Solution by Mathematica
Time used: 1.53 (sec). Leaf size: 81
DSolve[Sin $[y[x]] * y^{\prime}[x]+\operatorname{Sin}[x] * \operatorname{Cos}[y[x]]==\operatorname{Sin}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

Solve $\left[2 \cos (x) \tan \left(\frac{y(x)}{2}\right) e^{\operatorname{arctanh}(\cos (y(x)))}\right.$
$-\sqrt{\sin ^{2}(y(x))} \csc \left(\frac{y(x)}{2}\right) \sec \left(\frac{y(x)}{2}\right)\left(\log \left(\sec ^{2}\left(\frac{y(x)}{2}\right)\right)\right.$
$\left.\left.-2 \log \left(\tan \left(\frac{y(x)}{2}\right)\right)\right)=c_{1}, y(x)\right]$
$y(x) \rightarrow 0$

7.4 problem Ex 4

7.4.1 Solving as first order ode lie symmetry lookup ode 384
7.4.2 Solving as bernoulli ode . 388

Internal problem ID [11151]
Internal file name [OUTPUT/10136_Wednesday_November_23_2022_11_51_35_AM_46179607/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 14.
Equations reducible to linear equations (Bernoulli). Page 21
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
4 y^{\prime} x+3 y+\mathrm{e}^{x} x^{4} y^{5}=0
$$

7.4.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(\mathrm{e}^{x} x^{4} y^{4}+3\right)}{4 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 54: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{5} x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{5} x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{4 x^{3} y^{4}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(\mathrm{e}^{x} x^{4} y^{4}+3\right)}{4 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3}{4 x^{4} y^{4}} \\
S_{y} & =\frac{1}{y^{5} x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\mathrm{e}^{x}}{4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{\mathrm{e}^{R}}{4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\mathrm{e}^{R}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{4 x^{3} y^{4}}=-\frac{\mathrm{e}^{x}}{4}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{4 x^{3} y^{4}}=-\frac{\mathrm{e}^{x}}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{4 x^{3} y^{4}}=-\frac{\mathrm{e}^{x}}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot
Verification of solutions

$$
-\frac{1}{4 x^{3} y^{4}}=-\frac{\mathrm{e}^{x}}{4}+c_{1}
$$

Verified OK.

7.4.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(\mathrm{e}^{x} x^{4} y^{4}+3\right)}{4 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{3}{4 x} y-\frac{x^{3} \mathrm{e}^{x}}{4} y^{5} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{3}{4 x} \\
f_{1}(x) & =-\frac{x^{3} \mathrm{e}^{x}}{4} \\
n & =5
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{5}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{5}}=-\frac{3}{4 x y^{4}}-\frac{x^{3} \mathrm{e}^{x}}{4} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{4}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{4}{y^{5}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{4} & =-\frac{3 w(x)}{4 x}-\frac{x^{3} \mathrm{e}^{x}}{4} \\
w^{\prime} & =\frac{3 w}{x}+x^{3} \mathrm{e}^{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{3} \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=x^{3} \mathrm{e}^{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(x^{3} \mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{3} \mathrm{e}^{x}\right) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\mathrm{e}^{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{3}} & =\int \mathrm{e}^{x} \mathrm{~d} x \\
\frac{w}{x^{3}} & =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=x^{3} \mathrm{e}^{x}+c_{1} x^{3}
$$

which simplifies to

$$
w(x)=x^{3}\left(\mathrm{e}^{x}+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y^{4}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{4}}=x^{3}\left(\mathrm{e}^{x}+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \\
& y(x)=-\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \\
& y(x)=-\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \\
& y(x)=\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \tag{1}\\
& y=-\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \tag{2}\\
& y=-\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}} \tag{3}\\
& y=\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \tag{4}
\end{align*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}}
$$

Verified OK.

$$
y=\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 67

```
dsolve(4*x*diff (y (x),x)+3*y(x)+exp(x)*x^4*y(x)^5=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x} x}} \\
& y(x)=\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \\
& y(x)=-\frac{1}{\sqrt{\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}} \\
& y(x)=-\frac{1}{\sqrt{-\sqrt{\left(\mathrm{e}^{x}+c_{1}\right) x}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 14.931 (sec). Leaf size: 88
DSolve [4*x*y' $[x]+3 * y[x]+\operatorname{Exp}[x] * x \wedge 4 * y[x] \sim 5==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt[4]{x^{3}\left(e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow-\frac{i}{\sqrt[4]{x^{3}\left(e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow \frac{i}{\sqrt[4]{x^{3}\left(e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow \frac{1}{\sqrt[4]{x^{3}\left(e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

7.5 problem Ex 5

7.5.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11152]
Internal file name [OUTPUT/10137_Wednesday_November_23_2022_11_51_36_AM_47359439/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 14.
Equations reducible to linear equations (Bernoulli). Page 21
Problem number: Ex 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime}-\frac{y+1}{1+x}-\sqrt{y+1}=0
$$

7.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{y+1} x+\sqrt{y+1}+y+1}{1+x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(\sqrt{y+1} x+\sqrt{y+1}+y+1)\left(b_{3}-a_{2}\right)}{1+x} \\
& -\frac{(\sqrt{y+1} x+\sqrt{y+1}+y+1)^{2} a_{3}}{(1+x)^{2}} \tag{5E}\\
& -\left(\frac{\sqrt{y+1}}{1+x}-\frac{\sqrt{y+1} x+\sqrt{y+1}+y+1}{(1+x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\frac{\left(\frac{x}{2 \sqrt{y+1}}+\frac{1}{2 \sqrt{y+1}}+1\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{1+x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\underline{8 x y a_{3}+2 a_{2}+4 a_{3}+b_{1}-2 b_{3}+x^{3} b_{2}+x^{2} b_{1}+2 x^{2} b_{2}+2 x b_{1}+2(y+1)^{\frac{3}{2}} a_{3}-2 \sqrt{y+1} a_{1}+2 \sqrt{y+1} a_{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -8 x y a_{3}-2 a_{2}-4 a_{3}-b_{1}+2 b_{3}-x^{3} b_{2}-x^{2} b_{1}-2 x^{2} b_{2}-2 x b_{1}-2(y+1)^{\frac{3}{2}} a_{3} \\
& +2 \sqrt{y+1} a_{1}-2 \sqrt{y+1} a_{2}-2 a_{3} \sqrt{y+1}-2 \sqrt{y+1} b_{1}+2 b_{2} \sqrt{y+1} \\
& +2 \sqrt{y+1} b_{3}-2 a_{2} y-4 y^{2} a_{3}+x^{2} y b_{3}+2 x y b_{3}-4 x a_{3}-2(y+1)^{\frac{3}{2}} x^{2} a_{3} \tag{6E}\\
& -4(y+1)^{\frac{3}{2}} x a_{3}-2 \sqrt{y+1} x b_{1}+2 \sqrt{y+1} x b_{2}+2 \sqrt{y+1} x b_{3} \\
& +2 \sqrt{y+1} y a_{1}-2 \sqrt{y+1} y a_{2}-2 \sqrt{y+1} y a_{3}-4 x y^{2} a_{3}-2 x^{2} a_{2} \\
& -2 x^{2} a_{2} y+2 x^{2} b_{3}-4 x a_{2} y+4 x b_{3}-4 x a_{2}-8 y a_{3}-x b_{2}+y b_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4(y+1) x y a_{3}-b_{1}-x^{3} b_{2}-x^{2} b_{1}-2 x^{2} b_{2}-2 x b_{1}-2(y+1)^{\frac{3}{2}} a_{3} \\
& -2(y+1) a_{2}-4(y+1) a_{3}+2(y+1) b_{3}+2 \sqrt{y+1} a_{1}-2 \sqrt{y+1} a_{2} \\
& -2 a_{3} \sqrt{y+1}-2 \sqrt{y+1} b_{1}+2 b_{2} \sqrt{y+1}+2 \sqrt{y+1} b_{3}-x^{2} y b_{3} \tag{6E}\\
& -2 x y b_{3}-2(y+1)^{\frac{3}{2}} x^{2} a_{3}-4(y+1)^{\frac{3}{2}} x a_{3}-2(y+1) x^{2} a_{2} \\
& +2(y+1) x^{2} b_{3}-4(y+1) x a_{2}-4(y+1) x a_{3}+4(y+1) x b_{3} \\
& -4(y+1) y a_{3}-2 \sqrt{y+1} x b_{1}+2 \sqrt{y+1} x b_{2}+2 \sqrt{y+1} x b_{3} \\
& +2 \sqrt{y+1} y a_{1}-2 \sqrt{y+1} y a_{2}-2 \sqrt{y+1} y a_{3}-x b_{2}-y b_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -8 x y a_{3}-2 \sqrt{y+1} x^{2} a_{3}-4 \sqrt{y+1} x a_{3}-2 \sqrt{y+1} x^{2} a_{3} y-4 \sqrt{y+1} x a_{3} y \\
& -2 a_{2}-4 a_{3}-b_{1}+2 b_{3}-x^{3} b_{2}-x^{2} b_{1}-2 x^{2} b_{2}-2 x b_{1}+2 \sqrt{y+1} a_{1} \\
& -2 \sqrt{y+1} a_{2}-4 a_{3} \sqrt{y+1}-2 \sqrt{y+1} b_{1}+2 b_{2} \sqrt{y+1}+2 \sqrt{y+1} b_{3} \\
& -2 a_{2} y-4 y^{2} a_{3}+x^{2} y b_{3}+2 x y b_{3}-4 x a_{3}-2 \sqrt{y+1} x b_{1}+2 \sqrt{y+1} x b_{2} \\
& +2 \sqrt{y+1} x b_{3}+2 \sqrt{y+1} y a_{1}-2 \sqrt{y+1} y a_{2}-4 \sqrt{y+1} y a_{3}-4 x y^{2} a_{3} \\
& -2 x^{2} a_{2}-2 x^{2} a_{2} y+2 x^{2} b_{3}-4 x a_{2} y+4 x b_{3}-4 x a_{2}-8 y a_{3}-x b_{2}+y b_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{y+1}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{3} v_{1}^{2} a_{3} v_{2}-2 v_{1}^{2} a_{2} v_{2}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1} v_{2}^{2} a_{3}-4 v_{3} v_{1} a_{3} v_{2}-v_{1}^{3} b_{2}+v_{1}^{2} v_{2} b_{3} \\
& +2 v_{3} v_{2} a_{1}-2 v_{1}^{2} a_{2}-4 v_{1} a_{2} v_{2}-2 v_{3} v_{2} a_{2}-8 v_{1} v_{2} a_{3}-4 v_{3} v_{1} a_{3}-4 v_{2}^{2} a_{3} \tag{7E}\\
& -4 v_{3} v_{2} a_{3}-v_{1}^{2} b_{1}-2 v_{3} v_{1} b_{1}-2 v_{1}^{2} b_{2}+2 v_{3} v_{1} b_{2}+2 v_{1}^{2} b_{3}+2 v_{1} v_{2} b_{3}+2 v_{3} v_{1} b_{3} \\
& +2 v_{3} a_{1}-4 v_{1} a_{2}-2 a_{2} v_{2}-2 v_{3} a_{2}-4 v_{1} a_{3}-8 v_{2} a_{3}-4 a_{3} v_{3}-2 v_{1} b_{1}-2 v_{3} b_{1} \\
& -v_{1} b_{2}+2 b_{2} v_{3}+4 v_{1} b_{3}+v_{2} b_{3}+2 v_{3} b_{3}-2 a_{2}-4 a_{3}-b_{1}+2 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{1}^{3} b_{2}-2 v_{3} v_{1}^{2} a_{3} v_{2}+\left(-2 a_{2}+b_{3}\right) v_{1}^{2} v_{2}-2 v_{3} v_{1}^{2} a_{3}+\left(-2 a_{2}-b_{1}-2 b_{2}+2 b_{3}\right) v_{1}^{2} \\
& \quad-4 v_{1} v_{2}^{2} a_{3}-4 v_{3} v_{1} a_{3} v_{2}+\left(-4 a_{2}-8 a_{3}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& +\left(-4 a_{3}-2 b_{1}+2 b_{2}+2 b_{3}\right) v_{1} v_{3}+\left(-4 a_{2}-4 a_{3}-2 b_{1}-b_{2}+4 b_{3}\right) v_{1} \\
& \quad-4 v_{2}^{2} a_{3}+\left(2 a_{1}-2 a_{2}-4 a_{3}\right) v_{2} v_{3}+\left(-2 a_{2}-8 a_{3}+b_{3}\right) v_{2} \\
& +\left(2 a_{1}-2 a_{2}-4 a_{3}-2 b_{1}+2 b_{2}+2 b_{3}\right) v_{3}-2 a_{2}-4 a_{3}-b_{1}+2 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
-b_{2} & =0 \\
-2 a_{2}+b_{3} & =0 \\
2 a_{1}-2 a_{2}-4 a_{3} & =0 \\
-4 a_{2}-8 a_{3}+2 b_{3} & =0 \\
-2 a_{2}-8 a_{3}+b_{3} & =0 \\
-2 a_{2}-4 a_{3}-b_{1}+2 b_{3} & =0 \\
-2 a_{2}-b_{1}-2 b_{2}+2 b_{3} & =0 \\
-4 a_{3}-2 b_{1}+2 b_{2}+2 b_{3} & =0 \\
-4 a_{2}-4 a_{3}-2 b_{1}-b_{2}+4 b_{3} & =0 \\
2 a_{1}-2 a_{2}-4 a_{3}-2 b_{1}+2 b_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=a_{2} \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=2 a_{2} \\
& b_{2}=0 \\
& b_{3}=2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1+x \\
& \eta=2 y+2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y+2-\left(\frac{\sqrt{y+1} x+\sqrt{y+1}+y+1}{1+x}\right)(1+x) \\
& =-\sqrt{y+1} x-\sqrt{y+1}+y+1 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{y+1} x-\sqrt{y+1}+y+1} d y
\end{aligned}
$$

Which results in
$S=\frac{\ln \left(-x^{2}-2 x+y\right)}{x^{2}+2 x+1}+\frac{x(x+2) \ln \left(-x^{2}-2 x+y\right)}{x^{2}+2 x+1}+\frac{2 \ln (\sqrt{y+1}-1-x)}{2+2 x}-\frac{2 \ln (\sqrt{y+1}+x+1)}{2+2 x}+$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y+1} x+\sqrt{y+1}+y+1}{1+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2}{\sqrt{y+1}-1-x} \\
S_{y} & =\frac{1}{\sqrt{y+1}(\sqrt{y+1}-1-x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sqrt{y+1}(1+x)-y-1}{\sqrt{y+1}(-\sqrt{y+1}+1+x)(1+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R+1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(-x^{2}-2 x+y\right)+\ln (\sqrt{y+1}-1-x)-\ln (\sqrt{y+1}+x+1)=\ln (1+x)+c_{1}
$$

Which simplifies to

$$
\ln \left(-x^{2}-2 x+y\right)+\ln (\sqrt{y+1}-1-x)-\ln (\sqrt{y+1}+x+1)=\ln (1+x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\left.\ln \left(-x^{2}-2 x+y\right)+\ln (\sqrt{y+1}-1-x)-\ln (\sqrt{y+1}+x+1)=\ln (1+x)+\phi \pm\right)
$$

Figure 89: Slope field plot

Verification of solutions

$$
\ln \left(-x^{2}-2 x+y\right)+\ln (\sqrt{y+1}-1-x)-\ln (\sqrt{y+1}+x+1)=\ln (1+x)+c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = (2*y(x)+2)/(x+1), y(x)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- 1st order, canonical coordinates successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 81

```
dsolve(diff(y(x),x)- (y(x)+1)/(x+1)=sqrt(1+y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& \frac{\left(-c_{1} y(x)+1+c_{1} x^{2}+\left(2 c_{1}+1\right) x\right) \sqrt{y(x)+1}-(1+x)\left(-c_{1} y(x)-1+c_{1} x^{2}+\left(2 c_{1}-1\right) x\right)}{\left(x^{2}+2 x-y(x)\right)(-\sqrt{y(x)+1}+1+x)} \\
& =0
\end{aligned}
$$

Solution by Mathematica
Time used: 0.418 (sec). Leaf size: 60
DSolve[y'[x]-(y[x]+1)/(x+1)==Sqrt[1+y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[\frac{2 \sqrt{y(x)+1} \arctan \left(\frac{x+1}{\sqrt{-y(x)-1}}\right)}{\sqrt{-y(x)-1}}+\log \left(y(x)-(x+1)^{2}+1\right)-\log (x+1)=c_{1}, y(x)\right]$
8 Chapter 2, differential equations of the first order and the first degree. Article 15. Page 22
8.1 problem Ex 1 405
8.2 problem Ex 2 414
8.3 problem Ex 3 429

8.1 problem Ex 1

8.1.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11153]
Internal file name [OUTPUT/10138_Sunday_November_27_2022_04_33_47_PM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 15.
Page 22
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
x^{4} y\left(3 y+2 y^{\prime} x\right)+x^{2}\left(4 y+3 y^{\prime} x\right)=0
$$

8.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(3 x^{2} y+4\right)}{x\left(2 x^{2} y+3\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(3 x^{2} y+4\right)\left(b_{3}-a_{2}\right)}{x\left(2 x^{2} y+3\right)}-\frac{y^{2}\left(3 x^{2} y+4\right)^{2} a_{3}}{x^{2}\left(2 x^{2} y+3\right)^{2}} \\
& -\left(\frac{y\left(3 x^{2} y+4\right)}{x^{2}\left(2 x^{2} y+3\right)}-\frac{6 y^{2}}{2 x^{2} y+3}+\frac{4 y^{2}\left(3 x^{2} y+4\right)}{\left(2 x^{2} y+3\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x^{2} y+4}{x\left(2 x^{2} y+3\right)}-\frac{3 x y}{2 x^{2} y+3}+\frac{2 x y\left(3 x^{2} y+4\right)}{\left(2 x^{2} y+3\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{10 x^{6} y^{2} b_{2}-15 x^{4} y^{4} a_{3}+6 x^{5} y^{2} b_{1}-6 x^{4} y^{3} a_{1}+30 x^{4} y b_{2}+2 x^{3} y^{2} a_{2}+x^{3} y^{2} b_{3}-39 x^{2} y^{3} a_{3}+18 x^{3} y b_{1}-15 x^{2} y^{2}}{x^{2}\left(2 x^{2} y+3\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 10 x^{6} y^{2} b_{2}-15 x^{4} y^{4} a_{3}+6 x^{5} y^{2} b_{1}-6 x^{4} y^{3} a_{1}+30 x^{4} y b_{2}+2 x^{3} y^{2} a_{2}+x^{3} y^{2} b_{3} \tag{6E}\\
& \quad-39 x^{2} y^{3} a_{3}+18 x^{3} y b_{1}-15 x^{2} y^{2} a_{1}+21 b_{2} x^{2}-28 y^{2} a_{3}+12 x b_{1}-12 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -15 a_{3} v_{1}^{4} v_{2}^{4}+10 b_{2} v_{1}^{6} v_{2}^{2}-6 a_{1} v_{1}^{4} v_{2}^{3}+6 b_{1} v_{1}^{5} v_{2}^{2}+2 a_{2} v_{1}^{3} v_{2}^{2}-39 a_{3} v_{1}^{2} v_{2}^{3}+30 b_{2} v_{1}^{4} v_{2} \tag{7E}\\
& +b_{3} v_{1}^{3} v_{2}^{2}-15 a_{1} v_{1}^{2} v_{2}^{2}+18 b_{1} v_{1}^{3} v_{2}-28 a_{3} v_{2}^{2}+21 b_{2} v_{1}^{2}-12 a_{1} v_{2}+12 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 10 b_{2} v_{1}^{6} v_{2}^{2}+6 b_{1} v_{1}^{5} v_{2}^{2}-15 a_{3} v_{1}^{4} v_{2}^{4}-6 a_{1} v_{1}^{4} v_{2}^{3}+30 b_{2} v_{1}^{4} v_{2}+\left(2 a_{2}+b_{3}\right) v_{1}^{3} v_{2}^{2} \tag{8E}\\
& \quad+18 b_{1} v_{1}^{3} v_{2}-39 a_{3} v_{1}^{2} v_{2}^{3}-15 a_{1} v_{1}^{2} v_{2}^{2}+21 b_{2} v_{1}^{2}+12 b_{1} v_{1}-28 a_{3} v_{2}^{2}-12 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-15 a_{1} & =0 \\
-12 a_{1} & =0 \\
-6 a_{1} & =0 \\
-39 a_{3} & =0 \\
-28 a_{3} & =0 \\
-15 a_{3} & =0 \\
6 b_{1} & =0 \\
12 b_{1} & =0 \\
18 b_{1} & =0 \\
10 b_{2} & =0 \\
21 b_{2} & =0 \\
30 b_{2} & =0 \\
2 a_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{y\left(3 x^{2} y+4\right)}{x\left(2 x^{2} y+3\right)}\right)(x) \\
& =\frac{-x^{2} y^{2}-2 y}{2 x^{2} y+3} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2} y^{2}-2 y}{2 x^{2} y+3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(x^{2} y+2\right)}{2}-\frac{3 \ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(3 x^{2} y+4\right)}{x\left(2 x^{2} y+3\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x y}{x^{2} y+2} \\
S_{y} & =\frac{-2 x^{2} y-3}{y\left(x^{2} y+2\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(x^{2} y+2\right)}{2}-\frac{3 \ln (y)}{2}=2 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(x^{2} y+2\right)}{2}-\frac{3 \ln (y)}{2}=2 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(3 x^{2} y+4\right)}{x\left(2 x^{2} y+3\right)}$		$\frac{d S}{d R}=\frac{2}{R}$
		\triangle -
$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$		
	$S=-\underline{\ln \left(x^{2} y+2\right)}$	
	$S=-\frac{2}{2}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{2} y+2\right)}{2}-\frac{3 \ln (y)}{2}=2 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{2} y+2\right)}{2}-\frac{3 \ln (y)}{2}=2 \ln (x)+c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 1.547 (sec). Leaf size: 39
dsolve $\left(x^{\wedge} 4 * y(x) *(3 * y(x)+2 * x * \operatorname{diff}(y(x), x))+x^{\wedge} 2 *(4 * y(x)+3 * x * \operatorname{diff}(y(x), x))=0, y(x)\right.$, singsol=all

$$
y(x)=\frac{\operatorname{RootOf}\left(x^{2} _Z^{8}-2 _Z^{2} c_{1}-c_{1}\right)^{6} x^{2}-2 c_{1}}{x^{2} c_{1}}
$$

Solution by Mathematica

Time used: 60.464 (sec). Leaf size: 1769
DSolve $\left[x^{\wedge} 4 * y[x] *(3 * y[x]+2 * x * y '[x])+x^{\wedge} 2 *(4 * y[x]+3 * x * y\right.$ ' $[x])==0, y[x], x$, IncludeSingularSolution

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2 x^{2}} \\
& +\sqrt{\frac{3}{x^{4}}-\frac{26^{2 / 3} e^{-2 c_{1}}}{\sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}+\frac{\sqrt[3]{6} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right.}}{x^{6}}} \begin{array}{l}
2 \sqrt{3} \\
-\frac{1}{2} \sqrt{\frac{2}{x^{4}}+\frac{22^{2 / 3} e^{-2 c_{1}}}{\sqrt[3]{3} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}-\frac{\sqrt[3]{2} \sqrt[3]{e^{-6 c_{1}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 \epsilon\right.}} 3^{2 / 3} x^{6}}{}} \\
y(x) \rightarrow-\frac{1}{2 x^{2}}
\end{array}
\end{aligned}
$$

$$
+\frac{\sqrt{\frac{3}{x^{4}}-\frac{26^{2 / 3} e^{-2 c_{1}}}{\sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}}+\frac{\sqrt[3]{6} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right.} x^{6}}{2 \sqrt{3}}}{\frac{x^{6}}{}}
$$

$$
+\frac{1}{2} \sqrt{\frac{2}{x^{4}}+\frac{22^{2 / 3} e^{-2 c_{1}}}{\sqrt[3]{3} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}-\frac{\sqrt[3]{2} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e\right.}}{3^{2 / 3} x^{6}}}
$$

$$
y(x) \rightarrow-\frac{1}{2 x^{2}}
$$

$$
-\frac{\sqrt{\frac{3}{x^{4}}-\frac{26^{2 / 3} e^{-2 c_{1}}}{\sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}+\frac{\sqrt[3]{6} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right.} x^{6}}{2 \sqrt{3}}}-\frac{22^{2 / 3} e^{-2 c_{4}} 413}{\sqrt{2} \sqrt{x^{4}}+\frac{2}{\sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e^{4 c_{1}} x^{8}\right)}}}-\frac{\sqrt[3]{2} \sqrt[3]{e^{-6 c_{1}}\left(\sqrt{48 e^{6 c_{1}} x^{18}+81 e^{8 c_{1}} x^{16}}-9 e\right.}}{3^{2 / 3} x^{6}}}{}
$$

8.2 problem Ex 2

8.2.1 Solving as separable ode . 414
8.2.2 Solving as linear ode . 416
8.2.3 Solving as homogeneousTypeD2 ode 417
8.2.4 Solving as first order ode lie symmetry lookup ode 419
8.2.5 Solving as exact ode . 423
8.2.6 Maple step by step solution . 427

Internal problem ID [11154]
Internal file name [OUTPUT/10139_Sunday_November_27_2022_04_33_49_PM_62361066/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 15.
Page 22
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{2}\left(3 y-6 y^{\prime} x\right)-x\left(y-2 y^{\prime} x\right)=0
$$

8.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{2 x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{2 x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{2 x} d x \\
\ln (y) & =\frac{\ln (x)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln (x)}{2}+c_{1}} \\
& =c_{1} \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

8.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=c_{1} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

8.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}\left(3 u(x) x-6\left(u^{\prime}(x) x+u(x)\right) x\right)-x\left(u(x) x-2\left(u^{\prime}(x) x+u(x)\right) x\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{2 x} d x \\
\ln (u) & =-\frac{\ln (x)}{2}+c_{2} \\
u & =\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}} \\
& =\frac{c_{2}}{\sqrt{x}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\sqrt{x} c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

Figure 93: Slope field plot

Verification of solutions

$$
y=\sqrt{x} c_{2}
$$

Verified OK.

8.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 56: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sqrt{x}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{2 x^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{2 x}$		$\frac{d S}{d R}=0$
		\rightarrow
込		
$\Rightarrow \rightarrow \Delta x+x+1$		
$\rightarrow \rightarrow \rightarrow$ ara		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$	$R=x$	\rightarrow
	$S=\frac{y}{\sqrt{x}}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
\cdots		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

8.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{2}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{2}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y}\right) \mathrm{d} y \\
f(y) & =2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+2 \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\ln (x)} \frac{c_{1}}{2}+\frac{c_{1}}{2} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Verified OK.

8.2.6 Maple step by step solution

Let's solve

$$
y^{2}\left(3 y-6 y^{\prime} x\right)-x\left(y-2 y^{\prime} x\right)=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{2 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{2 x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\mathrm{e}^{-2 c_{1} x}}}{\mathrm{e}^{-2 c_{1}}}, y=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}} x}}{\mathrm{e}^{-2 c_{1}}}\right\}
$$

Maple trace
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve($y(x) \sim 2 *(3 * y(x)-6 * x * \operatorname{diff}(y(x), x))-x *(y(x)-2 * x * \operatorname{diff}(y(x), x))=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{3} \sqrt{x}}{3} \\
& y(x)=\frac{\sqrt{3} \sqrt{x}}{3} \\
& y(x)=c_{1} \sqrt{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.194 (sec). Leaf size: 74
DSolve $[y[x] \sim 2 *(3 * y[x]-6 * x * y '[x])-x *(4 * y[x]-2 * x * y '[x])==0, y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow-\frac{i \sqrt{x} \sqrt{W\left(-3 e^{-3 c_{1}} x^{3}\right)}}{\sqrt{3}} \\
& y(x) \rightarrow \frac{i \sqrt{x} \sqrt{W\left(-3 e^{-3 c_{1}} x^{3}\right)}}{\sqrt{3}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

8.3 problem Ex 3

8.3.1 Solving as first order ode lie symmetry calculated ode 429

Internal problem ID [11155]
Internal file name [OUTPUT/10140_Sunday_November_27_2022_04_33_51_PM_2025625/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 15.
Page 22
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
2 y x^{3}-y^{2}-\left(2 x^{4}+y x\right) y^{\prime}=0
$$

8.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(-2 x^{3}+y\right)}{x\left(2 x^{3}+y\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(-2 x^{3}+y\right)\left(b_{3}-a_{2}\right)}{x\left(2 x^{3}+y\right)}-\frac{y^{2}\left(-2 x^{3}+y\right)^{2} a_{3}}{x^{2}\left(2 x^{3}+y\right)^{2}} \\
& -\left(\frac{6 y x}{2 x^{3}+y}+\frac{y\left(-2 x^{3}+y\right)}{x^{2}\left(2 x^{3}+y\right)}+\frac{6 y\left(-2 x^{3}+y\right) x}{\left(2 x^{3}+y\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{-2 x^{3}+y}{x\left(2 x^{3}+y\right)}-\frac{y}{x\left(2 x^{3}+y\right)}+\frac{y\left(-2 x^{3}+y\right)}{x\left(2 x^{3}+y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 x^{7} b_{1}-4 x^{6} y a_{1}-8 x^{5} y b_{2}+12 x^{4} y^{2} a_{2}-4 x^{4} y^{2} b_{3}+8 x^{3} y^{3} a_{3}-4 x^{4} y b_{1}+12 x^{3} y^{2} a_{1}-2 x^{2} y^{2} b_{2}+2 y^{4} a_{3}-x}{\left(2 x^{3}+y\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 x^{7} b_{1}+4 x^{6} y a_{1}+8 x^{5} y b_{2}-12 x^{4} y^{2} a_{2}+4 x^{4} y^{2} b_{3}-8 x^{3} y^{3} a_{3} \tag{6E}\\
& +4 x^{4} y b_{1}-12 x^{3} y^{2} a_{1}+2 x^{2} y^{2} b_{2}-2 y^{4} a_{3}+x y^{2} b_{1}-y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{1} v_{1}^{6} v_{2}-4 b_{1} v_{1}^{7}-12 a_{2} v_{1}^{4} v_{2}^{2}-8 a_{3} v_{1}^{3} v_{2}^{3}+8 b_{2} v_{1}^{5} v_{2}+4 b_{3} v_{1}^{4} v_{2}^{2} \tag{7E}\\
& \quad-12 a_{1} v_{1}^{3} v_{2}^{2}+4 b_{1} v_{1}^{4} v_{2}-2 a_{3} v_{2}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}-a_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -4 b_{1} v_{1}^{7}+4 a_{1} v_{1}^{6} v_{2}+8 b_{2} v_{1}^{5} v_{2}+\left(-12 a_{2}+4 b_{3}\right) v_{1}^{4} v_{2}^{2}+4 b_{1} v_{1}^{4} v_{2} \tag{8E}\\
& \quad-8 a_{3} v_{1}^{3} v_{2}^{3}-12 a_{1} v_{1}^{3} v_{2}^{2}+2 b_{2} v_{1}^{2} v_{2}^{2}+b_{1} v_{1} v_{2}^{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-12 a_{1} & =0 \\
-a_{1} & =0 \\
4 a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
-4 b_{1} & =0 \\
4 b_{1} & =0 \\
2 b_{2} & =0 \\
8 b_{2} & =0 \\
-12 a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3 y-\left(-\frac{y\left(-2 x^{3}+y\right)}{x\left(2 x^{3}+y\right)}\right)(x) \\
& =\frac{4 y x^{3}+4 y^{2}}{2 x^{3}+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 y x^{3}+4 y^{2}}{2 x^{3}+y}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(x^{3}+y\right)}{4}+\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(-2 x^{3}+y\right)}{x\left(2 x^{3}+y\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 x^{2}}{4 x^{3}+4 y} \\
S_{y} & =-\frac{1}{4 x^{3}+4 y}+\frac{1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{4 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{4 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(x^{3}+y\right)}{4}+\frac{\ln (y)}{2}=-\frac{\ln (x)}{4}+c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(x^{3}+y\right)}{4}+\frac{\ln (y)}{2}=-\frac{\ln (x)}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{3}+y\right)}{4}+\frac{\ln (y)}{2}=-\frac{\ln (x)}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{3}+y\right)}{4}+\frac{\ln (y)}{2}=-\frac{\ln (x)}{4}+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.594 (sec). Leaf size: 47
dsolve ($\left(2 * x^{\wedge} 3 * y(x)-y(x) \wedge 2\right)-\left(2 * x^{\wedge} 4+x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{c_{1}\left(\sqrt{4 x^{4}+c_{1}^{2}}+c_{1}\right)}{2 x} \\
& y(x)=-\frac{c_{1}\left(-c_{1}+\sqrt{4 x^{4}+c_{1}^{2}}\right)}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.279 (sec). Leaf size: 76
DSolve $\left[(2 * x \wedge 3 * y[x]-y[x] \wedge 2)-\left(2 * x^{\wedge} 4+x * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 x^{4}}{-x+\frac{\sqrt{1+4 c_{1} x^{4}}}{\sqrt{\frac{1}{x^{2}}}}} \\
& y(x) \rightarrow-\frac{2 x^{4}}{x+\frac{\sqrt{1+4 c_{1} x^{4}}}{\sqrt{\frac{1}{x^{2}}}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

9 Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23

9.1 problem Ex 1 438
9.2 problem Ex 2 456
9.3 problem Ex 3 463
9.4 problem Ex 4 477
9.5 problem Ex 5 492
9.6 problem Ex 6 505

9.1 problem Ex 1

9.1.1 Solving as homogeneousTypeD2 ode 438
9.1.2 Solving as first order ode lie symmetry lookup ode 440
9.1.3 Solving as bernoulli ode . 444
9.1.4 Solving as exact ode . 448
9.1.5 Solving as riccati ode . 453

Internal problem ID [11156]
Internal file name [OUTPUT/10141_Sunday_November_27_2022_04_33_52_PM_70744530/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{2}-y x+y^{\prime} x^{2}=0
$$

9.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}-u(x) x^{2}+\left(u^{\prime}(x) x+u(x)\right) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u^{2}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{u} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}+\ln (x)-c_{2}=0 \\
& -\frac{x}{y}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot
Verification of solutions

$$
-\frac{x}{y}+\ln (x)-c_{2}=0
$$

Verified OK.

9.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(y-x)}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 59: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(y-x)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=-\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(y-x)}{x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\xrightarrow[\rightarrow+\infty]{ }$
		$\xrightarrow{\rightarrow+\infty}$
		mos, 分t
$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm \rightarrow-4,]{ }$		$\xrightarrow{\rightarrow+\infty}$
$\xrightarrow[\rightarrow+\infty]{\rightarrow+\infty}$	$S=-\bar{y}$	$\xrightarrow{+\infty+\infty}$
$\xrightarrow[\rightarrow+\infty]{\rightarrow+\infty}$		
		$\xrightarrow[\rightarrow+\infty]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Verified OK.

9.1.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-x)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y-\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =-\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{x y}-\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}-\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}+\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}(w x) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int \frac{1}{x} \mathrm{~d} x \\
& w x=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=\frac{\ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{\ln (x)+c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{\ln (x)+c_{1}}{x}
$$

Or

$$
y=\frac{x}{\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)+c_{1}}
$$

Verified OK.

9.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(x y-y^{2}\right) \mathrm{d} x \\
\left(-x y+y^{2}\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x y+y^{2} \\
& N(x, y)=x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x y+y^{2}\right) \\
& =-x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x y^{2}}$ is an integrating factor. Therefore by multiplying $M=y^{2}-y x$ and $N=x^{2}$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y^{2}-y x}{x y^{2}} \\
N & =\frac{x}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{-x y+y^{2}}{x y^{2}}\right) \mathrm{d} x \\
\left(\frac{-x y+y^{2}}{x y^{2}}\right) \mathrm{d} x+\left(\frac{x}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{-x y+y^{2}}{x y^{2}} \\
& N(x, y)=\frac{x}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-x y+y^{2}}{x y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{y^{2}}\right) \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x y+y^{2}}{x y^{2}} \mathrm{~d} x \\
\phi & =\ln (x)-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x)-\frac{x}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x)-\frac{x}{y}
$$

The solution becomes

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)-c_{1}}
$$

Verified OK.

9.1.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-x)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}-\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=-\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{2}{x^{3}} \\
f_{1} f_{2} & =-\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{x^{2}}-\frac{u^{\prime}(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2} x}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x}{\ln (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\ln (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
y=\frac{x}{\ln (x)+c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve((y(x)~ 2-x*y(x))+x^2*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{\ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 19

```
DSolve[(y[x]~2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

9.2 problem Ex 2

9.2.1 Solving as exact ode

Internal problem ID [11157]
Internal file name [OUTPUT/10142_Sunday_November_27_2022_04_33_53_PM_41838316/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16.
Integrating factors by inspection. Page 23
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type

$$
\frac{y^{\prime} x-y}{\sqrt{x^{2}-y^{2}}}-y^{\prime} x=0
$$

9.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-x\right) \mathrm{d} y & =\left(\frac{y}{\sqrt{x^{2}-y^{2}}}\right) \mathrm{d} x \\
\left(-\frac{y}{\sqrt{x^{2}-y^{2}}}\right) \mathrm{d} x+\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{\sqrt{x^{2}-y^{2}}} \\
& N(x, y)=\frac{x}{\sqrt{x^{2}-y^{2}}}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{\sqrt{x^{2}-y^{2}}}\right) \\
& =-\frac{x^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-x\right) \\
& =-\frac{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}+y^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{\sqrt{x^{2}-y^{2}}}{x\left(\sqrt{x^{2}-y^{2}}-1\right)}\left(\left(-\frac{1}{\sqrt{x^{2}-y^{2}}}-\frac{y^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}\right)-\left(\frac{1}{\sqrt{x^{2}-y^{2}}}-\frac{x^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}-1\right)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-\frac{y}{\sqrt{x^{2}-y^{2}}}\right) \\
& =-\frac{y}{\sqrt{x^{2}-y^{2}} x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-x\right) \\
& =-1+\frac{1}{\sqrt{x^{2}-y^{2}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{y}{\sqrt{x^{2}-y^{2}} x}\right)+\left(-1+\frac{1}{\sqrt{x^{2}-y^{2}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{y}{\sqrt{x^{2}-y^{2}} x} \mathrm{~d} x \\
\phi & =\frac{y\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}}{x}\right)\right)}{\sqrt{-y^{2}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y}= & \frac{\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}}{x}\right)}{\sqrt{-y^{2}}}+\frac{y^{2}\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}}{x}\right)\right)}{\left(-y^{2}\right)^{\frac{3}{2}}} \tag{4}\\
& +\frac{y\left(-\frac{\sqrt{x^{2}-y^{2}} y}{\sqrt{-y^{2}}}-\frac{\sqrt{-y^{2}} y}{\sqrt{x^{2}-y^{2}}}-2 y\right)}{\sqrt{-y^{2}}\left(\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}\right)}+f^{\prime}(y) \\
= & -\frac{-2 y^{2}+2 \sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+x^{2}}{\sqrt{x^{2}-y^{2}}\left(-\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+y^{2}\right)}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-1+\frac{1}{\sqrt{x^{2}-y^{2}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-1+\frac{1}{\sqrt{x^{2}-y^{2}}}=-\frac{-2 y^{2}+2 \sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+x^{2}}{\sqrt{x^{2}-y^{2}}\left(-\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+y^{2}\right)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{-\sqrt{x^{2}-y^{2}} y^{2}+\sqrt{-y^{2}} x^{2}-y^{2} \sqrt{-y^{2}}+\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+x^{2}-y^{2}}{\sqrt{x^{2}-y^{2}}\left(\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}\right)} \\
& =\frac{\left(-y^{2}+\sqrt{-y^{2}}\right) \sqrt{x^{2}-y^{2}}+(-y+x)(y+x)\left(\sqrt{-y^{2}}+1\right)}{\sqrt{x^{2}-y^{2}}\left(-\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+y^{2}\right)}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{\left(-y^{2}+\sqrt{-y^{2}}\right) \sqrt{x^{2}-y^{2}}+(-y+x)(y+x)\left(\sqrt{-y^{2}}+1\right)}{\sqrt{x^{2}-y^{2}}\left(-\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}+y^{2}\right)}\right) \mathrm{d} y \\
f(y) & =-y+\frac{\sqrt{-y^{2}} \ln (y)}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}-y^{2}}}{x}\right)\right)}{\sqrt{-y^{2}}}-y+\frac{\sqrt{-y^{2}} \ln (y)}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}}{x}\right)\right)}{\sqrt{-y^{2}}}-y+\frac{\sqrt{-y^{2}} \ln (y)}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}-y^{2}}}{x}\right)\right)}{\sqrt{-y^{2}}}-y+\frac{\sqrt{-y^{2}} \ln (y)}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot

Verification of solutions

$$
\frac{y\left(\ln (2)+\ln \left(\frac{\sqrt{-y^{2}} \sqrt{x^{2}-y^{2}}-y^{2}}{x}\right)\right)}{\sqrt{-y^{2}}}-y+\frac{\sqrt{-y^{2}} \ln (y)}{y}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, - $->$ Computing symmetries using: way $=3$
$\bullet, ~->$ Computing symmetries using: way $=5^{\wedge}\left[0,\left(x^{\wedge} 2^{-} y^{\wedge} 2\right)^{\wedge}(1 / 2) /\left(\left(x^{\wedge} 2-y^{\wedge} 2\right)^{\wedge}(1 / 2)-1\right)\right]$
\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 27
dsolve($(x * \operatorname{diff}(y(x), x)-y(x)) / \operatorname{sqrt}\left(x^{\wedge} 2-y(x)^{\wedge} 2\right)=x * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
y(x)-\arctan \left(\frac{y(x)}{\sqrt{x^{2}-y(x)^{2}}}\right)-c_{1}=0
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.896 (sec). Leaf size: 29
DSolve[(x*y'[x]-y[x])/Sqrt[x^2-y[x] 2]==x*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\arctan \left(\frac{\sqrt{x^{2}-y(x)^{2}}}{y(x)}\right)+y(x)=c_{1}, y(x)\right]
$$

9.3 problem Ex 3

9.3.1 Solving as homogeneousTypeD2 ode 463
9.3.2 Solving as first order ode lie symmetry calculated ode 465
9.3.3 Solving as exact ode . 470

Internal problem ID [11158]
Internal file name [OUTPUT/10143_Sunday_November_27_2022_04_33_55_PM_16924072/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y-(-y+x) y^{\prime}=-x
$$

9.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x-(-u(x) x+x)\left(u^{\prime}(x) x+u(x)\right)=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 103: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

9.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y+x}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(y+x)\left(b_{3}-a_{2}\right)}{y-x}-\frac{(y+x)^{2} a_{3}}{(y-x)^{2}}-\left(-\frac{1}{y-x}-\frac{y+x}{(y-x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{y-x}+\frac{y+x}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}+2 x b_{1}-2 y a}{(-y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-a_{2}-a_{3}-b_{2}+b_{3} & =0 \\
a_{2}+a_{3}+b_{2}-b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y+x}{y-x}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y+x}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y+x}{x^{2}+y^{2}} \\
S_{y} & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 104: Slope field plot
Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

9.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(-y-x) \mathrm{d} x \\
(y+x) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y+x \\
& N(x, y)=y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=y+x$ and $N=y-x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y+x}{x^{2}+y^{2}} \\
N & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{y+x}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{y+x}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{y-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{y+x}{x^{2}+y^{2}} \\
N(x, y) & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y+x}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y-x}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y+x}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{y}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{y-x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y-x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y-x}{x^{2}+y^{2}}=\frac{y-x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot

Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\tan \left(\text { RootOf }\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
$$

Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 36
DSolve $[(x+y[x])-(x-y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]
$$

9.4 problem Ex 4

9.4.1 Solving as homogeneousTypeD2 ode 477
9.4.2 Solving as first order ode lie symmetry lookup ode 479
9.4.3 Solving as bernoulli ode 483
9.4.4 Solving as exact ode 487

Internal problem ID [11159]

Internal file name [OUTPUT/10144_Sunday_November_27_2022_04_33_56_PM_61308293/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
y^{2}-2 x y y^{\prime}=-x^{2}
$$

9.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}-2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{2 u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\frac{\ln (x)}{2}+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\frac{\ln (x)}{2}+2 c_{2}\right) \\
& =-\ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-\ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x} \\
& =\frac{c_{3}}{x}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \tag{1}
\end{equation*}
$$

Figure 106: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
$$

Verified OK.

9.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+y^{2}}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 61: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+y^{2}}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{2 x^{2}} \\
S_{y} & =\frac{y}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 y x}$		$\frac{d S}{d R}=\frac{1}{2}$
		がづメー
	$R=x$	
	$S=\frac{y^{2}}{0}$	
		－

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Verified OK.

9.4.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(x) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int \mathrm{d} x \\
& \frac{w}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=c_{1} x+x^{2}
$$

which simplifies to

$$
w(x)=x\left(x+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x\left(x+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{x\left(x+c_{1}\right)} \\
& y(x)=-\sqrt{x\left(x+c_{1}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x\left(x+c_{1}\right)} \tag{1}\\
& y=-\sqrt{x\left(x+c_{1}\right)} \tag{2}
\end{align*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

$$
y=-\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

9.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 x y) \mathrm{d} y & =\left(-x^{2}-y^{2}\right) \mathrm{d} x \\
\left(x^{2}+y^{2}\right) \mathrm{d} x+(-2 x y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+y^{2} \\
N(x, y) & =-2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 x y) \\
& =-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{2 x y}((2 y)-(-2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(-2 x y) \\
& =-\frac{2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}+y^{2}}{x^{2}}\right)+\left(-\frac{2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}+y^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =x-\frac{y^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{x}=-\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x-\frac{y^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x-\frac{y^{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x-\frac{y^{2}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot

Verification of solutions

$$
x-\frac{y^{2}}{x}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve((x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\left(c_{1}+x\right) x} \\
& y(x)=-\sqrt{\left(c_{1}+x\right) x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.304 (sec). Leaf size: 38
DSolve[($\left.x^{\wedge} 2+y[x] \sim 2\right)-2 * x * y[x] * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x} \sqrt{x+c_{1}} \\
& y(x) \rightarrow \sqrt{x} \sqrt{x+c_{1}}
\end{aligned}
$$

9.5 problem Ex 5

9.5.1 Solving as first order ode lie symmetry lookup ode 492
9.5.2 Solving as bernoulli ode . 496
9.5.3 Solving as exact ode . 500

Internal problem ID [11160]
Internal file name [OUTPUT/10145_Sunday_November_27_2022_04_33_58_PM_25777141/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number: Ex 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
-y^{2}+2 x y y^{\prime}=-x
$$

9.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}-x}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 63: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}-x}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{2 x^{2}} \\
S_{y} & =\frac{y}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}-x}{2 y x}$		$\frac{d S}{d R}=-\frac{1}{2 R}$
		$\rightarrow \rightarrow \rightarrow \infty-\infty$
		$\rightarrow \rightarrow \rightarrow+$
Wravay	$R=x$	$\rightarrow \rightarrow \rightarrow \infty$
	y^{2}	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\xrightarrow{\text { a }}$		$\rightarrow \rightarrow \rightarrow+\infty$
		\rightarrow
		$\rightarrow 1$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

9.5.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}-x}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 x} y-\frac{1}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 x} \\
f_{1}(x) & =-\frac{1}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{2 x}-\frac{1}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 x}-\frac{1}{2} \\
w^{\prime} & =\frac{w}{x}-1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(-1) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\left(-\frac{1}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int-\frac{1}{x} \mathrm{~d} x \\
& \frac{w}{x}=-\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=-x \ln (x)+c_{1} x
$$

which simplifies to

$$
w(x)=x\left(-\ln (x)+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x\left(-\ln (x)+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{-x\left(\ln (x)-c_{1}\right)} \\
& y(x)=-\sqrt{x\left(-\ln (x)+c_{1}\right)}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x\left(\ln (x)-c_{1}\right)} \tag{1}\\
& y=-\sqrt{x\left(-\ln (x)+c_{1}\right)} \tag{2}
\end{align*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
y=\sqrt{-x\left(\ln (x)-c_{1}\right)}
$$

Verified OK.

$$
y=-\sqrt{x\left(-\ln (x)+c_{1}\right)}
$$

Verified OK.

9.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(y^{2}-x\right) \mathrm{d} x \\
\left(-y^{2}+x\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2}+x \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}+x\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x y}((-2 y)-(2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-y^{2}+x\right) \\
& =\frac{-y^{2}+x}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(2 x y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y^{2}+x}{x^{2}}\right)+\left(\frac{2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y^{2}+x}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{y^{2}}{x}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y}{x}=\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y^{2}}{x}+\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y^{2}}{x}+\ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x}+\ln (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{x}+\ln (x)=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve((x-y(x)~2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{-x\left(\ln (x)-c_{1}\right)} \\
& y(x)=-\sqrt{\left(-\ln (x)+c_{1}\right) x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 44

```
DSolve[(x-y[x]~2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x} \sqrt{-\log (x)+c_{1}} \\
& y(x) \rightarrow \sqrt{x} \sqrt{-\log (x)+c_{1}}
\end{aligned}
$$

9.6 problem Ex 6

9.6.1 Solving as homogeneousTypeD2 ode 505
9.6.2 Solving as exact ode . 507
9.6.3 Solving as riccati ode . 512

Internal problem ID [11161]
Internal file name [OUTPUT/10146_Sunday_November_27_2022_04_33_59_PM_83276714/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 16.
Integrating factors by inspection. Page 23
Problem number: Ex 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactByInspection", "homogeneousTypeD2"

Maple gives the following as the ode type

```
[[_homogeneous, `class D`], _rational, _Riccati]
```

$$
y^{\prime} x-y-y^{2}=x^{2}
$$

9.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x-u(x) x-u(x)^{2} x^{2}=x^{2}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{u^{2}+1} d u & =x+c_{2} \\
\arctan (u) & =x+c_{2}
\end{aligned}
$$

Solving for u gives these solutions

$$
u_{1}=\tan \left(x+c_{2}\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \tan \left(x+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tan \left(x+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=x \tan \left(x+c_{2}\right)
$$

Verified OK.

9.6.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{2}+y^{2}+y\right) \mathrm{d} x \\
\left(-x^{2}-y^{2}-y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}-y^{2}-y \\
& N(x, y)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-y^{2}-y\right) \\
& =-2 y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=-y^{2}-x^{2}-y$ and $N=x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{-y^{2}-x^{2}-y}{x^{2}+y^{2}} \\
N & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}} \\
N(x, y) & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =-x-\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\arctan \left(\frac{x}{y}\right)
$$

The solution becomes

$$
y=-\frac{x}{\tan \left(x+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\tan \left(x+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\tan \left(x+c_{1}\right)}
$$

Verified OK.

9.6.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}+y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x+\frac{y^{2}}{x}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{x^{2}} \\
f_{1} f_{2} & =\frac{1}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{1}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x}+\frac{u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin (x)+c_{2} \cos (x)
$$

The above shows that

$$
u^{\prime}(x)=c_{1} \cos (x)-c_{2} \sin (x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{1} \cos (x)-c_{2} \sin (x)\right) x}{c_{1} \sin (x)+c_{2} \cos (x)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(x*diff(y(x),x)-y(x)=x^2+y(x)^2,y(x), singsol=all)
```

$$
y(x)=\tan \left(c_{1}+x\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.277 (sec). Leaf size: 12
DSolve[x*y' $[x]-y[x]==x^{\wedge} 2+y[x] \sim 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x \tan \left(x+c_{1}\right)
$$

10 Chapter 2, differential equations of the firstorder and the first degree. Article 17. Otherforms which Integrating factors can be found.
Page 25
10.1 problem Ex 1 516
10.2 problem Ex 2 530
10.3 problem Ex 3 536
10.4 problem Ex 4 543
10.5 problem Ex 6 557

10.1 problem Ex 1

10.1.1 Solving as homogeneousTypeD2 ode 516
10.1.2 Solving as first order ode lie symmetry calculated ode 518
10.1.3 Solving as exact ode . 524

Internal problem ID [11162]
Internal file name [OUTPUT/10147_Sunday_November_27_2022_04_34_00_PM_42576888/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 17. Other forms which Integrating factors can be found. Page 25
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class B`]]
```

$$
6 y x+3 y^{2}+\left(2 x^{2}+3 y x\right) y^{\prime}=-3 x^{2}
$$

10.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
6 u(x) x^{2}+3 u(x)^{2} x^{2}+\left(2 x^{2}+3 u(x) x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=-3 x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{6 u^{2}+8 u+3}{x(3 u+2)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{6 u^{2}+8 u+3}{3 u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{6 u^{2}+8 u+3}{3 u+2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{6 u^{2}+8 u+3}{3 u+2}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(6 u^{2}+8 u+3\right)}{4} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(6 u^{2}+8 u+3\right)^{\frac{1}{4}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(6 u^{2}+8 u+3\right)^{\frac{1}{4}}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\left(6 u(x)^{2}+8 u(x)+3\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\left(6 u(x)^{2}+8 u(x)+3\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{6 y^{2}}{x^{2}}+\frac{8 y}{x}+3\right)^{\frac{1}{4}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\left(\frac{6 y^{2}+8 y x+3 x^{2}}{x^{2}}\right)^{\frac{1}{4}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{6 y^{2}+8 y x+3 x^{2}}{x^{2}}\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
\left(\frac{6 y^{2}+8 y x+3 x^{2}}{x^{2}}\right)^{\frac{1}{4}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

10.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3\left(x^{2}+2 x y+y^{2}\right)}{x(2 x+3 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{3\left(x^{2}+2 x y+y^{2}\right)\left(b_{3}-a_{2}\right)}{x(2 x+3 y)}-\frac{9\left(x^{2}+2 x y+y^{2}\right)^{2} a_{3}}{x^{2}(2 x+3 y)^{2}} \\
& -\left(-\frac{3(2 x+2 y)}{x(2 x+3 y)}+\frac{3 x^{2}+6 x y+3 y^{2}}{x^{2}(2 x+3 y)}+\frac{6 x^{2}+12 x y+6 y^{2}}{x(2 x+3 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3(2 x+2 y)}{x(2 x+3 y)}+\frac{9 x^{2}+18 x y+9 y^{2}}{x(2 x+3 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{6 x^{4} a_{2}-9 x^{4} a_{3}+7 x^{4} b_{2}-6 x^{4} b_{3}+18 x^{3} y a_{2}-36 x^{3} y a_{3}+24 x^{3} y b_{2}-18 x^{3} y b_{3}+12 x^{2} y^{2} a_{2}-57 x^{2} y^{2} a_{3}+18 x^{2}}{x^{2}(2 x+3 y} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 6 x^{4} a_{2}-9 x^{4} a_{3}+7 x^{4} b_{2}-6 x^{4} b_{3}+18 x^{3} y a_{2}-36 x^{3} y a_{3}+24 x^{3} y b_{2}-18 x^{3} y b_{3} \tag{6E}\\
& +12 x^{2} y^{2} a_{2}-57 x^{2} y^{2} a_{3}+18 x^{2} y^{2} b_{2}-12 x^{2} y^{2} b_{3}-48 x y^{3} a_{3}-18 y^{4} a_{3} \\
& +3 x^{3} b_{1}-3 x^{2} y a_{1}+12 x^{2} y b_{1}-12 x y^{2} a_{1}+9 x y^{2} b_{1}-9 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 6 a_{2} v_{1}^{4}+18 a_{2} v_{1}^{3} v_{2}+12 a_{2} v_{1}^{2} v_{2}^{2}-9 a_{3} v_{1}^{4}-36 a_{3} v_{1}^{3} v_{2}-57 a_{3} v_{1}^{2} v_{2}^{2}-48 a_{3} v_{1} v_{2}^{3} \tag{7E}\\
& \quad-18 a_{3} v_{2}^{4}+7 b_{2} v_{1}^{4}+24 b_{2} v_{1}^{3} v_{2}+18 b_{2} v_{1}^{2} v_{2}^{2}-6 b_{3} v_{1}^{4}-18 b_{3} v_{1}^{3} v_{2}-12 b_{3} v_{1}^{2} v_{2}^{2} \\
& \quad-3 a_{1} v_{1}^{2} v_{2}-12 a_{1} v_{1} v_{2}^{2}-9 a_{1} v_{2}^{3}+3 b_{1} v_{1}^{3}+12 b_{1} v_{1}^{2} v_{2}+9 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(6 a_{2}-9 a_{3}+7 b_{2}-6 b_{3}\right) v_{1}^{4}+\left(18 a_{2}-36 a_{3}+24 b_{2}-18 b_{3}\right) v_{1}^{3} v_{2} \tag{8E}\\
& \quad+3 b_{1} v_{1}^{3}+\left(12 a_{2}-57 a_{3}+18 b_{2}-12 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(-3 a_{1}+12 b_{1}\right) v_{1}^{2} v_{2} \\
& \quad-48 a_{3} v_{1} v_{2}^{3}+\left(-12 a_{1}+9 b_{1}\right) v_{1} v_{2}^{2}-18 a_{3} v_{2}^{4}-9 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-9 a_{1} & =0 \\
-48 a_{3} & =0 \\
-18 a_{3} & =0 \\
3 b_{1} & =0 \\
-12 a_{1}+9 b_{1} & =0 \\
-3 a_{1}+12 b_{1} & =0 \\
6 a_{2}-9 a_{3}+7 b_{2}-6 b_{3} & =0 \\
12 a_{2}-57 a_{3}+18 b_{2}-12 b_{3} & =0 \\
18 a_{2}-36 a_{3}+24 b_{2}-18 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{3\left(x^{2}+2 x y+y^{2}\right)}{x(2 x+3 y)}\right)(x) \\
& =\frac{3 x^{2}+8 x y+6 y^{2}}{2 x+3 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2}+8 x y+6 y^{2}}{2 x+3 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(3 x^{2}+8 x y+6 y^{2}\right)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3\left(x^{2}+2 x y+y^{2}\right)}{x(2 x+3 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x+4 y}{6 x^{2}+16 x y+12 y^{2}} \\
S_{y} & =\frac{2 x+3 y}{3 x^{2}+8 x y+6 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(6 y^{2}+8 y x+3 x^{2}\right)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(6 y^{2}+8 y x+3 x^{2}\right)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(6 y^{2}+8 y x+3 x^{2}\right)}{4}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot
Verification of solutions

$$
\frac{\ln \left(6 y^{2}+8 y x+3 x^{2}\right)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

10.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x^{2}+3 x y\right) \mathrm{d} y & =\left(-3 x^{2}-6 x y-3 y^{2}\right) \mathrm{d} x \\
\left(3 x^{2}+6 x y+3 y^{2}\right) \mathrm{d} x+\left(2 x^{2}+3 x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+6 x y+3 y^{2} \\
N(x, y) & =2 x^{2}+3 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+6 x y+3 y^{2}\right) \\
& =6 x+6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x^{2}+3 x y\right) \\
& =4 x+3 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(2 x+3 y)}((6 x+6 y)-(4 x+3 y)) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(3 x^{2}+6 x y+3 y^{2}\right) \\
& =3(y+x)^{2} x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x\left(2 x^{2}+3 x y\right) \\
& =x^{2}(2 x+3 y)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3(y+x)^{2} x\right)+\left(x^{2}(2 x+3 y)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3(y+x)^{2} x \mathrm{~d} x \\
\phi & =\frac{3}{4} x^{4}+2 y x^{3}+\frac{3}{2} x^{2} y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =2 x^{3}+3 x^{2} y+f^{\prime}(y) \tag{4}\\
& =x^{2}(2 x+3 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}(2 x+3 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}(2 x+3 y)=x^{2}(2 x+3 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{3}{4} x^{4}+2 y x^{3}+\frac{3}{2} x^{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{3}{4} x^{4}+2 y x^{3}+\frac{3}{2} x^{2} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 x^{4}}{4}+2 y x^{3}+\frac{3 x^{2} y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot

Verification of solutions

$$
\frac{3 x^{4}}{4}+2 y x^{3}+\frac{3 x^{2} y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 63
dsolve $\left(\left(3 * x^{\wedge} 2+6 * x * y(x)+3 * y(x)^{\wedge} 2\right)+\left(2 * x^{\wedge} 2+3 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)=\frac{-4 c_{1} x^{2}-\sqrt{-2 c_{1}^{2} x^{4}+6}}{6 c_{1} x} \\
& y(x)=\frac{-4 c_{1} x^{2}+\sqrt{-2 c_{1}^{2} x^{4}+6}}{6 c_{1} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.7 (sec). Leaf size: 135
DSolve $\left[\left(3 * x^{\wedge} 2+6 * x * y[x]+3 * y[x] \sim 2\right)+\left(2 * x^{\wedge} 2+3 * x * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow-\frac{4 x^{2}+\sqrt{-2 x^{4}+6 e^{4 c_{1}}}}{6 x} \\
& y(x) \rightarrow \frac{-4 x^{2}+\sqrt{-2 x^{4}+6 e^{4 c_{1}}}}{6 x} \\
& y(x) \rightarrow-\frac{\sqrt{2} \sqrt{-x^{4}}+4 x^{2}}{6 x} \\
& y(x) \rightarrow \frac{\sqrt{2} \sqrt{-x^{4}}-4 x^{2}}{6 x}
\end{aligned}
$$

10.2 problem Ex 2

10.2.1 Solving as exact ode

Internal problem ID [11163]
Internal file name [OUTPUT/10148_Sunday_November_27_2022_04_34_02_PM_61047348/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 17.
Other forms which Integrating factors can be found. Page 25
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_1st_order, ` _with_symmetry_ [F(x)*G(y),0]〕]

$$
\left(x^{2}+y^{2}+2 y\right) y^{\prime}=-2 x
$$

10.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}+2 y\right) \mathrm{d} y & =(-2 x) \mathrm{d} x \\
(2 x) \mathrm{d} x+\left(x^{2}+y^{2}+2 y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x \\
N(x, y) & =x^{2}+y^{2}+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}+2 y\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}+2 y}((0)-(2 x)) \\
& =-\frac{2 x}{x^{2}+y^{2}+2 y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 x}((2 x)-(0)) \\
& =1
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int 1 \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{y} \\
& =\mathrm{e}^{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{y}(2 x) \\
& =2 x \mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{y}\left(x^{2}+y^{2}+2 y\right) \\
& =\left(x^{2}+y^{2}+2 y\right) \mathrm{e}^{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(2 x \mathrm{e}^{y}\right)+\left(\left(x^{2}+y^{2}+2 y\right) \mathrm{e}^{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x \mathrm{e}^{y} \mathrm{~d} x \\
\phi & =x^{2} \mathrm{e}^{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2} \mathrm{e}^{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(x^{2}+y^{2}+2 y\right) \mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(x^{2}+y^{2}+2 y\right) \mathrm{e}^{y}=x^{2} \mathrm{e}^{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\mathrm{e}^{y} y^{2}+2 \mathrm{e}^{y} y \\
& =\mathrm{e}^{y} y(y+2)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y} y(y+2)\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y} y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} \mathrm{e}^{y}+\mathrm{e}^{y} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} \mathrm{e}^{y}+\mathrm{e}^{y} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} \mathrm{e}^{y}+\mathrm{e}^{y} y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
x^{2} \mathrm{e}^{y}+\mathrm{e}^{y} y^{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve $\left((2 * x)+\left(x^{\wedge} 2+y(x) \wedge 2+2 * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol=all)

$$
\left(y(x)^{2}+x^{2}\right) \mathrm{e}^{y(x)}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.245 (sec). Leaf size: 24
DSolve $\left[(2 * x)+\left(x^{\wedge} 2+y[x] \sim 2+2 * y[x]\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Solve $\left[x^{2} e^{y(x)}+e^{y(x)} y(x)^{2}=c_{1}, y(x)\right]$

10.3 problem Ex 3

10.3.1 Solving as exact ode

Internal problem ID [11164]
Internal file name [OUTPUT/10149_Sunday_November_27_2022_04_34_03_PM_66933797/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 17.
Other forms which Integrating factors can be found. Page 25
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_1st_order, ` _with_symmetry_ [F(x)*G(y),0]〕]

$$
y^{4}+2 y+\left(y^{3} x+2 y^{4}-4 x\right) y^{\prime}=0
$$

10.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x y^{3}+2 y^{4}-4 x\right) \mathrm{d} y & =\left(-y^{4}-2 y\right) \mathrm{d} x \\
\left(y^{4}+2 y\right) \mathrm{d} x+\left(x y^{3}+2 y^{4}-4 x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y^{4}+2 y \\
& N(x, y)=x y^{3}+2 y^{4}-4 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{4}+2 y\right) \\
& =4 y^{3}+2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x y^{3}+2 y^{4}-4 x\right) \\
& =y^{3}-4
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y^{3}+2 y^{4}-4 x}\left(\left(4 y^{3}+2\right)-\left(y^{3}-4\right)\right) \\
& =\frac{3 y^{3}+6}{x y^{3}+2 y^{4}-4 x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y^{4}+2 y}\left(\left(y^{3}-4\right)-\left(4 y^{3}+2\right)\right) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}\left(y^{4}+2 y\right) \\
& =\frac{y^{3}+2}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x y^{3}+2 y^{4}-4 x\right) \\
& =\frac{x y^{3}+2 y^{4}-4 x}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y^{3}+2}{y^{2}}\right)+\left(\frac{x y^{3}+2 y^{4}-4 x}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y^{3}+2}{y^{2}} \mathrm{~d} x \\
\phi & =\frac{\left(y^{3}+2\right) x}{y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{2\left(y^{3}+2\right) x}{y^{3}}+3 x+f^{\prime}(y) \tag{4}\\
& =\frac{x\left(y^{3}-4\right)}{y^{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x y^{3}+2 y^{4}-4 x}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x y^{3}+2 y^{4}-4 x}{y^{3}}=\frac{x\left(y^{3}-4\right)}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(y^{3}+2\right) x}{y^{2}}+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(y^{3}+2\right) x}{y^{2}}+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\left(y^{3}+2\right) x}{y^{2}}+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot
Verification of solutions

$$
\frac{\left(y^{3}+2\right) x}{y^{2}}+y^{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve $((y(x) \wedge 4+2 * y(x))+(x * y(x) \wedge 3+2 * y(x) \sim 4-4 * x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
x-\frac{\left(-y(x)^{2}+c_{1}\right) y(x)^{2}}{y(x)^{3}+2}=0
$$

Solution by Mathematica

Time used: 60.318 (sec). Leaf size: 2021
DSolve $\left[(y[x] \sim 4+2 * y[x])+(x * y[x] \sim 3+2 * y[x] \sim 4-4 * x) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ I

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{1}{2} \sqrt{\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}}}{3 \sqrt[3]{2}}+\frac{\sqrt[3]{5 \sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+\right.}}}}{} \begin{array}{l}
-\frac{1}{2} \\
\\
\quad \sqrt{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}} \\
\\
-\frac{x}{4} \\
y(x)
\end{array}} \begin{array}{l}
3 \sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}-\right.}}
\end{array} \\
&
\end{aligned}
$$

$$
-\frac{1}{2} \sqrt{\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}}}{3 \sqrt[3]{2}}}+\frac{}{3 \sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+\right.}}}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sqrt{-\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}}}{3 \sqrt[3]{2}}}-\frac{}{3 \sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}-\right.}}} \\
& -\frac{x}{4} \\
& y(x)
\end{aligned}
$$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}}}{3 \sqrt[3]{2}}}+\frac{}{3 \sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+14\right.}}}
$$

$$
\begin{aligned}
& -\frac{1}{2} \sqrt{-\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-4\left(24 x+c_{1}^{2}\right)^{3}}+144 c_{1} x-2 c_{1}^{3}}}{3 \sqrt[3]{2}}-\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}-\right.}}}{3 \sqrt{5}}} \begin{array}{l}
-\frac{x}{4} \\
\rightarrow \frac{1}{2} \sqrt{\frac{\sqrt[3]{54 x^{3}+\sqrt{\left(54 x^{3}+144 c_{1} x-2 c_{1}^{3}\right)^{2}-442}}}{3 \sqrt[3]{2}}+\frac{\left.34 x+c_{1}^{2}\right)^{3}}{}+144 c_{1} x-2 c_{1}^{3}} \\
\end{array}
\end{aligned}
$$

10.4 problem Ex 4

10.4.1 Solving as separable ode . 543
10.4.2 Solving as linear ode . 545
10.4.3 Solving as homogeneousTypeD2 ode 546
10.4.4 Solving as first order ode lie symmetry lookup ode 547
10.4.5 Solving as exact ode . 551
10.4.6 Maple step by step solution . 555

Internal problem ID [11165]
Internal file name [OUTPUT/10150_Sunday_November_27_2022_04_34_04_PM_49776833/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 17.
Other forms which Integrating factors can be found. Page 25
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y x^{3}-y^{4}+\left(y^{3} x-x^{4}\right) y^{\prime}=0
$$

10.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

10.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot
Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

10.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x^{4}-u(x)^{4} x^{4}+\left(u(x)^{3} x^{4}-x^{4}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
y=c_{2} x
$$

Verified OK.

10.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 65: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{ }$
\cdots		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
	$R=x$ S	
	$=\frac{y}{x}$	$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow-R_{0 \rightarrow \rightarrow}}$
多多多夝早新：		$\xrightarrow{-2 \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$
		$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{+}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

10.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} x \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{c_{1}} x
$$

Verified OK.

10.4.6 Maple step by step solution

Let's solve

$$
y x^{3}-y^{4}+\left(y^{3} x-x^{4}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve((x^3*y(x)-y(x)^4)+(y(x)^3*x-x^4)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{(1+i \sqrt{3}) x}{2} \\
& y(x)=\frac{(i \sqrt{3}-1) x}{2} \\
& y(x)=x \\
& y(x)=c_{1} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 99
DSolve $\left[\left(x^{\wedge} 3 * y[x]-y[x] \sim 4\right)+\left(y[x] \wedge 3 * x-x^{\wedge} 4\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x \\
& y(x) \rightarrow-\frac{1}{2} i(\sqrt{3}-i) x \\
& y(x) \rightarrow \frac{1}{2} i(\sqrt{3}+i) x \\
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow x \\
& y(x) \rightarrow-\frac{1}{2} i(\sqrt{3}-i) x \\
& y(x) \rightarrow \frac{1}{2} i(\sqrt{3}+i) x
\end{aligned}
$$

10.5 problem Ex 6

10.5.1 Solving as homogeneousTypeD2 ode 557
10.5.2 Solving as first order ode lie symmetry calculated ode 559

Internal problem ID [11166]
Internal file name [OUTPUT/10151_Sunday_November_27_2022_04_34_05_PM_58066198/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 17.
Other forms which Integrating factors can be found. Page 25
Problem number: Ex 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{2}+2 y m x+\left(y^{2} m-m x^{2}-2 y x\right) y^{\prime}=x^{2}
$$

10.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}+2 u(x) x^{2} m+\left(u(x)^{2} x^{2} m-m x^{2}-2 u(x) x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(u^{2}+1\right)(u m-1)}{x\left(m u^{2}-m-2 u\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{(u m-1)\left(u^{2}+1\right)}{m u^{2}-m-2 u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u m-1)\left(u^{2}+1\right)}{m u^{2}-m-2 u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u m-1)\left(u^{2}+1\right)}{m u^{2}-m-2 u}} d u & =\int-\frac{1}{x} d x \\
-\ln (u m-1)+\ln \left(u^{2}+1\right) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u m-1)+\ln \left(u^{2}+1\right)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u^{2}+1}{u m-1}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{u(x)^{2}+1}{u(x) m-1}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{\frac{y^{2}}{x^{2}}+1}{\frac{y m}{x}-1} & =\frac{c_{3}}{x} \\
\frac{x^{2}+y^{2}}{x(y m-x)} & =\frac{c_{3}}{x}
\end{aligned}
$$

Which simplifies to

$$
\frac{x^{2}+y^{2}}{y m-x}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y m-x}=c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{x^{2}+y^{2}}{y m-x}=c_{3}
$$

Verified OK.

10.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y m x-x^{2}+y^{2}}{-m x^{2}+y^{2} m-2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(2 y m x-x^{2}+y^{2}\right)\left(b_{3}-a_{2}\right)}{-m x^{2}+y^{2} m-2 x y}-\frac{\left(2 y m x-x^{2}+y^{2}\right)^{2} a_{3}}{\left(-m x^{2}+y^{2} m-2 x y\right)^{2}} \\
& -\left(-\frac{2 y m-2 x}{-m x^{2}+y^{2} m-2 x y}+\frac{\left(2 y m x-x^{2}+y^{2}\right)(-2 m x-2 y)}{\left(-m x^{2}+y^{2} m-2 x y\right)^{2}}\right)\left(x a_{2}\right. \tag{5E}\\
& \left.+y a_{3}+a_{1}\right)-\left(-\frac{2 m x+2 y}{-m x^{2}+y^{2} m-2 x y}\right. \\
& \left.+\frac{\left(2 y m x-x^{2}+y^{2}\right)(2 y m-2 x)}{\left(-m x^{2}+y^{2} m-2 x y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{m^{2} x^{4} b_{2}+2 m^{2} x^{2} y^{2} a_{3}+4 m^{2} x^{2} y^{2} b_{2}-4 m^{2} x y^{3} a_{2}+4 m^{2} x y^{3} b_{3}-2 m^{2} y^{4} a_{3}-m^{2} y^{4} b_{2}+2 m^{2} x^{3} b_{1}-2 m^{2} x^{2} ?}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -m^{2} x^{4} b_{2}-2 m^{2} x^{2} y^{2} a_{3}-4 m^{2} x^{2} y^{2} b_{2}+4 m^{2} x y^{3} a_{2}-4 m^{2} x y^{3} b_{3}+2 m^{2} y^{4} a_{3} \\
& +m^{2} y^{4} b_{2}-2 m^{2} x^{3} b_{1}+2 m^{2} x^{2} y a_{1}-2 m^{2} x y^{2} b_{1}+2 m^{2} y^{3} a_{1}+m x^{4} a_{2} \tag{6E}\\
& -m x^{4} b_{3}+4 m x^{3} y a_{3}+4 m x^{3} y b_{2}-6 m x^{2} y^{2} a_{2}+6 m x^{2} y^{2} b_{3}-4 m x y^{3} a_{3} \\
& -4 m x y^{3} b_{2}+m y^{4} a_{2}-m y^{4} b_{3}-x^{4} a_{3}-2 x^{4} b_{2}+4 x^{3} y a_{2}-4 x^{3} y b_{3} \\
& +4 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}+y^{4} a_{3}-2 x^{3} b_{1}+2 x^{2} y a_{1}-2 x y^{2} b_{1}+2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 m^{2} a_{2} v_{1} v_{2}^{3}-2 m^{2} a_{3} v_{1}^{2} v_{2}^{2}+2 m^{2} a_{3} v_{2}^{4}-m^{2} b_{2} v_{1}^{4}-4 m^{2} b_{2} v_{1}^{2} v_{2}^{2}+m^{2} b_{2} v_{2}^{4} \\
& \quad-4 m^{2} b_{3} v_{1} v_{2}^{3}+2 m^{2} a_{1} v_{1}^{2} v_{2}+2 m^{2} a_{1} v_{2}^{3}-2 m^{2} b_{1} v_{1}^{3}-2 m^{2} b_{1} v_{1} v_{2}^{2}+m a_{2} v_{1}^{4} \tag{7E}\\
& \quad-6 m a_{2} v_{1}^{2} v_{2}^{2}+m a_{2} v_{2}^{4}+4 m a_{3} v_{1}^{3} v_{2}-4 m a_{3} v_{1} v_{2}^{3}+4 m b_{2} v_{1}^{3} v_{2}-4 m b_{2} v_{1} v_{2}^{3} \\
& -m b_{3} v_{1}^{4}+6 m b_{3} v_{1}^{2} v_{2}^{2}-m b_{3} v_{2}^{4}+4 a_{2} v_{1}^{3} v_{2}-a_{3} v_{1}^{4}+4 a_{3} v_{1}^{2} v_{2}^{2}+a_{3} v_{2}^{4} \\
& \quad-2 b_{2} v_{1}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}-4 b_{3} v_{1}^{3} v_{2}+2 a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{2}^{3}-2 b_{1} v_{1}^{3}-2 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-m^{2} b_{2}+m a_{2}-m b_{3}-a_{3}-2 b_{2}\right) v_{1}^{4} \\
& +\left(4 m a_{3}+4 m b_{2}+4 a_{2}-4 b_{3}\right) v_{1}^{3} v_{2}+\left(-2 m^{2} b_{1}-2 b_{1}\right) v_{1}^{3} \tag{8E}\\
& +\left(-2 m^{2} a_{3}-4 m^{2} b_{2}-6 m a_{2}+6 m b_{3}+4 a_{3}+2 b_{2}\right) v_{1}^{2} v_{2}^{2}+\left(2 m^{2} a_{1}+2 a_{1}\right) v_{1}^{2} v_{2} \\
& +\left(4 m^{2} a_{2}-4 m^{2} b_{3}-4 m a_{3}-4 m b_{2}\right) v_{1} v_{2}^{3}+\left(-2 m^{2} b_{1}-2 b_{1}\right) v_{1} v_{2}^{2} \\
& +\left(2 m^{2} a_{3}+m^{2} b_{2}+m a_{2}-m b_{3}+a_{3}\right) v_{2}^{4}+\left(2 m^{2} a_{1}+2 a_{1}\right) v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 m^{2} a_{1}+2 a_{1} & =0 \\
-2 m^{2} b_{1}-2 b_{1} & =0 \\
4 m a_{3}+4 m b_{2}+4 a_{2}-4 b_{3} & =0 \\
4 m^{2} a_{2}-4 m^{2} b_{3}-4 m a_{3}-4 m b_{2} & =0 \\
-m^{2} b_{2}+m a_{2}-m b_{3}-a_{3}-2 b_{2} & =0 \\
2 m^{2} a_{3}+m^{2} b_{2}+m a_{2}-m b_{3}+a_{3} & =0 \\
-2 m^{2} a_{3}-4 m^{2} b_{2}-6 m a_{2}+6 m b_{3}+4 a_{3}+2 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y m x-x^{2}+y^{2}}{-m x^{2}+y^{2} m-2 x y}\right)(x) \\
& =\frac{-m x^{2} y-m y^{3}+x^{3}+x y^{2}}{m x^{2}-y^{2} m+2 x y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-m x^{2} y-m y^{3}+x^{3}+x y^{2}}{m x^{2}-y^{2} m+2 x y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln \left(x^{2}+y^{2}\right)-\ln (y m-x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y m x-x^{2}+y^{2}}{-m x^{2}+y^{2} m-2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{x^{2}+y^{2}}+\frac{1}{y m-x} \\
S_{y} & =\frac{2 y}{x^{2}+y^{2}}-\frac{m}{y m-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(x^{2}+y^{2}\right)-\ln (y m-x)=c_{1}
$$

Which simplifies to

$$
\ln \left(x^{2}+y^{2}\right)-\ln (y m-x)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln \left(x^{2}+y^{2}\right)-\ln (y m-x)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\ln \left(x^{2}+y^{2}\right)-\ln (y m-x)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 59
dsolve $\left(\left(y(x) \wedge 2-x^{\wedge} 2+2 * m * x * y(x)\right)+\left(m * y(x)^{\wedge} 2-m * x^{\wedge} 2-2 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{m-\sqrt{-4 c_{1}^{2} x^{2}-4 c_{1} x+m^{2}}}{2 c_{1}} \\
& y(x)=\frac{m+\sqrt{-4 c_{1}^{2} x^{2}-4 c_{1} x+m^{2}}}{2 c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 3.604 (sec). Leaf size: 89
DSolve $\left[\left(y[x] \wedge 2-x^{\wedge} 2+2 * m * x * y[x]\right)+\left(m * y[x] \wedge 2-m * x^{\wedge} 2-2 * x * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolu

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-\sqrt{e^{2 c_{1}} m^{2}-4 x^{2}+4 e^{c_{1}} x}-e^{c_{1}} m\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{e^{2 c_{1}} m^{2}-4 x^{2}+4 e^{c_{1}} x}-e^{c_{1}} m\right)
\end{aligned}
$$

11 Chapter 2, differential equations of the first order and the first degree. Article 18. Transformation of variables. Page 26
11.1 problem Ex 1 566
11.2 problem Ex 2 582
11.3 problem Ex 3 594
11.4 problem Ex 4 608

11.1 problem Ex 1

11.1.1 Solving as linear ode . 566
11.1.2 Solving as homogeneousTypeD2 ode 568
11.1.3 Solving as first order ode lie symmetry lookup ode 570
11.1.4 Solving as exact ode . 574
11.1.5 Maple step by step solution . 579

Internal problem ID [11167]
Internal file name [OUTPUT/10152_Saturday_December_03_2022_08_02_57_AM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 18.
Transformation of variables. Page 26
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x-y+2 x^{2} y=x^{3}
$$

11.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-2 x^{2}+1}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(-2 x^{2}+1\right) y}{x}=x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x^{2}+1}{x} d x} \\
& =\mathrm{e}^{x^{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{x^{2}}}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{x^{2}} y}{x}\right) & =\left(\frac{\mathrm{e}^{x^{2}}}{x}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{x^{2}} y}{x}\right) & =\left(x \mathrm{e}^{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{x^{2}} y}{x}=\int x \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& \frac{\mathrm{e}^{x^{2}} y}{x}=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{x^{2}}}{x}$ results in

$$
y=\frac{x \mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}}}{2}+c_{1} x \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
y=\frac{x}{2}+c_{1} x \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{2}+c_{1} x \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot
Verification of solutions

$$
y=\frac{x}{2}+c_{1} x \mathrm{e}^{-x^{2}}
$$

Verified OK.

11.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x-u(x) x+2 x^{3} u(x)=x^{3}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =x(-2 u+1)
\end{aligned}
$$

Where $f(x)=x$ and $g(u)=-2 u+1$. Integrating both sides gives

$$
\frac{1}{-2 u+1} d u=x d x
$$

$$
\begin{aligned}
\int \frac{1}{-2 u+1} d u & =\int x d x \\
-\frac{\ln (-2 u+1)}{2} & =\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{-2 u+1}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{-2 u+1}}=c_{3} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\frac{x\left(c_{3}^{2} \mathrm{e}^{x^{2}+2 c_{2}}-1\right) \mathrm{e}^{-x^{2}-2 c_{2}}}{2 c_{3}^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(c_{3}^{2} \mathrm{e}^{x^{2}+2 c_{2}}-1\right) \mathrm{e}^{-x^{2}-2 c_{2}}}{2 c_{3}^{2}} \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot

Verification of solutions

$$
y=\frac{x\left(c_{3}^{2} \mathrm{e}^{x^{2}+2 c_{2}}-1\right) \mathrm{e}^{-x^{2}-2 c_{2}}}{2 c_{3}^{2}}
$$

Verified OK.

11.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{3}+2 x^{2} y-y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 68: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x^{2}+\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}+\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{x^{2}} y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{3}+2 x^{2} y-y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{\mathrm{e}^{x^{2}} y\left(2 x^{2}-1\right)}{x^{2}} \\
& S_{y}=\frac{\mathrm{e}^{x^{2}}}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{R^{2}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{x^{2} y}}{x}=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{x^{2} y}}{x}=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x^{3}+2 x^{2} y-y}{x}$		$\frac{d S}{d R}=R \mathrm{e}^{R^{2}}$
	$R=x$	
	$S=\underline{\mathrm{e}^{x^{2}} y}$	
	$S=\frac{e^{\prime}}{x}$	
		$\rightarrow 14$
		,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

11.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{3}-2 x^{2} y+y\right) \mathrm{d} x \\
\left(-x^{3}+2 x^{2} y-y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{3}+2 x^{2} y-y \\
& N(x, y)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3}+2 x^{2} y-y\right) \\
& =2 x^{2}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(2 x^{2}-1\right)-(1)\right) \\
& =\frac{2 x^{2}-2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2 x^{2}-2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x^{2}-2 \ln (x)} \\
& =\frac{\mathrm{e}^{x^{2}}}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{x^{2}}}{x^{2}}\left(-x^{3}+2 x^{2} y-y\right) \\
& =-\frac{\mathrm{e}^{x^{2}}\left(x^{3}-2 x^{2} y+y\right)}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{x^{2}}}{x^{2}}(x) \\
& =\frac{\mathrm{e}^{x^{2}}}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{\mathrm{e}^{x^{2}}\left(x^{3}-2 x^{2} y+y\right)}{x^{2}}\right)+\left(\frac{\mathrm{e}^{x^{2}}}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{x^{2}}\left(x^{3}-2 x^{2} y+y\right)}{x^{2}} \mathrm{~d} x \\
\phi & =-\frac{(x-2 y) \mathrm{e}^{x^{2}}}{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{x^{2}}}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{x^{2}}}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{x^{2}}}{x}=\frac{\mathrm{e}^{x^{2}}}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{(x-2 y) \mathrm{e}^{x^{2}}}{2 x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{(x-2 y) \mathrm{e}^{x^{2}}}{2 x}
$$

The solution becomes

$$
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
y=\frac{x\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

11.1.5 Maple step by step solution

Let's solve
$y^{\prime} x-y+2 x^{2} y=x^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{\left(2 x^{2}-1\right) y}{x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\left(2 x^{2}-1\right) y}{x}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{\left(2 x^{2}-1\right) y}{x}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\left(2 x^{2}-1\right) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)\left(2 x^{2}-1\right)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{\mathrm{e}^{x^{2}}}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\mathrm{e}^{x^{2}}}{x}$
$y=\frac{x\left(\int x \mathrm{e}^{x^{2}} d x+c_{1}\right)}{\mathrm{e}^{x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{x\left(\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}\right)}{\mathrm{e}^{x^{2}}}$
- Simplify
$y=\frac{x}{2}+c_{1} x \mathrm{e}^{-x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($x * \operatorname{diff}(y(x), x)-y(x)+2 * x^{\wedge} 2 * y(x)-x^{\wedge} 3=0, y(x)$, singsol=all)

$$
y(x)=\frac{x}{2}+x \mathrm{e}^{-x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 21
DSolve[$x * y$ ' $[x]-y[x]+2 * x^{\wedge} 2 * y[x]-x^{\wedge} 3==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(\frac{1}{2}+c_{1} e^{-x^{2}}\right)
$$

11.2 problem Ex 2

11.2.1 Solving as homogeneousTypeC ode 582
11.2.2 Solving as first order ode lie symmetry lookup ode 584
11.2.3 Solving as exact ode . 588

Internal problem ID [11168]
Internal file name [OUTPUT/10153_Saturday_December_03_2022_08_02_58_AM_3788059/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 18.
Transformation of variables. Page 26
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeC", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class C`], [_Abel, `2nd type`, `class C`], _dAlembert]

$$
(y+x) y^{\prime}=1
$$

11.2.1 Solving as homogeneousTypeC ode

Let

$$
\begin{equation*}
z=y+x \tag{1}
\end{equation*}
$$

Then

$$
z^{\prime}(x)=y^{\prime}+1
$$

Therefore

$$
y^{\prime}=z^{\prime}(x)-1
$$

Hence the given ode can now be written as

$$
z^{\prime}(x)-1=\frac{1}{z}
$$

This is separable first order ode. Integrating

$$
\begin{aligned}
\int d x & =\int \frac{1}{\frac{1}{z}+1} d z \\
x+c_{1} & =z-\ln (1+z)
\end{aligned}
$$

Replacing z back by its value from (1) then the above gives the solution as

$$
\begin{aligned}
& y=-\operatorname{LambertW}\left(-\mathrm{e}^{-x-c_{1}-1}\right)-x-1 \\
& y=-\operatorname{LambertW}\left(-\mathrm{e}^{-x-c_{1}-1}\right)-x-1
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(-\mathrm{e}^{-x-c_{1}-1}\right)-x-1 \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(-\mathrm{e}^{-x-c_{1}-1}\right)-x-1
$$

Verified OK.

11.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1}{y+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 71: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=1 \\
& \eta(x, y)=-1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{-1}{1} \\
& =-1
\end{aligned}
$$

This is easily solved to give

$$
y=-x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=y+x
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1}{y+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{1+\frac{1}{y+x}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{1+\frac{1}{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R-\ln (R+1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=y+x-\ln (x+y+1)+c_{1}
$$

Which simplifies to

$$
x=y+x-\ln (x+y+1)+c_{1}
$$

Which gives

$$
y=- \text { LambertW }\left(-\mathrm{e}^{-x+c_{1}-1}\right)-x-1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{1}{y+x}$		$\frac{d S}{d R}=\frac{1}{1+\frac{1}{R}}$
－1早号		
		\rightarrow 分分StR
\cdots		
\therefore 过 4 ，$\quad \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty \rightarrow \infty$	$R=y+x$	
$\cdots{ }^{\text {a }}$	$S=x$	
$2^{+}+1$		
$\rightarrow+\rightarrow \rightarrow+1$		

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(-\mathrm{e}^{-x+c_{1}-1}\right)-x-1 \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(-\mathrm{e}^{-x+c_{1}-1}\right)-x-1
$$

Verified OK.

11.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y+x) \mathrm{d} y & =\mathrm{d} x \\
-\mathrm{d} x+(y+x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-1 \\
N(x, y) & =y+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y+x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y+x}((0)-(1)) \\
& =-\frac{1}{y+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-1((1)-(0)) \\
& =-1
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-1 \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-y} \\
& =\mathrm{e}^{-y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-y}(-1) \\
& =-\mathrm{e}^{-y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-y}(y+x) \\
& =(y+x) \mathrm{e}^{-y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{-y}\right)+\left((y+x) \mathrm{e}^{-y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-y} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{-y} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-y} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(y+x) \mathrm{e}^{-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
(y+x) \mathrm{e}^{-y}=\mathrm{e}^{-y} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{-y} y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{-y} y\right) \mathrm{d} y \\
f(y) & =-(y+1) \mathrm{e}^{-y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{-y} x-(y+1) \mathrm{e}^{-y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{-y} x-(y+1) \mathrm{e}^{-y}
$$

The solution becomes

$$
y=- \text { LambertW }\left(c_{1} \mathrm{e}^{-x-1}\right)-x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(c_{1} \mathrm{e}^{-x-1}\right)-x-1 \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot
Verification of solutions

$$
y=- \text { LambertW }\left(c_{1} \mathrm{e}^{-x-1}\right)-x-1
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve($(x+y(x)) * \operatorname{diff}(y(x), x)-1=0, y(x)$, singsol=all)

$$
y(x)=- \text { LambertW }\left(-c_{1} \mathrm{e}^{-x-1}\right)-1-x
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 24
DSolve[($x+y[x]) * y$ ' $[x]-1==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-W\left(c_{1}\left(-e^{-x-1}\right)\right)-x-1
$$

11.3 problem Ex 3

11.3.1 Solving as homogeneousTypeD2 ode 594
11.3.2 Solving as first order ode lie symmetry calculated ode 596
11.3.3 Solving as exact ode . 601

Internal problem ID [11169]
Internal file name [OUTPUT/10154_Saturday_December_03_2022_08_02_59_AM_16016325/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 18. Transformation of variables. Page 26
Problem number: Ex 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y y^{\prime}-y^{\prime} x+y=-x
$$

11.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x\left(u^{\prime}(x) x+u(x)\right)-\left(u^{\prime}(x) x+u(x)\right) x+u(x) x=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

11.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y+x}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(y+x)\left(b_{3}-a_{2}\right)}{y-x}-\frac{(y+x)^{2} a_{3}}{(y-x)^{2}}-\left(-\frac{1}{y-x}-\frac{y+x}{(y-x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{y-x}+\frac{y+x}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}+2 x b_{1}-2 y a}{(-y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-a_{2}-a_{3}-b_{2}+b_{3} & =0 \\
a_{2}+a_{3}+b_{2}-b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y+x}{y-x}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y+x}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y+x}{x^{2}+y^{2}} \\
S_{y} & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot
Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

11.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(-y-x) \mathrm{d} x \\
(y+x) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y+x \\
& N(x, y)=y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=y+x$ and $N=y-x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y+x}{x^{2}+y^{2}} \\
N & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{y+x}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{y+x}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{y-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{y+x}{x^{2}+y^{2}} \\
N(x, y) & =\frac{y-x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y+x}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y-x}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y+x}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{y}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{y-x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y-x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y-x}{x^{2}+y^{2}}=\frac{y-x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 135: Slope field plot

Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve($x+y(x) * \operatorname{diff}(y(x), x)+y(x)-x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\tan \left(\text { RootOf }\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
$$

Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 36
DSolve $[x+y[x] * y$ ' $[x]+y[x]-x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\text { Solve }\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]
$$

11.4 problem Ex 4

11.4.1 Solving as riccati ode

Internal problem ID [11170]
Internal file name [OUTPUT/10155_Saturday_December_03_2022_08_02_59_AM_16214539/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 18. Transformation of variables. Page 26
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
y^{\prime} x-a y+y^{2} b=c x^{2 a}
$$

11.4.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{a y-b y^{2}+c x^{2 a}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{b y^{2}}{x}+\frac{c x^{2 a}}{x}+\frac{a y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{c x^{2 a}}{x}, f_{1}(x)=\frac{a}{x}$ and $f_{2}(x)=-\frac{b}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{b u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{b}{x^{2}} \\
f_{1} f_{2} & =-\frac{b a}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{b^{2} c x^{2 a}}{x^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{b u^{\prime \prime}(x)}{x}-\left(\frac{b}{x^{2}}-\frac{b a}{x^{2}}\right) u^{\prime}(x)+\frac{b^{2} c x^{2 a} u(x)}{x^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)+c_{2} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{x^{a} \sqrt{-b c}\left(c_{1} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)-c_{2} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}{x}
$$

Using the above in (1) gives the solution

$$
y=\frac{x^{a} \sqrt{-b c}\left(c_{1} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)-c_{2} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}{b\left(c_{1} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)+c_{2} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{a} \sqrt{-b c}\left(c_{3} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)-\sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}{b\left(c_{3} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)+\cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{a} \sqrt{-b c}\left(c_{3} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)-\sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}{b\left(c_{3} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)+\cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{a} \sqrt{-b c}\left(c_{3} \cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)-\sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}{b\left(c_{3} \sin \left(\frac{x^{a} \sqrt{-b c}}{a}\right)+\cos \left(\frac{x^{a} \sqrt{-b c}}{a}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35
dsolve($x * \operatorname{diff}(y(x), x)-a * y(x)+b * y(x) \wedge 2=c * x^{\wedge}(2 * a), y(x)$, singsol=all)

$$
y(x)=\frac{\tanh \left(\frac{x^{a} \sqrt{b} \sqrt{c}+i c_{1} a}{a}\right) \sqrt{c} x^{a}}{\sqrt{b}}
$$

\checkmark Solution by Mathematica
Time used: 0.533 (sec). Leaf size: 153
DSolve[x*y'[x]-a*y[x]+b*y[x]~2==c*x^(2*a),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt{c} x^{a}\left(-\cos \left(\frac{\sqrt{-b} \sqrt{c} x^{a}}{a}\right)+c_{1} \sin \left(\frac{\sqrt{-b} \sqrt{c} x^{a}}{a}\right)\right)}{\sqrt{-b}\left(\sin \left(\frac{\sqrt{-b} \sqrt{c} x^{a}}{a}\right)+c_{1} \cos \left(\frac{\sqrt{-b} \sqrt{c} x^{a}}{a}\right)\right)} \\
& y(x) \rightarrow \frac{\sqrt{c} x^{a} \tan \left(\frac{\sqrt{-b} \sqrt{c} x^{a}}{a}\right)}{\sqrt{-b}}
\end{aligned}
$$

12 Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
12.1 problem Ex 1 613
12.2 problem Ex 2 625
12.3 problem Ex 3 637
12.4 problem Ex 4 650
12.5 problem Ex 5 657
12.6 problem Ex 6 672
12.7 problem Ex 7 684
12.8 problem Ex 8 698
12.9 problem Ex 10 706
12.10problem Ex 11 714
12.11problem Ex 12 729
12.12problem Ex 13 740
12.13problem Ex 14 755
12.14problem Ex 15 769
12.15problem Ex 16 782
12.16problem Ex 17 795
12.17problem Ex 18 808
12.18problem Ex 19 821
12.19problem Ex 20 839
12.20problem Ex 21 851
12.21problem Ex 22 863
12.22problem Ex 23 865
12.23problem Ex 24 873
12.24problem Ex 25 888
12.25problem Ex 26 897
12.26problem Ex 27 909
12.27problem Ex 28 920
12.28problem Ex 29 937
12.29problem Ex 30 940

12.1 problem Ex 1

$$
\text { 12.1.1 Solving as separable ode . } 613
$$

12.1.2 Solving as first order ode lie symmetry lookup ode 615
12.1.3 Solving as exact ode . 619
12.1.4 Maple step by step solution . 623

Internal problem ID [11171]
Internal file name [OUTPUT/10156_Saturday_December_03_2022_08_03_00_AM_96690858/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x \sqrt{1-y^{2}}+y \sqrt{-x^{2}+1} y^{\prime}=0
$$

12.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x \sqrt{-y^{2}+1}}{y \sqrt{-x^{2}+1}}
\end{aligned}
$$

Where $f(x)=-\frac{x}{\sqrt{-x^{2}+1}}$ and $g(y)=\frac{\sqrt{-y^{2}+1}}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{\sqrt{-y^{2}+1}}{y}} d y=-\frac{x}{\sqrt{-x^{2}+1}} d x
$$

$$
\begin{aligned}
& \int \frac{1}{\frac{\sqrt{-y^{2}+1}}{y}} d y=\int-\frac{x}{\sqrt{-x^{2}+1}} d x \\
& -\sqrt{-y^{2}+1}=\sqrt{-x^{2}+1}+c_{1}
\end{aligned}
$$

The solution is

$$
-\sqrt{1-y^{2}}-\sqrt{-x^{2}+1}-c_{1}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\sqrt{1-y^{2}}-\sqrt{-x^{2}+1}-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 136: Slope field plot
Verification of solutions

$$
-\sqrt{1-y^{2}}-\sqrt{-x^{2}+1}-c_{1}=0
$$

Verified OK.

12.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x \sqrt{-y^{2}+1}}{y \sqrt{-x^{2}+1}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\sqrt{-x^{2}+1}}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\sqrt{-x^{2}+1}}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{(x-1)(1+x)}{\sqrt{-x^{2}+1}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x \sqrt{-y^{2}+1}}{y \sqrt{-x^{2}+1}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{x}{\sqrt{-x^{2}+1}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{(R-1)(R+1)}{\sqrt{-R^{2}+1}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{-x^{2}+1}=\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}+c_{1}
$$

Which simplifies to

$$
\sqrt{-x^{2}+1}=\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{-x^{2}+1}=\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot

Verification of solutions

$$
\sqrt{-x^{2}+1}=\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}+c_{1}
$$

Verified OK.

12.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =\left(\frac{x}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x \\
\left(-\frac{x}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x+\left(-\frac{y}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{\sqrt{-x^{2}+1}} \\
& N(x, y)=-\frac{y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{\sqrt{-x^{2}+1}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{\sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =\sqrt{-x^{2}+1}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =-\frac{(y-1)(y+1)}{\sqrt{-y^{2}+1}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sqrt{-x^{2}+1}-\frac{(y-1)(y+1)}{\sqrt{-y^{2}+1}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sqrt{-x^{2}+1}-\frac{(y-1)(y+1)}{\sqrt{-y^{2}+1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{-x^{2}+1}-\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot
Verification of solutions

$$
\sqrt{-x^{2}+1}-\frac{(y-1)(y+1)}{\sqrt{1-y^{2}}}=c_{1}
$$

Verified OK.

12.1.4 Maple step by step solution

Let's solve

$$
x \sqrt{1-y^{2}}+y \sqrt{-x^{2}+1} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y y^{\prime}}{\sqrt{1-y^{2}}}=-\frac{x}{\sqrt{-x^{2}+1}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y y^{\prime}}{\sqrt{1-y^{2}}} d x=\int-\frac{x}{\sqrt{-x^{2}+1}} d x+c_{1}
$$

- Evaluate integral
$-\sqrt{1-y^{2}}=-\frac{(x-1)(1+x)}{\sqrt{-x^{2}+1}}+c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{-2 c_{1} \sqrt{-x^{2}+1}-c_{1}^{2}+x^{2}}, y=-\sqrt{-2 c_{1} \sqrt{-x^{2}+1}-c_{1}^{2}+x^{2}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 40

```
dsolve(x*sqrt (1-y(x)^2)+y(x)*sqrt(1-x^2)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\frac{(-1+x)(1+x)}{\sqrt{-x^{2}+1}}+\frac{(-1+y(x))(y(x)+1)}{\sqrt{1-y(x)^{2}}}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 3.778 (sec). Leaf size: 77
DSolve[x*Sqrt [1-y[x] 2$]+y[x] * S q r t\left[1-x^{\wedge} 2\right] * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x^{2}-c_{1}\left(2 \sqrt{1-x^{2}}+c_{1}\right)} \\
& y(x) \rightarrow \sqrt{x^{2}-c_{1}\left(2 \sqrt{1-x^{2}}+c_{1}\right)} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1
\end{aligned}
$$

12.2 problem Ex 2

12.2.1 Solving as separable ode . 625
12.2.2 Solving as first order ode lie symmetry lookup ode 627
12.2.3 Solving as exact ode . 631
12.2.4 Maple step by step solution . 635

Internal problem ID [11172]
Internal file name [OUTPUT/10157_Saturday_December_03_2022_08_03_02_AM_46698786/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sqrt{1-y^{2}}+\sqrt{-x^{2}+1} y^{\prime}=0
$$

12.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\sqrt{-y^{2}+1}}{\sqrt{-x^{2}+1}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{\sqrt{-x^{2}+1}}$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\sqrt{-y^{2}+1}} d y=-\frac{1}{\sqrt{-x^{2}+1}} d x
$$

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int-\frac{1}{\sqrt{-x^{2}+1}} d x \\
\arcsin (y) & =\frac{\sqrt{-(x-1)^{2}-2 x+2}}{2}-\arcsin (x)-\frac{\sqrt{-(1+x)^{2}+2 x+2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(-\arcsin (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(-\arcsin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot

Verification of solutions

$$
y=\sin \left(-\arcsin (x)+c_{1}\right)
$$

Verified OK.

12.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sqrt{-y^{2}+1}}{\sqrt{-x^{2}+1}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 76: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\sqrt{-x^{2}+1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\sqrt{-x^{2}+1}} d x
\end{aligned}
$$

Which results in

$$
S=-\arcsin (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sqrt{-y^{2}+1}}{\sqrt{-x^{2}+1}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=0 \\
& R_{y}=1 \\
& S_{x}=-\frac{1}{\sqrt{-x^{2}+1}} \\
& S_{y}=0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\arcsin (x)=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
-\arcsin (x)=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(\arcsin (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sin \left(\arcsin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 140: Slope field plot

Verification of solutions

$$
y=-\sin \left(\arcsin (x)+c_{1}\right)
$$

Verified OK.

12.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =\left(\frac{1}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x \\
\left(-\frac{1}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x+\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\sqrt{-x^{2}+1}} \\
& N(x, y)=-\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sqrt{-x^{2}+1}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =-\arcsin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =-\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\arcsin (x)-\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\arcsin (x)-\arcsin (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\arcsin (x)-\arcsin (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot

Verification of solutions

$$
-\arcsin (x)-\arcsin (y)=c_{1}
$$

Verified OK.

12.2.4 Maple step by step solution

Let's solve
$\sqrt{1-y^{2}}+\sqrt{-x^{2}+1} y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{1-y^{2}}}=-\frac{1}{\sqrt{-x^{2}+1}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int-\frac{1}{\sqrt{-x^{2}+1}} d x+c_{1}$
- Evaluate integral
$\arcsin (y)=-\arcsin (x)+c_{1}$
- \quad Solve for y
$y=\sin \left(-\arcsin (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(sqrt(1-y(x)^2)+sqrt(1-x^2)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\sin \left(\arcsin (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.496 (sec). Leaf size: 47
DSolve[Sqrt[1-y[x]~2]+Sqrt[1-x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(2 \arctan \left(\frac{\sqrt{1-x^{2}}}{x+1}\right)+c_{1}\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \text { Interval }[\{-1,1\}]
\end{aligned}
$$

12.3 problem Ex 3

12.3.1 Solving as linear ode . 637
12.3.2 Solving as first order ode lie symmetry lookup ode 639
12.3.3 Solving as exact ode . 643
12.3.4 Maple step by step solution . 648

Internal problem ID [11173]
Internal file name [OUTPUT/10158_Saturday_December_03_2022_08_03_03_AM_39861667/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-x^{2} y=x^{5}
$$

12.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-x^{2} \\
q(x) & =x^{5}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-x^{2} y=x^{5}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x^{2} d x} \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{5}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{3}}{3}} y\right) & =\left(\mathrm{e}^{-\frac{x^{3}}{3}}\right)\left(x^{5}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x^{3}}{3}} y\right) & =\left(x^{5} \mathrm{e}^{-\frac{x^{3}}{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x^{3}}{3}} y=\int x^{5} \mathrm{e}^{-\frac{x^{3}}{3}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x^{3}}{3}} y=-\left(x^{3}+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{3}}{3}}$ results in

$$
y=-\mathrm{e}^{\frac{x^{3}}{3}}\left(x^{3}+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

which simplifies to

$$
y=-x^{3}-3+c_{1} \mathrm{e}^{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}-3+c_{1} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot
Verification of solutions

$$
y=-x^{3}-3+c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

12.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x^{5}+x^{2} y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 79: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{3}}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{3}}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{3}}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{5}+x^{2} y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-x^{2} \mathrm{e}^{-\frac{x^{3}}{3}} y \\
& S_{y}=\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{5} \mathrm{e}^{-\frac{x^{3}}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{5} \mathrm{e}^{-\frac{R^{3}}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\left(R^{3}+3\right) \mathrm{e}^{-\frac{R^{3}}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{3}}{3}} y=-\left(x^{3}+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+c_{1}
$$

Which simplifies to

$$
\left(x^{3}+y+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}=0
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{5}+x^{2} y$		$\frac{d S}{d R}=R^{5} \mathrm{e}^{-\frac{R^{3}}{3}}$
	$R=x$	$\xrightarrow{\text { 边 }}$
	$S=\mathrm{e}^{-\frac{x^{3}}{3}} y$	$\xrightarrow{+1}$
$x_{1}+1+1$	$S=\mathrm{e}^{-\frac{3}{3}} y$	$\xrightarrow{\rightarrow+}$
$\rightarrow \rightarrow$ ¢11111		$\xrightarrow{-2 \rightarrow 0}$
		$\xrightarrow{\sim}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

12.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x^{5}+x^{2} y\right) \mathrm{d} x \\
\left(-x^{5}-x^{2} y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{5}-x^{2} y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{5}-x^{2} y\right) \\
& =-x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-x^{2}\right)-(0)\right) \\
& =-x^{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-x^{2} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{x^{3}}{3}} \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}\left(-x^{5}-x^{2} y\right) \\
& =-x^{2}\left(x^{3}+y\right) \mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}(1) \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-x^{2}\left(x^{3}+y\right) \mathrm{e}^{-\frac{x^{3}}{3}}\right)+\left(\mathrm{e}^{-\frac{x^{3}}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}\left(x^{3}+y\right) \mathrm{e}^{-\frac{x^{3}}{3}} \mathrm{~d} x \\
\phi & =\left(x^{3}+y+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{x^{3}}{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{x^{3}}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{x^{3}}{3}}=\mathrm{e}^{-\frac{x^{3}}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\left(x^{3}+y+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\left(x^{3}+y+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}
$$

The solution becomes

$$
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{x^{3}}{3}} x^{3}+3 \mathrm{e}^{-\frac{x^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

12.3.4 Maple step by step solution

Let's solve
$y^{\prime}-x^{2} y=x^{5}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=x^{2} y+x^{5}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-x^{2} y=x^{5}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-x^{2} y\right)=\mu(x) x^{5}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-x^{2} y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) x^{2}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-\frac{x^{3}}{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{5} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{5} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{5} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-\frac{x^{3}}{3}}$
$y=\frac{\int x^{5} \mathrm{e}^{-\frac{x^{3}}{3}} d x+c_{1}}{\mathrm{e}^{-\frac{x^{3}}{3}}}$
- Evaluate the integrals on the rhs
$y=\frac{-\left(x^{3}+3\right) \mathrm{e}^{-\frac{x^{3}}{3}}+c_{1}}{\mathrm{e}^{-\frac{x^{3}}{3}}}$
- Simplify

$$
y=-x^{3}-3+c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x)-x^2*y(x)=x^5,y(x), singsol=all)
```

$$
y(x)=-x^{3}-3+\mathrm{e}^{\frac{x^{3}}{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 24

```
DSolve[y'[x]-x^2*y[x]==x^5,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-x^{3}+c_{1} e^{\frac{x^{3}}{3}}-3
$$

12.4 problem Ex 4

12.4.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11174]
Internal file name [OUTPUT/10159_Saturday_December_03_2022_08_03_03_AM_61324329/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
(y-x)^{2} y^{\prime}=1
$$

12.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x^{2}-2 x y+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{b_{3}-a_{2}}{x^{2}-2 x y+y^{2}}-\frac{a_{3}}{\left(x^{2}-2 x y+y^{2}\right)^{2}} \tag{5E}\\
& \quad+\frac{(2 x-2 y)\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(x^{2}-2 x y+y^{2}\right)^{2}}+\frac{(-2 x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)}{\left(x^{2}-2 x y+y^{2}\right)^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& x^{4} b_{2}-4 x^{3} y b_{2}+6 x^{2} y^{2} b_{2}-4 x y^{3} b_{2}+y^{4} b_{2}+x^{2} a_{2}-2 x^{2} b_{2}+x^{2} b_{3}+2 x y a_{3} \tag{6E}\\
& \quad+2 x y b_{2}-4 x y b_{3}-y^{2} a_{2}-2 y^{2} a_{3}+3 y^{2} b_{3}+2 x a_{1}-2 x b_{1}-2 y a_{1}+2 y b_{1}-a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& b_{2} v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2}-4 b_{2} v_{1} v_{2}^{3}+b_{2} v_{2}^{4}+a_{2} v_{1}^{2}-a_{2} v_{2}^{2}+2 a_{3} v_{1} v_{2}-2 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+2 b_{2} v_{1} v_{2}+b_{3} v_{1}^{2}-4 b_{3} v_{1} v_{2}+3 b_{3} v_{2}^{2}+2 a_{1} v_{1}-2 a_{1} v_{2}-2 b_{1} v_{1}+2 b_{1} v_{2}-a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& b_{2} v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2}+\left(a_{2}-2 b_{2}+b_{3}\right) v_{1}^{2}-4 b_{2} v_{1} v_{2}^{3}+\left(2 a_{3}+2 b_{2}-4 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(2 a_{1}-2 b_{1}\right) v_{1}+b_{2} v_{2}^{4}+\left(-a_{2}-2 a_{3}+3 b_{3}\right) v_{2}^{2}+\left(-2 a_{1}+2 b_{1}\right) v_{2}-a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-a_{3} & =0 \\
-4 b_{2} & =0 \\
6 b_{2} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
2 a_{1}-2 b_{1} & =0 \\
-a_{2}-2 a_{3}+3 b_{3} & =0 \\
a_{2}-2 b_{2}+b_{3} & =0 \\
2 a_{3}+2 b_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{1}{x^{2}-2 x y+y^{2}}\right) \\
& =\frac{x^{2}-2 x y+y^{2}-1}{x^{2}-2 x y+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}-2 x y+y^{2}-1}{x^{2}-2 x y+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y-\frac{\ln (y-x+1)}{2}+\frac{\ln (y-1-x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1}{x^{2}-2 x y+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{(x-y+1)(x-y-1)} \\
S_{y} & =\frac{(-y+x)^{2}}{(x-y+1)(x-y-1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y-\frac{\ln (y-x+1)}{2}+\frac{\ln (y-1-x)}{2}=c_{1}
$$

Which simplifies to

$$
y-\frac{\ln (y-x+1)}{2}+\frac{\ln (y-1-x)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y-\frac{\ln (y-x+1)}{2}+\frac{\ln (y-1-x)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
y-\frac{\ln (y-x+1)}{2}+\frac{\ln (y-1-x)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 29

```
dsolve((y(x)-x)^2*diff(y(x),x)=1,y(x), singsol=all)
```

$$
y(x)+\frac{\ln (y(x)-x-1)}{2}-\frac{\ln (y(x)-x+1)}{2}-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.23 (sec). Leaf size: 33
DSolve[($\mathrm{y}[\mathrm{x}]-\mathrm{x})^{\wedge} 2 * \mathrm{y}^{\prime}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[y(x)+\frac{1}{2} \log (-y(x)+x+1)-\frac{1}{2} \log (y(x)-x+1)=c_{1}, y(x)\right]
$$

12.5 problem Ex 5

12.5.1 Solving as first order ode lie symmetry lookup ode 657
12.5.2 Solving as bernoulli ode . 661
12.5.3 Solving as exact ode . 665

Internal problem ID [11175]
Internal file name [OUTPUT/10160_Saturday_December_03_2022_08_03_04_AM_17239589/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number: Ex 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime} x+y+\mathrm{e}^{x} x^{4} y^{4}=0
$$

12.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(\mathrm{e}^{x} x^{4} y^{3}+1\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 82: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{4} x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{4} x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3 x^{3} y^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(\mathrm{e}^{x} x^{4} y^{3}+1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{4} y^{3}} \\
S_{y} & =\frac{1}{x^{3} y^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{3 x^{3} y^{3}}=-\mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3 x^{3} y^{3}}=-\mathrm{e}^{x}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(\mathrm{e}^{x} x^{4} y^{3}+1\right)}{x}$		$\frac{d S}{d R}=-\mathrm{e}^{R}$
		dd
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow-S(R)}$
	$R=x$	1101*
$\xrightarrow{\rightarrow \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$	1	
	$S=-\frac{1}{3 x^{3} y^{3}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow \rightarrow+\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{\rightarrow+\infty}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1.01!~]{\rightarrow \rightarrow+1}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{3 x^{3} y^{3}}=-\mathrm{e}^{x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot

Verification of solutions

$$
-\frac{1}{3 x^{3} y^{3}}=-\mathrm{e}^{x}+c_{1}
$$

Verified OK.

12.5.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(\mathrm{e}^{x} x^{4} y^{3}+1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y-x^{3} \mathrm{e}^{x} y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =-x^{3} \mathrm{e}^{x} \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{1}{x y^{3}}-x^{3} \mathrm{e}^{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}-x^{3} \mathrm{e}^{x} \\
w^{\prime} & =\frac{3 w}{x}+3 x^{3} \mathrm{e}^{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=3 x^{3} \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=3 x^{3} \mathrm{e}^{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(3 x^{3} \mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(3 x^{3} \mathrm{e}^{x}\right) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\left(3 \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{3}}=\int 3 \mathrm{e}^{x} \mathrm{~d} x \\
& \frac{w}{x^{3}}=3 \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=3 x^{3} \mathrm{e}^{x}+c_{1} x^{3}
$$

which simplifies to

$$
w(x)=x^{3}\left(3 \mathrm{e}^{x}+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=x^{3}\left(3 \mathrm{e}^{x}+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
y(x) & =\frac{1}{\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \\
y(x) & =\frac{i \sqrt{3}-1}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \\
y(x) & =-\frac{1+i \sqrt{3}}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\frac{1}{\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \tag{1}\\
y & =\frac{i \sqrt{3}-1}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \tag{2}\\
y & =-\frac{1+i \sqrt{3}}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \tag{3}
\end{align*}
$$

Figure 147: Slope field plot

Verification of solutions

$$
y=\frac{1}{\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=\frac{i \sqrt{3}-1}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=-\frac{1+i \sqrt{3}}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

12.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-y-\mathrm{e}^{x} x^{4} y^{4}\right) \mathrm{d} x \\
\left(y+\mathrm{e}^{x} x^{4} y^{4}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y+\mathrm{e}^{x} x^{4} y^{4} \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y+\mathrm{e}^{x} x^{4} y^{4}\right) \\
& =1+4 \mathrm{e}^{x} x^{4} y^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(1+4 \mathrm{e}^{x} x^{4} y^{3}\right)-(1)\right) \\
& =4 \mathrm{e}^{x} x^{3} y^{3}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y\left(\mathrm{e}^{x} x^{4} y^{3}+1\right)}\left((1)-\left(1+4 \mathrm{e}^{x} x^{4} y^{3}\right)\right) \\
& =-\frac{4 y^{2} \mathrm{e}^{x} x^{4}}{\mathrm{e}^{x} x^{4} y^{3}+1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(1+4 \mathrm{e}^{x} x^{4} y^{3}\right)}{x\left(y+\mathrm{e}^{x} x^{4} y^{4}\right)-y(x)} \\
& =-\frac{4}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{4}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{4}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (t)} \\
& =\frac{1}{t^{4}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{4} y^{4}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4} y^{4}}\left(y+\mathrm{e}^{x} x^{4} y^{4}\right) \\
& =\frac{\mathrm{e}^{x} x^{4} y^{3}+1}{x^{4} y^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4} y^{4}}(x) \\
& =\frac{1}{x^{3} y^{4}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\mathrm{e}^{x} x^{4} y^{3}+1}{x^{4} y^{3}}\right)+\left(\frac{1}{x^{3} y^{4}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\mathrm{e}^{x} x^{4} y^{3}+1}{x^{4} y^{3}} \mathrm{~d} x \\
\phi & =\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{3 x^{3} y^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{3 \mathrm{e}^{x}}{y}-\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{x^{3} y^{4}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{x^{3} y^{4}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{3} y^{4}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{3} y^{4}}=\frac{1}{x^{3} y^{4}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{3 x^{3} y^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{3 x^{3} y^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{3 x^{3} y^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
\frac{3 \mathrm{e}^{x} x^{3} y^{3}-1}{3 x^{3} y^{3}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 64
dsolve($x * \operatorname{diff}(y(x), x)+y(x)+x^{\wedge} 4 * y(x) \wedge 4 * \exp (x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(3 \mathrm{e}^{x}+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 11.276 (sec). Leaf size: 79
DSolve[x*y'[x]+y[x]+x^4*y[x]~4*Exp[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\sqrt[3]{x^{3}\left(3 e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1}}{\sqrt[3]{x^{3}\left(3 e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3}}{\sqrt[3]{x^{3}\left(3 e^{x}+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.6 problem Ex 6

12.6.1 Solving as separable ode . 672
12.6.2 Solving as first order ode lie symmetry lookup ode 674
12.6.3 Solving as exact ode . 678
12.6.4 Maple step by step solution . 682

Internal problem ID [11176]
Internal file name [OUTPUT/10161_Saturday_December_03_2022_08_03_05_AM_61746487/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(1-x) y+(1-y) x y^{\prime}=0
$$

12.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y(x-1)}{(y-1) x}
\end{aligned}
$$

Where $f(x)=-\frac{x-1}{x}$ and $g(y)=\frac{y}{y-1}$. Integrating both sides gives

$$
\frac{1}{\frac{y}{y-1}} d y=-\frac{x-1}{x} d x
$$

$$
\begin{aligned}
& \int \frac{1}{\frac{y}{y-1}} d y=\int-\frac{x-1}{x} d x \\
& y-\ln (y)=-x+\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{x-c_{1}}}{x}\right)
$$

Since c_{1} is constant, then exponential powers of this constant are constants also, and these can be simplified to just c_{1} in the above solution. Which simplifies to

$$
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x-c_{1}}}{x}\right)
$$

gives

$$
y=-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{x}}{c_{1} x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x}}{c_{1} x}\right) \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot

Verification of solutions

$$
y=-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{x}}{c_{1} x}\right)
$$

Verified OK.

12.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(x-1)}{(y-1) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 84: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x}{x-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{-\frac{x}{x-1}} d x
\end{aligned}
$$

Which results in

$$
S=-x+\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(x-1)}{(y-1) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-1+\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y-1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R-1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x+\ln (x)=y-\ln (y)+c_{1}
$$

Which simplifies to

$$
-x+\ln (x)=y-\ln (y)+c_{1}
$$

Which gives

$$
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(x-1)}{(y-1) x}$		$\frac{d S}{d R}=\frac{R-1}{R}$
1.151		
	$R=y$	
x_{0}	$S=-x+\ln (x)$	
$\cdots x^{\text {a }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right) \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right)
$$

Verified OK.

12.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y-1}{y}\right) \mathrm{d} y & =\left(\frac{x-1}{x}\right) \mathrm{d} x \\
\left(-\frac{x-1}{x}\right) \mathrm{d} x+\left(-\frac{y-1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x-1}{x} \\
N(x, y) & =-\frac{y-1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x-1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y-1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x-1}{x} \mathrm{~d} x \\
\phi & =-x+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y-1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y-1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1-y}{y}\right) \mathrm{d} y \\
f(y) & =-y+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\ln (x)-y+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\ln (x)-y+\ln (y)
$$

The solution becomes

$$
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right) \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right)
$$

Verified OK.

12.6.4 Maple step by step solution

Let's solve

$$
(1-x) y+(1-y) x y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}(1-y)}{y}=-\frac{1-x}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}(1-y)}{y} d x=\int-\frac{1-x}{x} d x+c_{1}$
- Evaluate integral
$-y+\ln (y)=x-\ln (x)+c_{1}$
- \quad Solve for y
$y=-\operatorname{Lambert} W\left(-\frac{\mathrm{e}^{x+c_{1}}}{x}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $((1-x) * y(x)+(1-y(x)) * x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=- \text { LambertW }\left(-\frac{c_{1} \mathrm{e}^{x}}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 4.764 (sec). Leaf size: 26
DSolve[(1-x)*y[x]+(1-y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-W\left(-\frac{e^{x-c_{1}}}{x}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.7 problem Ex 7

12.7.1 Solving as homogeneousTypeD2 ode 684
12.7.2 Solving as first order ode lie symmetry calculated ode 686
12.7.3 Solving as exact ode . 691

Internal problem ID [11177]
Internal file name [OUTPUT/10162_Saturday_December_03_2022_08_03_06_AM_83404105/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number: Ex 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
(y-x) y^{\prime}+y=0
$$

12.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(u(x) x-x)\left(u^{\prime}(x) x+u(x)\right)+u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{1}{u}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{1}{u(x)}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot
Verification of solutions

$$
\frac{x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

12.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}-\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
-\left(\frac{y}{(y-x)^{2}}-\frac{1}{y-x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
-\frac{2 x y b_{2}-y^{2} a_{2}-y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-2 x y b_{2}+y^{2} a_{2}+y^{2} b_{2}-y^{2} b_{3}-x b_{1}+y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
a_{2} v_{2}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-b_{3} v_{2}^{2}+a_{1} v_{2}-b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-2 b_{2} v_{1} v_{2}-b_{1} v_{1}+\left(a_{2}+b_{2}-b_{3}\right) v_{2}^{2}+a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-b_{1} & =0 \\
-2 b_{2} & =0 \\
a_{2}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{y-x}\right)(x) \\
& =-\frac{y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x}{y}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y} \\
S_{y} & =\frac{y-x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y) y+x}{y}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y) y+x}{y}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\mathrm{Lambert} \mathrm{~W}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{y-x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow$
$\Rightarrow A x v i d y t y$		
$\rightarrow \rightarrow \rightarrow 0$		$\xrightarrow{\rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\text { a }}$
	$S=\underline{\ln (y) y+x}$	
	$S=\frac{1}{y}$	
4 ${ }^{\text {d }}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 153: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}
$$

Verified OK.

12.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y-x}((1)-(-1)) \\
& =-\frac{2}{-y+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((-1)-(1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(y) \\
& =\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}(y-x) \\
& =\frac{y-x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{1}{y}\right)+\left(\frac{y-x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{y} \mathrm{~d} x \\
\phi & =\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y-x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y-x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x}{y}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x}{y}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 154: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}
$$

Verified OK.
Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve $((y(x)-x) * \operatorname{diff}(y(x), x)+y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=-\frac{x}{\text { LambertW }\left(-x \mathrm{e}^{-c_{1}}\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 5.289 (sec). Leaf size: 25
DSolve $[(y[x]-x) * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{W\left(-e^{-c_{1}} x\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.8 problem Ex 8

12.8.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11178]
Internal file name [OUTPUT/10163_Saturday_December_03_2022_08_03_07_AM_37995883/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
y^{\prime} x-y-\sqrt{x^{2}+y^{2}}=0
$$

12.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\sqrt{x^{2}+y^{2}}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y+\sqrt{x^{2}+y^{2}}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(y+\sqrt{x^{2}+y^{2}}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(1+\frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+x^{3} a_{2}-x^{3} b_{3}+2 x^{2} y a_{3}+x^{2} y b_{2}+y^{3} a_{3}+\sqrt{x^{2}+y^{2}} x b_{1}-\sqrt{x^{2}+y^{2}} y a_{1}+x y b_{1}-y^{2} a_{1}}{\sqrt{x^{2}+y^{2}} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}-x^{3} a_{2}+x^{3} b_{3}-2 x^{2} y a_{3}-x^{2} y b_{2}-y^{3} a_{3} \tag{6E}\\
-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x y b_{1}+y^{2} a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+\left(x^{2}+y^{2}\right) x b_{3}-\left(x^{2}+y^{2}\right) y a_{3}-x^{3} a_{2}-x^{2} y a_{3}-x^{2} y b_{2} \tag{6E}\\
& \quad-x y^{2} b_{3}+\left(x^{2}+y^{2}\right) a_{1}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}-x^{2} a_{1}-x y b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{3} a_{2}+x^{3} b_{3}-x^{2} \sqrt{x^{2}+y^{2}} a_{3}-2 x^{2} y a_{3}-x^{2} y b_{2}-\sqrt{x^{2}+y^{2}} y^{2} a_{3} \\
& \quad-y^{3} a_{3}-\sqrt{x^{2}+y^{2}} x b_{1}-x y b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}+y^{2} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{3}-v_{1}^{2} v_{3} a_{3}-v_{2}^{3} a_{3}-v_{3} v_{2}^{2} a_{3}-v_{1}^{2} v_{2} b_{2} \tag{7E}\\
& +v_{1}^{3} b_{3}+v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}-v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(b_{3}-a_{2}\right) v_{1}^{3}+\left(-2 a_{3}-b_{2}\right) v_{1}^{2} v_{2}-v_{1}^{2} v_{3} a_{3}-v_{1} v_{2} b_{1} \tag{8E}\\
& \quad-v_{3} v_{1} b_{1}-v_{2}^{3} a_{3}-v_{3} v_{2}^{2} a_{3}+v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-2 a_{3}-b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right)(x) \\
& =-\sqrt{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\sqrt{x^{2}+y^{2}}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{x}{\sqrt{x^{2}+y^{2}}\left(y+\sqrt{x^{2}+y^{2}}\right)} \\
& S_{y}=-\frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2\left(\sqrt{x^{2}+y^{2}} y+x^{2}+y^{2}\right)}{x \sqrt{x^{2}+y^{2}}\left(y+\sqrt{x^{2}+y^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)=-2 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln \left(y+\sqrt{x^{2}+y^{2}}\right)=-2 \ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}$		$\frac{d S}{d R}=-\frac{2}{R}$
	$R=x$	
	$S=-\ln (y+\sqrt{x}$	
$\xrightarrow{2}$		
- - - - - -		
$\rightarrow \rightarrow \rightarrow-\infty$		
为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-c_{1}}\left(\mathrm{e}^{2 c_{1}}-x^{2}\right)}{2}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve($x * \operatorname{diff}(y(x), x)-y(x)=\operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
\frac{-c_{1} x^{2}+y(x)+\sqrt{y(x)^{2}+x^{2}}}{x^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.582 (sec). Leaf size: 27
DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]~2],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right)
$$

12.9 problem Ex 10

12.9.1 Solving as first order ode lie symmetry calculated ode 706

Internal problem ID [11179]
Internal file name [OUTPUT/10164_Saturday_December_03_2022_08_03_08_AM_53634759/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
y^{\prime} x-y-\sqrt{x^{2}-y^{2}}=0
$$

12.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\sqrt{x^{2}-y^{2}}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y+\sqrt{x^{2}-y^{2}}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(y+\sqrt{x^{2}-y^{2}}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{1}{\sqrt{x^{2}-y^{2}}}-\frac{y+\sqrt{x^{2}-y^{2}}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(1-\frac{y}{\sqrt{x^{2}-y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}+x^{3} a_{2}-x^{3} b_{3}+2 x^{2} y a_{3}-x^{2} y b_{2}-y^{3} a_{3}+\sqrt{x^{2}-y^{2}} x b_{1}-\sqrt{x^{2}-y^{2}} y a_{1}-x y b_{1}+y^{2} a_{1}}{\sqrt{x^{2}-y^{2}} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-\left(x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}-x^{3} a_{2}+x^{3} b_{3}-2 x^{2} y a_{3}+x^{2} y b_{2}+y^{3} a_{3} \tag{6E}\\
-\sqrt{x^{2}-y^{2}} x b_{1}+\sqrt{x^{2}-y^{2}} y a_{1}+x y b_{1}-y^{2} a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}+\left(x^{2}-y^{2}\right) x b_{3}-\left(x^{2}-y^{2}\right) y a_{3}-x^{3} a_{2}-x^{2} y a_{3}+x^{2} y b_{2} \tag{6E}\\
& +x y^{2} b_{3}+\left(x^{2}-y^{2}\right) a_{1}-\sqrt{x^{2}-y^{2}} x b_{1}+\sqrt{x^{2}-y^{2}} y a_{1}-x^{2} a_{1}+x y b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{3} a_{2}+x^{3} b_{3}-x^{2} \sqrt{x^{2}-y^{2}} a_{3}-2 x^{2} y a_{3}+x^{2} y b_{2}+\sqrt{x^{2}-y^{2}} y^{2} a_{3} \\
& +y^{3} a_{3}-\sqrt{x^{2}-y^{2}} x b_{1}+x y b_{1}+\sqrt{x^{2}-y^{2}} y a_{1}-y^{2} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}-y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}-y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{3}-v_{1}^{2} v_{3} a_{3}+v_{2}^{3} a_{3}+v_{3} v_{2}^{2} a_{3}+v_{1}^{2} v_{2} b_{2} \tag{7E}\\
& +v_{1}^{3} b_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}+v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(b_{3}-a_{2}\right) v_{1}^{3}+\left(-2 a_{3}+b_{2}\right) v_{1}^{2} v_{2}-v_{1}^{2} v_{3} a_{3}+v_{1} v_{2} b_{1} \tag{8E}\\
& \quad-v_{3} v_{1} b_{1}+v_{2}^{3} a_{3}+v_{3} v_{2}^{2} a_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-2 a_{3}+b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+\sqrt{x^{2}-y^{2}}}{x}\right)(x) \\
& =-\sqrt{x^{2}-y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{x^{2}-y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\arctan \left(\frac{y}{\sqrt{x^{2}-y^{2}}}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\sqrt{x^{2}-y^{2}}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{\sqrt{x^{2}-y^{2}} x} \\
S_{y} & =-\frac{1}{\sqrt{x^{2}-y^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\arctan \left(\frac{y}{\sqrt{x^{2}-y^{2}}}\right)=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\arctan \left(\frac{y}{\sqrt{x^{2}-y^{2}}}\right)=-\ln (x)+c_{1}
$$

Which gives

$$
y=-\tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot

Verification of solutions

$$
y=-\tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve($x * \operatorname{diff}(y(x), x)-y(x)=\operatorname{sqrt}\left(x^{\wedge} 2-y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
-\arctan \left(\frac{y(x)}{\sqrt{x^{2}-y(x)^{2}}}\right)+\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.395 (sec). Leaf size: 18
DSolve[x*y'[x]-y[x]==Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \cosh \left(i \log (x)+c_{1}\right)
$$

12.10 problem Ex 11

12.10.1 Solving as homogeneousTypeD2 ode 714
12.10.2 Solving as first order ode lie symmetry calculated ode 716
12.10.3 Solving as exact ode . 723

Internal problem ID [11180]
Internal file name [OUTPUT/10165_Saturday_December_03_2022_08_03_10_AM_21603529/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)+x \cos \left(\frac{y}{x}\right) y^{\prime}=0
$$

12.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x \sin (u(x))-u(x) x \cos (u(x))+x \cos (u(x))\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\tan (u)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\tan (u)} d u & =\int-\frac{1}{x} d x \\
\ln (\sin (u)) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sin (u)=\frac{c_{3}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \arcsin \left(\frac{c_{3} \mathrm{e}^{c_{2}}}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(\frac{c_{3} \mathrm{e}^{c_{2}}}{x}\right) \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot
Verification of solutions

$$
y=x \arcsin \left(\frac{c_{3} \mathrm{e}^{c_{2}}}{x}\right)
$$

Verified OK.

12.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right)\left(b_{3}-a_{2}\right)}{x \cos \left(\frac{y}{x}\right)}-\frac{\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right)^{2} a_{3}}{x^{2} \cos \left(\frac{y}{x}\right)^{2}} \\
& -\left(-\frac{\sin \left(\frac{y}{x}\right)-\frac{y \cos \left(\frac{y}{x}\right)}{x}-\frac{y^{2} \sin \left(\frac{y}{x}\right)}{x^{2}}}{x \cos \left(\frac{y}{x}\right)}+\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x^{2} \cos \left(\frac{y}{x}\right)}\right. \tag{5E}\\
& \left.+\frac{\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) y \sin \left(\frac{y}{x}\right)}{x^{3} \cos \left(\frac{y}{x}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(-\frac{y \sin \left(\frac{y}{x}\right)}{x^{2} \cos \left(\frac{y}{x}\right)}-\frac{\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) \sin \left(\frac{y}{x}\right)}{x^{2} \cos \left(\frac{y}{x}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$b_{2} x^{2} \cos \left(\frac{y}{x}\right)^{2}-\cos \left(\frac{y}{x}\right)^{2} x y a_{2}+\cos \left(\frac{y}{x}\right)^{2} x y b_{3}-\cos \left(\frac{y}{x}\right)^{2} y^{2} a_{3}+\cos \left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right) x^{2} a_{2}-\cos \left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right) x^{2} b_{3}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& b_{2} x^{2} \cos \left(\frac{y}{x}\right)^{2}-\cos \left(\frac{y}{x}\right)^{2} x y a_{2}+\cos \left(\frac{y}{x}\right)^{2} x y b_{3}-\cos \left(\frac{y}{x}\right)^{2} y^{2} a_{3} \\
& +\cos \left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right) x^{2} a_{2}-\cos \left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right) x^{2} b_{3}+2 \cos \left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right) x y a_{3} \tag{6E}\\
& -\sin \left(\frac{y}{x}\right)^{2} x^{2} a_{3}+\sin \left(\frac{y}{x}\right)^{2} x^{2} b_{2}-\sin \left(\frac{y}{x}\right)^{2} x y a_{2}+\sin \left(\frac{y}{x}\right)^{2} x y b_{3} \\
& -\sin \left(\frac{y}{x}\right)^{2} y^{2} a_{3}+\sin \left(\frac{y}{x}\right)^{2} x b_{1}-\sin \left(\frac{y}{x}\right)^{2} y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{aligned}
& \frac{x\left(x^{2} a_{3} \cos \left(\frac{2 y}{x}\right)+x^{2} a_{2} \sin \left(\frac{2 y}{x}\right)-x^{2} b_{3} \sin \left(\frac{2 y}{x}\right)+2 x y a_{3} \sin \left(\frac{2 y}{x}\right)-x b_{1} \cos \left(\frac{2 y}{x}\right)+y a_{1}(6 \mathrm{E})\right.}{2}\left(\frac{2 y}{x}\right)-x^{2} a_{3}+2 b_{2} \\
& =0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \cos \left(\frac{2 y}{x}\right), \sin \left(\frac{2 y}{x}\right)\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \cos \left(\frac{2 y}{x}\right)=v_{3}, \sin \left(\frac{2 y}{x}\right)=v_{4}\right\}
$$

The above PDE (6E) now becomes
$\frac{v_{1}\left(v_{1}^{2} a_{2} v_{4}+v_{1}^{2} a_{3} v_{3}+2 v_{1} v_{2} a_{3} v_{4}-v_{1}^{2} b_{3} v_{4}+v_{2} a_{1} v_{3}-2 v_{1} v_{2} a_{2}-v_{1}^{2} a_{3}-2 v_{2}^{2} a_{3}-v_{1} b_{1} v_{3}\left(7 \frac{1}{ \pm}\right) 2 b_{2} v_{1}^{2}+2 v_{1} v_{2} b_{3}-\right.}{2}$ $=0$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-\frac{a_{3}}{2}+b_{2}\right) v_{1}^{3}+\frac{a_{3} v_{3} v_{1}^{3}}{2}+\left(\frac{a_{2}}{2}-\frac{b_{3}}{2}\right) v_{4} v_{1}^{3}+\frac{b_{1} v_{1}^{2}}{2}+\left(b_{3}-a_{2}\right) v_{2} v_{1}^{2} \tag{8E}\\
& -\frac{b_{1} v_{3} v_{1}^{2}}{2}+a_{3} v_{4} v_{2} v_{1}^{2}-\frac{a_{1} v_{2} v_{1}}{2}+\frac{a_{1} v_{2} v_{3} v_{1}}{2}-a_{3} v_{2}^{2} v_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{3} & =0 \\
-\frac{a_{1}}{2} & =0 \\
\frac{a_{1}}{2} & =0 \\
-a_{3} & =0 \\
\frac{a_{3}}{2} & =0 \\
-\frac{b_{1}}{2} & =0 \\
\frac{b_{1}}{2} & =0 \\
\frac{a_{2}}{2}-\frac{b_{3}}{2} & =0 \\
-\frac{a_{3}}{2}+b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)}\right)(x) \\
& =\frac{\sin \left(\frac{y}{x}\right) x}{\cos \left(\frac{y}{x}\right)} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sin \left(\frac{y}{x}\right) x}{\cos \left(\frac{y}{x}\right)}} d y
\end{aligned}
$$

Which results in

$$
S=\ln \left(\sin \left(\frac{y}{x}\right)\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{\cot \left(\frac{y}{x}\right) y}{x^{2}} \\
S_{y} & =\frac{\cot \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(\sin \left(\frac{y}{x}\right)\right)=-\ln (x)+c_{1}
$$

Which simplifies to

$$
\ln \left(\sin \left(\frac{y}{x}\right)\right)=-\ln (x)+c_{1}
$$

Which gives

$$
y=x \arcsin \left(\frac{\mathrm{e}^{c_{1}}}{x}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x \cos \left(\frac{y}{x}\right)}$		$\frac{d S}{d R}=-\frac{1}{R}$
		－
$\rightarrow \rightarrow \infty$		$\rightarrow \rightarrow \rightarrow-\infty$－
		$\rightarrow \rightarrow \infty$ StR ${ }^{1}+\cdots \cdots$
		0808
	$R=x$	0014
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$		
	$S=\ln \left(\sin \left(\frac{9}{x}\right)\right)$	$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$
$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ } \rightarrow$ 込 1		分分
		Ot
		勿分
		ロッタ

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=x \arcsin \left(\frac{\mathrm{e}^{c_{1}}}{x}\right) \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot

Verification of solutions

$$
y=x \arcsin \left(\frac{\mathrm{e}^{c_{1}}}{x}\right)
$$

Verified OK.

12.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x \cos \left(\frac{y}{x}\right)\right) \mathrm{d} y & =\left(-x \sin \left(\frac{y}{x}\right)+y \cos \left(\frac{y}{x}\right)\right) \mathrm{d} x \\
\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) \mathrm{d} x+\left(x \cos \left(\frac{y}{x}\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right) \\
N(x, y) & =x \cos \left(\frac{y}{x}\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) \\
& =\frac{y \sin \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x \cos \left(\frac{y}{x}\right)\right) \\
& =\cos \left(\frac{y}{x}\right)+\frac{y \sin \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\sec \left(\frac{y}{x}\right)}{x}\left(\left(\frac{y \sin \left(\frac{y}{x}\right)}{x}\right)-\left(\cos \left(\frac{y}{x}\right)+\frac{y \sin \left(\frac{y}{x}\right)}{x}\right)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) \\
& =\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}\left(x \cos \left(\frac{y}{x}\right)\right) \\
& =\cos \left(\frac{y}{x}\right)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x}\right)+\left(\cos \left(\frac{y}{x}\right)\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{x} \mathrm{~d} x \\
\phi & =x \sin \left(\frac{y}{x}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\cos \left(\frac{y}{x}\right)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\cos \left(\frac{y}{x}\right)$. Therefore equation (4) becomes

$$
\begin{equation*}
\cos \left(\frac{y}{x}\right)=\cos \left(\frac{y}{x}\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x \sin \left(\frac{y}{x}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x \sin \left(\frac{y}{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x \sin \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 159: Slope field plot
Verification of solutions

$$
x \sin \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve((x*\operatorname{sin}(y(x)/x)-y(x)*\operatorname{cos}(y(x)/x))+x*\operatorname{cos}(y(x)/x)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=x \arcsin \left(\frac{1}{x c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 15.438 (sec). Leaf size: 21
DSolve $\left[(x * \operatorname{Sin}[y[x] / x]-y[x] * \operatorname{Cos}[y[x] / x])+x * \operatorname{Cos}[y[x] / x] * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutio

$$
\begin{aligned}
& y(x) \rightarrow x \arcsin \left(\frac{e^{c_{1}}}{x}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.11 problem Ex 12

12.11.1 Solving as homogeneousTypeMapleC ode 729
12.11.2 Solving as first order ode lie symmetry calculated ode 733

Internal problem ID [11181]
Internal file name [OUTPUT/10166_Saturday_December_03_2022_08_03_11_AM_60289939/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number: Ex 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
-2 y+(2 x-y+4) y^{\prime}=-x-5
$$

12.11.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{-X-x_{0}+2 Y(X)+2 y_{0}-5}{-2 X-2 x_{0}+Y(X)+y_{0}-4}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{-X+2 Y(X)}{-2 X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{-X+2 Y}{-2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-X+2 Y$ and $N=2 X-Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-2 u+1}{u-2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-2 u(X)+1}{u(X)-2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-2 u(X)+1}{u(X)-2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)-2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}-1=0
$$

Or

$$
(u(X)-2) X\left(\frac{d}{d X} u(X)\right)+u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-1}{(u-2) X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-1}{u-2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u-2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-1}{u-2}} d u & =\int-\frac{1}{X} d X \\
-\frac{\ln (u-1)}{2}+\frac{3 \ln (u+1)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\frac{-\ln (u-1)+3 \ln (u+1)}{2} & =-\ln (X)+c_{2} \\
-\ln (u-1)+3 \ln (u+1) & =(2)\left(-\ln (X)+c_{2}\right) \\
& =-2 \ln (X)+2 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u-1)+3 \ln (u+1)}=\mathrm{e}^{-2 \ln (X)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{(u+1)^{3}}{u-1} & =\frac{2 c_{2}}{X^{2}} \\
& =\frac{c_{3}}{X^{2}}
\end{aligned}
$$

Which simplifies to

$$
\frac{(u(X)+1)^{3}}{u(X)-1}=\frac{c_{3} \mathrm{e}^{2 c_{2}}}{X^{2}}
$$

The solution is

$$
\frac{(u(X)+1)^{3}}{u(X)-1}=\frac{c_{3} \mathrm{e}^{2 c_{2}}}{X^{2}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\left(\frac{Y(X)}{X}+1\right)^{3}}{\frac{Y(X)}{X}-1}=\frac{c_{3} \mathrm{e}^{2 c_{2}}}{X^{2}}
$$

Which simplifies to

$$
-\frac{(Y(X)+X)^{3}}{-Y(X)+X}=c_{3} \mathrm{e}^{2 c_{2}}
$$

Using the solution for $Y(X)$

$$
-\frac{(Y(X)+X)^{3}}{-Y(X)+X}=c_{3} \mathrm{e}^{2 c_{2}}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+2 \\
& X=x-1
\end{aligned}
$$

Then the solution in y becomes

$$
-\frac{(y-1+x)^{3}}{-y+3+x}=c_{3} \mathrm{e}^{2 c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{(y-1+x)^{3}}{-y+3+x}=c_{3} \mathrm{e}^{2 c_{2}} \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot

Verification of solutions

$$
-\frac{(y-1+x)^{3}}{-y+3+x}=c_{3} \mathrm{e}^{2 c_{2}}
$$

Verified OK.

12.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-x+2 y-5}{-2 x+y-4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-x+2 y-5)\left(b_{3}-a_{2}\right)}{-2 x+y-4}-\frac{(-x+2 y-5)^{2} a_{3}}{(-2 x+y-4)^{2}} \\
& -\left(\frac{1}{-2 x+y-4}-\frac{2(-x+2 y-5)}{(-2 x+y-4)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{-2 x+y-4}+\frac{-x+2 y-5}{(-2 x+y-4)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\underline{2 x^{2} a_{2}-x^{2} a_{3}+x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}+4 x y a_{3}-4 x y b_{2}+2 x y b_{3}+2 y^{2} a_{2}-y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}+8 x a_{2}-}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{2} a_{2}-x^{2} a_{3}+x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}+4 x y a_{3}-4 x y b_{2}+2 x y b_{3}+2 y^{2} a_{2} \tag{6E}\\
& \quad-y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}+8 x a_{2}-10 x a_{3}-3 x b_{1}+13 x b_{2}-14 x b_{3}+3 y a_{1} \\
& \quad-13 y a_{2}+14 y a_{3}-8 y b_{2}+10 y b_{3}-6 a_{1}+20 a_{2}-25 a_{3}-3 b_{1}+16 b_{2}-20 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}+4 a_{3} v_{1} v_{2}-a_{3} v_{2}^{2}+b_{2} v_{1}^{2}-4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-2 b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+3 a_{1} v_{2}+8 a_{2} v_{1}-13 a_{2} v_{2}-10 a_{3} v_{1}+14 a_{3} v_{2}-3 b_{1} v_{1} \\
& +13 b_{2} v_{1}-8 b_{2} v_{2}-14 b_{3} v_{1}+10 b_{3} v_{2}-6 a_{1}+20 a_{2}-25 a_{3}-3 b_{1}+16 b_{2}-20 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-a_{3}+b_{2}-2 b_{3}\right) v_{1}^{2}+\left(-2 a_{2}+4 a_{3}-4 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(8 a_{2}-10 a_{3}-3 b_{1}+13 b_{2}-14 b_{3}\right) v_{1}+\left(2 a_{2}-a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2} \\
& \quad+\left(3 a_{1}-13 a_{2}+14 a_{3}-8 b_{2}+10 b_{3}\right) v_{2}-6 a_{1}+20 a_{2}-25 a_{3}-3 b_{1}+16 b_{2}-20 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{2}+4 a_{3}-4 b_{2}+2 b_{3} & =0 \\
2 a_{2}-a_{3}+b_{2}-2 b_{3} & =0 \\
3 a_{1}-13 a_{2}+14 a_{3}-8 b_{2}+10 b_{3} & =0 \\
8 a_{2}-10 a_{3}-3 b_{1}+13 b_{2}-14 b_{3} & =0 \\
-6 a_{1}+20 a_{2}-25 a_{3}-3 b_{1}+16 b_{2}-20 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-2 b_{2}+b_{3} \\
& a_{2}=b_{3} \\
& a_{3}=b_{2} \\
& b_{1}=b_{2}-2 b_{3} \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1+x \\
& \eta=y-2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-2-\left(-\frac{-x+2 y-5}{-2 x+y-4}\right)(1+x) \\
& =\frac{x^{2}-y^{2}+2 x+4 y-3}{2 x-y+4} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}-y^{2}+2 x+4 y-3}{2 x-y+4}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln (x-1+y)}{2}-\frac{\ln (y-3-x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x+2 y-5}{-2 x+y-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x-2 y+5}{(x-1+y)(x+3-y)} \\
S_{y} & =\frac{2 x-y+4}{(x-1+y)(x+3-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (y-1+x)}{2}-\frac{\ln (y-3-x)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (y-1+x)}{2}-\frac{\ln (y-3-x)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x+2 y-5}{-2 x+y-4}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
x^{2}		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 马 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	
	$S=3 \ln (x-1+y)$	
	$S=\frac{2}{2}$	
\% 14.15		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
pt:		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln (y-1+x)}{2}-\frac{\ln (y-3-x)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot

Verification of solutions

$$
\frac{3 \ln (y-1+x)}{2}-\frac{\ln (y-3-x)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.766 (sec). Leaf size: 117

```
dsolve((x-2*y(x)+5)+(2*x-y(x)+4)*diff (y(x),x)=0,y(x), singsol=all)
```

$y(x)=$

$$
-\frac{(i \sqrt{3}-1)\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}(1+x)^{2}-1}+27 c_{1}(1+x)\right)^{\frac{2}{3}}-3 i \sqrt{3}-3+6\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}(1+x)^{2}-1}+2^{\prime}\right.}{6\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}(1+x)^{2}-1}+27 c_{1}(1+x)\right)^{\frac{1}{3}} c_{1}}
$$

Solution by Mathematica
Time used: 60.282 (sec). Leaf size: 1601
DSolve[($x-2 * y[x]+5)+(2 * x-y[x]+4) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
Too large to display

12.12 problem Ex 13

12.12.1 Solving as linear ode . 740
12.12.2 Solving as first order ode lie symmetry lookup ode 742
12.12.3 Solving as exact ode . 747
12.12.4 Maple step by step solution . 753

Internal problem ID [11182]
Internal file name [OUTPUT/10167_Saturday_December_03_2022_08_03_13_AM_33812630/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}=\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}
$$

12.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}} \\
& q(x)=-\frac{x^{2}-\sqrt{-x^{2}+1} x-1}{\left(-x^{2}+1\right)^{\frac{5}{2}}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}=-\frac{x^{2}-\sqrt{-x^{2}+1} x-1}{\left(-x^{2}+1\right)^{\frac{5}{2}}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}} d x} \\
& =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-\frac{x^{2}-\sqrt{-x^{2}+1} x-1}{\left(-x^{2}+1\right)^{\frac{5}{2}}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y\right) & =\left(\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right)\left(-\frac{x^{2}-\sqrt{-x^{2}+1} x-1}{\left(-x^{2}+1\right)^{\frac{5}{2}}}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y\right) & =\left(-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y=\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y=\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}$ results in

$$
y=\mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}\left(\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x\right)+c_{1} \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}
$$

which simplifies to

$$
y=\mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}\left(\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}\left(\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}\left(\int-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right)
$$

Verified OK.

12.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x^{4} y+\left(-x^{2}+1\right)^{\frac{3}{2}} x+x^{4}+2 x^{2} y-2 x^{2}-y+1}{\left(-x^{2}+1\right)^{\frac{3}{2}}\left(x^{2}-1\right)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 87: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{(x-1)(1+x) x}{\left(-x^{2}+1\right)^{\frac{3}{2}}}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{(x-1)(1+x) x}{\left(-x^{2}+1\right)^{\frac{3}{2}}}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{(x-1)(1+x) x}{\left(-x^{2}+1\right)^{\frac{3}{2}}}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x^{4} y+\left(-x^{2}+1\right)^{\frac{3}{2}} x+x^{4}+2 x^{2} y-2 x^{2}-y+1}{\left(-x^{2}+1\right)^{\frac{3}{2}}\left(x^{2}-1\right)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{\frac{-x^{3}+x}{\left(-x^{2}+1\right)^{\frac{3}{2}}} y}}{\left(-x^{2}+1\right)^{\frac{3}{2}}} \\
S_{y} & =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\left(x^{2}-\sqrt{-x^{2}+1} x-1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{\left(R^{2}-\sqrt{-R^{2}+1} R-1\right) \mathrm{e}^{\frac{R}{\sqrt{-R^{2}+1}}}}{\left(-R^{2}+1\right)^{\frac{5}{2}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\left(-R^{2}+\sqrt{-R^{2}+1} R+1\right) \mathrm{e}^{\frac{R}{\sqrt{-R^{2}+1}}}}{\left(-R^{2}+1\right)^{\frac{5}{2}}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y=\int \frac{\left(-x^{2}+\sqrt{-x^{2}+1} x+1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}} y=\int \frac{\left(-x^{2}+\sqrt{-x^{2}+1} x+1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}
$$

Which gives

$$
y=\left(\int \frac{\left(-x^{2}+\sqrt{-x^{2}+1} x+1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right) \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\begin{gathered} \frac{d y}{d x}= \\ \frac{-x^{4} y+\left(-x^{2}+1\right)^{\frac{3}{2}} x+x^{4}+2 x^{2} y-2 x^{2}-y+1}{\left(-x^{2}+1\right)^{\frac{3}{2}}\left(x^{2}-1\right)^{2}} \end{gathered}$	$\begin{aligned} & R=x \\ & S=\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}} y} \end{aligned}$	$\frac{d S}{d R}=-\frac{\left(R^{2}-\sqrt{-R^{2}+1} R-1\right) \mathrm{e}^{\frac{R}{\sqrt{-R^{2}+1}}}}{\left(-R^{2}+1\right)^{\frac{5}{2}}}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int \frac{\left(-x^{2}+\sqrt{-x^{2}+1} x+1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right) \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}} \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot

Verification of solutions

$$
y=\left(\int \frac{\left(-x^{2}+\sqrt{-x^{2}+1} x+1\right) \mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}}{\left(-x^{2}+1\right)^{\frac{5}{2}}} d x+c_{1}\right) \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}
$$

Verified OK.

12.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}+\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}\right) \mathrm{d} x \\
\left(\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}-\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}-\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}-\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}\right) \\
& =\frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}}\right)-(0)\right) \\
& =\frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{\left(-x^{2}+1\right)^{\frac{3}{2}}} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{(x-1)(1+x) x}{\left(-x^{2}+1\right)^{\frac{3}{2}}}} \\
& =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}-\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}\right) \\
& =-\frac{\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(\sqrt{-x^{2}+1} x+(y-1) x^{2}-y+1\right)}{\left(-x^{2}+1\right)^{\frac{5}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}(1) \\
& =\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\left(-\frac{\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(\sqrt{-x^{2}+1} x+(y-1) x^{2}-y+1\right)}{\left(-x^{2}+1\right)^{\frac{5}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}}=0\right.
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(\sqrt{-x^{2}+1} x+(y-1) x^{2}-y+1\right)}{\left(-x^{2}+1\right)^{\frac{5}{2}}} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\mathrm{e}^{\frac{a}{\sqrt{--a^{2}+1}}}\left(\sqrt{-_a^{2}+1} _a+(y-1) _a^{2}-y+1\right)}{\left(-a^{2}+1\right)^{\frac{5}{2}}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\left(\int^{x} \frac{\mathrm{e}^{\frac{a}{\sqrt{-a^{2}+1}}}\left(_a^{2}-1\right)}{\left(-_a^{2}+1\right)^{\frac{5}{2}}} d _a\right)+f^{\prime}(y) \tag{4}\\
& =\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}=\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\left(\int^{x} \frac{\frac{-a}{\overline{\sqrt{--a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) \mathrm{d} y \\
f(y) & =\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int^{x}-\frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}\left(\sqrt{-_a^{2}+1} _a+(y-1) _a^{2}-y+1\right)}{\left(-_a^{2}+1\right)^{\frac{5}{2}}} d _a \\
& +\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) y+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{x}-\frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}\left(\sqrt{-_a^{2}+1} _a+(y-1) _a^{2}-y+1\right)}{\left(-_a^{2}+1\right)^{\frac{5}{2}}} d _a \\
& +\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) y
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \int^{x}-\frac{\mathrm{e}^{\frac{a}{\sqrt{-a^{2}+1}}}\left(\sqrt{-_a^{2}+1} _a+(y-1) _a^{2}-y+1\right)}{\left(-_a^{2}+1\right)^{\frac{5}{2}}} d _a \tag{1}\\
& +\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) y=c_{1}
\end{align*}
$$

Figure 164: Slope field plot

Verification of solutions

$$
\begin{aligned}
& \int^{x}-\frac{\mathrm{e}^{\frac{-a}{\sqrt{-a^{2}+1}}}\left(\sqrt{-_a^{2}+1} _a+(y-1) _a^{2}-y+1\right)}{\left(-_a^{2}+1\right)^{\frac{5}{2}}} d _a \\
& +\left(-\left(\int^{x} \frac{\mathrm{e}^{\frac{a}{\sqrt{-a^{2}+1}}}}{\left(-_a^{2}+1\right)^{\frac{3}{2}}} d _a\right)+\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\right) y=c_{1}
\end{aligned}
$$

Verified OK.

12.12.4 Maple step by step solution

Let's solve
$y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}=\frac{x+\sqrt{-x^{2}+1}}{\left(-x^{2}+1\right)^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}+\frac{x+\sqrt{-x^{2}+1}}{\left(x^{2}-1\right)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}=\frac{x+\sqrt{-x^{2}+1}}{\left(x^{2}-1\right)^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}\right)=\frac{\mu(x)\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{\left(-x^{2}+1\right)^{\frac{3}{2}}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{\left(-x^{2}+1\right)^{\frac{3}{2}}}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\frac{x}{\sqrt{-(x-1)(1+x)}}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}} d x+c_{1}$
- \quad Solve for y

$$
y=\frac{\int \frac{\mu(x)\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}} d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\mathrm{e}^{\frac{x}{\sqrt{-(x-1)(1+x)}}}$

$$
y=\frac{\int \frac{\mathrm{e}^{\frac{x}{\sqrt{-(x-1)(1+x)}}}\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}} d x+c_{1}}{\mathrm{e}^{\frac{x}{\sqrt{-(x-1)(1+x)}}}}
$$

- Simplify

$$
y=\left(\int \frac{\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(x+\sqrt{-x^{2}+1}\right)}{\left(x^{2}-1\right)^{2}} d x+c_{1}\right) \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 56

```
dsolve(diff(y(x),x)+y(x)/(1-\mp@subsup{x}{~}{~}2)^(3/2)=(x+(1-x^2)^(1/2))/(1-\mp@subsup{x}{}{\wedge}2)^2,y(x), singsol=all)
```

$$
y(x)=\left(\int \frac{\mathrm{e}^{\frac{x}{\sqrt{-x^{2}+1}}}\left(x+\sqrt{-x^{2}+1}\right)}{(-1+x)^{2}(1+x)^{2}} d x+c_{1}\right) \mathrm{e}^{-\frac{x}{\sqrt{-x^{2}+1}}}
$$

\checkmark Solution by Mathematica
Time used: 0.358 (sec). Leaf size: 38
DSolve $\left[y^{\prime}[x]+y[x] /\left(1-x^{\wedge} 2\right)^{\wedge}(3 / 2)==\left(x+\left(1-x^{\wedge} 2\right)^{\wedge}(1 / 2)\right) /\left(1-x^{\wedge} 2\right)^{\wedge} 2, y[x], x\right.$, IncludeSingularSolution

$$
y(x) \rightarrow \frac{x}{\sqrt{1-x^{2}}}+c_{1} e^{-\frac{x}{\sqrt{1-x^{2}}}}
$$

12.13 problem Ex 14

12.13.1 Solving as separable ode . 755
12.13.2 Solving as first order ode lie symmetry lookup ode 757]
12.13.3 Solving as bernoulli ode . 760
12.13.4 Solving as exact ode . 762
12.13.5 Solving as riccati ode . 765
12.13.6 Maple step by step solution . 767

Internal problem ID [11183]
Internal file name [OUTPUT/10168_Saturday_December_03_2022_08_03_14_AM_84129772/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(-x^{2}+1\right) y^{\prime}-y x-y^{2} a x=0
$$

12.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x y(a y+1)}{x^{2}-1}
\end{aligned}
$$

Where $f(x)=-\frac{x}{x^{2}-1}$ and $g(y)=y(a y+1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y(a y+1)} d y & =-\frac{x}{x^{2}-1} d x \\
\int \frac{1}{y(a y+1)} d y & =\int-\frac{x}{x^{2}-1} d x \\
-\ln (a y+1)+\ln (y) & =-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (a y+1)+\ln (y)}=\mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{y}{a y+1}=c_{2} \mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}
$$

Which simplifies to

$$
y=-\frac{c_{2}}{\sqrt{x-1} \sqrt{1+x}\left(-1+\frac{c_{2} a}{\sqrt{x-1} \sqrt{1+x}}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{2}}{\sqrt{x-1} \sqrt{1+x}\left(-1+\frac{c_{2} a}{\sqrt{x-1} \sqrt{1+x}}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{2}}{\sqrt{x-1} \sqrt{1+x}\left(-1+\frac{c_{2} a}{\sqrt{x-1} \sqrt{1+x}}\right)}
$$

Verified OK.

12.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y(a y+1)}{x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 90: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$			

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x^{2}-1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x^{2}-1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y(a y+1)}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{x}{x^{2}-1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(a y+1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R a+1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R a+1)+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}=-\ln (a y+1)+\ln (y)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}=-\ln (a y+1)+\ln (y)+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}=-\ln (a y+1)+\ln (y)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}=-\ln (a y+1)+\ln (y)+c_{1}
$$

Verified OK.

12.13.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y(a y+1)}{x^{2}-1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{x}{x^{2}-1} y-\frac{a x}{x^{2}-1} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{x}{x^{2}-1} \\
f_{1}(x) & =-\frac{a x}{x^{2}-1} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{x}{\left(x^{2}-1\right) y}-\frac{a x}{x^{2}-1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{x w(x)}{x^{2}-1}-\frac{a x}{x^{2}-1} \\
w^{\prime} & =\frac{x w}{x^{2}-1}+\frac{a x}{x^{2}-1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{x}{x^{2}-1} \\
q(x) & =\frac{a x}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{x w(x)}{x^{2}-1}=\frac{a x}{x^{2}-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x}{x^{2}-1} d x} \\
& =\mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{\sqrt{x-1} \sqrt{1+x}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{a x}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{\sqrt{x-1} \sqrt{1+x}}\right) & =\left(\frac{1}{\sqrt{x-1} \sqrt{1+x}}\right)\left(\frac{a x}{x^{2}-1}\right) \\
\mathrm{d}\left(\frac{w}{\sqrt{x-1} \sqrt{1+x}}\right) & =\left(\frac{a x}{\left(x^{2}-1\right) \sqrt{x-1} \sqrt{1+x}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{\sqrt{x-1} \sqrt{1+x}}=\int \frac{a x}{\left(x^{2}-1\right) \sqrt{x-1} \sqrt{1+x}} \mathrm{~d} x \\
& \frac{w}{\sqrt{x-1} \sqrt{1+x}}=-\frac{\sqrt{x-1} \sqrt{1+x} a}{x^{2}-1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x-1} \sqrt{1+x}}$ results in

$$
w(x)=-\frac{(x-1)(1+x) a}{x^{2}-1}+c_{1} \sqrt{x-1} \sqrt{1+x}
$$

which simplifies to

$$
w(x)=-a+c_{1} \sqrt{x-1} \sqrt{1+x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=-a+c_{1} \sqrt{x-1} \sqrt{1+x}
$$

Or

$$
y=\frac{1}{-a+c_{1} \sqrt{x-1} \sqrt{1+x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-a+c_{1} \sqrt{x-1} \sqrt{1+x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{-a+c_{1} \sqrt{x-1} \sqrt{1+x}}
$$

Verified OK.

12.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y(a y+1)}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}-1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}-1}\right) \mathrm{d} x+\left(-\frac{1}{y(a y+1)}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{x^{2}-1} \\
& N(x, y)=-\frac{1}{y(a y+1)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y(a y+1)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}-1} \mathrm{~d} x \\
\phi & =-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y(a y+1)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y(a y+1)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y(a y+1)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y(a y+1)}\right) \mathrm{d} y \\
f(y) & =\ln (a y+1)-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (a y+1)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (a y+1)-\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (a y+1)-\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (a y+1)-\ln (y)=c_{1}
$$

Verified OK.

12.13.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y(a y+1)}{x^{2}-1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{x y^{2} a}{x^{2}-1}-\frac{x y}{x^{2}-1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{x}{x^{2}-1}$ and $f_{2}(x)=-\frac{a x}{x^{2}-1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{a x u}{x^{2}-1}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{a}{x^{2}-1}+\frac{2 a x^{2}}{\left(x^{2}-1\right)^{2}} \\
f_{1} f_{2} & =\frac{a x^{2}}{\left(x^{2}-1\right)^{2}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{a x u^{\prime \prime}(x)}{x^{2}-1}-\left(-\frac{a}{x^{2}-1}+\frac{3 a x^{2}}{\left(x^{2}-1\right)^{2}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\frac{c_{2}}{\sqrt{x^{2}-1}}
$$

The above shows that

$$
u^{\prime}(x)=-\frac{c_{2} x}{\left(x^{2}-1\right)^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{\sqrt{x^{2}-1} a\left(c_{1}+\frac{c_{2}}{\sqrt{x^{2}-1}}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{a\left(c_{3} \sqrt{x^{2}-1}+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{a\left(c_{3} \sqrt{x^{2}-1}+1\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{a\left(c_{3} \sqrt{x^{2}-1}+1\right)}
$$

Verified OK.

12.13.6 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime}-y x-y^{2} a x=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y(a y+1)}=-\frac{x}{(x-1)(1+x)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y(a y+1)} d x=\int-\frac{x}{(x-1)(1+x)} d x+c_{1}
$$

- Evaluate integral
$-\ln (a y+1)+\ln (y)=-\frac{\ln ((x-1)(1+x))}{2}+c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{-\mathrm{e}^{2 c_{1}} a+\sqrt{x^{2} \mathrm{e}^{2 c_{1}}-\mathrm{e}^{2 c_{1}}}}{\mathrm{e}^{2 c_{1}} a^{2}-x^{2}+1}, y=-\frac{\mathrm{e}^{2 c_{1}} a+\sqrt{x^{2} \mathrm{e}^{2 c_{1}}-\mathrm{e}^{2 c_{1}}}}{\mathrm{e}^{2 c_{1}} a^{2}-x^{2}+1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve ((1-x^2)*diff $(y(x), x)-x * y(x)=a * x * y(x) \wedge 2, y(x), \quad$ singsol=all)

$$
y(x)=\frac{1}{\sqrt{-1+x} \sqrt{1+x} c_{1}-a}
$$

\checkmark Solution by Mathematica
Time used: 4.13 (sec). Leaf size: 47
DSolve[(1- $\left.x^{\wedge} 2\right) * y '[x]-x * y[x]==a * x * y[x] \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{c_{1}}}{-\sqrt{1-x^{2}}+a e^{c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{1}{a}
\end{aligned}
$$

12.14 problem Ex 15

12.14.1 Solving as first order ode lie symmetry calculated ode 769
12.14.2 Solving as exact ode . 775

Internal problem ID [11184]
Internal file name [OUTPUT/10169_Saturday_December_03_2022_08_03_16_AM_61179337/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
x y^{2}\left(3 y+y^{\prime} x\right)-2 y+y^{\prime} x=0
$$

12.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(3 x y^{2}-2\right)}{x\left(x y^{2}+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(3 x y^{2}-2\right)\left(b_{3}-a_{2}\right)}{x\left(x y^{2}+1\right)}-\frac{y^{2}\left(3 x y^{2}-2\right)^{2} a_{3}}{x^{2}\left(x y^{2}+1\right)^{2}} \\
& -\left(-\frac{3 y^{3}}{x\left(x y^{2}+1\right)}+\frac{y\left(3 x y^{2}-2\right)}{x^{2}\left(x y^{2}+1\right)}+\frac{y^{3}\left(3 x y^{2}-2\right)}{x\left(x y^{2}+1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x y^{2}-2}{x\left(x y^{2}+1\right)}-\frac{6 y^{2}}{x y^{2}+1}+\frac{2 y^{2}\left(3 x y^{2}-2\right)}{\left(x y^{2}+1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{4} y^{4} b_{2}-12 x^{2} y^{6} a_{3}+3 x^{3} y^{4} b_{1}-3 x^{2} y^{5} a_{1}+13 x^{3} y^{2} b_{2}+5 x^{2} y^{3} a_{2}+10 x^{2} y^{3} b_{3} \tag{6E}\\
& +16 x y^{4} a_{3}+11 x^{2} y^{2} b_{1}+4 x y^{3} a_{1}-b_{2} x^{2}-2 y^{2} a_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -12 a_{3} v_{1}^{2} v_{2}^{6}+4 b_{2} v_{1}^{4} v_{2}^{4}-3 a_{1} v_{1}^{2} v_{2}^{5}+3 b_{1} v_{1}^{3} v_{2}^{4}+5 a_{2} v_{1}^{2} v_{2}^{3}+16 a_{3} v_{1} v_{2}^{4}+13 b_{2} v_{1}^{3} v_{2}^{2} \tag{7E}\\
& +10 b_{3} v_{1}^{2} v_{2}^{3}+4 a_{1} v_{1} v_{2}^{3}+11 b_{1} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{2}^{2}-b_{2} v_{1}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4} v_{2}^{4}+3 b_{1} v_{1}^{3} v_{2}^{4}+13 b_{2} v_{1}^{3} v_{2}^{2}-12 a_{3} v_{1}^{2} v_{2}^{6}-3 a_{1} v_{v}^{2} v_{2}^{5}+\left(5 a_{2}+10 b_{3}\right) v_{1}^{2} v_{2}^{3} \tag{8E}\\
& +11 b_{1} v_{1}^{2} v_{2}^{2}-b_{2} v_{1}^{2}+16 a_{3} v_{1} v_{2}^{4}+4 a_{1} v_{1} v_{2}^{3}-2 b_{1} v_{1}-2 a_{3} v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-3 a_{1} & =0 \\
2 a_{1} & =0 \\
4 a_{1} & =0 \\
-12 a_{3} & =0 \\
-2 a_{3} & =0 \\
16 a_{3} & =0 \\
-2 b_{1} & =0 \\
3 b_{1} & =0 \\
11 b_{1} & =0 \\
-b_{2} & =0 \\
4 b_{2} & =0 \\
13 b_{2} & =0 \\
5 a_{2}+10 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y\left(3 x y^{2}-2\right)}{x\left(x y^{2}+1\right)}\right)(-2 x) \\
& =\frac{-5 x y^{3}+5 y}{x y^{2}+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-5 x y^{3}+5 y}{x y^{2}+1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{5}-\frac{\ln \left(x y^{2}-1\right)}{5}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(3 x y^{2}-2\right)}{x\left(x y^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{5 x y^{2}-5} \\
S_{y} & =\frac{1}{5 y}-\frac{2 x y}{5 x y^{2}-5}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2}{5 x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2}{5 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 \ln (R)}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{5}-\frac{\ln \left(y^{2} x-1\right)}{5}=\frac{2 \ln (x)}{5}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{5}-\frac{\ln \left(y^{2} x-1\right)}{5}=\frac{2 \ln (x)}{5}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{5}-\frac{\ln \left(y^{2} x-1\right)}{5}=\frac{2 \ln (x)}{5}+c_{1} \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{5}-\frac{\ln \left(y^{2} x-1\right)}{5}=\frac{2 \ln (x)}{5}+c_{1}
$$

Verified OK.

12.14.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2} y^{2}+x\right) \mathrm{d} y & =\left(-3 x y^{3}+2 y\right) \mathrm{d} x \\
\left(3 x y^{3}-2 y\right) \mathrm{d} x+\left(x^{2} y^{2}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x y^{3}-2 y \\
N(x, y) & =x^{2} y^{2}+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{3}-2 y\right) \\
& =9 x y^{2}-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2} y^{2}+x\right) \\
& =2 x y^{2}+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{x}{y^{2}}$ is an integrating factor. Therefore by multiplying $M=3 y^{3} x-2 y$ and $N=x^{2} y^{2}+x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
& M=\frac{x\left(3 y^{3} x-2 y\right)}{y^{2}} \\
& N=\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}\right) \mathrm{d} y & =\left(-\frac{x\left(3 x y^{3}-2 y\right)}{y^{2}}\right) \mathrm{d} x \\
\left(\frac{x\left(3 x y^{3}-2 y\right)}{y^{2}}\right) \mathrm{d} x+\left(\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{x\left(3 x y^{3}-2 y\right)}{y^{2}} \\
& N(x, y)=\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x\left(3 x y^{3}-2 y\right)}{y^{2}}\right) \\
& =\frac{3 x^{2} y^{2}+2 x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}\right) \\
& =\frac{3 x^{2} y^{2}+2 x}{y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x\left(3 x y^{3}-2 y\right)}{y^{2}} \mathrm{~d} x \\
\phi & =\frac{x^{2}\left(x y^{2}-1\right)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x^{2}\left(x y^{2}-1\right)}{y^{2}}+2 x^{3}+f^{\prime}(y) \tag{4}\\
& =\frac{x^{2}\left(x y^{2}+1\right)}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x\left(x^{2} y^{2}+x\right)}{y^{2}}=\frac{x^{2}\left(x y^{2}+1\right)}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2}\left(x y^{2}-1\right)}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2}\left(x y^{2}-1\right)}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}\left(y^{2} x-1\right)}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 166: Slope field plot

Verification of solutions

$$
\frac{x^{2}\left(y^{2} x-1\right)}{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 45
dsolve $((x * y(x) \sim 2) *(3 * y(x)+x * \operatorname{diff}(y(x), x))-(2 * y(x)-x * \operatorname{diff}(y(x), x))=0, y(x), \quad$ singsol=all $)$

$$
\begin{aligned}
& y(x)=\frac{c_{1}-\sqrt{4 x^{5}+c_{1}^{2}}}{2 x^{3}} \\
& y(x)=\frac{c_{1}+\sqrt{4 x^{5}+c_{1}^{2}}}{2 x^{3}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.836 (sec). Leaf size: 75
DSolve $\left[(x * y[x] \sim 2) *\left(3 * y[x]+x * y{ }^{\prime}[x]\right)-\left(2 * y[x]-x * y y^{\prime}[x]\right)==0, y[x], x\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{4 x^{5}+e^{5 c_{1}}}+e^{\frac{5 c_{1}}{2}}}{2 x^{3}} \\
& y(x) \rightarrow \frac{\sqrt{4 x^{5}+e^{5 c_{1}}}-e^{\frac{5 c_{1}}{2}}}{2 x^{3}}
\end{aligned}
$$

12.15 problem Ex 16

12.15.1 Solving as linear ode . 782
12.15.2 Solving as first order ode lie symmetry lookup ode 784
12.15.3 Solving as exact ode . 788
12.15.4 Maple step by step solution . 792

Internal problem ID [11185]
Internal file name [OUTPUT/10170_Saturday_December_03_2022_08_03_18_AM_95752159/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\left(x^{2}+1\right) y^{\prime}+y=\arctan (x)
$$

12.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x^{2}+1} \\
& q(x)=\frac{\arctan (x)}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}+1}=\frac{\arctan (x)}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}+1} d x} \\
& =\mathrm{e}^{\arctan (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\arctan (x)}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\arctan (x)} y\right) & =\left(\mathrm{e}^{\arctan (x)}\right)\left(\frac{\arctan (x)}{x^{2}+1}\right) \\
\mathrm{d}\left(\mathrm{e}^{\arctan (x)} y\right) & =\left(\frac{\arctan (x) \mathrm{e}^{\arctan (x)}}{x^{2}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\arctan (x)} y=\int \frac{\arctan (x) \mathrm{e}^{\arctan (x)}}{x^{2}+1} \mathrm{~d} x \\
& \mathrm{e}^{\arctan (x)} y=\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\arctan (x)}$ results in

$$
y=\mathrm{e}^{-\arctan (x)}\left(\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}\right)+c_{1} \mathrm{e}^{-\arctan (x)}
$$

which simplifies to

$$
y=\arctan (x)-1+c_{1} \mathrm{e}^{-\arctan (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan (x)-1+c_{1} \mathrm{e}^{-\arctan (x)} \tag{1}
\end{equation*}
$$

Figure 167: Slope field plot

Verification of solutions

$$
y=\arctan (x)-1+c_{1} \mathrm{e}^{-\arctan (x)}
$$

Verified OK.

12.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+\arctan (x)}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 93: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-\arctan (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\arctan (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\arctan (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+\arctan (x)}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{\arctan (x)} y}{x^{2}+1} \\
S_{y} & =\mathrm{e}^{\arctan (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\arctan (x) \mathrm{e}^{\arctan (x)}}{x^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\arctan (R) \mathrm{e}^{\arctan (R)}}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arctan (R) \mathrm{e}^{\arctan (R)}-\mathrm{e}^{\arctan (R)}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\arctan (x)} y=\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}+c_{1}
$$

Which simplifies to

$$
(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}-c_{1}=0
$$

Which gives

$$
y=\left(\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}+c_{1}\right) \mathrm{e}^{-\arctan (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y+\arctan (x)}{x^{2}+1}$		$\frac{d S}{d R}=\frac{\arctan (R) \mathrm{e}^{\arctan (R)}}{R^{2}+1}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \pm]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	$S=\mathrm{e}^{\arctan (x)} y$	
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ -
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\rightarrow \rightarrow \rightarrow-\infty$ -		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}+c_{1}\right) \mathrm{e}^{-\arctan (x)} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot

Verification of solutions

$$
y=\left(\arctan (x) \mathrm{e}^{\arctan (x)}-\mathrm{e}^{\arctan (x)}+c_{1}\right) \mathrm{e}^{-\arctan (x)}
$$

Verified OK.

12.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+1\right) \mathrm{d} y & =(-y+\arctan (x)) \mathrm{d} x \\
(y-\arctan (x)) \mathrm{d} x+\left(x^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-\arctan (x) \\
N(x, y) & =x^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\arctan (x)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+1\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+1}((1)-(2 x)) \\
& =\frac{-2 x+1}{x^{2}+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{-2 x+1}{x^{2}+1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln \left(x^{2}+1\right)+\arctan (x)} \\
& =\frac{\mathrm{e}^{\arctan (x)}}{x^{2}+1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{\arctan (x)}}{x^{2}+1}(y-\arctan (x)) \\
& =\frac{(y-\arctan (x)) \mathrm{e}^{\arctan (x)}}{x^{2}+1}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{\arctan (x)}}{x^{2}+1}\left(x^{2}+1\right) \\
& =\mathrm{e}^{\arctan (x)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{(y-\arctan (x)) \mathrm{e}^{\arctan (x)}}{x^{2}+1}\right)+\left(\mathrm{e}^{\arctan (x)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{(y-\arctan (x)) \mathrm{e}^{\arctan (x)}}{x^{2}+1} \mathrm{~d} x \\
\phi & =(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\arctan (x)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\arctan (x)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\arctan (x)}=\mathrm{e}^{\arctan (x)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}=c_{1} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot

Verification of solutions

$$
(y-\arctan (x)+1) \mathrm{e}^{\arctan (x)}=c_{1}
$$

Verified OK.

12.15.4 Maple step by step solution

Let's solve
$\left(x^{2}+1\right) y^{\prime}+y=\arctan (x)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-\frac{y}{x^{2}+1}+\frac{\arctan (x)}{x^{2}+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x^{2}+1}=\frac{\arctan (x)}{x^{2}+1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}+1}\right)=\frac{\mu(x) \arctan (x)}{x^{2}+1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}+1}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\arctan (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \arctan (x)}{x^{2}+1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \arctan (x)}{x^{2}+1} d x+c_{1}$
- Solve for y
$y=\frac{\int \frac{\mu(x) \arctan (x)}{x^{2}+1} \mu x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\arctan (x)}$
$y=\frac{\int \frac{\arctan (x))^{2 r c t a n}(x)}{x^{2}+\tan }}{\mathrm{e}^{2} \operatorname{cotan}(x)} d x+c_{1}$
- Evaluate the integrals on the rhs
$y=\frac{\arctan (x) e^{\arctan (x)}-\operatorname{earctan}^{\arctan }+c_{1}}{\operatorname{earctan}^{\arctan (x)}}$
- Simplify
$y=\arctan (x)-1+c_{1} \mathrm{e}^{-\arctan (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve((1+x^2)*diff(y(x),x)+y(x)=arctan(x),y(x), singsol=all)
```

$$
y(x)=\arctan (x)-1+\mathrm{e}^{-\arctan (x)} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.23 (sec). Leaf size: 18
DSolve $\left[\left(1+x^{\wedge} 2\right) * y^{\prime}[x]+y[x]==\operatorname{ArcTan}[x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \arctan (x)+c_{1} e^{-\arctan (x)}-1
$$

12.16 problem Ex 17

12.16.1 Solving as first order ode lie symmetry calculated ode 795
12.16.2 Solving as exact ode . 801

Internal problem ID [11186]
Internal file name [OUTPUT/10171_Saturday_December_03_2022_08_03_19_AM_4662408/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
5 y x-3 y^{3}+\left(3 x^{2}-7 y^{2} x\right) y^{\prime}=0
$$

12.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(3 y^{2}-5 x\right)\left(b_{3}-a_{2}\right)}{x\left(7 y^{2}-3 x\right)}-\frac{y^{2}\left(3 y^{2}-5 x\right)^{2} a_{3}}{x^{2}\left(7 y^{2}-3 x\right)^{2}} \\
& -\left(\frac{5 y}{x\left(7 y^{2}-3 x\right)}+\frac{y\left(3 y^{2}-5 x\right)}{x^{2}\left(7 y^{2}-3 x\right)}-\frac{3 y\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 y^{2}-5 x}{x\left(7 y^{2}-3 x\right)}-\frac{6 y^{2}}{x\left(7 y^{2}-3 x\right)}+\frac{14 y^{2}\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{70 x^{2} y^{4} b_{2}-30 y^{6} a_{3}-34 x^{3} y^{2} b_{2}-26 x^{2} y^{3} a_{2}+52 x^{2} y^{3} b_{3}+48 x y^{4} a_{3}+21 x y^{4} b_{1}-21 y^{5} a_{1}+24 x^{4} b_{2}-40 x^{2} y^{2}}{x^{2}\left(-7 y^{2}+3 x\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 70 x^{2} y^{4} b_{2}-30 y^{6} a_{3}-34 x^{3} y^{2} b_{2}-26 x^{2} y^{3} a_{2}+52 x^{2} y^{3} b_{3}+48 x y^{4} a_{3}+21 x y^{4} b_{1} \tag{6E}\\
& \quad-21 y^{5} a_{1}+24 x^{4} b_{2}-40 x^{2} y^{2} a_{3}+8 x^{2} y^{2} b_{1}+18 x y^{3} a_{1}+15 x^{3} b_{1}-15 x^{2} y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -30 a_{3} v_{2}^{6}+70 b_{2} v_{1}^{2} v_{2}^{4}-21 a_{1} v_{2}^{5}-26 a_{2} v_{1}^{2} v_{2}^{3}+48 a_{3} v_{1} v_{2}^{4}+21 b_{1} v_{1} v_{2}^{4}-34 b_{2} v_{1}^{3} v_{2}^{2} \tag{7E}\\
& +52 b_{3} v_{1}^{2} v_{2}^{3}+18 a_{1} v_{1} v_{2}^{3}-40 a_{3} v_{1}^{2} v_{2}^{2}+8 b_{1} v_{1}^{2} v_{2}^{2}+24 b_{2} v_{1}^{4}-15 a_{1} v_{1}^{2} v_{2}+15 b_{1} v_{1}^{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 24 b_{2} v_{1}^{4}-34 b_{2} v_{1}^{3} v_{2}^{2}+15 b_{1} v_{1}^{3}+70 b_{2} v_{1}^{2} v_{2}^{4} \tag{8E}\\
& \quad+\left(-26 a_{2}+52 b_{3}\right) v_{1}^{2} v_{2}^{3}+\left(-40 a_{3}+8 b_{1}\right) v_{1}^{2} v_{2}^{2}-15 a_{1} v_{1}^{2} v_{2} \\
& \quad+\left(48 a_{3}+21 b_{1}\right) v_{1} v_{2}^{4}+18 a_{1} v_{1} v_{2}^{3}-30 a_{3} v_{2}^{6}-21 a_{1} v_{2}^{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-21 a_{1} & =0 \\
-15 a_{1} & =0 \\
18 a_{1} & =0 \\
-30 a_{3} & =0 \\
15 b_{1} & =0 \\
-34 b_{2} & =0 \\
24 b_{2} & =0 \\
70 b_{2} & =0 \\
-26 a_{2}+52 b_{3} & =0 \\
-40 a_{3}+8 b_{1} & =0 \\
48 a_{3}+21 b_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)}\right)(2 x) \\
& =\frac{-13 y^{3}+13 x y}{-7 y^{2}+3 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-13 y^{3}+13 x y}{-7 y^{2}+3 x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln (y)}{13}+\frac{2 \ln \left(y^{2}-x\right)}{13}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{-13 y^{2}+13 x} \\
S_{y} & =\frac{3}{13 y}-\frac{4 y}{-13 y^{2}+13 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3}{13 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3}{13 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{3 \ln (R)}{13}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (y)}{13}+\frac{2 \ln \left(-x+y^{2}\right)}{13}=-\frac{3 \ln (x)}{13}+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (y)}{13}+\frac{2 \ln \left(-x+y^{2}\right)}{13}=-\frac{3 \ln (x)}{13}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(3 y^{2}-5 x\right)}{x\left(7 y^{2}-3 x\right)}$		$\frac{d S}{d R}=-\frac{3}{13 R}$
$\rightarrow 0$ 戒		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+3, ~]{\text { a }}$
$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$	$R=x$	\rightarrow
$\xrightarrow{\rightarrow \rightarrow-4} \rightarrow \rightarrow \rightarrow$ 为	$S=\underline{3 \ln (y)}+\underline{2 \ln \left(y^{2}\right.}$	
	$S=\frac{1}{13}+\frac{13}{}$	
\rightarrow arsin		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln (y)}{13}+\frac{2 \ln \left(-x+y^{2}\right)}{13}=-\frac{3 \ln (x)}{13}+c_{1} \tag{1}
\end{equation*}
$$

Figure 170: Slope field plot
Verification of solutions

$$
\frac{3 \ln (y)}{13}+\frac{2 \ln \left(-x+y^{2}\right)}{13}=-\frac{3 \ln (x)}{13}+c_{1}
$$

Verified OK.

12.16.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-7 x y^{2}+3 x^{2}\right) \mathrm{d} y & =\left(3 y^{3}-5 x y\right) \mathrm{d} x \\
\left(-3 y^{3}+5 x y\right) \mathrm{d} x+\left(-7 x y^{2}+3 x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 y^{3}+5 x y \\
N(x, y) & =-7 x y^{2}+3 x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y^{3}+5 x y\right) \\
& =-9 y^{2}+5 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-7 x y^{2}+3 x^{2}\right) \\
& =-7 y^{2}+6 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-7 x y^{2}+3 x^{2}}\left(\left(-9 y^{2}+5 x\right)-\left(-7 y^{2}+6 x\right)\right) \\
& =\frac{-2 y^{2}-x}{-7 x y^{2}+3 x^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-3 y^{3}+5 x y}\left(\left(-7 y^{2}+6 x\right)-\left(-9 y^{2}+5 x\right)\right) \\
& =\frac{2 y^{2}+x}{-3 y^{3}+5 x y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(-7 y^{2}+6 x\right)-\left(-9 y^{2}+5 x\right)}{x\left(-3 y^{3}+5 x y\right)-y\left(-7 x y^{2}+3 x^{2}\right)} \\
& =\frac{1}{2 x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{1}{2 t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{1}{2 t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{\ln (t)}{2}} \\
& =\sqrt{t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\sqrt{x y}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sqrt{x y}\left(-3 y^{3}+5 x y\right) \\
& =y\left(-3 y^{2}+5 x\right) \sqrt{x y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sqrt{x y}\left(-7 x y^{2}+3 x^{2}\right) \\
& =x\left(-7 y^{2}+3 x\right) \sqrt{x y}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y\left(-3 y^{2}+5 x\right) \sqrt{x y}\right)+\left(x\left(-7 y^{2}+3 x\right) \sqrt{x y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y\left(-3 y^{2}+5 x\right) \sqrt{x y} \mathrm{~d} x \\
\phi & =2 x\left(-y^{2}+x\right) y \sqrt{x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-4 x y^{2} \sqrt{x y}+2 x\left(-y^{2}+x\right) \sqrt{x y}+\frac{x^{2}\left(-y^{2}+x\right) y}{\sqrt{x y}}+f^{\prime}(y) \tag{4}\\
& =\frac{y x^{2}\left(-7 y^{2}+3 x\right)}{\sqrt{x y}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x\left(-7 y^{2}+3 x\right) \sqrt{x y}$. Therefore equation (4) becomes

$$
\begin{equation*}
x\left(-7 y^{2}+3 x\right) \sqrt{x y}=\frac{y x^{2}\left(-7 y^{2}+3 x\right)}{\sqrt{x y}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 x\left(-y^{2}+x\right) y \sqrt{x y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 x\left(-y^{2}+x\right) y \sqrt{x y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 x\left(-y^{2}+x\right) y \sqrt{y x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 171: Slope field plot

Verification of solutions

$$
2 x\left(-y^{2}+x\right) y \sqrt{y x}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 1.453 (sec). Leaf size: 49

```
dsolve((5*x*y(x)-3*y(x)^3)+(3*x^2-7*x*y(x)^2)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\operatorname{RootOf}\left(x^{\frac{3}{2}}-Z^{7}--Z^{3} x^{\frac{5}{2}}-c_{1}\right)^{2} \\
& y(x)=\operatorname{RootOf}\left(x^{\frac{3}{2}}-Z^{7}-Z^{3} x^{\frac{5}{2}}+c_{1}\right)^{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 7.756 (sec). Leaf size: 288
DSolve $\left[(5 * x * y[x]-3 * y[x] \sim 3)+\left(3 * x^{\wedge} 2-7 * x * y[x] \sim 2\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
\begin{aligned}
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}^{2} \&, 1\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}{ }^{2} \&, 2\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}^{2} \&, 3\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}{ }^{2} \&, 4\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}^{2} \&, 5\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}{ }^{2} \&, 6\right] \\
& y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{7} x^{3}-8 \# 1^{5} x^{4}+4 \# 1^{3} x^{5}-c_{1}{ }^{2} \&, 7\right]
\end{aligned}
$$

12.17 problem Ex 18

12.17.1 Solving as linear ode . 808
12.17.2 Solving as first order ode lie symmetry lookup ode 810
12.17.3 Solving as exact ode . 814
12.17.4 Maple step by step solution . 819

Internal problem ID [11187]
Internal file name [OUTPUT/10172_Saturday_December_03_2022_08_03_20_AM_89388370/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cos (x)=\frac{\sin (2 x)}{2}
$$

12.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\cos (x) \\
& q(x)=\frac{\sin (2 x)}{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cos (x)=\frac{\sin (2 x)}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (2 x)}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\mathrm{e}^{\sin (x)}\right)\left(\frac{\sin (2 x)}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\frac{\sin (2 x) \mathrm{e}^{\sin (x)}}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\sin (x)} y=\int \frac{\sin (2 x) \mathrm{e}^{\sin (x)}}{2} \mathrm{~d} x \\
& \mathrm{e}^{\sin (x)} y=\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}\right)+c_{1} \mathrm{e}^{-\sin (x)}
$$

which simplifies to

$$
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 172: Slope field plot

Verification of solutions

$$
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

12.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y \cos (x)+\frac{\sin (2 x)}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 96: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\sin (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cos (x)+\frac{\sin (2 x)}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) \mathrm{e}^{\sin (x)} y \\
S_{y} & =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sin (2 x) \mathrm{e}^{\sin (x)}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sin (2 R) \mathrm{e}^{\sin (R)}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\mathrm{e}^{\sin (R)}(-1+\sin (R)) \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}(-1+\sin (x))+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}(-1+\sin (x))+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cos (x)+\frac{\sin (2 x)}{2}$		$\frac{d S}{d R}=\frac{\sin (2 R) e^{\sin (R)}}{2}$
为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 173: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Verified OK.

12.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y \cos (x)+\frac{\sin (2 x)}{2}\right) \mathrm{d} x \\
\left(y \cos (x)-\frac{\sin (2 x)}{2}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \cos (x)-\frac{\sin (2 x)}{2} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \cos (x)-\frac{\sin (2 x)}{2}\right) \\
& =\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cos (x))-(0)) \\
& =\cos (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cos (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\sin (x)} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\sin (x)}\left(y \cos (x)-\frac{\sin (2 x)}{2}\right) \\
& =\cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\sin (x)}(1) \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)}\right)+\left(\mathrm{e}^{\sin (x)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
\phi & =(y-\sin (x)+1) \mathrm{e}^{\sin (x)}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\sin (x)}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y-\sin (x)+1) \mathrm{e}^{\sin (x)}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y-\sin (x)+1) \mathrm{e}^{\sin (x)}
$$

The solution becomes

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 174: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Verified OK.

12.17.4 Maple step by step solution

Let's solve
$y^{\prime}+y \cos (x)=\frac{\sin (2 x)}{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cos (x)+\frac{\sin (2 x)}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y \cos (x)=\frac{\sin (2 x)}{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\frac{\mu(x) \sin (2 x)}{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cos (x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \sin (2 x)}{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \sin (2 x)}{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \sin (2 x)}{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\sin (x)}$
$y=\frac{\int \frac{\sin (2 x)^{\sin (x)}}{\mathrm{e}^{\sin (x)}} d x+c_{1}}{}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}}{\mathrm{e}^{\sin (x)}}$
- Simplify

$$
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $(\operatorname{diff}(y(x), x)+y(x) * \cos (x)=1 / 2 * \sin (2 * x), y(x), \quad$ singsol=all)

$$
y(x)=\sin (x)-1+\mathrm{e}^{-\sin (x)} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 18
DSolve [y' $[x]+y[x] * \operatorname{Cos}[x]==1 / 2 * \operatorname{Sin}[2 * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sin (x)+c_{1} e^{-\sin (x)}-1
$$

12.18 problem Ex 19

12.18.1 Solving as homogeneousTypeD2 ode 821
12.18.2 Solving as first order ode lie symmetry lookup ode 823
12.18.3 Solving as bernoulli ode . 827
12.18.4 Solving as exact ode . 830
12.18.5 Solving as riccati ode . 835

Internal problem ID [11188]
Internal file name [OUTPUT/10173_Saturday_December_03_2022_08_03_22_AM_10088190/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number: Ex 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class D`], _rational, _Bernoulli]

$$
y^{2} x+y-y^{\prime} x=0
$$

12.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{3}+u(x) x-\left(u^{\prime}(x) x+u(x)\right) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =u^{2} x
\end{aligned}
$$

Where $f(x)=x$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =x d x \\
\int \frac{1}{u^{2}} d u & =\int x d x \\
-\frac{1}{u} & =\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}-\frac{x^{2}}{2}-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x}{y}-\frac{x^{2}}{2}-c_{2}=0 \\
& -\frac{x}{y}-\frac{x^{2}}{2}-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}-\frac{x^{2}}{2}-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 175: Slope field plot
Verification of solutions

$$
-\frac{x}{y}-\frac{x^{2}}{2}-c_{2}=0
$$

Verified OK.

12.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(x y+1)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 99: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{2}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x y+1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y} \\
S_{y} & =\frac{x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x}{y}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x}{y}=\frac{x^{2}}{2}+c_{1}
$$

Which gives

$$
y=-\frac{2 x}{x^{2}+2 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x y+1)}{x}$		$\frac{d S}{d R}=R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$	$R=x$	
	$S=-\frac{x}{y}$	
	y	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 x}{x^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
y=-\frac{2 x}{x^{2}+2 c_{1}}
$$

Verified OK.

12.18.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x y+1)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =1 \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{x y}+1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}+1 \\
w^{\prime} & =-\frac{w}{x}-1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)(-1) \\
\mathrm{d}(w x) & =(-x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int-x \mathrm{~d} x \\
& w x=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{x}{2}+\frac{c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=-\frac{x}{2}+\frac{c_{1}}{x}
$$

Or

$$
y=\frac{1}{-\frac{x}{2}+\frac{c_{1}}{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-\frac{x}{2}+\frac{c_{1}}{x}} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot
Verification of solutions

$$
y=\frac{1}{-\frac{x}{2}+\frac{c_{1}}{x}}
$$

Verified OK.

12.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x) \mathrm{d} y & =\left(-x y^{2}-y\right) \mathrm{d} x \\
\left(x y^{2}+y\right) \mathrm{d} x+(-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y^{2}+y \\
N(x, y) & =-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{2}+y\right) \\
& =2 x y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x}((2 x y+1)-(-1)) \\
& =\frac{-2 x y-2}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{x y^{2}+y}((-1)-(2 x y+1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}\left(x y^{2}+y\right) \\
& =\frac{x y+1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}(-x) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x y+1}{y}\right)+\left(-\frac{x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y+1}{y} \mathrm{~d} x \\
\phi & =\frac{(x y+2) x}{2 y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{2 y}-\frac{(x y+2) x}{2 y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(x y+2) x}{2 y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(x y+2) x}{2 y}
$$

The solution becomes

$$
y=\frac{2 x}{-x^{2}+2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x}{-x^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot

Verification of solutions

$$
y=\frac{2 x}{-x^{2}+2 c_{1}}
$$

Verified OK.

12.18.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x y+1)}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =\frac{1}{x} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-\frac{u^{\prime}(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} x^{2}+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=2 c_{2} x
$$

Using the above in (1) gives the solution

$$
y=-\frac{2 c_{2} x}{c_{2} x^{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2 x}{x^{2}+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 x}{x^{2}+c_{3}} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
y=-\frac{2 x}{x^{2}+c_{3}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve($(x * y(x) \sim 2+y(x))-x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=-\frac{2 x}{x^{2}-2 c_{1}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 23
DSolve[($x * y[x] \sim 2+y[x])-x * y{ }^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{2 x}{x^{2}-2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.19 problem Ex 20

12.19.1 Solving as separable ode . 839
12.19.2 Solving as first order ode lie symmetry lookup ode 841
12.19.3 Solving as exact ode . 845
12.19.4 Maple step by step solution . 849

Internal problem ID [11189]
Internal file name [OUTPUT/10174_Saturday_December_03_2022_08_03_23_AM_75506164/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(1-x) y-(y+1) x y^{\prime}=0
$$

12.19.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y(x-1)}{(y+1) x}
\end{aligned}
$$

Where $f(x)=-\frac{x-1}{x}$ and $g(y)=\frac{y}{y+1}$. Integrating both sides gives

$$
\frac{1}{\frac{y}{y+1}} d y=-\frac{x-1}{x} d x
$$

$$
\begin{aligned}
& \int \frac{1}{\frac{y}{y+1}} d y=\int-\frac{x-1}{x} d x \\
& y+\ln (y)=-x+\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\text { LambertW }\left(\mathrm{e}^{-x+c_{1}} x\right)
$$

Since c_{1} is constant, then exponential powers of this constant are constants also, and these can be simplified to just c_{1} in the above solution. Which simplifies to

$$
y=\text { LambertW }\left(\mathrm{e}^{-x+c_{1}} x\right)
$$

gives

$$
y=\operatorname{LambertW}\left(\mathrm{e}^{-x} c_{1} x\right)
$$

Summary
The solution(s) found are the following

Figure 180: Slope field plot

Verification of solutions

$$
y=\text { LambertW }\left(\mathrm{e}^{-x} c_{1} x\right)
$$

Verified OK.

12.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(x-1)}{(y+1) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 101: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x}{x-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{-\frac{x}{x-1}} d x
\end{aligned}
$$

Which results in

$$
S=-x+\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(x-1)}{(y+1) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-1+\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y+1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R+1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x+\ln (x)=y+\ln (y)+c_{1}
$$

Which simplifies to

$$
-x+\ln (x)=y+\ln (y)+c_{1}
$$

Which gives

$$
y=\text { LambertW }\left(\mathrm{e}^{-x-c_{1}} x\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(x-1)}{(y+1) x}$		$\frac{d S}{d R}=\frac{R+1}{R}$
xixity		
	$R=y$	
	$S=-x+\ln (x)$	
btatytitasyidity		
bty		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{LambertW}\left(\mathrm{e}^{-x-c_{1}} x\right) \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
y=\text { LambertW }\left(\mathrm{e}^{-x-c_{1}} x\right)
$$

Verified OK.

12.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y+1}{y}\right) \mathrm{d} y & =\left(\frac{x-1}{x}\right) \mathrm{d} x \\
\left(-\frac{x-1}{x}\right) \mathrm{d} x+\left(-\frac{y+1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x-1}{x} \\
& N(x, y)=-\frac{y+1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x-1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y+1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x-1}{x} \mathrm{~d} x \\
\phi & =-x+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y+1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y+1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y+1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-y-1}{y}\right) \mathrm{d} y \\
f(y) & =-y-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\ln (x)-y-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\ln (x)-y-\ln (y)
$$

The solution becomes

$$
y=\text { LambertW }\left(\mathrm{e}^{-x-c_{1}} x\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\text { LambertW }\left(\mathrm{e}^{-x-c_{1}} x\right) \tag{1}
\end{equation*}
$$

Figure 182: Slope field plot
Verification of solutions

$$
y=\operatorname{LambertW}\left(\mathrm{e}^{-x-c_{1}} x\right)
$$

Verified OK.

12.19.4 Maple step by step solution

Let's solve

$$
(1-x) y-(y+1) x y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}(y+1)}{y}=\frac{1-x}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}(y+1)}{y} d x=\int \frac{1-x}{x} d x+c_{1}
$$

- Evaluate integral

$$
y+\ln (y)=-x+\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\text { Lambert } W\left(\mathrm{e}^{-x+c_{1}} x\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve((1-x)*y(x)-(1+y(x))*x*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=\text { LambertW }\left(\frac{\mathrm{e}^{-x} x}{c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 5.134 (sec). Leaf size: 21
DSolve[(1-x)*y[x]-(1+y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow W\left(x e^{-x+c_{1}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.20 problem Ex 21

12.20.1 Solving as separable ode . 851
12.20.2 Solving as first order ode lie symmetry lookup ode 853
12.20.3 Solving as exact ode . 858
12.20.4 Maple step by step solution . 861

Internal problem ID [11190]
Internal file name [OUTPUT/10175_Saturday_December_03_2022_08_03_24_AM_39182422/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
3 x^{2} y+\left(x^{3}+y^{2} x^{3}\right) y^{\prime}=0
$$

12.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{3 y}{x\left(y^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(y)=\frac{y}{y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{y}{y^{2}+1}} d y=-\frac{3}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{y}{y^{2}+1}} d y & =\int-\frac{3}{x} d x \\
\frac{y^{2}}{2}+\ln (y) & =-3 \ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\frac{1}{\sqrt{\frac{1}{\text { LambertW }\left(\frac{e^{2 c_{1}}}{x^{6}}\right)}}}
$$

Since c_{1} is constant, then exponential powers of this constant are constants also, and these can be simplified to just c_{1} in the above solution. Which simplifies to

$$
y=\frac{1}{\sqrt{\frac{1}{\text { LambertW }\left(\frac{e^{2 c_{1}}}{x^{6}}\right)}}}
$$

gives

$$
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{c_{1}^{2}}{x^{6}}\right)}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{c_{1}^{2}}{x^{6}}\right)}}} \tag{1}
\end{equation*}
$$

Figure 183: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{c_{1}^{2}}{x^{6}}\right)}}}
$$

Verified OK.

12.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{3 y}{x\left(y^{2}+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 104: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x}{3} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x}{3}} d x
\end{aligned}
$$

Which results in

$$
S=-3 \ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 y}{x\left(y^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}+1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}+1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-3 \ln (x)=\frac{y^{2}}{2}+\ln (y)+c_{1}
$$

Which simplifies to

$$
-3 \ln (x)=\frac{y^{2}}{2}+\ln (y)+c_{1}
$$

Which gives

$$
y=\frac{1}{\sqrt{\frac{1}{\text { LambertW }\left(\frac{\mathrm{e}^{-2 c_{1}}}{x^{6}}\right)}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in x, y coordinates |
| :--- | :--- | :--- | | Canonical
 coordinates
 transformation |
| :---: |
| $\frac{d y}{d x}=-\frac{3 y}{x\left(y^{2}+1\right)}$ | | ODE in canonical coordinates |
| :---: |
| (R, S) |

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{e^{-2 c_{1}}}{x^{6}}\right)}}} \tag{1}
\end{equation*}
$$

Figure 184: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{\mathrm{e}^{-2 c_{1}}}{x^{6}}\right)}}}
$$

Verified OK.

12.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y^{2}+1}{3 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{y^{2}+1}{3 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{y^{2}+1}{3 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y^{2}+1}{3 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y^{2}+1}{3 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y^{2}+1}{3 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y^{2}+1}{3 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-y^{2}-1}{3 y}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{6}-\frac{\ln (y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{y^{2}}{6}-\frac{\ln (y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{y^{2}}{6}-\frac{\ln (y)}{3}
$$

The solution becomes

$$
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{\mathrm{e}^{-6 c_{1}}}{x^{6}}\right)}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\sqrt{\frac{1}{\text { LambertW }\left(\frac{\mathrm{e}^{-6 c_{1}}}{x^{6}}\right)}}} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot
Verification of solutions

$$
y=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{e^{-6 c_{1}}}{x^{6}}\right)}}}
$$

Verified OK.

12.20.4 Maple step by step solution

Let's solve
$3 x^{2} y+\left(x^{3}+y^{2} x^{3}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}\left(1+y^{2}\right)}{y}=-\frac{3}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}\left(1+y^{2}\right)}{y} d x=\int-\frac{3}{x} d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}+\ln (y)=-3 \ln (x)+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{-\frac{\text { LambertW } W\left(\frac{e^{2 c_{1}}}{x^{6}}\right)}{2}+c_{1}}}{x^{3}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(3*x^2*y(x)+(x^3+x^3*y(x)^2)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{1}{\sqrt{\frac{1}{\operatorname{LambertW}\left(\frac{c_{1}}{x^{6}}\right)}}}
$$

\checkmark Solution by Mathematica
Time used: 6.245 (sec). Leaf size: 46
DSolve $\left[3 * x^{\wedge} 2 * y[x]+\left(x^{\wedge} 3+x^{\wedge} 3 * y[x] \wedge 2\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{W\left(\frac{e^{2 c_{1}}}{x^{6}}\right)} \\
& y(x) \rightarrow \sqrt{W\left(\frac{e^{2 c_{1}}}{x^{6}}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.21 problem Ex 22

Internal problem ID [11191]
Internal file name [OUTPUT/10176_Saturday_December_03_2022_08_03_25_AM_40769649/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type
[_rational]
Unable to solve or complete the solution.

$$
\left(x^{2}+y^{2}\right)\left(x+y y^{\prime}\right)-\left(x^{2}+y^{2}+x\right)\left(y^{\prime} x-y\right)=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2` [0, (x^4+2*y^2*x^2+y^4+1/2*x^3-1/2*y*x^2+1/2*y^2*
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45

```
dsolve((x^2+y(x)^2)*(x+y(x)*diff (y(x),x))=(x^2+y(x)^2+x)*(x*diff (y(x),x)-y(x)),y(x), singsol
```

$$
\begin{aligned}
y(x)=-\cot \left(\operatorname { R o o t O f } \left(-2 _Z+2 \ln \left(2 \csc \left(_Z\right)^{2}\right.\right.\right. & \left.x^{2}+\cot \left(_Z\right) x+x\right) \\
& \left.\left.-\ln \left(\csc \left(_Z\right)^{2} x^{2}\right)+2 c_{1}\right)\right) x
\end{aligned}
$$

Solution by Mathematica

Time used: 0.548 (sec). Leaf size: 53
DSolve $\left[\left(x^{\wedge} 2+y[x] \sim 2\right) *(x+y[x] * y '[x])==\left(x^{\wedge} 2+y[x] \wedge 2+x\right) *\left(x * y{ }^{\prime}[x]-y[x]\right), y[x], x\right.$, IncludeSingularSolu

Solve $\left[\frac{1}{2} \arctan \left(\frac{x}{y(x)}\right)-\frac{1}{4} \log \left(x^{2}+y(x)^{2}\right)+\frac{1}{2} \log \left(2 x^{2}+2 y(x)^{2}-y(x)+x\right)=c_{1}, y(x)\right]$

12.22 problem Ex 23

12.22.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11192]
Internal file name [OUTPUT/10177_Saturday_December_03_2022_08_03_26_AM_82484991/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
        class A`]]
```

$$
3 y+(2 x+3 y-5) y^{\prime}=-2 x+1
$$

12.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 x+3 y-1}{2 x+3 y-5} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 x+3 y-1)\left(b_{3}-a_{2}\right)}{2 x+3 y-5}-\frac{(2 x+3 y-1)^{2} a_{3}}{(2 x+3 y-5)^{2}} \\
& -\left(-\frac{2}{2 x+3 y-5}+\frac{4 x+6 y-2}{(2 x+3 y-5)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{2 x+3 y-5}+\frac{6 x+9 y-3}{(2 x+3 y-5)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{2} a_{2}-4 x^{2} a_{3}+4 x^{2} b_{2}-4 x^{2} b_{3}+12 x y a_{2}-12 x y a_{3}+12 x y b_{2}-12 x y b_{3}+9 y^{2} a_{2}-9 y^{2} a_{3}+9 y^{2} b_{2}-9 y^{2} b_{3}-}{(2 x+3 y} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{2} a_{2}-4 x^{2} a_{3}+4 x^{2} b_{2}-4 x^{2} b_{3}+12 x y a_{2}-12 x y a_{3}+12 x y b_{2}-12 x y b_{3} \tag{6E}\\
& \quad+9 y^{2} a_{2}-9 y^{2} a_{3}+9 y^{2} b_{2}-9 y^{2} b_{3}-20 x a_{2}+4 x a_{3}-32 x b_{2}+12 x b_{3} \\
& \quad-18 y a_{2}-2 y a_{3}-30 y b_{2}+6 y b_{3}-8 a_{1}+5 a_{2}-a_{3}-12 b_{1}+25 b_{2}-5 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1}^{2}+12 a_{2} v_{1} v_{2}+9 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-9 a_{3} v_{2}^{2}+4 b_{2} v_{1}^{2}+12 b_{2} v_{1} v_{2} \tag{7E}\\
& +9 b_{2} v_{2}^{2}-4 b_{3} v_{1}^{2}-12 b_{3} v_{1} v_{2}-9 b_{3} v_{2}^{2}-20 a_{2} v_{1}-18 a_{2} v_{2}+4 a_{3} v_{1}-2 a_{3} v_{2} \\
& \quad-32 b_{2} v_{1}-30 b_{2} v_{2}+12 b_{3} v_{1}+6 b_{3} v_{2}-8 a_{1}+5 a_{2}-a_{3}-12 b_{1}+25 b_{2}-5 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-4 a_{3}+4 b_{2}-4 b_{3}\right) v_{1}^{2}+\left(12 a_{2}-12 a_{3}+12 b_{2}-12 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-20 a_{2}+4 a_{3}-32 b_{2}+12 b_{3}\right) v_{1}+\left(9 a_{2}-9 a_{3}+9 b_{2}-9 b_{3}\right) v_{2}^{2} \\
& \quad+\left(-18 a_{2}-2 a_{3}-30 b_{2}+6 b_{3}\right) v_{2}-8 a_{1}+5 a_{2}-a_{3}-12 b_{1}+25 b_{2}-5 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-20 a_{2}+4 a_{3}-32 b_{2}+12 b_{3}=0 \\
-18 a_{2}-2 a_{3}-30 b_{2}+6 b_{3}=0 \\
4 a_{2}-4 a_{3}+4 b_{2}-4 b_{3}=0 \\
9 a_{2}-9 a_{3}+9 b_{2}-9 b_{3}=0 \\
12 a_{2}-12 a_{3}+12 b_{2}-12 b_{3}=0 \\
-8 a_{1}+5 a_{2}-a_{3}-12 b_{1}+25 b_{2}-5 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=\frac{7 b_{2}}{4}-\frac{3 b_{1}}{2} \\
& a_{2}=-b_{2} \\
& a_{3}=-\frac{3 b_{2}}{2} \\
& b_{1}=b_{1} \\
& b_{2}=b_{2} \\
& b_{3}=\frac{3 b_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2 E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-\frac{3}{2} \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(-\frac{2 x+3 y-1}{2 x+3 y-5}\right)\left(-\frac{3}{2}\right) \\
& =\frac{-2 x-3 y-7}{4 x+6 y-10} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x-3 y-7}{4 x+6 y-10}} d y
\end{aligned}
$$

Which results in

$$
S=-2 y+8 \ln (2 x+3 y+7)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+3 y-1}{2 x+3 y-5}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{16}{2 x+3 y+7} \\
S_{y} & =-2+\frac{24}{2 x+3 y+7}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-2 y+8 \ln (2 x+3 y+7)=2 x+c_{1}
$$

Which simplifies to

$$
-2 y+8 \ln (2 x+3 y+7)=2 x+c_{1}
$$

Which gives

$$
y=-4 \text { LambertW }\left(-\frac{\mathrm{e}^{\frac{x}{12}+\frac{c_{1}}{8}-\frac{7}{12}}}{12}\right)-\frac{2 x}{3}-\frac{7}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x+3 y-1}{2 x+3 y-5}$		$\frac{d S}{d R}=2$
dtd d d d d		
- $\square_{\text {¢ }}$		
$0 \rightarrow$	$R=x$	
	S	
	$S=-2 y+8 \ln (2 x$	
-		¢介¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
\cdots		
+1:		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-4 \text { LambertW }\left(-\frac{\mathrm{e}^{\frac{x}{12}+\frac{c_{1}}{8}-\frac{7}{12}}}{12}\right)-\frac{2 x}{3}-\frac{7}{3} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
y=-4 \operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{x}{12}+\frac{c_{1}}{8}-\frac{7}{12}}}{12}\right)-\frac{2 x}{3}-\frac{7}{3}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -2/3, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

```
dsolve((2*x+3*y(x)-1)+(2*x+3*y(x)-5)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{2 x}{3}-4 \text { LambertW }\left(-\frac{c_{1} \mathrm{e}^{\frac{x}{12}-\frac{7}{12}}}{12}\right)-\frac{7}{3}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 5.457 (sec). Leaf size: 43
DSolve $\left[(2 * x+3 * y[x]-1)+(2 * x+3 * y[x]-5) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-4 W\left(-e^{\frac{x}{12}-1+c_{1}}\right)-\frac{2 x}{3}-\frac{7}{3} \\
& y(x) \rightarrow \frac{1}{3}(-2 x-7)
\end{aligned}
$$

12.23 problem Ex 24

12.23.1 Solving as homogeneousTypeD2 ode 873
12.23.2 Solving as first order ode lie symmetry calculated ode 875
12.23.3 Solving as exact ode . 881

Internal problem ID [11193]
Internal file name [OUTPUT/10178_Saturday_December_03_2022_08_03_27_AM_22224770/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number: Ex 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{3}-2 x^{2} y+\left(2 y^{2} x-x^{3}\right) y^{\prime}=0
$$

12.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{3} x^{3}-2 x^{3} u(x)+\left(2 u(x)^{2} x^{3}-x^{3}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3\left(u^{3}-u\right)}{x\left(2 u^{2}-1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=\frac{u^{3}-u}{2 u^{2}-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}-u}{2 u^{2}-1}} d u & =-\frac{3}{x} d x \\
\int \frac{1}{\frac{u^{3}-u}{2 u^{2}-1}} d u & =\int-\frac{3}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2}+\ln (u) & =-3 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2}+\ln (u)}=\mathrm{e}^{-3 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u-1} \sqrt{u+1} u=\frac{c_{3}}{x^{3}}
$$

The solution is

$$
\sqrt{u(x)-1} \sqrt{u(x)+1} u(x)=\frac{c_{3}}{x^{3}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{\sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} y}{x} & =\frac{c_{3}}{x^{3}} \\
\frac{\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y}{x} & =\frac{c_{3}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y-x}{x}} \sqrt{\frac{y+x}{x}} y=\frac{c_{3}}{x^{2}}
$$

Verified OK.

12.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(-2 x^{2}+y^{2}\right)\left(b_{3}-a_{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}-\frac{y^{2}\left(-2 x^{2}+y^{2}\right)^{2} a_{3}}{x^{2}\left(-x^{2}+2 y^{2}\right)^{2}} \\
& -\left(\frac{4 y}{-x^{2}+2 y^{2}}+\frac{y\left(-2 x^{2}+y^{2}\right)}{x^{2}\left(-x^{2}+2 y^{2}\right)}-\frac{2 y\left(-2 x^{2}+y^{2}\right)}{\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{-2 x^{2}+y^{2}}{x\left(-x^{2}+2 y^{2}\right)}-\frac{2 y^{2}}{x\left(-x^{2}+2 y^{2}\right)}\right. \\
& \left.+\frac{4 y^{2}\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{6} b_{2}-6 x^{4} y^{2} a_{3}-3 x^{4} y^{2} b_{2}-6 x^{3} y^{3} a_{2}+6 x^{3} y^{3} b_{3}+3 x^{2} y^{4} a_{3}+6 x^{2} y^{4} b_{2}-3 y^{6} a_{3}+2 x^{5} b_{1}-2 x^{4} y a_{1}+x^{3} y^{2} b_{1}}{\left(x^{2}-2 y^{2}\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{6} b_{2}-6 x^{4} y^{2} a_{3}-3 x^{4} y^{2} b_{2}-6 x^{3} y^{3} a_{2}+6 x^{3} y^{3} b_{3}+3 x^{2} y^{4} a_{3}+6 x^{2} y^{4} b_{2} \tag{6E}\\
& -3 y^{6} a_{3}+2 x^{5} b_{1}-2 x^{4} y a_{1}+x^{3} y^{2} b_{1}-x^{2} y^{3} a_{1}+2 x y^{4} b_{1}-2 y^{5} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -6 a_{2} v_{1}^{3} v_{2}^{3}-6 a_{3} v_{1}^{4} v_{2}^{2}+3 a_{3} v_{1}^{2} v_{2}^{4}-3 a_{3} v_{2}^{6}+3 b_{2} v_{1}^{6}-3 b_{2} v_{1}^{4} v_{2}^{2}+6 b_{2} v_{1}^{2} v_{2}^{4} \tag{7E}\\
& +6 b_{3} v_{1}^{3} v_{2}^{3}-2 a_{1} v_{1}^{4} v_{2}-a_{1} v_{1}^{2} v_{2}^{3}-2 a_{1} v_{2}^{5}+2 b_{1} v_{1}^{5}+b_{1} v_{1}^{3} v_{2}^{2}+2 b_{1} v_{1} v_{2}^{4}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{6}+2 b_{1} v_{1}^{5}+\left(-6 a_{3}-3 b_{2}\right) v_{1}^{4} v_{2}^{2}-2 a_{1} v_{1}^{4} v_{2}+\left(-6 a_{2}+6 b_{3}\right) v_{1}^{3} v_{2}^{3} \tag{8E}\\
& \quad+b_{1} v_{1}^{3} v_{2}^{2}+\left(3 a_{3}+6 b_{2}\right) v_{1}^{2} v_{2}^{4}-a_{1} v_{1}^{2} v_{2}^{3}+2 b_{1} v_{1} v_{2}^{4}-3 a_{3} v_{2}^{6}-2 a_{1} v_{2}^{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
-3 a_{3} & =0 \\
2 b_{1} & =0 \\
3 b_{2} & =0 \\
-6 a_{2}+6 b_{3} & =0 \\
-6 a_{3}-3 b_{2} & =0 \\
3 a_{3}+6 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}\right)(x) \\
& =\frac{3 x^{2} y-3 y^{3}}{x^{2}-2 y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2} y-3 y^{3}}{x^{2}-2 y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{3 x^{2}-3 y^{2}} \\
S_{y} & =\frac{x^{2}-2 y^{2}}{3 x^{2} y-3 y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(-2 x^{2}+y^{2}\right)}{x\left(-x^{2}+2 y^{2}\right)}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		为
	$R=x$	$\rightarrow+$
	$S=\underline{\ln (y-x)}+\underline{\ln (y)}$	
at 9 - ${ }^{\text {a }}$	$S=\frac{m(9)}{6}+\frac{m(9)}{3}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 188: Slope field plot

Verification of solutions

$$
\frac{\ln (y-x)}{6}+\frac{\ln (y)}{3}+\frac{\ln (y+x)}{6}=-\frac{\ln (x)}{3}+c_{1}
$$

Verified OK.

12.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{3}+2 x y^{2}\right) \mathrm{d} y & =\left(2 x^{2} y-y^{3}\right) \mathrm{d} x \\
\left(-2 x^{2} y+y^{3}\right) \mathrm{d} x+\left(-x^{3}+2 x y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 x^{2} y+y^{3} \\
N(x, y) & =-x^{3}+2 x y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 x^{2} y+y^{3}\right) \\
& =-2 x^{2}+3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{3}+2 x y^{2}\right) \\
& =-3 x^{2}+2 y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-x^{3}+2 x y^{2}}\left(\left(-2 x^{2}+3 y^{2}\right)-\left(-3 x^{2}+2 y^{2}\right)\right) \\
& =\frac{-x^{2}-y^{2}}{x\left(x^{2}-2 y^{2}\right)}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-2 x^{2} y+y^{3}}\left(\left(-3 x^{2}+2 y^{2}\right)-\left(-2 x^{2}+3 y^{2}\right)\right) \\
& =\frac{x^{2}+y^{2}}{2 x^{2} y-y^{3}}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(-3 x^{2}+2 y^{2}\right)-\left(-2 x^{2}+3 y^{2}\right)}{x\left(-2 x^{2} y+y^{3}\right)-y\left(-x^{3}+2 x y^{2}\right)} \\
& =\frac{1}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{1}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{1}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=x y
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x y\left(-2 x^{2} y+y^{3}\right) \\
& =-2\left(x^{2}-\frac{y^{2}}{2}\right) x y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x y\left(-x^{3}+2 x y^{2}\right) \\
& =-y\left(x^{2}-2 y^{2}\right) x^{2}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-2\left(x^{2}-\frac{y^{2}}{2}\right) x y^{2}\right)+\left(-y\left(x^{2}-2 y^{2}\right) x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2\left(x^{2}-\frac{y^{2}}{2}\right) x y^{2} \mathrm{~d} x \\
\phi & =-\frac{\left(2 x^{2}-y^{2}\right)^{2} y^{2}}{8}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{\left(2 x^{2}-y^{2}\right) y^{3}}{2}-\frac{\left(2 x^{2}-y^{2}\right)^{2} y}{4}+f^{\prime}(y) \tag{4}\\
& =2 y^{3} x^{2}-\frac{3}{4} y^{5}-x^{4} y+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y\left(x^{2}-2 y^{2}\right) x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
-y\left(x^{2}-2 y^{2}\right) x^{2}=2 y^{3} x^{2}-\frac{3}{4} y^{5}-x^{4} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{3 y^{5}}{4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{3 y^{5}}{4}\right) \mathrm{d} y \\
f(y) & =\frac{y^{6}}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(2 x^{2}-y^{2}\right)^{2} y^{2}}{8}+\frac{y^{6}}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(2 x^{2}-y^{2}\right)^{2} y^{2}}{8}+\frac{y^{6}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\left(2 x^{2}-y^{2}\right)^{2} y^{2}}{8}+\frac{y^{6}}{8}=c_{1} \tag{1}
\end{equation*}
$$

Figure 189: Slope field plot
Verification of solutions

$$
-\frac{\left(2 x^{2}-y^{2}\right)^{2} y^{2}}{8}+\frac{y^{6}}{8}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.266 (sec). Leaf size: 71
dsolve $\left(\left(y(x) \wedge 3-2 * x^{\wedge} 2 * y(x)\right)+\left(2 * x * y(x) \wedge 2-x^{\wedge} 3\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\frac{2 c_{1} x^{3}-2 \sqrt{c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}} x}{2} \\
& y(x)=\frac{\sqrt{2} \sqrt{\frac{c_{1} x^{3}+\sqrt{c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}} x}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 15.638 (sec). Leaf size: 277
DSolve $\left[\left(y[x] \wedge 3-2 * x^{\wedge} 2 * y[x]\right)+\left(2 * x * y[x] \sim 2-x^{\wedge} 3\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-4 e^{2 c_{1}}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{\sqrt{x^{6}}+x^{3}}{x}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{\sqrt{x^{6}+x^{3}}}{x}}}{\sqrt{2}}
\end{aligned}
$$

12.24 problem Ex 25

12.24.1 Solving as exact ode

Internal problem ID [11194]
Internal file name [OUTPUT/10179_Saturday_December_03_2022_08_03_29_AM_70315647/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational]

$$
2 y^{2} x^{3}-y+\left(2 y^{3} x^{2}-x\right) y^{\prime}=0
$$

12.24.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 y^{3} x^{2}-x\right) \mathrm{d} y & =\left(-2 y^{2} x^{3}+y\right) \mathrm{d} x \\
\left(2 y^{2} x^{3}-y\right) \mathrm{d} x+\left(2 y^{3} x^{2}-x\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=2 y^{2} x^{3}-y \\
& N(x, y)=2 y^{3} x^{2}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{2} x^{3}-y\right) \\
& =4 y x^{3}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 y^{3} x^{2}-x\right) \\
& =4 x y^{3}-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y^{3} x^{2}-x}\left(\left(4 y x^{3}-1\right)-\left(4 x y^{3}-1\right)\right) \\
& =\frac{4 x^{2} y-4 y^{3}}{2 x y^{3}-1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 y^{2} x^{3}-y}\left(\left(4 x y^{3}-1\right)-\left(4 y x^{3}-1\right)\right) \\
& =\frac{-4 x^{3}+4 x y^{2}}{2 y x^{3}-1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(4 x y^{3}-1\right)-\left(4 y x^{3}-1\right)}{x\left(2 y^{2} x^{3}-y\right)-y\left(2 y^{3} x^{2}-x\right)} \\
& =-\frac{2}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{2}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{2} y^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2} y^{2}}\left(2 y^{2} x^{3}-y\right) \\
& =\frac{2 y x^{3}-1}{y x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2} y^{2}}\left(2 y^{3} x^{2}-x\right) \\
& =\frac{2 x y^{3}-1}{x y^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 y x^{3}-1}{y x^{2}}\right)+\left(\frac{2 x y^{3}-1}{x y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 y x^{3}-1}{y x^{2}} \mathrm{~d} x \\
\phi & =\frac{y x^{3}+1}{x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{y}-\frac{y x^{3}+1}{x y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{1}{x y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 x y^{3}-1}{x y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x y^{3}-1}{x y^{2}}=-\frac{1}{x y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y x^{3}+1}{x y}+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y x^{3}+1}{x y}+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y x^{3}+1}{x y}+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
\frac{y x^{3}+1}{x y}+y^{2}=c_{1}
$$

Verified OK.

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables $\{x->y(x), y(x)$-> $x\}$
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
$\cdot, ~->$ Computing symmetries using: way $=2^{\wedge}\left[0, y^{\wedge} 2 * x /\left(2 * x * y^{\wedge} 3-1\right)\right],\left[0,\left(x^{\wedge} 4 * y^{\wedge} 2^{2}+x^{\wedge} 2 * y^{\wedge} 4+x * y\right)\right.$
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 361

```
dsolve((2*x^3*y(x)^2-y(x))+(2*x^2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)= \\
& -\frac{\left(-\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{2}{3}}+x^{2} 12^{\frac{1}{3}}\left(x^{2}-c_{1}\right)\right) 12^{\frac{1}{3}}}{6\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{1}{3}} x} \\
& y(x)= \\
& -\frac{\left((1+i \sqrt{3})\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{2}{3}}+\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} x^{2}\left(x^{2}-c_{1}\right)\right) 2}{12\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

$y(x)$

$$
=\frac{2^{\frac{2}{3}} 3^{\frac{1}{3}}\left((i \sqrt{3}-1)\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{2}{3}}+2^{\frac{2}{3}} x^{2}\left(x^{2}-c_{1}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right)\right.}{12\left(\left(-9+\sqrt{12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right) x^{2}\right)^{\frac{1}{3}} x}
$$

\checkmark Solution by Mathematica
Time used: 46.278 (sec). Leaf size: 358
DSolve $\left[\left(2 * x^{\wedge} 3 * y[x] \sim 2-y[x]\right)+\left(2 * x^{\wedge} 2 * y[x] \wedge 3-x\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{2}\left(-x^{3}+c_{1} x\right)}{\sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}} \\
& +\frac{\sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}}{3 \sqrt[3]{2} x} \\
y(x) \rightarrow & \frac{(1+i \sqrt{3})\left(x^{3}-c_{1} x\right)}{2^{2 / 3} \sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}} \\
& -\frac{(1-i \sqrt{3}) \sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}}{6 \sqrt[3]{2} x} \\
y(x) \rightarrow & \frac{(1-i \sqrt{3})\left(x^{3}-c_{1} x\right)}{2^{2 / 3} \sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{-27 x^{2}+\sqrt{729 x^{4}+108 x^{3}\left(x^{3}-c_{1} x\right)^{3}}}}{6 \sqrt[3]{2} x}
\end{aligned}
$$

12.25 problem Ex 26

12.25.1 Solving as first order ode lie symmetry calculated ode 897

Internal problem ID [11195]
Internal file name [OUTPUT/10180_Saturday_December_03_2022_08_03_30_AM_86763740/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
\left(x^{2}+y^{2}\right)\left(x+y y^{\prime}\right)+\sqrt{1+x^{2}+y^{2}}\left(y-y^{\prime} x\right)=0
$$

12.25.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{\left(x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}\right)\left(b_{3}-a_{2}\right)}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x} \\
& -\frac{\left(x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}\right)^{2} a_{3}}{\left(-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x\right)^{2}}-\left(\frac{3 x^{2}+y^{2}+\frac{y x}{\sqrt{x^{2}+y^{2}+1}}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x}\right. \\
& \left.-\frac{\left(x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}\right)\left(-2 x y+\frac{x^{2}}{\sqrt{x^{2}+y^{2}+1}}+\sqrt{x^{2}+y^{2}+1}\right)}{\left(-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac{2 x y+\sqrt{x^{2}+y^{2}+1}+\frac{y^{2}}{\sqrt{x^{2}+y^{2}+1}}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x}\right. \\
& \left.-\frac{\left(x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}\right)\left(-x^{2}-3 y^{2}+\frac{y x}{\sqrt{x^{2}+y^{2}+1}}\right)}{\left(-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0 \tag{5E}
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{3 x^{5} y a_{3}+3 x^{5} y b_{2}+3 x^{4} y^{2} a_{2}+6 x^{3} y^{3} a_{3}+6 x^{3} y^{3} b_{2}+3 x^{2} y^{4} b_{3}+3 x y^{5} a_{3}+3 x y^{5} b_{2}+x^{4} y b_{1}+2 x^{3} y^{2} a_{1}+2 x}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -3 x^{5} y a_{3}-3 x^{5} y b_{2}-3 x^{4} y^{2} a_{2}-6 x^{3} y^{3} a_{3}-6 x^{3} y^{3} b_{2} \\
& -3 x^{2} y^{4} b_{3}-3 x y^{5} a_{3}-3 x y^{5} b_{2}-x^{4} y b_{1}-2 x^{3} y^{2} a_{1}-2 x^{2} y^{3} b_{1} \\
& -x y^{4} a_{1}-\sqrt{x^{2}+y^{2}+1} x^{6} a_{3}-\sqrt{x^{2}+y^{2}+1} x^{6} b_{2} \\
& +\sqrt{x^{2}+y^{2}+1} y^{6} a_{3}+\sqrt{x^{2}+y^{2}+1} y^{6} b_{2}-\sqrt{x^{2}+y^{2}+1} x^{5} b_{1} \\
& +\sqrt{x^{2}+y^{2}+1} y^{5} a_{1}-\left(x^{2}+y^{2}+1\right)^{\frac{3}{2}} x b_{1}+\left(x^{2}+y^{2}+1\right)^{\frac{3}{2}} y a_{1} \\
& -3 x^{4} a_{2}+x^{4} b_{3}+y^{4} a_{2}-3 y^{4} b_{3}-2 x^{3} a_{1}-2 y^{3} b_{1}-2 x^{6} a_{2} \\
& -2 y^{6} b_{3}-x^{5} a_{1}-y^{5} b_{1}+x^{6} b_{3}+y^{6} a_{2}-4 x^{3} y a_{3}-4 x^{3} y b_{2} \tag{6E}\\
& -2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} b_{3}-4 x y^{3} a_{3}-4 x y^{3} b_{2}-2 x^{2} y b_{1} \\
& -2 x y^{2} a_{1}+2 \sqrt{x^{2}+y^{2}+1} x^{5} y a_{2}-2 \sqrt{x^{2}+y^{2}+1} x^{5} y b_{3} \\
& -\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} a_{3}-\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} b_{2} \\
& +4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} a_{2}-4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} b_{3} \\
& +\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} a_{3}+\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} b_{2} \\
& +2 \sqrt{x^{2}+y^{2}+1} x y^{5} a_{2}-2 \sqrt{x^{2}+y^{2}+1} x y^{5} b_{3} \\
& +\sqrt{x^{2}+y^{2}+1} x^{4} y a_{1}-2 \sqrt{x^{2}+y^{2}+1} x^{3} y^{2} b_{1} \\
& +2 \sqrt{x^{2}+y^{2}+1} x^{2} y^{3} a_{1}-\sqrt{x^{2}+y^{2}+1} x y^{4} b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& x^{5} y a_{3}+x^{5} y b_{2}+2 x^{4} y^{2} a_{2}+x^{4} y^{2} b_{3}+2 x^{3} y^{3} a_{3}+2 x^{3} y^{3} b_{2} \\
& +x^{2} y^{4} a_{2}+2 x^{2} y^{4} b_{3}+x y^{5} a_{3}+x y^{5} b_{2}+x^{4} y b_{1}+2 x^{3} y^{2} a_{1} \\
& +2 x^{2} y^{3} b_{1}+x y^{4} a_{1}-\sqrt{x^{2}+y^{2}+1} x^{6} a_{3}-\sqrt{x^{2}+y^{2}+1} x^{6} b_{2} \\
& +\sqrt{x^{2}+y^{2}+1} y^{6} a_{3}+\sqrt{x^{2}+y^{2}+1} y^{6} b_{2}-3\left(x^{2}+y^{2}+1\right) x^{4} a_{2} \\
& +\left(x^{2}+y^{2}+1\right) x^{4} b_{3}+\left(x^{2}+y^{2}+1\right) y^{4} a_{2}-3\left(x^{2}+y^{2}+1\right) y^{4} b_{3} \\
& -\sqrt{x^{2}+y^{2}+1} x^{5} b_{1}+\sqrt{x^{2}+y^{2}+1} y^{5} a_{1} \\
& -2\left(x^{2}+y^{2}+1\right) x^{3} a_{1}-2\left(x^{2}+y^{2}+1\right) y^{3} b_{1} \\
& -\left(x^{2}+y^{2}+1\right)^{\frac{3}{2}} x b_{1}+\left(x^{2}+y^{2}+1\right)^{\frac{3}{2}} y a_{1}+x^{6} a_{2}+y^{6} b_{3} \\
& +x^{5} a_{1}+y^{5} b_{1}+2 \sqrt{x^{2}+y^{2}+1} x^{5} y a_{2}-2 \sqrt{x^{2}+y^{2}+1} x^{5} y b_{3} \tag{6E}\\
& -\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} a_{3}-\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} b_{2} \\
& +4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} a_{2}-4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} b_{3} \\
& +\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} a_{3}+\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} b_{2} \\
& +2 \sqrt{x^{2}+y^{2}+1} x y^{5} a_{2}-2 \sqrt{x^{2}+y^{2}+1} x y^{5} b_{3} \\
& -4\left(x^{2}+y^{2}+1\right) x^{3} y a_{3}-4\left(x^{2}+y^{2}+1\right) x^{3} y b_{2} \\
& -2\left(x^{2}+y^{2}+1\right) x^{2} y^{2} a_{2}-2\left(x^{2}+y^{2}+1\right) x^{2} y^{2} b_{3} \\
& -4\left(x^{2}+y^{2}+1\right) x y^{3} a_{3}-4\left(x^{2}+y^{2}+1\right) x y^{3} b_{2} \\
& +\sqrt{x^{2}+y^{2}+1} x^{4} y a_{1}-2 \sqrt{x^{2}+y^{2}+1} x^{3} y^{2} b_{1} \\
& +2 \sqrt{x^{2}+y^{2}+1} x^{2} y^{3} a_{1}-\sqrt{x^{2}+y^{2}+1} x y^{4} b_{1} \\
& -2\left(x^{2}+y^{2}+1\right) x^{2} y b_{1}-2\left(x^{2}+y^{2}+1\right) x y^{2} a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& x^{2} \sqrt{x^{2}+y^{2}+1} y a_{1}-x \sqrt{x^{2}+y^{2}+1} y^{2} b_{1}+\sqrt{x^{2}+y^{2}+1} y^{3} a_{1} \\
& \quad-\sqrt{x^{2}+y^{2}+1} x b_{1}+\sqrt{x^{2}+y^{2}+1} y a_{1}-x^{3} \sqrt{x^{2}+y^{2}+1} b_{1} \\
& -3 x^{5} y a_{3}-3 x^{5} y b_{2}-3 x^{4} y^{2} a_{2}-6 x^{3} y^{3} a_{3}-6 x^{3} y^{3} b_{2}-3 x^{2} y^{4} b_{3}-3 x y^{5} a_{3} \\
& -3 x y^{5} b_{2}-x^{4} y b_{1}-2 x^{3} y^{2} a_{1}-2 x^{2} y^{3} b_{1}-x y^{4} a_{1}-\sqrt{x^{2}+y^{2}+1} x^{6} a_{3} \\
& -\sqrt{x^{2}+y^{2}+1} x^{6} b_{2}+\sqrt{x^{2}+y^{2}+1} y^{6} a_{3}+\sqrt{x^{2}+y^{2}+1} y^{6} b_{2} \\
& -\sqrt{x^{2}+y^{2}+1} x^{5} b_{1}+\sqrt{x^{2}+y^{2}+1} y^{5} a_{1}-3 x^{4} a_{2}+x^{4} b_{3}+y^{4} a_{2} \\
& -3 y^{4} b_{3}-2 x^{3} a_{1}-2 y^{3} b_{1}-2 x^{6} a_{2}-2 y^{6} b_{3}-x^{5} a_{1}-y^{5} b_{1}+x^{6} b_{3} \\
& +y^{6} a_{2}-4 x^{3} y a_{3}-4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} b_{3}-4 x y^{3} a_{3}-4 x y^{3} b_{2} \\
& -2 x^{2} y b_{1}-2 x y^{2} a_{1}+2 \sqrt{x^{2}+y^{2}+1} x^{5} y a_{2}-2 \sqrt{x^{2}+y^{2}+1} x^{5} y b_{3} \\
& -\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} a_{3}-\sqrt{x^{2}+y^{2}+1} x^{4} y^{2} b_{2} \\
& +4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} a_{2}-4 \sqrt{x^{2}+y^{2}+1} x^{3} y^{3} b_{3} \\
& +\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} a_{3}+\sqrt{x^{2}+y^{2}+1} x^{2} y^{4} b_{2} \\
& +2 \sqrt{x^{2}+y^{2}+1} x y^{5} a_{2}-2 \sqrt{x^{2}+y^{2}+1} x y^{5} b_{3} \\
& +\sqrt{x^{2}+y^{2}+1} x^{4} y a_{1}-2 \sqrt{x^{2}+y^{2}+1} x^{3} y^{2} b_{1} \\
& +2 \sqrt{x^{2}+y^{2}+1} x^{2} y^{3} a_{1}-\sqrt{x^{2}+y^{2}+1} x y^{4} b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{3} v_{1}^{5} v_{2} a_{2}+4 v_{3} v_{1}^{3} v_{2}^{3} a_{2}+2 v_{3} v_{1} v_{2}^{5} a_{2}-v_{3} v_{1}^{6} a_{3}-v_{3} v_{1}^{4} v_{2}^{2} a_{3}+v_{3} v_{1}^{2} v_{2}^{4} a_{3} \\
& +v_{3} v_{2}^{6} a_{3}-v_{3} v_{1}^{6} b_{2}-v_{3} v_{1}^{4} v_{2}^{2} b_{2}+v_{3} v_{1}^{2} v_{2}^{4} b_{2}+v_{3} v_{2}^{6} b_{2}-2 v_{3} v_{1}^{5} v_{2} b_{3} \\
& -4 v_{3} v_{1}^{3} v_{2}^{3} b_{3}-2 v_{3} v_{1} v_{2}^{5} b_{3}+v_{3} v_{1}^{4} v_{2} a_{1}+2 v_{3} v_{1}^{2} v_{2}^{3} a_{1}+v_{3} v_{2}^{5} a_{1}-2 v_{1}^{6} a_{2} \\
& -3 v_{1}^{4} v_{2}^{2} a_{2}+v_{2}^{6} a_{2}-3 v_{1}^{5} v_{2} a_{3}-6 v_{1}^{3} v_{2}^{3} a_{3}-3 v_{1} v_{2}^{5} a_{3}-v_{3} v_{1}^{5} b_{1} \tag{7E}\\
& -2 v_{3} v_{1}^{3} v_{2}^{2} b_{1}-v_{3} v_{1} v_{2}^{4} b_{1}-3 v_{1}^{5} v_{2} b_{2}-6 v_{1}^{3} v_{2}^{3} b_{2}-3 v_{1} v_{2}^{5} b_{2}+v_{1}^{6} b_{3} \\
& -3 v_{1}^{2} v_{2}^{4} b_{3}-2 v_{2}^{6} b_{3}-v_{1}^{5} a_{1}-2 v_{2}^{3} v_{2}^{2} a_{1}-v_{1} v_{2}^{4} a_{1}-v_{1}^{4} v_{2} b_{1}-2 v_{1}^{2} v_{2}^{3} b_{1} \\
& -v_{2}^{5} b_{1}+v_{1}^{2} v_{3} v_{2} a_{1}+v_{3} v_{2}^{3} a_{1}-3 v_{1}^{4} a_{2}-2 v_{1}^{2} v_{2}^{2} a_{2}+v_{2}^{4} a_{2}-4 v_{1}^{3} v_{2} a_{3} \\
& -4 v_{1} v_{2}^{3} a_{3}-v_{1}^{3} v_{3} b_{1}-v_{1} v_{3} v_{2}^{2} b_{1}-4 v_{1}^{3} v_{2} b_{2}-4 v_{1} v_{2}^{3} b_{2}+v_{1}^{4} b_{3}-2 v_{1}^{2} v_{2}^{2} b_{3} \\
& -3 v_{2}^{4} b_{3}-2 v_{1}^{3} a_{1}-2 v_{1} v_{2}^{2} a_{1}-2 v_{1}^{2} v_{2} b_{1}-2 v_{2}^{3} b_{1}+v_{3} v_{2} a_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-2 b_{3}\right) v_{1}^{5} v_{2} v_{3}+\left(-a_{3}-b_{2}\right) v_{1}^{4} v_{2}^{2} v_{3}+\left(4 a_{2}-4 b_{3}\right) v_{1}^{3} v_{2}^{3} v_{3} \\
& \quad+\left(a_{3}+b_{2}\right) v_{1}^{2} v_{2}^{4} v_{3}+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2}^{5} v_{3}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2} v_{2}^{2} \\
& \quad+\left(-3 a_{3}-3 b_{2}\right) v_{1} v_{2}^{5}+\left(-4 a_{3}-4 b_{2}\right) v_{1} v_{2}^{3}+\left(a_{3}+b_{2}\right) v_{2}^{6} v_{3} \\
& \quad+\left(-a_{3}-b_{2}\right) v_{1}^{6} v_{3}+\left(-3 a_{3}-3 b_{2}\right) v_{1}^{5} v_{2}+\left(-6 a_{3}-6 b_{2}\right) v_{1}^{3} v_{2}^{3} \tag{8E}\\
& \quad+\left(-4 a_{3}-4 b_{2}\right) v_{1}^{3} v_{2}-v_{1} v_{3} v_{2}^{2} b_{1}+v_{3} v_{1}^{4} v_{2} a_{1}-2 v_{3} v_{1}^{3} v_{2}^{2} b_{1}+2 v_{3} v_{1}^{2} v_{2}^{3} a_{1} \\
& \quad-v_{3} v_{1} v_{2}^{4} b_{1}-2 v_{1}^{3} a_{1} 2 v_{2}^{3} b_{1}-v_{1}^{5} a_{1}-v_{2}^{5} b_{1}+v_{1}^{2} v_{3} v_{2} a_{1}+v_{3} v_{2}^{3} a_{1} \\
& \quad-v_{3} v_{1} b_{1}+v_{3} v_{2} a_{1}-v_{1}^{3} v_{3} b_{1}-3 v_{1}^{4} v_{2}^{2} a_{2}-3 v_{1}^{2} v_{2}^{4} b_{3}-v_{1}^{4} v_{2} b_{1}-2 v_{1}^{3} v_{2}^{2} a_{1} \\
& \quad-2 v_{1}^{2} v_{2}^{3} b_{1}-v_{1} v_{2}^{4} a_{1}-v_{3} v_{1}^{5} b_{1}+v_{3} v_{2}^{5} a_{1}-2 v_{1}^{2} v_{2} b_{1}-2 v_{1} v_{2}^{2} a_{1} \\
& \quad+\left(-2 a_{2}+b_{3}\right) v_{1}^{6}+\left(-3 a_{2}+b_{3}\right) v_{1}^{4}+\left(a_{2}-2 b_{3}\right) v_{2}^{6}+\left(a_{2}-3 b_{3}\right) v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
-3 a_{2} & =0 \\
-2 b_{1} & =0 \\
-b_{1} & =0 \\
-3 b_{3} & =0 \\
-3 a_{2}+b_{3} & =0 \\
-2 a_{2}-2 b_{3} & =0 \\
-2 a_{2}+b_{3} & =0 \\
a_{2}-3 b_{3} & =0 \\
a_{2}-2 b_{3} & =0 \\
2 a_{2}-2 b_{3} & =0 \\
4 a_{2}-4 b_{3} & =0 \\
-6 a_{3}-6 b_{2} & =0 \\
-4 a_{3}-4 b_{2} & =0 \\
-3 a_{3}-3 b_{2} & =0 \\
-a_{3}-b_{2} & =0 \\
a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-y \\
& \eta=x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(\frac{x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x}\right)(-y) \\
& =\frac{x^{2} \sqrt{x^{2}+y^{2}+1}+y^{2} \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2} \sqrt{x^{2}+y^{2}+1}+y^{2} \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1}}} d y
\end{aligned}
$$

Which results in

$$
S=\arctan \left(\frac{y}{x}\right)-\sqrt{x^{2}+y^{2}+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}+y^{2}}-\frac{x}{\sqrt{x^{2}+y^{2}+1}} \\
S_{y} & =\frac{x}{x^{2}+y^{2}}-\frac{y}{\sqrt{x^{2}+y^{2}+1}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\arctan \left(\frac{y}{x}\right)-\sqrt{1+x^{2}+y^{2}}=c_{1}
$$

Which simplifies to

$$
\arctan \left(\frac{y}{x}\right)-\sqrt{1+x^{2}+y^{2}}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}+x y^{2}+y \sqrt{x^{2}+y^{2}+1}}{-x^{2} y-y^{3}+\sqrt{x^{2}+y^{2}+1} x}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\rightarrow \cdot$
	$S=\arctan \left(\frac{y}{x}\right)-\sqrt{x^{2}+}$	
dididx		$\xrightarrow[\rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow{\rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇

Summary

The solution(s) found are the following

$$
\begin{equation*}
\arctan \left(\frac{y}{x}\right)-\sqrt{1+x^{2}+y^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 191: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{x}\right)-\sqrt{1+x^{2}+y^{2}}=c_{1}
$$

Verified OK.
Maple trace
'Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries differential order: 1; found: 1 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful-
\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 25
dsolve $\left(\left(x^{\wedge} 2+y(x)^{\wedge} 2\right) *(x+y(x) * \operatorname{diff}(y(x), x))+\left(1+x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(1 / 2) *(y(x)-x * \operatorname{diff}(y(x), x))=0, y(x)\right.$,

$$
\arctan \left(\frac{x}{y(x)}\right)+\sqrt{1+x^{2}+y(x)^{2}}-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.454 (sec). Leaf size: 27
DSolve $\left[\left(x^{\wedge} 2+y[x] \sim 2\right) *(x+y[x] * y '[x])+\left(1+x^{\wedge} 2+y[x] \sim 2\right)^{\wedge}(1 / 2) *\left(y[x]-x * y^{\prime}[x]\right)==0, y[x], x\right.$, IncludeSing

$$
\text { Solve }\left[\arctan \left(\frac{x}{y(x)}\right)+\sqrt{x^{2}+y(x)^{2}+1}=c_{1}, y(x)\right]
$$

12.26 problem Ex 27

12.26.1 Solving as homogeneousTypeD2 ode 909
12.26.2 Solving as first order ode lie symmetry calculated ode 911

Internal problem ID [11196]
Internal file name [OUTPUT/10181_Saturday_December_03_2022_08_03_31_AM_44121981/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\mathrm{e}^{\frac{y}{x}}+\mathrm{e}^{\frac{x}{y}}\left(1-\frac{x}{y}\right) y^{\prime}=-1
$$

12.26.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\mathrm{e}^{u(x)}+\mathrm{e}^{\frac{1}{u(x)}}\left(1-\frac{1}{u(x)}\right)\left(u^{\prime}(x) x+u(x)\right)=-1
$$

In canonical form the $O D E$ is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(\mathrm{e}^{-\frac{1}{u}+u}+\mathrm{e}^{-\frac{1}{u}}+u-1\right)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{\left(\mathrm{e}^{-\frac{1}{u}+u}+\mathrm{e}^{-\frac{1}{u}}+u-1\right) u}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\left(\mathrm{e}^{-\frac{1}{u}+u}+\mathrm{e}^{-\frac{1}{u}}+u-1\right) u}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{\left(\mathrm{e}^{-\frac{1}{u}+u}+\mathrm{e}^{-\frac{1}{u}}+u-1\right) u}{u-1}} d u & =\int-\frac{1}{x} d x \\
\int^{u} \frac{a-1}{\left(\mathrm{e}^{-\frac{1}{-a}+-a}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a & =-\ln (x)+c_{2}
\end{aligned}
$$

Which results in

$$
\int^{u} \frac{-a-1}{\left(\mathrm{e}^{-\frac{1}{-a}+-a}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a=-\ln (x)+c_{2}
$$

The solution is

$$
\int^{u(x)} \frac{_^{a-1}}{\left(\mathrm{e}^{-\frac{1}{-a}+_a}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{array}{r}
\int^{\frac{y}{x}} \frac{-a-1}{\left(\mathrm{e}^{-\frac{1}{-a}+_a}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a+\ln (x)-c_{2}=0 \\
\int^{\frac{y}{x}} \frac{-a-1}{\left(\mathrm{e}^{\frac{(a-1)(a+1)}{-a}}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a+\ln (x)-c_{2}=0
\end{array}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{\frac{y}{x}} \frac{-a-1}{\left(\mathrm{e}^{\frac{(a-1)(-a+1)}{-a}}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot
Verification of solutions

$$
\int^{\frac{y}{x}} \frac{a^{a-1}}{\left(\mathrm{e}^{\frac{(a-1)(a+1)}{-a}}+\mathrm{e}^{-\frac{1}{-a}}+_a-1\right) _a} d _a+\ln (x)-c_{2}=0
$$

Verified OK.

12.26.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{y-x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{equation*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}
\end{equation*}
$$

$$
\begin{equation*}
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{equation*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2}\left(\mathrm{e}^{\frac{y}{x}}+1\right)^{2} \mathrm{e}^{-\frac{2 x}{y}} a_{3}}{(y-x)^{2}} \\
& -\left(\frac{y^{2} \mathrm{e}^{\frac{y}{x}} \mathrm{e}^{-\frac{x}{y}}}{x^{2}(y-x)}+\frac{\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{y-x}-\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{(y-x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{y-x}-\frac{y \mathrm{e}^{\frac{y}{x}} \mathrm{e}^{-\frac{x}{y}}}{x(y-x)}-\frac{\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}} x}{y(y-x)}\right. \\
+ & \left.\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\left(-\mathrm{e}^{\frac{x}{y}} x^{5} b_{2}-\mathrm{e}^{\frac{x}{y}} x^{4} b_{1}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{4} y a_{2}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{4} y b_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} a_{2}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} a_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} b_{2}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} b_{3}\right.$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -\mathrm{e}^{\frac{x}{y}} x^{5} b_{2}-\mathrm{e}^{\frac{x}{y}} x^{4} b_{1}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{4} y a_{2}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{4} y b_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} a_{2} \\
& +\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{x}{x}} x^{3} y^{2} a_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} b_{2}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{3} y^{2} b_{3}+2 \mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{2} y^{3} a_{2}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{x}{x}} x^{2} y^{3} b_{2} \\
& -2 \mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{2} y^{3} b_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x y^{4} a_{2}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x y^{4} a_{3}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{x}{x}} x y^{4} b_{3}+\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{x}{x}} x^{3} y a_{1} \tag{6E}\\
& -\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{2}{x}} x^{2} y^{2} b_{1}+\mathrm{e}^{\frac{2}{y}} \mathrm{e}^{\frac{2}{x}} x y^{3} a_{1}+\mathrm{e}^{\frac{2}{y}} \mathrm{e}^{\frac{2}{x}} x y^{3} b_{1}+\mathrm{e}^{\frac{2 x}{y}} x^{4} y b_{2}-2 \mathrm{e}^{\frac{2 x}{y}} x^{3} y^{2} b_{2} \\
& +\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} b_{2}-\mathrm{e}^{\frac{x}{x}} x^{2} y^{3} a_{3}-y^{3} a_{3} x^{2}-\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} a_{2}+\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} a_{3}+\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} b_{3} \\
& +\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} a_{2}-\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} b_{3}-2 \mathrm{e}^{\frac{x}{x}} x^{2} y^{3} a_{3}+\mathrm{e}^{\frac{x}{y}} x^{3} y a_{1}-\mathrm{e}^{\frac{x}{y}} \frac{y}{x}^{5} b_{2} \\
& -\mathrm{e}^{\frac{y}{y}} \mathrm{e}^{\frac{y}{x}} y^{5} a_{3}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} x^{4} b_{1}-\mathrm{e}^{\frac{x}{y}} \mathrm{e}^{\frac{y}{x}} y^{4} a_{1}+\mathrm{e}^{\frac{y}{y}} x^{4} y a_{2}-\mathrm{e}^{\frac{1}{y}} x^{4} y b_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\mathrm{e}^{\frac{x}{y}} x^{5} b_{2}-\mathrm{e}^{\frac{x}{y}} x^{4} b_{1}-x y^{4} a_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x y^{4} a_{3} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x y^{4} b_{3} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}} \\
& +x^{3} y a_{1} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}-x^{2} y^{2} b_{1} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x y^{3} a_{1} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x y^{3} b_{1} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x^{4} y a_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}} \\
& -x^{4} y b_{3} \mathrm{e}^{\frac{x}{4}+\frac{y}{x}}-x^{3} y^{2} a_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x^{3} y^{2} a_{3} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}-x^{3} y^{2} b_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x^{3} y^{2} b_{3} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}} \tag{6E}\\
& +2 x^{2} y^{3} a_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}+x^{2} y^{3} b_{2} \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}-2 x^{2} y^{3} b_{3} \mathrm{e}^{\frac{2 x}{y}+\frac{y}{x}}+\mathrm{e}^{\frac{2 x}{y}} x^{4} y b_{2}-2 \mathrm{e}^{\frac{2 x}{y}} x^{3} y^{2} b_{2} \\
& +\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} b_{2}-\mathrm{e}^{\frac{2 y}{x}} x^{2} y^{3} a_{3}-x^{5} b_{2} \mathrm{e}^{\frac{y}{y}+\frac{y}{x}}-y^{5} a_{3} \mathrm{e}^{\frac{y}{y}+\frac{x}{x}}-x^{4} b_{1} \mathrm{e}^{\frac{y}{y}+\frac{y}{x}} \\
& -y^{4} a_{1} \mathrm{e}^{\frac{y}{y}+\frac{y}{x}}-y^{3} a_{3} x^{2}-\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} a_{2}+\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} a_{3}+\mathrm{e}^{\frac{x}{y}} x^{3} y^{2} b_{3}+\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} a_{2} \\
& -\mathrm{e}^{\frac{x}{y}} x^{2} y^{3} b_{3}-2 \mathrm{e}^{\frac{y}{x}} x^{2} y^{3} a_{3}+\mathrm{e}^{\frac{x}{y}} x^{3} y a_{1}+\mathrm{e}^{\frac{x}{y}} x^{4} y a_{2}-\mathrm{e}^{\frac{x}{y}} x^{4} y b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{\frac{y}{x}}, \mathrm{e}^{\frac{x}{y}}, \mathrm{e}^{\frac{2 y}{x}}, \mathrm{e}^{\frac{2 x}{y}}, \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{\frac{y}{x}}=v_{3}, \mathrm{e}^{\frac{x}{y}}=v_{4}, \mathrm{e}^{\frac{2 y}{x}}=v_{5}, \mathrm{e}^{\frac{2 x}{y}}=v_{6}, \mathrm{e}^{\frac{x}{y}+\frac{y}{x}}=v_{7}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& v_{4} v_{1}^{4} v_{2} a_{2}+v_{1}^{4} v_{2} a_{2} v_{7}-v_{4} v_{1}^{3} v_{2}^{2} a_{2}-v_{1}^{3} v_{2}^{2} a_{2} v_{7}+v_{4} v_{1}^{2} v_{2}^{3} a_{2}+2 v_{1}^{2} v_{2}^{3} a_{2} v_{7} \\
& \quad-v_{1} v_{2}^{4} a_{2} v_{7}+v_{4} v_{1}^{3} v_{2}^{2} a_{3}+v_{1}^{3} v_{2}^{2} a_{3} v_{7}-2 v_{3} v_{1}^{2} v_{2}^{3} a_{3}-v_{5} v_{1}^{2} v_{2}^{3} a_{3}+v_{1} v_{2}^{4} a_{3} v_{7} \\
& \quad-v_{2}^{5} a_{3} v_{7}-v_{4} v_{1}^{5} b_{2}-v_{1}^{5} b_{2} v_{7}+v_{6} v_{1}^{4} v_{2} b_{2}-2 v_{6} v_{1}^{3} v_{2}^{2} b_{2}-v_{1}^{3} v_{2}^{2} b_{2} v_{7} \tag{7E}\\
& \quad+v_{6} v_{1}^{2} v_{2}^{3} b_{2}+v_{1}^{2} v_{2}^{3} b_{2} v_{7}-v_{4} v_{1}^{4} v_{2} b_{3}-v_{1}^{4} v_{2} b_{3} v_{7}+v_{4} v_{1}^{3} v_{2}^{2} b_{3}+v_{1}^{3} v_{2}^{2} b_{3} v_{7} \\
& \quad-v_{4} v_{1}^{3} v_{2}^{3} b_{3}-2 v_{1}^{2} v_{2}^{3} b_{3} v_{7}+v_{1} v_{2}^{4} b_{3} v_{7}+v_{4} v_{1}^{3} v_{2} a_{1}+v_{1}^{3} v_{2} a_{1} v_{7}+v_{1} v_{2}^{3} a_{1} v_{7} \\
& \quad-v_{2}^{4} a_{1} v_{7}-v_{2}^{3} a_{3} v_{1}^{2}-v_{4} v_{1}^{4} b_{1}-v_{1}^{4} b_{1} v_{7}-v_{1}^{2} v_{2}^{2} b_{1} v_{7}+v_{1} v_{2}^{3} b_{1} v_{7}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{4} v_{1}^{5} b_{2}-v_{1}^{5} b_{2} v_{7}+\left(-b_{3}+a_{2}\right) v_{1}^{4} v_{2} v_{4}+v_{6} v_{1}^{4} v_{2} b_{2}+\left(-b_{3}+a_{2}\right) v_{1}^{4} v_{2} v_{7} \\
& \quad-v_{4} v_{1}^{4} b_{1}-v_{1}^{4} b_{1} v_{7}+\left(-a_{2}+a_{3}+b_{3}\right) v_{1}^{3} v_{2}^{2} v_{4}-2 v_{6} v_{1}^{3} v_{2}^{2} b_{2} \tag{8E}\\
& +\left(-a_{2}+a_{3}-b_{2}+b_{3}\right) v_{1}^{3} v_{2}^{2} v_{7}+v_{4} v_{1}^{3} v_{2} a_{1}+v_{1}^{3} v_{2} a_{1} v_{7}-2 v_{3} v_{1}^{2} v_{2}^{3} a_{3} \\
& +\left(-b_{3}+a_{2}\right) v_{1}^{2} v_{2}^{3} v_{4}-v_{5} v_{1}^{2} v_{2}^{3} a_{3}+v_{6} v_{1}^{2} v_{2}^{3} b_{2}+\left(2 a_{2}+b_{2}-2 b_{3}\right) v_{1}^{2} v_{2}^{3} v_{7}-v_{2}^{3} a_{3} v_{1}^{2} \\
& \quad-v_{1}^{2} v_{2}^{2} b_{1} v_{7}+\left(-a_{2}+a_{3}+b_{3}\right) v_{1} v_{2}^{4} v_{7}+\left(a_{1}+b_{1}\right) v_{1} v_{2}^{3} v_{7}-v_{2}^{5} a_{3} v_{7}-v_{2}^{4} a_{1} v_{7}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-2 b_{2} & =0 \\
-b_{2} & =0 \\
a_{1}+b_{1} & =0 \\
-b_{3}+a_{2} & =0 \\
-a_{2}+a_{3}+b_{3} & =0 \\
2 a_{2}+b_{2}-2 b_{3} & =0 \\
-a_{2}+a_{3}-b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x \mathrm{e}^{\frac{x}{y}}(-y+x)}{y\left(\mathrm{e}^{\frac{x}{y}}(y-x)+x\left(\mathrm{e}^{\frac{y}{x}}+1\right)\right)} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{\mathrm{e}^{\frac{1}{R}}(R-1)}{R\left((R-1) \mathrm{e}^{\frac{1}{R}}+\mathrm{e}^{R}+1\right)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int-\frac{\mathrm{e}^{\frac{1}{R}}(R-1)}{R\left(\mathrm{e}^{\frac{1}{R}} R+\mathrm{e}^{R}-\mathrm{e}^{\frac{1}{R}}+1\right)} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\int^{\frac{y}{x}}-\frac{\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)}{-a\left(\mathrm{e}^{\frac{1}{-a}}-a+\mathrm{e}^{a}-\mathrm{e}^{\frac{1}{-a}}+1\right)} d _a+c_{1}
$$

Which simplifies to

$$
\ln (x)+\int^{\frac{y}{x}} \frac{\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)}{-a\left(\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)+\mathrm{e}^{a}+1\right)} d _a-c_{1}=0
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(\mathrm{e}^{\frac{y}{x}}+1\right) \mathrm{e}^{-\frac{x}{y}}}{y-x}$		$\frac{d S}{d R}=-\frac{\mathrm{e}^{\frac{1}{R}}(R-1)}{R\left((R-1) \mathrm{e}^{\frac{1}{R}}+\mathrm{e}^{R}+1\right)}$
		$\rightarrow \rightarrow \rightarrow \infty$ 为 $S^{(}(R)$
	$R=\frac{y}{x}$	
	$R=\frac{y}{x}$	$\xrightarrow{+}$
	$S=\ln (x)$	
		\rightarrow
		$\rightarrow \pm \rightarrow$ -
		$\rightarrow \rightarrow$ - ${ }_{\text {a }}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln (x)+\int^{\frac{y}{x}} \frac{\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)}{-a\left(\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)+\mathrm{e}^{a}+1\right)} d _a-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 193: Slope field plot

Verification of solutions

$$
\ln (x)+\int^{\frac{y}{x}} \frac{\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)}{-a\left(\mathrm{e}^{\frac{1}{-a}}\left(_a-1\right)+\mathrm{e}^{a}+1\right)} d _a-c_{1}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
dsolve $((1+\exp (y(x) / x))+\exp (x / y(x)) *(1-x / y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\operatorname{RootOf}\left(\int^{-^{Z} \frac{\mathrm{e}^{\frac{1}{-a}}}{-a\left(_a-1\right)}} \underset{\left.-a \mathrm{e}^{\frac{1}{-a}}+\mathrm{e}^{a}-\mathrm{e}^{\frac{1}{-^{a}}}+1\right)}{ } _a+\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.429 (sec). Leaf size: 63
DSolve $\left[(1+\operatorname{Exp}[y[x] / x])+\operatorname{Exp}[x / y[x]] *(1-x / y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{e^{\frac{1}{K[1]}}(K[1]-1)}{K[1]\left(e^{\frac{1}{K[1]}} K[1]+e^{K[1]}-e^{\frac{1}{K[1]}}+1\right)} d K[1]=-\log (x)+c_{1}, y(x)\right]
$$

12.27 problem Ex 28

12.27.1 Solving as first order ode lie symmetry lookup ode 920
12.27.2 Solving as bernoulli ode . 924
12.27.3 Solving as exact ode . 928
12.27.4 Solving as riccati ode . 933

Internal problem ID [11197]
Internal file name [OUTPUT/10182_Saturday_December_03_2022_08_03_33_AM_61242619/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime} x+y-y^{2} \ln (x)=0
$$

12.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(\ln (x) y-1)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 107: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x y^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x y^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{x y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(\ln (x) y-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{2} y} \\
S_{y} & =\frac{1}{x y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\ln (x)}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\ln (R)}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{R}-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{y x}=-\frac{\ln (x)}{x}-\frac{1}{x}+c_{1}
$$

Which simplifies to

$$
\frac{-c_{1} x y+y \ln (x)+y-1}{x y}=0
$$

Which gives

$$
y=\frac{1}{-c_{1} x+\ln (x)+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-c_{1} x+\ln (x)+1} \tag{1}
\end{equation*}
$$

Figure 194: Slope field plot

Verification of solutions

$$
y=\frac{1}{-c_{1} x+\ln (x)+1}
$$

Verified OK.

12.27.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(\ln (x) y-1)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{\ln (x)}{x} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{\ln (x)}{x} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{1}{x y}+\frac{\ln (x)}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{w(x)}{x}+\frac{\ln (x)}{x} \\
w^{\prime} & =\frac{w}{x}-\frac{\ln (x)}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =-\frac{\ln (x)}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=-\frac{\ln (x)}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{\ln (x)}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x}\right) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\left(-\frac{\ln (x)}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int-\frac{\ln (x)}{x^{2}} \mathrm{~d} x \\
& \frac{w}{x}=\frac{\ln (x)}{x}+\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=x\left(\frac{\ln (x)}{x}+\frac{1}{x}\right)+c_{1} x
$$

which simplifies to

$$
w(x)=c_{1} x+\ln (x)+1
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=c_{1} x+\ln (x)+1
$$

Or

$$
y=\frac{1}{c_{1} x+\ln (x)+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{c_{1} x+\ln (x)+1} \tag{1}
\end{equation*}
$$

Figure 195: Slope field plot

Verification of solutions

$$
y=\frac{1}{c_{1} x+\ln (x)+1}
$$

Verified OK.

12.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-y+y^{2} \ln (x)\right) \mathrm{d} x \\
\left(-y^{2} \ln (x)+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2} \ln (x)+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2} \ln (x)+y\right) \\
& =-2 \ln (x) y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-2 \ln (x) y+1)-(1)) \\
& =-\frac{2 \ln (x) y}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{y(\ln (x) y-1)}((1)-(-2 \ln (x) y+1)) \\
& =-\frac{2 \ln (x)}{\ln (x) y-1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-(-2 \ln (x) y+1)}{x\left(-y^{2} \ln (x)+y\right)-y(x)} \\
& =-\frac{2}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{2}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{2} y^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2} y^{2}}\left(-y^{2} \ln (x)+y\right) \\
& =\frac{-\ln (x) y+1}{x^{2} y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2} y^{2}}(x) \\
& =\frac{1}{x y^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-\ln (x) y+1}{x^{2} y}\right)+\left(\frac{1}{x y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-\ln (x) y+1}{x^{2} y} \mathrm{~d} x \\
\phi & =\frac{\ln (x) y+y-1}{x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{\ln (x)+1}{x y}-\frac{\ln (x) y+y-1}{x y^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{x y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x y^{2}}=\frac{1}{x y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln (x) y+y-1}{x y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln (x) y+y-1}{x y}
$$

The solution becomes

$$
y=\frac{1}{-c_{1} x+\ln (x)+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-c_{1} x+\ln (x)+1} \tag{1}
\end{equation*}
$$

Figure 196: Slope field plot

Verification of solutions

$$
y=\frac{1}{-c_{1} x+\ln (x)+1}
$$

Verified OK.

12.27.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(\ln (x) y-1)}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2} \ln (x)}{x}-\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=\frac{\ln (x)}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{\ln (x) u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}} \\
f_{1} f_{2} & =-\frac{\ln (x)}{x^{2}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{\ln (x) u^{\prime \prime}(x)}{x}-\left(-\frac{2 \ln (x)}{x^{2}}+\frac{1}{x^{2}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{-c_{2} \ln (x)+c_{1} x-c_{2}}{x}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2} \ln (x)}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{-c_{2} \ln (x)+c_{1} x-c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{1}{-c_{3} x+\ln (x)+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-c_{3} x+\ln (x)+1} \tag{1}
\end{equation*}
$$

Figure 197: Slope field plot

Verification of solutions

$$
y=\frac{1}{-c_{3} x+\ln (x)+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve($x * \operatorname{diff}(y(x), x)+y(x)-y(x)^{\wedge} 2 * \ln (x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\frac{1}{1+c_{1} x+\ln (x)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 20
DSolve $[x * y$ ' $[x]+y[x]-y[x] \sim 2 * \log [x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\log (x)+c_{1} x+1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

12.28 problem Ex 29

Internal problem ID [11198]
Internal file name [OUTPUT/10183_Saturday_December_03_2022_08_03_34_AM_20909120/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational]
Unable to solve or complete the solution.

$$
x^{3} y^{4}+y^{3} x^{2}+y^{2} x+y+\left(y^{3} x^{4}-y^{2} x^{3}-y x^{3}+x\right) y^{\prime}=0
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve((x^3*y(x)^4+x^2*y(x)^3+x*y(x)^2+y(x))+(x^4*y(x)^3-x^3*y(x)^2-x^3*y(x)+x)*diff(y(x),x)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} 3 * y[x] \wedge 4+x^{\wedge} 2 * y[x] \wedge 3+x * y[x] \wedge 2+y[x]\right)+\left(x^{\wedge} 4 * y[x] \wedge 3-x^{\wedge} 3 * y[x] \wedge 2-x^{\wedge} 3 * y[x]+x\right) * y{ }^{\prime}[x]==0, y[x\right.$

Not solved

12.29 problem Ex 30

12.29.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [11199]
Internal file name [OUTPUT/10184_Saturday_December_03_2022_08_03_35_AM_35982736/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter 2, differential equations of the first order and the first degree. Article 19.
Summary. Page 29
Problem number: Ex 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
(2 \sqrt{y x}-x) y^{\prime}+y=0
$$

12.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{2 \sqrt{x y}-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(b_{3}-a_{2}\right)}{2 \sqrt{x y}-x}-\frac{y^{2} a_{3}}{(2 \sqrt{x y}-x)^{2}}-\frac{y\left(\frac{y}{\sqrt{x y}}-1\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{(2 \sqrt{x y}-x)^{2}} \tag{5E}\\
& -\left(-\frac{1}{2 \sqrt{x y}-x}+\frac{y x}{(2 \sqrt{x y}-x)^{2} \sqrt{x y}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\frac{4(x y)^{\frac{3}{2}} b_{2}-3 x^{2} y b_{2}+x y^{2} a_{2}-x y^{2} b_{3}-y^{3} a_{3}+x y b_{1}-\sqrt{x y} x b_{1}+\sqrt{x y} y a_{1}-y^{2} a_{1}}{(2 \sqrt{x y}-x)^{2} \sqrt{x y}}=0
$$

Setting the numerator to zero gives
$4(x y)^{\frac{3}{2}} b_{2}-3 x^{2} y b_{2}+x y^{2} a_{2}-x y^{2} b_{3}-y^{3} a_{3}+x y b_{1}-\sqrt{x y} x b_{1}+\sqrt{x y} y a_{1}-y^{2} a_{1}=0$

Since the PDE has radicals, simplifying gives

$$
-3 x^{2} y b_{2}+4 x y \sqrt{x y} b_{2}+x y^{2} a_{2}-x y^{2} b_{3}-y^{3} a_{3}-\sqrt{x y} x b_{1}+x y b_{1}+\sqrt{x y} y a_{1}-y^{2} a_{1}=0
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{x y}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x y}=v_{3}\right\}
$$

The above PDE (6E) now becomes
$v_{1} v_{2}^{2} a_{2}-v_{2}^{3} a_{3}-3 v_{1}^{2} v_{2} b_{2}+4 v_{1} v_{2} v_{3} b_{2}-v_{1} v_{2}^{2} b_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}+v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-3 v_{1}^{2} v_{2} b_{2}+\left(-b_{3}+a_{2}\right) v_{1} v_{2}^{2}+4 v_{1} v_{2} v_{3} b_{2}+v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}-v_{2}^{3} a_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-3 b_{2} & =0 \\
4 b_{2} & =0 \\
-b_{3}+a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{2 \sqrt{x y}-x}\right)(x) \\
& =\frac{2 y \sqrt{x y}}{2 \sqrt{x y}-x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y \sqrt{x y}}{2 \sqrt{x y}-x}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)+\frac{x}{\sqrt{x y}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{2 \sqrt{x y}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 \sqrt{x} \sqrt{y}} \\
S_{y} & =-\frac{-2 \sqrt{y}+\sqrt{x}}{2 y^{\frac{3}{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sqrt{x} \sqrt{y}-\sqrt{x y}}{\sqrt{x} \sqrt{y}(-2 \sqrt{x y}+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y) \sqrt{y}+\sqrt{x}}{\sqrt{y}}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y) \sqrt{y}+\sqrt{x}}{\sqrt{y}}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y) \sqrt{y}+\sqrt{x}}{\sqrt{y}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 198: Slope field plot

Verification of solutions

$$
\frac{\ln (y) \sqrt{y}+\sqrt{x}}{\sqrt{y}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 18
dsolve $((2 * \operatorname{sqrt}(x * y(x))-x) * \operatorname{diff}(y(x), x)+y(x)=0, y(x), \quad$ singsol=all)

$$
\ln (y(x))+\frac{x}{\sqrt{y(x) x}}-c_{1}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 33
DSolve[(2*Sqrt [x*y[x]]-x)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\frac{2}{\sqrt{\frac{y(x)}{x}}}+2 \log \left(\frac{y(x)}{x}\right)=-2 \log (x)+c_{1}, y(x)\right]
$$

13 Chapter IV, differential equations of the first order and higher degree than the first. Article 24. Equations solvable for p. Page 49
13.1 problem Ex 1 949
13.2 problem Ex 2 952
13.3 problem Ex 3 957
13.4 problem Ex 4 961
13.5 problem Ex 5 967
13.6 problem Ex 6 970

13.1 problem Ex 1

13.1.1 Maple step by step solution

950
Internal problem ID [11200]
Internal file name [OUTPUT/10185_Tuesday_December_06_2022_03_59_36_AM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 1.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime 2}+(y+x) y^{\prime}+y x=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-x \tag{1}\\
& y^{\prime}=-y \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-x \mathrm{~d} x \\
& =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{2}}{2}+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y} d y & =\int d x \\
-\ln (y) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{y}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x}}{c_{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x}}{c_{3}}
$$

Verified OK.

13.1.1 Maple step by step solution

Let's solve

$$
y^{\prime 2}+(y+x) y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(y^{\prime 2}+(y+x) y^{\prime}+y x\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(y^{\prime 2}+(y+x) y^{\prime}+y x\right) d x=c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff (y(x),x)^2+(x+y(x))*diff(y(x),x)+x*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{x^{2}}{2}+c_{1} \\
& y(x)=c_{1} \mathrm{e}^{-x}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 32
DSolve[(y' $[x])^{\wedge} 2+(x+y[x]) * y '[x]+x * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-x} \\
& y(x) \rightarrow-\frac{x^{2}}{2}+c_{1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

13.2 problem Ex 2

13.2.1 Solving as dAlembert ode

952
Internal problem ID [11201]
Internal file name [OUTPUT/10186_Tuesday_December_06_2022_03_59_37_AM_40386715/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime 2}-2 y y^{\prime}=x
$$

13.2.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 y p=x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}-1\right)}{2 p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}-1}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}-1}{2 p}=x\left(1-\frac{p^{2}-1}{2 p^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}-1}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}-1}{2 p(x)}}{x\left(1-\frac{p(x)^{2}-1}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x \tag{1}\\
& y=i x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 32

```
dsolve(x*diff (y (x),x)^2-2*y(x)*diff (y (x), x)-x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x \\
& y(x)=i x \\
& y(x)=\frac{-c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 71
DSolve $\left[x *(y \text { ' }[x])^{\wedge} 2-2 * y[x] * y\right.$ ' $[x]-x==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-x^{2}+e^{2 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right) \\
& y(x) \rightarrow-i x \\
& y(x) \rightarrow i x
\end{aligned}
$$

13.3 problem Ex 3

13.3.1 Maple step by step solution

958
Internal problem ID [11202]
Internal file name [OUTPUT/10187_Tuesday_December_06_2022_03_59_38_AM_34633178/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{2}+y^{\prime 2}=1
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{1-y^{2}} \tag{1}\\
& y^{\prime}=-\sqrt{1-y^{2}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =x+c_{1} \\
\arcsin (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\sin \left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(x+c_{1}\right)
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+1}} d y & =x+c_{2} \\
-\arcsin (y) & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\sin \left(x+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin \left(x+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sin \left(x+c_{2}\right)
$$

Verified OK.

13.3.1 Maple step by step solution

Let's solve

$$
y^{2}+y^{\prime 2}=1
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{1-y^{2}}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\arcsin (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\sin \left(x+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
    *** Sublevel 2
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    <- differential order: 1; missing x successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 29

```
dsolve(y(x)^2+diff(y(x),x)^2=1,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-1 \\
& y(x)=1 \\
& y(x)=-\sin \left(c_{1}-x\right) \\
& y(x)=\sin \left(c_{1}-x\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 39
DSolve[y[x] $2+\left(y^{\prime}[x]\right)^{\wedge} 2==1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(x+c_{1}\right) \\
& y(x) \rightarrow \cos \left(x-c_{1}\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \text { Interval }[\{-1,1\}]
\end{aligned}
$$

13.4 problem Ex 4

13.4.1 Maple step by step solution

964
Internal problem ID [11203]
Internal file name [OUTPUT/10188_Tuesday_December_06_2022_03_59_39_AM_88112184/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 4.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

[_linear]

$$
\left(2 y^{\prime} x-y\right)^{2}=8 x^{3}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{y+2 \sqrt{2} x^{\frac{3}{2}}}{2 x} \tag{1}\\
& y^{\prime}=\frac{y-2 \sqrt{2} x^{\frac{3}{2}}}{2 x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\sqrt{x} \sqrt{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=\sqrt{x} \sqrt{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x} \sqrt{2}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)(\sqrt{x} \sqrt{2}) \\
\mathrm{d}\left(\frac{y}{\sqrt{x}}\right) & =\sqrt{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x}}=\int \sqrt{2} \mathrm{~d} x \\
& \frac{y}{\sqrt{x}}=\sqrt{2} x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=\sqrt{2} x^{\frac{3}{2}}+c_{1} \sqrt{x}
$$

which simplifies to

$$
y=\sqrt{x}\left(\sqrt{2} x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x}\left(\sqrt{2} x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{x}\left(\sqrt{2} x+c_{1}\right)
$$

Verified OK.
Solving equation (2)

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\sqrt{x} \sqrt{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=-\sqrt{x} \sqrt{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-\sqrt{x} \sqrt{2}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)(-\sqrt{x} \sqrt{2}) \\
\mathrm{d}\left(\frac{y}{\sqrt{x}}\right) & =(-\sqrt{2}) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x}}=\int-\sqrt{2} \mathrm{~d} x \\
& \frac{y}{\sqrt{x}}=-\sqrt{2} x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=-\sqrt{2} x^{\frac{3}{2}}+c_{2} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{2} x^{\frac{3}{2}}+c_{2} \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sqrt{2} x^{\frac{3}{2}}+c_{2} \sqrt{x}
$$

Verified OK.

13.4.1 Maple step by step solution

Let's solve
$\left(2 y^{\prime} x-y\right)^{2}=8 x^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{2 x}+\sqrt{x} \sqrt{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{2 x}=\sqrt{x} \sqrt{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{2 x}\right)=\mu(x) \sqrt{x} \sqrt{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{2 x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{2 x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\sqrt{x}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} \sqrt{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{x} \sqrt{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} \sqrt{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sqrt{x}}$
$y=\sqrt{x}\left(\int \sqrt{2} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\sqrt{x}\left(\sqrt{2} x+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
* Tackling next ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 30

```
dsolve((2*x*diff(y(x),x)-y(x))^2=8*x^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(-x \sqrt{2}+c_{1}\right) \sqrt{x} \\
& y(x)=\left(x \sqrt{2}+c_{1}\right) \sqrt{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 42
DSolve[(2*x*y'[x]-y[x])^2==8*x^3,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt{x}\left(-\sqrt{2} x+c_{1}\right) \\
& y(x) \rightarrow \sqrt{x}\left(\sqrt{2} x+c_{1}\right)
\end{aligned}
$$

13.5 problem Ex 5

13.5.1 Maple step by step solution

968
Internal problem ID [11204]
Internal file name [OUTPUT/10189_Tuesday_December_06_2022_03_59_40_AM_68924892/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 5.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
\left(x^{2}+1\right) y^{\prime 2}=1
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{1}{\sqrt{x^{2}+1}} \tag{1}\\
y^{\prime} & =-\frac{1}{\sqrt{x^{2}+1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{x^{2}+1}} \mathrm{~d} x \\
& =\operatorname{arcsinh}(x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{arcsinh}(x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{arcsinh}(x)+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{\sqrt{x^{2}+1}} \mathrm{~d} x \\
& =-\operatorname{arcsinh}(x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{arcsinh}(x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\operatorname{arcsinh}(x)+c_{2}
$$

Verified OK.

13.5.1 Maple step by step solution

Let's solve
$\left(x^{2}+1\right) y^{\prime 2}=1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int\left(x^{2}+1\right) y^{\prime 2} d x=\int 1 d x+c_{1}$
- Cannot compute integral

$$
\int\left(x^{2}+1\right) y^{\prime 2} d x=x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 17

```
dsolve((1+x^2)*diff (y(x),x)^2=1,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\operatorname{arcsinh}(x)+c_{1} \\
& y(x)=-\operatorname{arcsinh}(x)+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 45
DSolve[(1+x^2)*(y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\log \left(\sqrt{x^{2}+1}-x\right)+c_{1} \\
& y(x) \rightarrow \log \left(\sqrt{x^{2}+1}-x\right)+c_{1}
\end{aligned}
$$

13.6 problem Ex 6

13.6.1 Maple step by step solution

973
Internal problem ID [11205]
Internal file name [OUTPUT/10190_Tuesday_December_06_2022_03_59_41_AM_54585174/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 24. Equations solvable for p. Page 49
Problem number: Ex 6.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime 3}-\left(2 x+y^{2}\right) y^{\prime 2}+\left(x^{2}-y^{2}+2 y^{2} x\right) y^{\prime}-\left(x^{2}-y^{2}\right) y^{2}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=y^{2} \tag{1}\\
& y^{\prime}=-y+x \tag{2}\\
& y^{\prime}=y+x \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =x+c_{1} \\
-\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{x+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x+c_{1}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{x+c_{1}}
$$

Verified OK.
Solving equation (2)
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{gathered}
p(x)=1 \\
q(x)=x
\end{gathered}
$$

Hence the ode is

$$
y^{\prime}+y=x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(x \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int x \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}(x-1) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x-1+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-1+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x-1+c_{2} \mathrm{e}^{-x}
$$

Verified OK.
Solving equation (3)
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(x \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int x \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=-(1+x) \mathrm{e}^{-x}+c_{3}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=-\mathrm{e}^{x}(1+x) \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

which simplifies to

$$
y=-x-1+c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x-1+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x-1+c_{3} \mathrm{e}^{x}
$$

Verified OK.

13.6.1 Maple step by step solution

Let's solve

$$
y^{\prime 3}-\left(2 x+y^{2}\right) y^{\prime 2}+\left(x^{2}-y^{2}+2 y^{2} x\right) y^{\prime}-\left(x^{2}-y^{2}\right) y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=x+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff (y(x),x)^3-(2*x+y(x)^2)*diff (y (x),x)^2+(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-
```

$$
\begin{aligned}
& y(x)=\frac{1}{c_{1}-x} \\
& y(x)=-x-1+c_{1} \mathrm{e}^{x} \\
& y(x)=x-1+c_{1} \mathrm{e}^{-x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.276 (sec). Leaf size: 48
DSolve $\left[\left(y^{\prime}[x]\right) \wedge 3-(2 * x+y[x] \sim 2) *(y \prime[x]) \wedge 2+(x \wedge 2-y[x] \wedge 2+2 * x * y[x] \sim 2) * y{ }^{\prime}[x]-\left(x^{\wedge} 2-y[x] \wedge 2\right) * y[x] \wedge 2==0\right.$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{x+c_{1}} \\
& y(x) \rightarrow x+c_{1} e^{-x}-1 \\
& y(x) \rightarrow-x+c_{1} e^{x}-1 \\
& y(x) \rightarrow 0
\end{aligned}
$$

14 Chapter IV, differential equations of the first order and higher degree than the first. Article 25. Equations solvable for y. Page 52
14.1 problem Ex 1 976
14.2 problem Ex 2 981
14.3 problem Ex 3 985
14.4 problem Ex 4 990
14.5 problem Ex 5 1000
14.6 problem Ex 6 1013

14.1 problem Ex 1

14.1.1 Solving as dAlembert ode . 976

Internal problem ID [11206]
Internal file name [OUTPUT/10191_Tuesday_December_06_2022_03_59_42_AM_50556870/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 1.
ODE order: 1.
ODE degree: 0 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
2 y^{\prime} x-y+\ln \left(y^{\prime}\right)=0
$$

14.1.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
2 p x-y+\ln (p)=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=2 p x+\ln (p) \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=2 p \\
& g=\ln (p)
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p=\left(2 x+\frac{1}{p}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=-\infty
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x+\frac{1}{p(x)}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)+\frac{1}{p}}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=-\frac{1}{p^{2}}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=-\frac{1}{p^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(-\frac{1}{p^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)\left(-\frac{1}{p^{2}}\right) \\
\mathrm{d}\left(p^{2} x\right) & =-1 \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& p^{2} x=\int-1 \mathrm{~d} p \\
& p^{2} x=-p+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{2}$ results in

$$
x(p)=-\frac{1}{p}+\frac{c_{1}}{p^{2}}
$$

which simplifies to

$$
x(p)=\frac{-p+c_{1}}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\mathrm{e}^{-\operatorname{LambertW}\left(2 x \mathrm{e}^{y}\right)+y}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{2\left(-2 c_{1} x+\text { LambertW }\left(2 x \mathrm{e}^{y}\right)\right) x}{\text { LambertW }\left(2 x \mathrm{e}^{y}\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\infty \tag{1}\\
& x=-\frac{2\left(-2 c_{1} x+\text { LambertW }\left(2 x \mathrm{e}^{y}\right)\right) x}{\operatorname{LambertW}\left(2 x \mathrm{e}^{y}\right)^{2}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\infty
$$

Warning, solution could not be verified

$$
x=-\frac{2\left(-2 c_{1} x+\text { LambertW }\left(2 x \mathrm{e}^{y}\right)\right) x}{\text { LambertW }\left(2 x \mathrm{e}^{y}\right)^{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

```
dsolve(2*\operatorname{diff}(y(x),x)*x-y(x)+\operatorname{ln}(\operatorname{diff}(y(x),x))=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-1+\sqrt{4 c_{1} x+1}-\ln (2)+\ln \left(\frac{-1+\sqrt{4 c_{1} x+1}}{x}\right) \\
& y(x)=-1-\sqrt{4 c_{1} x+1}-\ln (2)+\ln \left(\frac{-1-\sqrt{4 c_{1} x+1}}{x}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 32
DSolve $\left[2 * y^{\prime}[x] * x-y[x]+\log \left[y^{\prime}[x]\right]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Solve $\left[W\left(2 x e^{y(x)}\right)-\log \left(W\left(2 x e^{y(x)}\right)+2\right)-y(x)=c_{1}, y(x)\right]$

14.2 problem Ex 2

14.2.1 Solving as dAlembert ode

Internal problem ID [11207]
Internal file name [OUTPUT/10192_Tuesday_December_06_2022_03_59_45_AM_82210746/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
4 x y^{\prime 2}+2 y^{\prime} x-y=0
$$

14.2.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
4 x p^{2}+2 p x-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\left(4 p^{2}+2 p\right) x \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=4 p^{2}+2 p \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-4 p^{2}-p=x(8 p+2) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-4 p^{2}-p=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=-\frac{1}{4}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=-\frac{x}{4}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-4 p(x)^{2}-p(x)}{x(8 p(x)+2)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\sqrt{x} p) & =0
\end{aligned}
$$

Integrating gives

$$
\sqrt{x} p=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
p(x)=\frac{c_{1}}{\sqrt{x}}
$$

Substituing the above solution for p in (2A) gives

$$
y=\left(\frac{4 c_{1}^{2}}{x}+\frac{2 c_{1}}{\sqrt{x}}\right) x
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=-\frac{x}{4} \tag{2}\\
& y=\left(\frac{4 c_{1}^{2}}{x}+\frac{2 c_{1}}{\sqrt{x}}\right) x \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=-\frac{x}{4}
$$

Verified OK.

$$
y=\left(\frac{4 c_{1}^{2}}{x}+\frac{2 c_{1}}{\sqrt{x}}\right) x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.063 (sec). Leaf size: 35

```
dsolve(4*x*diff(y(x),x)~2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{x}{4} \\
& y(x)=4 c_{1}+2 \sqrt{c_{1} x} \\
& y(x)=4 c_{1}-2 \sqrt{c_{1} x}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 72
DSolve[4*x*(y'[x])~2+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4} e^{2 c_{1}}\left(-2 \sqrt{x}+e^{2 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{4} e^{-4 c_{1}}\left(1+2 e^{2 c_{1}} \sqrt{x}\right) \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{x}{4}
\end{aligned}
$$

14.3 problem Ex 3

14.3.1 Solving as dAlembert ode

985
Internal problem ID [11208]
Internal file name [OUTPUT/10193_Tuesday_December_06_2022_03_59_47_AM_42602599/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
x y^{\prime 2}-2 y y^{\prime}=x
$$

14.3.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 y p=x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}-1\right)}{2 p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}-1}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}-1}{2 p}=x\left(1-\frac{p^{2}-1}{2 p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}-1}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}-1}{2 p(x)}}{x\left(1-\frac{p(x)^{2}-1}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x \tag{1}\\
& y=i x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

```
dsolve(x*diff (y (x),x)~2-2*y(x)*diff(y(x),x)-x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x \\
& y(x)=i x \\
& y(x)=\frac{-c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 71
DSolve[x*(y' $[x]$) $2-2 * y[x] * y$ ' $[x]-x==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-x^{2}+e^{2 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right) \\
& y(x) \rightarrow-i x \\
& y(x) \rightarrow i x
\end{aligned}
$$

14.4 problem Ex 4

14.4.1 Solving as first order ode lie symmetry calculated ode 990
14.4.2 Solving as riccati ode . 996

Internal problem ID [11209]
Internal file name [OUTPUT/10194_Tuesday_December_06_2022_03_59_48_AM_53887226/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
y^{\prime}+2 y x-y^{2}=x^{2}
$$

14.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x^{2}-2 x y+y^{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(x^{2}-2 x y+y^{2}\right)\left(b_{3}-a_{2}\right)-\left(x^{2}-2 x y+y^{2}\right)^{2} a_{3} \tag{5E}\\
& \quad-(2 x-2 y)\left(x a_{2}+y a_{3}+a_{1}\right)-(-2 x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -x^{4} a_{3}+4 x^{3} y a_{3}-6 x^{2} y^{2} a_{3}+4 x y^{3} a_{3}-y^{4} a_{3}-3 x^{2} a_{2}+2 x^{2} b_{2}+x^{2} b_{3}+4 x y a_{2} \\
& \quad-2 x y a_{3}-2 x y b_{2}-y^{2} a_{2}+2 y^{2} a_{3}-y^{2} b_{3}-2 x a_{1}+2 x b_{1}+2 y a_{1}-2 y b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{3}+4 x^{3} y a_{3}-6 x^{2} y^{2} a_{3}+4 x y^{3} a_{3}-y^{4} a_{3}-3 x^{2} a_{2}+2 x^{2} b_{2}+x^{2} b_{3}+4 x y a_{2} \tag{6E}\\
& \quad-2 x y a_{3}-2 x y b_{2}-y^{2} a_{2}+2 y^{2} a_{3}-y^{2} b_{3}-2 x a_{1}+2 x b_{1}+2 y a_{1}-2 y b_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}-3 a_{2} v_{1}^{2}+4 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-2 a_{3} v_{1} v_{2} \tag{7E}\\
& +2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{3} v_{1}^{2}-b_{3} v_{2}^{2}-2 a_{1} v_{1}+2 a_{1} v_{2}+2 b_{1} v_{1}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2}+\left(-3 a_{2}+2 b_{2}+b_{3}\right) v_{1}^{2} \tag{8E}\\
& \quad+4 a_{3} v_{1} v_{2}^{3}+\left(4 a_{2}-2 a_{3}-2 b_{2}\right) v_{1} v_{2}+\left(-2 a_{1}+2 b_{1}\right) v_{1} \\
& \quad-a_{3} v_{2}^{4}+\left(-a_{2}+2 a_{3}-b_{3}\right) v_{2}^{2}+\left(2 a_{1}-2 b_{1}\right) v_{2}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-6 a_{3} & =0 \\
-a_{3} & =0 \\
4 a_{3} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
2 a_{1}-2 b_{1} & =0 \\
-3 a_{2}+2 b_{2}+b_{3} & =0 \\
-a_{2}+2 a_{3}-b_{3} & =0 \\
4 a_{2}-2 a_{3}-2 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=b_{1} \\
& a_{2}=0 \\
& a_{3}=0 \\
& b_{1}=b_{1} \\
& b_{2}=0 \\
& b_{3}=0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(x^{2}-2 x y+y^{2}\right)(1) \\
& =-x^{2}+2 x y-y^{2}+1 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x^{2}+2 x y-y^{2}+1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y-x+1)}{2}-\frac{\ln (y-1-x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}-2 x y+y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{(x-y+1)(x-y-1)} \\
S_{y} & =-\frac{1}{(x-y+1)(x-y-1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-x+1)}{2}-\frac{\ln (y-1-x)}{2}=-x+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-x+1)}{2}-\frac{\ln (y-1-x)}{2}=-x+c_{1}
$$

Which gives

$$
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}-2 x y+y^{2}$		$\frac{d S}{d R}=-1$
		Aitititititidytiditititity
		is in thy x^{2} d
	$R=x$	1) ${ }^{\text {d }}$
	$S=\ln (y-x+1)$	- $1+2 \rightarrow 1 x^{2}+1$
	$S=\frac{2}{2}$	1
		$12 z^{2}$
		widy
		+4+1

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 199: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{-2 x+2 c_{1}}+\mathrm{e}^{-2 x+2 c_{1}}-x+1}{-1+\mathrm{e}^{-2 x+2 c_{1}}}
$$

Verified OK.

14.4.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}-2 x y+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}-2 x y+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}, f_{1}(x)=-2 x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-2 x \\
f_{2}^{2} f_{0} & =x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+2 x u^{\prime}(x)+x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{-\frac{x(x-2)}{2}}+c_{2} \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

The above shows that

$$
u^{\prime}(x)=-c_{1}(x-1) \mathrm{e}^{-\frac{x(x-2)}{2}}-c_{2} \mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{-c_{1}(x-1) \mathrm{e}^{-\frac{x(x-2)}{2}}-c_{2} \mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)}{c_{1} \mathrm{e}^{-\frac{x(x-2)}{2}}+c_{2} \mathrm{e}^{-\frac{x(x+2)}{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)}{c_{3} \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)}{c_{3} \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}} \tag{1}
\end{equation*}
$$

Figure 200: Slope field plot

Verification of solutions

$$
y=\frac{c_{3}(x-1) \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)}{c_{3} \mathrm{e}^{-\frac{x(x-2)}{2}}+\mathrm{e}^{-\frac{x(x+2)}{2}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29

```
dsolve(diff(y(x),x)+2*x*y(x)=x^2+y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}(-1+x) \mathrm{e}^{2 x}-x-1}{-1+\mathrm{e}^{2 x} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 29
DSolve[y'[x]+2*x*y[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow x+\frac{1}{\frac{1}{2}+c_{1} e^{2 x}}-1 \\
& y(x) \rightarrow x-1
\end{aligned}
$$

14.5 problem Ex 5

Internal problem ID [11210]
Internal file name [OUTPUT/10195_Tuesday_December_06_2022_03_59_50_AM_21624321/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 5.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
y+y^{\prime} x-x^{4} y^{\prime 2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{1+\sqrt{1+4 x^{2} y}}{2 x^{3}} \tag{1}\\
& y^{\prime}=-\frac{-1+\sqrt{1+4 x^{2} y}}{2 x^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{1+\sqrt{4 x^{2} y+1}}{2 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(1+\sqrt{4 x^{2} y+1}\right)\left(b_{3}-a_{2}\right)}{2 x^{3}}-\frac{\left(1+\sqrt{4 x^{2} y+1}\right)^{2} a_{3}}{4 x^{6}} \\
& -\left(-\frac{3\left(1+\sqrt{4 x^{2} y+1}\right)}{2 x^{4}}+\frac{2 y}{x^{2} \sqrt{4 x^{2} y+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 x^{2} y+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{6} \sqrt{4 x^{2} y+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3}+4 x^{5} b_{1}-16 x^{4} y a_{1}-4 \sqrt{4 x^{2} y+1} x^{3} a_{2}-2 \sqrt{4}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{aligned}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3}-4 x^{5} b_{1}+16 x^{4} y a_{1} \\
& +4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} y a_{3}-\left(4 x^{2} y+1\right)^{\frac{3}{2}} a_{3} \\
& +6 \sqrt{4 x^{2} y+1} x^{2} a_{1}+4 x^{3} a_{2}+2 x^{3} b_{3}-2 x^{2} y a_{3}+6 x^{2} a_{1}-a_{3} \sqrt{4 x^{2} y+1}-2 a_{3} \\
& \quad=0
\end{aligned}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}-4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-8 x^{4} y^{2} a_{3}+4\left(4 x^{2} y+1\right) x^{3} a_{2} \\
& +2\left(4 x^{2} y+1\right) x^{3} b_{3}+6\left(4 x^{2} y+1\right) x^{2} y a_{3}-4 x^{5} b_{1}-8 x^{4} y a_{1}+6\left(4 x^{2} y+1\right) x^{2} a_{1} \tag{6E}\\
& +4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} y a_{3} \\
& \quad-\left(4 x^{2} y+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 x^{2} y+1} x^{2} a_{1}-2\left(4 x^{2} y+1\right) a_{3}-a_{3} \sqrt{4 x^{2} y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3}-4 x^{5} b_{1}+16 x^{4} y a_{1} \\
& \quad+4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+2 \sqrt{4 x^{2} y+1} x^{2} y a_{3}+4 x^{3} a_{2} \\
& +2 x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} a_{1}-2 x^{2} y a_{3}+6 x^{2} a_{1}-2 a_{3} \sqrt{4 x^{2} y+1}-2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 x^{2} y+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x^{2} y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}+8 v_{1}^{5} v_{2} a_{2}+16 v_{1}^{4} v_{2}^{2} a_{3}-4 v_{1}^{6} b_{2}+4 v_{1}^{5} v_{2} b_{3}+16 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad-4 v_{1}^{5} b_{1}+4 v_{3} v_{1}^{3} a_{2}+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1} \\
& \quad+4 v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{3}+2 v_{1}^{3} b_{3}+6 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}-4 v_{1}^{6} b_{2}+\left(8 a_{2}+4 b_{3}\right) v_{1}^{5} v_{2}-4 v_{1}^{5} b_{1}+16 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+16 v_{1}^{4} v_{2} a_{1}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3} v_{3}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3}+2 v_{3} v_{1}^{2} v_{2} a_{3} \\
& \quad-2 v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}+6 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
16 a_{1} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
16 a_{3} & =0 \\
-4 b_{1} & =0 \\
-4 b_{2} & =0 \\
4 b_{2} & =0 \\
4 a_{2}+2 b_{3} & =0 \\
8 a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(\frac{1+\sqrt{4 x^{2} y+1}}{2 x^{3}}\right)(x) \\
& =\frac{-4 x^{2} y-\sqrt{4 x^{2} y+1}-1}{2 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-4 x^{2} y-\sqrt{4 x^{2} y+1}-1}{2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{4 x^{2} y+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+\sqrt{4 x^{2} y+1}}{2 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x \sqrt{4 x^{2} y+1}} \\
S_{y} & =\frac{-1+\frac{1}{\sqrt{4 x^{2} y+1}}}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1} \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-1+\sqrt{4 x^{2} y+1}}{2 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(-1+\sqrt{4 x^{2} y+1}\right)\left(b_{3}-a_{2}\right)}{2 x^{3}}-\frac{\left(-1+\sqrt{4 x^{2} y+1}\right)^{2} a_{3}}{4 x^{6}} \tag{5E}\\
& -\left(-\frac{2 y}{x^{2} \sqrt{4 x^{2} y+1}}+\frac{-\frac{3}{2}+\frac{3 \sqrt{4 x^{2} y+1}}{2}}{x^{4}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)+\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 x^{2} y+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{6} \sqrt{4 x^{2} y+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3}-4 x^{5} b_{1}+16 x^{4} y a_{1}-4 \sqrt{4 x^{2} y+1} x^{3} a_{2}-2 \sqrt{2}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3}+4 x^{5} b_{1}-16 x^{4} y a_{1} \tag{6E}\\
& +4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} y a_{3}-\left(4 x^{2} y+1\right)^{\frac{3}{2}} a_{3} \\
& +6 \sqrt{4 x^{2} y+1} x^{2} a_{1}-4 x^{3} a_{2}-2 x^{3} b_{3}+2 x^{2} y a_{3}-6 x^{2} a_{1}-a_{3} \sqrt{4 x^{2} y+1}+2 a_{3} \\
& \quad=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}+4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+8 x^{4} y^{2} a_{3}-4\left(4 x^{2} y+1\right) x^{3} a_{2} \\
& \quad-2\left(4 x^{2} y+1\right) x^{3} b_{3}-6\left(4 x^{2} y+1\right) x^{2} y a_{3}+4 x^{5} b_{1}+8 x^{4} y a_{1}-6\left(4 x^{2} y+1\right) x^{2} a_{1} \tag{6E}\\
& +4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} y a_{3} \\
& -\left(4 x^{2} y+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 x^{2} y+1} x^{2} a_{1}+2\left(4 x^{2} y+1\right) a_{3}-a_{3} \sqrt{4 x^{2} y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{6} \sqrt{4 x^{2} y+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3}+4 x^{5} b_{1}-16 x^{4} y a_{1} \\
& \quad+4 \sqrt{4 x^{2} y+1} x^{3} a_{2}+2 \sqrt{4 x^{2} y+1} x^{3} b_{3}+2 \sqrt{4 x^{2} y+1} x^{2} y a_{3}-4 x^{3} a_{2} \\
& \quad-2 x^{3} b_{3}+6 \sqrt{4 x^{2} y+1} x^{2} a_{1}+2 x^{2} y a_{3}-6 x^{2} a_{1}-2 a_{3} \sqrt{4 x^{2} y+1}+2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 x^{2} y+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x^{2} y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}-8 v_{1}^{5} v_{2} a_{2}-16 v_{1}^{4} v_{2}^{2} a_{3}+4 v_{1}^{6} b_{2}-4 v_{1}^{5} v_{2} b_{3}-16 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& +4 v_{1}^{5} b_{1}+4 v_{3} v_{1}^{3} a_{2}+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1} \\
& \quad-4 v_{1}^{3} a_{2}+2 v_{1}^{2} v_{2} a_{3}-2 v_{1}^{3} b_{3}-6 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}+4 v_{1}^{6} b_{2}+\left(-8 a_{2}-4 b_{3}\right) v_{1}^{5} v_{2}+4 v_{1}^{5} b_{1}-16 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-16 v_{1}^{4} v_{2} a_{1}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3} v_{3}+\left(-4 a_{2}-2 b_{3}\right) v_{1}^{3} \\
& \quad+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}-6 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{1} & =0 \\
-6 a_{1} & =0 \\
6 a_{1} & =0 \\
-16 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
4 b_{1} & =0 \\
4 b_{2} & =0 \\
-8 a_{2}-4 b_{3} & =0 \\
-4 a_{2}-2 b_{3} & =0 \\
4 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{-1+\sqrt{4 x^{2} y+1}}{2 x^{3}}\right)(x) \\
& =\frac{-4 x^{2} y+\sqrt{4 x^{2} y+1}-1}{2 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-4 x^{2} y+\sqrt{4 x^{2} y+1}-1}{2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{4 x^{2} y+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-1+\sqrt{4 x^{2} y+1}}{2 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{x \sqrt{4 x^{2} y+1}} \\
S_{y} & =\frac{-\frac{1}{\sqrt{4 x^{2} y+1}}-1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 x^{2} y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 81
dsolve $\left(y(x)=-x * \operatorname{diff}(y(x), x)+x^{\wedge} 4 * \operatorname{diff}(y(x), x) \wedge 2, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{1}{4 x^{2}} \\
& y(x)=\frac{-c_{1} i-x}{c_{1}^{2} x} \\
& y(x)=\frac{c_{1} i-x}{x c_{1}^{2}} \\
& y(x)=\frac{c_{1} i-x}{x c_{1}^{2}} \\
& y(x)=\frac{-c_{1} i-x}{c_{1}^{2} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.809 (sec). Leaf size: 123
DSolve $\left[y[x]==-x * y\right.$ ' $[x]+x^{\wedge} 4 *(y \text { ' }[x])^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& \text { Solve }\left[-\frac{x \sqrt{4 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{4 x^{2} y(x)+1}\right)}{\sqrt{4 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{x \sqrt{4 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{4 x^{2} y(x)+1}\right)}{\sqrt{4 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

14.6 problem Ex 6

14.6.1 Solving as dAlembert ode . 1013

Internal problem ID [11211]
Internal file name [OUTPUT/10196_Tuesday_December_06_2022_03_59_52_AM_83900819/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 25. Equations solvable for y. Page 52
Problem number: Ex 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 2}+2 y^{\prime} x-y=0
$$

14.6.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{2}+2 p x-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2}+2 p x \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=2 p \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p=(2 x+2 p) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)+2 p}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=-2
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=-2
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(-2) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)(-2) \\
\mathrm{d}\left(p^{2} x\right) & =\left(-2 p^{2}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
p^{2} x & =\int-2 p^{2} \mathrm{~d} p \\
p^{2} x & =-\frac{2 p^{3}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{2}$ results in

$$
x(p)=-\frac{2 p}{3}+\frac{c_{1}}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=-x+\sqrt{x^{2}+y} \\
& p=-x-\sqrt{x^{2}+y}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{\left(-8 x^{2}-2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x-\sqrt{x^{2}+y}\right)^{2}} \\
& x=\frac{\left(8 x^{2}+2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x+\sqrt{x^{2}+y}\right)^{2}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{\left(-8 x^{2}-2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x-\sqrt{x^{2}+y}\right)^{2}} \tag{2}\\
& x=\frac{\left(8 x^{2}+2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x+\sqrt{x^{2}+y}\right)^{2}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{\left(-8 x^{2}-2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x-\sqrt{x^{2}+y}\right)^{2}}
$$

Verified OK.

$$
x=\frac{\left(8 x^{2}+2 y\right) \sqrt{x^{2}+y}+8 x^{3}+6 y x+3 c_{1}}{3\left(x+\sqrt{x^{2}+y}\right)^{2}}
$$

Verified OK.
Maple trace

```
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 650

```
dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
=\frac{\left(x^{2}-x\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)^{\frac{1}{3}}+\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)^{\frac{2}{3}}\right)\left(x^{2}+3 x(-\right.}{4\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}\right.}
$$

$y(x)$
$=\underline{\left(i\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)^{\frac{2}{3}} \sqrt{3}-i \sqrt{3} x^{2}+\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)^{\frac{2}{3}}+2 x(\right.}$
$y(x)$
$=\underline{\left(i \sqrt{3} x^{2}-i\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)^{\frac{2}{3}} \sqrt{3}+x^{2}+2 x\left(-x^{3}+2 \sqrt{3} \sqrt{-c_{1}\left(x^{3}-3 c_{1}\right)}+6 c_{1}\right)\right.}$

Solution by Mathematica

Time used: 60.154 (sec). Leaf size: 931
DSolve[(y'[x])^2+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{72}\left(-18 x^{2}+\frac{9(1+i \sqrt{3}) x\left(-x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right.
$$

$$
\left.+9 i(\sqrt{3}+i) \sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right)
$$

$$
y(x) \rightarrow \frac{1}{72}\left(-18 x^{2}+\frac{9 i(\sqrt{3}+i) x\left(x^{3}-8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right.
$$

$$
\left.-9(1+i \sqrt{3}) \sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right)
$$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-x^{2}+\frac{x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right. \\
& \left.+\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{72}\left(-18 x^{2}-\frac{9 i(\sqrt{3}-i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right. \\
& \left.+9 i(\sqrt{3}+i) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{72}\left(-18 x^{2}+\frac{9 i(\sqrt{3}+i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right. \\
& \left.-9(1+i \sqrt{3}) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{4}\left(-x^{2}+\frac{x\left(x^{3}-8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right. \\
& \left.+\sqrt[3]{-x^{6}-20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right)
\end{aligned}
$$

15 Chapter IV, differential equations of the first order and higher degree than the first. Article 26. Equations solvable for x. Page 55
15.1 problem Ex 1 1020
15.2 problem Ex 2 1029
15.3 problem Ex 3 1035
15.4 problem Ex 4 1040

15.1 problem Ex 1

15.1.1 Solving as dAlembert ode 1020

Internal problem ID [11212]
Internal file name [OUTPUT/10197_Tuesday_December_06_2022_03_59_53_AM_86153348/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 26. Equations solvable for x. Page 55
Problem number: Ex 1.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime} y\left(2 y^{\prime 2}+3\right)=-x
$$

15.1.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p y\left(2 p^{2}+3\right)=-x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-\frac{x}{p\left(2 p^{2}+3\right)} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-\frac{1}{2 p^{3}+3 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p+\frac{1}{2 p^{3}+3 p}=\frac{x\left(6 p^{2}+3\right) p^{\prime}(x)}{\left(2 p^{3}+3 p\right)^{2}} \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p+\frac{1}{2 p^{3}+3 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=\frac{i \sqrt{2}}{2} \\
& p=-\frac{i \sqrt{2}}{2} \\
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x \\
& y=-\frac{i \sqrt{2} x}{2} \\
& y=\frac{i \sqrt{2} x}{2}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{\left(p(x)+\frac{1}{2 p(x)^{3}+3 p(x)}\right)\left(2 p(x)^{3}+3 p(x)\right)^{2}}{x\left(6 p(x)^{2}+3\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(6 p^{2}+3\right)}{\left(2 p^{3}+3 p\right)^{2}\left(p+\frac{1}{2 p^{3}+3 p}\right)} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{3}{2 p^{5}+5 p^{3}+3 p} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{3 x(p)}{2 p^{5}+5 p^{3}+3 p}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{2 p^{5}+5 p^{3}+3 p} d p} \\
& =\mathrm{e}^{-\ln \left(2 p^{2}+3\right)-\ln (p)+\frac{3 \ln \left(p^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\left(p^{2}+1\right)^{\frac{3}{2}}}{2 p^{3}+3 p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\left(p^{2}+1\right)^{\frac{3}{2}} x}{2 p^{3}+3 p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\left(p^{2}+1\right)^{\frac{3}{2}} x}{2 p^{3}+3 p}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{\left(p^{2}+1\right)^{\frac{3}{2}}}{2 p^{3}+3 p}$ results in

$$
x(p)=\frac{c_{3}\left(2 p^{3}+3 p\right)}{\left(p^{2}+1\right)^{\frac{3}{2}}}
$$

which simplifies to

$$
x(p)=\frac{c_{3} p\left(2 p^{2}+3\right)}{\left(p^{2}+1\right)^{\frac{3}{2}}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}{2 y}-\frac{y}{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}} \\
& p=-\frac{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}{4 y}+\frac{y}{2\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}{2 y}+\frac{}{((-2 x+2}\right.}{2} \\
& p=-\frac{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}{4 y}+\frac{y}{2\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(\left(-2 x+2 \sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}}{2 y}+\frac{1}{((-2 x+2}\right.}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{\left(-2^{\frac{1}{3}} y^{2}+\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\right) 2^{\frac{5}{6}} c_{3}\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(-2\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+2\right.}{\sqrt{-\frac{2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}-2 y^{2}}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}}\left(2 ^ { \frac { 1 } { 3 } } (x - \sqrt { x ^ { 2 } + 2 y ^ { 2 } }) \left(\left(-x+\sqrt{x^{2}+2 y}\right.\right.\right.}}
$$

x

$$
=\frac{c_{3}\left((\sqrt{3}+i)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}-y^{2} 2^{\frac{1}{3}}(i-\sqrt{3})\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(4 \left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right.\right.\right.}{\left(x-\sqrt{x^{2}+2 y^{2}}\right) \sqrt{\frac{\left(x-\sqrt{x^{2}+2 y^{2}}\right) 2^{\frac{1}{3}}(1+i \sqrt{3})\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(i \sqrt{3}-1)}{\left(\left(-x+\sqrt{\left.\left.x^{2}+2 y^{2}\right) y^{2}\right)^{\frac{2}{3}}}\right.\right.} y^{3}\left(2^{\frac{1}{3}}(i-\right.},}
$$

$$
=\frac{\left(-4\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+(i \sqrt{3}-1) 2^{\frac{2}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(1+i \sqrt{3}\right.}{\sqrt{\frac{(1-i \sqrt{3}) 2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2(-i \sqrt{3}-1) y^{2}}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}} y^{3}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(2^{\frac{1}{3}}\right.}(x}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y & =-i x \\
y & =i x \\
y & =-\frac{i \sqrt{2} x}{2} \\
y & =\frac{i \sqrt{2} x}{2} \\
x & = \\
& -\frac{\left(-2^{\frac{1}{3}} y^{2}+\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\right) 2^{\frac{5}{6}} c_{3}\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(-2\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+2\right.}{\sqrt{-\frac{2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}-2 y^{2}}{\left(\left(-x+\sqrt{\left.\left.x^{2}+2 y^{2}\right) y^{2}\right)^{\frac{2}{3}}}\right.\right.}\left(2 ^ { \frac { 1 } { 3 } } (x - \sqrt { x ^ { 2 } + 2 y ^ { 2 } }) \left(\left(-x+\sqrt{x^{2}+2 y}\right.\right.\right.}} \tag{6}
\end{align*}
$$

x

$$
\begin{equation*}
=\frac{c_{3}\left((\sqrt{3}+i)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}-y^{2} 2^{\frac{1}{3}}(i-\sqrt{3})\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(4 \left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right)\right.\right.}{\left(x-\sqrt{x^{2}+2 y^{2}}\right) \sqrt{\frac{\left(x-\sqrt{x^{2}+2 y^{2}}\right) 2^{\frac{1}{3}}(1+i \sqrt{3})\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(i \sqrt{3}-1)}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}} y^{3}\left(2^{\frac{1}{3}}(i-\right.},} \tag{7}
\end{equation*}
$$

x
$=\frac{\left(-4\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+(i \sqrt{3}-1) 2^{\frac{2}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(1+i \sqrt{3}\right.}{\sqrt{\frac{(1-i \sqrt{3}) 2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2(-i \sqrt{3}-1) y^{2}}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}} y^{3}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(2^{\frac{1}{3}}(x\right.}}$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=-\frac{i \sqrt{2} x}{2}
$$

Verified OK.

$$
y=\frac{i \sqrt{2} x}{2}
$$

Verified OK.

$$
x=-\frac{\left(-2^{\frac{1}{3}} y^{2}+\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\right) 2^{\frac{5}{6}} c_{3}\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(-2\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+2\right.}{\sqrt{-\frac{2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}-2 y^{2}}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}}\left(2 ^ { \frac { 1 } { 3 } } (x - \sqrt { x ^ { 2 } + 2 y ^ { 2 } }) \left(\left(-x+\sqrt{x^{2}+2 y}\right.\right.\right.}}
$$

Warning, solution could not be verified

$$
=\frac{c_{3}\left((\sqrt{3}+i)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}-y^{2} 2^{\frac{1}{3}}(i-\sqrt{3})\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}\left(4 \left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right.\right.\right.}{\left(x-\sqrt{x^{2}+2 y^{2}}\right) \sqrt{\frac{\left(x-\sqrt{x^{2}+2 y^{2}}\right) 2^{\frac{1}{3}}(1+i \sqrt{3})\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(i \sqrt{3}-1)}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}}} y^{3}\left(2^{\frac{1}{3}}(i-\right.}
$$

Warning, solution could not be verified

$$
=\frac{\left(-4\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}+(i \sqrt{3}-1) 2^{\frac{2}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2 y^{2}(1+i \sqrt{3}\right.}{\sqrt{\frac{(1-i \sqrt{3}) 2^{\frac{1}{3}}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{1}{3}}+2(-i \sqrt{3}-1) y^{2}}{\left(\left(-x+\sqrt{x^{2}+2 y^{2}}\right) y^{2}\right)^{\frac{2}{3}}} y^{3}\left(x-\sqrt{x^{2}+2 y^{2}}\right)\left(2^{\frac{1}{3}}\right.}(x}
$$

Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying simple symmetries for implicit equations
    <- symmetries for implicit equations successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 776

```
dsolve(x+diff(y(x),x)*y(x)*(2*diff(y(x),x)^2+3)=0,y(x), singsol=all)
```

$y(x)=-\frac{i \sqrt{2} x}{2}$
$y(x)=\frac{i \sqrt{2} x}{2}$

$$
\begin{aligned}
y(x) & =\operatorname{RootOf}\left(-\ln (x)+\int^{Z}\right. \\
& -\frac{-2\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right.}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}}-a^{2}+2\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right) _a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{1}{3}}-a^{3}-\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right)-a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}}+-}{\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right) _a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{1}{3}}\left(2 _a^{4}+3 _a^{2}+1\right)}
\end{aligned}
$$

$$
\left.+c_{1}\right) x
$$

$$
y(x)=\operatorname{RootOf}(-2 \ln (x)
$$

$$
\left.+\int^{-Z} \frac{2 i\left(\frac{\left(-a^{2}-\sqrt{2} _a^{2}+1\right.}{}+1\right) _a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3} _a^{2}+i\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right) _a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)^{\frac{2}{3}} \sqrt{3}-2\left(\frac{\left(-a^{2}-\sqrt{2 _a^{2}+1}+1\right) _a}{\left(2 _a^{2}+1\right)^{\frac{3}{2}}}\right)\left(\frac{\left(-a^{2}-\sqrt{ }\right.}{\frac{2}{2}}\right.
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x+y\right.$ ' $[x] * y[x] *\left(2 *(y '[x])^{\wedge} 2+3\right)==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Timed out

15.2 problem Ex 2

15.2.1 Solving as dAlembert ode

Internal problem ID [11213]
Internal file name [OUTPUT/10198_Tuesday_December_06_2022_04_00_03_AM_63551345/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 26. Equations solvable for x. Page 55
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
a^{2} y y^{\prime 2}-2 y^{\prime} x+y=0
$$

15.2.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
a^{2} y p^{2}-2 p x+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{2 p x}{a^{2} p^{2}+1} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{2 p}{a^{2} p^{2}+1} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{2 p}{a^{2} p^{2}+1}=x\left(\frac{2}{a^{2} p^{2}+1}-\frac{4 p^{2} a^{2}}{\left(a^{2} p^{2}+1\right)^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{2 p}{a^{2} p^{2}+1}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=\frac{1}{a} \\
& p=-\frac{1}{a}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=\frac{x}{a} \\
& y=-\frac{x}{a}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{2 p(x)}{a^{2} p(x)^{2}+1}}{x\left(\frac{2}{a^{2} p(x)^{2}+1}-\frac{4 p(x)^{2} a^{2}}{\left(a^{2} p(x)^{2}+1\right)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{2}{a^{2} p^{2}+1}-\frac{4 p^{2} a^{2}}{\left(a^{2} p^{2}+1\right)^{2}}\right)}{p-\frac{2 p}{a^{2} p^{2}+1}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p\left(a^{2} p^{2}+1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p\left(a^{2} p^{2}+1\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p\left(a^{2} p^{2}+1\right)} d p} \\
& =\mathrm{e}^{-\ln \left(a^{2} p^{2}+1\right)+2 \ln (p)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{p^{2}}{a^{2} p^{2}+1}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{p^{2} x}{a^{2} p^{2}+1}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p^{2} x}{a^{2} p^{2}+1}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{p^{2}}{a^{2} p^{2}+1}$ results in

$$
x(p)=\frac{c_{3}\left(a^{2} p^{2}+1\right)}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{x+\sqrt{x^{2}-y^{2} a^{2}}}{y a^{2}} \\
& p=-\frac{-x+\sqrt{x^{2}-y^{2} a^{2}}}{y a^{2}}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}} \\
& x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=\frac{x}{a} \tag{2}\\
& y=-\frac{x}{a} \tag{3}\\
& x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}} \tag{4}\\
& x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}} \tag{5}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=\frac{x}{a}
$$

Verified OK.

$$
y=-\frac{x}{a}
$$

Verified OK.

$$
x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}}
$$

Verified OK.

$$
x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying simple symmetries for implicit equations
    <- symmetries for implicit equations successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 51
dsolve ($\mathrm{a}^{\wedge} 2 * y(x) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}){ }^{\wedge} 2-2 * x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x}{a} \\
& y(x)=\frac{x}{a} \\
& y(x)=0 \\
& y(x)=\mathrm{e}^{\operatorname{RootOf}\left(\mathrm{e}^{2}-Z \sinh \left(--Z+c_{1}-\ln (x)\right)^{2} a^{2}+1\right)} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 30.099 (sec). Leaf size: 244
DSolve[a^2*y[x]*(y'[x])~2-2*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)-8 i x}}{4 a} \\
& y(x) \rightarrow \frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)-8 i x}}{4 a} \\
& y(x) \rightarrow-\frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)+8 i x}}{4 a} \\
& y(x) \rightarrow \frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)+8 i x}}{4 a} \\
& y(x) \rightarrow-\frac{x}{a} \\
& y(x) \rightarrow \frac{x}{a}
\end{aligned}
$$

15.3 problem Ex 3

15.3.1 Solving as dAlembert ode

1035
Internal problem ID [11214]
Internal file name [OUTPUT/10199_Tuesday_December_06_2022_04_00_07_AM_253671/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 26. Equations solvable for x. Page 55
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime 2}-2 y y^{\prime}=x
$$

15.3.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 y p=x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}-1\right)}{2 p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}-1}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}-1}{2 p}=x\left(1-\frac{p^{2}-1}{2 p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}-1}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}-1}{2 p(x)}}{x\left(1-\frac{p(x)^{2}-1}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x \tag{1}\\
& y=i x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

```
dsolve(x*diff (y (x),x)^2-2*y(x)*diff (y (x), x)-x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x \\
& y(x)=i x \\
& y(x)=\frac{-c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.213 (sec). Leaf size: 71
DSolve[x*(y' x$]$) $\sim 2-2 * y[x] * y$ ' $[x]-x==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-x^{2}+e^{2 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right) \\
& y(x) \rightarrow-i x \\
& y(x) \rightarrow i x
\end{aligned}
$$

15.4 problem Ex 4

Internal problem ID [11215]
Internal file name [OUTPUT/10200_Tuesday_December_06_2022_04_00_09_AM_117444/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 26. Equations solvable for x. Page 55
Problem number: Ex 4.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}{3}+\frac{4 y x}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=-\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}{6}-\frac{2 y x}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+i \sqrt{3}\left(\frac{\left(-108 y^{2}+12 \sqrt{ }\right.}{}\right. \tag{2}
\end{align*}
$$

$y^{\prime}=-\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}{6}-\frac{2 y x}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-i \sqrt{3}\left(\frac{\left(-108 y^{2}+12 \sqrt{ }\right)}{}\right.$

Now each one of the above ODE is solved.
Solving equation (1)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{aligned}
& b_{2}+\frac{\left(\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(b_{3}-a_{2}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)^{2} a_{3}}{9\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{144 y^{3} x^{2}}{\left(-\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+12 y\right.}\right. \\
& \left.+\frac{24\left(\left(-108 y^{2}+12 \sqrt{\left.\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{2}{3}}+12 x y\right) y^{3} x^{2}}\right.\right.}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac { - 1 4 4 y + \frac { 2 (- 2 1 6 y ^ { 2 } x ^ { 3 } + 1 9 4 4 y ^ { 3 }) } { 3 \sqrt { - 1 2 y ^ { 3 } x ^ { 3 } + 8 1 y ^ { 4 } } } } { \frac { (- 1 0 8 y ^ { 2 } + 1 2 \sqrt { - 1 2 y ^ { 3 } x ^ { 3 } + 8 1 y ^ { 4 } }) ^ { \frac { 1 } { 3 } } } { } + 1 2 x } 3 3 \left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right.\right. \\
&
\end{aligned}
$$

$$
\left.-\frac{\left(\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(-216 y+\frac{-216 y^{2} x^{3}+1944 y^{3}}{\sqrt{-12 y^{3} x^{3}+81 y^{4}}}\right)}{9\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}}}\right)\left(x b_{2}\right.
$$

$$
\begin{equation*}
\left.+y b_{3}+b_{1}\right)=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-2592 \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y^{3} a_{2}-72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{4} y^{2} b_{2}-72\left(-108 y^{2}+12 \sqrt{-12}\right.}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2592 \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y^{3} a_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{4} y^{2} b_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{3} a_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{3} b_{3} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{2} y^{4} a_{3} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{2} b_{1} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{2} y^{3} a_{1} \\
& -648\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} x y^{3} b_{2} \\
& +72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} y^{2} b_{3} \\
& +432 \sqrt{-12 y^{3} x^{3}+81 y^{4}} x^{2} y^{2} b_{2} \\
& -864 \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y^{3} b_{3}+72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} y b_{1} \\
& +432 \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y^{2} b_{1}-8\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y a_{3} \tag{6E}\\
& -48\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} x^{2} y^{2} a_{3} \\
& +72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} x y b_{2} \\
& -48\left(-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{3}{2}} a_{3}+58320 y^{6} a_{3} \\
& -11664 y^{5} a_{1}-23328 x y^{5} a_{2}+3 b_{2}\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}} \\
& -648\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}} y^{3} b_{1} \\
& -2592 \sqrt{-12 y^{3} x^{3}+81 y^{4}} y^{4} a_{3} \\
& +1296 \sqrt{-12 y^{3} x^{3}+81 y 0} \mathcal{U}^{3} a_{1}+2592 x^{4} y^{4} a_{2} \\
& -9504 x^{3} y^{5} a_{3}+864 x^{3} y^{4} a_{1}+864 x^{5} y^{3} b_{2} \\
& -864 x^{4} y^{4} b_{3}+864 x^{4} y^{3} b_{1}-3888 x^{2} y^{4} b_{2}
\end{align*}
$$

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -36 v_{2}\left(-4860 v_{2}^{5} a_{3}+972 v_{2}^{4} a_{1}-6 v_{5} v_{1}^{4} v_{2} b_{2}-18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}\right. \\
& \quad+6 v_{5} v_{1}^{3} v_{2}^{2} b_{3}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{3}-6 v_{5} v_{1}^{3} v_{2} b_{1}-6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}+36 v_{4} v_{1}^{3} v_{2}^{2} b_{2} \\
& +648 v_{4} v_{1} v_{2}^{4} a_{3}+54 v_{5} v_{1} v_{2}^{2} b_{2}+540 \sqrt{3} v_{3} v_{2}^{3} a_{3}-6 v_{5} \sqrt{3} v_{3} b_{1} \\
& \quad-108 \sqrt{3} v_{3} v_{2}^{2} a_{1}-96 v_{4} v_{1}^{4} v_{2}^{3} a_{3}-48 \sqrt{3} v_{3} v_{1}^{3} v_{2}^{2} a_{3}-6 v_{5} \sqrt{3} v_{3} v_{1} b_{2} \tag{7E}\\
& -9 v_{5} \sqrt{3} v_{3} v_{2} a_{2}+3 v_{5} \sqrt{3} v_{3} v_{2} b_{3}-36 \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{2}-216 \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{2} \\
& +72 \sqrt{3} v_{3} v_{1} v_{2}^{2} b_{3}+27 v_{4} \sqrt{3} v_{3} v_{2} b_{2}-36 \sqrt{3} v_{3} v_{1} v_{2} b_{1}+4 v_{5} \sqrt{3} v_{3} v_{1}^{2} v_{2} a_{3} \\
& -72 v_{4} \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{3}+324 v_{2}^{3} v_{1}^{2} b_{2}+1944 v_{2}^{4} v_{1} a_{2}+324 v_{2}^{3} v_{1} b_{1}-72 v_{1}^{5} v_{2}^{2} b_{2} \\
& -216 v_{1}^{4} v_{2}^{3} a_{2}+72 v_{1}^{4} v_{2}^{3} b_{3}+792 v_{1}^{3} v_{2}^{4} a_{3}-72 v_{1}^{4} v_{2}^{2} b_{1}-72 v_{1}^{3} v_{2}^{3} a_{1} \\
& \left.-648 v_{1} v_{2}^{4} b_{3}+81 v_{5} v_{2}^{3} a_{2}-27 v_{5} v_{2}^{3} b_{3}+54 v_{5} v_{2}^{2} b_{1}-243 v_{4} v_{2}^{3} b_{2}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3456 a_{3} v_{4} v_{1}^{4} v_{2}^{4}+\left(7776 a_{2}-2592 b_{3}\right) v_{1}^{4} v_{2}^{4}+216 b_{2} v_{5} v_{1}^{4} v_{2}^{2}-1296 b_{2} v_{4} v_{1}^{3} v_{2}^{3} \\
& +\left(648 a_{2}-216 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3}+216 b_{1} v_{5} v_{1}^{3} v_{2}^{2}+216 a_{3} v_{5} v_{1}^{2} v_{2}^{4}+216 a_{1} v_{5} v_{1}^{2} v_{2}^{3} \\
& \quad-23328 a_{3} v_{4} v_{1} v_{2}^{5}+\left(-69984 a_{2}+23328 b_{3}\right) v_{1} v_{2}^{5}+174960 a_{3} v_{2}^{6} \\
& -34992 a_{1} v_{2}^{5}+\left(7776 \sqrt{3} a_{2}-2592 \sqrt{3} b_{3}\right) v_{3} v_{1} v_{2}^{3}-1944 b_{2} v_{5} v_{1} v_{2}^{3} \\
& -19440 \sqrt{3} a_{3} v_{3} v_{2}^{4}+3888 \sqrt{3} a_{1} v_{3} v_{2}^{3}+\left(324 \sqrt{3} a_{2}-108 \sqrt{3} b_{3}\right) v_{3} v_{5} v_{2}^{2} \tag{8E}\\
& +1728 \sqrt{3} a_{3} v_{3} v_{1}^{3} v_{2}^{3}+1296 \sqrt{3} b_{2} v_{3} v_{1}^{2} v_{2}^{2}+1296 \sqrt{3} b_{1} v_{3} v_{1} v_{2}^{2} \\
& -972 \sqrt{3} b_{2} v_{3} v_{4} v_{2}^{2}+216 v_{5} \sqrt{3} v_{3} b_{1} v_{2}-144 \sqrt{3} a_{3} v_{3} v_{5} v_{1}^{2} v_{2}^{2} \\
& +2592 \sqrt{3} a_{3} v_{3} v_{4} v_{1} v_{2}^{3}+216 \sqrt{3} b_{2} v_{3} v_{5} v_{1} v_{2}-11664 b_{2} v_{1}^{2} v_{2}^{4} \\
& \quad-11664 b_{1} v_{1} v_{2}^{4}+8748 b_{2} v_{4} v_{2}^{4}+\left(-2916 a_{2}+972 b_{3}\right) v_{5} v_{2}^{4}-1944 b_{1} v_{5} v_{2}^{3} \\
& +2592 v_{2}^{3} b_{2} v_{1}^{5}+2592 b_{1} v_{1}^{4} v_{2}^{3}-28512 a_{3} v_{1}^{3} v_{2}^{5}+2592 a_{1} v_{1}^{3} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
&-3499 a_{1}=0 \\
& 216 a_{1}=0 \\
& 2592 a_{1}=0 \\
&-28512 a_{3}=0 \\
&-23328 a_{3}=0 \\
& 216 a_{3}=0 \\
& 3456 a_{3}=0 \\
& 174960 a_{3}=0 \\
&-11664 b_{1}=0 \\
&-1944 b_{1}=0 \\
& 216 b_{1}=0 \\
& 2592 b_{1}=0 \\
&-11664 b_{2}=0 \\
&-1944 b_{2}=0 \\
&-1296 b_{2}=0 \\
& 216 b_{2}=0 \\
& 2592 b_{2}=0 \\
& 8748 b_{2}=0 \\
& 3248 \sqrt{3} a_{2}-108 \sqrt{3} b_{3}=0 \\
& 7776 \sqrt{3} a_{2}-102592 \sqrt{3} b_{3}=0 \\
& 7776 a_{2}-2592 b_{3}=0 \\
&-19440 \sqrt{3} a_{3}=0 \\
&-144 \sqrt{3} a_{3}=0 \\
& 1728 \sqrt{3} a_{3}=0 \\
& 2592 \sqrt{3} a_{3}=0 \\
& 216 \sqrt{3} b_{1}=0 \\
& 1296 \sqrt{3} b_{1}=0 \\
&-972 \sqrt{3} b_{2}=0 \\
& 216 \sqrt{3} b_{2}=0 \\
& 1296 \sqrt{3} b_{2}=0 \\
&-69984 a_{2}+23328 b_{3}=0 \\
&-2916 a_{2}+972 b_{3}=0 \\
&-216 b_{3}=0 \\
& 048=0 \\
& 3=0 \\
& 3
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =\frac{x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{\frac{x}{3}} \\
& =\frac{3 y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{3}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{3}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{\frac{x}{3}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =3 \ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{3 y}{x^{4}} \\
R_{y} & =\frac{1}{x^{3}} \\
S_{x} & =\frac{3}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{9 x^{3}\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 y^{3} x^{3}+27 y^{4}}\right)^{\frac{1}{3}}}{\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 y^{3} x^{3}+27 y^{4}}\right)^{\frac{2}{3}} x+12 x^{2} y-9 y\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 y^{3} x^{3}+27 y^{4}}\right)^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives
$\frac{d S}{d R}=\frac{912^{\frac{1}{3}}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{1}{3}}}{\sqrt{R}\left(12^{\frac{2}{3}}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{2}{3}}-9 \sqrt{R} 12^{\frac{1}{3}}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{1}{3}}+12\right)}$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{9(12 \sqrt{81 R-12}-108 \sqrt{R})^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left((-\sqrt{81 R-12}+9 \sqrt{R})^{2}\right)^{\frac{1}{3}}-9 \sqrt{R}(12 \sqrt{81 R-12}-108 \sqrt{R})^{\frac{1}{3}}+12\right) \sqrt{R}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
3 \ln (x)=\int^{\frac{y}{x^{3}}} \frac{9\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(-\sqrt{81 _a-12}+9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-9 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{_^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}}
$$

Which simplifies to

$$
3 \ln (x)=\int^{\frac{y}{x^{3}}} \frac{9\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(-\sqrt{81 _a-12}+9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-9 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& 3 \ln (x) \tag{1}\\
& =\int^{\frac{y}{x^{3}}} \frac{9\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(-\sqrt{81 _a-12}+9 \sqrt{-a}\right)^{2}\right)^{\frac{1}{3}}-9 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}}{ }^{-a} d \\
& \quad+c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& 3 \ln (x) \\
& =\int^{\frac{y}{x^{3}}} \frac{9\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(-\sqrt{81 _a-12}+9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-9 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}} d _a \\
& \quad+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as
$y^{\prime}=\frac{i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y}{6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}$
$y^{\prime}=\omega(x, y)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2} \tag{5E}\\
& \begin{array}{l}
+\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{\left.\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)\left(b_{3}\right.}\right) 6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}\right.}{\left.6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)^{2} a_{3}} \\
-\frac{\left(i \sqrt { 3 } \left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{2}{3}}}\right.}\right.\right.}{36\left(144 y^{3} x^{2}\right.} \\
-\left(\frac{14 \sqrt{3} y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}-12 i \sqrt{3} y+\frac{120}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}-12 y\right. \\
6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}
\end{array} \\
& +\frac{12\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right) y^{3}}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}} \\
& \left.+y a_{3}+a_{1}\right) \\
& -\left(\frac{\frac{2 i \sqrt{3}\left(-216 y+\frac{-216 y^{2} x^{3}+1944 y^{3}}{\sqrt{-12 y^{3} x^{3}+81 y^{4}}}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 i \sqrt{3} x-\frac{2\left(-216 y+\frac{-216 y^{2} x^{3}+1944 y^{3}}{\sqrt{-12 y^{3} x^{3}+81 y^{4}}}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 x}{6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}\right. \\
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)(-}{18\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 72 v_{2}\left(-6 v_{5} v_{1}^{4} v_{2} b_{2}-18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}+6 v_{5} v_{1}^{3} v_{2}^{2} b_{3}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{3}\right. \\
& \quad-6 v_{5} v_{1}^{3} v_{2} b_{1}-6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}-72 v_{4} v_{1}^{3} v_{2}^{2} b_{2}-1296 v_{4} v_{1} v_{2}^{4} a_{3} \\
& +540 \sqrt{3} v_{3} v_{2}^{3} a_{3}+54 v_{5} v_{1} v_{2}^{2} b_{2}-6 \sqrt{3} v_{5} v_{3} b_{1} \\
& \quad-108 \sqrt{3} v_{3} v_{2}^{2} a_{1}-4860 i \sqrt{3} v_{2}^{5} a_{3}+972 i \sqrt{3} v_{2}^{4} a_{1} \\
& +1620 i v_{3} v_{2}^{3} a_{3}+18 i v_{5} v_{3} b_{1}-324 i v_{3} v_{2}^{2} a_{1}+324 v_{2}^{3} v_{1}^{2} b_{2} \\
& +1944 v_{2}^{4} v_{1} a_{2}+324 v_{2}^{3} v_{1} b_{1}-72 v_{1}^{5} v_{2}^{2} b_{2}-216 v_{1}^{4} v_{2}^{3} a_{2} \\
& +72 v_{1}^{4} v_{2}^{3} b_{3}+792 v_{1}^{3} v_{2}^{4} a_{3}-72 v_{1}^{4} v_{2}^{2} b_{1}-72 v_{1}^{3} v_{2}^{3} a_{1} \\
& -648 v_{1} v_{2}^{4} b_{3}+81 v_{5} v_{2}^{3} a_{2}-27 v_{5} v_{2}^{3} b_{3}+4 \sqrt{3} v_{5} v_{3} v_{1}^{2} v_{2} a_{3} \\
& +144 \sqrt{3} v_{4} v_{3} v_{1} v_{2}^{2} a_{3}-144 i v_{3} v_{1}^{3} v_{2}^{2} a_{3}-54 i \sqrt{3} v_{5} v_{2}^{2} b_{1} \\
& +324 i \sqrt{3} v_{2}^{3} v_{1} b_{1}+18 i v_{5} v_{3} v_{1} b_{2}+27 i v_{5} v_{3} v_{2} a_{2}-9 i v_{5} v_{3} v_{2} b_{3} \tag{7E}\\
& \quad-108 i v_{3} v_{1}^{2} v_{2} b_{2}-648 i v_{3} v_{1} v_{2}^{2} a_{2}+216 i v_{3} v_{1} v_{2}^{2} b_{3} \\
& \quad-108 i v_{3} v_{1} v_{2} b_{1}-72 i \sqrt{3} v_{1}^{5} v_{2}^{2} b_{2}-216 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{2} \\
& +72 i \sqrt{3} v_{1}^{4} v_{2}^{3} b_{3}+792 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{3}-72 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{1} \\
& \quad-72 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1}-81 i \sqrt{3} v_{5} v_{2}^{3} a_{2}+27 i \sqrt{3} v_{5} v_{2}^{3} b_{3} \\
& +324 i \sqrt{3} v_{2}^{3} v_{1}^{2} b_{2}+1944 i \sqrt{3} v_{2}^{4} v_{1} a_{2}-648 i \sqrt{3} v_{1} v_{2}^{4} b_{3} \\
& +6 i \sqrt{3} v_{5} v_{1}^{4} v_{2} b_{2}+18 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} a_{2}-6 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} b_{3} \\
& +6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} a_{3}+6 i \sqrt{3} v_{5} v_{1}^{3} v_{2} b_{1}+6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{2} a_{1} \\
& \quad-54 i \sqrt{3} v_{5} v_{1} v_{2}^{2} b_{2}-12 i v_{5} v_{3} v_{1}^{2} v_{2} a_{3}+54 v_{5}^{2} v_{2}^{2} b_{1}+486 v_{4} v_{2}^{3} b_{2} \\
& +192 v_{4} v_{1}^{4} v_{2}^{3} a_{3}-48 \sqrt{3} v_{3} v_{1}^{3} v_{2}^{2} a_{3}-6 \sqrt{3} v_{5} v_{3} v_{1} b_{2} \\
& -9 \sqrt{3} v_{5} v_{3} v_{2} a_{2}+3 \sqrt{3} v_{5} v_{3} v_{2} b_{3}-36 \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{2} \\
& -216 \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{2}+72 \sqrt{3} v_{2}^{2} b_{3}-54 \sqrt{3} v_{4} v_{3} v_{2} b_{2} \\
& -36 \sqrt{3} v_{3} v_{1} v_{2} b_{1}=48
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -93312 a_{3} v_{4} v_{1} v_{2}^{5}+10368 \sqrt{3} a_{3} v_{3} v_{4} v_{1} v_{2}^{3} \\
& -5184 b_{2} v_{4} v_{1}^{3} v_{2}^{3}+13824 a_{3} v_{4} v_{1}^{4} v_{2}^{4}+3499 b_{2} v_{4} v_{2}^{4} \\
& +\left(139968 i \sqrt{3} a_{2}-46656 i \sqrt{3} b_{3}+139968 a_{2}\right. \\
& \left.-46656 b_{3}\right) v_{1} v_{2}^{5}+\left(23328 i \sqrt{3} b_{1}+23328 b_{1}\right) v_{1} v_{2}^{4} \\
& +\left(57024 i \sqrt{3} a_{3}+57024 a_{3}\right) v_{1}^{3} v_{2}^{5} \\
& +\left(-5184 i \sqrt{3} a_{1}-5184 a_{1}\right) v_{1}^{3} v_{2}^{4} \\
& +\left(-5184 i \sqrt{3} b_{2}-5184 b_{2}\right) v_{1}^{5} v_{2}^{3} \\
& +\left(-15552 i \sqrt{3} a_{2}+5184 i \sqrt{3} b_{3}-15552 a_{2}+5184 b_{3}\right) v_{1}^{4} v_{2}^{4} \\
& +\left(-5184 i \sqrt{3} b_{1}-5184 b_{1}\right) v_{1}^{4} v_{2}^{3} \\
& +\left(38880 \sqrt{3} a_{3}+116640 i a_{3}\right) v_{3} v_{2}^{4} \\
& +\left(-5832 i \sqrt{3} a_{2}+1944 i \sqrt{3} b_{3}+5832 a_{2}-1944 b_{3}\right) v_{5} v_{2}^{4} \\
& +\left(-7776 \sqrt{3} a_{1}-23328 i a_{1}\right) v_{3} v_{2}^{3} \\
& +\left(-3888 i \sqrt{3} b_{1}+3888 b_{1}\right) v_{5} v_{2}^{3} \\
& +\left(23328 i \sqrt{3} b_{2}+23328 b_{2}\right) v_{1}^{2} v_{2}^{4} \\
& +\left(69984 i \sqrt{3} a_{1}+69984 a_{1}\right) v_{2}^{5} \tag{8E}\\
& +\left(-349920 i \sqrt{3} a_{3}-349920 a_{3}\right) v_{2}^{6} \\
& +\left(-648 \sqrt{3} a_{2}+216 \sqrt{3} b_{3} 0541944 i a_{2}-648 i b_{3}\right) v_{3} v_{5} v_{2}^{2} \\
& +\left(-1296 i b_{1}\right) v_{3} v_{5} v_{2} \\
& +\left(-15552 \sqrt{3} a_{2}+5184 \sqrt{3} b_{3}-46656 i a_{2}\right. \\
& +\left(-15552 i b_{3}\right) v_{3} v_{1} v_{2}^{3}+\left(-3888 i \sqrt{3} b_{2}+3888 b_{2}\right) v_{5} v_{1} v_{2}^{3} \\
& +\left(-2592 \sqrt{3} b_{1}-7776 i b_{1}\right) v_{3} v_{1} v_{2}^{2} \\
& +\left(-3456 \sqrt{3} a_{3}-10368 i a_{3}\right) v_{3} v_{1}^{3} v_{2}^{3} \\
& +\left(1296 i \sqrt{3} a_{2}-432 i \sqrt{3} b_{3}-1296 a_{2}+432 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3} \\
& +\left(432 i \sqrt{3} b_{1}-432 b_{1}\right) v_{5} v_{1}^{3} v_{2}^{2} \\
& +\left(432 i \sqrt{3} b_{2}-432 b_{2}\right) v_{5} v_{1}^{4} v_{2}^{2} \\
& +\left(432 i \sqrt{3} a_{3}-432 a_{3}\right) v_{5} v_{1}^{2} v_{2}^{4} \\
& +\left(432 i \sqrt{3} a_{1}-432 a_{1}\right) v_{5} v_{1}^{2} v_{2}^{3} \\
& +\left(-2592 \sqrt{3} b_{2}-7776 i b_{2}\right) v_{3} v_{1}^{2} v_{2}^{2} \\
& +(-54
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-93312 a_{3} & =0 \\
13824 a_{3} & =0 \\
-5184 b_{2} & =0 \\
34992 b_{2} & =0 \\
10368 \sqrt{3} a_{3} & =0 \\
-3888 \sqrt{3} b_{2} & =0 \\
-7776 \sqrt{3} a_{1}-23328 i a_{1} & =0 \\
-3456 \sqrt{3} a_{3}-10368 i a_{3} & =0 \\
288 \sqrt{3} a_{3}-864 i a_{3} & =0 \\
38880 \sqrt{3} a_{3}+116640 i a_{3} & =0 \\
-2592 \sqrt{3} b_{1}-7776 i b_{1} & =0 \\
-432 \sqrt{3} b_{1}+1296 i b_{1} & =0 \\
-2592 \sqrt{3} b_{2}-7776 i b_{2} & =0 \\
-432 \sqrt{3} b_{2}+1296 i b_{2} & =0 \\
-349920 i \sqrt{3} a_{3}-349920 a_{3} & =0 \\
-5184 i \sqrt{3} a_{1}-5184 a_{1} & =0 \\
-5184 i \sqrt{3} b_{1}-5184 b_{1} & =0 \\
-5184 i \sqrt{3} b_{2}-5184 b_{2} & =0 \\
-3888 i \sqrt{3} b_{1}+3888 b_{1} & =0 \\
-3888 i \sqrt{3} b_{2}+3888 b_{2} & =0 \\
439968 i \sqrt{3} a_{2}-46656 i \sqrt{3} b_{3}-432 a_{1} & =0 \\
-1296 i \sqrt{3} a_{2}-43 a_{3}-139968 a_{2}-46656 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives
b_{2}

$$
\begin{align*}
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(b_{3}\right.}{6\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \tag{5E}\\
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)^{2} a_{3}}{36\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}} \\
& -\left(-\frac{144 i \sqrt{3} y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}-12 i \sqrt{3} y-\frac{144 y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}+12 y\right. \\
& 6\left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right. \\
& -\frac{12\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right) y}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 y^{3} x^{3}+81 y^{4}}}
\end{align*}
$$

$$
\left.+y a_{3}+a_{1}\right)
$$

$$
-\left(-\frac{\frac{2 i \sqrt{3}\left(-216 y+\frac{-216 y^{2} x^{3}+1944 y^{3}}{\sqrt{-12 y^{3} x^{3}+81 y^{4}}}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 i \sqrt{3} x+\frac{-144 y+\frac{2\left(-216 y^{2} x^{3}+1944 y^{3}\right)}{3 \sqrt{-12 y^{3} x^{3}+81 y^{4}}}}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+12 x}{6\left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right.}\right.
$$

$$
+\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)(-2}{18\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{4}{3}}}
$$

$$
\left.+y b_{3}+b_{1}\right)=0
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 72 v_{2}\left(-36 v_{3} \sqrt{3} v_{1}^{2} v_{2} b_{2}-216 v_{3} \sqrt{3} v_{1} v_{2}^{2} a_{2}+72 v_{3} \sqrt{3} v_{1} v_{2}^{2} b_{3}\right. \\
& \quad-54 v_{3} \sqrt{3} v_{4} v_{2} b_{2}-36 v_{3} \sqrt{3} v_{1} v_{2} b_{1}+72 i \sqrt{3} v_{1}^{5} v_{2}^{2} b_{2} \\
& +216 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{2}-72 i \sqrt{3} v_{1}^{4} v_{2}^{3} b_{3}-792 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{3} \\
& +72 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{1}+72 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1}-6 v_{5} v_{1}^{3} v_{2} b_{1}-18 i v_{3} v_{5} b_{1} \\
& +324 i v_{3} v_{2}^{2} a_{1}-6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}-72 v_{4} v_{1}^{3} v_{2}^{2} b_{2}-1296 v_{4} v_{1} v_{2}^{4} a_{3} \\
& +540 v_{3} \sqrt{3} v_{2}^{3} a_{3}+54 v_{5} v_{1} v_{2}^{2} b_{2}-6 v_{3} \sqrt{3} v_{5} b_{1}-108 v_{3} \sqrt{3} v_{2}^{2} a_{1} \\
& +192 v_{4} v_{1}^{4} v_{2}^{3} a_{3}-6 v_{5} v_{1}^{4} v_{2} b_{2}-18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}+6 v_{5} v_{1}^{3} v_{2}^{2} b_{3} \\
& -6 v_{5} v_{1}^{2} v_{2}^{3} a_{3}+4860 i \sqrt{3} v_{2}^{5} a_{3}-972 i \sqrt{3} v_{2}^{4} a_{1}-1620 i v_{3} v_{2}^{3} a_{3} \\
& -6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{2} a_{1}+12 i v_{3} v_{5} v_{1}^{2} v_{2} a_{3}+54 i \sqrt{3} v_{5} v_{1} v_{2}^{2} b_{2} \\
& +792 v_{1}^{3} v_{2}^{4} a_{3}-72 v_{1}^{4} v_{2}^{2} b_{1}-72 v_{1}^{3} v_{2}^{3} a_{1}-648 v_{1} v_{2}^{4} b_{3}+81 v_{5} v_{2}^{3} a_{2} \tag{7E}\\
& \quad-27 v_{5} v_{2}^{3} b_{3}+54 v_{5} v_{2}^{2} b_{1}+486 v_{4} v_{2}^{3} b_{2}-72 v_{1}^{5} v_{2}^{2} b_{2}-216 v_{1}^{4} v_{2}^{3} a_{2} \\
& +72 v_{1}^{4} v_{2}^{3} b_{3}+324 v_{2}^{3} v_{1}^{2} b_{2}+1944 v_{2}^{4} v_{1} a_{2}+324 v_{2}^{3} v_{1} b_{1} \\
& \quad-48 v_{3} \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}-6 v_{3} \sqrt{3} v_{5} v_{1} b_{2}-9 v_{3} \sqrt{3} v_{5} v_{2} a_{2} \\
& +3 v_{3} \sqrt{3} v_{5} v_{2} b_{3}+144 i v_{3} v_{1}^{3} v_{2}^{2} a_{3}+81 i \sqrt{3} v_{5} v_{2}^{3} a_{2} \\
& -27 i \sqrt{3} v_{5} v_{2}^{3} b_{3}-324 i \sqrt{3} v_{2}^{3} v_{1}^{2} b_{2}-1944 i \sqrt{3} v_{2}^{4} v_{1} a_{2} \\
& +648 i \sqrt{3} v_{1} v_{2}^{4} b_{3}+54 i \sqrt{3} v_{5} v_{2}^{2} b_{1}-324 i \sqrt{3} v_{2}^{3} v_{1} b_{1} \\
& \quad-18 i v_{3} v_{5} v_{1} b_{2}-27 i v_{3} v_{5} v_{2} a_{2}+9 i v_{3} v_{5} v_{2} b_{3}+108 i v_{3} v_{1}^{2} v_{2} b_{2} \\
& +648 i v_{3} v_{1} v_{2}^{2} a_{2}-216 i v_{3} v_{1} v_{2}^{2} b_{3}+108 i v_{3} v_{1} v_{2} b_{1} \\
& +4 v_{3} \sqrt{3} v_{5} v_{1}^{2} v_{2} a_{3}+144 v_{3} \sqrt{3} v_{4} v_{1} v_{2}^{2} a_{3}-6 i \sqrt{3} v_{5} v_{1}^{4} v_{2} b_{2} \\
& -18 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} a_{2}+6 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} b_{3}-6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} a_{3} \\
& \left.-6 i \sqrt{3} v_{5}^{3} v_{2}^{3} v_{2} b_{1} 480 v_{2}^{5} a_{1}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(864 i a_{3}+288 \sqrt{3} a_{3}\right) v_{3} v_{5} v_{1}^{2} v_{2}^{2}+\left(-1296 i b_{2}-432 \sqrt{3} b_{2}\right) v_{3} v_{5} v_{1} v_{2} \\
& +\left(-1944 i a_{2}+648 i b_{3}-648 \sqrt{3} a_{2}+216 \sqrt{3} b_{3}\right) v_{3} v_{5} v_{2}^{2}+\left(-1296 i b_{1}-432 \sqrt{3} b_{1}\right) v_{3} v_{5} v_{2} \\
& +34992 b_{2} v_{4} v_{2}^{4}-5184 b_{2} v_{4} v_{1}^{3} v_{2}^{3}+\left(10368 i a_{3}-3456 \sqrt{3} a_{3}\right) v_{3} v_{1}^{3} v_{2}^{3} \\
& +\left(-1296 i \sqrt{3} a_{2}+432 i \sqrt{3} b_{3}-1296 a_{2}+432 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3}+\left(-432 i \sqrt{3} b_{1}-432 b_{1}\right) v_{5} v_{1}^{3} v_{2}^{2} \\
& +\left(46656 i a_{2}-15552 i b_{3}-15552 \sqrt{3} a_{2}+5184 \sqrt{3} b_{3}\right) v_{3} v_{1} v_{2}^{3} \\
& +\left(3888 i \sqrt{3} b_{2}+3888 b_{2}\right) v_{5} v_{1} v_{2}^{3}+\left(7776 i b_{1}-2592 \sqrt{3} b_{1}\right) v_{3} v_{1} v_{2}^{2} \\
& +\left(-432 i \sqrt{3} b_{2}-432 b_{2}\right) v_{5} v_{1}^{4} v_{2}^{2}+\left(-432 i \sqrt{3} a_{3}-432 a_{3}\right) v_{5} v_{1}^{2} v_{2}^{4} \\
& +\left(-432 i \sqrt{3} a_{1}-432 a_{1}\right) v_{5} v_{1}^{2} v_{2}^{3}+\left(7776 i b_{2}-2592 \sqrt{3} b_{2}\right) v_{3} v_{1}^{2} v_{2}^{2}-93312 a_{3} v_{4} v_{1} v_{2}^{5} \\
& +13824 a_{3} v_{4} v_{1}^{4} v_{2}^{4}+\left(349920 i \sqrt{3} a_{3}-349920 a_{3}\right) v_{2}^{6}+\left(-69984 i \sqrt{3} a_{1}+69984 a_{1}\right) v_{2}^{5} \\
& +\left(5184 i \sqrt{3} b_{2}-5184 b_{2}\right) v_{1}^{5} v_{2}^{3}+\left(-116640 i a_{3}+38880 \sqrt{3} a_{3}\right) v_{3} v_{2}^{4} \\
& +\left(5832 i \sqrt{3} a_{2}-1944 i \sqrt{3} b_{3}+5832 a_{2}-1944 b_{3}\right) v_{5} v_{2}^{4} \\
& +\left(23328 i a_{1}-7776 \sqrt{3} a_{1}\right) v_{3} v_{2}^{3}+\left(3888 i \sqrt{3} b_{1}+3888 b_{1}\right) v_{5} v_{2}^{3} \\
& +\left(-57024 i \sqrt{3} a_{3}+57024 a_{3}\right) v_{1}^{3} v_{2}^{5}+\left(5184 i \sqrt{3} a_{1}-5184 a_{1}\right) v_{1}^{3} v_{2}^{4} \\
& +\left(-139968 i \sqrt{3} a_{2}+46656 i \sqrt{3} b_{3}+139968 a_{2}-46656 b_{3}\right) v_{1} v_{2}^{5} \\
& +\left(-23328 i \sqrt{3} b_{1}+23328 b_{1}\right) v_{1} v_{2}^{4}+\left(15552 i \sqrt{3} a_{2}-5184 i \sqrt{3} b_{3}-15552 a_{2}+5184 b_{3}\right) v_{1}^{4} v_{2}^{4} \\
& +\left(5184 i \sqrt{3} b_{1}-5184 b_{1}\right) v_{1}^{4} v_{2}^{3}+\left(-23328 i \sqrt{3} b_{2}+23328 b_{2}\right) v_{1}^{2} v_{2}^{4} \\
& -3888 \sqrt{3} b_{2} v_{3} v_{4} v_{2}^{2}+10368 \sqrt{3} a_{3} v_{3} v_{4} v_{1} v_{2}^{3}=0 \tag{8E}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-93312 a_{3} & =0 \\
13824 a_{3} & =0 \\
-5184 b_{2} & =0 \\
3499 b_{2} & =0 \\
10368 \sqrt{3} a_{3} & =0 \\
-3888 \sqrt{3} b_{2} & =0 \\
-116640 i a_{3}+38880 \sqrt{3} a_{3} & =0 \\
-1296 i b_{1}-432 \sqrt{3} b_{1} & =0 \\
-1296 i b_{2}-432 \sqrt{3} b_{2} & =0 \\
864 i a_{3}+288 \sqrt{3} a_{3} & =0 \\
7776 i b_{1}-2592 \sqrt{3} b_{1} & =0 \\
7776 i b_{2}-2592 \sqrt{3} b_{2} & =0 \\
10368 i a_{3}-3456 \sqrt{3} a_{3} & =0 \\
23328 i a_{1}-7776 \sqrt{3} a_{1} & =0 \\
-69984 i \sqrt{3} a_{1}+69984 a_{1} & =0 \\
-57024 i \sqrt{3} a_{3}+57024 a_{3} & =0 \\
-23328 i \sqrt{3} b_{1}+23328 b_{1} & =0 \\
-23328 i \sqrt{3} b_{2}+23328 b_{2} & =0 \\
-432 i \sqrt{3} a_{1}-432 a_{1} & =0 \\
5832 i \sqrt{3} a_{2}-1944 i \sqrt{3} b_{3}+5832 a_{2}-1944 b_{3} & =0 \\
15552 i \sqrt{3} a_{2}-5184 i \sqrt{3} b_{3}-15552 a_{2}+5184 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
```

 *** Sublevel 2 ***
 Methods for first order ODEs:
 -> Solving 1st order ODE of high degree, 1st attempt
 trying 1st order WeierstrassP solution for high degree ODE
 trying 1st order WeierstrassPPrime solution for high degree ODE
 trying 1st order JacobiSN solution for high degree ODE
 trying 1st order ODE linearizable_by_differentiation
 trying differential order: 1; missing variables
 trying simple symmetries for implicit equations
 Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
 *** Sublevel 3 ***
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying homogeneous types:
 trying exact
 Looking for potential symmetries
 trying an equivalence to an Abel ODE
 trying 1st order ODE linearizable_by_differentiation
 -> Solving 1st order ODE of high degree, Lie methods, 1st trial
 -, --> Computing symmetries using: way \(=2\)
 -, --> Computing symmetries using: way \(=2\)
 -> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
 trying dAlembert
 \(\rightarrow\) Calling odsolve with the ODE`, diff \((y(x), x)=\left(2 * y(x) * x^{\wedge} 3-8 * y(x) \wedge 3\right) /(x \wedge 4-4 * y(x) \wedge 2 * x)\),
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying a quadrature
 trying 1st order linear
 <- 1st order linear successful
 <- 1st order, parametric methods successful`
\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 29
dsolve(diff $(y(x), x)^{\wedge}-4 * x * y(x) * \operatorname{diff}(y(x), x)+8 * y(x) \wedge 2=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{4 x^{3}}{27} \\
& y(x)=0 \\
& y(x)=\frac{\left(4 c_{1} x-1\right)^{2}}{64 c_{1}^{3}}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[(y' $[x]) \wedge 3-4 * x * y[x] * y^{\prime}[x]+8 * y[x] \sim 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
Timed out
16 Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56
16.1 problem Ex 1 1066
16.2 problem Ex 2 1072
16.3 problem Ex 3 1075
16.4 problem Ex 4 1080
16.5 problem Ex 5 1084
16.6 problem Ex 6 1096
16.7 problem Ex 7 1104
16.8 problem Ex 8 1130
16.9 problem Ex 9 1136

16.1 problem Ex 1

16.1.1 Solving as clairaut ode . 1066

Internal problem ID [11216]
Internal file name [OUTPUT/10201_Tuesday_December_06_2022_04_00_10_AM_84846167/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 27. Clairaut equation. Page 56
Problem number: Ex 1.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$
\left(y^{\prime} x-y\right)^{2}-y^{\prime 2}=1
$$

16.1.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=y^{\prime} x+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
(p x-y)^{2}-p^{2}=1
$$

Solving for y from the above results in

$$
\begin{align*}
& y=p x+\sqrt{p^{2}+1} \tag{1~A}\\
& y=p x-\sqrt{p^{2}+1} \tag{2~A}
\end{align*}
$$

Each of the above ode's is a Clairaut ode which is now solved. Solving ode 1A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\sqrt{p^{2}+1} \\
& =p x+\sqrt{p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\sqrt{p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\sqrt{c_{1}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\sqrt{p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x+\frac{p}{\sqrt{p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-x \sqrt{-\frac{1}{x^{2}-1}}
$$

Substituting the above back in (1) results in

$$
y_{1}=\left(-x^{2}+1\right) \sqrt{-\frac{1}{x^{2}-1}}
$$

Solving ode 2A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x-\sqrt{p^{2}+1} \\
& =p x-\sqrt{p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-\sqrt{p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{2} x-\sqrt{c_{2}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-\sqrt{p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{p}{\sqrt{p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=x \sqrt{-\frac{1}{x^{2}-1}}
$$

Substituting the above back in (1) results in

$$
y_{1}=\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\sqrt{c_{1}^{2}+1} \tag{1}\\
& y=\left(-x^{2}+1\right) \sqrt{-\frac{1}{x^{2}-1}} \tag{2}\\
& y=c_{2} x-\sqrt{c_{2}^{2}+1} \tag{3}\\
& y=\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right) \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\sqrt{c_{1}^{2}+1}
$$

Verified OK.

$$
y=\left(-x^{2}+1\right) \sqrt{-\frac{1}{x^{2}-1}}
$$

Verified OK.

$$
y=c_{2} x-\sqrt{c_{2}^{2}+1}
$$

Verified OK.

$$
y=\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`
\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 57
dsolve($(\operatorname{diff}(y(x), x) * x-y(x))^{\wedge} 2=\operatorname{diff}(y(x), x)^{\wedge} 2+1, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x^{2}+1} \\
& y(x)=-\sqrt{-x^{2}+1} \\
& y(x)=c_{1} x-\sqrt{c_{1}^{2}+1} \\
& y(x)=c_{1} x+\sqrt{c_{1}^{2}+1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.192 (sec). Leaf size: 73
DSolve[(y' $[x] * x-y[x]) \wedge 2==\left(y^{\prime}[x]\right) \wedge 2+1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x-\sqrt{1+c_{1}^{2}} \\
& y(x) \rightarrow c_{1} x+\sqrt{1+c_{1}^{2}} \\
& y(x) \rightarrow-\sqrt{1-x^{2}} \\
& y(x) \rightarrow \sqrt{1-x^{2}}
\end{aligned}
$$

16.2 problem Ex 2

Internal problem ID [11217]
Internal file name [OUTPUT/10202_Tuesday_December_06_2022_04_00_12_AM_28627475/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 27. Clairaut equation. Page 56
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
```

Unable to solve or complete the solution.

$$
4 \mathrm{e}^{2 y} y^{\prime 2}+2 y^{\prime} x=1
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\mathrm{e}^{-2 y}\left(-x+\sqrt{x^{2}+4 \mathrm{e}^{2 y}}\right)}{4} \tag{1}\\
& y^{\prime}=-\frac{\left(x+\sqrt{x^{2}+4 \mathrm{e}^{2 y}}\right) \mathrm{e}^{-2 y}}{4} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (2)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, --> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-4*exp(2*y(x))*x^2-1)/(8*exp(2*y(x))*x^3+
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    <- quadrature successful
<- 1st order, parametric methods successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 23

```
dsolve(4*exp(2*y(x))*diff(y(x),x)^2+2*x*diff(y(x),x)-1=0,y(x), singsol=all)
```

$$
y(x)=\frac{\ln (2)}{2}-\frac{\ln \left(\frac{1}{2 \mathrm{e}^{2 c_{1}}+x}\right)}{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 12.616 (sec). Leaf size: 119
DSolve[4*Exp [2*y $[x]] *(y '[x]) \sim 2+2 * x * y y^{\prime}[x]-1==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \log \left(-e^{\frac{c_{1}}{2}} \sqrt{-x+e^{c_{1}}}\right) \\
& y(x) \rightarrow \log \left(e^{\frac{c_{1}}{2}} \sqrt{-x+e^{c_{1}}}\right) \\
& y(x) \rightarrow \log \left(-e^{\frac{c_{1}}{2}} \sqrt{x+e^{c_{1}}}\right) \\
& y(x) \rightarrow \log \left(e^{\frac{c_{1}}{2}} \sqrt{x+e^{c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{2} \log \left(-\frac{x^{2}}{4}\right)
\end{aligned}
$$

16.3 problem Ex 3

16.3.1 Solving as dAlembert ode . 1075

Internal problem ID [11218]
Internal file name [OUTPUT/10203_Tuesday_December_06_2022_04_00_14_AM_37147350/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 27. Clairaut equation. Page 56
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
4 \mathrm{e}^{2 y} y^{\prime 2}+2 \mathrm{e}^{2 x} y^{\prime}=\mathrm{e}^{2 x}
$$

16.3.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
4 \mathrm{e}^{2 y} p^{2}+2 \mathrm{e}^{2 x} p=\mathrm{e}^{2 x}
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{\ln \left(-\frac{2 p-1}{4 p^{2}}\right)}{2}+x \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=1 \\
& g=-\ln (2)+\frac{\ln \left(\frac{-2 p+1}{p^{2}}\right)}{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-1=\frac{\left(-\frac{2}{p^{2}}-\frac{2(-2 p+1)}{p^{3}}\right) p^{2} p^{\prime}(x)}{-4 p+2} \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-1=0
$$

Solving for p from the above gives

$$
p=1
$$

Substituting these in (1A) gives

$$
y=x-\ln (2)+\frac{i \pi}{2}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{2(p(x)-1)(-2 p(x)+1)}{\left(-\frac{2}{p(x)^{2}}-\frac{2(-2 p(x)+1)}{p(x)^{3}}\right) p(x)^{2}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{(2 p-1) p} d p & =\int d x \\
\ln (p)-\ln (2 p-1) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (p)-\ln (2 p-1)}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{p}{2 p-1}=c_{2} \mathrm{e}^{x}
$$

Substituing the above solution for p in (2A) gives

$$
y=x-\ln (2)+\frac{\ln \left(\frac{\left(-\frac{2 c_{2} x^{x}}{-1+2 c_{2} x^{x}}+1\right) \mathrm{e}^{-2 x}\left(-1+2 c_{2} \mathrm{e}^{x}\right)^{2}}{c_{2}^{2}}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x-\ln (2)+\frac{i \pi}{2} \tag{1}\\
& y=x-\ln (2)+\frac{\ln \left(\frac{\left(-\frac{2 c_{2} e^{x}}{-1+2 c_{2} e^{x}}+1\right) \mathrm{e}^{-2 x}\left(-1+2 c_{2} \mathrm{e}^{x}\right)^{2}}{c_{2}^{2}}\right)}{2} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x-\ln (2)+\frac{i \pi}{2}
$$

Verified OK.

$$
y=x-\ln (2)+\frac{\ln \left(\frac{\left(-\frac{2 c_{2} e^{x}}{-1+2 c_{2} e^{x}}+1\right) \mathrm{e}^{-2 x}\left(-1+2 c_{2} \mathrm{e}^{x}\right)^{2}}{c_{2}^{2}}\right)}{2}
$$

Verified OK.

Maple trace

```
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying homogeneous C
    1st order, trying the canonical coordinates of the invariance group
    <- 1st order, canonical coordinates successful
    <- homogeneous successful
* Tackling next ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying homogeneous C
    1st order, trying the canonical coordinates of the invariance group
    <- 1st order, canonical coordinates successful
    <- homogeneous successful`
```


\checkmark Solution by Maple

Time used: 1.171 (sec). Leaf size: 87
dsolve (4*exp $(2 * y(x)) * \operatorname{diff}(y(x), x) \wedge 2+2 * \exp (2 * x) * \operatorname{diff}(y(x), x)-\exp (2 * x)=0, y(x)$, singsol=all)
$y(x)=\operatorname{arctanh}\left(\operatorname{RootOf}\left(-1+\left(\mathrm{e}^{4}+4 \mathrm{e}^{\operatorname{RootOf}\left(-4 \mathrm{e}^{Z} \sinh \left(-\frac{Z}{2}+2+c_{1}-x\right)^{2}+\mathrm{e}^{4}\right)}\right)-Z^{2}\right) \mathrm{e}^{2}\right)$
$+c_{1}$
$y(x)=-\operatorname{arctanh}($ RootOf $(-1$

$$
\left.\left.+\left(\mathrm{e}^{4}+4 \mathrm{e}^{\operatorname{RootOf}\left(-4 \mathrm{e}^{Z} \sinh \left(-\frac{Z}{2}+2+c_{1}-x\right)^{2}+\mathrm{e}^{4}\right)}\right)-Z^{2}\right) \mathrm{e}^{2}\right)+c_{1}
$$

Solution by Mathematica
Time used: 2.772 (sec). Leaf size: 332
DSolve $\left[4 * \operatorname{Exp}[2 * y[x]] *\left(y^{\prime}[x]\right) \sim 2+2 * \operatorname{Exp}[2 * x] * y^{\prime}[x]-\operatorname{Exp}[2 * x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& \text { Solve }\left[-\frac{2 e^{-x} \sqrt{4 e^{2(y(x)+x)}+e^{4 x}} \operatorname{arctanh}\left(\frac{-\sqrt{4 e^{2 y(x)}+e^{2 x}}+e^{x}+1}{\sqrt{4 e^{2 y(x)}+e^{2 x}}-e^{x}+1}\right)}{\sqrt{4 e^{2 y(x)}+e^{2 x}}}\right. \\
& \left.-\frac{e^{-x} \sqrt{4 e^{2(y(x)+x)}+e^{4 x}} y(x)}{\sqrt{4 e^{2 y(x)}+e^{2 x}}}+y(x)=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{2 e^{-x} \sqrt{4 e^{2(y(x)+x)}+e^{4 x}} \operatorname{arctanh}\left(\frac{-\sqrt{4 e^{2 y(x)}+e^{2 x}}+e^{x}+1}{\sqrt{4 e^{2 y(x)}+e^{2 x}}-e^{x}+1}\right)}{\sqrt{4 e^{2 y(x)}+e^{2 x}}}\right. \\
& +\frac{e^{-x} \sqrt{4 e^{2(y(x)+x)}+e^{4 x}} y(x)}{\left.\sqrt{4 e^{2 y(x)}+e^{2 x}}+y(x)=c_{1}, y(x)\right]} \\
& y(x) \rightarrow \frac{1}{2}\left(\log \left(-\frac{e^{4 x}}{4}\right)-2 x\right)
\end{aligned}
$$

16.4 problem Ex 4

Internal problem ID [11219]
Internal file name [OUTPUT/10204_Tuesday_December_06_2022_04_00_16_AM_95578631/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56
Problem number: Ex 4.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[{ }^{\prime} y==_{-}\left(x, y^{\prime}\right)^{`}\right]$
Unable to solve or complete the solution.

$$
\mathrm{e}^{2 y} y^{\prime 3}+\left(\mathrm{e}^{2 x}+\mathrm{e}^{3 x}\right) y^{\prime}=\mathrm{e}^{3 x}
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

$$
y^{\prime}=\frac{\mathrm{e}^{-2 y}\left(\left(12 \sqrt{3} \sqrt{\left(27 \mathrm{e}^{6 x} \mathrm{e}^{2 y}+4 \mathrm{e}^{6 x}+12 \mathrm{e}^{4 x} \mathrm{e}^{3 x}+12 \mathrm{e}^{2 x} \mathrm{e}^{6 x}+4 \mathrm{e}^{9 x}\right) \mathrm{e}^{-2 y}}+108 \mathrm{e}^{3 x}\right) \mathrm{e}^{4 y}\right)^{\frac{1}{3}}}{6}-\frac{}{((12 \sqrt{3} \sqrt{ }}
$$

$$
\begin{equation*}
y^{\prime}=-\frac{\mathrm{e}^{-2 y}\left(\left(12 \sqrt{3} \sqrt{\left(27 \mathrm{e}^{6 x} \mathrm{e}^{2 y}+4 \mathrm{e}^{6 x}+12 \mathrm{e}^{4 x} \mathrm{e}^{3 x}+12 \mathrm{e}^{2 x} \mathrm{e}^{6 x}+4 \mathrm{e}^{9 x}\right) \mathrm{e}^{-2 y}}+108 \mathrm{e}^{3 x}\right) \mathrm{e}^{4 y}\right)^{\frac{1}{3}}}{12}+\frac{}{((12 \sqrt{3}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}=-\frac{\mathrm{e}^{-2 y}\left(\left(12 \sqrt{3} \sqrt{\left(27 \mathrm{e}^{6 x} \mathrm{e}^{2 y}+4 \mathrm{e}^{6 x}+12 \mathrm{e}^{4 x} \mathrm{e}^{3 x}+12 \mathrm{e}^{2 x} \mathrm{e}^{6 x}+4 \mathrm{e}^{9 x}\right) \mathrm{e}^{-2 y}}+108 \mathrm{e}^{3 x}\right) \mathrm{e}^{4 y}\right)^{\frac{1}{3}}}{12}+\frac{}{((12 \sqrt{3}} \tag{3}
\end{equation*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (2)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (3)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*x*exp(2*y(x))-2*x*exp(3*y(x))+3*exp(3*
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    <- quadrature successful
<- 1st order, parametric methods successful`
```

Solution by Maple
Time used: 1.188 (sec). Leaf size: 24

```
dsolve(exp(2*y(x))*diff (y(x),x)^3+(exp(2*x)+exp(3*x))*diff (y(x),x)-exp(3*x)=0,y(x), singsol=
```

$$
y(x)=\frac{\ln \left(-\left(c_{1}+1\right)\left(c_{1} \mathrm{e}^{-x}-1\right)^{2}\right)}{2}+x
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\operatorname{Exp}[2 * y[x]] *(y '[x]) \wedge 3+(\operatorname{Exp}[2 * x]+\operatorname{Exp}[3 * x]) * y^{\prime}[x]-\operatorname{Exp}[3 * x]==0, y[x], x\right.$, IncludeSingularSol

Timed out

16.5 problem Ex 5

Internal problem ID [11220]
Internal file name [OUTPUT/10205_Wednesday_December_07_2022_01_20_24_PM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56
Problem number: Ex 5.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
x y^{2} y^{\prime 2}-y^{3} y^{\prime}=-x
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x y} \tag{1}\\
y^{\prime} & =\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)\left(b_{3}-a_{2}\right)}{2 x y}-\frac{\left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)^{2} a_{3}}{4 x^{2} y^{2}} \\
& -\left(-\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x^{2} y}-\frac{2}{\sqrt{y^{4}-4 x^{2}} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y+\frac{2 y^{3}}{\sqrt{y^{4}-4 x^{2}}}}{2 x y}-\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{2} y^{4} b_{2}-2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}-\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}+2 x y^{4} b_{1}-2 y^{5} a_{1}+2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}-2 \sqrt{y^{4}-4 x^{2}} y^{3}}{4 x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} y^{4} b_{2}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}+\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}-2 x y^{4} b_{1} \tag{6E}\\
& +2 y^{5} a_{1}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}+2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}-8 x^{4} b_{2} \\
& +8 x^{3} y a_{2}-16 x^{3} y b_{3}+8 x^{2} y^{2} a_{3}-\left(y^{4}-4 x^{2}\right)^{\frac{3}{2}} a_{3}-8 x^{3} b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4 x^{2} y^{4} b_{2}-4 x y^{5} b_{3}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}+\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}-4 x y^{4} b_{1} \\
& +2\left(y^{4}-4 x^{2}\right) x^{2} b_{2}+4\left(y^{4}-4 x^{2}\right) x y b_{3}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1} \tag{6E}\\
& +2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}+8 x^{3} y a_{2}+8 x^{2} y^{2} a_{3}-\left(y^{4}-4 x^{2}\right)^{\frac{3}{2}} a_{3} \\
& +2\left(y^{4}-4 x^{2}\right) x b_{1}+2\left(y^{4}-4 x^{2}\right) y a_{1}+8 x^{2} y a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x^{2} y^{4} b_{2}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}-2 x y^{4} b_{1}+2 y^{5} a_{1}-8 x^{4} b_{2}+8 x^{3} y a_{2}-16 x^{3} y b_{3} \\
& +8 x^{2} y^{2} a_{3}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}+2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}-8 x^{3} b_{1}+4 x^{2} \sqrt{y^{4}-4 x^{2}} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{y^{4}-4 x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y^{4}-4 x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{1}^{2} v_{2}^{4} b_{2}+2 v_{2}^{5} a_{1}-2 v_{1} v_{2}^{4} b_{1}+2 b_{2} v_{1}^{2} v_{2}^{2} v_{3}+2 v_{3} v_{2}^{3} a_{1}+8 v_{1}^{3} v_{2} a_{2} \tag{7E}\\
& +8 v_{1}^{2} v_{2}^{2} a_{3}-2 v_{3} v_{1} v_{2}^{2} b_{1}-8 v_{1}^{4} b_{2}-16 v_{1}^{3} v_{2} b_{3}+4 v_{1}^{2} v_{3} a_{3}-8 v_{1}^{3} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -8 v_{1}^{4} b_{2}+\left(8 a_{2}-16 b_{3}\right) v_{1}^{3} v_{2}-8 v_{1}^{3} b_{1}-2 v_{1}^{2} v_{2}^{4} b_{2}+2 b_{2} v_{1}^{2} v_{2}^{2} v_{3} \tag{8E}\\
& \quad+8 v_{1}^{2} v_{2}^{2} a_{3}+4 v_{1}^{2} v_{3} a_{3}-2 v_{1} v_{2}^{4} b_{1}-2 v_{3} v_{1} v_{2}^{2} b_{1}+2 v_{2}^{5} a_{1}+2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
4 a_{3} & =0 \\
8 a_{3} & =0 \\
-8 b_{1} & =0 \\
-2 b_{1} & =0 \\
-8 b_{2} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
8 a_{2}-16 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x y}\right) \\
& =-\frac{\sqrt{y^{4}-4 x^{2}}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{\sqrt{y^{4}-4 x^{2}}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}+\sqrt{y^{4}-4 x^{2}}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{\sqrt{y^{4}-4 x^{2}}\left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)} \\
S_{y} & =-\frac{y}{\sqrt{y^{4}-4 x^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{-y^{4}-\sqrt{y^{4}-4 x^{2}} y^{2}+4 x^{2}}{x \sqrt{y^{4}-4 x^{2}}\left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=-\ln (x)+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=-\ln (x)+c_{1}
$$

Verified OK.

Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y^{2}-\sqrt{y^{4}-4 x^{2}}\right)\left(b_{3}-a_{2}\right)}{2 x y}-\frac{\left(y^{2}-\sqrt{y^{4}-4 x^{2}}\right)^{2} a_{3}}{4 x^{2} y^{2}} \\
& -\left(-\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x^{2} y}+\frac{2}{\sqrt{y^{4}-4 x^{2}} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y-\frac{2 y^{3}}{\sqrt{y^{4}-4 x^{2}}}}{2 x y}-\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-2 x^{2} y^{4} b_{2}-2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}-\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}-2 x y^{4} b_{1}+2 y^{5} a_{1}+2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}-2 \sqrt{y^{4}-4 x^{2}}}{4 x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{2} y^{4} b_{2}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}+\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}+2 x y^{4} b_{1} \tag{6E}\\
& \quad-2 y^{5} a_{1}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}+2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}+8 x^{4} b_{2} \\
& \quad-8 x^{3} y a_{2}+16 x^{3} y b_{3}-8 x^{2} y^{2} a_{3}-\left(y^{4}-4 x^{2}\right)^{\frac{3}{2}} a_{3}+8 x^{3} b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 x^{2} y^{4} b_{2}+4 x y^{5} b_{3}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}+\sqrt{y^{4}-4 x^{2}} y^{4} a_{3}+4 x y^{4} b_{1} \\
& -2\left(y^{4}-4 x^{2}\right) x^{2} b_{2}-4\left(y^{4}-4 x^{2}\right) x y b_{3}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1} \tag{6E}\\
& +2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}-8 x^{3} y a_{2}-8 x^{2} y^{2} a_{3}-\left(y^{4}-4 x^{2}\right)^{\frac{3}{2}} a_{3} \\
& -2\left(y^{4}-4 x^{2}\right) x b_{1}-2\left(y^{4}-4 x^{2}\right) y a_{1}-8 x^{2} y a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{2} y^{4} b_{2}+2 b_{2} x^{2} y^{2} \sqrt{y^{4}-4 x^{2}}+2 x y^{4} b_{1}-2 y^{5} a_{1}+8 x^{4} b_{2}-8 x^{3} y a_{2}+16 x^{3} y b_{3} \\
& \quad-8 x^{2} y^{2} a_{3}-2 \sqrt{y^{4}-4 x^{2}} x y^{2} b_{1}+2 \sqrt{y^{4}-4 x^{2}} y^{3} a_{1}+8 x^{3} b_{1}+4 x^{2} \sqrt{y^{4}-4 x^{2}} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{y^{4}-4 x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y^{4}-4 x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{2} v_{2}^{4} b_{2}-2 v_{2}^{5} a_{1}+2 v_{1} v_{2}^{4} b_{1}+2 b_{2} v_{1}^{2} v_{2}^{2} v_{3}+2 v_{3} v_{2}^{3} a_{1}-8 v_{1}^{3} v_{2} a_{2} \tag{7E}\\
& \quad-8 v_{1}^{2} v_{2}^{2} a_{3}-2 v_{3} v_{1} v_{2}^{2} b_{1}+8 v_{1}^{4} b_{2}+16 v_{1}^{3} v_{2} b_{3}+4 v_{1}^{2} v_{3} a_{3}+8 v_{1}^{3} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 8 v_{1}^{4} b_{2}+\left(-8 a_{2}+16 b_{3}\right) v_{1}^{3} v_{2}+8 v_{1}^{3} b_{1}+2 v_{1}^{2} v_{2}^{4} b_{2}+2 b_{2} v_{1}^{2} v_{2}^{2} v_{3} \tag{8E}\\
& \quad-8 v_{1}^{2} v_{2}^{2} a_{3}+4 v_{1}^{2} v_{3} a_{3}+2 v_{1} v_{2}^{4} b_{1}-2 v_{3} v_{1} v_{2}^{2} b_{1}-2 v_{2}^{5} a_{1}+2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
-8 a_{3} & =0 \\
4 a_{3} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
8 b_{1} & =0 \\
2 b_{2} & =0 \\
8 b_{2} & =0 \\
-8 a_{2}+16 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x y}\right)(2 x) \\
& =\frac{\sqrt{y^{4}-4 x^{2}}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sqrt{y^{4}-4 x^{2}}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}-\sqrt{y^{4}-4 x^{2}}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 x}{\sqrt{y^{4}-4 x^{2}}\left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)} \\
S_{y} & =\frac{y}{\sqrt{y^{4}-4 x^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(y^{2}+\sqrt{y^{4}-4 x^{2}}\right)}{2}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.188 (sec). Leaf size: 140
dsolve ($x * y(x) \wedge 2 * \operatorname{diff}(y(x), x) \wedge 2-y(x) \wedge 3 * \operatorname{diff}(y(x), x)+x=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{2} \sqrt{-x} \\
& y(x)=-\sqrt{2} \sqrt{-x} \\
& y(x)=\sqrt{2} \sqrt{x} \\
& y(x)=-\sqrt{2} \sqrt{x} \\
& y(x)=\frac{\mathrm{e}^{\frac{c_{1}}{2}+\frac{\text { RootOf }\left(16 x \mathrm{e}^{2} _Z+2 c_{1}+\mathrm{e}^{2} _z^{3} x^{3}-4 \mathrm{e}^{3} _Z+2 c_{1}\right)}{2}}}{\sqrt{x}} \\
& y(x)=\sqrt{x} \mathrm{e}^{-\frac{c_{1}}{2}+\frac{\text { RootOf }\left(x^{2}\left(16 x^{2} \mathrm{e}^{2}-Z-2 c_{1}+\mathrm{e}^{2}-Z_{-4} \mathrm{e}^{3} _Z-2 c_{1} x\right)\right)}{2}}
\end{aligned}
$$

Solution by Mathematica
Time used: 6.367 (sec). Leaf size: 187
DSolve[x*y[x] $2 *\left(y y^{\prime}[x]\right) \sim 2-y[x] \sim 3 * y{ }^{\prime}[x]+x==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-2 e^{-c_{1}} x^{2}-\frac{e^{c_{1}}}{2}} \\
& y(x) \rightarrow \sqrt{-2 e^{-c_{1}} x^{2}-\frac{e^{c_{1}}}{2}} \\
& y(x) \rightarrow-\frac{\sqrt{4 e^{-c_{1}} x^{2}+e^{c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{4 e^{-c_{1}} x^{2}+e^{c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow-\sqrt{2} \sqrt{x} \\
& y(x) \rightarrow-i \sqrt{2} \sqrt{x} \\
& y(x) \rightarrow i \sqrt{2} \sqrt{x} \\
& y(x) \rightarrow \sqrt{2} \sqrt{x}
\end{aligned}
$$

16.6 problem Ex 6

16.6.1 Solving as dAlembert ode

Internal problem ID [11221]
Internal file name [OUTPUT/10206_Wednesday_December_07_2022_01_20_25_PM_31494725/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 27. Clairaut equation. Page 56
Problem number: Ex 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\left(x^{2}+y^{2}\right)\left(1+y^{\prime}\right)^{2}-2(y+x)\left(1+y^{\prime}\right)\left(x+y y^{\prime}\right)+\left(x+y y^{\prime}\right)^{2}=0
$$

16.6.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
\left(x^{2}+y^{2}\right)(1+p)^{2}-2(y+x)(1+p)(y p+x)+(y p+x)^{2}=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=\left(p^{2}+p+1+\sqrt{p^{4}+2 p^{3}+2 p^{2}+2 p+1}\right) x \tag{1~A}\\
& y=\left(p^{2}+p+1-\sqrt{p^{4}+2 p^{3}+2 p^{2}+2 p+1}\right) x \tag{2~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2}+p+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}-1-\sqrt{\left(p^{2}+1\right)(1+p)^{2}}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}-1-\sqrt{\left(p(x)^{2}+1\right)(1+p(x))^{2}}}{x\left(2 p(x)+1+\frac{2 p(x)(1+p(x))^{2}+2\left(p(x)^{2}+1\right)(1+p(x))}{2 \sqrt{\left(p(x)^{2}+1\right)(1+p(x))^{2}}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(2 p+1+\frac{2 p(1+p)^{2}+2\left(p^{2}+1\right)(1+p)}{2 \sqrt{\left(p^{2}+1\right)(1+p)^{2}}}\right)}{-p^{2}-1-\sqrt{\left(p^{2}+1\right)(1+p)^{2}}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{(-2 p-1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p^{3}-3 p^{2}-2 p-1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{(-2 p-1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p^{3}-3 p^{2}-2 p-1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)} d p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\int-\frac{(-2 p-1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p^{3}-3 p^{2}-2 p-1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left.\left(p^{2}+1\right)(1+p)^{2}\right)}\right.} d p} x\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\int-\frac{(-2 p-1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p^{3}-3 p^{2}-2 p-1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)}} d p x=c_{2}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{(-2 p-1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p^{3}-3 p^{2}-2 p-1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)} d p}$ results in

$$
x(p)=c_{2} \mathrm{e}^{-\left(\int \frac{(2 p+1) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}+2 p^{3}+3 p^{2}+2 p+1}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(p^{2}+1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)} d p\right)}
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
Solving ode 2A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2}+p+1-\sqrt{\left(p^{2}+1\right)(1+p)^{2}} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}=x\left(2 p+1-\frac{2 p(1+p)^{2}+2\left(p^{2}+1\right)(1+p)}{2 \sqrt{\left(p^{2}+1\right)(1+p)^{2}}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}-1+\sqrt{\left(p(x)^{2}+1\right)(1+p(x))^{2}}}{x\left(2 p(x)+1-\frac{2 p(x)(1+p(x))^{2}+2\left(p(x)^{2}+1\right)(1+p(x))}{2 \sqrt{\left(p(x)^{2}+1\right)(1+p(x))^{2}}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(2 p+1-\frac{2 p(1+p)^{2}+2\left(p^{2}+1\right)(1+p)}{2 \sqrt{\left(p^{2}+1\right)(1+p)^{2}}}\right)}{-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1\right)}{\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right)}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}} d p}
$$

The ode becomes

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\int-\frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}}} d p\right. \\
x
\end{array}\right)=0
$$

Integrating gives

$$
\mathrm{e}^{\int-\frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}}} d p x=c_{4}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}} \sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right.} d p}$ results in

$$
x(p)=c_{4} \mathrm{e}^{\int \frac{-2 p^{3}+2 p \sqrt{\left(p^{2}+1\right)(1+p)^{2}}-3 p^{2}+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}-2 p-1}{\left(-p^{2}-1+\sqrt{\left(p^{2}+1\right)(1+p)^{2}}\right) \sqrt{\left(p^{2}+1\right)(1+p)^{2}}} d p}
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x \tag{1}\\
& y=i x \tag{2}\\
& y=0 \tag{3}\\
& y=-i x \tag{4}\\
& y=i x \tag{5}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying simple symmetries for implicit equations
    <- symmetries for implicit equations successful`
```

Solution by Maple
Time used: 0.156 (sec). Leaf size: 103

```
dsolve((x^2+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+\operatorname{diff}(y(x),x))*(x+y(x)*\operatorname{diff}(y(x),x))+(x+
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\text { RootOf }\left(-2 \ln (x)-\left(\int^{Z} \frac{2 _a^{2}+\sqrt{2} \sqrt{-a\left(_a-1\right)^{2}}}{-^{a\left(_a^{2}+1\right)}} d _a\right)+2 c_{1}\right) x \\
& y(x)=\text { RootOf }\left(-2 \ln (x)+\int^{Z} \frac{\sqrt{2} \sqrt{-a\left(_a-1\right)^{2}}-2 _a^{2}}{-a\left(_a^{2}+1\right)} d _a+2 c_{1}\right) x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 7.379 (sec). Leaf size: 167
DSolve $\left[\left(x^{\wedge} 2+y[x] \sim 2\right) *\left(1+y^{\prime}[x]\right) \wedge 2-2 *(x+y[x]) *\left(1+y y^{\prime}[x]\right) *(x+y[x] * y '[x])+\left(x+y[x] * y{ }^{\prime}[x]\right) \wedge 2==0, y[x]\right.$

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x\left(x+2 e^{\frac{c_{1}}{2}}\right)}-e^{\frac{c_{1}}{2}} \\
& y(x) \rightarrow \sqrt{-x\left(x+2 e^{\frac{c_{1}}{2}}\right)}-e^{\frac{c_{1}}{2}} \\
& y(x) \rightarrow e^{\frac{c_{1}}{2}}-\sqrt{x\left(-x+2 e^{\frac{c_{1}}{2}}\right)} \\
& y(x)
\end{aligned} \rightarrow \sqrt{x\left(-x+2 e^{\frac{c_{1}}{2}}\right)}+e^{\frac{c_{1}}{2}}{ }_{y(x)}^{\rightarrow-\sqrt{-x^{2}}} \begin{aligned}
& y(x)
\end{aligned} \rightarrow \sqrt{-x^{2}} .
$$

16.7 problem Ex 7

Internal problem ID [11222]
Internal file name [OUTPUT/10207_Wednesday_December_07_2022_01_20_29_PM_51821075/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56
Problem number: Ex 7.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y-2 y^{\prime} x-y^{2} y^{\prime 3}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{6 y}-\frac{4 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \tag{1}\\
& y^{\prime}=-\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{12 y}+\frac{2 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32}\right.}{6 y}\right.}{} \tag{2}\\
& y^{\prime}=-\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{12 y}+\frac{2 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.}-\frac{i \sqrt{3}\left(\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32}\right.}{6 y}\right.}{} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.

Solving equation (1)
Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& b_{2}+\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(b_{3}-a_{2}\right)}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)^{2} a_{3}}{36 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}-24}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& \left.-\frac{32\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac{216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}}{9 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}}\right. \\
& -\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& \left.-\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{18 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}}\right)\left(x b_{2}\right. \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{72\left(27 y^{4}+32 x^{3}\right)^{\frac{3}{2}} a_{3}+216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{5} b_{3}-\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{2}\right.}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -72\left(27 y^{4}+32 x^{3}\right)^{\frac{3}{2}} a_{3} \\
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{5} b_{3} \\
& +\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} x b_{2} \\
& -\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} y a_{2} \\
& +2 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} y b_{3} \\
& +6 b_{2} y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}} \\
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{4} b_{1} \\
& -12960 \sqrt{3} x^{2} y^{4} b_{2}-20736 \sqrt{3} x y^{5} b_{3} \\
& +8 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} x a_{3} \\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} y^{3} b_{3} \\
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x y^{4} b_{2} \tag{6E}\\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{3} y a_{2} \\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{2} y^{2} a_{3} \\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x y^{2} b_{2} \\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{2} y a_{1} \\
& +13824 \sqrt{3} x^{4} y a_{2}-9216 \sqrt{3} x^{3} y^{2} a_{3} \\
& -12960 \sqrt{3} x y^{4} b_{1}-96 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x^{2} a_{3} \\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} y^{2} b_{1} \\
& -4320 \sqrt{27 y^{4}+32 x^{3}} x^{2} y^{2} b_{2}-6912 \sqrt{27 y^{4}+32 x^{3}} x y^{3} b_{3} \\
& +4608 \sqrt{3} x^{3} y a_{1}-4320 \sqrt{27 y^{4}+32 x^{3}} x y^{2} b_{1} \\
& +\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} b_{1} \\
& +648 \sqrt{27 y^{4}+32 x^{3}} y^{4} a_{3}+9792 \sqrt{27 y^{4}+32 x^{3}} y^{3} a_{1} \\
& -3888 \sqrt{3} y^{6} a_{3}-9216 \sqrt{3} x^{5} b_{2}+7776 \sqrt{3} y^{5} a_{1} \\
& -9216 \sqrt{3} x^{4} b_{1}+5184 \sqrt{27 y^{4}+32 x^{3}} x y^{3} a_{2}
\end{align*}
$$

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 11664 \sqrt{3} v_{3} v_{2}^{6} b_{2}+2304 \sqrt{3} v_{1}^{4} v_{4} b_{2}+18432 \sqrt{3} v_{1}^{4} v_{3} a_{3} \\
& +2304 \sqrt{3} v_{1}^{3} v_{4} b_{1}+2592 v_{4} \sqrt{3} v_{2}^{5} b_{3}+648 v_{4} \sqrt{3} v_{2}^{4} b_{1} \\
& \quad-77760 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}-124416 \sqrt{3} v_{1} v_{2}^{5} b_{3}+864 v_{5} v_{4} v_{2}^{3} b_{3} \\
& +82944 \sqrt{3} v_{1}^{4} v_{2} a_{2}-55296 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}-77760 \sqrt{3} v_{1} v_{2}^{4} b_{1} \\
& -576 v_{5} v_{4} v_{1}^{2} a_{3}+216 v_{5} v_{4} v_{2}^{2} b_{1}-25920 v_{5} v_{1}^{2} v_{2}^{2} b_{2}-41472 v_{5} v_{1} v_{2}^{3} b_{3} \\
& +27648 \sqrt{3} v_{1}^{3} v_{2} a_{1}-25920 v_{5} v_{1} v_{2}^{2} b_{1}+31104 v_{5} v_{1} v_{2}^{3} a_{2} \tag{7E}\\
& +93312 \sqrt{3} v_{1} v_{2}^{5} a_{2}-110592 \sqrt{3} v_{1}^{4} v_{2} b_{3}-648 v_{5} v_{4} v_{2}^{3} a_{2}+3888 v_{5} v_{3} v_{2}^{4} b_{2} \\
& -7776 v_{5} v_{2}^{4} a_{3}+15552 v_{5} v_{2}^{3} a_{1}-23328 \sqrt{3} v_{2}^{6} a_{3}-55296 \sqrt{3} v_{1}^{5} b_{2} \\
& +46656 \sqrt{3} v_{2}^{5} a_{1}-55296 \sqrt{3} v_{1}^{4} b_{1}-13824 v_{1}^{3} v_{5} a_{3}-1944 \sqrt{3} v_{4} v_{2}^{5} a_{2} \\
& +648 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2}-3456 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2}-1152 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3} \\
& +216 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}-1152 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1}+4608 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3} \\
& +13824 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+15552 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+5184 v_{1} v_{5} v_{3} v_{2}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 11664 \sqrt{3} v_{3} v_{2}^{6} b_{2}+2304 \sqrt{3} v_{1}^{4} v_{4} b_{2}+18432 \sqrt{3} v_{1}^{4} v_{3} a_{3} \\
& +2304 \sqrt{3} v_{1}^{3} v_{4} b_{1}+648 v_{4} \sqrt{3} v_{2}^{4} b_{1}-77760 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2} \\
& -55296 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}-77760 \sqrt{3} v_{1} v_{2}^{4} b_{1}-576 v_{5} v_{4} v_{1}^{2} a_{3} \\
& +216 v_{5} v_{4} v_{2}^{2} b_{1}-25920 v_{5} v_{1}^{2} v_{2}^{2} b_{2}+27648 \sqrt{3} v_{1}^{3} v_{2} a_{1} \\
& -25920 v_{5} v_{1} v_{2}^{2} b_{1}+3888 v_{5} v_{3} v_{2}^{4} b_{2}-7776 v_{5} v_{2}^{4} a_{3}+15552 v_{5} v_{2}^{3} a_{1} \\
& -23328 \sqrt{3} v_{2}^{6} a_{3}-55296 \sqrt{3} v_{1}^{5} b_{2}+46656 \sqrt{3} v_{2}^{5} a_{1}-55296 \sqrt{3} v_{1}^{4} b_{1} \\
& -13824 v_{1}^{3} v_{5} a_{3}+\left(82944 \sqrt{3} a_{2}-110592 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2} \tag{8E}\\
& +\left(93312 \sqrt{3} a_{2}-124416 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5}+648 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2} \\
& -1152 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}+216 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}-1152 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1} \\
& +13824 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+15552 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3} \\
& +5184 v_{1} v_{5} v_{3} v_{2}^{2} a_{3}+\left(-1944 \sqrt{3} a_{2}+2592 \sqrt{3} b_{3}\right) v_{2}^{5} v_{4} \\
& +\left(-648 a_{2}+864 b_{3}\right) v_{2}^{3} v_{4} v_{5}+\left(-3456 \sqrt{3} a_{2}+4608 \sqrt{3} b_{3}\right) v_{1}^{3} v_{2} v_{4} \\
& +\left(31104 a_{2}-41472 b_{3}\right) v_{1} v_{2}^{3} v_{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& 15552 a_{1}=0 \\
& -13824 a_{3}=0 \\
& -7776 a_{3}=0 \\
& -576 a_{3}=0 \\
& 5184 a_{3}=0 \\
& -25920 b_{1}=0 \\
& 216 b_{1}=0 \\
& -25920 b_{2}=0 \\
& 216 b_{2}=0 \\
& 3888 b_{2}=0 \\
& -1152 \sqrt{3} a_{1}=0 \\
& 27648 \sqrt{3} a_{1}=0 \\
& 46656 \sqrt{3} a_{1}=0 \\
& -55296 \sqrt{3} a_{3}=0 \\
& -23328 \sqrt{3} a_{3}=0 \\
& -1152 \sqrt{3} a_{3}=0 \\
& 15552 \sqrt{3} a_{3}=0 \\
& 18432 \sqrt{3} a_{3}=0 \\
& -77760 \sqrt{3} b_{1}=0 \\
& -55296 \sqrt{3} b_{1}=0 \\
& 648 \sqrt{3} b_{1}=0 \\
& 2304 \sqrt{3} b_{1}=0 \\
& -77760 \sqrt{3} b_{2}=0 \\
& -55296 \sqrt{3} b_{2}=0 \\
& 648 \sqrt{3} b_{2}=0 \\
& 2304 \sqrt{3} b_{2}=0 \\
& 11664 \sqrt{3} b_{2}=0 \\
& 13824 \sqrt{3} b_{2}=0 \\
& -648 a_{2}+864 b_{3}=0 \\
& 31104 a_{2}-41472 b_{3}=0 \\
& -3456 \sqrt{3} a_{2}+4608 \sqrt{3} b_{3}=0 \\
& -1944 \sqrt{3} a_{2}+2592 \sqrt{3} b_{3}=0 \\
& 82944 \sqrt{3} a_{2}-1 \not 1 \nexists 592 \sqrt{3} b_{3}=0 \\
& 93312 \sqrt{3} a_{2}-124416 \sqrt{3} b_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =\frac{4 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{\frac{4 x}{3}} \\
& =\frac{3 y}{4 x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{\frac{3}{4}}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{\frac{3}{4}}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{\frac{4 x}{3}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\frac{3 \ln (x)}{4}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{3 y}{4 x^{\frac{7}{4}}} \\
R_{y} & =\frac{1}{x^{\frac{3}{4}}} \\
S_{x} & =\frac{3}{4 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
$\frac{d S}{d R}=\frac{9 x^{\frac{3}{4}} y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{2\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x-9 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}-48 x^{2}}$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{9 R 12^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{1}{3}}}{212^{\frac{2}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{2}{3}}-912^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{1}{3}} R^{2}-48}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{9 R\left(12 \sqrt{81 R^{4}+96}+108 R^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 R^{4}+96}+9 R^{2}\right)^{2}\right)^{\frac{1}{3}}-9 R^{2}\left(12 \sqrt{81 R^{4}+96}+108 R^{2}\right)^{\frac{1}{3}}-48} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (x)}{4}=\int^{\frac{y}{x^{3}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (x)}{4}=\int^{\frac{y}{x^{\frac{3}{4}}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a+c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{3 \ln (x)}{4} \tag{1}\\
& =\int^{\frac{y}{x^{\frac{3}{4}}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a \\
& \quad+c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{3 \ln (x)}{4} \\
& =\int^{\frac{y}{x^{3}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a \\
& \quad+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)
Writing the ode as
$y^{\prime}=\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}$
$y^{\prime}=\omega(x, y)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& b_{2} \\
& +\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)\left(b_{3}-a_{2}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)^{2} a_{3}}{144 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{1152 i x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24 i \sqrt{3}-\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& \left.-\frac{16\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right) \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{\frac{2 i \sqrt{3}\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{\frac{3\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{}-\frac{2\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}} \begin{array}{l}
3\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}
\end{array}}{1 .}\right. \\
& -\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x}{12 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)\left(216 y+\frac{\sqrt{V}}{}\right.}{36 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 331776 i v_{1}^{4} b_{1}+466560 i v_{1}^{2} v_{2}^{4} b_{2}+3888 i v_{4} v_{2}^{4} b_{1} \\
& +13824 i v_{1}^{3} v_{4} b_{1}-559872 i v_{1} v_{2}^{5} a_{2}+746496 i v_{1} v_{2}^{5} b_{3} \\
& -49764 i v_{1}^{4} v_{2} a_{2}+663552 i v_{1}^{4} v_{2} b_{3}+331776 i v_{1}^{3} v_{2}^{2} a_{3} \\
& +466560 i v_{1} v_{2}^{4} b_{1}-165888 i v_{1}^{3} v_{2} a_{1}-11664 i v_{4} v_{2}^{5} a_{2} \\
& +15552 i v_{4} v_{2}^{5} b_{3}+13824 i v_{1}^{4} v_{4} b_{2}+51840 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{2} b_{2} \\
& -62208 i v_{5} \sqrt{3} v_{1} v_{2}^{3} a_{2}+82944 i v_{5} \sqrt{3} v_{1} v_{2}^{3} b_{3} \\
& +51840 i v_{5} \sqrt{3} v_{1} v_{2}^{2} b_{1}-1152 i v_{5} v_{4} \sqrt{3} v_{1}^{2} a_{3} \\
& +46656 \sqrt{3} v_{2}^{6} a_{3}+110592 \sqrt{3} v_{1}^{5} b_{2}-93312 \sqrt{3} v_{2}^{5} a_{1} \\
& +110592 \sqrt{3} v_{1}^{4} b_{1}+15552 v_{5} v_{2}^{4} a_{3}-31104 v_{5} v_{2}^{3} a_{1} \\
& +27648 v_{1}^{3} v_{5} a_{3}-1296 i \sqrt{3} v_{5} v_{4} v_{2}^{3} a_{2} \\
& +1728 i v_{5} v_{4} \sqrt{3} v_{2}^{3} b_{3}+432 i v_{5} v_{4} \sqrt{3} v_{2}^{2} b_{1}+139968 i v_{2}^{6} a_{3} \\
& +331776 i v_{1}^{5} b_{2}-279936 i v_{2}^{5} a_{1}-9216 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3} \\
& +55296 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3} \\
& +20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3}-1296 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2} \\
& +6912 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2}+2304 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3} \\
& -432 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}+2304 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1}+3888 i v_{4} v_{1} v_{2}^{4} b_{2} \\
& -20736 i v_{4} v_{1}^{3} v_{2} a_{2}+27648 i v_{1}^{3} v_{4} v_{2} b_{3}-31104 i v_{5} \sqrt{3} v_{2}^{3} a_{1} \\
& +15552 i v_{5} \sqrt{3} v_{2}^{4} a_{3}+27648 i \sqrt{3} v_{1}^{3} v_{5} a_{3} \\
& -6912 i v_{4} v_{1}^{2} v_{2}^{2} a_{3}-6912 i v_{4} v_{1}^{2} v_{2} a_{1}+432 i v_{5} v_{4} \sqrt{3} v_{1} v_{2}^{2} b_{2} \\
& +1152 v_{5} v_{4} v_{1}^{2} a_{3}-5184 v_{4} \sqrt{3} v_{2}^{5} b_{3}-1296 v_{4} \sqrt{3} v_{2}^{4} b_{1} \\
& +155520 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}+248832 \sqrt{3} v_{1} v_{2}^{5} b_{3}-1728 v_{5} v_{4} v_{2}^{3} b_{3} \\
& -165888 \sqrt{3} v_{1}^{4} v_{2} a_{2}+110592 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& -186624 \sqrt{3} v_{1} v_{2}^{5} a_{2}+221184 \sqrt{3} v_{1}^{4} v_{2} b_{3} \\
& +1296 v_{5} v_{4} v_{2}^{3} a_{2}+15552 v_{5} v_{3} v_{2}^{4} b_{2}+155520 \sqrt{3} v_{1} v_{2}^{4} b_{1} \\
& -432 v_{5} v_{4} v_{2}^{2} b_{1}+51840 v_{5} v_{1}^{2} v_{2}^{2} b_{2}+82944 v_{5} v_{1} v_{2}^{3} b_{3} \\
& -55296 \sqrt{3} v_{1}^{3} v_{2} a_{1}+51840 v_{5} v_{1} v_{2}^{2} b_{1}-62208 v_{5} v_{1}^{3} v_{2}^{3} v_{2}^{3} b_{1}=0 \\
& +38 v_{2} \\
&
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-497664 i a_{2}+663552 i b_{3}-165888 \sqrt{3} a_{2}\right. \\
& \left.+221184 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2}+\left(13824 i b_{2}-4608 \sqrt{3} b_{2}\right) v_{1}^{4} v_{4} \\
& +\left(331776 i a_{3}+110592 \sqrt{3} a_{3}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(-165888 i a_{1}-55296 \sqrt{3} a_{1}\right) v_{1}^{3} v_{2} \\
& +\left(13824 i b_{1}-4608 \sqrt{3} b_{1}\right) v_{1}^{3} v_{4} \\
& +\left(27648 i \sqrt{3} a_{3}+27648 a_{3}\right) v_{1}^{3} v_{5} \\
& +\left(466560 i b_{2}+155520 \sqrt{3} b_{2}\right) v_{1}^{2} v_{2}^{4} \\
& +\left(-559872 i a_{2}+746496 i b_{3}-186624 \sqrt{3} a_{2}\right. \\
& \left.+248832 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5}+\left(466560 i b_{1}+155520 \sqrt{3} b_{1}\right) v_{1} v_{2}^{4} \\
& +\left(-11664 i a_{2}+15552 i b_{3}+3888 \sqrt{3} a_{2}-5184 \sqrt{3} b_{3}\right) v_{2}^{5} v_{4} \\
& +\left(3888 i b_{1}-1296 \sqrt{3} b_{1}\right) v_{2}^{4} v_{4} \\
& +\left(15552 i \sqrt{3} a_{3}+15552 a_{3}\right) v_{2}^{4} v_{5} \\
& +\left(-31104 i \sqrt{3} a_{1}-31104 a_{1}\right) v_{2}^{3} v_{5} \\
& +\left(331776 i b_{2}+110592 \sqrt{3} b_{2}\right) v_{1}^{5} \\
& +\left(331776 i b_{1}+110592 \sqrt{3} b_{1}\right) v_{1}^{4} \tag{8E}\\
& +\left(139968 i a_{3}+46656 \sqrt{3} a_{3}\right) v_{2}^{6} \\
& +\left(-62208 i \sqrt{3} a_{2}+82944 i 183 b_{3}-62208 a_{2}\right. \\
& +\left(-279936 i a_{1}-93312 \sqrt{3} a_{1}\right) v_{2}^{5} \\
& +\left(3888 i b_{2}-1296 \sqrt{3} b_{2}\right) v_{1} v_{2}^{4} v_{4} \\
& +\left(432 i \sqrt{3} b_{2}-432 b_{2}\right) v_{1} v_{2}^{2} v_{4} v_{5}+55296 \sqrt{3} v_{1}^{3} v_{2}^{3} v_{5}+\left(51840 i \sqrt{3} v_{2}^{2} b_{2}+51840 b_{1}\right) v_{1} v_{2}^{2} v_{5} \\
& +62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3} \\
& +15552 v_{5} v_{3} v_{2}^{4} b_{2}+46656 \sqrt{3} v_{3} v_{2}^{6} b_{2}+73728 \sqrt{3} v_{1}^{4} v_{3} a_{3} \\
& +\left(-20736 i a_{2}+27648 i b_{3}+6912 \sqrt{3} a_{2}\right. \\
& \left.+9216 \sqrt{3} b_{3}\right) v_{1}^{3} v_{2} v_{4}+\left(-6912 i a_{3}+2304 \sqrt{3} a_{3}\right) v_{1}^{2} v_{2}^{2} v_{4} \\
& +\left(51840 i \sqrt{3} b_{2}+51840 b_{2}\right) v_{1}^{2} v_{2}^{2} v_{5} \\
& +\left(-6912 i a_{1}+2304 \sqrt{3} a_{1}\right) v_{1}^{2} v_{2} v_{4} \\
& +\left(-1152 i \sqrt{3} a_{3}+1152 a_{3}\right) v_{1}^{2} v_{4} v_{5} \\
& +(-150
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
20736 a_{3} & =0 \\
15552 b_{2} & =0 \\
62208 \sqrt{3} a_{3} & =0 \\
73728 \sqrt{3} a_{3} & =0 \\
46656 \sqrt{3} b_{2} & =0 \\
55296 \sqrt{3} b_{2} & =0 \\
-279936 i a_{1}-93312 \sqrt{3} a_{1} & =0 \\
-165888 i a_{1}-55296 \sqrt{3} a_{1} & =0 \\
-6912 i a_{1}+2304 \sqrt{3} a_{1} & =0 \\
-6912 i a_{3}+2304 \sqrt{3} a_{3} & =0 \\
3888 i b_{1}-1296 \sqrt{3} b_{1} & =0 \\
3888 i b_{2}-1296 \sqrt{3} b_{2} & =0 \\
13824 i b_{1}-4608 \sqrt{3} b_{1} & =0 \\
13824 i b_{2}-4608 \sqrt{3} b_{2} & =0 \\
139968 i a_{3}+46656 \sqrt{3} a_{3} & =0 \\
331776 i a_{3}+110592 \sqrt{3} a_{3} & =0 \\
331776 i b_{1}+110592 \sqrt{3} b_{1} & =0 \\
331776 i b_{2}+110592 \sqrt{3} b_{2} & =0 \\
466560 i b_{1}+155520 \sqrt{3} b_{1} & =0 \\
-62208 i \sqrt{3} a_{2}+82944 i \sqrt{11} \sqrt{3} b_{3}-62208 a_{2}+82944 b_{3} & =0 \\
-1296 i \sqrt{3} a_{2}+1728 i \sqrt{3} b_{3}+1296 a_{2}-1728 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =\frac{4 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2} \tag{5E}\\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(b_{3}-a_{2}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)^{2} a_{3}}{144 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(-\frac{\frac{1152 i x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24 i \sqrt{3}+\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}-24\right.}}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.}\right. \\
& \left.+\frac{16\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right) \\
& \left.+y a_{3}+a_{1}\right)-\left(-\frac{\frac{2 i \sqrt{3}\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{3\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}+\frac{144 y+\frac{432 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.} \frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{3}}{120}\right. \\
& +\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{12 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& +\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(216 y+\frac{6}{\sqrt{2}}\right.}{36 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4608 \sqrt{3} v_{1}^{4} v_{4} b_{2}-432 i v_{5} v_{4} \sqrt{3} v_{1} v_{2}^{2} b_{2} \\
& +73728 \sqrt{3} v_{1}^{4} v_{3} a_{3}-4608 \sqrt{3} v_{1}^{3} v_{4} b_{1}-186624 \sqrt{3} v_{1} v_{2}^{5} a_{2} \\
& +1152 v_{5} v_{4} v_{1}^{2} a_{3}-5184 v_{4} \sqrt{3} v_{2}^{5} b_{3}-1296 v_{4} \sqrt{3} v_{2}^{4} b_{1} \\
& +155520 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}+248832 \sqrt{3} v_{1} v_{2}^{5} b_{3}-1728 v_{5} v_{4} v_{2}^{3} b_{3} \\
& -165888 \sqrt{3} v_{1}^{4} v_{2} a_{2}+110592 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& +155520 \sqrt{3} v_{1} v_{2}^{4} b_{1}-432 v_{5} v_{4} v_{2}^{2} b_{1}+51840 v_{5} v_{1}^{2} v_{2}^{2} b_{2} \\
& +82944 v_{5} v_{1} v_{2}^{3} b_{3}-55296 \sqrt{3} v_{1}^{3} v_{2} a_{1}+51840 v_{5} v_{1} v_{2}^{2} b_{1} \\
& +3888 \sqrt{3} v_{4} v_{2}^{5} a_{2}+46656 \sqrt{3} v_{3} v_{2}^{6} b_{2}+221184 \sqrt{3} v_{1}^{4} v_{2} b_{3} \\
& +1296 v_{5} v_{4} v_{2}^{3} a_{2}+15552 v_{5} v_{3} v_{2}^{4} b_{2}-62208 v_{5} v_{1} v_{2}^{3} a_{2} \\
& -1296 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2}+6912 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2} \\
& +2304 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}-432 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}+2304 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1} \\
& +20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3}-9216 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3} \\
& +55296 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3} \tag{7E}\\
& +1296 i \sqrt{3} v_{5} v_{4} v_{2}^{3} a_{2}-1728 i v_{5} v_{4} \sqrt{3} v_{2}^{3} b_{3} \\
& -432 i v_{5} v_{4} \sqrt{3} v_{2}^{2} b_{1}-51840 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{2} b_{2} \\
& +62208 i v_{5} \sqrt{3} v_{1} v_{2}^{3} a_{2}-82944 i v_{5} \sqrt{3} v_{1} v_{2}^{3} b_{3} \\
& -51840 i v_{5} \sqrt{3} v_{1} v_{2}^{2} b_{1}+1152 i v_{5} v_{4} \sqrt{3} v_{1}^{2} a_{3} \\
& +6912 i v_{4} v_{1}^{2} v_{2}^{2} a_{3}+6912 i v_{4} v_{1}^{2} v_{2} a_{1}-15552 i v_{5} \sqrt{3} v_{2}^{4} a_{3} \\
& -27648 i \sqrt{3} v_{1}^{3} v_{5} a_{3}+31104 i v_{5} \sqrt{3} v_{2}^{3} a_{1} \\
& -3888 i v_{4} v_{1} v_{2}^{4} b_{2}+20736 i v_{4} v_{1}^{3} v_{2} a_{2}-27648 i v_{1}^{3} v_{4} v_{2} b_{3} \\
& -33176 i v_{1}^{4} b_{1}-139968 i v_{2}^{6} a_{3}-331776 i v_{1}^{5} b_{2} \\
& +279936 i v_{2}^{5} a_{1}+27648 v_{1}^{3} v_{5} a_{3}+46656 \sqrt{3} v_{2}^{6} a_{3} \\
& +110592 \sqrt{3} v_{1}^{5} b_{2}-93312 \sqrt{3} v_{2}^{5} a_{1}+110592 \sqrt{3} v_{1}^{4} b_{1} \\
& +15552 v_{5} v_{2}^{4} a_{3}-31104 v_{5} v_{2}^{3} a_{1}+11664 i v_{4} v_{2}^{5} a_{2} \\
& -15552 i v_{4} v_{2}^{5} b_{3}-13824 i v_{1}^{4} v_{4} b_{2}-3888 i v_{4} v_{2}^{4} b_{1} \\
& -1384 i v_{1}^{3} v_{4} b_{1}+165888 i v_{1}^{3} v_{2} a_{1}-466560 i v_{1}^{2} v_{2}^{4} b_{2} \\
& +559872 i v_{1} v_{2}^{5} a_{2}-746496 i v_{1} v_{2}^{5} b_{3}+497664 i v_{1}^{4} v_{2} a_{2} \\
& -6652 b_{3}^{4}-46656 i v_{1} v_{2}^{4} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 73728 \sqrt{3} v_{1}^{4} v_{3} a_{3}+46656 \sqrt{3} v_{3} v_{2}^{6} b_{2}+15552 v_{5} v_{3} v_{2}^{4} b_{2} \\
& +\left(20736 i a_{2}-27648 i b_{3}+6912 \sqrt{3} a_{2}-9216 \sqrt{3} b_{3}\right) v_{1}^{3} v_{2} v_{4} \\
& +\left(6912 i a_{3}+2304 \sqrt{3} a_{3}\right) v_{1}^{2} v_{2}^{2} v_{4} \\
& +\left(-51840 i \sqrt{3} b_{2}+51840 b_{2}\right) v_{1}^{2} v_{2}^{2} v_{5} \\
& +\left(6912 i a_{1}+2304 \sqrt{3} a_{1}\right) v_{1}^{2} v_{2} v_{4} \\
& +\left(1152 i \sqrt{3} a_{3}+1152 a_{3}\right) v_{1}^{2} v_{4} v_{5} \\
& +\left(-3888 i b_{2}-1296 \sqrt{3} b_{2}\right) v_{1} v_{2}^{4} v_{4}+\left(62208 i \sqrt{3} a_{2}\right. \\
& \left.-82944 i \sqrt{3} b_{3}-62208 a_{2}+82944 b_{3}\right) v_{1} v_{2}^{3} v_{5} \\
& +\left(-51840 i \sqrt{3} b_{1}+51840 b_{1}\right) v_{1} v_{2}^{2} v_{5} \\
& +\left(1296 i \sqrt{3} a_{2}-1728 i \sqrt{3} b_{3}+1296 a_{2}-1728 b_{3}\right) v_{2}^{3} v_{4} v_{5} \\
& +\left(-432 i \sqrt{3} b_{1}-432 b_{1}\right) v_{2}^{2} v_{4} v_{5} \\
& +\left(-331776 i b_{2}+110592 \sqrt{3} b_{2}\right) v_{1}^{5} \\
& +\left(-331776 i b_{1}+110592 \sqrt{3} b_{1}\right) v_{1}^{4} \\
& +\left(-139968 i a_{3}+46656 \sqrt{3} a_{3}\right) v_{2}^{6} \\
& +\left(279936 i a_{1}-93312 \sqrt{3} a_{1}\right) v_{2}^{5}+20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3} \tag{8E}\\
& + \\
& +\left(11664 i a_{2}-15552 i b_{3}-1 b 8_{0} 88 \sqrt{3} a_{2}-5184 \sqrt{3} b_{3}\right) v_{2}^{5} v_{4} \\
& +\left(-3888 i b_{1}-1296 \sqrt{3} b_{1}\right) v_{2}^{4} v_{4} \\
& +\left(-432 i \sqrt{3} b_{2}-432 b_{2}\right) v_{1} v_{2}^{2} v_{4} v_{5}+\left(497664 i a_{2}\right. \\
& \left.+663552 i b_{3}-165888 \sqrt{3} a_{2}+221184 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2} \\
& +\left(-13824 i b_{2}-4608 \sqrt{3} b_{2}\right) v_{1}^{4} v_{4} \\
& +\left(-331776 i a_{3}+110592 \sqrt{3} a_{3}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(165888 i a_{1}-55296 \sqrt{3} a_{1}\right) v_{1}^{3} v_{2} \\
& +\left(-13824 i b_{1}-4608 \sqrt{3} b_{1}\right) v_{1}^{3} v_{4} \\
& +\left(-27648 i \sqrt{3} a_{3}+27648 a_{3}\right) v_{1}^{3} v_{5} \\
& +\left(-466560 i b_{2}+155520 \sqrt{3} b_{2}\right) v_{1}^{2} v_{2}^{4}+\left(559872 i a_{2}\right. \\
& +\left(-46560 i b_{1}+15550 \sqrt{3} b_{1}\right) v_{1} v_{2}^{4} \\
& +\left(186624 \sqrt{3} a_{2}+248832 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5} \\
& +
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
20736 a_{3} & =0 \\
15552 b_{2} & =0 \\
62208 \sqrt{3} a_{3} & =0 \\
73728 \sqrt{3} a_{3} & =0 \\
46656 \sqrt{3} b_{2} & =0 \\
55296 \sqrt{3} b_{2} & =0 \\
-466560 i b_{1}+155520 \sqrt{3} b_{1} & =0 \\
-466560 i b_{2}+155520 \sqrt{3} b_{2} & =0 \\
-331776 i a_{3}+110592 \sqrt{3} a_{3} & =0 \\
-331776 i b_{1}+110592 \sqrt{3} b_{1} & =0 \\
-331776 i b_{2}+110592 \sqrt{3} b_{2} & =0 \\
-139968 i a_{3}+46656 \sqrt{3} a_{3} & =0 \\
-13824 i b_{1}-4608 \sqrt{3} b_{1} & =0 \\
-13824 i b_{2}-4608 \sqrt{3} b_{2} & =0 \\
-3888 i b_{1}-1296 \sqrt{3} b_{1} & =0 \\
-3888 i b_{2}-1296 \sqrt{3} b_{2} & =0 \\
6912 i a_{1}+2304 \sqrt{3} a_{1} & =0 \\
6912 i a_{3}+2304 \sqrt{3} a_{3} & =0 \\
62208 i \sqrt{3} a_{2}-82944 i \sqrt{3} b_{3}-62208 a_{2}+82944 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=\frac{4 x}{3} \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
-, --> Computing symmetries using: way $=2$
-, --> Computing symmetries using: way $=2$
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
\rightarrow Calling odsolve with the $O D E `, \operatorname{diff}(y(x), x)=\left(-2 * y(x)^{\wedge} 2 * x^{\wedge} 3-y(x)\right) /\left(2 * y(x) * x^{\wedge} 4+x\right), y($ Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, parametric methods successful`
\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 97
dsolve $\left(y(x)=2 * \operatorname{diff}(y(x), x) * x+y(x) \sim 2 * \operatorname{diff}(y(x), x)^{\wedge} 3, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=\frac{2\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=-\frac{2 i\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=\frac{2 i\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=0 \\
& y(x)=\sqrt{c_{1}\left(c_{1}^{2}+2 x\right)} \\
& y(x)=-\sqrt{c_{1}\left(c_{1}^{2}+2 x\right)}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.183 (sec). Leaf size: 119
DSolve $\left[y[x]==2 * y{ }^{\prime}[x] * x+y[x] \sim 2 *(y '[x]) \sim 3, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{2 c_{1} x+c_{1}^{3}} \\
& y(x) \rightarrow \sqrt{2 c_{1} x+c_{1}^{3}} \\
& y(x) \rightarrow(-1-i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(1-i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(-1+i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(1+i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4}
\end{aligned}
$$

16.8 problem Ex 8

16.8.1 Solving as dAlembert ode

Internal problem ID [11223]
Internal file name [OUTPUT/10208_Wednesday_December_07_2022_01_20_31_PM_36766337/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 27. Clairaut equation. Page 56
Problem number: Ex 8.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
a^{2} y y^{\prime 2}-2 y^{\prime} x+y=0
$$

16.8.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
a^{2} y p^{2}-2 p x+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{2 p x}{a^{2} p^{2}+1} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{2 p}{a^{2} p^{2}+1} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{2 p}{a^{2} p^{2}+1}=x\left(\frac{2}{a^{2} p^{2}+1}-\frac{4 p^{2} a^{2}}{\left(a^{2} p^{2}+1\right)^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{2 p}{a^{2} p^{2}+1}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=\frac{1}{a} \\
& p=-\frac{1}{a}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=\frac{x}{a} \\
& y=-\frac{x}{a}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{2 p(x)}{a^{2} p(x)^{2}+1}}{x\left(\frac{2}{a^{2} p(x)^{2}+1}-\frac{4 p(x)^{2} a^{2}}{\left(a^{2} p(x)^{2}+1\right)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{2}{a^{2} p^{2}+1}-\frac{4 p^{2} a^{2}}{\left(a^{2} p^{2}+1\right)^{2}}\right)}{p-\frac{2 p}{a^{2} p^{2}+1}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p\left(a^{2} p^{2}+1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p\left(a^{2} p^{2}+1\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p\left(a^{2} p^{2}+1\right)} d p} \\
& =\mathrm{e}^{-\ln \left(a^{2} p^{2}+1\right)+2 \ln (p)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{p^{2}}{a^{2} p^{2}+1}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{p^{2} x}{a^{2} p^{2}+1}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p^{2} x}{a^{2} p^{2}+1}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{p^{2}}{a^{2} p^{2}+1}$ results in

$$
x(p)=\frac{c_{3}\left(a^{2} p^{2}+1\right)}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{x+\sqrt{x^{2}-y^{2} a^{2}}}{y a^{2}} \\
& p=-\frac{-x+\sqrt{x^{2}-y^{2} a^{2}}}{y a^{2}}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}} \\
& x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=\frac{x}{a} \tag{2}\\
& y=-\frac{x}{a} \tag{3}\\
& x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}} \tag{4}\\
& x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}} \tag{5}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=\frac{x}{a}
$$

Verified OK.

$$
y=-\frac{x}{a}
$$

Verified OK.

$$
x=\frac{2 c_{3} x a^{2}}{x+\sqrt{x^{2}-y^{2} a^{2}}}
$$

Verified OK.

$$
x=-\frac{2 c_{3} x a^{2}}{-x+\sqrt{x^{2}-y^{2} a^{2}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying simple symmetries for implicit equations
    <- symmetries for implicit equations successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 51
dsolve($\mathrm{a}^{\wedge} 2 * y(x) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}) \wedge 2-2 * x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x}{a} \\
& y(x)=\frac{x}{a} \\
& y(x)=0 \\
& y(x)=\mathrm{e}^{\operatorname{RootOf}\left(\mathrm{e}^{2}-Z \sinh \left(--Z+c_{1}-\ln (x)\right)^{2} a^{2}+1\right)} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 31.661 (sec). Leaf size: 244
DSolve[a^2*y[x]*(y'[x])~2-2*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)-8 i x}}{4 a} \\
& y(x) \rightarrow \frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)-8 i x}}{4 a} \\
& y(x) \rightarrow-\frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)+8 i x}}{4 a} \\
& y(x) \rightarrow \frac{\left(\cosh \left(\frac{a^{2} c_{1}}{2}\right)+\sinh \left(\frac{a^{2} c_{1}}{2}\right)\right) \sqrt{\cosh \left(a^{2} c_{1}\right)+\sinh \left(a^{2} c_{1}\right)+8 i x}}{4 a} \\
& y(x) \rightarrow-\frac{x}{a} \\
& y(x) \rightarrow \frac{x}{a}
\end{aligned}
$$

16.9 problem Ex 9

Internal problem ID [11224]
Internal file name [OUTPUT/10209_Wednesday_December_07_2022_01_20_34_PM_29877762/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 27. Clairaut equation. Page 56
Problem number: Ex 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[{ }^{\prime} y==_{-}\left(x, y^{\prime}\right)^{-}\right]$
Unable to solve or complete the solution.

$$
\left(x-y^{\prime}-y\right)^{2}-x^{2}\left(2 y x-x^{2} y^{\prime}\right)=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-\frac{x^{4}}{2}-y+x+\frac{\sqrt{x^{8}+4 y x^{4}-4 x^{5}+8 y x^{3}}}{2} \tag{1}\\
& y^{\prime}=-\frac{x^{4}}{2}-y+x-\frac{\sqrt{x^{8}+4 y x^{4}-4 x^{5}+8 y x^{3}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (2)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (1/2)*(-2*(y(x)^3*(y(x)^3-y(x)*x-2*x+2*y(x
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4
`, `> Computing symmetries using: way = 5
, `-> Computing symmetries using: way = 5`
```

X Solution by Maple
dsolve($(x-\operatorname{diff}(y(x), x)-y(x))^{\wedge} 2=x^{\wedge} 2 *\left(2 * x * y(x)-x^{\wedge} 2 * \operatorname{diff}(y(x), x)\right), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x-y{ }^{\prime}[x]-y[x]\right)^{\wedge} 2==x^{\wedge} 2 *\left(2 * x * y[x]-x^{\wedge} 2 * y{ }^{\prime}[x]\right), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Not solved
17 Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59
17.1 problem Ex 1 1140
17.2 problem Ex 2 1144
17.3 problem Ex 3 1148
17.4 problem Ex 4 1161
17.5 problem Ex 5 [1166]
17.6 problem Ex 6 1172
17.7 problem Ex 7 1186
17.8 problem Ex 8 1191
17.9 problem Ex 9 1196
17.10problem Ex 10 1200
17.11problem Ex 11 1213

17.1 problem Ex 1

17.1.1 Maple step by step solution 1141

Internal problem ID [11225]
Internal file name [OUTPUT/10210_Wednesday_December_07_2022_01_20_36_PM_8466414/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 1.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{2}\left(y^{\prime 2}+1\right)=a^{2}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-y^{2}+a^{2}}}{y} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-y^{2}+a^{2}}}{y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{y}{\sqrt{a^{2}-y^{2}}} d y & =\int d x \\
-\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}} & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}}=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}}=x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y}{\sqrt{a^{2}-y^{2}}} d y & =\int d x \\
\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}} & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}}=x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{(a-y)(y+a)}{\sqrt{-y^{2}+a^{2}}}=x+c_{2}
$$

Verified OK.

17.1.1 Maple step by step solution

Let's solve

$$
y^{2}\left(y^{\prime 2}+1\right)=a^{2}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime} y}{\sqrt{-y^{2}+a^{2}}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y}{\sqrt{-y^{2}+a^{2}}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
-\sqrt{-y^{2}+a^{2}}=x+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{-c_{1}^{2}-2 c_{1} x+a^{2}-x^{2}}, y=-\sqrt{-c_{1}^{2}-2 c_{1} x+a^{2}-x^{2}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    <- differential order: 1; missing x successful`
```


\checkmark Solution by Maple

Time used: 0.141 (sec). Leaf size: 54

```
dsolve(y(x)^2*(1+diff(y(x),x)^2)=a^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-a \\
& y(x)=a \\
& y(x)=\sqrt{a^{2}-c_{1}^{2}+2 c_{1} x-x^{2}} \\
& y(x)=-\sqrt{\left(a+x-c_{1}\right)\left(c_{1}+a-x\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.344 (sec). Leaf size: 101
DSolve[y[x] $2 *\left(1+\left(y y^{\prime}[x]\right) \sim 2\right)==a^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{a^{2}-\left(x+c_{1}\right)^{2}} \\
& y(x) \rightarrow \sqrt{a^{2}-\left(x+c_{1}\right)^{2}} \\
& y(x) \rightarrow-\sqrt{a^{2}-\left(x-c_{1}\right)^{2}} \\
& y(x) \rightarrow \sqrt{a^{2}-\left(x-c_{1}\right)^{2}} \\
& y(x) \rightarrow-a \\
& y(x) \rightarrow a
\end{aligned}
$$

17.2 problem Ex 2

17.2.1 Solving as clairaut ode

Internal problem ID [11226]
Internal file name [OUTPUT/10211_Wednesday_December_07_2022_01_20_37_PM_96663236/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y y^{\prime}-(x-b) y^{\prime 2}=a
$$

17.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=y^{\prime} x+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
y p-(x-b) p^{2}=a
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{-p^{2} b+p^{2} x+a}{p} \tag{1A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\frac{-p^{2} b+a}{p} \\
& =p x+\frac{-p^{2} b+a}{p}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{-p^{2} b+a}{p}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{-b c_{1}^{2}+a}{c_{1}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{-p^{2} b+a}{p}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-2 b-\frac{-p^{2} b+a}{p^{2}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{\sqrt{-(-x+b) a}}{-x+b} \\
& p_{2}=-\frac{\sqrt{-(-x+b) a}}{-x+b}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=\frac{2(-x+b) a}{\sqrt{-(-x+b) a}} \\
& y_{2}=-\frac{2(-x+b) a}{\sqrt{-(-x+b) a}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{-b c_{1}^{2}+a}{c_{1}} \tag{1}\\
& y=\frac{2(-x+b) a}{\sqrt{-(-x+b) a}} \tag{2}\\
& y=-\frac{2(-x+b) a}{\sqrt{-(-x+b) a}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{-b c_{1}^{2}+a}{c_{1}}
$$

Verified OK.

$$
y=\frac{2(-x+b) a}{\sqrt{-(-x+b) a}}
$$

Verified OK.

$$
y=-\frac{2(-x+b) a}{\sqrt{-(-x+b) a}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

Solution by Maple
Time used: 0.125 (sec). Leaf size: 49

```
dsolve(y(x)*diff (y(x), x)=(x-b)*diff (y (x), x)^2+a,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-2 \sqrt{-a(b-x)} \\
& y(x)=2 \sqrt{-a(b-x)} \\
& y(x)=\frac{(-b+x) c_{1}^{2}+a}{c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 59
DSolve[y[x]*y'[x]==(x-b)*(y'[x])~2+a,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{a}{c_{1}}+c_{1}(x-b) \\
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow-2 \sqrt{a(x-b)} \\
& y(x) \rightarrow 2 \sqrt{a(x-b)}
\end{aligned}
$$

17.3 problem Ex 3

Internal problem ID [11227]
Internal file name [OUTPUT/10212_Wednesday_December_07_2022_01_20_39_PM_22353921/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
x^{3} y^{\prime 2}+x^{2} y y^{\prime}=-1
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-\frac{y x-\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}} \tag{1}\\
& y^{\prime}=-\frac{y x+\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y-\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x y-\sqrt{x^{2} y^{2}-4 x}\right)\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{\left(x y-\sqrt{x^{2} y^{2}-4 x}\right)^{2} a_{3}}{4 x^{4}} \\
& -\left(-\frac{y-\frac{2 x y^{2}-4}{2 \sqrt{x^{2} y^{2}-4 x}}}{2 x^{2}}+\frac{x y-\sqrt{x^{2} y^{2}-4 x}}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{\left(x-\frac{x^{2} y}{\sqrt{x^{2} y^{2}-4 x}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{2 x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{5} y b_{2}-4 x^{3} y^{3} a_{3}-6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x}+3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3}+2 x^{4} y b_{1}-2 x^{3} y^{2} a_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}+}{4 x^{4} \sqrt{x^{2} y^{2}-4 x}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{5} y b_{2}+4 x^{3} y^{3} a_{3}+6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x}-3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3} \tag{6E}\\
& -2 x^{4} y b_{1}+2 x^{3} y^{2} a_{1}+2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{2} y a_{1} \\
& -\left(x^{2} y^{2}-4 x\right)^{\frac{3}{2}} a_{3}-4 x^{3} a_{2}-8 x^{3} b_{3}-20 x^{2} y a_{3}-12 x^{2} a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -2 x^{5} y b_{2}-2 x^{4} y^{2} a_{2}-2 x^{4} y^{2} b_{3}-2 x^{3} y^{3} a_{3}+6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x} \\
& -3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3}-2 x^{4} y b_{1}-2 x^{3} y^{2} a_{1} \\
& +2\left(x^{2} y^{2}-4 x\right) x^{2} a_{2}+2\left(x^{2} y^{2}-4 x\right) x^{2} b_{3}+6\left(x^{2} y^{2}-4 x\right) x y a_{3} \tag{6E}\\
& +2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{2} y a_{1}-\left(x^{2} y^{2}-4 x\right)^{\frac{3}{2}} a_{3} \\
& +4\left(x^{2} y^{2}-4 x\right) x a_{1}+4 x^{3} a_{2}+4 x^{2} y a_{3}+4 x^{2} a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x\left(-x^{4} y b_{2}+2 x^{2} y^{3} a_{3}+3 \sqrt{x\left(x y^{2}-4\right)} x^{3} b_{2}-2 \sqrt{x\left(x y^{2}-4\right)} x y^{2} a_{3}\right. \\
& \quad-x^{3} y b_{1}+x^{2} y^{2} a_{1}+\sqrt{x\left(x y^{2}-4\right)} x^{2} b_{1}-\sqrt{x\left(x y^{2}-4\right)} x y a_{1} \\
& \left.-2 x^{2} a_{2}-4 x^{2} b_{3}-10 x y a_{3}+2 \sqrt{x\left(x y^{2}-4\right)} a_{3}-6 x a_{1}\right)=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x\left(x y^{2}-4\right)}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x\left(x y^{2}-4\right)}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}\left(2 v_{1}^{2} v_{2}^{3} a_{3}-v_{1}^{4} v_{2} b_{2}+v_{1}^{2} v_{2}^{2} a_{1}-2 v_{3} v_{1} v_{2}^{2} a_{3}-v_{1}^{3} v_{2} b_{1}+3 v_{3} v_{1}^{3} b_{2}\right. \tag{7E}\\
& \left.\quad-v_{3} v_{1} v_{2} a_{1}+v_{3} v_{1}^{2} b_{1}-2 v_{1}^{2} a_{2}-10 v_{1} v_{2} a_{3}-4 v_{1}^{2} b_{3}-6 v_{1} a_{1}+2 v_{3} a_{3}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 b_{2} v_{2} v_{1}^{5}-2 b_{1} v_{2} v_{1}^{4}+6 b_{2} v_{3} v_{1}^{4}+4 a_{3} v_{2}^{3} v_{1}^{3}+2 a_{1} v_{2}^{2} v_{1}^{3}+2 b_{1} v_{3} v_{1}^{3} \tag{8E}\\
& \quad+\left(-4 a_{2}-8 b_{3}\right) v_{1}^{3}-4 a_{3} v_{2}^{2} v_{3} v_{1}^{2}-2 a_{1} v_{2} v_{3} v_{1}^{2}-20 a_{3} v_{2} v_{1}^{2}-12 a_{1} v_{1}^{2}+4 v_{3} a_{3} v_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-12 a_{1} & =0 \\
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
-20 a_{3} & =0 \\
-4 a_{3} & =0 \\
4 a_{3} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
-2 b_{2} & =0 \\
6 b_{2} & =0 \\
-4 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x y-\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}}\right)(-2 x) \\
& =\frac{\sqrt{x^{2} y^{2}-4 x}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sqrt{x^{2} y^{2}-4 x}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x \ln \left(\frac{x^{2} y}{\sqrt{x^{2}}}+\sqrt{x^{2} y^{2}-4 x}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y-\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y \sqrt{x} \sqrt{x y^{2}-4}+x y^{2}-2}{\sqrt{x} \sqrt{x y^{2}-4}\left(x y+\sqrt{x} \sqrt{x y^{2}-4}\right)} \\
S_{y} & =\frac{x\left(y \sqrt{x}+\sqrt{x y^{2}-4}\right)}{\sqrt{x y^{2}-4}\left(x y+\sqrt{x} \sqrt{x y^{2}-4}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\left(x y+\sqrt{x} \sqrt{x y^{2}-4}\right) \sqrt{x\left(x y^{2}-4\right)}+x^{2} y^{2}+x^{\frac{3}{2}} \sqrt{x y^{2}-4} y-4 x}{\sqrt{x y^{2}-4} x^{\frac{3}{2}}\left(2 x y+2 \sqrt{x} \sqrt{x y^{2}-4}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(y x+\sqrt{x} \sqrt{y^{2} x-4}\right)=\ln (x)+c_{1}
$$

Which simplifies to

$$
\ln \left(y x+\sqrt{x} \sqrt{y^{2} x-4}\right)=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\left(x \mathrm{e}^{2 c_{1}}+4\right) \mathrm{e}^{-c_{1}}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x \mathrm{e}^{2 c_{1}}+4\right) \mathrm{e}^{-c_{1}}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(x \mathrm{e}^{2 c_{1}}+4\right) \mathrm{e}^{-c_{1}}}{2 x}
$$

Verified OK.
Solving equation (2)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y+\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x y+\sqrt{x^{2} y^{2}-4 x}\right)\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{\left(x y+\sqrt{x^{2} y^{2}-4 x}\right)^{2} a_{3}}{4 x^{4}} \\
& -\left(-\frac{y+\frac{2 x y^{2}-4}{2 \sqrt{x^{2} y^{2}-4 x}}}{2 x^{2}}+\frac{x y+\sqrt{x^{2} y^{2}-4 x}}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{\left(x+\frac{x^{2} y}{\sqrt{x^{2} y^{2}-4 x}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{2 x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-2 x^{5} y b_{2}+4 x^{3} y^{3} a_{3}-6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x}+3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3}-2 x^{4} y b_{1}+2 x^{3} y^{2} a_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}}{4 x^{4} \sqrt{x^{2} y^{2}-4 x}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{5} y b_{2}-4 x^{3} y^{3} a_{3}+6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x}-3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3} \tag{6E}\\
& \quad+2 x^{4} y b_{1}-2 x^{3} y^{2} a_{1}+2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{2} y a_{1} \\
& \quad-\left(x^{2} y^{2}-4 x\right)^{\frac{3}{2}} a_{3}+4 x^{3} a_{2}+8 x^{3} b_{3}+20 x^{2} y a_{3}+12 x^{2} a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 2 x^{5} y b_{2}+2 x^{4} y^{2} a_{2}+2 x^{4} y^{2} b_{3}+2 x^{3} y^{3} a_{3}+6 b_{2} x^{4} \sqrt{x^{2} y^{2}-4 x} \\
& \quad-3 \sqrt{x^{2} y^{2}-4 x} x^{2} y^{2} a_{3}+2 x^{4} y b_{1}+2 x^{3} y^{2} a_{1} \tag{6E}\\
& \quad-2\left(x^{2} y^{2}-4 x\right) x^{2} a_{2}-2\left(x^{2} y^{2}-4 x\right) x^{2} b_{3}-6\left(x^{2} y^{2}-4 x\right) x y a_{3} \\
& \quad+2 \sqrt{x^{2} y^{2}-4 x} x^{3} b_{1}-2 \sqrt{x^{2} y^{2}-4 x} x^{2} y a_{1}-\left(x^{2} y^{2}-4 x\right)^{\frac{3}{2}} a_{3} \\
& \quad-4\left(x^{2} y^{2}-4 x\right) x a_{1}-4 x^{3} a_{2}-4 x^{2} y a_{3}-4 x^{2} a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x\left(x^{4} y b_{2}-2 x^{2} y^{3} a_{3}+3 \sqrt{x\left(x y^{2}-4\right)} x^{3} b_{2}-2 \sqrt{x\left(x y^{2}-4\right)} x y^{2} a_{3}\right. \\
& +x^{3} y b_{1}-x^{2} y^{2} a_{1}+\sqrt{x\left(x y^{2}-4\right)} x^{2} b_{1}-\sqrt{x\left(x y^{2}-4\right)} x y a_{1} \\
& \left.+2 x^{2} a_{2}+4 x^{2} b_{3}+10 x y a_{3}+2 \sqrt{x\left(x y^{2}-4\right)} a_{3}+6 x a_{1}\right)=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x\left(x y^{2}-4\right)}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x\left(x y^{2}-4\right)}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}\left(-2 v_{1}^{2} v_{2}^{3} a_{3}+v_{1}^{4} v_{2} b_{2}-v_{1}^{2} v_{2}^{2} a_{1}-2 v_{3} v_{1} v_{2}^{2} a_{3}+v_{1}^{3} v_{2} b_{1}+3 v_{3} v_{1}^{3} b_{2}\right. \tag{7E}\\
& \left.\quad-v_{3} v_{1} v_{2} a_{1}+v_{3} v_{1}^{2} b_{1}+2 v_{1}^{2} a_{2}+10 v_{1} v_{2} a_{3}+4 v_{1}^{2} b_{3}+6 v_{1} a_{1}+2 v_{3} a_{3}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{2} v_{1}^{5}+2 b_{1} v_{2} v_{1}^{4}+6 b_{2} v_{3} v_{1}^{4}-4 a_{3} v_{2}^{3} v_{1}^{3}-2 a_{1} v_{2}^{2} v_{1}^{3}+2 b_{1} v_{3} v_{1}^{3}+\left(4 a_{2}+8 b_{3}\right) v_{1}^{3} \tag{8E}\\
& \quad-4 a_{3} v_{2}^{2} v_{3} v_{1}^{2}-2 a_{1} v_{2} v_{3} v_{1}^{2}+20 a_{3} v_{2} v_{1}^{2}+12 a_{1} v_{1}^{2}+4 v_{3} a_{3} v_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
12 a_{1} & =0 \\
-4 a_{3} & =0 \\
4 a_{3} & =0 \\
20 a_{3} & =0 \\
2 b_{1} & =0 \\
2 b_{2} & =0 \\
6 b_{2} & =0 \\
4 a_{2}+8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x y+\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}}\right)(-2 x) \\
& =-\frac{\sqrt{x^{2} y^{2}-4 x}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{\sqrt{x^{2} y^{2}-4 x}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x \ln \left(\frac{x^{2} y}{\sqrt{x^{2}}}+\sqrt{x^{2} y^{2}-4 x}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y+\sqrt{x^{2} y^{2}-4 x}}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y \sqrt{x} \sqrt{x y^{2}-4}+x y^{2}-2}{\sqrt{x} \sqrt{x y^{2}-4}\left(x y+\sqrt{x} \sqrt{x y^{2}-4}\right)} \\
S_{y} & =\frac{\left(-y \sqrt{x}-\sqrt{x y^{2}-4}\right) x}{\sqrt{x y^{2}-4}\left(x y+\sqrt{x} \sqrt{x y^{2}-4}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\left(-x y-\sqrt{x} \sqrt{x y^{2}-4}\right) \sqrt{x\left(x y^{2}-4\right)}+x^{2} y^{2}+x^{\frac{3}{2}} \sqrt{x y^{2}-4} y-4 x}{\sqrt{x y^{2}-4} x^{\frac{3}{2}}\left(2 x y+2 \sqrt{x} \sqrt{x y^{2}-4}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln \left(y x+\sqrt{x} \sqrt{y^{2} x-4}\right)=c_{1}
$$

Which simplifies to

$$
-\ln \left(y x+\sqrt{x} \sqrt{y^{2} x-4}\right)=c_{1}
$$

Which gives

$$
y=\frac{\left(4 x \mathrm{e}^{2 c_{1}}+1\right) \mathrm{e}^{-c_{1}}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 x \mathrm{e}^{2 c_{1}}+1\right) \mathrm{e}^{-c_{1}}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(4 x \mathrm{e}^{2 c_{1}}+1\right) \mathrm{e}^{-c_{1}}}{2 x}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
    <- 1st order, canonical coordinates successful
    <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
        <- 1st order, canonical coordinates successful
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.281 (sec). Leaf size: 53
dsolve ($x \wedge 3 * \operatorname{diff}(y(x), x) \wedge 2+x^{\wedge} 2 * y(x) * \operatorname{diff}(y(x), x)+1=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2}{\sqrt{x}} \\
& y(x)=\frac{2}{\sqrt{x}} \\
& y(x)=\frac{c_{1}^{2} x+4}{2 c_{1} x} \\
& y(x)=\frac{c_{1}^{2}+4 x}{2 c_{1} x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.934 (sec). Leaf size: 77
DSolve $\left[x^{\wedge} 3 *\left(y y^{\prime}[x]\right) \wedge 2+x^{\wedge} 2 * y[x] * y^{\prime}[x]+1==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{-\frac{c_{1}}{2}}\left(x+16 e^{c_{1}}\right)}{4 x} \\
& y(x) \rightarrow \frac{e^{-\frac{c_{1}}{2}}\left(x+16 e^{c_{1}}\right)}{4 x} \\
& y(x) \rightarrow-\frac{2}{\sqrt{x}} \\
& y(x) \rightarrow \frac{2}{\sqrt{x}}
\end{aligned}
$$

17.4 problem Ex 4

17.4.1 Solving as dAlembert ode

1161
Internal problem ID [11228]
Internal file name [OUTPUT/10213_Wednesday_December_07_2022_01_20_41_PM_101706/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
3 x y^{\prime 2}-6 y y^{\prime}+2 y=-x
$$

17.4.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
3 x p^{2}-6 y p+2 y=-x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(3 p^{2}+1\right)}{6 p-2} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{3 p^{2}+1}{6 p-2} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{3 p^{2}+1}{6 p-2}=x\left(\frac{6 p}{6 p-2}-\frac{6\left(3 p^{2}+1\right)}{(6 p-2)^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{3 p^{2}+1}{6 p-2}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=1 \\
& p=-\frac{1}{3}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=x \\
& y=-\frac{x}{3}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{3 p(x)^{2}+1}{6 p(x)-2}}{x\left(\frac{6 p(x)}{6 p(x)-2}-\frac{6\left(3 p(x)^{2}+1\right)}{(6 p(x)-2)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-\frac{1}{3 x}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=-\frac{1}{3 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(-\frac{1}{3 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =\left(\frac{1}{x}\right)\left(-\frac{1}{3 x}\right) \\
\mathrm{d}\left(\frac{p}{x}\right) & =\left(-\frac{1}{3 x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{p}{x}=\int-\frac{1}{3 x^{2}} \mathrm{~d} x \\
& \frac{p}{x}=\frac{1}{3 x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=\frac{1}{3}+c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{3\left(\frac{1}{3}+c_{1} x\right)^{2}+1}{6 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x \tag{1}\\
& y=-\frac{x}{3} \tag{2}\\
& y=\frac{3\left(\frac{1}{3}+c_{1} x\right)^{2}+1}{6 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=x
$$

Verified OK.

$$
y=-\frac{x}{3}
$$

Verified OK.

$$
y=\frac{3\left(\frac{1}{3}+c_{1} x\right)^{2}+1}{6 c_{1}}
$$

Verified OK.
Maple trace
'Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 32
dsolve($3 * x * \operatorname{diff}(y(x), x)^{\sim} 2-6 * y(x) * \operatorname{diff}(y(x), x)+x+2 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=x \\
& y(x)=-\frac{x}{3} \\
& y(x)=\frac{4 c_{1}^{2}+2 c_{1} x+x^{2}}{6 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.505 (sec). Leaf size: 67
DSolve[3*x*(y'[x]) $2-6 * y[x] * y '[x]+x+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{3} x\left(-1+2 \cosh \left(-\log (x)+\sqrt{3} c_{1}\right)\right) \\
& y(x) \rightarrow-\frac{1}{3} x\left(-1+2 \cosh \left(\log (x)+\sqrt{3} c_{1}\right)\right) \\
& y(x) \rightarrow-\frac{x}{3} \\
& y(x) \rightarrow x
\end{aligned}
$$

17.5 problem Ex 5

17.5.1 Solving as first order nonlinear p but separable ode 1166
17.5.2 Solving as dAlembert ode . 1168

Internal problem ID [11229]
Internal file name [OUTPUT/10214_Wednesday_December_07_2022_01_20_43_PM_35591546/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 5 .
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_nonlinear__p_but_separable"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, _dAlembert]
```

$$
y-y^{\prime 2}(1+x)=0
$$

17.5.1 Solving as first order nonlinear p but separable ode

The ode has the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{\frac{n}{m}}=f(x) g(y) \tag{1}
\end{equation*}
$$

Where $n=2, m=1, f=\frac{1}{1+x}, g=y$. Hence the ode is

$$
\left(y^{\prime}\right)^{2}=\frac{y}{1+x}
$$

Solving for y^{\prime} from (1) gives

$$
\begin{aligned}
& y^{\prime}=\sqrt{f g} \\
& y^{\prime}=-\sqrt{f g}
\end{aligned}
$$

To be able to solve as separable ode, we have to now assume that $f>0, g>0$.

$$
\begin{array}{r}
\frac{1}{1+x}>0 \\
y>0
\end{array}
$$

Under the above assumption the differential equations become separable and can be written as

$$
\begin{aligned}
& y^{\prime}=\sqrt{f} \sqrt{g} \\
& y^{\prime}=-\sqrt{f} \sqrt{g}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x \\
-\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x
\end{aligned}
$$

Replacing $f(x), g(y)$ by their values gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\left(\sqrt{\frac{1}{1+x}}\right) d x \\
-\frac{1}{\sqrt{y}} d y & =\left(\sqrt{\frac{1}{1+x}}\right) d x
\end{aligned}
$$

Integrating now gives the solutions.

$$
\begin{aligned}
\int \frac{1}{\sqrt{y}} d y & =\int \sqrt{\frac{1}{1+x}} d x+c_{1} \\
\int-\frac{1}{\sqrt{y}} d y & =\int \sqrt{\frac{1}{1+x}} d x+c_{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
2 \sqrt{y} & =2(1+x) \sqrt{\frac{1}{1+x}}+c_{1} \\
-2 \sqrt{y} & =2(1+x) \sqrt{\frac{1}{1+x}}+c_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1 \\
& y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1 \tag{1}\\
& y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1 \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1
$$

Verified OK. $\{0<y, 0<1 /(1+x)\}$

$$
y=\sqrt{\frac{1}{1+x}} x c_{1}+\sqrt{\frac{1}{1+x}} c_{1}+\frac{c_{1}^{2}}{4}+x+1
$$

Verified OK. $\{0<y, 0<1 /(1+x)\}$

17.5.2 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
y-p^{2}(1+x)=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2} x+p^{2} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2} \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p^{2}+p=(2 x p+2 p) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}+p=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=1+x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}+p(x)}{2 p(x) x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{2+2 x} \\
q(x) & =\frac{1}{2+2 x}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{2+2 x}=\frac{1}{2+2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2+2 x} d x} \\
& =\sqrt{1+x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{1}{2+2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{1+x} p) & =(\sqrt{1+x})\left(\frac{1}{2+2 x}\right) \\
\mathrm{d}(\sqrt{1+x} p) & =\left(\frac{1}{2 \sqrt{1+x}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{1+x} p=\int \frac{1}{2 \sqrt{1+x}} \mathrm{~d} x \\
& \sqrt{1+x} p=\sqrt{1+x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{1+x}$ results in

$$
p(x)=1+\frac{c_{1}}{\sqrt{1+x}}
$$

Substituing the above solution for p in (2A) gives

$$
y=\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2} x+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=1+x \tag{2}\\
& y=\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2} x+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK. $\{0<y, 0<1 /(1+x)\}$

$$
y=1+x
$$

Verified OK. $\{0<y, 0<1 /(1+x)\}$

$$
y=\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2} x+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}
$$

Verified OK. $\{0<y, 0<1 /(1+x)\}$

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.078 (sec). Leaf size: 53

```
dsolve(y(x)=diff(y(x),x)^2*(x+1),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\left(x+1+\sqrt{(1+x)\left(c_{1}+1\right)}\right)^{2}}{1+x} \\
& y(x)=\frac{\left(-x-1+\sqrt{(1+x)\left(c_{1}+1\right)}\right)^{2}}{1+x}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 57

```
DSolve[y[x]==(y'[x])~2*(x+1),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow x-c_{1} \sqrt{x+1}+1+\frac{c_{1}^{2}}{4} \\
& y(x) \rightarrow x+c_{1} \sqrt{x+1}+1+\frac{c_{1}^{2}}{4} \\
& y(x) \rightarrow 0
\end{aligned}
$$

17.6 problem Ex 6

Internal problem ID [11230]
Internal file name [OUTPUT/10215_Wednesday_December_07_2022_01_21_18_PM_32489092/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[_rational]

$$
\left(y^{\prime} x-y\right)\left(x+y y^{\prime}\right)-a^{2} y^{\prime}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{y^{2}+a^{2}-x^{2}+\sqrt{y^{4}+2 y^{2} a^{2}+2 x^{2} y^{2}+a^{4}-2 a^{2} x^{2}+x^{4}}}{2 y x} \tag{1}\\
& y^{\prime}=\frac{y^{2}+a^{2}-x^{2}-\sqrt{y^{4}+2 y^{2} a^{2}+2 x^{2} y^{2}+a^{4}-2 a^{2} x^{2}+x^{4}}}{2 y x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}+a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \tag{5E}\\
& +\frac{\left(y^{2}+a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}\right)\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2}\right.}{2 y x} \\
& -\frac{\left(y^{2}+a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}\right)^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{4 y^{2} x^{2}} \\
& -\left(-\frac{y^{2}+a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 y x^{2}}\right. \\
& \left.+\frac{-2 x+\frac{-4 a^{2} x+4 x^{3}+4 x y^{2}}{2 \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}}{2 y x}\right)\left(x^{3} a_{7}+x^{2} y a_{8}\right. \\
& \left.+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(-\frac{y^{2}+a^{2}-x^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 y^{2} x}\right. \\
& \left.+\frac{2 y+\frac{4 a^{2} y+4 x^{2} y+4 y^{3}}{2 \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}}{2 y x}\right)\left(x^{3} b_{7}+x^{2} y b_{8}\right. \\
& \left.+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

> Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& -2 a_{6}=0 \\
& -4 a_{10}=0 \\
& -14 a^{2} a_{10}=0 \\
& -10 a^{2} a_{10}=0 \\
& -2 a^{4} a_{3}=0 \\
& -2 a^{6} a_{3}=0 \\
& -2 a_{4}-4 a_{6}=0 \\
& -2 a_{5}-2 b_{4}=0 \\
& -2 a_{5}+2 b_{6}=0 \\
& -2 a_{5}+6 b_{6}=0 \\
& 2 a_{5}+2 b_{4}=0 \\
& -4 a_{9}+4 b_{10}=0 \\
& -2 b_{7}-2 a_{8}=0 \\
& 2 b_{7}+2 a_{8}=0 \\
& -8 a_{4}+2 a_{6}+4 b_{5}=0 \\
& -6 a_{4}+4 a_{6}+4 b_{5}=0 \\
& -2 a_{4}+2 a_{6}+4 b_{5}=0 \\
& 6 a_{4}-4 a_{6}-4 b_{5}=0 \\
& -6 a_{5}-2 b_{4}+8 b_{6}=0 \\
& 4 a_{5}+6 b_{4}-6 b_{6}=0 \\
& -4 a_{7}-8 a_{9}+12 b_{10}=0 \\
& -4 a_{8}-6 a_{10}+2 b_{9}=0 \\
& -4 a_{9}+8 a_{7}-4 b_{8}=0 \\
& 4 a_{9}+4 b_{8}-8 a_{7}=0 \\
& 2 a_{10}+6 b_{9}-4 a_{8}=0 \\
& 6 a_{10}+6 b_{9}-4 a_{8}=0 \\
& 8 b_{10}-12 a_{7}+4 b_{8}=0 \\
& -10 a_{8}+4 a_{10}-2 b_{7}+8 b_{9}=0 \\
& -6 a_{10}+10 b_{7}+6 a_{8}-6 b_{9}=0 \\
& 8 b_{8}-4 a_{7}+4 a_{9}-8 b_{10}=0 \\
& -8 a^{2} a_{6}+2 a_{1}=0 \\
& -6 a^{2} a_{6}+2 a_{1}=0 \\
& -10 a^{4} a_{6}+4 a^{2} a_{1}=0 \\
& -4 a^{4} a_{6}+2 a^{2} a_{1}=0 \\
& 1175 \\
& -4 a^{6} a_{6}+2 a^{4} a_{1}=0 \\
& -16 a^{4} a_{10}-2 a^{2} a_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-a^{2} b_{10} \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =b_{10} \\
a_{8} & =0 \\
a_{9} & =b_{10} \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =a^{2} b_{10} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =b_{10} \\
b_{9} & =0 \\
b_{10} & =b_{10}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-a^{2} x+x^{3}+x y^{2} \\
& \eta=a^{2} y+x^{2} y+y^{3}
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{a^{2} y+x^{2} y+y^{3}}{-a^{2} x+x^{3}+x y^{2}} \\
& =-\frac{y\left(a^{2}+x^{2}+y^{2}\right)}{x\left(a^{2}-x^{2}-y^{2}\right)}
\end{aligned}
$$

This is easily solved to give

$$
\frac{1}{\frac{1}{y^{2}}-\frac{1}{a^{2}-x^{2}}}=-\frac{\sqrt{x-a} \sqrt{x+a} x}{\sqrt{c_{1}+8 a^{2}\left(\frac{1}{4 a(x-a)}-\frac{1}{4 a(x+a)}\right)}}-\frac{(a-x)(x+a)}{2}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{4 a^{4}-8 a^{2} x^{2}+8 y^{2} a^{2}+4 x^{4}+8 x^{2} y^{2}+4 y^{4}}{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}-2 x^{2} y^{2}+y^{4}}
$$

Since ξ depends on y and η depends on x then we can use either one to find S. Let us use

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{-a^{2} x+x^{3}+x y^{2}}
\end{aligned}
$$

But we have now to replace y in ξ from its value from the solution of $\frac{d y}{d x}=\frac{\eta}{\xi}$ found above. This results in

$$
\xi=-a^{2} x+x^{3}+x\left(-\frac{\sqrt{x-a} \sqrt{x+a} x}{\sqrt{c_{1}+8 a^{2}\left(\frac{1}{4 a(x-a)}-\frac{1}{4 a(x+a)}\right)}}-\frac{(a-x)(x+a)}{2}\right)^{2}
$$

Integrating gives

$$
S=\frac{d x}{-a^{2} x+x^{3}+x\left(-\frac{\sqrt{x-a} \sqrt{x+a} x}{\sqrt{c_{1}+8 a^{2}\left(\frac{1}{4 a(x-a)}-\frac{1}{4 a(x+a)}\right)}}-\frac{(a-x)(x+a)}{2}\right)^{2}}
$$

$=$ Expression too large to display

Where the constant of integration is set to zero as we just need one solution. Replacing back $c_{1}=\frac{4 a^{4}-8 a^{2} x^{2}+8 y^{2} a^{2}+4 x^{4}+8 x^{2} y^{2}+4 y^{4}}{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}-2 x^{2} y^{2}+y^{4}}$ then the above becomes

$$
S=\text { Expression too large to display }
$$

Unable to determine ODE type.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-a^{2}+x^{2}-y^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& \left.-\frac{\left(-a^{2}+x^{2}-y^{2}+\sqrt{\left.a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}\right)}\right)\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+\right.}{2 x y}\right) \\
& \left.-\frac{\left(-a^{2}+x^{2}-y^{2}+\sqrt{\left.a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}\right)^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right.}\right.}{4 x^{2} y^{2}}\right)\left(x^{3} a_{7}\right. \\
& -\left(-\frac{2 x+\frac{-4 a^{2} x+4 x^{3}+4 x y^{2}}{2 \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}}{2 x y}\right. \\
& \left.+\frac{-a^{2}+x^{2}-y^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 x^{2} y}\right)\left(x^{3} b_{7}\right. \\
& \left.+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(-\frac{-2 y+\frac{4 a^{2} y+4 x^{2} y+4 y^{3}}{2 \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}}{2 x y}\right. \\
& \left.+\frac{-a^{2}+x^{2}-y^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 x y^{2}}\right) \\
& \left.+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
&-2 a_{6}=0 \\
& 2 a_{6}=0 \\
&-4 a_{10}=0 \\
& 4 a_{10}=0 \\
&-10 a^{2} a_{10}=0 \\
& 14 a^{2} a_{10}=0 \\
&-2 a^{4} a_{3}=0 \\
& 2 a^{6} a_{3}=0 \\
& 2 a_{4}+4 a_{6}=0 \\
&-2 a_{5}-2 b_{4}=0 \\
&-2 a_{5}+2 b_{6}=0 \\
& 2 a_{5}-6 b_{6}=0 \\
& 2 a_{5}-2 b_{6}=0 \\
&-2 a_{8}-2 b_{7}=0 \\
&-4 a_{9}+4 b_{10}=0 \\
& 4 a_{9}-4 b_{10}=0 \\
& 1181=0 \\
&-6 a^{4} a_{10}-2 a^{2} a_{3}=0 \\
& 4 a^{6} a_{6}-2 a^{4} a_{1}=0 \\
&-2 a_{4}+2 a_{6}+4 b_{5}=0 \\
& 6 a_{4}-4 a_{6}-4 b_{5}=0 \\
& 8 a_{4}-2 a_{6}-4 b_{5}=0 \\
& 4 a_{5}+6 a_{4}-6 b_{6}=0 \\
& 6 a_{5}+2 a_{4}-8 b_{6}=0 \\
& 4 a_{7}+8 a_{9}-12 b_{10}=0 \\
&-4 a_{8}+2 a_{10}+6 b_{9}=0 \\
& 4 a_{8}+6 a_{10}-2 b_{9}=0 \\
&-4 b_{8}-4 a_{9}+8 a_{7}=0 \\
&-6 b_{9}-6 a_{10}+4 a_{8}=0 \\
&-8 b_{10}+12 a_{7}-4 b_{8}=0 \\
& 6 a_{7}+4 a_{9}-8 b_{10}+8 b_{8}=0 \\
& 10 a_{8}-4 b_{9}-6 a_{10}+10 b_{7}=0 \\
& 4 a_{10}+2 b_{7}-8 b_{9}=0 \\
&-6 a_{6}+2 a_{1}=0 \\
& 0=0 \\
& 1
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-a^{2} b_{10} \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =b_{10} \\
a_{8} & =0 \\
a_{9} & =b_{10} \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =a^{2} b_{10} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =b_{10} \\
b_{9} & =0 \\
b_{10} & =b_{10}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-a^{2} x+x^{3}+x y^{2} \\
& \eta=a^{2} y+x^{2} y+y^{3}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =a^{2} y+x^{2} y+y^{3}-\left(-\frac{-a^{2}+x^{2}-y^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 x y}\right)\left(-a^{2} x+x^{3}+x y^{2}\right) \\
& =\frac{a^{4} x-2 x^{3} a^{2}+2 a^{2} x y^{2}+x^{5}+2 y^{2} x^{3}+x y^{4}-\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}} a^{2} x+x^{3} \sqrt{a^{4}-}}{2 x y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from
$S=\int \frac{1}{\eta} d y$
$=\int \frac{1}{\frac{a^{4} x-2 x^{3} a^{2}+2 a^{2} x y^{2}+x^{5}+2 y^{2} x^{3}+x y^{4}-\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}} a^{2} x+x^{3} \sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}+x y^{2} \sqrt{a^{4}}}{2 x y}}$
Which results in
$S=-\frac{\ln \left(\frac{2 a^{4}-4 a^{2} x^{2}+2 x^{4}+\left(2 a^{2}+2 x^{2}\right) y^{2}+2 \sqrt{\left(-a^{2}+x^{2}\right)^{2}} \sqrt{y^{4}+\left(2 a^{2}+2 x^{2}\right) y^{2}+a^{4}-2 a^{2} x^{2}+x^{4}}}{y^{2}}\right)}{4 \sqrt{\left(-a^{2}+x^{2}\right)^{2}}}+\frac{\ln \left(a^{2}-2 a x+x^{2}+y^{2}\right)}{16 a x}-$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-a^{2}+x^{2}-y^{2}+\sqrt{a^{4}-2 a^{2} x^{2}+2 y^{2} a^{2}+x^{4}+2 x^{2} y^{2}+y^{4}}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{2 x}{\sqrt{\left(a^{2}-2 a x+x^{2}+y^{2}\right)\left(a^{2}+2 a x+x^{2}+y^{2}\right)}\left(a^{2}+x^{2}+y^{2}+\sqrt{\left(a^{2}-2 a x+x^{2}+y^{2}\right)\left(a^{2}+2 a x+x\right.}\right.} \\
& S_{y}=\frac{\left(x^{4}+\left(-2 a^{2}+y^{2}\right) x^{2}+a^{4}\right) \sqrt{\left(a^{2}-2 a x+x^{2}+y^{2}\right)\left(a^{2}+2 a x+x^{2}+y^{2}\right)}-x^{6}+\left(3 a^{2}-2 y^{2}\right) x^{4}}{\sqrt{\left(a^{2}-2 a x+x^{2}+y^{2}\right)\left(a^{2}+2 a x+x^{2}+y^{2}\right)}\left(\left(a^{2}-x^{2}\right) \sqrt{\left(a^{2}-2 a x+x^{2}+y^{2}\right)\left(a^{2}+2 a x+x^{2}+y\right.}\right.}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-\ln \left(\left(a^{2}-x^{2}\right) \sqrt{\left(y^{2}+(x+a)^{2}\right)\left(y^{2}+(a-x)^{2}\right)}+a^{4}+\left(y^{2}-2 x^{2}\right) a^{2}+x^{4}+x^{2} y^{2}\right)+4 \ln (y)-\ln \left(a^{2} .\right.}{4 a^{2}}
$$

Which simplifies to

$$
\frac{-\ln \left(\left(a^{2}-x^{2}\right) \sqrt{\left(y^{2}+(x+a)^{2}\right)\left(y^{2}+(a-x)^{2}\right)}+a^{4}+\left(y^{2}-2 x^{2}\right) a^{2}+x^{4}+x^{2} y^{2}\right)+4 \ln (y)-\ln \left(a^{2} .\right.}{4 a^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& -\ln \left(\left(a^{2}-x^{2}\right) \sqrt{\left(y^{2}+(x+a)^{2}\right)\left(y^{2}+(a-x)^{2}\right)}+a^{4}+\left(y^{2}-2 x^{2}\right) a^{2}+x^{4}+x^{2} y^{2}\right)+4 \ln (y)-\ln \left(a^{2} .\right. \\
& =c_{1}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& -\ln \left(\left(a^{2}-x^{2}\right) \sqrt{\left(y^{2}+(x+a)^{2}\right)\left(y^{2}+(a-x)^{2}\right)}+a^{4}+\left(y^{2}-2 x^{2}\right) a^{2}+x^{4}+x^{2} y^{2}\right)+4 \ln (y)-\ln \left(a^{2} .\right. \\
& =c_{1}
\end{aligned} 4 a^{2} .
$$

Verified OK.

X Solution by Maple
dsolve($(\operatorname{diff}(y(x), x) * x-y(x)) *(\operatorname{diff}(y(x), x) * y(x)+x)=a^{\wedge} 2 * \operatorname{diff}(y(x), x), y(x), \quad$ singsol=all)

No solution found
\checkmark Solution by Mathematica
Time used: 0.6 (sec). Leaf size: 75
DSolve[($\left.y^{\prime}[x] * x-y[x]\right) *\left(y^{\prime}[x] * y[x]+x\right)==a^{\wedge} 2 * y^{\prime}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt{c_{1}\left(x^{2}-\frac{a^{2}}{1+c_{1}}\right)} \\
& y(x) \rightarrow-i(a-x) \\
& y(x) \rightarrow i(a-x) \\
& y(x) \rightarrow-i(a+x) \\
& y(x) \rightarrow i(a+x)
\end{aligned}
$$

17.7 problem Ex 7

17.7.1 Maple step by step solution 1189

Internal problem ID [11231]
Internal file name [OUTPUT/10216_Wednesday_December_07_2022_01_21_21_PM_8757104/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 7.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime 2}+2 y^{\prime} y \cot (x)-y^{2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-1+\sqrt{\tan (x)^{2}+1}\right) y}{\tan (x)} \tag{1}\\
& y^{\prime}=-\frac{\left(1+\sqrt{\tan (x)^{2}+1}\right) y}{\tan (x)} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\left(-1+\sqrt{\tan (x)^{2}+1}\right) y}{\tan (x)}
\end{aligned}
$$

Where $f(x)=\frac{-1+\sqrt{\tan (x)^{2}+1}}{\tan (x)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{-1+\sqrt{\tan (x)^{2}+1}}{\tan (x)} d x \\
\int \frac{1}{y} d y & =\int \frac{-1+\sqrt{\tan (x)^{2}+1}}{\tan (x)} d x \\
\ln (y) & =\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)+c_{1} \\
y & =\mathrm{e}^{\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{2 c_{1}(\csc (x)-\cot (x))^{\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{1}(\csc (x)-\cot (x))^{\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{1}(\csc (x)-\cot (x))^{\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)}
$$

Verified OK.
Solving equation (2)

In canonical form the $O D E$ is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\left(1+\sqrt{\tan (x)^{2}+1}\right) y}{\tan (x)}
\end{aligned}
$$

Where $f(x)=-\frac{1+\sqrt{\tan (x)^{2}+1}}{\tan (x)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{1+\sqrt{\tan (x)^{2}+1}}{\tan (x)} d x \\
\int \frac{1}{y} d y & =\int-\frac{1+\sqrt{\tan (x)^{2}+1}}{\tan (x)} d x \\
\ln (y) & =-\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)+c_{2} \\
y & =\mathrm{e}^{-\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\cos (x) \ln (\csc (x)-\cot (x)) \sqrt{\sec (x)^{2}}-\ln (\csc (x)-\cot (x))+\ln \left(\frac{2}{\cos (x)+1}\right)}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{2 c_{2}(\csc (x)-\cot (x))^{-\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{2}(\csc (x)-\cot (x))^{-\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{2}(\csc (x)-\cot (x))^{-\cos (x) \sqrt{\sec (x)^{2}}}}{(\csc (x)-\cot (x))(\cos (x)+1)}
$$

Verified OK.

17.7.1 Maple step by step solution

Let's solve

$$
y^{\prime 2}+2 y^{\prime} y \cot (x)-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{-1+\sqrt{\tan (x)^{2}+1}}{\tan (x)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{-1+\sqrt{\tan (x)^{2}+1}}{\tan (x)} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-\operatorname{arctanh}\left(\frac{1}{\sqrt{\tan (x)^{2}+1}}\right)-\ln (\tan (x))+\frac{\ln \left(\tan (x)^{2}+1\right)}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{c_{1}} \cos (x)\left(-1+\sqrt{\frac{1}{\cos (x)^{2}}}\right)}{\sqrt{\sin (x)^{2}} \sin (x)}
$$

Maple trace

```
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 39
dsolve(diff $(y(x), x) \wedge 2+2 * \operatorname{diff}(y(x), x) * y(x) * \cot (x)=y(x) \wedge 2, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\operatorname{csgn}(\sin (x)) c_{1}}{\cos (x)+\operatorname{csgn}(\sec (x))} \\
& y(x)=\csc (x)^{2}(\cos (x)+\operatorname{csgn}(\sec (x))) \operatorname{csgn}(\sin (x)) c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 36
DSolve[(y'[x])^2+2*y'[x]*y[x]*Cot[x]==y[x]~2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \csc ^{2}\left(\frac{x}{2}\right) \\
& y(x) \rightarrow c_{1} \sec ^{2}\left(\frac{x}{2}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

17.8 problem Ex 8

17.8.1 Solving as clairaut ode 1191

Internal problem ID [11232]
Internal file name [OUTPUT/10217_Wednesday_December_07_2022_01_21_24_PM_1151142/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 8.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$
\left(x^{2}+1\right) y^{\prime 2}-2 x y y^{\prime}+y^{2}=1
$$

17.8.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=y^{\prime} x+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
\left(x^{2}+1\right) p^{2}-2 x y p+y^{2}=1
$$

Solving for y from the above results in

$$
\begin{align*}
& y=p x+\sqrt{-p^{2}+1} \tag{1~A}\\
& y=p x-\sqrt{-p^{2}+1} \tag{2~A}
\end{align*}
$$

Each of the above ode's is a Clairaut ode which is now solved. Solving ode 1A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\sqrt{-p^{2}+1} \\
& =p x+\sqrt{-p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\sqrt{-p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\sqrt{-c_{1}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\sqrt{-p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{p}{\sqrt{-p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=\frac{x}{\sqrt{x^{2}+1}}
$$

Substituting the above back in (1) results in

$$
y_{1}=\sqrt{x^{2}+1}
$$

Solving ode 2A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x-\sqrt{-p^{2}+1} \\
& =p x-\sqrt{-p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-\sqrt{-p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{2} x-\sqrt{-c_{2}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-\sqrt{-p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x+\frac{p}{\sqrt{-p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-\frac{x}{\sqrt{x^{2}+1}}
$$

Substituting the above back in (1) results in

$$
y_{1}=-\sqrt{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\sqrt{-c_{1}^{2}+1} \tag{1}\\
& y=\sqrt{x^{2}+1} \tag{2}\\
& y=c_{2} x-\sqrt{-c_{2}^{2}+1} \tag{3}\\
& y=-\sqrt{x^{2}+1} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\sqrt{-c_{1}^{2}+1}
$$

Verified OK.

$$
y=\sqrt{x^{2}+1}
$$

Verified OK.

$$
y=c_{2} x-\sqrt{-c_{2}^{2}+1}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 57

```
dsolve((1+x^2)*diff (y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2-1=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{x^{2}+1} \\
& y(x)=-\sqrt{x^{2}+1} \\
& y(x)=c_{1} x-\sqrt{-c_{1}^{2}+1} \\
& y(x)=c_{1} x+\sqrt{-c_{1}^{2}+1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.168 (sec). Leaf size: 73
DSolve $\left[\left(1+x^{\wedge} 2\right) *\left(y^{\prime}[x]\right)^{\wedge} 2-2 * x * y[x] * y '[x]+y[x] \wedge 2-1==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x-\sqrt{1-c_{1}^{2}} \\
& y(x) \rightarrow c_{1} x+\sqrt{1-c_{1}^{2}} \\
& y(x) \rightarrow-\sqrt{x^{2}+1} \\
& y(x) \rightarrow \sqrt{x^{2}+1}
\end{aligned}
$$

17.9 problem Ex 9

17.9.1 Maple step by step solution

1198
Internal problem ID [11233]
Internal file name [OUTPUT/10218_Wednesday_December_07_2022_01_21_26_PM_27725878/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 9.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime 2}-2\left(y x+2 y^{\prime}\right) y^{\prime}+y^{2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{y}{x+2} \tag{1}\\
y^{\prime} & =\frac{y}{x-2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x+2}
\end{aligned}
$$

Where $f(x)=\frac{1}{x+2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x+2} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x+2} d x \\
\ln (y) & =\ln (x+2)+c_{1} \\
y & =\mathrm{e}^{\ln (x+2)+c_{1}} \\
& =c_{1}(x+2)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x+2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}(x+2)
$$

Verified OK.

Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x-2}
\end{aligned}
$$

Where $f(x)=\frac{1}{x-2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x-2} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x-2} d x \\
\ln (y) & =\ln (x-2)+c_{2} \\
y & =\mathrm{e}^{\ln (x-2)+c_{2}} \\
& =c_{2}(x-2)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}(x-2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2}(x-2)
$$

Verified OK.
17.9.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime 2}-2\left(y x+2 y^{\prime}\right) y^{\prime}+y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x+2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x+2} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x+2)+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}}(x+2)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)^{\wedge} 2-2 *(x * y(x)+2 * \operatorname{diff}(y(x), x)) * \operatorname{diff}(y(x), x)+y(x)^{\wedge} 2=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=c_{1}(x-2) \\
& y(x)=c_{1}(x+2)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 2 *\left(y^{\prime}[x]\right) \wedge 2-2 *\left(x * y[x]+2 * y^{\prime}[x]\right) * y{ }^{\prime}[x]+y[x] \sim 2==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow I

$$
\begin{aligned}
& y(x) \rightarrow c_{1}(x-2) \\
& y(x) \rightarrow c_{1}(x+2) \\
& y(x) \rightarrow 0
\end{aligned}
$$

17.10 problem Ex 10

Internal problem ID [11234]
Internal file name [OUTPUT/10219_Wednesday_December_07_2022_01_21_27_PM_89764836/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first. Article 28. Summary. Page 59
Problem number: Ex 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y-y^{\prime} x-\frac{y y^{\prime 2}}{x^{2}}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y} \tag{1}\\
& y^{\prime}=-\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x\left(b_{3}-a_{2}\right)}{2 y}-\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right)^{2} x^{2} a_{3}}{4 y^{2}} \\
& -\left(\frac{\left(-2 x+\frac{2 x^{3}}{\sqrt{x^{4}+4 y^{2}}}\right) x}{2 y}+\frac{-x^{2}+\sqrt{x^{4}+4 y^{2}}}{2 y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y^{2}}+\frac{2 x}{\sqrt{x^{4}+4 y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-2 x^{8} a_{3}+\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}-2 x^{6} b_{2}+8 x^{5} y a_{2}-4 x^{5} y b_{3}-2 x^{4} y^{2} a_{3}+\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}+2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{8} a_{3}-\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}+2 x^{6} b_{2}-8 x^{5} y a_{2}+4 x^{5} y b_{3}+2 x^{4} y^{2} a_{3} \\
& \quad-\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2} \tag{6E}\\
& -4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}+2 x^{5} b_{1}-6 x^{4} y a_{1} \\
& -2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1}-16 x y^{3} a_{2} \\
& +8 x y^{3} b_{3}-8 y^{4} a_{3}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}-8 y^{3} a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}+2\left(x^{4}+4 y^{2}\right) x^{4} a_{3}-4 x^{5} y a_{2}-4 x^{4} y^{2} a_{3} \\
& \quad-\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2} \\
& -4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}-4 x^{4} y a_{1}+2\left(x^{4}+4 y^{2}\right) x^{2} b_{2} \tag{6E}\\
& -4\left(x^{4}+4 y^{2}\right) x y a_{2}+4\left(x^{4}+4 y^{2}\right) x y b_{3}-2\left(x^{4}+4 y^{2}\right) y^{2} a_{3} \\
& -2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1}-8 x^{2} y^{2} b_{2}-8 x y^{3} b_{3} \\
& +2\left(x^{4}+4 y^{2}\right) x b_{1}-2\left(x^{4}+4 y^{2}\right) y a_{1}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}-8 x y^{2} b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{8} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{6} a_{3}+2 x^{6} b_{2}-8 x^{5} y a_{2}+4 x^{5} y b_{3}+2 x^{4} y^{2} a_{3}+2 x^{5} b_{1} \\
& \quad-2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}-6 x^{4} y a_{1}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2}-4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3} \\
& +2 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1} \\
& \quad-16 x y^{3} a_{2}+8 x y^{3} b_{3}-8 y^{4} a_{3}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}-8 y^{3} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{4}+4 y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{4}+4 y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}-8 v_{1}^{5} v_{2} a_{2}+2 v_{1}^{4} v_{2}^{2} a_{3}+2 v_{1}^{6} b_{2}+4 v_{1}^{5} v_{2} b_{3}-6 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad+8 v_{3} v_{1}^{3} v_{2} a_{2}+2 v_{3} v_{1}^{2} v_{2}^{2} a_{3}+2 v_{1}^{5} b_{1}-2 v_{3} v_{1}^{v_{2}} b_{2}-4 v_{3} v_{1}^{3} v_{2} b_{3}+6 v_{3} v_{1}^{2} v_{2} a_{1} \\
& \quad-16 v_{1} v_{2}^{3} a_{2}-8 v_{2}^{4} a_{3}-2 v_{3} v_{1}^{3} b_{1}+8 v_{1} v_{2}^{3} b_{3}-8 v_{2}^{3} a_{1}+4 b_{2} v_{2}^{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}+2 v_{1}^{6} b_{2}+\left(-8 a_{2}+4 b_{3}\right) v_{1}^{5} v_{2}+2 v_{1}^{5} b_{1}+2 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-6 v_{1}^{4} v_{2} a_{1}-2 v_{3} v_{1}^{4} b_{2}+\left(8 a_{2}-4 b_{3}\right) v_{1}^{3} v_{2} v_{3}-2 v_{3} v_{1}^{3} b_{1}+2 v_{3} v_{1}^{2} v_{2}^{2} a_{3} \\
& \quad+6 v_{3} v_{1}^{2} v_{2} a_{1}+\left(-16 a_{2}+8 b_{3}\right) v_{1} v_{2}^{3}-8 v_{2}^{4} a_{3}-8 v_{2}^{3} a_{1}+4 b_{2} v_{2}^{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-8 a_{1} & =0 \\
-6 a_{1} & =0 \\
6 a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
-16 a_{2}+8 b_{3} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
8 a_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y}\right)(x) \\
& =\frac{x^{4}-\sqrt{x^{4}+4 y^{2}} x^{2}+4 y^{2}}{2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{4}-\sqrt{x^{4}+4 y^{2}} x^{2}+4 y^{2}}{2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{2}-\frac{x^{2} \ln \left(\frac{2 x^{4}+2 \sqrt{x^{4}} \sqrt{x^{4}+4 y^{2}}}{y}\right)}{2 \sqrt{x^{4}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x^{2}+\sqrt{x^{4}+4 y^{2}}}{x \sqrt{x^{4}+4 y^{2}}} \\
S_{y} & =\frac{\sqrt{x^{4}+4 y^{2}} x^{2}+x^{4}+2 y^{2}}{y \sqrt{x^{4}+4 y^{2}}\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{x^{4}+\sqrt{x^{4}+4 y^{2}} x^{2}+4 y^{2}}{x \sqrt{x^{4}+4 y^{2}}\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{\left.2 c_{1} x^{2}+8 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{4 c_{1}}\right)}\right.}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{\left.2 c_{1} x^{2}+8 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{4 c_{1}}\right)}\right.}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (2)}{2}+\frac{\ln \left(2 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{\left.2 c_{1} x^{2}+8 \mathrm{e}^{-2 c_{1}} \mathrm{e}^{4 c_{1}}\right)}\right.}{2}+c_{1}}
$$

Verified OK.

Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x\left(b_{3}-a_{2}\right)}{2 y}-\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)^{2} x^{2} a_{3}}{4 y^{2}} \\
& -\left(-\frac{\left(2 x+\frac{2 x^{3}}{\sqrt{x^{4}+4 y^{2}}}\right) x}{2 y}-\frac{x^{2}+\sqrt{x^{4}+4 y^{2}}}{2 y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x}{\sqrt{x^{4}+4 y^{2}}}+\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -2 x^{8} a_{3}+\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}+2 x^{6} b_{2}-8 x^{5} y a_{2}+4 x^{5} y b_{3}+2 x^{4} y^{2} a_{3}+\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}+2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}- \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{8} a_{3}-\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}-2 x^{6} b_{2}+8 x^{5} y a_{2}-4 x^{5} y b_{3}-2 x^{4} y^{2} a_{3} \\
& -\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2} \tag{6E}\\
& -4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}-2 x^{5} b_{1}+6 x^{4} y a_{1} \\
& -2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1}+16 x y^{3} a_{2} \\
& -8 x y^{3} b_{3}+8 y^{4} a_{3}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}+8 y^{3} a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\sqrt{x^{4}+4 y^{2}} x^{6} a_{3}-2\left(x^{4}+4 y^{2}\right) x^{4} a_{3}+4 x^{5} y a_{2}+4 x^{4} y^{2} a_{3} \\
& \quad-\left(x^{4}+4 y^{2}\right)^{\frac{3}{2}} x^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2} \\
& -4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}+4 x^{4} y a_{1}-2\left(x^{4}+4 y^{2}\right) x^{2} b_{2} \tag{6E}\\
& +4\left(x^{4}+4 y^{2}\right) x y a_{2}-4\left(x^{4}+4 y^{2}\right) x y b_{3}+2\left(x^{4}+4 y^{2}\right) y^{2} a_{3} \\
& -2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1}+8 x^{2} y^{2} b_{2}+8 x y^{3} b_{3} \\
& -2\left(x^{4}+4 y^{2}\right) x b_{1}+2\left(x^{4}+4 y^{2}\right) y a_{1}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}+8 x y^{2} b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x^{8} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{6} a_{3}-2 x^{6} b_{2}+8 x^{5} y a_{2}-4 x^{5} y b_{3}-2 x^{4} y^{2} a_{3}-2 x^{5} b_{1} \\
& -2 \sqrt{x^{4}+4 y^{2}} x^{4} b_{2}+6 x^{4} y a_{1}+8 \sqrt{x^{4}+4 y^{2}} x^{3} y a_{2}-4 \sqrt{x^{4}+4 y^{2}} x^{3} y b_{3} \\
& +2 \sqrt{x^{4}+4 y^{2}} x^{2} y^{2} a_{3}-2 \sqrt{x^{4}+4 y^{2}} x^{3} b_{1}+6 \sqrt{x^{4}+4 y^{2}} x^{2} y a_{1} \\
& +16 x y^{3} a_{2}-8 x y^{3} b_{3}+8 y^{4} a_{3}+4 b_{2} y^{2} \sqrt{x^{4}+4 y^{2}}+8 y^{3} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{4}+4 y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{4}+4 y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}+8 v_{1}^{5} v_{2} a_{2}-2 v_{1}^{4} v_{2}^{2} a_{3}-2 v_{1}^{6} b_{2}-4 v_{1}^{5} v_{2} b_{3}+6 v_{1}^{4} v_{2} a_{1} \\
& +8 v_{3} v_{1}^{3} v_{2} a_{2}+2 v_{3} v_{1}^{2} v_{2}^{2} a_{3}-2 v_{1}^{5} b_{1}-2 v_{3} v_{1}^{4} b_{2}-4 v_{3} v_{1}^{3} v_{2} b_{3}+6 v_{3} v_{1}^{2} v_{2} a_{1} \\
& +16 v_{1} v_{2}^{3} a_{2}+8 v_{2}^{4} a_{3}-2 v_{3} v_{1}^{3} b_{1}-8 v_{1} v_{2}^{3} b_{3}+8 v_{2}^{3} a_{1}+4 b_{2} v_{2}^{2} v_{3}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}-2 v_{1}^{6} b_{2}+\left(8 a_{2}-4 b_{3}\right) v_{1}^{5} v_{2}-2 v_{1}^{5} b_{1}-2 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& +6 v_{1}^{4} v_{2} a_{1}-2 v_{3} v_{1}^{4} b_{2}+\left(8 a_{2}-4 b_{3}\right) v_{1}^{3} v_{2} v_{3}-2 v_{3} v_{1}^{3} b_{1}+2 v_{3} v_{1}^{2} v_{2}^{2} a_{3} \\
& +6 v_{3} v_{1}^{2} v_{2} a_{1}+\left(16 a_{2}-8 b_{3}\right) v_{1} v_{2}^{3}+8 v_{2}^{4} a_{3}+8 v_{2}^{3} a_{1}+4 b_{2} v_{2}^{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
8 a_{1} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
8 a_{3} & =0 \\
-2 b_{1} & =0 \\
-2 b_{2} & =0 \\
4 b_{2} & =0 \\
8 a_{2}-4 b_{3} & =0 \\
16 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(-\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y}\right)(x) \\
& =\frac{x^{4}+\sqrt{x^{4}+4 y^{2}} x^{2}+4 y^{2}}{2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{4}+\sqrt{x^{4}+4 y^{2}} x^{2}+4 y^{2}}{2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{2}+\frac{x^{2} \ln \left(\frac{2 x^{4}+2 \sqrt{x^{4}} \sqrt{x^{4}+4 y^{2}}}{y}\right)}{2 \sqrt{x^{4}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right) x}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{2}+\sqrt{x^{4}+4 y^{2}}}{x \sqrt{x^{4}+4 y^{2}}} \\
S_{y} & =\frac{2 y}{\sqrt{x^{4}+4 y^{2}}\left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2)}{2}+\ln (x)+\frac{\ln \left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)}{2}=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (2)}{2}+\ln (x)+\frac{\ln \left(x^{2}+\sqrt{x^{4}+4 y^{2}}\right)}{2}=\ln (x)+c_{1}
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way $=3 `[1 / 2 * x, y]$
\checkmark Solution by Maple
Time used: 0.344 (sec). Leaf size: 89
dsolve $\left(y(x)=x * \operatorname{diff}(y(x), x)+y(x) * \operatorname{diff}(y(x), x) \wedge 2 / x^{\wedge} 2, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{i x^{2}}{2} \\
& y(x)=\frac{i x^{2}}{2} \\
& y(x)=0 \\
& y(x)=-\frac{\sqrt{c_{1}\left(-4 x^{2}+c_{1}\right)}}{4} \\
& y(x)=\frac{\sqrt{c_{1}\left(-4 x^{2}+c_{1}\right)}}{4} \\
& y(x)=-\frac{2 \sqrt{c_{1} x^{2}+4}}{c_{1}} \\
& y(x)=\frac{2 \sqrt{c_{1} x^{2}+4}}{c_{1}}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.986 (sec). Leaf size: 244
DSolve $\left[y[x]==x * y{ }^{\prime}[x]+y[x] *\left(y y^{\prime}[x]\right) \wedge 2 / x \wedge 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac{\sqrt{x^{6}+4 x^{2} y(x)^{2}} \log \left(\sqrt{x^{4}+4 y(x)^{2}}+x^{2}\right)}{2 x \sqrt{x^{4}+4 y(x)^{2}}}\right. \\
& \left.+\frac{1}{2}\left(1-\frac{\sqrt{x^{6}+4 x^{2} y(x)^{2}}}{x \sqrt{x^{4}+4 y(x)^{2}}}\right) \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{1}{2}\left(\frac{\sqrt{x^{6}+4 x^{2} y(x)^{2}}}{x \sqrt{x^{4}+4 y(x)^{2}}}+1\right) \log (y(x))\right. \\
& \left.-\frac{\sqrt{x^{6}+4 x^{2} y(x)^{2}} \log \left(\sqrt{x^{4}+4 y(x)^{2}}+x^{2}\right)}{2 x \sqrt{x^{4}+4 y(x)^{2}}}=c_{1}, y(x)\right] \\
& y(x) \rightarrow-\frac{i x^{2}}{2} \\
& y(x) \rightarrow \frac{i x^{2}}{2}
\end{aligned}
$$

17.11 problem Ex 11

Internal problem ID [11235]
Internal file name [OUTPUT/10220_Wednesday_December_07_2022_01_21_29_PM_54609112/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IV, differential equations of the first order and higher degree than the first.
Article 28. Summary. Page 59
Problem number: Ex 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
```

Unable to solve or complete the solution.

$$
x^{2} y^{\prime 2}-2 x y y^{\prime}+y^{2}-x^{2} y^{2}=x^{4}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{y+\sqrt{x^{2} y^{2}+x^{4}}}{x} \tag{1}\\
y^{\prime} & =\frac{y-\sqrt{x^{2} y^{2}+x^{4}}}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (2)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace
'Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
, , -> Computing symmetries using: way $=3$
-, `-> Computing symmetries using: way $=4 \times[1,1 / x * y]$
\checkmark Solution by Maple
Time used: 0.578 (sec). Leaf size: 58
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)^{\wedge} 2-2 * x * y(x) * \operatorname{diff}(y(x), x)+y(x) \wedge 2=x \wedge 2 * y(x) \wedge 2+x^{\wedge} 4, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-i x \\
& y(x)=i x \\
& y(x)=-\frac{x\left(\mathrm{e}^{x}-c_{1}^{2} \mathrm{e}^{-x}\right)}{2 c_{1}} \\
& y(x)=\frac{x\left(c_{1}^{2} \mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.366 (sec). Leaf size: 60
DSolve $\left[x^{\wedge} 2 *\left(y^{\prime}[x]\right)^{\wedge} 2-2 * x * y[x] * y y^{\prime}[x]+y[x] \wedge 2==x^{\wedge} 2 * y[x] \wedge 2+x^{\wedge} 4, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} x e^{-x-c_{1}}\left(-1+e^{2\left(x+c_{1}\right)}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(x e^{-x+c_{1}}-x e^{x-c_{1}}\right)
\end{aligned}
$$

18 Chapter V, Singular solutions. Article 30. Page 63
18.1 problem Ex 1 . 1217
18.2 problem Ex 2 . 1221

18.1 problem Ex 1

18.1.1 Solving as clairaut ode

1217
Internal problem ID [11236]
Internal file name [OUTPUT/10221_Sunday_December_11_2022_01_20_18_AM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 30. Page 63
Problem number: Ex 1.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Clairaut]
```

$$
y-y^{\prime} x-\frac{1}{y^{\prime}}=0
$$

18.1.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=y^{\prime} x+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
y-p x-\frac{1}{p}=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{p^{2} x+1}{p} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\frac{1}{p} \\
& =p x+\frac{1}{p}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{1}{p}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{1}{c_{1}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{1}{p}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{1}{p^{2}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{1}{\sqrt{x}} \\
& p_{2}=-\frac{1}{\sqrt{x}}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=2 \sqrt{x} \\
& y_{2}=-2 \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{1}{c_{1}} \tag{1}\\
& y=2 \sqrt{x} \tag{2}\\
& y=-2 \sqrt{x} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{c_{1}}
$$

Verified OK.

$$
y=2 \sqrt{x}
$$

Verified OK.

$$
y=-2 \sqrt{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 27

```
dsolve(y(x)=diff(y(x),x)*x+1/diff (y (x),x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-2 \sqrt{x} \\
& y(x)=2 \sqrt{x} \\
& y(x)=c_{1} x+\frac{1}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 41
DSolve[y[x]==y'[x]*x+1/y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x+\frac{1}{c_{1}} \\
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow-2 \sqrt{x} \\
& y(x) \rightarrow 2 \sqrt{x}
\end{aligned}
$$

18.2 problem Ex 2

18.2.1 Solving as dAlembert ode . 1221

Internal problem ID [11237]
Internal file name [OUTPUT/10222_Sunday_December_11_2022_01_20_19_AM_58281880/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 30. Page 63
Problem number: Ex 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime 2}-2 y y^{\prime}=x
$$

18.2.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 y p=x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}-1\right)}{2 p} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}-1}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}-1}{2 p}=x\left(1-\frac{p^{2}-1}{2 p^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}-1}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}-1}{2 p(x)}}{x\left(1-\frac{p(x)^{2}-1}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x \tag{1}\\
& y=i x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}-1}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 32

```
dsolve(x*diff (y (x),x)^2-2*y(x)*diff (y (x), x)-x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x \\
& y(x)=i x \\
& y(x)=\frac{-c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.213 (sec). Leaf size: 71
DSolve $[x *(y$ ' $[x]$) $\sim 2-2 * y[x] * y$ ' $[x]-x==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-x^{2}+e^{2 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2} e^{-c_{1}}\left(-1+e^{2 c_{1}} x^{2}\right) \\
& y(x) \rightarrow-i x \\
& y(x) \rightarrow i x
\end{aligned}
$$

19 Chapter V, Singular solutions. Article 32. Page 69

19.1 problem Ex 5 . 1227

19.1 problem Ex 5

19.1.1 Solving as clairaut ode 1227

Internal problem ID [11238]
Internal file name [OUTPUT/10223_Sunday_December_11_2022_01_20_21_AM_41898295/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 32. Page 69
Problem number: Ex 5.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _Clairaut]
```

$$
x^{2} y^{\prime 2}-2(y x-2) y^{\prime}+y^{2}=0
$$

19.1.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=y^{\prime} x+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
x^{2} p^{2}-2(x y-2) p+y^{2}=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=p x+2 \sqrt{-p} \tag{1~A}\\
& y=p x-2 \sqrt{-p} \tag{2~A}
\end{align*}
$$

Each of the above ode's is a Clairaut ode which is now solved. Solving ode 1A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+2 \sqrt{-p} \\
& =p x+2 \sqrt{-p}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=2 \sqrt{-p}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+2 \sqrt{-c_{1}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=2 \sqrt{-p}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{1}{\sqrt{-p}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-\frac{1}{x^{2}}
$$

Substituting the above back in (1) results in

$$
y_{1}=\frac{2 \operatorname{csgn}\left(\frac{1}{x}\right)-1}{x}
$$

Solving ode 2A We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x-2 \sqrt{-p} \\
& =p x-2 \sqrt{-p}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-2 \sqrt{-p}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{2} x-2 \sqrt{-c_{2}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-2 \sqrt{-p}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x+\frac{1}{\sqrt{-p}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-\frac{1}{x^{2}}
$$

Substituting the above back in (1) results in

$$
y_{1}=\frac{-2 \operatorname{csgn}\left(\frac{1}{x}\right)-1}{x}
$$

Simplifying the solution $y=\frac{2 \operatorname{csgn}\left(\frac{1}{x}\right)-1}{x}$ to $y=\frac{1}{x}$ Simplifying the solution $y=$ Summary
The solution(s) found are the following

$$
\frac{-2 \operatorname{csgn}\left(\frac{1}{x}\right)-1}{x} \text { to } y=-\frac{3}{x}
$$

$$
\begin{aligned}
& y=c_{1} x+2 \sqrt{-c_{1}} \\
& y=\frac{1}{x} \\
& y=c_{2} x-2 \sqrt{-c_{2}} \\
& y=-\frac{3}{x}
\end{aligned}
$$

Verification of solutions

$$
y=c_{1} x+2 \sqrt{-c_{1}}
$$

Verified OK.

$$
y=\frac{1}{x}
$$

Verified OK.

$$
y=c_{2} x-2 \sqrt{-c_{2}}
$$

Verified OK.

$$
y=-\frac{3}{x}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`
\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 35
dsolve ($x \wedge 2 * \operatorname{diff}(y(x), x) \wedge 2-2 *(x * y(x)-2) * \operatorname{diff}(y(x), x)+y(x) \wedge 2=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{x} \\
& y(x)=c_{1} x-2 \sqrt{-c_{1}} \\
& y(x)=c_{1} x+2 \sqrt{-c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.416 (sec). Leaf size: 43
DSolve $\left[x^{\wedge} 2 *\left(y^{\prime}[x]\right) \wedge 2-2 *(x * y[x]-2) * y^{\prime}[x]+y[x] \sim 2==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{4\left(-x+c_{1}\right)}{c_{1}{ }^{2}} \\
& y(x) \rightarrow-\frac{4\left(x+c_{1}\right)}{c_{1}{ }^{2}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \frac{1}{x}
\end{aligned}
$$

20 Chapter V, Singular solutions. Article 33. Page 73

20.1 problem Ex 1 1234
20.2 problem Ex 2 1237
20.3 problem Ex 3 1245
20.4 problem Ex 4 1248

20.1 problem Ex 1

20.1.1 Maple step by step solution

1235
Internal problem ID [11239]
Internal file name [OUTPUT/10224_Sunday_December_11_2022_01_20_22_AM_84656961/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 33. Page 73
Problem number: Ex 1.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x^{2} y^{\prime 2}=(x-1)^{2}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{x-1}{x} \tag{1}\\
y^{\prime} & =-\frac{x-1}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x-1}{x} \mathrm{~d} x \\
& =x-\ln (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x-\ln (x)+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{x-1}{x} \mathrm{~d} x \\
& =-x+\ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x+\ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x+\ln (x)+c_{2}
$$

Verified OK.

20.1.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime 2}=(x-1)^{2}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int x^{2} y^{\prime 2} d x=\int(x-1)^{2} d x+c_{1}$
- Cannot compute integral
$\int x^{2} y^{\prime 2} d x=\frac{(x-1)^{3}}{3}+c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(x^2*diff(y(x),x)^2-(x-1)^2=0,y(x), singsol=all)
\[
\begin{aligned}
& y(x)=x-\ln (x)+c_{1} \\
& y(x)=-x+\ln (x)+c_{1}
\end{aligned}
\]
```

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 25
DSolve[x^2*(y'[x])^2-(x-1)~2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow x-\log (x)+c_{1} \\
& y(x) \rightarrow-x+\log (x)+c_{1}
\end{aligned}
$$

20.2 problem Ex 2

20.2.1 Solving as dAlembert ode . 1237

Internal problem ID [11240]
Internal file name [OUTPUT/10225_Sunday_December_11_2022_01_20_22_AM_84043608/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 33. Page 73
Problem number: Ex 2.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _dAlembert]
```

$$
8\left(1+y^{\prime}\right)^{3}-27(y+x)\left(1-y^{\prime}\right)^{3}=0
$$

20.2.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
8(1+p)^{3}-27(y+x)(1-p)^{3}=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-\frac{\left(27 p^{3}-81 p^{2}+81 p-27\right) x}{27(-1+p)^{3}}-\frac{8 p^{3}+24 p^{2}+24 p+8}{27(-1+p)^{3}} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-1 \\
& g=-\frac{8(1+p)^{3}}{27(-1+p)^{3}}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
1+p=\left(-\frac{8(1+p)^{2}}{9(-1+p)^{3}}+\frac{8(1+p)^{3}}{9(-1+p)^{4}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
1+p=0
$$

Solving for p from the above gives

$$
p=-1
$$

Substituting these in (1A) gives

$$
y=-x
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{1+p(x)}{-\frac{8(1+p(x))^{2}}{9(-1+p(x))^{3}}+\frac{8(1+p(x))^{3}}{9(-1+p(x))^{4}}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. Integrating both sides gives

$$
\begin{array}{r}
\int \frac{\frac{16}{9}+\frac{16 p}{9}}{(-1+p)^{4}} d p=x+c_{1} \\
-\frac{8}{9(-1+p)^{2}}-\frac{32}{27(-1+p)^{3}}=x+c_{1}
\end{array}
$$

Solving for p gives these solutions

$$
\begin{aligned}
& p_{1}=\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}-\frac{4}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+1 \\
& p_{2}=-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+1-\frac{i \sqrt{3}\left(\frac{2(}{2}\right.}{9\left(x+c_{1}\right)}+\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+1+\frac{i \sqrt{3}\left(\frac{2(}{2}\right.}{p_{3}=-\frac{(1)}{}} l
\end{aligned}
$$

Substituing the above solution for p in (2A) gives

$$
\begin{aligned}
& y=-x-\frac{8\left(2+\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)(\right.}{9\left(x+c_{1}\right)}\right.}{27\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)(x-\right.}{9\left(x+c_{1}\right)}\right.} \\
& y=-x-\frac{8\left(2-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}\right.}{-\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right.\right.}{9\left(x+c_{1}\right)}\right.}{27\left(-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}\right.}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right.\right.}{9\left(x+c_{1}\right)}\right.}{}} \\
& y=-x-\frac{8\left(2-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}\right.}{-\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+1}}-54\right.\right.}{9\left(x+c_{1}\right)}\right.}{2\left(-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}\right.}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right.\right.}{9\left(x+c_{1}\right)}\right.}{}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y=-x-\frac{8\left(2+\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}-\frac{4}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}\right)^{3}}{27\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}-\frac{4}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}\right)^{3}} \tag{2}
\end{equation*}
$$

$y=-x$

$$
\begin{align*}
& y=-x \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=-x
$$

Verified OK.

$$
y=-x-\frac{8\left(2+\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}-\frac{4}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}\right)^{3}}{27\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}-\frac{4}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}\right)^{3}}
$$

Warning, solution could not be verified

$$
\begin{aligned}
y= & -x \\
& 8\left(2-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)\right.}{9\left(x+c_{1}\right)}\right.}{}\right. \\
& 27\left(-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\left.\frac{2+27 x+27 c_{1}}{x+c_{1}}-54\right)\left(x+c_{1}\right)^{2}}\right.\right.}{9\left(x+c_{1}\right)}\right.}{}\right. \\
&
\end{aligned}
$$

Warning, solution could not be verified

$$
\begin{aligned}
y= & -x \\
& 8\left(2-\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}+\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)\right.}{9\left(x+c_{1}\right)}\right.}{}\right. \\
& -\frac{2}{3\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}+\frac{\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right)^{\frac{1}{3}}}{9\left(x+c_{1}\right)}+\frac{i \sqrt{3}\left(\frac{2\left(\left(6 \sqrt{3} \sqrt{\frac{2+27 x+27 c_{1}}{x+c_{1}}}-54\right)\left(x+c_{1}\right)^{2}\right.}{9\left(x+c_{1}\right)}\right.}{3\left(-\frac{2}{}\right.}
\end{aligned}
$$

Warning, solution could not be verified

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful
<- homogeneous successful

* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.344 (sec). Leaf size: 140
dsolve(8*(1+diff $(y(x), x)) \wedge 3=27 *(x+y(x)) *(1-\operatorname{diff}(y(x), x)) \wedge 3, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-x \\
& \frac{x}{2}-\frac{4 \ln (27 y(x)+27 x+8)}{27}+\frac{4 \ln \left(2+3(x+y(x))^{\frac{1}{3}}\right)}{27} \\
& +\frac{4 \ln \left(9(x+y(x))^{\frac{2}{3}}-6(x+y(x))^{\frac{1}{3}}+4\right)}{27}-\frac{y(x)}{2}-\frac{(x+y(x))^{\frac{2}{3}}}{2}-c_{1}=0 \\
& \frac{x}{2}-\frac{y(x)}{2}-\frac{i \sqrt{3}(x+y(x))^{\frac{2}{3}}}{4}+\frac{(x+y(x))^{\frac{2}{3}}}{4}-c_{1}=0 \\
& \frac{x}{2}-\frac{y(x)}{2}+\frac{i \sqrt{3}(x+y(x))^{\frac{2}{3}}}{4}+\frac{(x+y(x))^{\frac{2}{3}}}{4}-c_{1}=0
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[8*(1+y'[x]) $3==27 *(x+y[x]) *\left(1-y^{\prime}[x]\right) \wedge 3, y[x], x$, IncludeSingularSolutions \rightarrow True]
Timed out

20.3 problem Ex 3

20.3.1 Maple step by step solution

1246
Internal problem ID [11241]
Internal file name [OUTPUT/10226_Sunday_December_11_2022_01_26_54_AM_10557687/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 33. Page 73
Problem number: Ex 3.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
4 y^{\prime 2}=9 x
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{3 \sqrt{x}}{2} \tag{1}\\
y^{\prime} & =-\frac{3 \sqrt{x}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{3 \sqrt{x}}{2} \mathrm{~d} x \\
& =x^{\frac{3}{2}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{3}{2}}+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{3}{2}}+c_{1}
$$

Verified OK.

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{3 \sqrt{x}}{2} \mathrm{~d} x \\
& =-x^{\frac{3}{2}}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{\frac{3}{2}}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x^{\frac{3}{2}}+c_{2}
$$

Verified OK.

20.3.1 Maple step by step solution

Let's solve
$4 y^{\prime 2}=9 x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x $\int 4 y^{\prime 2} d x=\int 9 x d x+c_{1}$
- Cannot compute integral

$$
\int 4 y^{\prime 2} d x=\frac{9 x^{2}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 19

```
dsolve(4*diff(y(x),x)^2=9*x,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x^{\frac{3}{2}}+c_{1} \\
& y(x)=x^{\frac{3}{2}}+c_{1}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 27
DSolve[4*y'[x] $2==9 * x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x^{3 / 2}+c_{1} \\
& y(x) \rightarrow x^{3 / 2}+c_{1}
\end{aligned}
$$

20.4 problem Ex 4

20.4.1 Maple step by step solution . 1249

Internal problem ID [11242]
Internal file name [OUTPUT/10227_Sunday_December_11_2022_01_26_54_AM_29869398/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter V, Singular solutions. Article 33. Page 73
Problem number: Ex 4.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y(3-4 y)^{2} y^{\prime 2}+4 y=4
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{2 \sqrt{-y(y-1)}}{y(4 y-3)} \tag{1}\\
y^{\prime} & =-\frac{2 \sqrt{-y(y-1)}}{y(4 y-3)} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{y(4 y-3)}{2 \sqrt{-y(y-1)}} d y & =\int d x \\
\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}} & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}}=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}}=x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y(4 y-3)}{2 \sqrt{-y(y-1)}} d y & =\int d x \\
-\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}} & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}}=x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{y^{2}(y-1)}{\sqrt{-y(y-1)}}=x+c_{2}
$$

Verified OK.

20.4.1 Maple step by step solution

Let's solve

$$
y(3-4 y)^{2} y^{\prime 2}+4 y=4
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y(4 y-3)}{\sqrt{-y(y-1)}}=2
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y(4 y-3)}{\sqrt{-y(y-1)}} d x=\int 2 d x+c_{1}
$$

- Evaluate integral

$$
-2 y \sqrt{-y^{2}+y}=2 x+c_{1}
$$

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful-

Solution by Maple
Time used: 0.078 (sec). Leaf size: 58

```
dsolve(y(x)*(3-4*y(x))^2*diff(y(x),x)^2=4*(1-y(x)),y(x), singsol=all)
```

$$
\begin{array}{r}
y(x)=1 \\
x+\frac{y(x)^{2}(-1+y(x))}{\sqrt{-y(x)(-1+y(x))}}-c_{1}=0 \\
x-\frac{y(x)^{2}(-1+y(x))}{\sqrt{-y(x)(-1+y(x))}}-c_{1}=0
\end{array}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 60.436 (sec). Leaf size: 3751
DSolve $\left[y[x] *(3-4 * y[x])^{\wedge} 2 * y{ }^{\prime}[x] \sim 2==4 *(1-y[x]), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]
Too large to display

21 Chapter VII, Linear differential equations with constant coefficients. Article 43. Page 92

21.1 problem Ex 1 . 1252
21.2 problem Ex 2 . 1260
21.3 problem Ex 3 . 1268
21.4 problem Ex 4 . 1273

21.1 problem Ex 1

21.1.1 Solving as second order linear constant coeff ode 1252
21.1.2 Solving using Kovacic algorithm 1254
21.1.3 Maple step by step solution . 1258

Internal problem ID [11243]
Internal file name [OUTPUT/10228_Sunday_December_11_2022_01_26_55_AM_44938500/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.
Page 92
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

21.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 201: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

21.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 120: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 202: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

Verified OK.

21.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 18
DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{x}+c_{1}\right)
$$

21.2 problem Ex 2

21.2.1 Solving as second order linear constant coeff ode 1260
21.2.2 Solving using Kovacic algorithm 1262
21.2.3 Maple step by step solution . 1266

Internal problem ID [11244]
Internal file name [OUTPUT/10229_Sunday_December_11_2022_01_26_56_AM_67720322/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.
Page 92
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-6 y^{\prime}+25 y=0
$$

21.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(25)} \\
& =3 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=3$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \tag{1}
\end{equation*}
$$

Figure 203: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Verified OK.

21.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-6 y^{\prime}+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 122: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x} \cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x} \cos (4 x)\right)+c_{2}\left(\mathrm{e}^{3 x} \cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4} \tag{1}
\end{equation*}
$$

Figure 204: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4}
$$

Verified OK.

21.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+25 y=0
$$

- Highest derivative means the order of the ODE is 2

- Characteristic polynomial of ODE $r^{2}-6 r+25=0$
- Use quadratic formula to solve for r
$r=\frac{6 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial

$$
r=(3-4 \mathrm{I}, 3+4 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{3 x} \cos (4 x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x} \sin (4 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+c_{2} \mathrm{e}^{3 x} \sin (4 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve($\operatorname{diff}(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+25 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{3 x}\left(c_{1} \sin (4 x)+c_{2} \cos (4 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 26
DSolve[y'' $[x]-6 * y$ ' $[x]+25 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{3 x}\left(c_{2} \cos (4 x)+c_{1} \sin (4 x)\right)
$$

21.3 problem Ex 3

21.3.1 Maple step by step solution

1269
Internal problem ID [11245]
Internal file name [OUTPUT/10230_Sunday_December_11_2022_01_26_57_AM_51515799/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.
Page 92
Problem number: Ex 3.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=1 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}
$$

Verified OK.

21.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve(diff $(y(x), x \$ 3)-\operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 23
DSolve[y'''[x]-y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{x}-c_{2} e^{-x}+c_{3}
$$

21.4 problem Ex 4

21.4.1 Maple step by step solution . 1274

Internal problem ID [11246]
Internal file name [OUTPUT/10231_Sunday_December_11_2022_01_26_58_AM_38294561/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 43.
Page 92
Problem number: Ex 4.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}-\lambda+2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

Verified OK.

21.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=2 y_{3}(x)+y_{2}(x)-2 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 y_{3}(x)+y_{2}(x)-2 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x} c_{3}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 28
DSolve[y'''[x]-2*y''[x]-y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{2 x}
$$

22 Chapter VII, Linear differential equations with constant coefficients. Article 44. Roots of auxiliary equation repeated. Page 94
22.1 problem Ex 1 1279
22.2 problem Ex 2 1285
22.3 problem Ex 3 1290
22.4 problem Ex 4 1292

22.1 problem Ex 1

22.1.1 Maple step by step solution

1280
Internal problem ID [11247]
Internal file name [OUTPUT/10232_Sunday_December_11_2022_01_26_59_AM_92137488/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.
Roots of auxiliary equation repeated. Page 94
Problem number: Ex 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
4 y^{\prime \prime \prime}-3 y^{\prime}+y=0
$$

The characteristic equation is

$$
4 \lambda^{3}-3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =\frac{1}{2} \\
\lambda_{3} & =\frac{1}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{-x} \\
y_{2} & =\mathrm{e}^{\frac{x}{2}} \\
y_{3} & =x \mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3}
$$

Verified OK.

22.1.1 Maple step by step solution

Let's solve
$4 y^{\prime \prime \prime}-3 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{3 y^{\prime}}{4}-\frac{y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}-\frac{3 y^{\prime}}{4}+\frac{y}{4}=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=\frac{3 y_{2}(x)}{4}-\frac{y_{1}(x)}{4}
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\frac{3 y_{2}(x)}{4}-\frac{y_{1}(x)}{4}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{2}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=\frac{1}{2}$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $\frac{1}{2}$

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right]-\frac{1}{2} \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\mathrm{e}^{\frac{x}{2}} c_{2} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y=4 \mathrm{e}^{-x}\left(\left((x-2) c_{3}+c_{2}\right) \mathrm{e}^{\frac{3 x}{2}}+\frac{c_{1}}{4}\right)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(4*\operatorname{diff}(y(x),x$3)-3*\operatorname{diff}(y(x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}\left(\left(c_{3} x+c_{2}\right) \mathrm{e}^{\frac{3 x}{2}}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 29
DSolve[4*y' '' $[\mathrm{x}]-3 * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}]$, x , IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(e^{3 x / 2}\left(c_{2} x+c_{1}\right)+c_{3}\right)
$$

22.2 problem Ex 2

22.2.1 Maple step by step solution 1286

Internal problem ID [11248]
Internal file name [OUTPUT/10233_Sunday_December_11_2022_01_27_00_AM_36277721/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.
Roots of auxiliary equation repeated. Page 94
Problem number: Ex 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}-\lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}
$$

Verified OK.

22.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=y_{3}(x)+y_{2}(x)-y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{3}(x)+y_{2}(x)-y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 1

$$
\vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+\left((x-1) c_{3}+c_{2}\right) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$3)-diff(y(x),x$2)-diff (y(x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+\left(c_{3} x+c_{2}\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 25

```
DSolve[y'''[x]-y''[x]-y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{-x}+e^{x}\left(c_{3} x+c_{2}\right)
$$

22.3 problem Ex 3

Internal problem ID [11249]
Internal file name [OUTPUT/10234_Sunday_December_11_2022_01_27_00_AM_28536283/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.
Roots of auxiliary equation repeated. Page 94
Problem number: Ex 3.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-2 y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{3}-2 \lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=-1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x} \\
& y_{4}=\mathrm{e}^{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve(diff $(y(x), x \$ 4)+2 * \operatorname{diff}(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 32
DSolve[y'' ''[x] $+2 * y$ '' ' $[\mathrm{x}]-2 * y$ ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{3} x^{2}+c_{2} x+c_{4} e^{2 x}+c_{1}\right)
$$

22.4 problem Ex 4

22.4.1 Maple step by step solution . 1293

Internal problem ID [11250]
Internal file name [OUTPUT/10235_Sunday_December_11_2022_01_27_01_AM_4137081/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 44.
Roots of auxiliary equation repeated. Page 94
Problem number: Ex 4.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+9 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3 \\
& \lambda_{3}=3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{3 x} c_{2}+x \mathrm{e}^{3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=x \mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{3 x} c_{2}+x \mathrm{e}^{3 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{3 x} c_{2}+x \mathrm{e}^{3 x} c_{3}
$$

Verified OK.

22.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=6 y_{3}(x)-9 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 y_{3}(x)-9 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -9 & 6
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -9 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad First solution from eigenvalue 3

$$
\vec{y}_{2}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -9 & 6
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{27} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3

$$
\vec{y}_{3}(x)=\mathrm{e}^{3 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{27} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{3 x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{27} \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left((3 x-1) c_{3}+3 c_{2}\right) \mathrm{e}^{3 x}}{27}+c_{1}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+9*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 30

```
DSolve[y'''[x]-6*y''[x]+9*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{9} e^{3 x}\left(c_{2}(3 x-1)+3 c_{1}\right)+c_{3}
$$

23 Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95

23.1 problem Ex 2 . 1298
23.2 problem Ex 3

1300

23.1 problem Ex 2

Internal problem ID [11251]
Internal file name [OUTPUT/10236_Sunday_December_11_2022_01_27_02_AM_91030160/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 45.
Roots of auxiliary equation complex. Page 95
Problem number: Ex 2.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=x \mathrm{e}^{-i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

Verified OK.
Maple trace
'Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 4)+2 * \operatorname{diff}(y(x), x \$ 2)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x+c_{2}\right) \cos (x)+\sin (x)\left(c_{3} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26
DSolve[y'' '' $[\mathrm{x}]+2 * \mathrm{y}$ '' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \cos (x)+\left(c_{4} x+c_{3}\right) \sin (x)
$$

23.2 problem Ex 3

23.2.1 Maple step by step solution

1301
Internal problem ID [11252]
Internal file name [OUTPUT/10237_Sunday_December_11_2022_01_27_03_AM_84344330/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 45.
Roots of auxiliary equation complex. Page 95
Problem number: Ex 3.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}+\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
\lambda_{3} & =\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

Verified OK.

23.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=y_{3}(x)-y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{3}(x)-y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{\frac{x}{2}} c_{2} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{x}{2}}\left(c_{2} \sqrt{3}+c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{1}
$$

Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32
dsolve(diff $(y(x), x \$ 3)-\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.799 (sec). Leaf size: 75
DSolve[y'''[x]-y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{2}\left(c_{1}-\sqrt{3} c_{2}\right) e^{x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{1}{2}\left(\sqrt{3} c_{1}+c_{2}\right) e^{x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{3}
$$

24 Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100

24.1 problem Ex 1 . 1306
24.2 problem Ex 2 . 1314
24.3 problem Ex 3 . 1327
24.4 problem Ex 4 . 1331

24.1 problem Ex 1

24.1.1 Maple step by step solution

1308
Internal problem ID [11253]
Internal file name [OUTPUT/10238_Sunday_December_11_2022_01_27_04_AM_22035885/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.
Particular integral. Page 100
Problem number: Ex 1.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}-2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2}+\mathrm{e}^{2 x} c_{3}\right)+\left(\frac{x \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+\mathrm{e}^{2 x} c_{3}+\frac{x \mathrm{e}^{-x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+\mathrm{e}^{2 x} c_{3}+\frac{x \mathrm{e}^{-x}}{3}
$$

Verified OK.

24.1.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{-x}$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=\mathrm{e}^{-x}+y_{3}(x)+2 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\mathrm{e}^{-x}+y_{3}(x)+2 y_{2}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 2 & 1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ \mathrm{e}^{-x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \frac{\mathrm{e}^{2 x}}{4} \\
-\mathrm{e}^{-x} & 0 & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \frac{\mathrm{e}^{2 x}}{4} \\
-\mathrm{e}^{-x} & 0 & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{4} \\
-1 & 0 & \frac{1}{2} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{2 \mathrm{e}^{-x}}{3}+\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{6} & \frac{\mathrm{e}^{-x}}{3}-\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{6} \\
0 & \frac{2 \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3} & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3} \\
0 & -\frac{2 \mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{2 x}}{3} & \frac{\mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{2 x}}{3}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{1}{2}+\frac{(4+3 x) \mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{2 x}}{18} \\
\frac{(-3 x-1) \mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{2 x}}{9} \\
\frac{(3 x-2) \mathrm{e}^{-x}}{9}+\frac{2 \mathrm{e}^{2 x}}{9}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{1}{2}+\frac{(4+3 x) \mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{2 x}}{18} \\
\frac{(-3 x-1) \mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{2 x}}{9} \\
\frac{(3 x-2) \mathrm{e}^{-x}}{9}+\frac{2 \mathrm{e}^{2 x}}{9}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{1}{2}+\frac{\left(4+3 x+9 c_{1}\right) \mathrm{e}^{-x}}{9}+\frac{\left(9 c_{3}+2\right) \mathrm{e}^{2 x}}{36}+c_{2}$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = diff(_b(_a), _a)+2*_b(_a)+exp
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$3)-diff(y(x),x$2)-2*diff(y(x),x)=exp(-x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(2 x-6 c_{2}+2\right) \mathrm{e}^{-x}}{6}+\frac{\mathrm{e}^{2 x} c_{1}}{2}+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 37
DSolve[y'''[x]-y''[x]-2*y'[x]==Exp[-x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{9} e^{-x}\left(3 x+4-9 c_{1}\right)+\frac{1}{2} c_{2} e^{2 x}+c_{3}
$$

24.2 problem Ex 2

24.2.1 Solving as second order linear constant coeff ode 1314
24.2.2 Solving using Kovacic algorithm 1319
24.2.3 Maple step by step solution . 1325

Internal problem ID [11254]
Internal file name [OUTPUT/10239_Sunday_December_11_2022_01_27_05_AM_15795818/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{\mathrm{e}^{x}}
$$

24.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=\mathrm{e}^{\mathrm{e}^{x}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
-\mathrm{e}^{-x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-2 x} \mathrm{e}^{\mathrm{e}^{x}}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{1}=\mathrm{e}^{\mathrm{e}^{x}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-x} \mathrm{e}^{\mathrm{e}^{x}}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\mathrm{e}^{2 x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\mathrm{e}^{\mathrm{e}^{x}} \\
& u_{2}=-\mathrm{e}^{x+\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\mathrm{e}^{-x} \mathrm{e}^{\mathrm{e}^{x}}+\left(-\mathrm{e}^{x+\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}}\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\mathrm{e}^{-2 x+\mathrm{e}^{x}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x+\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

Figure 205: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Verified OK.

24.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 131: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-x} \mathrm{e}^{\mathrm{e}^{x}}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \mathrm{e}^{2 x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{1}=-\mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x} \mathrm{e}^{\mathrm{e}^{x}}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{2}=\mathrm{e}^{\mathrm{e}^{x}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\mathrm{e}^{x+\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}} \\
& u_{2}=\mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\mathrm{e}^{-x} \mathrm{e}^{\mathrm{e}^{x}}+\left(-\mathrm{e}^{x+\mathrm{e}^{x}}+\mathrm{e}^{\mathrm{e}^{x}}\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\mathrm{e}^{-2 x+\mathrm{e}^{x}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Figure 206: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Verified OK.

24.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{\mathrm{e}^{x}}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{\mathrm{e}^{x}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x+\mathrm{e}^{x}} d x\right)+\mathrm{e}^{-x}\left(\int \mathrm{e}^{x+\mathrm{e}^{x}} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\mathrm{e}^{-2 x+\mathrm{e}^{x}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$2)+3*\operatorname{diff}(y(x),x)+2*y(x)=exp(exp(x)),y(x), singsol=all)
```

$$
y(x)=\left(\mathrm{e}^{\mathrm{e}^{x}}+c_{2} \mathrm{e}^{x}-c_{1}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 25
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[Exp[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(e^{e^{x}}+c_{2} e^{x}+c_{1}\right)
$$

24.3 problem Ex 3

Internal problem ID [11255]
Internal file name [OUTPUT/10240_Sunday_December_11_2022_01_27_06_AM_79243032/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 47.
Particular integral. Page 100
Problem number: Ex 3.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=2 \mathrm{e}^{-x}-x^{2} \mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=2 \mathrm{e}^{-x}-x^{2} \mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-x}-x^{2} \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, x^{3} \mathrm{e}^{-x}\right\}\right]
$$

Since $x \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{-x}, x^{3} \mathrm{e}^{-x}, x^{4} \mathrm{e}^{-x}\right\}\right]
$$

Since $x^{2} \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-x}, x^{4} \mathrm{e}^{-x}, x^{5} \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-x}+A_{2} x^{4} \mathrm{e}^{-x}+A_{3} x^{5} \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{2} x \mathrm{e}^{-x}+60 A_{3} x^{2} \mathrm{e}^{-x}+6 A_{1} \mathrm{e}^{-x}=2 \mathrm{e}^{-x}-x^{2} \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0, A_{3}=-\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{3} \mathrm{e}^{-x}}{3}-\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}\right)+\left(\frac{x^{3} \mathrm{e}^{-x}}{3}-\frac{x^{5} \mathrm{e}^{-x}}{60}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}-\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}-\frac{x^{5} \mathrm{e}^{-x}}{60} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}-\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)+3*diff (y(x),x)+y(x)=2*exp(-x)-x^2*exp(-x),y(x), sings
```

$$
y(x)=-\frac{\mathrm{e}^{-x}\left(x^{5}-60 c_{2} x^{2}-20 x^{3}-60 c_{3} x-60 c_{1}\right)}{60}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 41
DSolve[y'''[x]+3*y''[x]+3*y'[x]+y[x]==2*Exp[-x]-x^2*Exp[-x],y[x],x,IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{60} e^{-x}\left(-x^{5}+20 x^{3}+60 c_{3} x^{2}+60 c_{2} x+60 c_{1}\right)
$$

24.4 problem Ex 4

24.4.1 Solving as second order linear constant coeff ode 1331
24.4.2 Solving as linear second order ode solved by an integrating factor
ode . 1335 .
24.4.3 Solving using Kovacic algorithm 1336
24.4.4 Maple step by step solution . 1341

Internal problem ID [11256]
Internal file name [OUTPUT/10241_Sunday_December_11_2022_01_27_08_AM_75471682/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{x}}{(1-x)^{2}}
$$

24.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=\frac{\mathrm{e}^{x}}{(x-1)^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathbf{e}^{x}+c_{2} x \mathbf{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}+x \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+x \mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{2 x}}{(x-1)^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{(x-1)^{2}} d x
$$

Hence

$$
u_{1}=-\ln (x-1)+\frac{1}{x-1}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 x}}{(x-1)^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x-1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\ln (x-1)+\frac{1}{x-1}\right) \mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{x-1}
$$

Which simplifies to

$$
y_{p}(x)=-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-(\ln (x-1)+1) \mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Verified OK.

24.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{(x-1)^{2}} \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{(x-1)^{2}}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=-\frac{1}{x-1}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=c_{1} x-\ln (x-1)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\ln (x-1)+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}-\mathrm{e}^{x} \ln (x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}-\mathrm{e}^{x} \ln (x-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}-\mathrm{e}^{x} \ln (x-1)
$$

Verified OK.

24.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 133: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}+x \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+x \mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{2 x}}{(x-1)^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{(x-1)^{2}} d x
$$

Hence

$$
u_{1}=-\ln (x-1)+\frac{1}{x-1}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 x}}{(x-1)^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x-1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\ln (x-1)+\frac{1}{x-1}\right) \mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{x-1}
$$

Which simplifies to

$$
y_{p}(x)=-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-(\ln (x-1)+1) \mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Verified OK.

24.4.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{x}}{(x-1)^{2}}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{x}}{(x-1)^{2}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}+x \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(-\left(\int \frac{x}{(x-1)^{2}} d x\right)+\left(\int \frac{1}{(x-1)^{2}} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=-(\ln (x-1)+1) \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}-(\ln (x-1)+1) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=exp(x)/(1-x)^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x}\left(-1+c_{1} x-\ln (-1+x)+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 23
DSolve[y''[x]-2*y'[x]+y[x]==Exp[x]/(1-x) $2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(-\log (x-1)+c_{2} x-1+c_{1}\right)
$$

25 Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103

25.1 problem Ex 1 1345
25.2 problem Ex 2 1356
25.3 problem Ex 3 1364
25.4 problem Ex 4 1377

25.1 problem Ex 1

25.1.1 Solving as second order linear constant coeff ode
25.1.2 Solving using Kovacic algorithm 1348
25.1.3 Maple step by step solution 1353

Internal problem ID [11257]
Internal file name [OUTPUT/10242_Sunday_December_11_2022_01_27_09_AM_95399680/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 48.
Page 103
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^{x}
$$

25.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-3, C=2, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+\left(-x \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

Figure 207: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}-x \mathrm{e}^{x}
$$

Verified OK.

25.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 135: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}\right)+\left(-x \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}-x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 208: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}-x \mathrm{e}^{x}
$$

Verified OK.

25.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\mathrm{e}^{x}\left(\int 1 d x\right)+\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-x} d x\right)$
- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{x}(-x-1)
$$

- \quad Substitute particular solution into general solution to ODE $y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{x}(-x-1)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=exp(x),y(x), singsol=all)
```

$$
y(x)=\left(-x+c_{1} \mathrm{e}^{x}+c_{2}\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 22
DSolve[y''[x]-3*y'[x]+2*y[x]==Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(-x+c_{2} e^{x}-1+c_{1}\right)
$$

25.2 problem Ex 2

25.2.1 Maple step by step solution

1358
Internal problem ID [11258]
Internal file name [OUTPUT/10243_Sunday_December_11_2022_01_27_10_AM_21577199/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103
Problem number: Ex 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-\lambda+3=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{3} x^{2}+3 A_{2} x-2 x A_{3}+3 A_{1}-A_{2}-6 A_{3}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{20}{27}, A_{2}=\frac{2}{9}, A_{3}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{3} x^{2}+\frac{2}{9} x+\frac{20}{27}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}\right)+\left(\frac{1}{3} x^{2}+\frac{2}{9} x+\frac{20}{27}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}+\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{20}{27} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}+\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{20}{27}
$$

Verified OK.

25.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

\square
Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=x^{2}+3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2}+3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x^{2}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{9} \\
-1 & 1 & \frac{1}{3} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{\mathrm{e}^{3 x}}{8} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{\mathrm{e}^{3 x}}{8} \\
-\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{3 \mathrm{e}^{3 x}}{8} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{3 \mathrm{e}^{3 x}}{8} \\
\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{9 \mathrm{e}^{3 x}}{8} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{9 \mathrm{e}^{3 x}}{8}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{20}{27}+\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{\mathrm{e}^{3 x}}{108} \\
\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{2}{9}+\frac{2 x}{3}+\frac{\mathrm{e}^{3 x}}{36} \\
-\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{2}{3}+\frac{\mathrm{e}^{3 x}}{12}
\end{array}\right]
$$

- \quad Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{20}{27}+\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{\mathrm{e}^{3 x}}{108} \\
\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{2}{9}+\frac{2 x}{3}+\frac{\mathrm{e}^{3 x}}{36} \\
-\frac{\mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}}{2}+\frac{2}{3}+\frac{\mathrm{e}^{3 x}}{12}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(108 c_{1}-27\right) \mathrm{e}^{-x}}{108}+\frac{\left(12 c_{3}+1\right) \mathrm{e}^{3 x}}{108}+\frac{\left(108 c_{2}-54\right) \mathrm{e}^{x}}{108}+\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{20}{27}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve($\operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)+3 * y(x)=x^{\wedge} 2, y(x), \quad$ singsol=all)

$$
y(x)=\frac{x^{2}}{3}+\frac{2 x}{9}+\frac{20}{27}+c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 42
DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{27}\left(9 x^{2}+6 x+20\right)+c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{3 x}
$$

25.3 problem Ex 3

25.3.1 Solving as second order linear constant coeff ode 1364
25.3.2 Solving using Kovacic algorithm 1368
25.3.3 Maple step by step solution . 1374

Internal problem ID [11259]
Internal file name [OUTPUT/10244_Sunday_December_11_2022_01_27_11_AM_40817107/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 48.
Page 103
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)
$$

25.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 209: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

25.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 138: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 210: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

25.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)
```

$$
y(x)=-\ln (\sec (x)) \cos (x)+c_{1} \cos (x)+\sin (x)\left(c_{2}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 22
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(x+c_{2}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{1}\right)
$$

25.4 problem Ex 4

25.4.1 Maple step by step solution . 1379

Internal problem ID [11260]
Internal file name [OUTPUT/10245_Sunday_December_11_2022_01_27_13_AM_78645479/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 48. Page 103
Problem number: Ex 4.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda^{2}+5 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =1 \\
\lambda_{3} & =1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{2} x-2 A_{1}+5 A_{2}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{4}, A_{2}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x}{2}-\frac{5}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right)+\left(-\frac{x}{2}-\frac{5}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{x}{2}-\frac{5}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{x}{2}-\frac{5}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{x}{2}-\frac{5}{4}
$$

Verified OK.

25.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=x
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x+4 y_{3}(x)-5 y_{2}(x)+2 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x+4 y_{3}(x)-5 y_{2}(x)+2 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{l}0 \\ 0 \\ x\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{l}0 \\ 0 \\ x\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{2 x}}{4} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{2 x}}{4} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & \frac{1}{4} \\
1 & 0 & \frac{1}{2} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{ccc}-\mathrm{e}^{x}(x-1) & -\frac{\mathrm{e}^{2 x}}{2}+\frac{(3 x+1) \mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{x}(-x-1)}{2} \\ -x \mathrm{e}^{x} & 2 \mathrm{e}^{x}+\frac{3 x \mathrm{e}^{x}}{2}-\mathrm{e}^{2 x} & -\mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{2}+\mathrm{e}^{2 x} \\ -x \mathrm{e}^{x} & 2 \mathrm{e}^{x}+\frac{3 x \mathrm{e}^{x}}{2}-2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{2}+2 \mathrm{e}^{2 x}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{2 x}}{8}+\frac{(-4 x+4) \mathrm{e}^{x}}{8}-\frac{x}{4}-\frac{5}{8} \\
\frac{\mathrm{e}^{2 x}}{4}-\frac{1}{4}-\frac{x \mathrm{e}^{x}}{2} \\
-\frac{x}{2}+\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{\mathrm{e}^{2 x}}{8}+\frac{(-4 x+4) \mathrm{e}^{x}}{8}-\frac{x}{4}-\frac{5}{8} \\
\frac{\mathrm{e}^{2 x}}{4}-\frac{1}{4}-\frac{x \mathrm{e}^{x}}{2} \\
-\frac{x}{2}+\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{2}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(2 c_{3}+1\right) \mathrm{e}^{2 x}}{8}+\frac{\left(\left(8 c_{2}-4\right) x+8 c_{1}-8 c_{2}+4\right) \mathrm{e}^{x}}{8}-\frac{x}{4}-\frac{5}{8}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve(diff(y(x), x$3)-4*diff(y(x),x$2)+5*diff(y(x),x)-2*y(x)=x,y(x), singsol=all)
```

$$
y(x)=-\frac{5}{4}+c_{2} \mathrm{e}^{2 x}+\left(c_{3} x+c_{1}\right) \mathrm{e}^{x}-\frac{x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 35
DSolve[y'''[x]-4*y''[x]+5*y'[x]-2*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{x}+x\left(-\frac{1}{2}+c_{2} e^{x}\right)+c_{3} e^{2 x}-\frac{5}{4}
$$

26 Chapter VII, Linear differential equations with constant coefficients. Article 49. Variation of parameters. Page 106

26.1 problem Ex 1 . 1387
26.2 problem Ex 2 . 1400

26.1 problem Ex 1

26.1.1 Solving as second order linear constant coeff ode 1387
26.1.2 Solving using Kovacic algorithm 1391
26.1.3 Maple step by step solution . 1397

Internal problem ID [11261]
Internal file name [OUTPUT/10246_Sunday_December_11_2022_01_27_14_AM_85152406/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 49. Variation of parameters. Page 106
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)
$$

26.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 211: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

26.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 141: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 212: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

26.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)
```

$$
y(x)=-\ln (\sec (x)) \cos (x)+c_{1} \cos (x)+\sin (x)\left(c_{2}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 22
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow\left(x+c_{2}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{1}\right)
$$

26.2 problem Ex 2

26.2.1 Solving as second order linear constant coeff ode 1400
26.2.2 Solving using Kovacic algorithm 1405
26.2.3 Maple step by step solution . 1410

Internal problem ID [11262]
Internal file name [OUTPUT/10247_Sunday_December_11_2022_01_27_15_AM_76481023/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 49.
Variation of parameters. Page 106
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\tan (x)
$$

26.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\tan (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\sin (x) \cos (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 213: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

26.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 143: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\sin (x) \cos (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 214: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

26.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\tan (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- 1st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) \tan (x) d x\right)+\sin (x)\left(\int \sin (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)=tan(x),y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+c_{1} \cos (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \cos (x)(-\operatorname{arctanh}(\sin (x)))+c_{1} \cos (x)+c_{2} \sin (x)
$$

27 Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107
27.1 problem Ex 1 1414
27.2 problem Ex 2 1425
27.3 problem Ex 3 1438
27.4 problem Ex 4 1449
27.5 problem Ex 5 1462
27.6 problem Ex 6 1470
27.7 problem Ex 7 1478
27.8 problem Ex 8 1482
27.9 problem Ex 9 1503

27.1 problem Ex 1

27.1.1 Solving as second order linear constant coeff ode 1414
27.1.2 Solving using Kovacic algorithm 1417
27.1.3 Maple step by step solution 1422

Internal problem ID [11263]
Internal file name [OUTPUT/10248_Wednesday_December_21_2022_03_46_45_PM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=x^{2}+\cos (x)
$$

27.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=x^{2}+\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)+2 A_{5}+4 A_{3}+4 A_{4} x+4 A_{5} x^{2}=x^{2}+\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0, A_{3}=-\frac{1}{8}, A_{4}=0, A_{5}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 215: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

Verified OK.

27.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 145: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)+2 A_{5}+4 A_{3}+4 A_{4} x+4 A_{5} x^{2}=x^{2}+\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0, A_{3}=-\frac{1}{8}, A_{4}=0, A_{5}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 216: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

Verified OK.

27.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=x^{2}+\cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{2}+\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x)\left(x^{2}+\cos (x)\right) d x\right)}{2}+\frac{\sin (2 x)\left(\int \cos (2 x)\left(x^{2}+\cos (x)\right) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}-\frac{1}{8}+\frac{x^{2}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)+4*y(x)=x^2+cos(x),y(x), singsol=all)
```

$$
y(x)=\sin (2 x) c_{2}+c_{1} \cos (2 x)+\frac{x^{2}}{4}-\frac{1}{8}+\frac{\cos (x)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 36

```
DSolve[y''[x]+4*y[x]==x^2+Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{x^{2}}{4}+\frac{\cos (x)}{3}+c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{1}{8}
$$

27.2 problem Ex 2

27.2.1 Solving as second order linear constant coeff ode 1425
27.2.2 Solving as linear second order ode solved by an integrating factor
ode . 1428
27.2.3 Solving using Kovacic algorithm 1430
27.2.4 Maple step by step solution . 1435

Internal problem ID [11264]
Internal file name [OUTPUT/10249_Wednesday_December_21_2022_03_46_46_PM_75656588/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \mathrm{e}^{2 x} x-\sin (x)^{2}
$$

27.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=2 \mathrm{e}^{2 x} x-\sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x} x-\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \mathrm{e}^{2 x} x+A_{3} \mathrm{e}^{2 x}+A_{4} \cos (2 x)+A_{5} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{2} \mathrm{e}^{2 x} x+2 A_{2} \mathrm{e}^{2 x}+A_{3} \mathrm{e}^{2 x}-3 A_{4} \cos (2 x)-3 A_{5} \sin (2 x) \\
& +4 A_{4} \sin (2 x)-4 A_{5} \cos (2 x)+A_{1}=2 \mathrm{e}^{2 x} x-\sin (x)^{2}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=2, A_{3}=-4, A_{4}=-\frac{3}{50}, A_{5}=-\frac{2}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25} \tag{1}
\end{equation*}
$$

Figure 217: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Verified OK.

27.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{-x}\left(2 \mathrm{e}^{2 x} x-\sin (x)^{2}\right) \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\mathrm{e}^{-x}\left(2 \mathrm{e}^{2 x} x-\sin (x)^{2}\right)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=\frac{\left(-\cos (x)^{2}+2 \sin (x) \cos (x)+3\right) \mathrm{e}^{-x}}{5}+2 \mathrm{e}^{x}(x-1)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=\frac{(-25-3 \cos (2 x)-4 \sin (2 x)) \mathrm{e}^{-x}}{50}+2(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{(-25-3 \cos (2 x)-4 \sin (2 x)) \mathrm{e}^{-x}}{50}+2(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}-\frac{3 \cos (x)^{2}}{25}-\frac{4 \cos (x) \sin (x)}{25}-4 \mathrm{e}^{2 x}-\frac{11}{25}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}-\frac{3 \cos (x)^{2}}{25}-\frac{4 \cos (x) \sin (x)}{25}-4 \mathrm{e}^{2 x}-\frac{11}{25} \tag{1}
\end{equation*}
$$

Figure 218: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}-\frac{3 \cos (x)^{2}}{25}-\frac{4 \cos (x) \sin (x)}{25}-4 \mathrm{e}^{2 x}-\frac{11}{25}
$$

Verified OK.

27.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-2 y^{\prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 147: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x} x-\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \mathrm{e}^{2 x} x+A_{3} \mathrm{e}^{2 x}+A_{4} \cos (2 x)+A_{5} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{2} \mathrm{e}^{2 x} x+2 A_{2} \mathrm{e}^{2 x}+A_{3} \mathrm{e}^{2 x}-3 A_{4} \cos (2 x)-3 A_{5} \sin (2 x) \\
& +4 A_{4} \sin (2 x)-4 A_{5} \cos (2 x)+A_{1}=2 \mathrm{e}^{2 x} x-\sin (x)^{2}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=2, A_{3}=-4, A_{4}=-\frac{3}{50}, A_{5}=-\frac{2}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25} \tag{1}
\end{equation*}
$$

Figure 219: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\frac{1}{2}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Verified OK.

27.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \mathrm{e}^{2 x} x-\sin (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{2 x} x-\sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}+x \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(\int x\left(\sin (x)^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{x}\right) d x+x\left(\int\left(2 x \mathrm{e}^{x}-\sin (x)^{2} \mathrm{e}^{-x}\right) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{1}{2}+2(x-2) \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}-\frac{1}{2}+2(x-2) \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=2 * x * \exp (2 * x)-\sin (x)^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=-\frac{1}{2}+2(x-2) \mathrm{e}^{2 x}-\frac{3 \cos (2 x)}{50}-\frac{2 \sin (2 x)}{25}+\left(c_{1} x+c_{2}\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 1.17 (sec). Leaf size: 53
DSolve[y''[x]-2*y'[x]+y[x]==2*x*Exp[2*x]-Sin[x]~2,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 2 e^{2 x} x-4 e^{2 x}-\frac{2}{25} \sin (2 x)-\frac{3}{50} \cos (2 x)+c_{2} e^{x} x+c_{1} e^{x}-\frac{1}{2}
$$

27.3 problem Ex 3

27.3.1 Solving as second order linear constant coeff ode 1438
27.3.2 Solving using Kovacic algorithm 1441
27.3.3 Maple step by step solution . 1446

Internal problem ID [11265]
Internal file name [OUTPUT/10250_Wednesday_December_21_2022_03_46_47_PM_48284131/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=2 \mathrm{e}^{x}+x^{3}-x
$$

27.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=2 \mathrm{e}^{x}+x^{3}-x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}+x^{3}-x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+2 A_{4}+6 A_{5} x+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}=2 \mathrm{e}^{x}+x^{3}-x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0, A_{3}=-7, A_{4}=0, A_{5}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{x}-7 x+x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\mathrm{e}^{x}-7 x+x^{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\mathrm{e}^{x}-7 x+x^{3} \tag{1}
\end{equation*}
$$

Figure 220: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\mathrm{e}^{x}-7 x+x^{3}
$$

Verified OK.

27.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 149: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}+x^{3}-x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+2 A_{4}+6 A_{5} x+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}=2 \mathrm{e}^{x}+x^{3}-x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0, A_{3}=-7, A_{4}=0, A_{5}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{x}-7 x+x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\mathrm{e}^{x}-7 x+x^{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\mathrm{e}^{x}-7 x+x^{3} \tag{1}
\end{equation*}
$$

Figure 221: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\mathrm{e}^{x}-7 x+x^{3}
$$

Verified OK.

27.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=2 \mathrm{e}^{x}+x^{3}-x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{x}+x^{3}-x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x)\left(2 \mathrm{e}^{x}+x^{3}-x\right) d x\right)+\sin (x)\left(\int \cos (x)\left(2 \mathrm{e}^{x}+x^{3}-x\right) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{x}-7 x+x^{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\mathrm{e}^{x}-7 x+x^{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$2)+y(x)=2*exp(x)+x^3-x,y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+c_{1} \cos (x)+x^{3}+\mathrm{e}^{x}-7 x
$$

\checkmark Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 25
DSolve[y'' $[x]+y[x]==2 * \operatorname{Exp}[x]+x^{\wedge} 3-x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}-7 x+e^{x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

27.4 problem Ex 4

27.4.1 Solving as second order linear constant coeff ode 1449
27.4.2 Solving as linear second order ode solved by an integrating factor
ode . 1452
27.4.3 Solving using Kovacic algorithm 1454
27.4.4 Maple step by step solution . 1459

Internal problem ID [11266]
Internal file name [OUTPUT/10251_Wednesday_December_21_2022_03_46_48_PM_64705552/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50. Method of undetermined coefficients. Page 107
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+y=3 \mathrm{e}^{2 x}-\cos (x)
$$

27.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=1, f(x)=3 \mathrm{e}^{2 x}-\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{2 x}-\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{\cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{2 x}-2 A_{2} \sin (x)+2 A_{3} \cos (x)=3 \mathrm{e}^{2 x}-\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0, A_{3}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2} \tag{1}
\end{equation*}
$$

Figure 222: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Verified OK.

27.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{x}\left(3 \mathrm{e}^{2 x}-\cos (x)\right) \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =\mathrm{e}^{x}\left(3 \mathrm{e}^{2 x}-\cos (x)\right)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=-\frac{\mathrm{e}^{x}\left(-2 \mathrm{e}^{2 x}+\cos (x)+\sin (x)\right)}{2}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=c_{1} x+\frac{\mathrm{e}^{3 x}}{3}-\frac{\mathrm{e}^{x} \sin (x)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+\frac{\mathrm{e}^{3 x}}{3}-\frac{\mathrm{e}^{x} \sin (x)}{2}+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=\frac{\mathrm{e}^{2 x}}{3}+\mathrm{e}^{-x} c_{1} x-\frac{\sin (x)}{2}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}}{3}+\mathrm{e}^{-x} c_{1} x-\frac{\sin (x)}{2}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 223: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}}{3}+\mathrm{e}^{-x} c_{1} x-\frac{\sin (x)}{2}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

27.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 151: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{2 x}-\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{\cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{2 x}-2 A_{2} \sin (x)+2 A_{3} \cos (x)=3 \mathrm{e}^{2 x}-\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0, A_{3}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2} \tag{1}
\end{equation*}
$$

Figure 224: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

Verified OK.

27.4.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=3 \mathrm{e}^{2 x}-\cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{2 x}-\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-x}\left(x\left(\int-\mathrm{e}^{x}\left(-3 \mathrm{e}^{2 x}+\cos (x)\right) d x\right)-\left(\int-\left(-3 \mathrm{e}^{2 x}+\cos (x)\right) x \mathrm{e}^{x} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}
$$

- Substitute particular solution into general solution to ODE $y=x \mathrm{e}^{-x} c_{2}+c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\sin (x)}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)+2*\operatorname{diff}(y(x),x)+y(x)=3*exp(2*x)-cos(x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{-x}-\frac{\sin (x)}{2}+\frac{\mathrm{e}^{2 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.454 (sec). Leaf size: 38
DSolve $[y$ ' ' $[\mathrm{x}]+2 * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==3 * \operatorname{Exp}[2 * \mathrm{x}]-\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{6} e^{-x}\left(2 e^{3 x}-3 e^{x} \sin (x)+6 c_{2} x+6 c_{1}\right)
$$

27.5 problem Ex 5

27.5.1 Maple step by step solution 1464

Internal problem ID [11267]
Internal file name [OUTPUT/10252_Wednesday_December_21_2022_03_46_50_PM_90718951/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}-y=x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y=x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}, \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{3} x^{2}-A_{2} x-A_{1}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=0, A_{3}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}\right)+\left(-x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}-x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}-x^{2}
$$

Verified OK.

27.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y=x^{2}
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x^{2}+y_{1}(x)$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2}+y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ x^{2}\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)} \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \\
1 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}+\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3}}{2}\right.}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \cos (\sqrt{3}}}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\left.\mathrm{e}^{-\frac{x}{2} \cos \left(\frac{\sqrt{3} x}{2}\right.}\right)}{3}+\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}}{3} & \frac{\mathrm{e}^{x}}{3}+\frac{2}{2}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{2 \mathrm{e}^{x}}{3}-x^{2}-\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}-\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{2 \mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}-2 x-\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{2 \mathrm{e}^{x}}{3}-2+\frac{4 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{2 \mathrm{e}^{x}}{3}-x^{2}-\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}-\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{2 \mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}-2 x-\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{2 \mathrm{e}^{x}}{3}-2+\frac{4 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{\left(c_{3} \sqrt{3}+c_{2}+\frac{4}{3}\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\left(\left(c_{2}+\frac{4}{3}\right) \sqrt{3}-c_{3}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\left(6 c_{1}+4\right) \mathrm{e}^{x}}{6}-x^{2}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 40

```
dsolve(diff(y(x),x$3)-y(x)=x^2,y(x), singsol=all)
```

$$
y(x)=-x^{2}+c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 59
DSolve[y''' $[x]-y[x]==x \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x^{2}+c_{1} e^{x}+c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

27.6 problem Ex 6

27.6.1 Maple step by step solution 1472

Internal problem ID [11268]
Internal file name [OUTPUT/10253_Wednesday_December_21_2022_03_46_51_PM_39861667/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 6.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=3 x^{2}+\sin (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}-3 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=3 x^{2}+\sin (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x^{2}+\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-x}, \mathrm{e}^{3 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\{\cos (x), \sin (x)\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 4 A_{1} \sin (x)-4 A_{2} \cos (x)+6 A_{5}+2 A_{1} \cos (x)+2 A_{2} \sin (x) \\
& -4 A_{4}-12 A_{5} x-3 A_{3}-6 A_{4} x-9 A_{5} x^{2}=3 x^{2}+\sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}, A_{2}=\frac{1}{10}, A_{3}=-\frac{14}{9}, A_{4}=\frac{2}{3}, A_{5}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{5}+\frac{\sin (x)}{10}-\frac{14 x}{9}+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{3 x}\right)+\left(\frac{\cos (x)}{5}+\frac{\sin (x)}{10}-\frac{14 x}{9}+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{3 x}+\frac{\cos (x)}{5}+\frac{\sin (x)}{10}-\frac{14 x}{9}+\frac{2 x^{2}}{3}-\frac{x^{3}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{3 x}+\frac{\cos (x)}{5}+\frac{\sin (x)}{10}-\frac{14 x}{9}+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}
$$

Verified OK.

27.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=3 x^{2}+\sin (x)
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=3 x^{2}+\sin (x)+2 y_{3}(x)+3 y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 x^{2}+\sin (x)+2 y_{3}(x)+3 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 3 & 2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
3 x^{2}+\sin (x)
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 3 x^{2}+\sin (x)\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 3 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & 0 & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & 0 & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{9} \\
-1 & 0 & \frac{1}{3} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{3 \mathrm{e}^{-x}}{4}+\frac{2}{3}+\frac{\mathrm{e}^{3 x}}{12} & \frac{\mathrm{e}^{-x}}{4}-\frac{1}{3}+\frac{\mathrm{e}^{3 x}}{12} \\
0 & \frac{3 \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{3 x}}{4} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{3 x}}{4} \\
0 & -\frac{3 \mathrm{e}^{-x}}{4}+\frac{3 \mathrm{e}^{3 x}}{4} & \frac{\mathrm{e}^{-x}}{4}+\frac{3 \mathrm{e}^{3 x}}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{x^{3}}{3}+\frac{2 x^{2}}{3}-\frac{14 x}{9}+\frac{\sin (x)}{10}+\frac{\cos (x)}{5}+\frac{29 \mathrm{e}^{3 x}}{1080}+\frac{31}{27}-\frac{11 \mathrm{e}^{-x}}{8} \\
\frac{29 \mathrm{e}^{3 x}}{360}-x^{2}+\frac{4 x}{3}-\frac{\sin (x)}{5}+\frac{\cos (x)}{10}-\frac{14}{9}+\frac{11 \mathrm{e}^{-x}}{8} \\
\frac{29 \mathrm{e}^{3 x}}{120}-2 x-\frac{\sin (x)}{10}-\frac{\cos (x)}{5}+\frac{4}{3}-\frac{11 \mathrm{e}^{-x}}{8}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{x^{3}}{3}+\frac{2 x^{2}}{3}-\frac{14 x}{9}+\frac{\sin (x)}{10}+\frac{\cos (x)}{5}+\frac{29 \mathrm{e}^{3 x}}{1080}+\frac{31}{27}-\frac{11 \mathrm{e}^{-x}}{8} \\
\frac{29 \mathrm{e}^{3 x}}{360}-x^{2}+\frac{4 x}{3}-\frac{\sin (x)}{5}+\frac{\cos (x)}{10}-\frac{14}{9}+\frac{11 \mathrm{e}^{-x}}{8} \\
\frac{29 \mathrm{e}^{3 x}}{120}-2 x-\frac{\sin (x)}{10}-\frac{\cos (x)}{5}+\frac{4}{3}-\frac{11 \mathrm{e}^{-x}}{8}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(1080 c_{1}-1485\right) \mathrm{e}^{-x}}{1080}+\frac{\left(120 c_{3}+29\right) \mathrm{e}^{3 x}}{1080}-\frac{x^{3}}{3}+\frac{2 x^{2}}{3}-\frac{14 x}{9}+c_{2}+\frac{\cos (x)}{5}+\frac{\sin (x)}{10}+\frac{31}{27}
$$

Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
\rightarrow Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad a\right), \quad, a\right)=3 * _{ }^{\wedge} 2+2 *\left(\operatorname{diff}\left(_b\left(_a\right), \quad\right.\right.$ a)) +3
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve(diff ($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)-2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-3 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=3 * \mathrm{x}^{\wedge} 2+\sin (\mathrm{x}), y(\mathrm{x})$, singsol=all)

$$
y(x)=-\frac{x^{3}}{3}+\frac{2 x^{2}}{3}-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{3}+\frac{\sin (x)}{10}+\frac{\cos (x)}{5}-\frac{14 x}{9}+c_{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.68 (sec). Leaf size: 58
DSolve[y'''[x]-2*y''[x]-3*y'[x]==3*x^2+Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{9}\left(-3 x^{3}+6 x^{2}-14 x-9 c_{1} e^{-x}+3 c_{2} e^{3 x}+9 c_{3}\right)+\frac{\sin (x)}{10}+\frac{\cos (x)}{5}
$$

27.7 problem Ex 7

Internal problem ID [11269]
Internal file name [OUTPUT/10254_Wednesday_December_21_2022_03_46_52_PM_88694947/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 7.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=\mathrm{e}^{x}+4
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}-2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =1 \\
\lambda_{3} & =-1 \\
\lambda_{4} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=x \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=\mathrm{e}^{x}+4
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}+4
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, x \mathrm{e}^{-x}, \mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{x^{2} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x^{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{2} \mathrm{e}^{x}+A_{1}=\mathrm{e}^{x}+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4, A_{2}=\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4+\frac{x^{2} \mathrm{e}^{x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{4}\right)+\left(4+\frac{x^{2} \mathrm{e}^{x}}{8}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+4+\frac{x^{2} \mathrm{e}^{x}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+4+\frac{x^{2} \mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+4+\frac{x^{2} \mathrm{e}^{x}}{8}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$4)-2*diff(y(x),x$2)+y(x)=exp(x)+4,y(x), singsol=all)
```

$$
y(x)=4+\left(c_{4} x+c_{2}\right) \mathrm{e}^{-x}+\frac{\left(3+2 x^{2}+4\left(-1+4 c_{3}\right) x+16 c_{1}\right) \mathrm{e}^{x}}{16}
$$

\checkmark Solution by Mathematica
Time used: 0.174 (sec). Leaf size: 47
DSolve[y''''[x]-2*y''[x]+y[x]==Exp[x]+4,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(\frac{x^{2}}{8}+\left(-\frac{1}{4}+c_{4}\right) x+\frac{3}{16}+c_{3}\right)+e^{-x}\left(\left(2+c_{2}\right) x+c_{1}\right)+4
$$

27.8 problem Ex 8

27.8.1 Solving as second order linear constant coeff ode 1482
27.8.2 Solving as second order integrable as is ode 1486
27.8.3 Solving as second order ode missing y ode 1488
27.8.4 Solving as type second_order_integrable_as_is (not using ABC
version) . 1490
27.8.5 Solving using Kovacic algorithm 1492
27.8.6 Solving as exact linear second order ode ode 1498
27.8.7 Maple step by step solution . 1500

Internal problem ID [11270]
Internal file name [OUTPUT/10255_Wednesday_December_21_2022_03_46_54_PM_12086574/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_y]]
```

$$
y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{2 x}+1
$$

27.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=0, f(x)=\mathrm{e}^{2 x}+1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(0)} \\
& =1 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+1 \\
& \lambda_{2}=1-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=0
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(0) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{2 x}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, e^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{\mathrm{e}^{2 x} x\right\}\right]
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{x\},\left\{\mathrm{e}^{2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x+A_{2} \mathrm{e}^{2 x} x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} \mathrm{e}^{2 x}-2 A_{1}=\mathrm{e}^{2 x}+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x}{2}+\frac{\mathrm{e}^{2 x} x}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2}\right)+\left(-\frac{x}{2}+\frac{\mathrm{e}^{2 x} x}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} \mathrm{e}^{2 x}+c_{2}-\frac{x}{2}+\frac{\mathrm{e}^{2 x} x}{2} \tag{1}
\end{align*}
$$

Figure 225: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2}-\frac{x}{2}+\frac{\mathrm{e}^{2 x} x}{2}
$$

Verified OK.

27.8.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int\left(\mathrm{e}^{2 x}+1\right) d x \\
& -2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =\left(\frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int \frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} y=\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=\mathrm{e}^{2 x}\left(\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}\right)+c_{2} \mathrm{e}^{2 x}
$$

which simplifies to

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4} \tag{1}
\end{equation*}
$$

Figure 226: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Verified OK.

27.8.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-2 p(x)-\mathrm{e}^{2 x}-1=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=\mathrm{e}^{2 x}+1
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-2 p(x)=\mathrm{e}^{2 x}+1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\mathrm{e}^{2 x}+1\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} p\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{2 x}+1\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} p\right) & =\left(1+\mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} p=\int 1+\mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} p=x-\frac{\mathrm{e}^{-2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
p(x)=\mathrm{e}^{2 x}\left(x-\frac{\mathrm{e}^{-2 x}}{2}\right)+c_{1} \mathrm{e}^{2 x}
$$

which simplifies to

$$
p(x)=-\frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{2 x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{2 x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \mathrm{e}^{2 x} x-\frac{1}{2}+c_{1} \mathrm{e}^{2 x} \mathrm{~d} x \\
& =-\frac{x}{2}+\frac{c_{1} \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x} x}{2}-\frac{\mathrm{e}^{2 x}}{4}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{2}+\frac{c_{1} \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x} x}{2}-\frac{\mathrm{e}^{2 x}}{4}+c_{2} \tag{1}
\end{equation*}
$$

Figure 227: Slope field plot

Verification of solutions

$$
y=-\frac{x}{2}+\frac{c_{1} \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x} x}{2}-\frac{\mathrm{e}^{2 x}}{4}+c_{2}
$$

Verified OK.

27.8.4 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{2 x}+1
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int\left(\mathrm{e}^{2 x}+1\right) d x \\
& -2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =\left(\frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int \frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} y=\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=\mathrm{e}^{2 x}\left(\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}\right)+c_{2} \mathrm{e}^{2 x}
$$

which simplifies to

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4} \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Verified OK.

27.8.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 155: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \frac{\mathrm{e}^{2 x}}{2} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \frac{\mathrm{e}^{2 x}}{2} \\
0 & \mathrm{e}^{2 x}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(\mathrm{e}^{2 x}\right)-\left(\frac{\mathrm{e}^{2 x}}{2}\right)(0)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}+1\right)}{2}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{\mathrm{e}^{2 x}}{2}+\frac{1}{2}\right) d x
$$

Hence

$$
u_{1}=-\frac{x}{2}-\frac{\mathrm{e}^{2 x}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x}+1}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(1+\mathrm{e}^{-2 x}\right) d x
$$

Hence

$$
u_{2}=x-\frac{\mathrm{e}^{-2 x}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x}{2}-\frac{\mathrm{e}^{2 x}}{4}+\frac{\mathrm{e}^{2 x}\left(x-\frac{\mathrm{e}^{-2 x}}{2}\right)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)+\left(\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4} \tag{1}
\end{equation*}
$$

Figure 229: Slope field plot
Verification of solutions

$$
y=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4}
$$

Verified OK.

27.8.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=-2 \\
& r(x)=0 \\
& s(x)=\mathrm{e}^{2 x}+1
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
-2 y+y^{\prime}=\int \mathrm{e}^{2 x}+1 d x
$$

We now have a first order ode to solve which is

$$
-2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(x+\frac{\mathrm{e}^{2 x}}{2}+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =\left(\frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int \frac{1}{2}+\left(x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} y=\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=\mathrm{e}^{2 x}\left(\frac{x}{2}-\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}-\frac{c_{1} \mathrm{e}^{-2 x}}{2}\right)+c_{2} \mathrm{e}^{2 x}
$$

which simplifies to

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4} \tag{1}
\end{equation*}
$$

Figure 230: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 x+4 c_{2}\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{c_{1}}{2}-\frac{1}{4}
$$

Verified OK.

27.8.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}=\mathrm{e}^{2 x}+1
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-2 r=0$
- Factor the characteristic polynomial
$r(r-2)=0$
- Roots of the characteristic polynomial
$r=(0,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=1$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{2 x}+1\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}1 & \mathrm{e}^{2 x} \\ 0 & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\left(\int\left(\mathrm{e}^{2 x}+1\right) d x\right)}{2}+\frac{\mathrm{e}^{2 x}\left(\int\left(1+\mathrm{e}^{-2 x}\right) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1}+c_{2} \mathrm{e}^{2 x}+\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}-\frac{1}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = 2*_b(_a)+exp(2*_a)+1, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff (y (x), x$2)-2*diff (y(x),x)=exp(2*x)+1,y(x), singsol=all)
```

$$
y(x)=\frac{\left(2 x+2 c_{1}-1\right) \mathrm{e}^{2 x}}{4}-\frac{x}{2}+c_{2}
$$

Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 31
DSolve[y'' $[x]-2 * y$ ' $[x]==\operatorname{Exp}[2 * x]+1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\frac{x}{2}+\frac{1}{4} e^{2 x}\left(2 x-1+2 c_{1}\right)+c_{2}
$$

27.9 problem Ex 9

Internal problem ID [11271]
Internal file name [OUTPUT/10256_Wednesday_December_21_2022_03_46_55_PM_3227727/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 50.
Method of undetermined coefficients. Page 107
Problem number: Ex 9.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=\cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=x \mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=\cos (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x) \\
-i \mathrm{e}^{i x} & -\mathrm{e}^{i x}(i x+3) & i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(i x-3)
\end{array}\right] \\
&|W|=16 \mathrm{e}^{-2 i x} \mathrm{e}^{2 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=16
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
x \mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
\mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
\mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{-i x}(x-i) \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{-i x} \\
& W_{3}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{i x}(x+i) \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-4 \mathrm{e}^{i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{-i x}(x-i)\right)}{(1)(16)} d x \\
& =-\int \frac{-4 \cos (x) \mathrm{e}^{-i x}(x-i)}{16} d x \\
& =-\int\left(-\frac{\cos (x) \mathrm{e}^{-i x}(x-i)}{4}\right) d x \\
& =-\left(\int-\frac{\cos (x) \mathrm{e}^{-i x}(x-i)}{4} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{-i x}\right)}{(1)(16)} d x \\
& =\int \frac{-4 \cos (x) \mathrm{e}^{-i x}}{16} d x \\
& =\int\left(-\frac{\cos (x) \mathrm{e}^{-i x}}{4}\right) d x \\
& =\int-\frac{\cos (x) \mathrm{e}^{-i x}}{4} d x \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{i x}(x+i)\right)}{(1)(16)} d x \\
& =-\int \frac{-4 \cos (x) \mathrm{e}^{i x}(x+i)}{16} d x \\
& =-\int\left(-\frac{\cos (x) \mathrm{e}^{i x}(x+i)}{4}\right) d x \\
& =\frac{x^{2}}{16}+\frac{i x}{8}-\frac{i(3 i+2 x) \mathrm{e}^{2 i x}}{32} \\
& U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{i x}\right)}{(1)(16)} d x \\
& =\int \frac{-4 \cos (x) \mathrm{e}^{i x}}{16} d x \\
& =\int\left(-\frac{\cos (x) \mathrm{e}^{i x}}{4}\right) d x \\
& =-\frac{x}{8}+\frac{i \mathrm{e}^{2 i x}}{16}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\left(\int-\frac{\cos (x) \mathrm{e}^{-i x}(x-i)}{4} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(\int-\frac{\cos (x) \mathrm{e}^{-i x}}{4} d x\right)\left(x \mathrm{e}^{i x}\right) \\
& +\left(\frac{x^{2}}{16}+\frac{i x}{8}-\frac{i(3 i+2 x) \mathrm{e}^{2 i x}}{32}\right)\left(\mathrm{e}^{-i x}\right) \\
& +\left(-\frac{x}{8}+\frac{i \mathrm{e}^{2 i x}}{16}\right)\left(x \mathrm{e}^{-i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32}
$$

Which simplifies to

$$
y_{p}=\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}\right)+\left(\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-i x}\left(c_{4} x+c_{3}\right)+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-i x}\left(c_{4} x+c_{3}\right)+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-i x}\left(c_{4} x+c_{3}\right)+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+\frac{\cos (x)\left(-4 x^{2}+2 i x+5\right)}{32}-\frac{(i-6 x) \sin (x)}{32}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve(diff($y(x), x \$ 4)+2 * \operatorname{diff}(y(x), x \$ 2)+y(x)=\cos (x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(8 c_{4} x-x^{2}+8 c_{1}+2\right) \cos (x)}{8}+\left(\left(c_{3}+\frac{1}{8}\right) x+c_{2}\right) \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 43
DSolve[y''''[x]+2*y''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(-\frac{x^{2}}{8}+c_{2} x+\frac{5}{16}+c_{1}\right) \cos (x)+\frac{1}{4}\left(x+4 c_{4} x+4 c_{3}\right) \sin (x)
$$

28 Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114

28.1 problem Ex 1 . 1510
28.2 problem Ex 2 . 1517
28.3 problem Ex 3 . 1525
28.4 problem Ex 4 . 1559

28.1 problem Ex 1

28.1.1 Maple step by step solution . 1515

Internal problem ID [11272]
Internal file name [OUTPUT/10257_Wednesday_December_21_2022_03_46_57_PM_78523104/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114
Problem number: Ex 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
x^{3} y^{\prime \prime \prime}+y^{\prime} x-y=x \ln (x)
$$

This is higher order nonhomogeneous Euler type ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous Euler ODE And y_{p} is a particular solution to the nonhomogeneous Euler ODE. y_{h} is the solution to

$$
x^{3} y^{\prime \prime \prime}+y^{\prime} x-y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+y^{\prime} x-y=x \ln (x)
$$

gives

$$
x \lambda x^{\lambda-1}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-x^{\lambda}=0
$$

Which simplifies to

$$
\lambda x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
\lambda+\lambda(\lambda-1)(\lambda-2)-1=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda-1)^{3}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	3	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1} x+c_{2} \ln (x) x+c_{3} \ln (x)^{2} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x \ln (x) \\
& y_{3}=\ln (x)^{2} x
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
x^{3} y^{\prime \prime \prime}+y^{\prime} x-y=x \ln (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
x & x \ln (x) & \ln (x)^{2} x \\
1 & \ln (x)+1 & \ln (x)(\ln (x)+2) \\
0 & \frac{1}{x} & \frac{2+2 \ln (x)}{x}
\end{array}\right] \\
|W| & =2
\end{aligned}
$$

The determinant simplifies to

$$
|W|=2
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{cc}
x \ln (x) & \ln (x)^{2} x \\
\ln (x)+1 & \ln (x)(\ln (x)+2)
\end{array}\right] \\
& =\ln (x)^{2} x
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
x & \ln (x)^{2} x \\
1 & \ln (x)(\ln (x)+2)
\end{array}\right] \\
& =2 x \ln (x)
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
x & x \ln (x) \\
1 & \ln (x)+1
\end{array}\right] \\
& =x
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(x \ln (x))\left(\ln (x)^{2} x\right)}{\left(x^{3}\right)(2)} d x \\
& =\int \frac{x^{2} \ln (x)^{3}}{2 x^{3}} d x \\
& =\int\left(\frac{\ln (x)^{3}}{2 x}\right) d x \\
& =\frac{\ln (x)^{4}}{8}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(x \ln (x))(2 x \ln (x))}{\left(x^{3}\right)(2)} d x \\
& =-\int \frac{2 x^{2} \ln (x)^{2}}{2 x^{3}} d x \\
& =-\int\left(\frac{\ln (x)^{2}}{x}\right) d x \\
& =-\frac{\ln (x)^{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(x \ln (x))(x)}{\left(x^{3}\right)(2)} d x \\
& =\int \frac{x^{2} \ln (x)}{2 x^{3}} d x \\
& =\int\left(\frac{\ln (x)}{2 x}\right) d x \\
& =\frac{\ln (x)^{2}}{4}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{\ln (x)^{4}}{8}\right)(x) \\
& +\left(-\frac{\ln (x)^{3}}{3}\right)(x \ln (x)) \\
& +\left(\frac{\ln (x)^{2}}{4}\right)\left(\ln (x)^{2} x\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\ln (x)^{4} x}{24}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x+c_{2} \ln (x) x+c_{3} \ln (x)^{2} x\right)+\left(\frac{\ln (x)^{4} x}{24}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}\right)+\frac{\ln (x)^{4} x}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}\right)+\frac{\ln (x)^{4} x}{24} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}\right)+\frac{\ln (x)^{4} x}{24}
$$

Verified OK.

28.1.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+y^{\prime} x-y=x \ln (x)
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x^3*diff(y(x),x$3)+x*diff(y(x),x)-y(x)=x*ln(x),y(x), singsol=all)
```

$$
y(x)=x\left(\frac{\ln (x)^{4}}{24}+c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 33
DSolve[x^3*y'' $[x]+x * y$ '[x]-y[x]==x*Log[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{24} x \log ^{4}(x)+c_{1} x+c_{3} x \log ^{2}(x)+c_{2} x \log (x)
$$

28.2 problem Ex 2

28.2.1 Maple step by step solution 1523

Internal problem ID [11273]
Internal file name [OUTPUT/10258_Wednesday_December_21_2022_03_46_58_PM_83170867/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 51. Cauchy linear equation. Page 114
Problem number: Ex 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+2 y=10 x+\frac{10}{x}
$$

This is higher order nonhomogeneous Euler type ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous Euler ODE And y_{p} is a particular solution to the nonhomogeneous Euler ODE. y_{h} is the solution to

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+2 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+2 y=10 x+\frac{10}{x}
$$

gives

$$
2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+2 x^{\lambda}=0
$$

Which simplifies to

$$
2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+2 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+2=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-\lambda^{2}+2=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1-i \\
& \lambda_{3}=1+i
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
$1 \pm 1 i$	1	complex conjugate root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+x\left(c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))\right)
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x \cos (\ln (x)) \\
& y_{3}=x \sin (\ln (x))
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+2 y=10 x+\frac{10}{x}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\frac{1}{x} & x \cos (\ln (x)) & x \sin (\ln (x)) \\
-\frac{1}{x^{2}} & \cos (\ln (x))-\sin (\ln (x)) & \sin (\ln (x))+\cos (\ln (x)) \\
\frac{2}{x^{3}} & \frac{-\sin (\ln (x))-\cos (\ln (x))}{x} & \frac{\cos (\ln (x))-\sin (\ln (x))}{x}
\end{array}\right] \\
|W| & =\frac{5 \cos (\ln (x))^{2}+5 \sin (\ln (x))^{2}}{x^{2}}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=\frac{5}{x^{2}}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
x \cos (\ln (x)) & x \sin (\ln (x)) \\
\cos (\ln (x))-\sin (\ln (x)) & \sin (\ln (x))+\cos (\ln (x))
\end{array}\right] \\
& =x \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\frac{1}{x} & x \sin (\ln (x)) \\
-\frac{1}{x^{2}} & \sin (\ln (x))+\cos (\ln (x))
\end{array}\right] \\
& =\frac{2 \sin (\ln (x))+\cos (\ln (x))}{x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\frac{1}{x} & x \cos (\ln (x)) \\
-\frac{1}{x^{2}} & \cos (\ln (x))-\sin (\ln (x))
\end{array}\right] \\
& =\frac{2 \cos (\ln (x))-\sin (\ln (x))}{x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(10 x+\frac{10}{x}\right)(x)}{\left(x^{3}\right)\left(\frac{5}{x^{2}}\right)} d x \\
& =\int \frac{\left(10 x+\frac{10}{x}\right) x}{5 x} d x \\
& =\int\left(2 x+\frac{2}{x}\right) d x \\
& =x^{2}+2 \ln (x)
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(10 x+\frac{10}{x}\right)\left(\frac{2 \sin (\ln (x))+\cos (\ln (x))}{x}\right)}{\left(x^{3}\right)\left(\frac{5}{x^{2}}\right)} d x \\
& =-\int \frac{\frac{\left(10 x+\frac{10}{x}\right)(2 \sin (\ln (x))+\cos (\ln (x)))}{x}}{5 x} d x \\
& =-\int\left(\frac{2\left(x^{2}+1\right)(2 \sin (\ln (x))+\cos (\ln (x)))}{x^{3}}\right) d x \\
& =-\frac{2\left(-\frac{2}{5}+\frac{2 \tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}+\frac{2 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{4\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{5}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-2 \sin (\ln (x))+4 \cos (\ln \\
& =-\frac{2\left(-\frac{2}{5}+\frac{2 \tan \left(\frac{\ln (x)}{5}\right)^{2}}{5}+\frac{2 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{4\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{5}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-2 \sin (\ln (x))+4 \cos (\ln \\
& U_{3}=(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(10 x+\frac{10}{x}\right)\left(\frac{2 \cos (\ln (x))-\sin (\ln (x))}{x}\right)}{\left(x^{3}\right)\left(\frac{5}{x^{2}}\right)} d x \\
& =\int \frac{\frac{\left(10 x+\frac{10}{x}\right)(2 \cos (\ln (x))-\sin (\ln (x)))}{x}}{5 x} d x \\
& =\int\left(\frac{2\left(x^{2}+1\right)(2 \cos (\ln (x))-\sin (\ln (x)))}{x^{3}}\right) d x \\
& =\frac{-\frac{8}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)}{5}}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{2\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}+4 \sin (\ln (x))+2 \cos (\ln (x)) \\
& =\frac{-\frac{8}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)}{5}}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{2\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}+4 \sin (\ln (x))+2 \cos (\ln (x))
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found
from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(x^{2}+2 \ln (x)\right)\left(\frac{1}{x}\right) \\
& +\left(-\frac{2\left(-\frac{2}{5}+\frac{2 \tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}+\frac{2 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{4\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-2 \sin (\ln (x))+4 \cos (1\right. \\
& +\left(\frac{-\frac{8}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}+\frac{8 \tan \left(\frac{\ln (x)}{2}\right)}{5}}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}-\frac{2\left(-\frac{1}{5}+\frac{\tan \left(\frac{\ln (x)}{2}\right)^{2}}{5}-\frac{4 \tan \left(\frac{\ln (x)}{2}\right)}{5}\right)}{\left(1+\tan \left(\frac{\ln (x)}{2}\right)^{2}\right) x^{2}}+4 \sin (\ln (x))+2 \cos (\ln (x))\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{25 x^{2}+10 \ln (x)+8}{5 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+x\left(c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))\right)\right)+\left(\frac{25 x^{2}+10 \ln (x)+8}{5 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+x\left(c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))\right)+\frac{25 x^{2}+10 \ln (x)+8}{5 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+x\left(c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))\right)+\frac{25 x^{2}+10 \ln (x)+8}{5 x}
$$

Verified OK.

28.2.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}+2 y=10 x+\frac{10}{x}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad a\right), \quad a\right)=\left(c _-1-2 * _b\left(_a\right) * _a+_a \wedge 2 *(\operatorname{diff}(\right.\) Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful <- solving first the homogeneous part of the ODE successful <- high order exact_linear_nonhomogeneous successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 120
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+2 * y(x)=10 *(x+1 / x), y(x), \quad$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
y(x)= & \frac{\left((20-10 i) \ln (x)+6-8 i+(2-i) c_{1}\right)(i \cos (\ln (x))-\sin (\ln (x))) x^{-1-i}}{10} \\
& +\frac{\left((20+10 i) \ln (x)+6+8 i+(2+i) c_{1}\right)(-\sin (\ln (x))-i \cos (\ln (x))) x^{-1+i}}{10} \\
& +\frac{5 x^{1-i}(i \sin (\ln (x))+\cos (\ln (x)))}{2} \\
& +\frac{5(-i \sin (\ln (x))+\cos (\ln (x))) x^{1+i}}{2}+x\left(\cos (\ln (x)) c_{2}+\sin (\ln (x)) c_{3}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.187 (sec). Leaf size: 42
DSolve $\left[x^{\wedge} 3 * y\right.$ ' ' ' $[x]+2 * x^{\wedge} 2 * y$ ' ' $[x]+2 * y[x]==10 *(x+1 / x), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{25 x^{2}+10 \log (x)+8+5 c_{3}}{5 x}+c_{2} x \cos (\log (x))+c_{1} x \sin (\log (x))
$$

28.3 problem Ex 3

28.3.1 Solving as second order euler ode ode 1526
28.3.2 Solving as second order change of variable on x method 2 ode . 1529
28.3.3 Solving as second order change of variable on x method 1 ode . 1535
28.3.4 Solving as second order change of variable on y method 2 ode . 1540
28.3.5 Solving as second order integrable as is ode 1545

28.3.7 Solving using Kovacic algorithm 1548
28.3.8 Solving as exact linear second order ode ode 1556

Internal problem ID [11274]
Internal file name [OUTPUT/10259_Wednesday_December_21_2022_03_47_00_PM_99636391/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 51.
Cauchy linear equation. Page 114
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of__variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=\frac{1}{(1-x)^{2}}
$$

28.3.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=\frac{1}{(x-1)^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+3 r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+3 r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+2 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=\frac{1}{(x-1)^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & \frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(\frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\ln (x)}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{(x-1)^{2}} d x
$$

Hence

$$
u_{1}=-\ln (x-1)+\frac{\ln (x) x}{x-1}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x-1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\ln (x-1)+\frac{\ln (x) x}{x-1}}{x}-\frac{\ln (x)}{(x-1) x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)-\ln (x-1)}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{c_{2} \ln (x)+\ln (x)-\ln (x-1)+c_{1}}{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \ln (x)+\ln (x)-\ln (x-1)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} \ln (x)+\ln (x)-\ln (x-1)+c_{1}}{x}
$$

Verified OK.

28.3.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{\frac{1}{x^{6}}} \\
& =x^{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+x^{4} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
x^{4}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}}{(x-1)^{2}}}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{-\frac{1}{x^{2}}}\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) x}{2(x-1)^{2}} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & \frac{x \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2 x-2} \\
& -\frac{x \sqrt{-\frac{1}{x^{2}}}(2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)+\ln (2))}{2(x-1)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\sqrt{-\frac{1}{x^{2}}}}{(x-1)^{2}}}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2(x-1)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x \sqrt{-\frac{1}{x^{2}}}\left(2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)-\ln \left(-\frac{1}{x^{2}}\right)+\ln (2)\right)}{2 x-2} \\
& u_{2}=-\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2 x-2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)-\ln \left(-\frac{1}{x^{2}}\right)+\ln (2)}{x(2 x-2)} \\
& -\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)}{2 x-2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)-\ln (x-1)}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}\right)+\left(\frac{\ln (x)-\ln (x-1)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}+\frac{\ln (x)-\ln (x-1)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}+\frac{\ln (x)-\ln (x-1)}{x}
$$

Verified OK.

28.3.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=\frac{1}{(x-1)^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}} x^{3}}}+\frac{3}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1}}{x}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=\frac{1}{(x-1)^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}}{(x-1)^{2}}}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{-\frac{1}{x^{2}}}\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) x}{2(x-1)^{2}} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & \frac{x \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2 x-2} \\
& -\frac{x \sqrt{-\frac{1}{x^{2}}}(2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)+\ln (2))}{2(x-1)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\sqrt{-\frac{1}{x^{2}}}}{(x-1)^{2}}}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2(x-1)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x \sqrt{-\frac{1}{x^{2}}}\left(2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)-\ln \left(-\frac{1}{x^{2}}\right)+\ln (2)\right)}{2 x-2} \\
& u_{2}=-\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}}{2 x-2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{2 x \ln (x)-2 \ln (x-1) x-2 \ln (x)+2 \ln (x-1)-\ln \left(-\frac{1}{x^{2}}\right)+\ln (2)}{x(2 x-2)} \\
& -\frac{\sqrt{-\frac{1}{x^{2}}} x \sqrt{2}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)}{2 x-2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)-\ln (x-1)}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}\right)+\left(\frac{\ln (x)-\ln (x-1)}{x}\right) \\
& =\frac{\ln (x)-\ln (x-1)}{x}+\frac{c_{1}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\ln (x)-\ln (x-1)+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)-\ln (x-1)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x)-\ln (x-1)+c_{1}}{x}
$$

Verified OK.

28.3.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=\frac{1}{(x-1)^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=\frac{1}{(x-1)^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & \frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(\frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\ln (x)}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{(x-1)^{2}} d x
$$

Hence

$$
u_{1}=-\ln (x-1)+\frac{\ln (x) x}{x-1}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x-1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\ln (x-1)+\frac{\ln (x) x}{x-1}}{x}-\frac{\ln (x)}{(x-1) x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)-\ln (x-1)}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \ln (x)+c_{2}}{x}\right)+\left(\frac{\ln (x)-\ln (x-1)}{x}\right) \\
& =\frac{\ln (x)-\ln (x-1)}{x}+\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Verified OK.

28.3.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+3 y^{\prime} x+y\right) d x=\int \frac{1}{(x-1)^{2}} d x \\
& x^{2} y^{\prime}+y x=-\frac{1}{x-1}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\mathrm{d}(x y) & =\left(\frac{c_{1}(x-1)-1}{x(x-1)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{c_{1}(x-1)-1}{x(x-1)} \mathrm{d} x \\
& x y=-\ln (x-1)+\left(c_{1}+1\right) \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{-\ln (x-1)+\left(c_{1}+1\right) \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Verified OK.
$\begin{array}{ll}\text { 28.3.6 } & \begin{array}{l}\text { Solving as type second__order_integrable_as_is (not using ABC } \\ \text { version) }\end{array}\end{array}$ version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=\frac{1}{(x-1)^{2}}
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \quad \int\left(x^{2} y^{\prime \prime}+3 y^{\prime} x+y\right) d x=\int \frac{1}{(x-1)^{2}} d x \\
& x^{2} y^{\prime}+y x=-\frac{1}{x-1}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\mathrm{d}(x y) & =\left(\frac{c_{1}(x-1)-1}{x(x-1)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{c_{1}(x-1)-1}{x(x-1)} \mathrm{d} x \\
& x y=-\ln (x-1)+\left(c_{1}+1\right) \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{-\ln (x-1)+\left(c_{1}+1\right) \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Verified OK.

28.3.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+3 y^{\prime} x+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=3 x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 159: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & \frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(\frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\ln (x)}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{(x-1)^{2}} d x
$$

Hence

$$
u_{1}=-\ln (x-1)+\frac{\ln (x) x}{x-1}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{x(x-1)^{2}}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x-1)^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x-1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\ln (x-1)+\frac{\ln (x) x}{x-1}}{x}-\frac{\ln (x)}{(x-1) x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)-\ln (x-1)}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}\right)+\left(\frac{\ln (x)-\ln (x-1)}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} \ln (x)+c_{1}}{x}+\frac{\ln (x)-\ln (x-1)}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \ln (x)+c_{1}}{x}+\frac{\ln (x)-\ln (x-1)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} \ln (x)+c_{1}}{x}+\frac{\ln (x)-\ln (x-1)}{x}
$$

Verified OK.

28.3.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =3 x \\
r(x) & =1 \\
s(x) & =\frac{1}{(x-1)^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =3
\end{aligned}
$$

Therefore (1) becomes

$$
2-(3)+(1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}+y x=\int \frac{1}{(x-1)^{2}} d x
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}+y x=-\frac{1}{x-1}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{c_{1}(x-1)-1}{x^{2}(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{c_{1}(x-1)-1}{x^{2}(x-1)}\right) \\
\mathrm{d}(x y) & =\left(\frac{c_{1}(x-1)-1}{x(x-1)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{c_{1}(x-1)-1}{x(x-1)} \mathrm{d} x \\
& x y=-\ln (x-1)+\left(c_{1}+1\right) \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{-\ln (x-1)+\left(c_{1}+1\right) \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\ln (x)-\ln (x-1)+c_{2}}{x}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(x^2*diff (y (x),x$2)+3*x*diff(y(x),x)+y(x)=1/(1-x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} \ln (x)-\ln (-1+x)+\ln (x)+c_{2}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 27
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]+3 * x * y$ ' $[x]+y[x]==1 /(1-x)^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-\log (1-x)+\log (x)+c_{2} \log (x)+c_{1}}{x}
$$

28.4 problem Ex 4

28.4.1 Solving as second order change of variable on x method 1 ode. 1559
28.4.2 Solving using Kovacic algorithm 1566

Internal problem ID [11275]
Internal file name [OUTPUT/10260_Wednesday_December_21_2022_03_47_01_PM_86529830/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 51.
Cauchy linear equation. Page 114
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1+x)^{2} y^{\prime \prime}-(1+x) y^{\prime}+6 y=x
$$

28.4.1 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=(1+x)^{2}, B=-x-1, C=6, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
(1+x)^{2} y^{\prime \prime}+(-x-1) y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
(1+x)^{2} y^{\prime \prime}+(-x-1) y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{1}{1+x} \\
q(x) & =\frac{6}{(1+x)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{3}}-\frac{1}{1+x} \frac{\sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{c}}{\left(\frac{\left.\sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}\right)^{2}}{c}\right.} \\
& =-\frac{c \sqrt{6}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{\sqrt{6} c \tau}{6}}\left(c_{1} \cos \left(\frac{c \sqrt{30} \tau}{6}\right)+c_{2} \sin \left(\frac{c \sqrt{30} \tau}{6}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=(1+x)\left(c_{1} \cos (\sqrt{5} \ln (1+x))+c_{2} \sin (\sqrt{5} \ln (1+x))\right)
$$

Now the particular solution to this ODE is found

$$
(1+x)^{2} y^{\prime \prime}+(-x-1) y^{\prime}+6 y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) \\
& y_{2}=\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x) \\
& \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence
$W=\left\lvert\, \begin{array}{cc}\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x) & \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) \\ \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{6}\right. \\ \frac{d}{d x}\left(\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x)\right. & \left.\cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)\right)\end{array} \frac{d}{d x}\left(\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{6}\right.\right.\right.$
Which gives
$W=\left\lvert\, \begin{gathered}\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x} \\ \left(-\frac{\ln (1+x)}{\sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{2}}+\sqrt{\frac{1}{(1+x)^{2}}} \ln (1+x)+\sqrt{\frac{1}{(1+x)^{2}}}\right) \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x}{6}\right.\end{gathered}\right.$

Therefore

$$
\begin{aligned}
& \text { W } \\
& =\left(\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)\right)\left(\left(-\frac{\ln (1+x)}{\sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{2}}\right.\right. \\
& +\sqrt{\frac{1}{(1+x)^{2}}} \ln (1+x) \\
& \left.+\sqrt{\frac{1}{(1+x)^{2}}}\right) \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) \\
& +\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}\left(-\frac{\sqrt{30} \sqrt{6} \ln (1+x)}{6 \sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{2}}+\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}} \ln (1+x)}{6}\right. \\
& \left.\left.+\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{6}\right) \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)\right) \\
& -\left(\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x) \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)\right)\left(\left(-\frac{\ln (1+x)}{\sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{2}}\right.\right. \\
& +\sqrt{\frac{1}{(1+x)^{2}}} \ln (1+x) \\
& \left.+\sqrt{\frac{1}{(1+x)^{2}}}\right) \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x) \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) \\
& -\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x)\left(-\frac{\sqrt{30} \sqrt{6} \ln (1+x)}{6 \sqrt{\frac{1}{(1+x)^{2}}}}(1+x)^{2} \quad \frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}} \ln (1+x)}{6}\right. \\
& \left.\left.+\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{6}\right) \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
=\frac{\left(\cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right)^{2}+\sin \left(\frac{\left.\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}} 1+x\right) \ln (1+x)}{6}\right)^{2}\right) \sqrt{6} \sqrt{30} \mathrm{e}^{2} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6 \sqrt{\frac{1}{(1+x)^{2}}}(1+x)^{2}}
$$

Which simplifies for $0<x$ to

$$
W=\sqrt{5}(1+x)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \sin \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) x}{(1+x)^{3} \sqrt{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int \frac{\sin (\sqrt{5} \ln (1+x)) x \sqrt{5}}{5(1+x)^{2}} d x
$$

Hence

$$
u_{1}=-\frac{(-6 x-1) \cos (\sqrt{5} \ln (1+x))+\sin (\sqrt{5} \ln (1+x)) \sqrt{5}-6 x-6}{30+30 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)}{6}\right) x}{(1+x)^{3} \sqrt{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\cos (\sqrt{5} \ln (1+x)) x \sqrt{5}}{5(1+x)^{2}} d x
$$

Hence

$$
u_{2}=\frac{\cos (\sqrt{5} \ln (1+x)) \sqrt{5}+6 \sin (\sqrt{5} \ln (1+x)) x+\sin (\sqrt{5} \ln (1+x))}{30+30 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(6 x+1) \cos (\sqrt{5} \ln (1+x))-\sin (\sqrt{5} \ln (1+x)) \sqrt{5}+6 x+6}{30+30 x} \\
& u_{2}=\frac{\cos (\sqrt{5} \ln (1+x)) \sqrt{5}+6 \sin (\sqrt{5} \ln (1+x)) x+\sin (\sqrt{5} \ln (1+x))}{30+30 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{((6 x+1) \cos (\sqrt{5} \ln (1+x))-\sin (\sqrt{5} \ln (1+x)) \sqrt{5}+6 x+6) \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}(1+x) \ln (1+x)} \cos \left(\frac{\sqrt{30} \sqrt{6} \sqrt{\frac{1}{(1+x)^{2}}}}{6}\right.}{30+30 x} \\
& \quad+\frac{(\cos (\sqrt{5} \ln (1+x)) \sqrt{5}+6 \sin (\sqrt{5} \ln (1+x)) x+\sin (\sqrt{5} \ln (1+x))) \mathrm{e}^{\sqrt{\frac{1}{(1+x)^{2}}}}(1+x) \ln (1+x)}{\sin \left(\frac{\sqrt{30}}{30+30 x}\right.}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{30}+\frac{(1+x) \cos (\sqrt{5} \ln (1+x))}{5}+\frac{x}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left((1+x)\left(c_{1} \cos (\sqrt{5} \ln (1+x))+c_{2} \sin (\sqrt{5} \ln (1+x))\right)\right) \\
& +\left(\frac{1}{30}+\frac{(1+x) \cos (\sqrt{5} \ln (1+x))}{5}+\frac{x}{5}\right) \\
= & \frac{1}{30}+\frac{(1+x) \cos (\sqrt{5} \ln (1+x))}{5}+\frac{x}{5} \\
& +(1+x)\left(c_{1} \cos (\sqrt{5} \ln (1+x))+c_{2} \sin (\sqrt{5} \ln (1+x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=(1+x)\left(c_{1}+\frac{1}{5}\right) \cos (\sqrt{5} \ln (1+x))+(1+x) c_{2} \sin (\sqrt{5} \ln (1+x))+\frac{x}{5}+\frac{1}{30}
$$

Summary

The solution(s) found are the following

$$
\left.y=(1+x)\left(c_{1}+\frac{1}{5}\right) \cos (\sqrt{5} \ln (1+x))+(1+x) c_{2} \sin (\sqrt{5} \ln (1+x))+\frac{x}{5}+\frac{1}{30}\right)
$$

Verification of solutions

$$
y=(1+x)\left(c_{1}+\frac{1}{5}\right) \cos (\sqrt{5} \ln (1+x))+(1+x) c_{2} \sin (\sqrt{5} \ln (1+x))+\frac{x}{5}+\frac{1}{30}
$$

Verified OK. $\{0<x\}$

28.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(1+x)^{2} y^{\prime \prime}+(-x-1) y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(1+x)^{2} \\
& B=-x-1 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-21}{4(1+x)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-21 \\
& t=4(1+x)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{21}{4(1+x)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 160: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(1+x)^{2}$. There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{21}{4(1+x)^{2}}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{21}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \sqrt{5} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i \sqrt{5}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{21}{4(1+x)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{21}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \sqrt{5} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i \sqrt{5}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{21}{4(1+x)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
-1	2	0	$\frac{1}{2}+i \sqrt{5}$	$\frac{1}{2}-i \sqrt{5}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i \sqrt{5}$	$\frac{1}{2}-i \sqrt{5}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i \sqrt{5}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i \sqrt{5}-\left(\frac{1}{2}-i \sqrt{5}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i \sqrt{5}}{1+x}+(-)(0) \\
& =\frac{\frac{1}{2}-i \sqrt{5}}{1+x} \\
& =-\frac{2 i \sqrt{5}-1}{2(1+x)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i \sqrt{5}}{1+x}\right)(0)+\left(\left(-\frac{\frac{1}{2}-i \sqrt{5}}{(1+x)^{2}}\right)+\left(\frac{\frac{1}{2}-i \sqrt{5}}{1+x}\right)^{2}-\left(-\frac{21}{4(1+x)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-i \sqrt{5}} 1+x \\
& =(1+x)^{\frac{1}{2}-i \sqrt{5}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x-1}{(1+x)^{2}} d x} \\
& =z_{1} e^{\ln (1+x)} \\
& =z_{1}(\sqrt{1+x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(1+x)^{1-i \sqrt{5}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x-1}{(1+x)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (1+x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i \sqrt{5}(1+x)^{2 i \sqrt{5}}}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((1+x)^{1-i \sqrt{5}}\right)+c_{2}\left((1+x)^{1-i \sqrt{5}}\left(-\frac{i \sqrt{5}(1+x)^{2 i \sqrt{5}}}{10}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(1+x)^{2} y^{\prime \prime}+(-x-1) y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(1+x)^{1-i \sqrt{5}}-\frac{i c_{2} \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(1+x)^{1-i \sqrt{5}} \\
& y_{2}=-\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(1+x)^{1-i \sqrt{5}} & -\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10} \\
\frac{d}{d x}\left((1+x)^{1-i \sqrt{5}}\right) & \frac{d}{d x}\left(-\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
(1+x)^{1-i \sqrt{5}} & -\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10} \\
\frac{(1+x)^{1-i \sqrt{5}}(1-i \sqrt{5})}{1+x} & -\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}(i \sqrt{5}+1)}{10(1+x)}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left((1+x)^{1-i \sqrt{5}}\right)\left(-\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}(i \sqrt{5}+1)}{10(1+x)}\right) \\
& -\left(-\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10}\right)\left(\frac{(1+x)^{1-i \sqrt{5}}(1-i \sqrt{5})}{1+x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{(1+x)^{1-i \sqrt{5}}(1+x)^{i \sqrt{5}+1}}{1+x}
$$

Which simplifies to

$$
W=1+x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{i \sqrt{5}(1+x)^{i \sqrt{5}+1} x}{10}}{(1+x)^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{i x \sqrt{5}(1+x)^{-2+i \sqrt{5}}}{10} d x
$$

Hence

$$
u_{1}=-\frac{(1-i(2 x+1) \sqrt{5}-4 x)\left(\frac{1+x}{x}\right)^{i \sqrt{5}} x^{i \sqrt{5}}+(i \sqrt{5}-1)(1+x)}{10(1+x)(\sqrt{5}+i)^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(1+x)^{1-i \sqrt{5}} x}{(1+x)^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int x(1+x)^{-2-i \sqrt{5}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{-i \sqrt{5}}(x+i \sqrt{5} x+1)\left(\frac{1+x}{x}\right)^{-i \sqrt{5}}-x-1\right) \sqrt{5}}{5(1+x)(-\sqrt{5}+i)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(1+x)^{i \sqrt{5}}(-1+i(2 x+1) \sqrt{5}+4 x)+(1-i \sqrt{5})(1+x)}{10(1+x)(\sqrt{5}+i)^{2}} \\
& u_{2}=-\frac{\sqrt{5}\left((1+x)^{-i \sqrt{5}}(x+i \sqrt{5} x+1)-x-1\right)}{5(1+x)(-\sqrt{5}+i)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{\left((1+x)^{i \sqrt{5}}(-1+i(2 x+1) \sqrt{5}+4 x)+(1-i \sqrt{5})(1+x)\right)(1+x)^{1-i \sqrt{5}}}{10(1+x)(\sqrt{5}+i)^{2}} \\
& +\frac{i\left((1+x)^{-i \sqrt{5}}(x+i \sqrt{5} x+1)-x-1\right)(1+x)^{i \sqrt{5}+1}}{10(1+x)(-\sqrt{5}+i)}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(\sqrt{5}-2 i)(1+x)^{i \sqrt{5}+1}+3 i(1+x)^{1-i \sqrt{5}}+(-6 x-1) \sqrt{5}-6 i x-i}{5(-\sqrt{5}+i)(\sqrt{5}+i)^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(1+x)^{1-i \sqrt{5}}-\frac{i c_{2} \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10}\right) \\
& +\left(\frac{(\sqrt{5}-2 i)(1+x)^{i \sqrt{5}+1}+3 i(1+x)^{1-i \sqrt{5}}+(-6 x-1) \sqrt{5}-6 i x-i}{5(-\sqrt{5}+i)(\sqrt{5}+i)^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}(1+x)^{1-i \sqrt{5}}-\frac{i c_{2} \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10} \\
& +\frac{(\sqrt{5}-2 i)(1+x)^{i \sqrt{5}+1}+3 i(1+x)^{1-i \sqrt{5}}+(-6 x-1) \sqrt{5}-6 i x-i}{5(-\sqrt{5}+i)(\sqrt{5}+i)^{2}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}(1+x)^{1-i \sqrt{5}}-\frac{i c_{2} \sqrt{5}(1+x)^{i \sqrt{5}+1}}{10} \\
& +\frac{(\sqrt{5}-2 i)(1+x)^{i \sqrt{5}+1}+3 i(1+x)^{1-i \sqrt{5}}+(-6 x-1) \sqrt{5}-6 i x-i}{5(-\sqrt{5}+i)(\sqrt{5}+i)^{2}}
\end{aligned}
$$

Verified OK. $\{0<x\}$
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

```
dsolve((x+1)~2*diff (y(x),x$2)-(x+1)*diff (y(x),x)+6*y(x)=x,y(x), singsol=all)
```

$$
y(x)=(1+x) \sin (\sqrt{5} \ln (1+x)) c_{2}+(1+x) \cos (\sqrt{5} \ln (1+x)) c_{1}+\frac{x}{5}+\frac{1}{30}
$$

\checkmark Solution by Mathematica
Time used: 0.508 (sec). Leaf size: 49
DSolve[($x+1)^{\wedge} 2 * y$ ' ' $[\mathrm{x}]-(\mathrm{x}+1) * \mathrm{y}$ ' $[\mathrm{x}]+6 * \mathrm{y}[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow \frac{1}{30}(6 x+1)+c_{2}(x+1) \cos (\sqrt{5} \log (x+1))+c_{1}(x+1) \sin (\sqrt{5} \log (x+1))$
29 Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary. Page 117
29.1 problem Ex 1 1577
29.2 problem Ex 2 1588
29.3 problem Ex 3 1597
29.4 problem Ex 5 1610
29.5 problem Ex 6 1618
29.6 problem Ex 7 1622
29.7 problem Ex 8 1630
29.8 problem Ex 9 1634
29.9 problem Ex 10 1645
29.10problem Ex 12 1658
29.11problem Ex 13 1662
29.12problem Ex 14 1673
29.13problem Ex 15 1680

29.1 problem Ex 1

29.1.1 Solving as second order linear constant coeff ode 1577
29.1.2 Solving using Kovacic algorithm 1580
29.1.3 Maple step by step solution 1585

Internal problem ID [11276]
Internal file name [OUTPUT/10261_Wednesday_December_21_2022_03_47_04_PM_69135302/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-5 y^{\prime}+6 y=\cos (x)-\mathrm{e}^{2 x}
$$

29.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-5, C=6, f(x)=\cos (x)-\mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)-\mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{\cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\{\cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{2 x}+5 A_{2} \cos (x)+5 A_{3} \sin (x)+5 A_{2} \sin (x)-5 A_{3} \cos (x)=\cos (x)-\mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{10}, A_{3}=-\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}\right)+\left(\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
$$

Figure 231: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}
$$

Verified OK.

29.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 161: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(e^{\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)-\mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{\cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\{\cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{2 x}+5 A_{2} \cos (x)+5 A_{3} \sin (x)+5 A_{2} \sin (x)-5 A_{3} \cos (x)=\cos (x)-\mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{10}, A_{3}=-\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}\right)+\left(\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
$$

Figure 232: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}
$$

Verified OK.

29.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+6 y=\cos (x)-\mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{2 x}$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)
$$Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)-\mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} \\
2 \mathrm{e}^{2 x} & 3 \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{5 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{2 x}\left(\int\left(\cos (x) \mathrm{e}^{-2 x}-1\right) d x\right)+\mathrm{e}^{3 x}\left(\int\left(\cos (x)-\mathrm{e}^{2 x}\right) \mathrm{e}^{-3 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}+\mathrm{e}^{2 x}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{2 x} x+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}+\mathrm{e}^{2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=cos(x)-exp(2*x),y(x), singsol=all)
```

$$
y(x)=\left(1+x+c_{2}\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{3 x}+\frac{\cos (x)}{10}-\frac{\sin (x)}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.345 (sec). Leaf size: 34
DSolve[y''[x]-5*y'[x]+6*y[x]==Cos[x]-Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{10}\left(-\sin (x)+\cos (x)+10 e^{2 x}\left(x+c_{2} e^{x}+1+c_{1}\right)\right)
$$

29.2 problem Ex 2

29.2.1 Maple step by step solution 1590

Internal problem ID [11277]
Internal file name [OUTPUT/10262_Wednesday_December_21_2022_03_47_05_PM_14647184/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 2.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}-y=\mathrm{e}^{x} \cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{4}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{i x} \\
& y_{4}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-y=\mathrm{e}^{x} \cos (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x} \cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (x), \mathrm{e}^{x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{i x}, \mathrm{e}^{-x}, \mathrm{e}^{-i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (x)+A_{2} \mathrm{e}^{x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \mathrm{e}^{x} \cos (x)-5 A_{2} \mathrm{e}^{x} \sin (x)=\mathrm{e}^{x} \cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{5}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{x} \cos (x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}\right)+\left(-\frac{\mathrm{e}^{x} \cos (x)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}-\frac{\mathrm{e}^{x} \cos (x)}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}-\frac{\mathrm{e}^{x} \cos (x)}{5}
$$

Verified OK.

29.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-y=\mathrm{e}^{x} \cos (x)
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\mathrm{e}^{x} \cos (x)+y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\mathrm{e}^{x} \cos (x)+y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{x} \cos (x)
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \mathrm{e}^{x} \cos (x)\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\sin (x) & -\cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\cos (x) & \sin (x) \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\sin (x) & -\cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\cos (x) & \sin (x) \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{cccc}
-1 & 1 & 0 & -1 \\
1 & 1 & -1 & 0 \\
-1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cccc}
\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} \\
-\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} \\
\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} \\
-\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\cos (x)}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-x}}{10}+\frac{\left(-2 \mathrm{e}^{x}+1\right) \cos (x)}{10}+\frac{3 \sin (x)}{10} \\
-\frac{\mathrm{e}^{-x}}{10}+\frac{\left(-2 \mathrm{e}^{x}+3\right) \cos (x)}{10}+\frac{\mathrm{e}^{x} \sin (x)}{5}-\frac{\sin (x)}{10} \\
\frac{\mathrm{e}^{-x}}{10}+\frac{\left(4 \mathrm{e}^{x}-3\right) \sin (x)}{10}-\frac{\cos (x)}{10} \\
-\frac{\mathrm{e}^{-x}}{10}+\frac{\left(4 \mathrm{e}^{x}-3\right) \cos (x)}{10}+\frac{2 \mathrm{e}^{x} \sin (x)}{5}+\frac{\sin (x)}{10}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-x}}{10}+\frac{\left(-2 \mathrm{e}^{x}+1\right) \cos (x)}{10}+\frac{3 \sin (x)}{10} \\
-\frac{\mathrm{e}^{-x}}{10}+\frac{\left(-2 \mathrm{e}^{x}+3\right) \cos (x)}{10}+\frac{\mathrm{e}^{x} \sin (x)}{5}-\frac{\sin (x)}{10} \\
\frac{\mathrm{e}^{-x}}{10}+\frac{\left(4 \mathrm{e}^{x}-3\right) \sin (x)}{10}-\frac{\cos (x)}{10} \\
-\frac{\mathrm{e}^{-x}}{10}+\frac{\left(4 \mathrm{e}^{x}-3\right) \cos (x)}{10}+\frac{2 \mathrm{e}^{x} \sin (x)}{5}+\frac{\sin (x)}{10}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(-10 c_{1}+1\right) \mathrm{e}^{-x}}{10}+\frac{\left(-10 c_{4}-2 \mathrm{e}^{x}+1\right) \cos (x)}{10}+c_{2} \mathrm{e}^{x}+\frac{\left(-10 c_{3}+3\right) \sin (x)}{10}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$4)-y(x)=exp(x)*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=c_{4} \mathrm{e}^{-x}+\frac{\left(5 c_{1}-\mathrm{e}^{x}\right) \cos (x)}{5}+c_{2} \mathrm{e}^{x}+c_{3} \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 38
DSolve[y'' '' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==\operatorname{Exp}[\mathrm{x}] * \operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{x}+c_{3} e^{-x}+\left(-\frac{e^{x}}{5}+c_{2}\right) \cos (x)+c_{4} \sin (x)
$$

29.3 problem Ex 3

29.3.1 Solving as second order linear constant coeff ode 1597
29.3.2 Solving as linear second order ode solved by an integrating factor
ode . 1600
29.3.3 Solving using Kovacic algorithm 1602
29.3.4 Maple step by step solution . 1607

Internal problem ID [11278]
Internal file name [OUTPUT/10263_Wednesday_December_21_2022_03_47_06_PM_78866000/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary. Page 117
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+y=2 x^{3}-x \mathrm{e}^{3 x}
$$

29.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=1, f(x)=2 x^{3}-x \mathrm{e}^{3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x^{3}-x \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{3 x}+A_{2} \mathrm{e}^{3 x}+A_{3}+A_{4} x+A_{5} x^{2}+A_{6} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 8 A_{1} \mathrm{e}^{3 x}+16 A_{1} x \mathrm{e}^{3 x}+16 A_{2} \mathrm{e}^{3 x}+2 A_{5}+6 A_{6} x+2 A_{4}+4 A_{5} x \\
& +6 A_{6} x^{2}+A_{3}+A_{4} x+A_{5} x^{2}+A_{6} x^{3}=2 x^{3}-x \mathrm{e}^{3 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{16}, A_{2}=\frac{1}{32}, A_{3}=-48, A_{4}=36, A_{5}=-12, A_{6}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3} \tag{1}
\end{equation*}
$$

Figure 233: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Verified OK.

29.3.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{x}\left(2 x^{3}-x \mathrm{e}^{3 x}\right) \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =\mathrm{e}^{x}\left(2 x^{3}-x \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=\frac{(-4 x+1) \mathrm{e}^{4 x}}{16}+2 \mathrm{e}^{x}\left(x^{3}-3 x^{2}+6 x-6\right)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=\frac{(-2 x+1) \mathrm{e}^{4 x}}{32}+2\left(x^{3}-6 x^{2}+18 x-24\right) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{(-2 x+1) \mathrm{e}^{4 x}}{32}+2\left(x^{3}-6 x^{2}+18 x-24\right) \mathrm{e}^{x}+c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=-\frac{x \mathrm{e}^{3 x}}{16}+2 x^{3}+\frac{\mathrm{e}^{3 x}}{32}-12 x^{2}+\mathrm{e}^{-x} c_{1} x+36 x+c_{2} \mathrm{e}^{-x}-48
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x \mathrm{e}^{3 x}}{16}+2 x^{3}+\frac{\mathrm{e}^{3 x}}{32}-12 x^{2}+\mathrm{e}^{-x} c_{1} x+36 x+c_{2} \mathrm{e}^{-x}-48 \tag{1}
\end{equation*}
$$

Figure 234: Slope field plot

Verification of solutions

$$
y=-\frac{x \mathrm{e}^{3 x}}{16}+2 x^{3}+\frac{\mathrm{e}^{3 x}}{32}-12 x^{2}+\mathrm{e}^{-x} c_{1} x+36 x+c_{2} \mathrm{e}^{-x}-48
$$

Verified OK.

29.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 164: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x^{3}-x \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{3 x}+A_{2} \mathrm{e}^{3 x}+A_{3}+A_{4} x+A_{5} x^{2}+A_{6} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 8 A_{1} \mathrm{e}^{3 x}+16 A_{1} x \mathrm{e}^{3 x}+16 A_{2} \mathrm{e}^{3 x}+2 A_{5}+6 A_{6} x+2 A_{4}+4 A_{5} x \\
& +6 A_{6} x^{2}+A_{3}+A_{4} x+A_{5} x^{2}+A_{6} x^{3}=2 x^{3}-x \mathrm{e}^{3 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{16}, A_{2}=\frac{1}{32}, A_{3}=-48, A_{4}=36, A_{5}=-12, A_{6}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3} \tag{1}
\end{equation*}
$$

Figure 235: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-\frac{x \mathrm{e}^{3 x}}{16}+\frac{\mathrm{e}^{3 x}}{32}-48+36 x-12 x^{2}+2 x^{3}
$$

Verified OK.

29.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=2 x^{3}-x \mathrm{e}^{3 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x^{3}-x \mathrm{e}^{3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-x}\left(\int x^{2} \mathrm{e}^{x}\left(-2 x^{2}+\mathrm{e}^{3 x}\right) d x-\left(\int \mathrm{e}^{x} x\left(-2 x^{2}+\mathrm{e}^{3 x}\right) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{(-2 x+1) \mathrm{e}^{3 x}}{32}+2 x^{3}-12 x^{2}+36 x-48
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\frac{(-2 x+1) \mathrm{e}^{3 x}}{32}+2 x^{3}-12 x^{2}+36 x-48
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 40
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=2 * \mathrm{x}^{\wedge} 3-\mathrm{x} * \exp (3 * \mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=-48+\left(c_{1} x+c_{2}\right) \mathrm{e}^{-x}+\frac{(1-2 x) \mathrm{e}^{3 x}}{32}+2 x^{3}-12 x^{2}+36 x
$$

\checkmark Solution by Mathematica
Time used: 0.335 (sec). Leaf size: 48
DSolve $\left[y\right.$ '' $[x]+2 * y$ ' $[x]+y[x]==2 * x^{\wedge} 3-x * \operatorname{Exp}[3 * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2\left(x^{3}-6 x^{2}+18 x-24\right)+\frac{1}{32} e^{3 x}(1-2 x)+e^{-x}\left(c_{2} x+c_{1}\right)
$$

29.4 problem Ex 5

29.4.1 Maple step by step solution . 1612

Internal problem ID [11279]
Internal file name [OUTPUT/10264_Wednesday_December_21_2022_03_47_08_PM_10831701/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 5.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}-4 y^{\prime}=x^{2}-3 \mathrm{e}^{2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-4 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-4 y^{\prime}=x^{2}-3 \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}-3 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} x+A_{3} x^{2}+A_{4} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \mathrm{e}^{2 x}+6 A_{4}-4 A_{2}-8 A_{3} x-12 A_{4} x^{2}=x^{2}-3 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{8}, A_{2}=-\frac{1}{8}, A_{3}=0, A_{4}=-\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \mathrm{e}^{2 x} x}{8}-\frac{x}{8}-\frac{x^{3}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}\right)+\left(-\frac{3 \mathrm{e}^{2 x} x}{8}-\frac{x}{8}-\frac{x^{3}}{12}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}-\frac{3 \mathrm{e}^{2 x} x}{8}-\frac{x}{8}-\frac{x^{3}}{12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}-\frac{3 \mathrm{e}^{2 x} x}{8}-\frac{x}{8}-\frac{x^{3}}{12}
$$

Verified OK.

29.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-4 y^{\prime}=x^{2}-3 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x^{2}-3 \mathrm{e}^{2 x}+4 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2}-3 \mathrm{e}^{2 x}+4 y_{2}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 4 & 0\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ x^{2}-3 \mathrm{e}^{2 x}\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2}-3 \mathrm{e}^{2 x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 4 & 0\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & 1 & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-2 x}}{2} & 0 & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-2 x} & 0 & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & 1 & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-2 x}}{2} & 0 & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-2 x} & 0 & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{4} & 1 & \frac{1}{4} \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{-2 x}}{8}-\frac{1}{4}+\frac{\mathrm{e}^{2 x}}{8} \\
0 & \frac{\mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x}}{2} & -\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4} \\
0 & -\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & \frac{\mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{3}{8}+\frac{(5-6 x) \mathrm{e}^{2 x}}{16}-\frac{x^{3}}{12}-\frac{x}{8}+\frac{\mathrm{e}^{-2 x}}{16} \\
\frac{(-6 x+2) \mathrm{e}^{2 x}}{8}-\frac{x^{2}}{4}-\frac{\mathrm{e}^{-2 x}}{8}-\frac{1}{8} \\
\frac{(-6 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}+\frac{\mathrm{e}^{-2 x}}{4}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{3}{8}+\frac{(5-6 x) \mathrm{e}^{2 x}}{16}-\frac{x^{3}}{12}-\frac{x}{8}+\frac{\mathrm{e}^{-2 x}}{16} \\
\frac{(-6 x+2) \mathrm{e}^{2 x}}{8}-\frac{x^{2}}{4}-\frac{\mathrm{e}^{-2 x}}{8}-\frac{1}{8} \\
\frac{(-6 x-1) \mathrm{e}^{2 x}}{4}-\frac{x}{2}+\frac{\mathrm{e}^{-2 x}}{4}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{3}{8}+\frac{\left(5-6 x+4 c_{3}\right) \mathrm{e}^{2 x}}{16}+\frac{\left(1+4 c_{1}\right) \mathrm{e}^{-2 x}}{16}-\frac{x^{3}}{12}-\frac{x}{8}+c_{2}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
\rightarrow Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad a\right), \quad, a\right)=a^{\wedge} 2+4 * _b\left(_a\right)-3 * \exp \left(2 * _a\right)$, _b
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$3)-4*diff(y(x),x)=x^2-3*exp(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(9-12 x+16 c_{1}\right) \mathrm{e}^{2 x}}{32}-\frac{x^{3}}{12}-\frac{\mathrm{e}^{-2 x} c_{2}}{2}-\frac{x}{8}+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.311 (sec). Leaf size: 49
DSolve[y'''[x]-4*y'[x]==x^2-3*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{x^{3}}{12}-\frac{x}{8}+\frac{1}{32} e^{2 x}\left(-12 x+9+16 c_{1}\right)-\frac{1}{2} c_{2} e^{-2 x}+c_{3}
$$

29.5 problem Ex 6

Internal problem ID [11280]
Internal file name [OUTPUT/10265_Wednesday_December_21_2022_03_47_09_PM_57161094/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=\cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}-2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =1 \\
\lambda_{3} & =-1 \\
\lambda_{4} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=x \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime}+y=\cos (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, x \mathrm{e}^{-x}, \mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \cos (x)+4 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{4}\right)+\left(\frac{\cos (x)}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+\frac{\cos (x)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+\frac{\cos (x)}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)+\frac{\cos (x)}{4}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff $(y(x), x \$ 4)-2 * \operatorname{diff}(y(x), x \$ 2)+y(x)=\cos (x), y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x+c_{2}\right) \mathrm{e}^{-x}+\left(c_{3} x+c_{1}\right) \mathrm{e}^{x}+\frac{\cos (x)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 42
DSolve[y''''[x]-2*y''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{\cos (x)}{4}+e^{-x}\left(c_{2} x+c_{3} e^{2 x}+c_{4} e^{2 x} x+c_{1}\right)
$$

29.6 problem Ex 7

29.6.1 Maple step by step solution 1628

Internal problem ID [11281]
Internal file name [OUTPUT/10266_Wednesday_December_21_2022_03_47_10_PM_87781503/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 7.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
x^{4} y^{\prime \prime \prime \prime}+6 x^{3} y^{\prime \prime \prime}+9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=(\ln (x)+1)^{2}
$$

This is higher order nonhomogeneous Euler type ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous Euler ODE And y_{p} is a particular solution to the nonhomogeneous Euler ODE. y_{h} is the solution to

$$
x^{4} y^{\prime \prime \prime \prime}+6 x^{3} y^{\prime \prime \prime}+9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3} \\
y^{\prime \prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda-4}
\end{aligned}
$$

Substituting these back into

$$
x^{4} y^{\prime \prime \prime \prime}+6 x^{3} y^{\prime \prime \prime}+9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=(\ln (x)+1)^{2}
$$

gives

$$
\begin{aligned}
& 3 x \lambda x^{\lambda-1}+9 x^{2} \lambda(\lambda-1) x^{\lambda-2}+6 x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3} \\
& \quad+x^{4} \lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda-4}+x^{\lambda}=0
\end{aligned}
$$

Which simplifies to

$$
3 \lambda x^{\lambda}+9 \lambda(\lambda-1) x^{\lambda}+6 \lambda(\lambda-1)(\lambda-2) x^{\lambda}+\lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda}+x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
3 \lambda+9 \lambda(\lambda-1)+6 \lambda(\lambda-1)(\lambda-2)+\lambda(\lambda-1)(\lambda-2)(\lambda-3)+1=0
$$

Simplifying gives the characteristic equation as

$$
\left(\lambda^{2}+1\right)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
$\pm 1 i$	2	complex conjugate root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))+\ln (x)\left(c_{3} \cos (\ln (x))+c_{4} \sin (\ln (x))\right)
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\cos (\ln (x)) \\
& y_{2}=\sin (\ln (x)) \\
& y_{3}=\ln (x) \cos (\ln (x)) \\
& y_{4}=\ln (x) \sin (\ln (x))
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
x^{4} y^{\prime \prime \prime \prime}+6 x^{3} y^{\prime \prime \prime}+9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=(\ln (x)+1)^{2}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{cccc}
\cos (\ln (x)) & \sin (\ln (x)) & \ln (x) \cos (\ln (x)) & \ln (x) \sin (\ln (x \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))}{x} & \frac{\cos (\ln (x))-\ln (x) \sin (\ln (x))}{x} & \frac{\sin (\ln (x))+\ln (x) \cos (}{x} \\
\frac{-\cos (\ln (x))+\sin (\ln (x))}{x^{2}} & \frac{-\sin (\ln (x))-\cos (\ln (x))}{x^{2}} & \frac{(-\ln (x)-1) \cos (\ln (x))+\sin (\ln (x))(\ln (x)-2)}{x^{2}} & \frac{(-\ln (x)+2) \cos (\ln (x))-\sin (\ln }{x^{2}} \\
\frac{3 \cos (\ln (x))-\sin (\ln (x))}{x^{3}} & \frac{3 \sin (\ln (x))+\cos (\ln (x))}{x^{3}} & \frac{(3 \ln (x)-1) \cos (\ln (x))-\sin (\ln (x))(\ln (x)-6)}{x^{3}} & \frac{(\ln (x)-6) \cos (\ln (x))+\sin (\ln (x}{x^{3}}
\end{array}\right. \\
|W| & =\frac{4 \sin (\ln (x))^{4}+8 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+4 \cos (\ln (x))^{4}}{x^{6}}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=\frac{4}{x^{6}}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\sin (\ln (x)) & \ln (x) \cos (\ln (x)) & \ln (x) \sin (\ln (x)) \\
\frac{\cos (\ln (x))}{x} & \frac{\cos (\ln (x))-\ln (x) \sin (\ln (x))}{x} & \frac{\sin (\ln (x))+\ln (x) \cos (\ln (x))}{x} \\
\frac{-\sin (\ln (x))-\cos (\ln (x))}{x^{2}} & \frac{(-\ln (x)-1) \cos (\ln (x))+\sin (\ln (x))(\ln (x)-2)}{x^{2}} & \frac{(-\ln (x)+2) \cos (\ln (x))-\sin (\ln (x))(\ln (x)+1)}{x^{2}}
\end{array}\right] \\
& =\frac{-2 \ln (x) \cos (\ln (x))+2 \sin (\ln (x))}{x^{3}} \\
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\cos (\ln (x)) & \ln (x) \cos (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))-\ln (x) \sin (\ln (x))}{x} & \frac{\ln (x) \sin (\ln (x))}{\frac{-\cos (\ln (x))+\sin (\ln (x))}{x^{2}}} \\
\frac{(-\ln (x)-1) \cos (\ln (x))+\sin (\ln (x))(\ln (x)-2)}{x^{2}} & \frac{(-\ln (x)+2) \cos (\ln (x))}{x} \\
\frac{1 \ln (x))-\sin (\ln (x))(\ln (x)+1)}{x^{2}}
\end{array}\right] \\
& =\frac{2 \ln (x) \sin (\ln (x))+2 \cos (\ln (x))}{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\cos (\ln (x)) & \sin (\ln (x)) & \ln (x) \sin (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))}{x} & \frac{\sin (\ln (x))+\ln (x) \cos (\ln (x))}{x} \\
\frac{-\cos (\ln (x))+\sin (\ln (x))}{x^{2}} & \frac{-\sin (\ln (x))-\cos (\ln (x))}{x^{2}} & \frac{(-\ln (x)+2) \cos (\ln (x))-\sin (\ln (x))(\ln (x)+1)}{x^{2}}
\end{array}\right] \\
& =\frac{2 \cos (\ln (x))}{x^{3}}
\end{aligned}
$$

$$
W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\cos (\ln (x)) & \sin (\ln (x)) & \ln (x) \cos (\ln (x)) \\
-\frac{\sin (\ln (x))}{x} & \frac{\cos (\ln (x))}{x} & \frac{\cos (\ln (x))-\ln (x) \sin (\ln (x))}{x} \\
\frac{-\cos (\ln (x))+\sin (\ln (x))}{x^{2}} & \frac{-\sin (\ln (x))-\cos (\ln (x))}{x^{2}} & \frac{(-\ln (x)-1) \cos (\ln (x)))+\sin (\ln (x))(\ln (x)-2)}{x^{2}}
\end{array}\right]
$$

$$
=-\frac{2 \sin (\ln (x))}{x^{3}}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left((\ln (x)+1)^{2}\right)\left(\frac{-2 \ln (x) \cos (\ln (x))+2 \sin (\ln (x))}{x^{3}}\right)}{\left(x^{4}\right)\left(\frac{4}{x^{6}}\right)} d x \\
& =-\int \frac{\frac{2(\ln (x)+1)^{2}(-\ln (x) \cos (\ln (x))+\sin (\ln (x)))}{x^{3}}}{\frac{4}{x^{2}}} d x \\
& =-\int\left(\frac{(\ln (x)+1)^{2}(-\ln (x) \cos (\ln (x))+\sin (\ln (x)))}{2 x}\right) d x \\
& =\frac{\sin (\ln (x)) \ln (x)^{3}}{2}+2 \cos (\ln (x)) \ln (x)^{2}-3 \cos (\ln (x))-\frac{7 \ln (x) \sin (\ln (x))}{2}+\ln (x)^{2} \sin (\ln (x))- \\
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left((\ln (x)+1)^{2}\right)\left(\frac{2 \ln (x) \sin (\ln (x))+2 \cos (\ln (x))}{x^{3}}\right)}{\left(x^{4}\right)\left(\frac{4}{x^{6}}\right)} d x \\
& =\int \frac{\frac{2(\ln (x)+1)^{2}(\ln (x) \sin (\ln (x))+\cos (\ln (x)))}{x^{3}}}{\frac{4}{x^{2}}} d x \\
& =\int\left(\frac{(\ln (x)+1)^{2}(\ln (x) \sin (\ln (x))+\cos (\ln (x)))}{2 x}\right) d x \\
& =2 \ln (x)^{2} \sin (\ln (x))-3 \sin (\ln (x))+\frac{7 \ln (x) \cos (\ln (x))}{2}+3 \cos (\ln (x))+3 \ln (x) \sin (\ln (x))-\frac{\ln (x}{} \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left((\ln (x)+1)^{2}\right)\left(\frac{2 \cos (\ln (x))}{x^{3}}\right)}{\left(x^{4}\right)\left(\frac{4}{x^{6}}\right)} d x \\
& =-\int \frac{\frac{2(\ln (x)+1)^{2} \cos (\ln (x))}{x^{3}}}{\frac{4}{x^{2}}} d x \\
& =-\int\left(\frac{(\ln (x)+1)^{2} \cos (\ln (x))}{2 x}\right) d x \\
& =-\frac{\ln (x)^{2} \sin (\ln (x))}{2}+\frac{\sin (\ln (x))}{2}-\ln (x) \cos (\ln (x))-\cos (\ln (x))-\ln (x) \sin (\ln (x))
\end{aligned}
$$

$$
\begin{aligned}
U_{4} & =(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left((\ln (x)+1)^{2}\right)\left(-\frac{2 \sin (\ln (x))}{x^{3}}\right)}{\left(x^{4}\right)\left(\frac{4}{x^{6}}\right)} d x \\
& =\int \frac{-\frac{2(\ln (x)+1)^{2} \sin (\ln (x))}{x^{3}}}{\frac{4}{x^{2}}} d x \\
& =\int\left(-\frac{(\ln (x)+1)^{2} \sin (\ln (x))}{2 x}\right) d x \\
& =\frac{\cos (\ln (x)) \ln (x)^{2}}{2}-\frac{\cos (\ln (x))}{2}-\ln (x) \sin (\ln (x))+\ln (x) \cos (\ln (x))-\sin (\ln (x))
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{\sin (\ln (x)) \ln (x)^{3}}{2}+2 \cos (\ln (x)) \ln (x)^{2}-3 \cos (\ln (x))-\frac{7 \ln (x) \sin (\ln (x))}{2}+\ln (x)^{2} \sin (\ln (x))\right. \\
& +\left(2 \ln (x)^{2} \sin (\ln (x))-3 \sin (\ln (x))+\frac{7 \ln (x) \cos (\ln (x))}{2}+3 \cos (\ln (x))+3 \ln (x) \sin (\ln (x))-\frac{\ln (}{2}\right. \\
& +\left(-\frac{\ln (x)^{2} \sin (\ln (x))}{2}+\frac{\sin (\ln (x))}{2}-\ln (x) \cos (\ln (x))-\cos (\ln (x))-\ln (x) \sin (\ln (x))\right)(\ln (x) \operatorname{co} \\
& +\left(\frac{\cos (\ln (x)) \ln (x)^{2}}{2}-\frac{\cos (\ln (x))}{2}-\ln (x) \sin (\ln (x))+\ln (x) \cos (\ln (x))-\sin (\ln (x))\right)(\ln (x) \sin (
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\ln (x)^{2}+2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))+\ln (x)\left(c_{3} \cos (\ln (x))+c_{4} \sin (\ln (x))\right)\right) \\
& +\left(\ln (x)^{2}+2 \ln (x)-3\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(\ln (x) c_{3}+c_{1}\right) \cos (\ln (x))+\sin (\ln (x))\left(c_{4} \ln (x)+c_{2}\right)+\ln (x)^{2}+2 \ln (x)-3
$$

Summary

The solution(s) found are the following

$$
y=\left(\ln (x) c_{3}+c_{1}\right) \cos (\ln (x))+\sin (\ln (x))\left(c_{4} \ln (x)+c_{2}\right)+\ln (x)^{2}+2 \ln (x)-3(1)
$$

Verification of solutions

$$
y=\left(\ln (x) c_{3}+c_{1}\right) \cos (\ln (x))+\sin (\ln (x))\left(c_{4} \ln (x)+c_{2}\right)+\ln (x)^{2}+2 \ln (x)-3
$$

Verified OK.

29.6.1 Maple step by step solution

Let's solve

$$
x^{4} y^{\prime \prime \prime \prime}+6 x^{3} y^{\prime \prime \prime}+9 y^{\prime \prime} x^{2}+3 y^{\prime} x+y=(\ln (x)+1)^{2}
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve(x^4*diff(y(x),x$4)+6*x^3*\operatorname{diff}(y(x),x$3)+9*x^2*\operatorname{diff}(y(x),x$2)+3*x*\operatorname{diff}(y(x),x)+y(x)=(1
```

$$
y(x)=\left(c_{3} \ln (x)+c_{1}\right) \cos (\ln (x))+\left(c_{4} \ln (x)+c_{2}\right) \sin (\ln (x))+\ln (x)^{2}+2 \ln (x)-3
$$

\checkmark Solution by Mathematica
Time used: 0.27 (sec). Leaf size: 39
DSolve $\left[x^{\wedge} 4 * y\right.$ '' ' ' $[x]+6 * x^{\wedge} 3 * y$ ' ${ }^{\prime}[x]+9 * x^{\wedge} 2 * y$ ' $[x]+3 * x * y$ ' $[x]+y[x]==(1+\log [x]) \wedge 2, y[x], x$, IncludeSi
$y(x) \rightarrow \log ^{2}(x)+2 \log (x)+\left(c_{2} \log (x)+c_{1}\right) \cos (\log (x))+\left(c_{4} \log (x)+c_{3}\right) \sin (\log (x))-3$

29.7 problem Ex 8

Internal problem ID [11282]
Internal file name [OUTPUT/10267_Wednesday_December_21_2022_03_47_12_PM_79576549/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 8.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=x^{2}-x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}+2 \lambda^{2}+\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{-x} \\
y_{2} & =x \mathrm{e}^{-x} \\
y_{3} & =1
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=x^{2}-x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{3} x^{3}+A_{2} x^{2}+A_{1} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 x^{2} A_{3}+2 x A_{2}+12 x A_{3}+A_{1}+4 A_{2}+6 A_{3}=x^{2}-x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=8, A_{2}=-\frac{5}{2}, A_{3}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+8 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3}\right)+\left(\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+8 x\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3}+\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+8 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3}+\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+8 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3}+\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+8 x
$$

Verified OK.

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = _a^2-2*(diff(_b(_a), _a))-_b(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)+diff(y(x),x)=x^2-x,y(x), singsol=all)
```

$$
y(x)=\left(-c_{1} x-c_{1}-c_{2}\right) \mathrm{e}^{-x}+\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+8 x+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 39
DSolve[y'''[x]+2*y''[x]+y'[x]==x^2-x,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{6} x\left(2 x^{2}-15 x+48\right)-e^{-x}\left(c_{2}(x+1)+c_{1}\right)+c_{3}
$$

29.8 problem Ex 9

29.8.1 Solving as second order linear constant coeff ode
29.8.2 Solving using Kovacic algorithm 1638
29.8.3 Maple step by step solution 1643

Internal problem ID [11283]
Internal file name [OUTPUT/10268_Wednesday_December_21_2022_03_47_13_PM_82388358/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sin (x)^{2}
$$

29.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{1\},\{x \cos (2 x), \sin (2 x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \cos (2 x)+A_{3} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)+4 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0, A_{3}=-\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{8}-\frac{\sin (2 x) x}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{1}{8}-\frac{\sin (2 x) x}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{1}{8}-\frac{\sin (2 x) x}{8} \tag{1}
\end{equation*}
$$

Figure 236: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{1}{8}-\frac{\sin (2 x) x}{8}
$$

Verified OK.

29.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 168: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{1\},\{x \cos (2 x), \sin (2 x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \cos (2 x)+A_{3} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)+4 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0, A_{3}=-\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{8}-\frac{\sin (2 x) x}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{1}{8}-\frac{\sin (2 x) x}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{1}{8}-\frac{\sin (2 x) x}{8} \tag{1}
\end{equation*}
$$

Figure 237: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{1}{8}-\frac{\sin (2 x) x}{8}
$$

Verified OK.

29.8.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+4 y=\sin (x)^{2}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- 2nd solution of the homogeneous ODE
$y_{2}(x)=\sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x) \sin (x)^{2} d x\right)}{2}+\frac{\sin (2 x)\left(\int \cos (2 x) \sin (x)^{2} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\sin (2 x) x}{8}+\frac{1}{8}-\frac{\cos (2 x)}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\sin (2 x) x}{8}+\frac{1}{8}-\frac{\cos (2 x)}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff (y(x),x$2)+4*y(x)=sin(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{\left(8 c_{1}-1\right) \cos (2 x)}{8}+\frac{1}{8}+\frac{\left(8 c_{2}-x\right) \sin (2 x)}{8}
$$

Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 34

```
DSolve[y''[x]+4*y[x]==Sin[x]~2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{8}\left(\left(-1+8 c_{1}\right) \cos (2 x)-\left(x-8 c_{2}\right) \sin (2 x)+1\right)
$$

29.9 problem Ex 10

29.9.1 Solving as second order linear constant coeff ode
29.9.2 Solving using Kovacic algorithm 1650
29.9.3 Maple step by step solution 1656

Internal problem ID [11284]
Internal file name [OUTPUT/10269_Wednesday_December_21_2022_03_47_14_PM_98521348/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sec (x)^{2}
$$

29.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sec (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
$$

Which simplifies to

$$
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 x) \sec (x)^{2}}{2} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{2} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{2} d x
$$

Hence

$$
u_{2}=x-\frac{\tan (x)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (2 x)+\left(x-\frac{\tan (x)}{2}\right) \sin (2 x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$

Figure 238: Slope field plot

Verification of solutions
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$
Verified OK.

29.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 170: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
$$

Which simplifies to

$$
W=\cos (2 x)^{2}+\sin (2 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (2 x) \sec (x)^{2}}{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (2 x) \sec (x)^{2} d x
$$

Hence

$$
u_{2}=2 x-\tan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (2 x)+\frac{(2 x-\tan (x)) \sin (2 x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right) \tag{1}\\
& +2 \sin (x) \cos (x) x-\sin (x)^{2}
\end{align*}
$$

Figure 239: Slope field plot

Verification of solutions

$y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$
Verified OK.

29.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\sec (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (2 x)\left(\int \tan (x) d x\right)+\frac{\sin (2 x)\left(\int \cos (2 x) \sec (x)^{2} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

```
dsolve(diff (y (x),x$2)+4*y(x)=sec(x)^2,y(x), singsol=all)
```

$y(x)=\left(-2 \cos (x)^{2}+1\right) \ln (\sec (x))+2 \cos (x)^{2} c_{1}+2 \sin (x)\left(c_{2}+x\right) \cos (x)-\sin (x)^{2}-c_{1}$
\checkmark Solution by Mathematica
Time used: 0.168 (sec). Leaf size: 33

```
DSolve[y''[x]+4*y[x]==Sec[x]~2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \cos (2 x)\left(\log (\cos (x))+c_{1}\right)+\sin (x)\left(-\sin (x)+2\left(x+c_{2}\right) \cos (x)\right)
$$

29.10 problem Ex 12

Internal problem ID [11285]
Internal file name [OUTPUT/10270_Wednesday_December_21_2022_03_47_16_PM_68194073/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 12.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-3 y^{\prime \prime}+5 y^{\prime}-2 y=\mathrm{e}^{3 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-3 y^{\prime \prime}+5 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{4}-\lambda^{3}-3 \lambda^{2}+5 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x} \\
& y_{4}=x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-3 y^{\prime \prime}+5 y^{\prime}-2 y=\mathrm{e}^{3 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
40 A_{1} \mathrm{e}^{3 x}=\mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{40}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{3 x}}{40}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}\right)+\left(\frac{\mathrm{e}^{3 x}}{40}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}\right)+\frac{\mathrm{e}^{3 x}}{40}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}\right)+\frac{\mathrm{e}^{3 x}}{40} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}\right)+\frac{\mathrm{e}^{3 x}}{40}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 4; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 4; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32
dsolve (diff $(y(x), x \$ 4)-\operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)-2 * y(x)=\exp (3 * x), y(x)$,

$$
y(x)=\left(\left(c_{3} x^{2}+c_{4} x+c_{1}\right) \mathrm{e}^{3 x}+c_{2}+\frac{\mathrm{e}^{5 x}}{40}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 39
DSolve[y''''[x]-y'''[x]-3*y''[x]+5*y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions

$$
y(x) \rightarrow \frac{e^{3 x}}{40}+c_{1} e^{-2 x}+e^{x}\left(x\left(c_{4} x+c_{3}\right)+c_{2}\right)
$$

29.11 problem Ex 13

29.11.1 Solving as second order linear constant coeff ode 1662
29.11.2 Solving using Kovacic algorithm 1666
29.11.3 Maple step by step solution . 1670

Internal problem ID [11286]
Internal file name [OUTPUT/10271_Wednesday_December_21_2022_03_47_17_PM_72410501/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\cos (x) x
$$

29.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\cos (x) x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x) x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{1} \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+4 A_{4} \cos (x) x+2 A_{4} \sin (x) \\
& \quad=\cos (x) x
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{4}, A_{3}=0, A_{4}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 240: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}
$$

Verified OK.

29.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 172: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x) x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{1} \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+4 A_{4} \cos (x) x+2 A_{4} \sin (x) \\
& \quad=\cos (x) x
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{4}, A_{3}=0, A_{4}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 241: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\cos (x) x}{4}+\frac{\sin (x) x^{2}}{4}
$$

Verified OK.

29.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\cos (x) x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x) x\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (x)\left(\int \sin (2 x) x d x\right)}{2}+\sin (x)\left(\int \cos (x)^{2} x d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (x) x^{2}}{4}-\frac{\sin (x)}{4}+\frac{\cos (x) x}{4}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x) x^{2}}{4}-\frac{\sin (x)}{4}+\frac{\cos (x) x}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)+y(x)=x*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(x^{2}+4 c_{2}-1\right) \sin (x)}{4}+\frac{\cos (x)\left(4 c_{1}+x\right)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 34
DSolve[y'' $[x]+y[x]==x * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{8}\left(\left(2 x^{2}-1+8 c_{2}\right) \sin (x)+2\left(x+4 c_{1}\right) \cos (x)\right)
$$

29.12 problem Ex 14

29.12.1 Maple step by step solution 1678

Internal problem ID [11287]
Internal file name [OUTPUT/10272_Wednesday_December_21_2022_03_47_18_PM_2332710/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 14.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-y^{\prime} x+y=\frac{1}{x}
$$

This is higher order nonhomogeneous Euler type ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous Euler ODE And y_{p} is a particular solution to the nonhomogeneous Euler ODE. y_{h} is the solution to

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-y^{\prime} x+y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-y^{\prime} x+y=\frac{1}{x}
$$

gives

$$
-x \lambda x^{\lambda-1}+2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+x^{\lambda}=0
$$

Which simplifies to

$$
-\lambda x^{\lambda}+2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-\lambda+2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+1=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda+1)(\lambda-1)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
1	2	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x \\
& y_{3}=x \ln (x)
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-y^{\prime} x+y=\frac{1}{x}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\frac{1}{x} & x & x \ln (x) \\
-\frac{1}{x^{2}} & 1 & \ln (x)+1 \\
\frac{2}{x^{3}} & 0 & \frac{1}{x}
\end{array}\right] \\
|W| & =\frac{4}{x^{2}}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=\frac{4}{x^{2}}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
x & x \ln (x) \\
1 & \ln (x)+1
\end{array}\right] \\
&=x \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\frac{1}{x} & x \ln (x) \\
-\frac{1}{x^{2}} & \ln (x)+1
\end{array}\right] \\
& =\frac{2 \ln (x)+1}{x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\frac{1}{x} & x \\
-\frac{1}{x^{2}} & 1
\end{array}\right] \\
& =\frac{2}{x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\frac{1}{x}\right)(x)}{\left(x^{3}\right)\left(\frac{4}{x^{2}}\right)} d x \\
& =\int \frac{1}{4 x} d x \\
& =\int\left(\frac{1}{4 x}\right) d x \\
& =\frac{\ln (x)}{4}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(\frac{1}{x}\right)\left(\frac{2 \ln (x)+1}{x}\right)}{\left(x^{3}\right)\left(\frac{4}{x^{2}}\right)} d x \\
& =-\int \frac{\frac{2 \ln (x)+1}{x^{2}}}{4 x} d x \\
& =-\int\left(\frac{2 \ln (x)+1}{4 x^{3}}\right) d x \\
& =\frac{\ln (x)}{4 x^{2}}+\frac{1}{4 x^{2}} \\
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(\frac{1}{x}\right)\left(\frac{2}{x}\right)}{\left(x^{3}\right)\left(\frac{4}{x^{2}}\right)} d x \\
& =\int \frac{\frac{2}{x^{2}}}{4 x} d x \\
& =\int\left(\frac{1}{2 x^{3}}\right) d x \\
& =-\frac{1}{4 x^{2}}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{\ln (x)}{4}\right)\left(\frac{1}{x}\right) \\
& +\left(\frac{\ln (x)}{4 x^{2}}+\frac{1}{4 x^{2}}\right)(x) \\
& +\left(-\frac{1}{4 x^{2}}\right)(x \ln (x))
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\ln (x)+1}{4 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x\right)+\left(\frac{\ln (x)+1}{4 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x+\frac{\ln (x)+1}{4 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x+\frac{\ln (x)+1}{4 x}
$$

Verified OK.

29.12.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}-y^{\prime} x+y=\frac{1}{x}
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = (c__1-_b(_a)*_a+_a^2*(diff(_b
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    <- high order exact linear fully integrable successful
<- high order exact_linear_nonhomogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+y(x)=1 / x, y(x)$, singsol=all)

$$
y(x)=\frac{4 \ln (x) c_{2} x^{2}+4 c_{3} x^{2}+\ln (x)+c_{1}+1}{4 x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 33
DSolve $\left[x^{\wedge} 3 * y\right.$ ' '' $[x]+2 * x \wedge 2 * y$ ' $[x]-x * y$ ' $[x]+y[x]==1 / x, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{\log (x)+1}{4 x}+\frac{c_{1}}{x}+c_{2} x+c_{3} x \log (x)
$$

29.13 problem Ex 15

29.13.1 Maple step by step solution

1682
Internal problem ID [11288]
Internal file name [OUTPUT/10273_Wednesday_December_21_2022_03_47_20_PM_39957394/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VII, Linear differential equations with constant coefficients. Article 52.
Summary. Page 117
Problem number: Ex 15.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-y=x \mathrm{e}^{x}+\cos (x)^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y=x \mathrm{e}^{x}+\cos (x)^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}+\cos (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}, \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \mathrm{e}^{x}+A_{3} x^{2} \mathrm{e}^{x}+A_{4} \cos (2 x)+A_{5} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{gathered}
3 A_{2} \mathrm{e}^{x}+6 A_{3} \mathrm{e}^{x}+6 A_{3} x \mathrm{e}^{x}+8 A_{4} \sin (2 x)-8 A_{5} \cos (2 x) \\
-A_{1}-A_{4} \cos (2 x)-A_{5} \sin (2 x)=x \mathrm{e}^{x}+\cos (x)^{2}
\end{gathered}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=-\frac{1}{3}, A_{3}=\frac{1}{6}, A_{4}=-\frac{1}{130}, A_{5}=-\frac{4}{65}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{3}+\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}
$$

Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
=\left(\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}\right)+\left(-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{3}+\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}\right)
$$

Summary

The solution(s) found are the following

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{3}+\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}(1)
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{3}-\frac{1}{2}-\frac{x \mathrm{e}^{x}}{3}+\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}
$$

Verified OK.

29.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y=x \mathrm{e}^{x}+\cos (x)^{2}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x \mathrm{e}^{x}+\cos (x)^{2}+y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x \mathrm{e}^{x}+\cos (x)^{2}+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x \mathrm{e}^{x}+\cos (x)^{2}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
x \mathrm{e}^{x}+\cos (x)^{2}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\sqrt{3} \sqrt{2}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)} \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \\
1 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}+\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3}}{3}\right.}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3}}{3}\right.}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{3}+\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \frac{\mathrm{e}^{x}}{3}+\frac{2}{2}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{1}{2}+\frac{10 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{39}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}+\frac{\left(15 x^{2}-30 x+38\right) \mathrm{e}^{x}}{90} \\
\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{8 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{117}+\frac{4 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{4 \mathrm{e}^{x}}{45}-\frac{8 \cos (2 x)}{65}+\frac{\sin (2 x)}{65} \\
-\frac{14 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{117}+\frac{2 \cos (2 x)}{65}+\frac{16 \sin (2 x)}{65}+\frac{\left(15 x^{2}+30 x+8\right) \mathrm{e}^{x}}{90}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
-\frac{1}{2}+\frac{10 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{39}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65} \\
\frac{x^{2} \mathrm{e}^{x}}{6}-\frac{8 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{117}+\frac{4 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{4 \mathrm{e}^{x}}{45}-\frac{8 \cos (}{65} \\
-\frac{14 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{117}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{117}+\frac{2 \cos (2 x)}{65}+\frac{16 \sin (2 x)}{65}-
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{1}{2}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{3}+c_{2}-\frac{20}{117}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\left(\left(c_{2}-\frac{4}{39}\right) \sqrt{3}-c_{3}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}+\frac{\left(15 x^{2}+90 c_{1}-3\right.}{90}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`

Solution by Maple
Time used: 0.016 (sec). Leaf size: 61

```
dsolve(diff (y(x),x$3)-y(x)=x*exp(x)+\operatorname{cos}(x)~2,y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & -\frac{1}{2}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
& -\frac{\cos (2 x)}{130}-\frac{4 \sin (2 x)}{65}+\frac{\left(3 x^{2}+18 c_{1}-6 x+4\right) \mathrm{e}^{x}}{18}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 7.274 (sec). Leaf size: 98
DSolve[y''r $[x]-y[x]==x * \operatorname{Exp}[x]+\operatorname{Cos}[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{e^{x} x^{2}}{6}-\frac{e^{x} x}{3}+\frac{2 e^{x}}{9}-\frac{4}{65} \sin (2 x)-\frac{1}{130} \cos (2 x)+c_{1} e^{x} \\
& +c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{1}{2}
\end{aligned}
$$

30 Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
30.1 problem Ex 1 1690
30.2 problem Ex 2 1709
30.3 problem Ex 3 1719
30.4 problem Ex 4 1731
30.5 problem Ex 5 1751
30.6 problem Ex 6 1770
30.7 problem Ex 7 1777
30.8 problem Ex 8 1781

30.1 problem Ex 1

30.1.1 Solving as second order change of variable on y method 2 ode . 1690
30.1.2 Solving using Kovacic algorithm 1697

Internal problem ID [11289]
Internal file name [OUTPUT/10274_Wednesday_December_21_2022_03_47_22_PM_26854596/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x^{2} y^{\prime}+y x=x
$$

30.1.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-x^{2}, C=x, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime}-x^{2} y^{\prime}+y x=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}-x^{2} y^{\prime}+y x=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-x^{2} \\
q(x) & =x
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-n x+x=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-x^{2}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\frac{\left(-x^{3}+2\right) v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{\left(-x^{3}+2\right) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{3}-2\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x^{3}-2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{3}-2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{3}-2}{x} d x \\
\ln (u) & =\frac{x^{3}}{3}-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{\frac{x^{3}}{3}-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{3}}{3}-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} \mathrm{e}^{\frac{x^{3}}{3}}}{x^{2}}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{c_{1} 3^{\frac{2}{3}}(-1)^{\frac{1}{3}}\left(-\frac{3 x^{2}(-1)^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{33^{\frac{1}{3}}(-1)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}}{x}+\frac{3 x^{2}(-1)^{\frac{2}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}\right)}{9}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}(-1)^{\frac{1}{3}}\left(-\frac{3 x^{2}(-1)^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{33^{\frac{1}{3}}(-1)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}}{x}+\frac{3 x^{2}(-1)^{\frac{2}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}\right)}{9}+c_{2}\right) x \\
& =\frac{\left(3 c_{2} x-3 c_{1} \mathrm{e}^{x^{3}}\right)\left(-x^{3}\right)^{\frac{2}{3}}+x^{3} c_{1} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime}-x^{2} y^{\prime}+y x=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
\left.W=\left|\begin{array}{cc}
x & \left.\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3},-x^{3}\right.}{3}\right) \\
3\left(-x^{3}\right)^{\frac{2}{3}}
\end{array} \mathrm{e}^{\frac{x^{3}}{3}}{ }_{\frac{d}{d x}(x)}^{\frac{d}{d x}\left(\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{\left.3^{\frac{2}{3} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right.}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}}\right)}\right| \right\rvert\,
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{3^{\frac{2}{3} x^{3} \Gamma\left(\frac{2}{3}\right)}}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}} \\
1 & \frac{3^{\frac{2}{3}} x^{2} \Gamma\left(\frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{23^{\frac{2}{3}} x^{5} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}}-\frac{3^{\frac{2}{3}} x^{2} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{23^{\frac{2}{3}} x^{5} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}}-\frac{3^{\frac{2}{3} x^{5} \mathrm{e}^{\frac{x^{3}}{3}}}}{3\left(-x^{3}\right)^{\frac{2}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}-x^{2} \mathrm{e}^{\frac{x^{3}}{3}}
\end{array}\right|
$$

Therefore

$$
\begin{align*}
W=(x) & \left(\frac{3^{\frac{2}{3}} x^{2} \Gamma\left(\frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{23^{\frac{2}{3}} x^{5} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}}-\frac{3^{\frac{2}{3}} x^{2} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{23^{\frac{2}{3}} x^{5} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}}\right. \\
& \left.-\frac{3^{\frac{2}{3}} x^{5} \mathrm{e}^{\frac{x^{3}}{3}}}{3\left(-x^{3}\right)^{\frac{2}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}-x^{2} \mathrm{e}^{\frac{x^{3}}{3}}\right)-\left(\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}}\right) \tag{1}
\end{align*}
$$

Which simplifies to

$$
W=\frac{\mathrm{e}^{\frac{x^{3}}{3}}\left(3^{\frac{2}{3}} x^{9}-3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}} x^{3}+3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{3}}{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}}\right) x}{\mathrm{e}^{\frac{x^{3}}{3}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x\left(-3\left(-x^{3}\right)^{\frac{2}{3}}+x^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{x^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{3\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}}{\mathrm{e}^{\frac{x^{3}}{3}}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{2} \mathrm{e}^{-\frac{x^{3}}{3}} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{-\frac{x^{3}}{3}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right)}{3} \\
& u_{2}=-\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x}{3} \\
& -\mathrm{e}^{-\frac{x^{3}}{3}}\left(\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\frac{3^{\frac{2}{3}} x^{3} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}-\mathrm{e}^{\frac{x^{3}}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)-\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x\left(-x^{3}\right)^{\frac{2}{3}}+3}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\left(\frac{c_{1} 3^{\frac{2}{3}}(-1)^{\frac{1}{3}}\left(-\frac{3 x^{2}(-1)^{\frac{2}{\Gamma}} \Gamma\left(\frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{33^{\frac{1}{3}}(-1)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}}{x}+\frac{3 x^{2}(-1)^{\frac{2}{\Gamma} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}}{\left(-x^{3}\right)^{\frac{2}{3}}}\right)}{9}+c_{2}\right) x\right) \\
& +\left(\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)-\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x\left(-x^{3}\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right) \\
= & -3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)-\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}}\right. \\
= & d \alpha) x\left(-x^{3}\right)^{\frac{2}{3}}+ \\
& +\left(\frac{c_{1} 3^{\frac{2}{3}}(-1)^{\frac{1}{3}}\left(-\frac{\left.3 x^{2}(-1)^{\frac{2}{3}} \Gamma \Gamma \frac{2}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}+\frac{33^{\frac{1}{3}}(-1)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}}{x}+\frac{3 x^{2}(-1)^{\frac{2}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}\right)}{9}+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =\left(\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right.}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha-3 c_{2}\right) x+3 c_{1} \mathrm{e}^{x^{3}}-3\right)\left(-x^{3}\right)^{\frac{2}{3}}-x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right. \\
- & 3\left(-x^{3}\right)^{\frac{2}{3}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\left.\left.-\frac{\left.\left(\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3 \frac{2}{3} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\right.}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} \frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{} d \alpha-3 c_{2}\right) x+3 c_{1} \mathrm{e}^{\frac{x^{3}}{3}}-3\right)\left(-x^{3}\right)^{\frac{2}{3}}-x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right. \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.\left.y=-\frac{\left(\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3 \frac{2}{3} e^{-\frac{\alpha^{3}}{3}}\right.}{\left.\left(-\left(\Gamma \frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}\right.\right.}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha-3 c_{2}\right) x+3 c_{1} \mathrm{e}^{\frac{x^{3}}{3}}-3\right)\left(-x^{3}\right)^{\frac{2}{3}}-x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right.
$$

Verified OK.

30.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x^{2} y^{\prime}+y x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x^{2} \tag{3}\\
& C=x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x\left(x^{3}-8\right)}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x\left(x^{3}-8\right) \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x\left(x^{3}-8\right)}{4}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 176: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-4 \\
& =-4
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is -4 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of r at ∞ is $O_{r}(\infty)=-4$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{4}{2}=2
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{2} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{2}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x^{2}}{2}-\frac{2}{x}-\frac{4}{x^{4}}-\frac{16}{x^{7}}-\frac{80}{x^{10}}-\frac{448}{x^{13}}-\frac{2688}{x^{16}}-\frac{16896}{x^{19}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=2$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{2} a_{i} x^{i} \\
& =\frac{x^{2}}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{1}=x$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{x^{4}}{4}
$$

This shows that the coefficient of x in the above is 0 . Now we need to find the coefficient of x in r. How this is done depends on if $v=0$ or not. Since $v=2$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x\left(x^{3}-8\right)}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{4}-2 x\right)+(0) \\
& =\frac{1}{4} x^{4}-2 x
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is -2 . Now b can be found.

$$
\begin{aligned}
b & =(-2)-(0) \\
& =-2
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x^{2}}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-2}{\frac{1}{2}}-2\right)=-3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-2}{\frac{1}{2}}-2\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{x\left(x^{3}-8\right)}{4}
$$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
-4	$\frac{x^{2}}{2}$	-3	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x^{2}}{2}\right) \\
& =-\frac{x^{2}}{2} \\
& =-\frac{x^{2}}{2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{x^{2}}{2}\right)(1)+\left((-x)+\left(-\frac{x^{2}}{2}\right)^{2}-\left(\frac{x\left(x^{3}-8\right)}{4}\right)\right)=0 \\
x a_{0}=0
\end{array}
$$

Solving for the coefficients a_{i} in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=0\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int-\frac{x^{2}}{2} d x} \\
& =(x) \mathrm{e}^{-\frac{x^{3}}{6}} \\
& =x \mathrm{e}^{-\frac{x^{3}}{6}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x^{2}}{1} d x} \\
& =z_{1} e^{\frac{x^{3}}{6}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{3}}{6}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x^{2}}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{3}}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-3\left(-x^{3}\right)^{\frac{2}{3}} e^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}} x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\frac{-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}} x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-x^{2} y^{\prime}+y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x+\frac{c_{2}\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{-3\left(-x^{3}\right)^{\frac{2}{3}} e^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right)
\end{array}\right|
$$

Which gives
$W=\left|\begin{array}{cc}x & \frac{-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}} \\ 1 & \frac{6 \mathrm{e}^{\frac{x^{3}}{3}} x^{2}}{\left(-x^{3}\right)^{\frac{1}{3}}}-3\left(-x^{3}\right)^{\frac{2}{3}} x^{2} \mathrm{e}^{\frac{x^{3}}{3}}+3 x^{2} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)-\frac{x^{5} 3^{\frac{2}{2}} \mathrm{e}^{\frac{x^{3}}{3}}}{\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}\end{array}+\frac{2\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right) x^{2}}{3\left(-x^{3}\right)^{\frac{5}{3}}}+\right|$
Therefore

$$
\begin{align*}
& W=(x)\left(\frac{\frac{6 \frac{x}{}^{\frac{x^{3}}{3}} x^{2}}{\left(-x^{3}\right)^{\frac{1}{3}}}-3\left(-x^{3}\right)^{\frac{2}{3}} x^{2} \mathrm{e}^{\frac{x^{3}}{3}}+3 x^{2} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)-\frac{x^{5} 3^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}}{\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right. \\
&\left.+\frac{2\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right) x^{2}}{3\left(-x^{3}\right)^{\frac{5}{3}}}\right) \\
&-\left(\frac{-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right) \tag{1}
\end{align*}
$$

Which simplifies to

$$
W=\frac{\mathrm{e}^{\frac{x^{3}}{3}}\left(3^{\frac{2}{3}} x^{9}-3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}} x^{3}+3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}\right)}{3\left(-x^{3}\right)^{\frac{5}{3}}\left(-\frac{x^{3}}{3}\right)^{\frac{1}{3}}}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{3}}{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right) x}{3\left(-x^{3}\right)^{\frac{2}{3}}}}{\mathrm{e}^{\frac{x^{3}}{3}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x\left(-3\left(-x^{3}\right)^{\frac{2}{3}}+x^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{x^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{3\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}}{\mathrm{e}^{\frac{x^{3}}{3}}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{2} \mathrm{e}^{-\frac{x^{3}}{3}} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{-\frac{x^{3}}{3}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\left(\int_{0}^{x} \frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{3\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x \\
& -\frac{\mathrm{e}^{-\frac{x^{3}}{3}}\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)+\left(\int_{0}^{x}-\frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x\left(-x^{3}\right)^{\frac{2}{3}}+}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
\begin{aligned}
= & \left(c_{1} x+\frac{c_{2}\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right) \\
& +\left(\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)+\left(\int_{0}^{x}-\frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x(-x}{3\left(-x^{3}\right)^{\frac{2}{3}}}\right.
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x+\frac{c_{2}\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}} \\
& +\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)+\left(\int_{0}^{x}-\frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x\left(-x^{3}\right)^{\frac{2}{3}}}{3\left(-x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Verification of solutions

$y=c_{1} x+\frac{c_{2}\left(-3\left(-x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{\frac{x^{3}}{3}}+x^{3} 3^{\frac{2}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)\right)}{3\left(-x^{3}\right)^{\frac{2}{3}}}$

$$
+\frac{-3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3}\right)+3^{\frac{2}{3}} x^{3} \mathrm{e}^{-\frac{x^{3}}{3}} \Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)+\left(\int_{0}^{x}-\frac{\alpha\left(-3\left(-\alpha^{3}\right)^{\frac{2}{3}}+\alpha^{3} 3^{\frac{2}{3}} \mathrm{e}^{-\frac{\alpha^{3}}{3}}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{\alpha^{3}}{3}\right)\right)\right)}{\left(-\alpha^{3}\right)^{\frac{2}{3}}} d \alpha\right) x\left(-x^{3}\right)^{\frac{2}{3}}}{3\left(-x^{3}\right)^{\frac{2}{3}}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form $[x i=0$, eta=F $(x)]$
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`

Solution by Maple
Time used: 0.016 (sec). Leaf size: 57

```
dsolve(diff(y(x),x$2)-x^2*\operatorname{diff}(y(x),x)+x*y(x)=x,y(x), singsol=all)
```

$$
y(x)=-\frac{\left(-3^{\frac{1}{3}} e^{\frac{x^{3}}{3}} c_{1}-c_{2} x-1\right)\left(-x^{3}\right)^{\frac{2}{3}}+x^{3} c_{1}\left(\Gamma\left(\frac{2}{3}\right)-\Gamma\left(\frac{2}{3},-\frac{x^{3}}{3}\right)\right)}{\left(-x^{3}\right)^{\frac{2}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 0.286 (sec). Leaf size: 42
DSolve[y''[x]-x^2*y'[x]+x*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{c_{2} \sqrt[3]{-x^{3}} \Gamma\left(-\frac{1}{3},-\frac{x^{3}}{3}\right)}{3 \sqrt[3]{3}}+c_{1} x+1
$$

30.2 problem Ex 2

30.2.1 Solving using Kovacic algorithm 1709

Internal problem ID [11290]
Internal file name [OUTPUT/10275_Wednesday_December_21_2022_03_47_24_PM_65438398/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x y^{\prime \prime}-(2 x+1) y^{\prime}+y(1+x)=x^{2}-x-1
$$

30.2.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x y^{\prime \prime}+(-2 x-1) y^{\prime}+y(1+x)=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=-2 x-1 \tag{3}\\
& C=1+x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 177: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x-1}{x} d x} \\
& =z_{1} e^{x+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+(-2 x-1) y^{\prime}+y(1+x)=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+\frac{c_{2} x^{2} \mathrm{e}^{x}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{x} \\
y_{2} & =\frac{x^{2} \mathrm{e}^{x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \frac{x^{2} \mathrm{e}^{x}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(\frac{x^{2} \mathrm{e}^{x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \frac{x^{2} \mathrm{e}^{x}}{2} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\frac{x^{2} \mathrm{e}^{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\frac{x^{2} \mathrm{e}^{x}}{2}\right)-\left(\frac{x^{2} \mathrm{e}^{x}}{2}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} x
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{2} \mathrm{e}^{x}\left(x^{2}-x-1\right)}{2}}{x^{2} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{-x}\left(x^{2}-x-1\right)}{2} d x
$$

Hence

$$
u_{1}=\frac{x(1+x) \mathrm{e}^{-x}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{x}\left(x^{2}-x-1\right)}{x^{2} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-x}\left(x^{2}-x-1\right)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{(x-1) \mathrm{e}^{-x}}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}}{2}-\frac{(x-1) \mathrm{e}^{-x} x \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y_{p}(x)=x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+\frac{c_{2} x^{2} \mathrm{e}^{x}}{2}\right)+(x)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{2}}{2}\right)+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{2}}{2}\right)+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{2}}{2}\right)+x
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x*diff(y(x),x$2)-(2*x+1)*diff(y(x),x)+(x+1)*y(x)=x^2-x-1,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x^{2}+c_{2}\right) \mathrm{e}^{x}+x
$$

\checkmark Solution by Mathematica
Time used: 0.275 (sec). Leaf size: 25
DSolve $\left[x * y\right.$ '' $[x]-(2 * x+1) * y$ ' $[x]+(x+1) * y[x]==x^{\wedge} 2-x-1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} c_{2} e^{x} x^{2}+x+c_{1} e^{x}
$$

30.3 problem Ex 3

30.3.1 Solving as second order change of variable on y method 2 ode . 1719
30.3.2 Solving as second order ode non constant coeff transformation on B ode
30.3.3 Solving using Kovacic algorithm 1724

Internal problem ID [11291]
Internal file name [OUTPUT/10276_Wednesday_December_21_2022_03_47_25_PM_19071862/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

30.3.1 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=-\frac{2}{x^{2}+1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}+1}-\frac{2}{x^{2}+1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{2 x}{x^{2}+1}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{2 x}{x^{2}+1}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}+\frac{2 x}{x^{2}+1}\right) u(x)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-2 \ln (x)-\ln \left(x^{2}+1\right)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)-\ln \left(x^{2}+1\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)-\ln \left(x^{2}+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1}}{x^{2}\left(x^{2}+1\right)}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}\right) x \\
& =-\arctan (x) c_{1} x+c_{2} x-c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}\right) x
$$

Verified OK.

30.3.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}+1 \\
& B=2 x \\
& C=-2 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}+1\right)(0)+(2 x)(2)+(-2)(2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
2 x\left(x^{2}+1\right) v^{\prime \prime}+\left(8 x^{2}+4\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
2\left(x^{2}+1\right) x u^{\prime}(x)+\left(8 x^{2}+4\right) u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2\left(2 x^{2}+1\right)}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-2 \ln (x)-\ln \left(x^{2}+1\right)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)-\ln \left(x^{2}+1\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)-\ln \left(x^{2}+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1}}{x^{2}\left(x^{2}+1\right)}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{2}\left(x^{2}+1\right)} \mathrm{d} x \\
& =c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(2 x)\left(c_{1}\left(-\frac{1}{x}-\arctan (x)\right)+c_{2}\right) \\
& =-2 \arctan (x) c_{1} x+2 c_{2} x-2 c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \arctan (x) c_{1} x+2 c_{2} x-2 c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 \arctan (x) c_{1} x+2 c_{2} x-2 c_{1}
$$

Verified OK.

30.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}+1 \\
& B=2 x \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 x^{2}+3 \\
& t=\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 178: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}+1\right)^{2}$. There is a pole at $x=i$ of order 2 . There is a pole at $x=-i$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4(x-i)^{2}}-\frac{1}{4(x+i)^{2}}-\frac{5 i}{4(x-i)}+\frac{5 i}{4(x+i)}
$$

For the pole at $x=i$ let b be the coefficient of $\frac{1}{(x-i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

For the pole at $x=-i$ let b be the coefficient of $\frac{1}{(x+i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
i	2	0	$\frac{1}{2}$	$\frac{1}{2}$
$-i$	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{-}\right) \\
& =2-(1) \\
& =1
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}+(0) \\
& =\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i} \\
& =\frac{x}{x^{2}+1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}\right)(1)+\left(\left(-\frac{1}{2(x-i)^{2}}-\frac{1}{2(x+i)^{2}}\right)+\left(\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}\right)^{2}-\left(\frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}}\right.\right.$
$-\frac{2\left(x^{2}+1\right) a_{0}}{(-x+i)^{2}(x+i)^{2}}$
Solving for the coefficients a_{i} in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=0\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int\left(\frac{1}{2 x-2 i}+\frac{1}{2 x+2 i}\right) d x} \\
& =(x) \sqrt{x^{2}+1} \\
& =x \sqrt{x^{2}+1}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{x^{2}+1} d x} \\
& =z_{1} e^{-\frac{\ln \left(x^{2}+1\right)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x^{2}+1}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln \left(x^{2}+1\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{1}{x}-\arctan (x)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(-\frac{1}{x}-\arctan (x)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2}(-x \arctan (x)-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2}(-x \arctan (x)-1)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
\[
y(x)=c_{1} x+\arctan (x) x c_{2}+c_{2}
\]
```

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 48
DSolve[(1+ $\left.\mathrm{x}^{\wedge} 2\right) * \mathrm{y}^{\prime}$ ' $[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}$ '[x]-2*y[x]==0,y[x],x, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} i\left(2 c_{1} x-c_{2} x \log (1-i x)+c_{2} x \log (1+i x)+2 i c_{2}\right)
$$

30.4 problem Ex 4

30.4.1 Solving as second order change of variable on y method 2 ode . 1731
30.4.2 Solving as second order ode non constant coeff transformation on B ode . 1736
30.4.3 Solving using Kovacic algorithm 1741

Internal problem ID [11292]
Internal file name [OUTPUT/10277_Wednesday_December_21_2022_03_47_27_PM_14577643/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=(1-x)^{2}
$$

30.4.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1-x, B=x, C=-1, f(x)=(x-1)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

In normal form the ode

$$
\begin{equation*}
(1-x) y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{x}{x-1} \\
q(x) & =\frac{1}{x-1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x-1}+\frac{1}{x-1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) u(x)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-2 x+2\right)}{x(x-1)}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-2 x+2}{x(x-1)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-2 x+2}{x(x-1)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-2 x+2}{x(x-1)} d x \\
\ln (u) & =x+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (x-1)-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x \\
& =\mathrm{e}^{x} c_{1}+c_{2} x
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=(x-1)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
1 & \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)(1)
$$

Which simplifies to

$$
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-1)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{x}(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{2}=\int-x \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=(1+x) \mathrm{e}^{-x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}+x+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x\right)+\left(x^{2}+x+1\right) \\
& =x^{2}+x+1+\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1
$$

Verified OK.

30.4.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=1-x \\
& B=x \\
& C=-1 \\
& F=(x-1)^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(1-x)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-x(x-1) v^{\prime \prime}+\left(x^{2}-2 x+2\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-x^{2}+x\right) u^{\prime}(x)+\left(x^{2}-2 x+2\right) u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-2 x+2\right)}{x(x-1)}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-2 x+2}{x(x-1)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-2 x+2}{x(x-1)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-2 x+2}{x(x-1)} d x \\
\ln (u) & =x+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (x-1)-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} \mathrm{e}^{x}(x-1)}{x^{2}} \mathrm{~d} x \\
& =\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(x)\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) \\
& =\mathrm{e}^{x} c_{1}+c_{2} x
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
1 & \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-1)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{x}(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{2}=\int-x \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=(1+x) \mathrm{e}^{-x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}+x+1
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x\right)+\left(x^{2}+x+1\right) \\
& =\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x+x^{2}+x+1
$$

Verified OK.

30.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
(1-x) y^{\prime \prime}+y^{\prime} x-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1-x \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}-4 x+6}{4(x-1)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}-4 x+6 \\
& t=4(x-1)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}-4 x+6}{4(x-1)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 179: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(x-1)^{2}$. There is a pole at $x=1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}-\frac{1}{2(x-1)}+\frac{3}{4(x-1)^{2}}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 x}+\frac{1}{x^{3}}+\frac{11}{4 x^{4}}+\frac{21}{4 x^{5}}+\frac{15}{2 x^{6}}+\frac{6}{x^{7}}-\frac{117}{16 x^{8}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{-1}=\frac{1}{x}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{x}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{x}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{x}$ in r will be the coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}-4 x+6}{4 x^{2}-8 x+4} \\
& =Q+\frac{R}{4 x^{2}-8 x+4} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 x+5}{4 x^{2}-8 x+4}\right) \\
& =\frac{1}{4}+\frac{-2 x+5}{4 x^{2}-8 x+4}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term x in the remainder R is -2 . Dividing this by leading coefficient in t which is 4 gives $-\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{x^{2}-4 x+6}{4(x-1)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x-1)}+\left(\frac{1}{2}\right) \\
& =-\frac{1}{2(x-1)}+\frac{1}{2} \\
& =\frac{x-2}{2 x-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2(x-1)^{2}}\right)+\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right)^{2}-\left(\frac{x^{2}-4 x+6}{4(x-1)^{2}}\right)\right)=0$
$0=0$
The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right) d x} \\
& =\frac{\mathrm{e}^{\frac{x}{2}}}{\sqrt{x-1}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1-x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{\ln (x-1)}{2}} \\
& =z_{1}\left(\sqrt{x-1} \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{1-x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+\ln (x-1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-x \mathrm{e}^{-x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(-x \mathrm{e}^{-x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}-c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=-x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -x \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}(-x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -x \\
\mathrm{e}^{x} & -1
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)(-1)-(-x)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-1)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-x(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{1}=-\int x \mathrm{e}^{-x} d x
$$

Hence

$$
u_{1}=(1+x) \mathrm{e}^{-x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{x}(x-1)^{2}}{(1-x) \mathrm{e}^{x}(x-1)} d x
$$

Which simplifies to

$$
u_{2}=\int(-1) d x
$$

Hence

$$
u_{2}=-x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}+x+1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}-c_{2} x\right)+\left(x^{2}+x+1\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}-c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}-c_{2} x+x^{2}+x+1
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve((1-x)*diff (y(x),x$2)+x*diff (y (x),x)-y(x)=(1-x)^2,y(x), singsol=all)
```

$$
y(x)=c_{2} x+c_{1} \mathrm{e}^{x}+x^{2}+1
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 22
DSolve[(1-x)*y' $[x]+x * y$ ' $[x]-y[x]==(1-x)^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+x-c_{2} x+c_{1} e^{x}+1
$$

30.5 problem Ex 5

30.5.1 Solving as second order change of variable on y method 1 ode. 1751
30.5.2 Solving as second order ode non constant coeff transformation on B ode
30.5.3 Solving using Kovacic algorithm 1763

Internal problem ID [11293]
Internal file name [OUTPUT/10278_Wednesday_December_21_2022_03_47_29_PM_61425486/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_variable_on_y__method_1", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
\sin (x) y^{\prime \prime}+2 \cos (x) y^{\prime}+3 \sin (x) y=\mathrm{e}^{x}
$$

30.5.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\sin (x) y^{\prime \prime}+2 \cos (x) y^{\prime}+3 \sin (x) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 \cos (x)}{\sin (x)} \\
& q(x)=3
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =3-\frac{\left(\frac{2 \cos (x)}{\sin (x)}\right)^{\prime}}{2}-\frac{\left(\frac{2 \cos (x)}{\sin (x)}\right)^{2}}{4} \\
& =3-\frac{\left(-2-\frac{2 \cos (x)^{2}}{\sin (x)^{2}}\right)}{2}-\frac{\left(\frac{4 \cos (x)^{2}}{\sin (x)^{2}}\right)}{4} \\
& =3-\left(-1-\frac{\cos (x)^{2}}{\sin (x)^{2}}\right)-\frac{\cos (x)^{2}}{\sin (x)^{2}} \\
& =4
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{\frac{2 \cos (x)}{\sin (x)}}{2}} \\
& =\csc (x) \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \csc (x) \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
4 v(x)+v^{\prime \prime}(x)=\mathrm{e}^{x}
$$

Which is now solved for $v(x)$ This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
4 v(x)+v^{\prime \prime}(x)=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 i \\
\lambda_{2} & =-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
v(x)=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
v(x)=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
v_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution v_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution v_{p}, gives the particular solution

$$
v_{p}=\frac{\mathrm{e}^{x}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\mathrm{e}^{x}}{5}\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\csc (x)
$$

Hence (7) becomes

$$
y=\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right) \csc (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right) \csc (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \csc (x) \\
& y_{2}=\sin (2 x) \csc (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) \csc (x) & \sin (2 x) \csc (x) \\
\frac{d}{d x}(\cos (2 x) \csc (x)) & \frac{d}{d x}(\sin (2 x) \csc (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) \csc (x) & \sin (2 x) \csc (x) \\
-2 \sin (2 x) \csc (x)-\cos (2 x) \csc (x) \cot (x) & 2 \cos (2 x) \csc (x)-\sin (2 x) \csc (x) \cot (x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\cos (2 x) \csc (x))(2 \cos (2 x) \csc (x)-\sin (2 x) \csc (x) \cot (x)) \\
& -(\sin (2 x) \csc (x))(-2 \sin (2 x) \csc (x)-\cos (2 x) \csc (x) \cot (x))
\end{aligned}
$$

Which simplifies to

$$
W=2 \csc (x)^{2} \cos (2 x)^{2}+2 \csc (x)^{2} \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2 \csc (x)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 x) \csc (x) \mathrm{e}^{x}}{2 \sin (x) \csc (x)^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{x} \sin (2 x)}{2} d x
$$

Hence

$$
u_{1}=\frac{\mathrm{e}^{x} \cos (2 x)}{5}-\frac{\mathrm{e}^{x} \sin (2 x)}{10}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \csc (x) \mathrm{e}^{x}}{2 \sin (x) \csc (x)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{x} \cos (2 x)}{2} d x
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{x} \cos (2 x)}{10}+\frac{\mathrm{e}^{x} \sin (2 x)}{5}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x))}{10} \\
& u_{2}=\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x))}{10}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x)) \cos (2 x) \csc (x)}{10}+\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x)) \sin (2 x) \csc (x)}{10}$

Which simplifies to

$$
y_{p}(x)=\frac{\csc (x) \mathrm{e}^{x}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right) \csc (x)\right)+\left(\frac{\csc (x) \mathrm{e}^{x}}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right) \csc (x)+\frac{\csc (x) \mathrm{e}^{x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{5}\right) \csc (x)+\frac{\csc (x) \mathrm{e}^{x}}{5}
$$

Verified OK.

30.5.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=\sin (x) \\
& B=2 \cos (x) \\
& C=3 \sin (x) \\
& F=\mathrm{e}^{x}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(\sin (x))(-2 \cos (x))+(2 \cos (x))(-2 \sin (x))+(3 \sin (x))(2 \cos (x)) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
\sin (2 x) v^{\prime \prime}+(4 \cos (2 x)) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
4 u(x) \cos (2 x)+u^{\prime}(x) \sin (2 x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u \cos (2 x)}{\sin (2 x)}
\end{aligned}
$$

Where $f(x)=-\frac{4 \cos (2 x)}{\sin (2 x)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4 \cos (2 x)}{\sin (2 x)} d x \\
\int \frac{1}{u} d u & =\int-\frac{4 \cos (2 x)}{\sin (2 x)} d x \\
\ln (u) & =-2 \ln (\sin (2 x))+c_{1} \\
u & =\mathrm{e}^{-2 \ln (\sin (2 x))+c_{1}} \\
& =\frac{c_{1}}{\sin (2 x)^{2}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{\sin (2 x)^{2}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{\sin (2 x)^{2}} \mathrm{~d} x \\
& =-\frac{c_{1} \cot (2 x)}{2}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(2 \cos (x))\left(-\frac{c_{1} \cot (2 x)}{2}+c_{2}\right) \\
& =\left(-\cot (x) c_{1}+2 c_{2}\right) \cos (x)+\frac{\csc (x) c_{1}}{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-\cos (x) \cot (x)+\frac{\csc (x)}{2} \\
& y_{2}=\cos (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-\cos (x) \cot (x)+\frac{\csc (x)}{2} & \cos (x) \\
\frac{d}{d x}\left(-\cos (x) \cot (x)+\frac{\csc (x)}{2}\right) & \frac{d}{d x}(\cos (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-\cos (x) \cot (x)+\frac{\csc (x)}{2} & \cos (x) \\
\sin (x) \cot (x)-\cos (x)\left(-1-\cot (x)^{2}\right)-\frac{\csc (x) \cot (x)}{2} & -\sin (x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(-\cos (x) \cot (x)+\frac{\csc (x)}{2}\right)(-\sin (x)) \\
& -(\cos (x))\left(\sin (x) \cot (x)-\cos (x)\left(-1-\cot (x)^{2}\right)-\frac{\csc (x) \cot (x)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{\csc (x) \sin (x)}{2}-\cos (x)^{2} \cot (x)^{2}-\cos (x)^{2}+\frac{\cos (x) \csc (x) \cot (x)}{2}
$$

Which simplifies to

$$
W=-\frac{\csc (x)^{2}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{x} \cos (x)}{-\frac{\sin (x) \csc (x)^{2}}{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{x} \sin (2 x) d x
$$

Hence

$$
u_{1}=-\frac{2 \mathrm{e}^{x} \cos (2 x)}{5}+\frac{\mathrm{e}^{x} \sin (2 x)}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\cos (x) \cot (x)+\frac{\csc (x)}{2}\right) \mathrm{e}^{x}}{-\frac{\sin (x) \csc (x)^{2}}{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{x} \cos (2 x) d x
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{x} \cos (2 x)}{5}+\frac{2 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x))}{5} \\
& u_{2}=\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x))}{5}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x))\left(-\cos (x) \cot (x)+\frac{\csc (x)}{2}\right)}{5} \\
& +\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x)) \cos (x)}{5}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\csc (x) \mathrm{e}^{x}}{5}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(\left(-\cot (x) c_{1}+2 c_{2}\right) \cos (x)+\frac{\csc (x) c_{1}}{2}\right)+\left(\frac{\csc (x) \mathrm{e}^{x}}{5}\right) \\
& =\frac{\csc (x)\left(20 \cos (x) \sin (x) c_{2}-10 c_{1} \cos (x)^{2}+2 \mathrm{e}^{x}+5 c_{1}\right)}{10}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\csc (x)\left(20 \cos (x) \sin (x) c_{2}-10 c_{1} \cos (x)^{2}+2 \mathrm{e}^{x}+5 c_{1}\right)}{10} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\csc (x)\left(20 \cos (x) \sin (x) c_{2}-10 c_{1} \cos (x)^{2}+2 \mathrm{e}^{x}+5 c_{1}\right)}{10}
$$

Verified OK.

30.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\sin (x) y^{\prime \prime}+2 \cos (x) y^{\prime}+3 \sin (x) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=\sin (x) \\
& B=2 \cos (x) \tag{3}\\
& C=3 \sin (x)
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 180: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 \cos (x)}{\sin (x)} d x} \\
& =z_{1} e^{-\ln (\sin (x))} \\
& =z_{1}(\csc (x))
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x) \csc (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 \cos (x)}{\sin (x)} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (\sin (x))}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x) \csc (x))+c_{2}\left(\cos (2 x) \csc (x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\sin (x) y^{\prime \prime}+2 \cos (x) y^{\prime}+3 \sin (x) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\csc (x) c_{1} \cos (2 x)+\cos (x) c_{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \csc (x) \\
& y_{2}=\cos (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) \csc (x) & \cos (x) \\
\frac{d}{d x}(\cos (2 x) \csc (x)) & \frac{d}{d x}(\cos (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) \csc (x) & \cos (x) \\
-2 \sin (2 x) \csc (x)-\cos (2 x) \csc (x) \cot (x) & -\sin (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x) \csc (x))(-\sin (x))-(\cos (x))(-2 \sin (2 x) \csc (x)-\cos (2 x) \csc (x) \cot (x))
$$

Which simplifies to

$$
W=\cos (x) \csc (x) \cot (x) \cos (2 x)-\cos (2 x) \csc (x) \sin (x)+2 \cos (x) \csc (x) \sin (2 x)
$$

Which simplifies to

$$
W=\csc (x)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{x} \cos (x)}{\sin (x) \csc (x)^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{x} \sin (2 x)}{2} d x
$$

Hence

$$
u_{1}=\frac{\mathrm{e}^{x} \cos (2 x)}{5}-\frac{\mathrm{e}^{x} \sin (2 x)}{10}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \csc (x) \mathrm{e}^{x}}{\sin (x) \csc (x)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{x} \cos (2 x) d x
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{x} \cos (2 x)}{5}+\frac{2 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x))}{10} \\
& u_{2}=\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x))}{5}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\mathrm{e}^{x}(2 \cos (2 x)-\sin (2 x)) \cos (2 x) \csc (x)}{10}+\frac{\mathrm{e}^{x}(\cos (2 x)+2 \sin (2 x)) \cos (x)}{5}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\csc (x) \mathrm{e}^{x}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\csc (x) c_{1} \cos (2 x)+\cos (x) c_{2}\right)+\left(\frac{\csc (x) \mathrm{e}^{x}}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\csc (x) c_{1} \cos (2 x)+\cos (x) c_{2}+\frac{\csc (x) \mathrm{e}^{x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\csc (x) c_{1} \cos (2 x)+\cos (x) c_{2}+\frac{\csc (x) \mathrm{e}^{x}}{5}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```


Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

```
dsolve(\operatorname{sin}(x)*\operatorname{diff}(y(x),x$2)+2*\operatorname{cos}(x)*\operatorname{diff}(y(x),x)+3*\operatorname{sin}(x)*y(x)=exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\csc (x)\left(10 \cos (x)^{2} c_{1}+10 \sin (x) \cos (x) c_{2}+\mathrm{e}^{x}-5 c_{1}\right)}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 56
DSolve $\left[\operatorname{Sin}[x] * y{ }^{\prime} '[x]+2 * \operatorname{Cos}[x] * y '[x]+3 * \operatorname{Sin}[x] * y[x]==\operatorname{Exp}[x], y[x], x\right.$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{e^{-i x}\left(4 i e^{(1+2 i) x}+5 c_{2} e^{4 i x}+20 i c_{1}\right)}{10\left(-1+e^{2 i x}\right)}
$$

30.6 problem Ex 6

30.6.1 Solving as second order change of variable on y method 1 ode . 1770
30.6.2 Solving using Kovacic algorithm 1773

Internal problem ID [11294]
Internal file name [OUTPUT/10279_Wednesday_December_21_2022_03_47_31_PM_31216664/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime} \tan (x)-\left(a^{2}+1\right) y=0
$$

30.6.1 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-2 \tan (x) \\
& q(x)=-a^{2}-1
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =-a^{2}-1-\frac{(-2 \tan (x))^{\prime}}{2}-\frac{(-2 \tan (x))^{2}}{4} \\
& =-a^{2}-1-\frac{\left(-2 \tan (x)^{2}-2\right)}{2}-\frac{\left(4 \tan (x)^{2}\right)}{4} \\
& =-a^{2}-1-\left(-\tan (x)^{2}-1\right)-\tan (x)^{2} \\
& =-a^{2}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2 \tan (x)}{2}} \\
& =\sec (x) \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \sec (x) \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
-\sec (x)\left(v(x) a^{2}-v^{\prime \prime}(x)\right)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=-1, B=0, C=a^{2}$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
-\lambda^{2} \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
a^{2}-\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=-1, B=0, C=a^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(-1)} \pm \frac{1}{(2)(-1)} \sqrt{0^{2}-(4)(-1)\left(a^{2}\right)} \\
& = \pm-\sqrt{a^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+-\sqrt{a^{2}} \\
& \lambda_{2}=--\sqrt{a^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\sqrt{a^{2}} \\
& \lambda_{2}=\sqrt{a^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(-\sqrt{a^{2}}\right) x}+c_{2} e^{\left(\sqrt{a^{2}}\right) x}
\end{aligned}
$$

Or

$$
v(x)=c_{1} \mathrm{e}^{-\sqrt{a^{2}} x}+c_{2} \mathrm{e}^{\sqrt{a^{2}} x}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{-\sqrt{a^{2}} x}+c_{2} \mathrm{e}^{\sqrt{a^{2}} x}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\sec (x)
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{-\sqrt{a^{2}} x}+c_{2} \mathrm{e}^{\sqrt{a^{2}} x}\right) \sec (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{-\sqrt{a^{2}} x}+c_{2} \mathrm{e}^{\sqrt{a^{2}} x}\right) \sec (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \mathrm{e}^{-\sqrt{a^{2}} x}+c_{2} \mathrm{e}^{\sqrt{a^{2}} x}\right) \sec (x)
$$

Verified OK.

30.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime} \tan (x)+\left(-a^{2}-1\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tan (x) \tag{3}\\
& C=-a^{2}-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{a^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=a^{2} \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(a^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 181: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=a^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{a^{2}} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 \tan (x)}{1} d x} \\
& =z_{1} e^{-\ln (\cos (x))} \\
& =z_{1}(\sec (x))
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\operatorname{csgn}(a) a x} \sec (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 \tan (x)}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (\cos (x))}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\operatorname{csgn}(a) \mathrm{e}^{-2 \operatorname{csgn}(a) a x}}{2 a}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\operatorname{csgn}(a) a x} \sec (x)\right)+c_{2}\left(\mathrm{e}^{\operatorname{csgn}(a) a x} \sec (x)\left(-\frac{\operatorname{csgn}(a) \mathrm{e}^{-2 \operatorname{csgn}(a) a x}}{2 a}\right)\right)
\end{aligned}
$$

Simplifying the solution $y=c_{1} \mathrm{e}^{\operatorname{csgn}(a) a x} \sec (x)-\frac{c_{2} \operatorname{csgn}(a) \sec (x) \mathrm{e}^{-\operatorname{csgn}(a) a x}}{2 a}$ to $y=c_{1} \mathrm{e}^{a x} \sec (x)-$ Summary
$\frac{c_{2} \sec (x) \mathrm{e}^{-a x}}{2 a}$ The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{a x} \sec (x)-\frac{c_{2} \sec (x) \mathrm{e}^{-a x}}{2 a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{a x} \sec (x)-\frac{c_{2} \sec (x) \mathrm{e}^{-a x}}{2 a}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$2)-2*tan(x)*\operatorname{diff}(y(x),x)-(a^2+1)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sec (x)\left(c_{1} \sinh (a x)+c_{2} \cosh (a x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.117 (sec). Leaf size: 32
DSolve[y' $[\mathrm{x}]-2 * \operatorname{Tan}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]-\left(\mathrm{a}^{\wedge} 2+1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sec (x)\left(c_{1} e^{-a x}+\frac{c_{2} e^{a x}}{2 a}\right)
$$

30.7 problem Ex 7

30.7.1 Maple step by step solution . 1777

Internal problem ID [11295]
Internal file name [OUTPUT/10280_Wednesday_December_21_2022_03_47_33_PM_71027106/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
4 x^{2} y^{\prime \prime}+4 y^{\prime} x^{3}+\left(x^{2}+1\right) y=0
$$

30.7.1 Maple step by step solution

Let's solve
$4 y^{\prime \prime} x^{2}+4 y^{\prime} x^{3}+\left(x^{2}+1\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime} x-\frac{\left(x^{2}+1\right) y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x+\frac{\left(x^{2}+1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=x, P_{3}(x)=\frac{x^{2}+1}{4 x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
4 y^{\prime \prime} x^{2}+4 y^{\prime} x^{3}+\left(x^{2}+1\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{3} \cdot y^{\prime}$ to series expansion

$$
x^{3} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+2}
$$

- Shift index using $k->k-2$

$$
x^{3} \cdot y^{\prime}=\sum_{k=2}^{\infty} a_{k-2}(k-2+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-1+2 r)^{2} x^{r}+a_{1}(1+2 r)^{2} x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r-1)^{2}+a_{k-2}(4 k-7+4 r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+2 r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=\frac{1}{2}$
- Each term must be 0
$a_{1}(1+2 r)^{2}=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(2 k+2 r-1)^{2}+a_{k-2}(4 k-7+4 r)=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(2 k+3+2 r)^{2}+a_{k}(4 k+4 r+1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}(4 k+4 r+1)}{(2 k+3+2 r)^{2}}$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+2}=-\frac{a_{k}(4 k+3)}{(2 k+4)^{2}}$
- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{a_{k}(4 k+3)}{(2 k+4)^{2}}, a_{1}=0\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 35

```
dsolve(4*x^2*diff (y (x),x$2)+4*x^3*diff(y(x),x)+(x^2+1)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{-\frac{x^{2}}{4}}\left(\text { WhittakerM }\left(-\frac{1}{8}, 0, \frac{x^{2}}{2}\right) c_{1}+\text { WhittakerW }\left(-\frac{1}{8}, 0, \frac{x^{2}}{2}\right) c_{2}\right)}{\sqrt{x}}
$$

Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 60

```
DSolve[4*x^2*y''[x]+4*x^3*y'[x]+(x^2+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2} G_{1,2}^{2,0}\left(\begin{array}{cc}
x^{2} & \left.\begin{array}{c}
\frac{7}{8} \\
16 \\
\frac{1}{4}, \frac{1}{4}
\end{array}\right)+\frac{1}{2} \sqrt[4]{-1} c_{1} \sqrt{x} \text { Hypergeometric1F1 }\left(\frac{3}{8}, 1,-\frac{x^{2}}{16}\right) ~
\end{array}\right.
$$

30.8 problem Ex 8

30.8.1 Solving as second order change of variable on y method 1 ode . 1781
30.8.2 Solving as second order bessel ode ode 1788
30.8.3 Solving using Kovacic algorithm 1791

Internal problem ID [11296]
Internal file name [OUTPUT/10281_Wednesday_December_21_2022_03_47_34_PM_35017132/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 53. Change of dependent variable. Page 125
Problem number: Ex 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x y^{\prime \prime}+2 y^{\prime}-y x=2 \mathrm{e}^{x}
$$

30.8.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+2 y^{\prime}-y x=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-1
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =-1-\frac{\left(\frac{2}{x}\right)^{\prime}}{2}-\frac{\left(\frac{2}{x}\right)^{2}}{4} \\
& =-1-\frac{\left(-\frac{2}{x^{2}}\right)}{2}-\frac{\left(\frac{4}{x^{2}}\right)}{4} \\
& =-1-\left(-\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \\
& =-1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2}{2}} \\
& =\frac{1}{x} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)-v(x)=2 \mathrm{e}^{x}
$$

Which is now solved for $v(x)$ This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=2 \mathrm{e}^{x}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
v^{\prime \prime}(x)-v(x)=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
v(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
v_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution v_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}=2 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution v_{p}, gives the particular solution

$$
v_{p}=x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(x \mathrm{e}^{x}\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+x \mathrm{e}^{x}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x}
$$

Hence (7) becomes

$$
y=\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+x \mathrm{e}^{x}}{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+x \mathrm{e}^{x}}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\mathrm{e}^{x}}{x} \\
& y_{2}=\frac{\mathrm{e}^{-x}}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{x} & \frac{\mathrm{e}^{-x}}{x} \\
\frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-x}}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{x} & \frac{\mathrm{e}^{-x}}{x} \\
\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}} & -\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\mathrm{e}^{x}}{x}\right)\left(-\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x}\right)-\left(\frac{\mathrm{e}^{-x}}{x}\right)\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
$$

Which simplifies to

$$
W=-\frac{2 \mathrm{e}^{x} \mathrm{e}^{-x}}{x^{2}}
$$

Which simplifies to

$$
W=-\frac{2}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 \mathrm{e}^{-x} \mathrm{e}^{x}}{x}}{-\frac{2}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{2 x}}{x}}{-\frac{2}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=-\frac{\mathrm{e}^{2 x}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-x}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+x \mathrm{e}^{x}}{x}\right)+\left(\frac{\mathrm{e}^{x}(2 x-1)}{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} \mathrm{e}^{-x}+\mathrm{e}^{x}\left(x+c_{1}\right)}{x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{-x}+\mathrm{e}^{x}\left(x+c_{1}\right)}{x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{-x}+\mathrm{e}^{x}\left(x+c_{1}\right)}{x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Verified OK.

30.8.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-x^{2} y=2 x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =-\frac{1}{2} \\
\beta & =i \\
n & =\frac{1}{2} \\
\gamma & =1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{i c_{1} \sqrt{2} \sinh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}-\frac{c_{2} \sqrt{2} \cosh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{i c_{1} \sqrt{2} \sinh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}-\frac{c_{2} \sqrt{2} \cosh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\mathrm{e}^{x}}{x} \\
& y_{2}=\frac{\mathrm{e}^{-x}}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{x} & \frac{\mathrm{e}^{-x}}{x} \\
\frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-x}}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{x} & \frac{\mathrm{e}^{-x}}{x} \\
\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}} & -\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\mathrm{e}^{x}}{x}\right)\left(-\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x}\right)-\left(\frac{\mathrm{e}^{-x}}{x}\right)\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
$$

Which simplifies to

$$
W=-\frac{2 \mathrm{e}^{x} \mathrm{e}^{-x}}{x^{2}}
$$

Which simplifies to

$$
W=-\frac{2}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{x} \mathrm{e}^{-x}}{-2} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{2 x}}{-2} d x
$$

Which simplifies to

$$
u_{2}=\int-\mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=-\frac{\mathrm{e}^{2 x}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-x}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{i c_{1} \sqrt{2} \sinh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}-\frac{c_{2} \sqrt{2} \cosh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}\right)+\left(\frac{\mathrm{e}^{x}(2 x-1)}{2 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{i c_{1} \sqrt{2} \sinh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}-\frac{c_{2} \sqrt{2} \cosh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{i c_{1} \sqrt{2} \sinh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}-\frac{c_{2} \sqrt{2} \cosh (x)}{\sqrt{x} \sqrt{\pi} \sqrt{i x}}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Verified OK.

30.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x y^{\prime \prime}+2 y^{\prime}-y x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=2 \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 183: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{x} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\mathrm{e}^{-x}}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\mathrm{e}^{-x}}{x}\right)+c_{2}\left(\frac{\mathrm{e}^{-x}}{x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+2 y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1} \mathrm{e}^{-x}}{x}+\frac{c_{2} \mathrm{e}^{x}}{2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\mathrm{e}^{-x}}{x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{-x}}{x} & \frac{\mathrm{e}^{x}}{2 x} \\
\frac{d}{d x}\left(\frac{\mathrm{e}^{-x}}{x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{-x}}{x} & \frac{\mathrm{e}^{x}}{2 x} \\
-\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x} & \frac{\mathrm{e}^{x}}{2 x}-\frac{\mathrm{e}^{x}}{2 x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\mathrm{e}^{-x}}{x}\right)\left(\frac{\mathrm{e}^{x}}{2 x}-\frac{\mathrm{e}^{x}}{2 x^{2}}\right)-\left(\frac{\mathrm{e}^{x}}{2 x}\right)\left(-\frac{\mathrm{e}^{-x}}{x^{2}}-\frac{\mathrm{e}^{-x}}{x}\right)
$$

Which simplifies to

$$
W=\frac{\mathrm{e}^{x} \mathrm{e}^{-x}}{x^{2}}
$$

Which simplifies to

$$
W=\frac{1}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x}}{x}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{2 x}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{-x} \mathrm{e}^{x}}{x}}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int 2 d x
$$

Hence

$$
u_{2}=2 x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-x}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \mathrm{e}^{-x}}{x}+\frac{c_{2} \mathrm{e}^{x}}{2 x}\right)+\left(\frac{\mathrm{e}^{x}(2 x-1)}{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} \mathrm{e}^{x}+2 c_{1} \mathrm{e}^{-x}}{2 x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}+2 c_{1} \mathrm{e}^{-x}}{2 x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{x}+2 c_{1} \mathrm{e}^{-x}}{2 x}+\frac{\mathrm{e}^{x}(2 x-1)}{2 x}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)-x*y(x)=2*exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x} x+\sinh (x) c_{2}+\cosh (x) c_{1}}{x}
$$

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 35

```
DSolve[x*y''[x]+2*y'[x]-x*y[x]==2*Exp[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{e^{-x}\left(e^{2 x}\left(2 x-1+c_{2}\right)+2 c_{1}\right)}{2 x}
$$

31 Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127

31.1 problem Ex 1 . 1799
31.2 problem Ex 2 . 1821
31.3 problem Ex 3 . 1835
31.4 problem Ex 4 . 1841
31.5 problem Ex 5 . 1865

31.1 problem Ex 1

31.1.1 Solving as second order change of variable on x method 2 ode . 1799
31.1.2 Solving as second order change of variable on x method 1 ode . 1805
31.1.3 Solving as second order change of variable on y method 1 ode . 1811

Internal problem ID [11297]
Internal file name [OUTPUT/10282_Wednesday_December_21_2022_03_47_36_PM_84888588/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_change_of__variable_on_x_method_1", "second__order_change_of__variable_on_x_method_2", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=\mathrm{e}^{4 x}
$$

31.1.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=2 \mathrm{e}^{x}-1 \\
& q(x)=\mathrm{e}^{2 x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int\left(2 \mathrm{e}^{x}-1\right) d x\right)} d x \\
& =\int e^{x-2 \mathrm{e}^{x}} d x \\
& =\int \mathrm{e}^{x-2 \mathrm{e}^{x}} d x \\
& =-\frac{\mathrm{e}^{-2 \mathrm{e}^{x}}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x-4 \mathrm{e}^{x}}} \\
& =\mathrm{e}^{4 \mathrm{e}^{x}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\mathrm{e}^{4 \mathrm{e}^{x}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
\mathrm{e}^{4 \mathrm{e}^{x}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} & -\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} & -\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2} \\
\frac{\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}} & -\frac{\sqrt{2} \ln (2) \mathrm{e}^{-2} \mathrm{e}^{x} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}}+\frac{\sqrt{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}}-\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right)\left(-\frac{\sqrt{2} \ln (2) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}+\frac{\sqrt{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\left.2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}-\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{x}\right)}} \begin{array}{rl}
& -\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)\left(\frac{\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\left.\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right)}\right.
\end{array}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right) \mathrm{e}^{4 x}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(-\ln (2)+\ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2} d x
$$

Hence
$u_{1}=$
$-\frac{(i \ln (2)-4 i+\pi) \mathrm{e} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}+2 i \pi\left(\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{2}-1\right) \operatorname{csgn}\left(i \mathrm{e}^{-2 \mathrm{e}^{x}}\right)+\left(2 \mathrm{e}^{x}-\mathrm{e}^{2 x}-2\right) \ln \left(\mathrm{e}^{-2 \mathrm{e}^{x}}\right)+(\ln (2)}{2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}$
And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{4 x}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{2} \mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\sqrt{2} \mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}}}{2} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}= \\
& -\frac{(i \ln (2)-4 i+\pi) \mathrm{e} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}+2 i \pi\left(\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{2}-1\right) \operatorname{csgn}\left(i \mathrm{e}^{-2 \mathrm{e}^{x}}\right)+\left(2 \mathrm{e}^{x}-\mathrm{e}^{2 x}-2\right) \ln \left(\mathrm{e}^{-2 \mathrm{e}^{x}}\right)+(\ln (2)}{2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}} \\
& u_{2}=\frac{\sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}} d \alpha}\right)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{(i \ln (2)-4 i+\pi) \mathrm{e} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2}-i \pi\left(\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{2}-1\right) \operatorname{csgn}\left(i \mathrm{e}^{-2 \mathrm{e}^{x}}\right) \\
& -\frac{\left(2 \mathrm{e}^{x}-\mathrm{e}^{2 x}-2\right) \ln \left(\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}-\frac{(\ln (2)-2) \mathrm{e}^{2 x}}{2}-\frac{(-2 \ln (2)+8) \mathrm{e}^{x}}{2}-\ln (2) \\
& +6+\frac{\sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}} d \alpha\right)\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(2 \mathrm{e}^{x-\mathrm{e}^{x}}+(-i \pi+\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2}+\frac{(\ln (2)-4-i \pi) \mathrm{e}^{1-\mathrm{e}^{x}}}{2} \\
& +\frac{(6+i \pi-\ln (2)) \mathrm{e}^{2 x}}{2}-i \pi \mathrm{e}^{x}+i \pi+\mathrm{e}^{x} \ln (2)-\ln (2)-6 \mathrm{e}^{x}-\mathrm{e}^{3 x}+6
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2}\right) \\
& +\left(\frac{\left(2 \mathrm{e}^{x-\mathrm{e}^{x}}+(-i \pi+\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2}+\frac{(\ln (2)-4-i \pi) \mathrm{e}^{1-\mathrm{e}^{x}}}{2}\right. \\
& \left.\quad+\frac{(6+i \pi-\ln (2)) \mathrm{e}^{2 x}}{2}-i \pi \mathrm{e}^{x}+i \pi+\mathrm{e}^{x} \ln (2)-\ln (2)-6 \mathrm{e}^{x}-\mathrm{e}^{3 x}+6\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2} \\
& +\frac{\left(2 \mathrm{e}^{x-\mathrm{e}^{x}}+(-i \pi+\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2}+\frac{(\ln (2)-4-i \pi) \mathrm{e}^{1-\mathrm{e}^{x}}}{2} \tag{1}\\
& +\frac{(6+i \pi-\ln (2)) \mathrm{e}^{2 x}}{2}-i \pi \mathrm{e}^{x}+i \pi+\mathrm{e}^{x} \ln (2)-\ln (2)-6 \mathrm{e}^{x}-\mathrm{e}^{3 x}+6
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2} \\
& +\frac{\left(2 \mathrm{e}^{x-\mathrm{e}^{x}}+(-i \pi+\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2}+\frac{(\ln (2)-4-i \pi) \mathrm{e}^{1-\mathrm{e}^{x}}}{2} \\
& +\frac{(6+i \pi-\ln (2)) \mathrm{e}^{2 x}}{2}-i \pi \mathrm{e}^{x}+i \pi+\mathrm{e}^{x} \ln (2)-\ln (2)-6 \mathrm{e}^{x}-\mathrm{e}^{3 x}+6
\end{aligned}
$$

Verified OK. $\{0<x\}$

31.1.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2 \mathrm{e}^{x}-1, C=\mathrm{e}^{2 x}, f(x)=\mathrm{e}^{4 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=2 \mathrm{e}^{x}-1 \\
& q(x)=\mathrm{e}^{2 x}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\mathrm{e}^{2 x}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{\sqrt{\mathrm{e}^{2 x}}}{c}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{\sqrt{\mathrm{e}^{2 x}}}{c}+2 \mathrm{e}^{x}-1 \frac{\sqrt{\mathrm{e}^{2 x}}}{c}}{\left(\frac{\sqrt{\mathrm{e}^{2 x}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\mathrm{e}^{2 x}} d x}{c} \\
& =\frac{\sqrt{\mathrm{e}^{2 x}}}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=\mathrm{e}^{4 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} & -\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} & -\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2} \\
\frac{\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}} & -\frac{\sqrt{2} \ln (2) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}}+\frac{\sqrt{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}}-\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right)\left(-\frac{\sqrt{2} \ln (2) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}+\frac{\sqrt{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\left.2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}-\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{x}\right)}} \begin{array}{rl}
2 & -\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)\left(\frac{\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\left.\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right)}\right.
\end{array}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right) \mathrm{e}^{4 x}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(-\ln (2)+\ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}}\left(-\ln (2)+\ln \left(-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}\right)\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{4 x}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{2} \mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\sqrt{2} \mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}}}{2} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2} \\
& u_{2}=\frac{i \sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2} \\
& +\frac{i \sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y= y_{h}+y_{p} \\
&=\left(\mathrm{e}^{-\mathrm{e}^{x}} c_{1}\right)+\left(\frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2}\right. \\
&\left.-\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}\right) \\
&= \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
&-\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}+\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}+\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \tag{1}\\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}+\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}+\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
\end{aligned}
$$

Verified OK. $\{0<x\}$

31.1.3 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+\left(2 \mathrm{e}^{x}-1\right) y^{\prime}+y \mathrm{e}^{2 x}=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=2 \mathrm{e}^{x}-1 \\
& q(x)=\mathrm{e}^{2 x}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\mathrm{e}^{2 x}-\frac{\left(2 \mathrm{e}^{x}-1\right)^{\prime}}{2}-\frac{\left(2 \mathrm{e}^{x}-1\right)^{2}}{4} \\
& =\mathrm{e}^{2 x}-\frac{\left(2 \mathrm{e}^{x}\right)}{2}-\frac{\left(\left(2 \mathrm{e}^{x}-1\right)^{2}\right)}{4} \\
& =\mathrm{e}^{2 x}-\left(\mathrm{e}^{x}\right)-\frac{\left(2 \mathrm{e}^{x}-1\right)^{2}}{4} \\
& =-\frac{1}{4}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 \mathrm{e}^{x}-1}{2}} \\
& =\mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
\mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}}\left(4 v^{\prime \prime}(x)-v(x)\right)=4 \mathrm{e}^{4 x}
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)-\frac{v(x)}{4}=\mathrm{e}^{\frac{7 x}{2}+\mathrm{e}^{x}}
$$

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=-\frac{1}{4}, f(x)=\mathrm{e}^{\frac{7 x}{2}+\mathrm{e}^{x}}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
v^{\prime \prime}(x)-\frac{v(x)}{4}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=-\frac{1}{4}$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\frac{\mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\frac{1}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-\frac{1}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-\frac{1}{4}\right)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
v(x)=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

The particular solution v_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
v_{p}(x)=u_{1} v_{1}+u_{2} v_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and v_{1}, v_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& v_{1}=\mathrm{e}^{\frac{x}{2}} \\
& v_{2}=\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{v_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{v_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $v^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}v_{1} & v_{2} \\ v_{1}^{\prime} & v_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\frac{x}{2}} & \mathrm{e}^{-\frac{x}{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{\frac{x}{2}}\right) & \frac{d}{d x}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\frac{x}{2}} & \mathrm{e}^{-\frac{x}{2}} \\
\frac{\mathrm{e}^{\frac{x}{2}}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\frac{x}{2}}\right)\left(-\frac{\mathrm{e}^{-\frac{x}{2}}}{2}\right)-\left(\mathrm{e}^{-\frac{x}{2}}\right)\left(\frac{\mathrm{e}^{\frac{x}{2}}}{2}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}}
$$

Which simplifies to

$$
W=-1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{7 x}{2}+\mathrm{e}^{x}}}{-1} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{3 x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{1}=\mathrm{e}^{2 x} \mathrm{e}^{\mathrm{e}^{x}}-2 \mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}+2 \mathrm{e}^{\mathrm{e}^{x}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}^{\frac{7 x}{2}+\mathrm{e}^{x}}}{-1} d x
$$

Which simplifies to

$$
u_{2}=\int-\mathrm{e}^{4 x+\mathrm{e}^{x}} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{3 x} \mathrm{e}^{\mathrm{e}^{x}}+3 \mathrm{e}^{2 x} \mathrm{e}^{\mathrm{e}^{x}}-6 \mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}+6 \mathrm{e}^{\mathrm{e}^{x}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\mathrm{e}^{2 x+\mathrm{e}^{x}}-2 \mathrm{e}^{x+\mathrm{e}^{x}}+2 \mathrm{e}^{\mathrm{e}^{x}} \\
& u_{2}=-\mathrm{e}^{3 x+\mathrm{e}^{x}}+3 \mathrm{e}^{2 x+\mathrm{e}^{x}}-6 \mathrm{e}^{x+\mathrm{e}^{x}}+6 \mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
v_{p}(x)=\left(\mathrm{e}^{2 x+\mathrm{e}^{x}}-2 \mathrm{e}^{x+\mathrm{e}^{x}}+2 \mathrm{e}^{\mathrm{e}^{x}}\right) \mathrm{e}^{\frac{x}{2}}+\left(-\mathrm{e}^{3 x+\mathrm{e}^{x}}+3 \mathrm{e}^{2 x+\mathrm{e}^{x}}-6 \mathrm{e}^{x+\mathrm{e}^{x}}+6 \mathrm{e}^{\mathrm{e}^{x}}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Which simplifies to

$$
v_{p}(x)=\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}\right)+\left(\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}}
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}\right) \mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}\right) \mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} & -\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}}\right)\left(-\frac{\sqrt{2} \ln (2) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}+\frac{\sqrt{2} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right) \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\left.2 \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}-\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \mathrm{e}^{x}\right)}} \begin{array}{rl}
& -\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)\left(\frac{\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}}{\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}\right)
\end{array}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right) \mathrm{e}^{4 x}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}\left(-\ln (2)+\ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\mathrm{e}^{3 \alpha+2} \mathrm{e}^{\alpha} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}}\left(-\ln (2)+\ln \left(-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}\right)\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}} \mathrm{e}^{4 x}}}{\sqrt{2} \mathrm{e}^{x-2 \mathrm{e}^{x}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{2} \mathrm{e}^{3 x+2 \mathrm{e}^{x}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\sqrt{2} \mathrm{e}^{3 \alpha+2 \mathrm{e}^{\alpha}} \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{\alpha}}}}{2} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right)}{2} \\
& u_{2}=\frac{i \sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \sqrt{-\mathrm{e}^{-2 \mathrm{e}^{x}}}}{2} \\
& +\frac{i \sqrt{2}\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)\left(-\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\mathrm{e}^{-2} \mathrm{e}^{x}} \ln \left(-\mathrm{e}^{-2 \mathrm{e}^{x}}\right)}{2}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\mathrm{e}^{\frac{3 x}{2}+\mathrm{e}^{x}}-4 \mathrm{e}^{\frac{x}{2}+\mathrm{e}^{x}}+6 \mathrm{e}^{-\frac{x}{2}+\mathrm{e}^{x}}\right) \mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}}\right) \\
& +\left(\frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2}\right. \\
& \left.-\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{x-\mathrm{e}^{x}}+\mathrm{e}^{2 x}-4 \mathrm{e}^{x}+6+c_{2} \mathrm{e}^{-\mathrm{e}^{x}}+\frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{x-\mathrm{e}^{x}}+\mathrm{e}^{2 x}-4 \mathrm{e}^{x}+6+c_{2} \mathrm{e}^{-\mathrm{e}^{x}}+\frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \tag{1}\\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{x-\mathrm{e}^{x}}+\mathrm{e}^{2 x}-4 \mathrm{e}^{x}+6+c_{2} \mathrm{e}^{-\mathrm{e}^{x}}+\frac{i\left(\int_{0}^{x}\left(i \ln (2)+2 i \mathrm{e}^{\alpha}+\pi\right) \mathrm{e}^{3 \alpha+\mathrm{e}^{\alpha}} d \alpha\right) \mathrm{e}^{-\mathrm{e}^{x}}}{2} \\
& -\frac{\left(-2 \mathrm{e}^{x-\mathrm{e}^{x}}+(i \pi-\ln (2)) \mathrm{e}^{-\mathrm{e}^{x}}\right)\left(\int_{0}^{x} \mathrm{e}^{\mathrm{e}^{\alpha}+3 \alpha} d \alpha\right)}{2}
\end{aligned}
$$

Verified OK. $\{0<x\}$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

```
dsolve(diff (y(x),x$2)+(2*exp(x)-1)*diff(y(x),x)+exp(2*x)*y(x)=exp(4*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}} \sinh \left(\frac{x}{2}\right) c_{2}+\mathrm{e}^{\frac{x}{2}-\mathrm{e}^{x}} \cosh \left(\frac{x}{2}\right) c_{1}+\mathrm{e}^{2 x}-4 \mathrm{e}^{x}+6
$$

\checkmark Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 39
DSolve $[y$ '' $[x]+(2 * \operatorname{Exp}[x]-1) * y$ ' $[x]+\operatorname{Exp}[2 * x] * y[x]==\operatorname{Exp}[4 * x], y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow-4 e^{x}+e^{2 x}+c_{1} e^{-e^{x}}+c_{2} e^{x-e^{x}}+6
$$

31.2 problem Ex 2

31.2.1 Solving as second order change of variable on x method 2 ode . 1821
31.2.2 Solving as second order change of variable on x method 1 ode . 1824
31.2.3 Solving using Kovacic algorithm 1826
31.2.4 Maple step by step solution . 1832

Internal problem ID [11298]
Internal file name [OUTPUT/10283_Wednesday_December_21_2022_03_47_39_PM_28886466/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order__change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

31.2.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =-\frac{4}{x^{2}-1}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{x}{x^{2}-1} d x\right)} d x \\
& =\int e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x-1} \sqrt{1+x}} d x \\
& =\frac{\sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}-1}}{\frac{1}{(x-1)(1+x)}} \\
& =-4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\frac{2 \sqrt{x^{2}-1}}{\sqrt{x-1} \sqrt{1+x}}}
$$

Verified OK.

31.2.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =-\frac{4}{x^{2}-1}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}-1}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2 x}{c \sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)^{2}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2 x}{c \sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)^{2}}+\frac{x}{x^{2}-1} \frac{2 \sqrt{-\frac{1}{x^{2}-1}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}-1}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}-1}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
\begin{aligned}
y= & c_{1} \cos \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \tag{1}\\
& +c_{2} \sin \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(2 \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

Verified OK.

31.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=-x^{2}+1 \\
& B=-x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15 x^{2}-18}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 x^{2}-18 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15 x^{2}-18}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 184: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-1\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{33}{16(x-1)}-\frac{3}{16(x-1)^{2}}-\frac{3}{16(1+x)^{2}}-\frac{33}{16(1+x)}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15 x^{2}-18}{4\left(x^{2}-1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15 x^{2}-18}{4\left(x^{2}-1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{4}$	$\frac{1}{4}$
-1	2	0	$\frac{3}{4}$	$\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=\frac{5}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{+}+\alpha_{c_{2}}^{+}\right) \\
& =\frac{5}{2}-\left(\frac{3}{2}\right) \\
& =1
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((+)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{+}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =\frac{3}{4(x-1)}+\frac{3}{4(1+x)}+(0) \\
& =\frac{3}{4(x-1)}+\frac{3}{4(1+x)} \\
& =\frac{3 x}{2 x^{2}-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{3}{4(x-1)}+\frac{3}{4(1+x)}\right)(1)+\left(\left(-\frac{3}{4(x-1)^{2}}-\frac{3}{4(1+x)^{2}}\right)+\left(\frac{3}{4(x-1)}+\frac{3}{4(1+x)}\right)^{2}-\left(\frac{15}{4(}\right.\right.$

Solving for the coefficients a_{i} in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=0\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int\left(\frac{3}{4(x-1)}+\frac{3}{4(1+x)}\right) d x} \\
& =(x) \mathrm{e}^{\frac{3 \ln (x-1)}{4}+\frac{3 \ln (1+x)}{4}} \\
& =x(x-1)^{\frac{3}{4}}(1+x)^{\frac{3}{4}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2}-x^{2}+1} d x \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x \sqrt{x-1} \sqrt{1+x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{-x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-2 x^{2}+1}{\sqrt{x-1} \sqrt{1+x} x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x \sqrt{x-1} \sqrt{1+x})+c_{2}\left(x \sqrt{x-1} \sqrt{1+x}\left(\frac{-2 x^{2}+1}{\sqrt{x-1} \sqrt{1+x} x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \sqrt{x-1} \sqrt{1+x}+c_{2}\left(-2 x^{2}+1\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \sqrt{x-1} \sqrt{1+x}+c_{2}\left(-2 x^{2}+1\right)
$$

Verified OK.

31.2.4 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{4 y}{x^{2}-1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{4 y}{x^{2}-1}=0$
- Multiply by denominators of ODE

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

- Make a change of variables

$$
\theta=\arccos (x)
$$

- Calculate y^{\prime} with change of variables
$y^{\prime}=\left(\frac{d}{d \theta} y(\theta)\right) \theta^{\prime}(x)$
- Compute 1st derivative y^{\prime}
$y^{\prime}=-\frac{\frac{d}{d \theta} y(\theta)}{\sqrt{-x^{2}+1}}$
- Calculate $y^{\prime \prime}$ with change of variables
$y^{\prime \prime}=\left(\frac{d^{2}}{d \theta^{2}} y(\theta)\right) \theta^{\prime}(x)^{2}+\theta^{\prime \prime}(x)\left(\frac{d}{d \theta} y(\theta)\right)$
- Compute 2nd derivative $y^{\prime \prime}$
$y^{\prime \prime}=\frac{\frac{d^{2}}{d \theta^{2}} y(\theta)}{-x^{2}+1}-\frac{x\left(\frac{d}{d \theta} y(\theta)\right)}{\left(-x^{2}+1\right)^{\frac{3}{2}}}$
- Apply the change of variables to the ODE

$$
\left(-x^{2}+1\right)\left(\frac{\frac{d^{2}}{d \theta} y(\theta)}{-x^{2}+1}-\frac{x\left(\frac{d}{d \theta^{2}} y(\theta)\right)}{\left(-x^{2}+1\right)^{\frac{3}{2}}}\right)+\frac{\left(\frac{d}{d \theta} y(\theta)\right) x}{\sqrt{-x^{2}+1}}+4 y=0
$$

- Multiply through

$$
-\frac{\left(\frac{d^{2}}{d \theta^{2}} y(\theta)\right) x^{2}}{-x^{2}+1}+\frac{\frac{d^{2}}{d \theta^{2}} y(\theta)}{-x^{2}+1}+\frac{x^{3}\left(\frac{d}{d \theta} y(\theta)\right)}{\left(-x^{2}+1\right)^{\frac{3}{2}}}-\frac{x\left(\frac{d}{d \theta} y(\theta)\right)}{\left(-x^{2}+1\right)^{\frac{3}{2}}}+\frac{\left(\frac{d}{d d} y(\theta)\right) x}{\sqrt{-x^{2}+1}}+4 y=0
$$

- Simplify ODE

$$
4 y+\frac{d^{2}}{d \theta^{2}} y(\theta)=0
$$

- ODE is that of a harmonic oscillator with given general solution $y(\theta)=c_{1} \sin (2 \theta)+c_{2} \cos (2 \theta)$
- Revert back to x
$y=c_{1} \sin (2 \arccos (x))+c_{2} \cos (2 \arccos (x))$
- Apply double angle identities to solution
$y=c_{1} \sin (\arccos (x)) \cos (\arccos (x))+c_{2}\left(2 \cos (\arccos (x))^{2}-1\right)$
- Use trig identity to simplify \sin
$\sin (\arccos (x))=\sqrt{-x^{2}+1}$
- Simplify solution to the ODE
$y=c_{1} x \sqrt{-x^{2}+1}+c_{2}\left(2 x^{2}-1\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 50
dsolve ($\left(1-x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\frac{\left(8 x^{3}-4 x\right) c_{2} \sqrt{x^{2}-1}+\left(8 x^{4}-8 x^{2}+1\right) c_{2}+c_{1}}{\left(x+\sqrt{x^{2}-1}\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 97
DSolve[(1-x~2)*y' '[x]-x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow c_{1} \cosh \left(\frac{4 \sqrt{1-x^{2}} \arctan \left(\frac{\sqrt{1-x^{2}}}{x+1}\right)}{\sqrt{x^{2}-1}}\right)-i c_{2} \sinh \left(\frac{4 \sqrt{1-x^{2}} \arctan \left(\frac{\sqrt{1-x^{2}}}{x+1}\right)}{\sqrt{x^{2}-1}}\right)$

31.3 problem Ex 3

31.3.1 Solving as second order change of variable on x method 2 ode. 1835
31.3.2 Solving as second order change of variable on x method 1 ode . 1838

Internal problem ID [11299]
Internal file name [OUTPUT/10284_Wednesday_December_21_2022_03_47_40_PM_31667708/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} \tan (x)+\cos (x)^{2} y=0
$$

31.3.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime} \tan (x)+\cos (x)^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\tan (x) \\
q(x) & =\cos (x)^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \tan (x) d x\right)} d x \\
& =\int e^{\ln (\cos (x))} d x \\
& =\int \cos (x) d x \\
& =\sin (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\cos (x)^{2}}{\cos (x)^{2}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (\sin (x))+c_{2} \sin (\sin (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sin (x))+c_{2} \sin (\sin (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (\sin (x))+c_{2} \sin (\sin (x))
$$

Verified OK.

31.3.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime} \tan (x)+\cos (x)^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\tan (x) \\
q(x) & =\cos (x)^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{\cos (2 x)}{2}+\frac{1}{2}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2 \cos (x) \sin (x)}{c \sqrt{2 \cos (2 x)+2}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2 \cos (x) \sin (x)}{c \sqrt{2 \cos (2 x)+2}+\tan (x) \frac{\sqrt{\frac{\cos (2 x)}{2}+\frac{1}{2}}}{c}}}{\left(\frac{\sqrt{\frac{\cos (2 x)}{2}+\frac{1}{2}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{\cos (2 x)}{2}+\frac{1}{2}} d x}{c} \\
& =\frac{\sqrt{\frac{\cos (2 x)}{2}+\frac{1}{2}} \sin (x)}{c \cos (x)}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (\sin (x))+c_{2} \sin (\tan (x)|\cos (x)|)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sin (x))+c_{2} \sin (\tan (x)|\cos (x)|) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (\sin (x))+c_{2} \sin (\tan (x)|\cos (x)|)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    <- constant coefficients successful
    Change of variables used:
        [x = arcsin(t)]
    Linear ODE actually solved:
        (-2*t^2+2)*u(t)+(-2*t^2+2)*diff(diff(u(t), t), t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)+tan(x)*diff(y(x),x)+\operatorname{cos}(x)~2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (\sin (x))+c_{2} \cos (\sin (x))
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 18
DSolve [y' ' $[\mathrm{x}]+\operatorname{Tan}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}] \sim 2 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2} \sin (\sin (x))+c_{1} \cos (\sin (x))
$$

31.4 problem Ex 4

31.4.1 Solving as second order change of variable on x method 2 ode. 1841
31.4.2 Solving as second order change of variable on x method 1 ode . 1847
31.4.3 Solving as second order bessel ode ode 1851
31.4.4 Solving using Kovacic algorithm 1855

Internal problem ID [11300]
Internal file name [OUTPUT/10285_Wednesday_December_21_2022_03_47_42_PM_71014606/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=\frac{1}{x^{2}}
$$

31.4.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{6}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{6}}}{\frac{1}{x^{6}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos \left(\frac{1}{2 x^{2}}\right) \\
& y_{2}=\sin \left(\frac{1}{2 x^{2}}\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{d}{d x}\left(\cos \left(\frac{1}{2 x^{2}}\right)\right) & \frac{d}{d x}\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}} & -\frac{\cos \left(\frac{1}{2 x^{2}}\right.}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\cos \left(\frac{1}{2 x^{2}}\right)\right)\left(-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)-\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)
$$

Which simplifies to

$$
W=-\frac{\cos \left(\frac{1}{2 x^{2}}\right)^{2}+\sin \left(\frac{1}{2 x^{2}}\right)^{2}}{x^{3}}
$$

Which simplifies to

$$
W=-\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}}{-x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{1}=\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos \left(\frac{1}{22^{2}}\right)}{x^{2}}}{-x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{2}=\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\left(\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)\right) \cos \left(\frac{1}{2 x^{2}}\right)+\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)\right) \sin \left(\frac{1}{2 x^{2}}\right)$
Which simplifies to

$$
y_{p}(x)=\frac{1}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)\right)+\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}}
$$

Verified OK.

31.4.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{6}, B=3 x^{5}, C=1, f(x)=\frac{1}{x^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{6}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{6}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{6}}} x^{7}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{6}}} x^{7}}+\frac{3}{x} \frac{\sqrt{\frac{1}{x^{6}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{6}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{6}}} d x}{c} \\
& =-\frac{x \sqrt{\frac{1}{x^{6}}}}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)
$$

Now the particular solution to this ODE is found

$$
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=\frac{1}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos \left(\frac{1}{2 x^{2}}\right) \\
& y_{2}=\sin \left(\frac{1}{2 x^{2}}\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{d}{d x}\left(\cos \left(\frac{1}{2 x^{2}}\right)\right) & \frac{d}{d x}\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}} & -\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\cos \left(\frac{1}{2 x^{2}}\right)\right)\left(-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)-\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)
$$

Which simplifies to

$$
W=-\frac{\cos \left(\frac{1}{2 x^{2}}\right)^{2}+\sin \left(\frac{1}{2 x^{2}}\right)^{2}}{x^{3}}
$$

Which simplifies to

$$
W=-\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}}{-x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{1}=\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}}{-x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{2}=\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\left(\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)\right) \cos \left(\frac{1}{2 x^{2}}\right)+\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)\right) \sin \left(\frac{1}{2 x^{2}}\right)$

Which simplifies to

$$
y_{p}(x)=\frac{1}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)\right)+\left(\frac{1}{x^{2}}\right) \\
& =c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)+\frac{1}{x^{2}}
$$

Verified OK.

31.4.3 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime} x^{2}+3 y^{\prime} x+\frac{y}{x^{4}}=\frac{1}{x^{6}} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
y^{\prime \prime} x^{2}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =-1 \\
\beta & =\frac{1}{2} \\
n & =\frac{1}{2} \\
\gamma & =-2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{2 c_{1} \sin \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}-\frac{2 c_{2} \cos \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{2 c_{1} \sin \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}-\frac{2 c_{2} \cos \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos \left(\frac{1}{2 x^{2}}\right) \\
& y_{2}=\sin \left(\frac{1}{2 x^{2}}\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{d}{d x}\left(\cos \left(\frac{1}{2 x^{2}}\right)\right) & \frac{d}{d x}\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos \left(\frac{1}{2 x^{2}}\right) & \sin \left(\frac{1}{2 x^{2}}\right) \\
\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}} & -\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\cos \left(\frac{1}{2 x^{2}}\right)\right)\left(-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)-\left(\sin \left(\frac{1}{2 x^{2}}\right)\right)\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{3}}\right)
$$

Which simplifies to

$$
W=-\frac{\cos \left(\frac{1}{2 x^{2}}\right)^{2}+\sin \left(\frac{1}{2 x^{2}}\right)^{2}}{x^{3}}
$$

Which simplifies to

$$
W=-\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{6}}}{-\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{1}=\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{6}}}{-\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{5}} d x
$$

Hence

$$
u_{2}=\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{\cos \left(\frac{1}{2 x^{2}}\right)}{x^{2}}-2 \sin \left(\frac{1}{2 x^{2}}\right)\right) \cos \left(\frac{1}{2 x^{2}}\right)+\left(\frac{\sin \left(\frac{1}{2 x^{2}}\right)}{x^{2}}+2 \cos \left(\frac{1}{2 x^{2}}\right)\right) \sin \left(\frac{1}{2 x^{2}}\right)
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{2 c_{1} \sin \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}-\frac{2 c_{2} \cos \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}\right)+\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{1} \sin \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}-\frac{2 c_{2} \cos \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}+\frac{1}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{1} \sin \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}-\frac{2 c_{2} \cos \left(\frac{1}{2 x^{2}}\right)}{x \sqrt{\pi} \sqrt{\frac{1}{x^{2}}}}+\frac{1}{x^{2}}
$$

Verified OK.

31.4.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{6} \\
& B=3 x^{5} \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3 x^{4}-4}{4 x^{6}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 x^{4}-4 \\
& t=4 x^{6}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3 x^{4}-4}{4 x^{6}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 186: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =6-4 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{6}$. There is a pole at $x=0$ of order 6 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one). Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(x-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of \sqrt{r} expanded around each pole c. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
$$

Let a be the coefficient of the term $\frac{1}{(x-c)^{v}}$ in the above where v is the pole order divided by 2 . Let b be the coefficient of $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of $\frac{1}{(x-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of r is

$$
r=\frac{3}{4 x^{2}}-\frac{1}{x^{6}}
$$

There is pole in r at $x=0$ of order 6 , hence $v=3$. Expanding \sqrt{r} as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{i}{x^{3}}-\frac{3 i x}{8}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=3$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{i}{x^{3}} \tag{3B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(x-0)^{3}}$ is

$$
a=i
$$

Now we need to find b. let b be the coefficient of the term $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of the same term but in the sum $[\sqrt{r}]_{c}$ found in eq. (3B). Here c is current pole which is $c=0$. This term becomes $\frac{1}{x^{4}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term r is found from the partial fraction decomposition from above to be 0 . Therefore

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =\frac{i}{x^{3}} \\
\alpha_{c}^{+} & =\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{0}{i}+3\right)=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{0}{i}+3\right)=\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3 x^{4}-4}{4 x^{6}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3 x^{4}-4}{4 x^{6}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	6	$\frac{i}{x^{3}}$	$\frac{3}{2}$	$\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{+}=\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{3}{2}-\left(\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{i}{x^{3}}+\frac{3}{2 x}+(0) \\
& =-\frac{i}{x^{3}}+\frac{3}{2 x} \\
& =-\frac{i}{x^{3}}+\frac{3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{i}{x^{3}}+\frac{3}{2 x}\right)(0)+\left(\left(\frac{3 i}{x^{4}}-\frac{3}{2 x^{2}}\right)+\left(-\frac{i}{x^{3}}+\frac{3}{2 x}\right)^{2}-\left(\frac{3 x^{4}-4}{4 x^{6}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{i}{x^{3}}+\frac{3}{2 x}\right) d x} \\
& =x^{\frac{3}{2}} \mathrm{e}^{\frac{i}{2 x^{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x^{5}}{x^{6}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{i}{2 x^{2}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x^{5}}{x^{6}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i \mathrm{e}^{-\frac{i}{x^{2}}}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{i}{2 x^{2}}}\right)+c_{2}\left(\mathrm{e}^{\frac{i}{2 x^{2}}}\left(-\frac{i \mathrm{e}^{-\frac{i}{x^{2}}}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{\frac{i}{2 x^{2}}}-\frac{i c_{2} \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\frac{i}{2 x^{2}}} \\
& y_{2}=-\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\frac{i}{2 x^{2}}} & -\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{\frac{i}{2 x^{2}}}\right) & \frac{d}{d x}\left(-\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\frac{i}{2 x^{2}}} & -\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2} \\
-\frac{i e^{\frac{i}{2 x^{2}}}}{x^{3}} & \frac{\mathrm{e}^{-\frac{i}{2 x^{2}}}}{2 x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\frac{i}{2 x^{2}}}\right)\left(\frac{\mathrm{e}^{-\frac{i}{2 x^{2}}}}{2 x^{3}}\right)-\left(-\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}\right)\left(-\frac{i \frac{i}{2 x^{2}}}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{\mathrm{e}^{\frac{i}{2 x^{2}}} \mathrm{e}^{-\frac{i}{2 x^{2}}}}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{i e^{-\frac{i}{2 x^{2}}}}{2 x^{2}}}{x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{i \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2 x^{5}} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{\frac{i}{2 x^{2}}}}{x^{2}}}{x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{\frac{i}{2 x^{2}}}}{x^{5}} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } \mathrm{e}^{\frac{i}{2 x^{2}}}-i \text { undefined } \mathrm{e}^{-\frac{i}{2 x^{2}}}
$$

Which simplifies to

$$
y_{p}(x)=\left(i \mathrm{e}^{-\frac{i}{2 x^{2}}}+\mathrm{e}^{\frac{i}{2 x^{2}}}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{i}{2 x^{2}}}-\frac{i c_{2} \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}\right)+\left(\left(i \mathrm{e}^{-\frac{i}{2 x^{2}}}+\mathrm{e}^{\frac{i}{2 x^{2}}}\right) \text { undefined }\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{i}{2 x^{2}}}-\frac{i c_{2} \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}+\left(i \mathrm{e}^{-\frac{i}{2 x^{2}}}+\mathrm{e}^{\frac{i}{2 x^{2}}}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{i}{2 x^{2}}}-\frac{i c_{2} \mathrm{e}^{-\frac{i}{2 x^{2}}}}{2}+\left(i \mathrm{e}^{-\frac{i}{2 x^{2}}}+\mathrm{e}^{\frac{i}{2 x^{2}}}\right) \text { undefined }
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    <- linear_1 successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve($x^{\wedge} 6 * \operatorname{diff}(y(x), x \$ 2)+3 * x^{\wedge} 5 * \operatorname{diff}(y(x), x)+y(x)=1 / x^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\sin \left(\frac{1}{2 x^{2}}\right) c_{2}+\cos \left(\frac{1}{2 x^{2}}\right) c_{1}+\frac{1}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 32
DSolve[x^6*y' $[x]+3 * x^{\wedge} 5 * y$ ' $[x]+y[x]==1 / x^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{x^{2}}+c_{1} \cos \left(\frac{1}{2 x^{2}}\right)-c_{2} \sin \left(\frac{1}{2 x^{2}}\right)
$$

31.5 problem Ex 5

31.5.1 Solving as second order change of variable on x method 2 ode. 1865
31.5.2 Solving using Kovacic algorithm 1870

Internal problem ID [11301]
Internal file name [OUTPUT/10286_Wednesday_December_21_2022_03_47_44_PM_51163665/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number: Ex 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x y^{\prime \prime}-\left(2 x^{2}+1\right) y^{\prime}-8 y x^{3}=4 x^{3} \mathrm{e}^{-x^{2}}
$$

31.5.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+\left(-2 x^{2}-1\right) y^{\prime}-8 y x^{3}=0
$$

In normal form the ode

$$
\begin{equation*}
x y^{\prime \prime}+\left(-2 x^{2}-1\right) y^{\prime}-8 y x^{3}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2 x^{2}-1}{x} \\
& q(x)=-8 x^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{-2 x^{2}-1}{x} d x\right)} d x \\
& =\int e^{x^{2}+\ln (x)} d x \\
& =\int x \mathrm{e}^{x^{2}} d x \\
& =\frac{\mathrm{e}^{x^{2}}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-8 x^{2}}{x^{2} \mathrm{e}^{2 x^{2}}} \\
& =-8 \mathrm{e}^{-2 x^{2}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-8 \mathrm{e}^{-2 x^{2}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-8 \mathrm{e}^{-2 x^{2}}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=2 c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{4}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=2 c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x^{2}} \\
& y_{2}=\mathrm{e}^{2 x^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x^{2}} & \mathrm{e}^{2 x^{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{-x^{2}}\right) & \frac{d}{d x}\left(\mathrm{e}^{2 x^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x^{2}} & \mathrm{e}^{2 x^{2}} \\
-2 x \mathrm{e}^{-x^{2}} & 4 \mathrm{e}^{2 x^{2}} x
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x^{2}}\right)\left(4 \mathrm{e}^{2 x^{2}} x\right)-\left(\mathrm{e}^{2 x^{2}}\right)\left(-2 x \mathrm{e}^{-x^{2}}\right)
$$

Which simplifies to

$$
W=6 x \mathrm{e}^{x^{2}}
$$

Which simplifies to

$$
W=6 x \mathrm{e}^{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 \mathrm{e}^{2 x^{2}} x^{3} \mathrm{e}^{-x^{2}}}{6 x^{2} \mathrm{e}^{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{3} d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(\mathrm{e}^{-x^{2}}\right)^{2} x^{3}}{6 x^{2} \mathrm{e}^{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2 x \mathrm{e}^{-3 x^{2}}}{3} d x
$$

Hence

$$
u_{2}=-\frac{\mathrm{e}^{-3 x^{2}}}{9}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2} \mathrm{e}^{-x^{2}}}{3}-\frac{\mathrm{e}^{-3 x^{2}} \mathrm{e}^{2 x^{2}}}{9}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(2 c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{4}\right)+\left(-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{4}-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{4}-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}
$$

Verified OK.

31.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x y^{\prime \prime}+\left(-2 x^{2}-1\right) y^{\prime}-8 y x^{3}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=-2 x^{2}-1 \tag{3}\\
& C=-8 x^{3}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{36 x^{4}+3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=36 x^{4}+3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{36 x^{4}+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 187: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=9 x^{2}+\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx 3 x+\frac{1}{8 x^{3}}-\frac{1}{384 x^{7}}+\frac{1}{9216 x^{11}}-\frac{5}{884736 x^{15}}+\frac{7}{21233664 x^{19}}-\frac{7}{339738624 x^{23}}+\frac{11}{8153726976 x^{27}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=3
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =3 x \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{0}=1$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=9 x^{2}
$$

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in r. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{36 x^{4}+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(9 x^{2}\right)+\left(\frac{3}{4 x^{2}}\right) \\
& =9 x^{2}+\frac{3}{4 x^{2}}
\end{aligned}
$$

We see that the coefficient of the term x in the quotient is 0 . Now b can be found.

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =3 x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{3}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{3}-1\right)=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{36 x^{4}+3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
-2	$3 x$	$-\frac{1}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(3 x) \\
& =-\frac{1}{2 x}-3 x \\
& =-\frac{1}{2 x}-3 x
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}-3 x\right)(0)+\left(\left(\frac{1}{2 x^{2}}-3\right)+\left(-\frac{1}{2 x}-3 x\right)^{2}-\left(\frac{36 x^{4}+3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}-3 x\right) d x} \\
& =\frac{\mathrm{e}^{-\frac{3 x^{2}}{2}}}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x^{2}-1}{x} d x} \\
& =z_{1} e^{\frac{x^{2}}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{\frac{x^{2}}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x^{2}-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x^{2}+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x^{2}}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x^{2}}\right)+c_{2}\left(\mathrm{e}^{-x^{2}}\left(\frac{\mathrm{e}^{3 x^{2}}}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+\left(-2 x^{2}-1\right) y^{\prime}-8 y x^{3}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x^{2}} \\
& y_{2}=\frac{\mathrm{e}^{2 x^{2}}}{6}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x^{2}} & \frac{\mathrm{e}^{2 x^{2}}}{6} \\
\frac{d}{d x}\left(\mathrm{e}^{-x^{2}}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x^{2}}}{6}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x^{2}} & \frac{\mathrm{e}^{2 x^{2}}}{6} \\
-2 x \mathrm{e}^{-x^{2}} & \frac{2 \mathrm{e}^{2 x^{2} x}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x^{2}}\right)\left(\frac{2 \mathrm{e}^{2 x^{2}} x}{3}\right)-\left(\frac{\mathrm{e}^{2 x^{2}}}{6}\right)\left(-2 x \mathrm{e}^{-x^{2}}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x^{2}} \mathrm{e}^{2 x^{2}} x
$$

Which simplifies to

$$
W=x \mathrm{e}^{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 \mathrm{e}^{2 x^{2} x^{3} \mathrm{e}^{-x^{2}}}}{3}}{x^{2} \mathrm{e}^{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{3} d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \mathrm{e}^{-2 x^{2}} x^{3}}{x^{2} \mathrm{e}^{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 x \mathrm{e}^{-3 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{2 \mathrm{e}^{-3 x^{2}}}{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2} \mathrm{e}^{-x^{2}}}{3}-\frac{\mathrm{e}^{-3 x^{2}} \mathrm{e}^{2 x^{2}}}{9}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{6}\right)+\left(-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{6}-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x^{2}}+\frac{c_{2} \mathrm{e}^{2 x^{2}}}{6}-\frac{\mathrm{e}^{-x^{2}}\left(3 x^{2}+1\right)}{9}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve(x*diff (y (x),x$2)-(2*x^2+1)*diff(y(x),x)-8*x^3*y(x)=4*x^3*exp(-x^2),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x^{2}+3 c_{1}\right) \mathrm{e}^{-x^{2}}}{3}+\mathrm{e}^{2 x^{2}} c_{2}
$$

Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 38

```
DSolve[x*y''[x]-(2*x^2+1)*y'[x]-8*x^3*y[x]==4*x^3*Exp[-x^2],y[x],x,IncludeSingularSolutions
```

$$
y(x) \rightarrow \frac{1}{9} e^{-x^{2}}\left(-3 x^{2}+9 c_{1} e^{3 x^{2}}-1+9 c_{2}\right)
$$

32 Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page129
32.1 problem Ex 1 1882
32.2 problem Ex 2 1896
32.3 problem Ex 3 1907
32.4 problem Ex 4 1918
32.5 problem Ex 5 1930
32.6 problem Ex 6 1939
32.7 problem Ex 7 1950
32.8 problem Ex 8 1963
32.9 problem Ex 9 1982
32.10problem Ex 10 1984

32.1 problem Ex 1

32.1.1 Solving using Kovacic algorithm 1882
32.1.2 Solving as second order ode lagrange adjoint equation method od 888
32.1.3 Maple step by step solution

Internal problem ID [11302]
Internal file name [OUTPUT/10287_Wednesday_December_21_2022_03_47_45_PM_74052029/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type

[_Laguerre]

$$
x y^{\prime \prime}-(x+3) y^{\prime}+3 y=0
$$

32.1.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x y^{\prime \prime}+(-x-3) y^{\prime}+3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=-x-3 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}-6 x+15}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}-6 x+15 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}-6 x+15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 188: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}+\frac{15}{4 x^{2}}-\frac{3}{2 x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{3}{2 x}+\frac{3}{2 x^{2}}+\frac{9}{2 x^{3}}+\frac{45}{4 x^{4}}+\frac{81}{4 x^{5}}+\frac{27}{4 x^{6}}-\frac{567}{4 x^{7}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{-1}=\frac{1}{x}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{x}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{x}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{x}$ in r will be the coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}-6 x+15}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-6 x+15}{4 x^{2}}\right) \\
& =\frac{1}{4}+\frac{-6 x+15}{4 x^{2}}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term x in the remainder R is -6 . Dividing this by leading coefficient in t which is 4 gives $-\frac{3}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{3}{2}\right)-(0) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-0\right)=-\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-0\right)=\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{x^{2}-6 x+15}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{3}{2}$	$\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{3}{2 x} \\
& =\frac{x-3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2}-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(\frac{1}{2}-\frac{3}{2 x}\right)^{2}-\left(\frac{x^{2}-6 x+15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{2}-\frac{3}{2 x}\right) d x} \\
& =\frac{\mathrm{e}^{\frac{x}{2}}}{x^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x-3}{x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}} \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x-3}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\mathrm{e}^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(-\mathrm{e}^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2}\left(-x^{3}-3 x^{2}-6 x-6\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2}\left(-x^{3}-3 x^{2}-6 x-6\right)
$$

Verified OK.
32.1.2 Solving as second order ode lagrange adjoint equation method ode In normal form the ode

$$
\begin{equation*}
x y^{\prime \prime}+(-x-3) y^{\prime}+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-x-3}{x} \\
& q(x)=\frac{3}{x} \\
& r(x)=0
\end{aligned}
$$

The Lagrange adjoint ode is given by

$$
\begin{array}{r}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q=0 \\
\xi^{\prime \prime}-\left(\frac{(-x-3) \xi(x)}{x}\right)^{\prime}+\left(\frac{3 \xi(x)}{x}\right)=0 \\
\xi^{\prime \prime}(x)-\frac{(-x-3) \xi^{\prime}(x)}{x}+\left(\frac{4}{x}+\frac{-x-3}{x^{2}}\right) \xi(x)=0
\end{array}
$$

Which is solved for $\xi(x)$. In normal form the ode

$$
\begin{equation*}
\xi^{\prime \prime}(x) x^{2}+\left(x^{2}+3 x\right) \xi^{\prime}(x)+(-3+3 x) \xi(x)=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
\xi^{\prime \prime}(x)+p(x) \xi^{\prime}(x)+q(x) \xi(x)=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x+3}{x} \\
& q(x)=\frac{-3+3 x}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $\xi(x)=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not $\xi(x)$.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(x+3)}{x^{2}}+\frac{-3+3 x}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(-\frac{6}{x}+\frac{x+3}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(x-3) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(x-3) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{(x-3) u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{x-3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x-3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{x-3}{x} d x \\
\ln (u) & =-x+3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-x+3 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-x+3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1} x^{3} \mathrm{e}^{-x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\left(x^{3}+3 x^{2}+6 x+6\right) c_{1} \mathrm{e}^{-x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\xi(x) & =v(x) x^{n} \\
& =\frac{-\left(x^{3}+3 x^{2}+6 x+6\right) c_{1} \mathrm{e}^{-x}+c_{2}}{x^{3}} \\
& =\frac{-\left(x^{3}+3 x^{2}+6 x+6\right) c_{1} \mathrm{e}^{-x}+c_{2}}{x^{3}}
\end{aligned}
$$

The original ode (2) now reduces to first order ode

$$
\begin{aligned}
\xi(x) y^{\prime}-y \xi^{\prime}(x)+\xi(x) p(x) y & =\int \xi(x) r(x) d x \\
y^{\prime}+y\left(p(x)-\frac{\xi^{\prime}(x)}{\xi(x)}\right) & =\frac{\int \xi(x) r(x) d x}{\xi(x)} \\
y^{\prime}+y\left(\frac{-x-3}{x}-\frac{\left(\frac{-\left(3 x^{2}+6 x+6\right) c_{3} \mathrm{e}^{-x}+\left(x^{3}+3 x^{2}+6 x+6\right) c_{3} \mathrm{e}^{-x}}{x^{3}}-\frac{3\left(-\left(x^{3}+3 x^{2}+6 x+6\right) c_{3} \mathrm{e}^{-x}+c_{2}\right)}{x^{4}}\right) x^{3}}{-\left(x^{3}+3 x^{2}+6 x+6\right) c_{3} \mathrm{e}^{-x}+c_{2}}\right) & =0
\end{aligned}
$$

Which is now a first order ode. This is now solved for y. In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y\left(-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}\right)}{-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}}
\end{aligned}
$$

Where $f(x)=\frac{-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}}{-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} e^{x}-6 c_{3} x-6 c_{3}}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}}{-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}} d x \\
\int \frac{1}{y} d y & =\int \frac{-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}}{-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}} d x \\
\ln (y) & =\ln \left(-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}\right)+c_{3} \\
y & =\mathrm{e}^{\ln \left(-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}\right)+c_{3}} \\
& =c_{3}\left(-c_{3} x^{3}-3 c_{3} x^{2}+c_{2} \mathrm{e}^{x}-6 c_{3} x-6 c_{3}\right)
\end{aligned}
$$

Hence, the solution found using Lagrange adjoint equation method is

$$
y=\mathrm{e}^{x} c_{2} c_{3}+c_{3}\left(-c_{3} x^{3}-3 c_{3} x^{2}-6 c_{3} x-6 c_{3}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{2} c_{3}+c_{3}\left(-c_{3} x^{3}-3 c_{3} x^{2}-6 c_{3} x-6 c_{3}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{2} c_{3}+c_{3}\left(-c_{3} x^{3}-3 c_{3} x^{2}-6 c_{3} x-6 c_{3}\right)
$$

Verified OK.

32.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+(-x-3) y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{3 y}{x}+\frac{(x+3) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x+3) y^{\prime}}{x}+\frac{3 y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x+3}{x}, P_{3}(x)=\frac{3}{x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators
$y^{\prime \prime} x+(-x-3) y^{\prime}+3 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-4+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-3)-a_{k}(k+r-3)\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-4+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,4\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r-3)\left(a_{k+1}(k+1+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}}{k+1+r}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}}{k+1}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Recursion relation for $r=4$

$$
a_{k+1}=\frac{a_{k}}{k+5}
$$

- \quad Solution for $r=4$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+4}, a_{k+1}=\frac{a_{k}}{k+5}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+4}\right), a_{1+k}=\frac{a_{k}}{1+k}, b_{1+k}=\frac{b_{k}}{k+5}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x*diff(y(x), x$2)-(x+3)*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2}\left(x^{3}+3 x^{2}+6 x+6\right)
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 29
DSolve[$x * y$ '' $[x]-(x+3) * y$ ' $[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{x}-c_{2}\left(x^{3}+3 x^{2}+6 x+6\right)
$$

32.2 problem Ex 2

32.2.1 Solving using Kovacic algorithm 1896
32.2.2 Maple step by step solution . 1903

Internal problem ID [11303]
Internal file name [OUTPUT/10288_Wednesday_December_21_2022_03_47_47_PM_24759415/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x-3) y^{\prime \prime}-(4 x-9) y^{\prime}+(3 x-6) y=0
$$

32.2.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(x-3) y^{\prime \prime}+(-4 x+9) y^{\prime}+(3 x-6) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x-3 \\
& B=-4 x+9 \tag{3}\\
& C=3 x-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 x^{2}-12 x+15}{4(x-3)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 x^{2}-12 x+15 \\
& t=4(x-3)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 x^{2}-12 x+15}{4(x-3)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 190: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(x-3)^{2}$. There is a pole at $x=3$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=1+\frac{3}{x-3}+\frac{15}{4(x-3)^{2}}
$$

For the pole at $x=3$ let b be the coefficient of $\frac{1}{(x-3)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx 1+\frac{3}{2 x}+\frac{21}{4 x^{2}}+\frac{135}{8 x^{3}}+\frac{1665}{32 x^{4}}+\frac{10071}{64 x^{5}}+\frac{60453}{128 x^{6}}+\frac{362151}{256 x^{7}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=1
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =1 \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{-1}=\frac{1}{x}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=1
$$

This shows that the coefficient of $\frac{1}{x}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{x}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{x}$ in r will be the coefficient in R of the term in x of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{4 x^{2}-12 x+15}{4 x^{2}-24 x+36} \\
& =Q+\frac{R}{4 x^{2}-24 x+36} \\
& =(1)+\left(\frac{12 x-21}{4 x^{2}-24 x+36}\right) \\
& =1+\frac{12 x-21}{4 x^{2}-24 x+36}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term x in the remainder R is 12 . Dividing this by leading coefficient in t which is 4 gives 3 . Now b can be found.

$$
\begin{aligned}
b & =(3)-(0) \\
& =3
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{3}{1}-0\right)=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{3}{1}-0\right)=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{4 x^{2}-12 x+15}{4(x-3)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
3	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	1	$\frac{3}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2(x-3)}+(-)(1) \\
& =-\frac{3}{2(x-3)}-1 \\
& =-\frac{2 x-3}{2(x-3)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{3}{2(x-3)}-1\right)(0)+\left(\left(\frac{3}{2(x-3)^{2}}\right)+\left(-\frac{3}{2(x-3)}-1\right)^{2}-\left(\frac{4 x^{2}-12 x+15}{4(x-3)^{2}}\right)\right)=0$
$0=0$
The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{3}{2(x-3)}-1\right) d x} \\
& =\frac{\mathrm{e}^{-x}}{(x-3)^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x+9}{x-3} d x} \\
& =z_{1} e^{2 x+\frac{3 \ln (x-3)}{2}} \\
& =z_{1}\left((x-3)^{\frac{3}{2}} \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x+9}{x-3} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x+3 \ln (x-3)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}\left(4 x^{3}-42 x^{2}+150 x-183\right)}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{2 x}\left(4 x^{3}-42 x^{2}+150 x-183\right)}{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{3 x}\left(4 x^{3}-42 x^{2}+150 x-183\right)}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{3 x}\left(4 x^{3}-42 x^{2}+150 x-183\right)}{8}
$$

Verified OK.

32.2.2 Maple step by step solution

Let's solve

$$
(x-3) y^{\prime \prime}+(-4 x+9) y^{\prime}+(3 x-6) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3(x-2) y}{x-3}+\frac{(4 x-9) y^{\prime}}{x-3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(4 x-9) y^{\prime}}{x-3}+\frac{3(x-2) y}{x-3}=0$
Check to see if $x_{0}=3$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{4 x-9}{x-3}, P_{3}(x)=\frac{3(x-2)}{x-3}\right]$
- $(x-3) \cdot P_{2}(x)$ is analytic at $x=3$
$\left.\left((x-3) \cdot P_{2}(x)\right)\right|_{x=3}=-3$
- $(x-3)^{2} \cdot P_{3}(x)$ is analytic at $x=3$
$\left.\left((x-3)^{2} \cdot P_{3}(x)\right)\right|_{x=3}=0$
- $x=3$ is a regular singular point

Check to see if $x_{0}=3$ is a regular singular point
$x_{0}=3$

- Multiply by denominators
$(x-3) y^{\prime \prime}+(-4 x+9) y^{\prime}+(3 x-6) y=0$
- Change variables using $x=u+3$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-4 u-3)\left(\frac{d}{d u} y(u)\right)+(3 u+3) y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}$
- Shift index using $k->k+1$

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-4+r) u^{-1+r}+\left(a_{1}(1+r)(-3+r)-a_{0}(-3+4 r)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k-3+r)\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-4+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,4\}$
- Each term must be 0
$a_{1}(1+r)(-3+r)-a_{0}(-3+4 r)=0$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+1+r)(k-3+r)-4 a_{k} k-4 a_{k} r+3 a_{k}+3 a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
a_{k+2}(k+2+r)(k-2+r)-4 a_{k+1}(k+1)-4 r a_{k+1}+3 a_{k+1}+3 a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{4 k a_{k+1}+4 r a_{k+1}-3 a_{k}+a_{k+1}}{(k+2+r)(k-2+r)}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=\frac{4 k a_{k+1}-3 a_{k}+a_{k+1}}{(k+2)(k-2)}
$$

- Series not valid for $r=0$, division by 0 in the recursion relation at $k=2$

$$
a_{k+2}=\frac{4 k a_{k+1}-3 a_{k}+a_{k+1}}{(k+2)(k-2)}
$$

- Recursion relation for $r=4$

$$
a_{k+2}=\frac{4 k a_{k+1}-3 a_{k}+17 a_{k+1}}{(k+6)(k+2)}
$$

- \quad Solution for $r=4$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+4}, a_{k+2}=\frac{4 k a_{k+1}-3 a_{k}+17 a_{k+1}}{(k+6)(k+2)}, 5 a_{1}-13 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x-3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-3)^{k+4}, a_{k+2}=\frac{4 k a_{k+1}-3 a_{k}+17 a_{k+1}}{(k+6)(k+2)}, 5 a_{1}-13 a_{0}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29
dsolve $((x-3) * \operatorname{diff}(y(x), x \$ 2)-(4 * x-9) * \operatorname{diff}(y(x), x)+(3 * x-6) * y(x)=0, y(x)$, singsol $=a l l)$

$$
y(x)=4 c_{2}\left(x^{3}-\frac{21}{2} x^{2}+\frac{75}{2} x-\frac{183}{4}\right) \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 42
DSolve $\left[(x-3) * y^{\prime} '[x]-(4 * x-9) * y\right.$ ' $[x]+(3 * x-6) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{8} c_{2} e^{3 x-9}\left(4 x^{3}-42 x^{2}+150 x-183\right)+c_{1} e^{x-3}
$$

32.3 problem Ex 3

32.3.1 Solving as second order change of variable on y method 1 ode . 1907
32.3.2 Solving as second order bessel ode ode 1910
32.3.3 Solving using Kovacic algorithm 1911
32.3.4 Maple step by step solution . 1914

Internal problem ID [11304]
Internal file name [OUTPUT/10289_Wednesday_December_21_2022_03_47_49_PM_39648213/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 3 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-x^{2}+2\right) y=0
$$

32.3.1 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{-x^{2}+2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{-x^{2}+2}{x^{2}}-\frac{\left(\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(\frac{4}{x}\right)^{2}}{4} \\
& =\frac{-x^{2}+2}{x^{2}}-\frac{\left(-\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{-x^{2}+2}{x^{2}}-\left(-\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =-1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{4}{2}} \\
& =\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)-v(x)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
v(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}}
$$

Hence (7) becomes

$$
y=\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}}{x^{2}}
$$

Verified OK.

32.3.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-x^{2}+2\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
y^{\prime \prime} x^{2}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =-\frac{3}{2} \\
\beta & =i \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{2} \cosh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}}+\frac{i c_{2} \sqrt{2} \sinh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{2} \cosh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}}+\frac{i c_{2} \sqrt{2} \sinh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{2} \cosh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}}+\frac{i c_{2} \sqrt{2} \sinh (x)}{x^{\frac{3}{2}} \sqrt{\pi} \sqrt{i x}}
$$

Verified OK.

32.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-x^{2}+2\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=4 x \tag{3}\\
& C=-x^{2}+2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 192: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{14 x}{x^{2}} d x} \\
& =z_{1} e^{-2 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\mathrm{e}^{-x}}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\mathrm{e}^{-x}}{x^{2}}\right)+c_{2}\left(\frac{\mathrm{e}^{-x}}{x^{2}}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{-x}}{x^{2}}+\frac{c_{2} \mathrm{e}^{x}}{2 x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{-x}}{x^{2}}+\frac{c_{2} \mathrm{e}^{x}}{2 x^{2}}
$$

Verified OK.

32.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-x^{2}+2\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{\left(x^{2}-2\right) y}{x^{2}}-\frac{4 y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{4 y^{\prime}}{x}-\frac{\left(x^{2}-2\right) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{4}{x}, P_{3}(x)=-\frac{x^{2}-2}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=4$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(-x^{2}+2\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(2+r)(1+r) x^{r}+a_{1}(3+r)(2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r+1)-a_{k-2}\right) x^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(2+r)(1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,-1\}$
- \quad Each term must be 0
$a_{1}(3+r)(2+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+2)(k+r+1)-a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+4+r)(k+3+r)-a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{a_{k}}{(k+4+r)(k+3+r)}
$$

- \quad Recursion relation for $r=-2$

$$
a_{k+2}=\frac{a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=-2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+2}=\frac{a_{k}}{(k+3)(k+2)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=\frac{a_{k}}{(k+3)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-1}\right), a_{k+2}=\frac{a_{k}}{(k+2)(1+k)}, a_{1}=0, b_{k+2}=\frac{b_{k}}{(k+3)(k+2)}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+4 * x * \operatorname{diff}(y(x), x)+\left(2-x^{\wedge} 2\right) * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{1} \sinh (x)+c_{2} \cosh (x)}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 28
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+4 * x * y$ ' $[x]+\left(2-x^{\wedge} 2\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2 c_{1} e^{-x}+c_{2} e^{x}}{2 x^{2}}
$$

32.4 problem Ex 4

32.4.1 Solving as second order change of variable on y method 2 ode. 1918
32.4.2 Solving as second order ode non constant coeff transformation on B ode
32.4.3 Solving using Kovacic algorithm 1923

Internal problem ID [11305]
Internal file name [OUTPUT/10290_Wednesday_December_21_2022_03_47_50_PM_93363174/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

32.4.1 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{2}{x^{2}+1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}+1}+\frac{2}{x^{2}+1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{2 x}{x^{2}+1}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x\left(x^{2}+1\right)} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x\left(x^{2}+1\right)}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-2 \ln (x)+\ln \left(x^{2}+1\right)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+\ln \left(x^{2}+1\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)+\ln \left(x^{2}+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(1+\frac{1}{x^{2}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(x-\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(x-\frac{1}{x}\right)+c_{2}\right) x \\
& =c_{1} x^{2}+c_{2} x-c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1}\left(x-\frac{1}{x}\right)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1}\left(x-\frac{1}{x}\right)+c_{2}\right) x
$$

Verified OK.

32.4.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}+1 \\
& B=-2 x \\
& C=2 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}+1\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x\left(x^{2}+1\right) v^{\prime \prime}+(-4) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-2 x^{3}-2 x\right) u^{\prime}(x)-4 u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-2 \ln (x)+\ln \left(x^{2}+1\right)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+\ln \left(x^{2}+1\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x)+\ln \left(x^{2}+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(1+\frac{1}{x^{2}}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(1+\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{\left(x^{2}+1\right) c_{1}}{x^{2}} \mathrm{~d} x \\
& =c_{1}\left(x-\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-2 x)\left(c_{1}\left(x-\frac{1}{x}\right)+c_{2}\right) \\
& =-2 c_{1} x^{2}-2 c_{2} x+2 c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 c_{1} x^{2}-2 c_{2} x+2 c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 c_{1} x^{2}-2 c_{2} x+2 c_{1}
$$

Verified OK.

32.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}+1 \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{\left(x^{2}+1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{3}{\left(x^{2}+1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 194: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}+1\right)^{2}$. There is a pole at $x=i$ of order 2 . There is a pole at $x=-i$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4(x-i)^{2}}+\frac{3}{4(x+i)^{2}}+\frac{3 i}{4(x-i)}-\frac{3 i}{4(x+i)}
$$

For the pole at $x=i$ let b be the coefficient of $\frac{1}{(x-i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=-i$ let b be the coefficient of $\frac{1}{(x+i)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{3}{\left(x^{2}+1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
i	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
$-i$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
4	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x-i)}+\frac{3}{2(x+i)}+(-)(0) \\
& =-\frac{1}{2(x-i)}+\frac{3}{2(x+i)} \\
& =\frac{x-2 i}{x^{2}+1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
(0)+2\left(-\frac{1}{2(x-i)}+\frac{3}{2(x+i)}\right)(0)+\left(\left(\frac{1}{2(x-i)^{2}}-\frac{3}{2(x+i)^{2}}\right)+\left(-\frac{1}{2(x-i)}+\frac{3}{2(x+i)}\right)^{2}-\left(-\frac{}{(}\right.\right.
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x-i)}+\frac{3}{2(x+i)}\right) d x} \\
& =\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{(i x+1)^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x}{x^{2}+1} d x} \\
& =z_{1} e^{\frac{\ln \left(x^{2}+1\right)}{2}} \\
& =z_{1}\left(\sqrt{x^{2}+1}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\left(x^{2}+1\right)^{2}}{(i x+1)^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln \left(x^{2}+1\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{x}{(x+i)^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\left(x^{2}+1\right)^{2}}{(i x+1)^{2}}\right)+c_{2}\left(\frac{\left(x^{2}+1\right)^{2}}{(i x+1)^{2}}\left(-\frac{x}{(x+i)^{2}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}\left(x^{2}+1\right)^{2}}{(i x+1)^{2}}+\frac{c_{2}\left(x^{2}+1\right)^{2} x}{(x-i)^{2}(x+i)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}\left(x^{2}+1\right)^{2}}{(i x+1)^{2}}+\frac{c_{2}\left(x^{2}+1\right)^{2} x}{(x-i)^{2}(x+i)^{2}}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve $\left(\left(x^{\wedge} 2+1\right) * \operatorname{diff}(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=c_{2} x^{2}+c_{1} x-c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 21
DSolve[($\left.x^{\wedge} 2+1\right) * y$ '' $[x]-2 * x * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2} x-c_{1}(x-i)^{2}
$$

32.5 problem Ex 5

32.5.1 Solving using Kovacic algorithm 1930
32.5.2 Maple step by step solution . 1935

Internal problem ID [11306]
Internal file name [OUTPUT/10291_Wednesday_December_21_2022_03_47_52_PM_76349440/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x y^{\prime \prime}-(2 x-1) y^{\prime}+y(x-1)=0
$$

32.5.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x y^{\prime \prime}+(-2 x+1) y^{\prime}+y(x-1) & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=-2 x+1 \tag{3}\\
& C=x-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 195: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x+1}{x} d x} \\
& =z_{1} e^{x-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x+1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(\ln (x))\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x} \ln (x)
$$

Verified OK.

32.5.2 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+(-2 x+1) y^{\prime}+y(x-1)=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(x-1) y}{x}+\frac{(2 x-1) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(2 x-1) y^{\prime}}{x}+\frac{(x-1) y}{x}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{2 x-1}{x}, P_{3}(x)=\frac{x-1}{x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x+(-2 x+1) y^{\prime}+y(x-1)=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r^{2} x^{-1+r}+\left(a_{1}(1+r)^{2}-a_{0}(1+2 r)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}(2 k+2 r+1)+a_{k-1}\right) x^{2}\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- \quad Each term must be 0
$a_{1}(1+r)^{2}-a_{0}(1+2 r)=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1)^{2}+(-2 k-1) a_{k}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}+(-2 k-3) a_{k+1}+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}$
- Recursion relation for $r=0$
$a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}, a_{1}-a_{0}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(x*diff(y(x),x$2)-(2*x-1)*diff(y(x),x)+(x-1)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x}\left(c_{1}+c_{2} \ln (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 17

```
DSolve \([x * y\) ' ' \([x]-(2 * x-1) * y\) ' \([x]+(x-1) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
```

$$
y(x) \rightarrow e^{x}\left(c_{2} \log (x)+c_{1}\right)
$$

32.6 problem Ex 6

32.6.1 Solving as second order change of variable on y method 1 ode . 1939
32.6.2 Solving as second order bessel ode ode 1942
32.6.3 Solving using Kovacic algorithm 1943
32.6.4 Maple step by step solution . 1946

Internal problem ID [11307]
Internal file name [OUTPUT/10292_Wednesday_December_21_2022_03_47_53_PM_82182492/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 6 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change_of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+\left(x^{2}+6\right) y=0
$$

32.6.1 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{x^{2}+6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{x^{2}+6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{x^{2}+6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{x^{2}+6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{x}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4}\left(v^{\prime \prime}(x)+v(x)\right)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
v(x)=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
v(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} \cos (x)+c_{2} \sin (x)\right) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \cos (x)+c_{2} \sin (x)\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \cos (x)+c_{2} \sin (x)\right) x^{2}
$$

Verified OK.

32.6.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime} x^{2}-4 y^{\prime} x+\left(x^{2}+6\right) y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
y^{\prime \prime} x^{2}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{5}{2} \\
\beta & =1 \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} x^{2} \sqrt{2} \cos (x)}{\sqrt{\pi}}+\frac{c_{2} x^{2} \sqrt{2} \sin (x)}{\sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2} \sqrt{2} \cos (x)}{\sqrt{\pi}}+\frac{c_{2} x^{2} \sqrt{2} \sin (x)}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2} \sqrt{2} \cos (x)}{\sqrt{\pi}}+\frac{c_{2} x^{2} \sqrt{2} \sin (x)}{\sqrt{\pi}}
$$

Verified OK.

32.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}-4 y^{\prime} x+\left(x^{2}+6\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=x^{2}+6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 197: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) x^{2}\right)+c_{2}\left(\cos (x) x^{2}(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x) x^{2}+c_{2} \sin (x) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (x) x^{2}+c_{2} \sin (x) x^{2}
$$

Verified OK.

32.6.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+\left(x^{2}+6\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}+6\right) y}{x^{2}}+\frac{4 y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{\left(x^{2}+6\right) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{4}{x}, P_{3}(x)=\frac{x^{2}+6}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-4$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=6$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+\left(x^{2}+6\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(-2+r)(-3+r) x^{r}+a_{1}(-1+r)(-2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r-2)(k+r-3)+a_{k-2}\right) x^{k}\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(-2+r)(-3+r)=0
$$

- Values of r that satisfy the indicial equation
$r \in\{2,3\}$
- \quad Each term must be 0
$a_{1}(-1+r)(-2+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r-2)(k+r-3)+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+r)(k+r-1)+a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a_{k}}{(k+r)(k+r-1)}
$$

- Recursion relation for $r=2$

$$
a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=3$

$$
a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}
$$

- \quad Solution for $r=3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+3}\right), a_{k+2}=-\frac{a_{k}}{(k+2)(1+k)}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+3)(k+2)}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(6+x^2)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 37
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $'[x]-4 * x * y$ ' $[x]+\left(6+x^{\wedge} 2\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{-i x} x^{2}\left(2 c_{1}-i c_{2} e^{2 i x}\right)
$$

32.7 problem Ex 7

32.7.1 Solving as second order change of variable on y method 2 ode. 1950
32.7.2 Solving using Kovacic algorithm 1953
32.7.3 Maple step by step solution . 1959

Internal problem ID [11308]
Internal file name [OUTPUT/10293_Wednesday_December_21_2022_03_47_55_PM_31561280/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(2 x^{3}-1\right) y^{\prime \prime}-6 x^{2} y^{\prime}+6 y x=0
$$

32.7.1 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(2 x^{3}-1\right) y^{\prime \prime}-6 x^{2} y^{\prime}+6 y x=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{6 x^{2}}{2 x^{3}-1} \\
q(x) & =\frac{6 x}{2 x^{3}-1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{6 n x}{2 x^{3}-1}+\frac{6 x}{2 x^{3}-1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{6 x^{2}}{2 x^{3}-1}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(-2 x^{3}-2\right) v^{\prime}(x)}{2 x^{4}-x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{\left(-2 x^{3}-2\right) u(x)}{2 x^{4}-x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u\left(x^{3}+1\right)}{x\left(2 x^{3}-1\right)}
\end{aligned}
$$

Where $f(x)=\frac{2 x^{3}+2}{x\left(2 x^{3}-1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2 x^{3}+2}{x\left(2 x^{3}-1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2 x^{3}+2}{x\left(2 x^{3}-1\right)} d x \\
\ln (u) & =\ln \left(2 x^{3}-1\right)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{\ln \left(2 x^{3}-1\right)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln \left(2 x^{3}-1\right)-2 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(2 x-\frac{1}{x^{2}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(x^{2}+\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(x^{2}+\frac{1}{x}\right)+c_{2}\right) x \\
& =c_{1} x^{3}+c_{2} x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1}\left(x^{2}+\frac{1}{x}\right)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1}\left(x^{2}+\frac{1}{x}\right)+c_{2}\right) x
$$

Verified OK.

32.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(2 x^{3}-1\right) y^{\prime \prime}-6 x^{2} y^{\prime}+6 y x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{3}-1 \\
& B=-6 x^{2} \tag{3}\\
& C=6 x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3 x\left(x^{3}+4\right)}{\left(2 x^{3}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 x\left(x^{3}+4\right) \\
& t=\left(2 x^{3}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3 x\left(x^{3}+4\right)}{\left(2 x^{3}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 199: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =6-4 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(2 x^{3}-1\right)^{2}$. There is a pole at $x=\frac{2^{\frac{2}{3}}}{2}$ of order 2 . There is a pole at $x=-\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}$ of order 2 . There is a pole at $x=-\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.

Looking at poles of order 2. The partial fractions decomposition of r is

$$
\begin{aligned}
r= & \frac{3}{4\left(x-\frac{2^{\frac{2}{3}}}{2}\right)^{2}}+\frac{3}{4\left(x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2}}+\frac{3}{4\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2}} \\
& -\frac{2^{\frac{1}{3}}}{2\left(x-\frac{2^{\frac{2}{3}}}{2}\right)}-\frac{\left(-\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2}}{x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}}-\frac{\left(-\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2}}{x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}}
\end{aligned}
$$

For the pole at $x=\frac{2^{\frac{2}{3}}}{2}$ let b be the coefficient of $\left.\frac{1}{\left(x-\frac{2}{3}\right.}\right)^{2}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=-\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}$ let b be the coefficient of $\frac{1}{\left(x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2 \frac{2}{3}}{4}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=-\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}$ let b be the coefficient of $\frac{1}{\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3 x\left(x^{3}+4\right)}{\left(2 x^{3}-1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3 x\left(x^{3}+4\right)}{\left(2 x^{3}-1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
$\frac{2^{\frac{2}{3}}}{2}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
$-\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{2}}{4}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
$-\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{-}+\alpha_{c_{3}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{3}{2}\right) \\
& =1
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+\left((-)[\sqrt{r}]_{c_{3}}+\frac{\alpha_{c_{3}}^{-}}{x-c_{3}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2\left(x-\frac{2^{2}}{2}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{2}}{4}\right)}+(-)(0) \\
& =-\frac{1}{2\left(x-\frac{2^{\frac{2}{3}}}{2}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)} \\
& =-\frac{3 x^{2}}{2 x^{3}-1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{1}{2\left(x-\frac{2^{\frac{2}{3}}}{2}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}-\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)}\right)(1)+\left(\left(\frac{1}{2\left(x-\frac{2^{\frac{2}{3}}}{2}\right)^{2}}+\frac{}{2(x+}\right.\right.$

Solving for the coefficients a_{i} in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=0\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int\left(-\frac{1}{2\left(x-\frac{2^{\frac{2}{2}}}{2}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{4}}}{4}-\frac{i \sqrt{3} \frac{2}{3}_{3}^{3}}{4}\right)}-\frac{1}{2\left(x+\frac{2^{\frac{2}{4}} 4}{4}+\frac{i \sqrt{3} 2^{\frac{2}{3}}}{4}\right)}\right) d x} \\
& =(x) \mathrm{e}^{-\frac{\ln \left(-2^{\frac{2}{3}}+2 x\right)}{2}-\frac{\ln \left(82^{\frac{1}{3}}+8 x 2^{\frac{2}{3}}+16 x^{2}\right)}{2}} \\
& =\frac{x \sqrt{2}}{4 \sqrt{-2^{\frac{2}{3}}+2 x} \sqrt{x 2^{\frac{2}{3}}+2 x^{2}+2^{\frac{1}{3}}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-6 x^{2}}{2 x^{3}-1} d x} \\
& =z_{1} e^{\frac{\ln \left(2 x^{3}-1\right)}{2}} \\
& =z_{1}\left(\sqrt{2 x^{3}-1}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\sqrt{2} x \sqrt{2 x^{3}-1}}{4 \sqrt{4 x^{3}-2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6 x^{2}}{2 x^{3}-1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln \left(2 x^{3}-1\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{16 x^{3}+16}{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\sqrt{2} x \sqrt{2 x^{3}-1}}{4 \sqrt{4 x^{3}-2}}\right)+c_{2}\left(\frac{\sqrt{2} x \sqrt{2 x^{3}-1}}{4 \sqrt{4 x^{3}-2}}\left(\frac{16 x^{3}+16}{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{2} x \sqrt{2 x^{3}-1}}{4 \sqrt{4 x^{3}-2}}+c_{2}\left(4 x^{3}+4\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{2} x \sqrt{2 x^{3}-1}}{4 \sqrt{4 x^{3}-2}}+c_{2}\left(4 x^{3}+4\right)
$$

Verified OK.

32.7.3 Maple step by step solution

Let's solve

$$
\left(2 x^{3}-1\right) y^{\prime \prime}-6 x^{2} y^{\prime}+6 y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{6 x^{2} y^{\prime}}{2 x^{3}-1}-\frac{6 x y}{2 x^{3}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{6 x^{2} y^{\prime}}{2 x^{3}-1}+\frac{6 x y}{2 x^{3}-1}=0$

Check to see if x_{0} is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{6 x^{2}}{2 x^{3}-1}, P_{3}(x)=\frac{6 x}{2 x^{3}-1}\right]$
- $\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}\right) \cdot P_{2}(x)$ is analytic at $x=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$
$\left.\left(\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}}=0$
- $\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$

$$
\left.\left(\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{2}}{4}}=0
$$

- $x=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$

- Multiply by denominators

$$
\left(2 x^{3}-1\right) y^{\prime \prime}-6 x^{2} y^{\prime}+6 y x=0
$$

- Change variables using $x=u-\frac{2^{\frac{2}{3}}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$ so that the regular singular point is at $u=0$ $\left(2 u^{3}-\frac{3 u^{2} 2^{\frac{2}{3}}}{2}-\frac{3 \mathrm{I} u^{2} \sqrt{3} 2^{\frac{2}{3}}}{2}-\frac{3 u 2^{\frac{1}{3}}}{2}+\frac{3 \mathrm{I} u 2^{\frac{1}{3}} \sqrt{3}}{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(-6 u^{2}+3 u 2^{\frac{2}{3}}+3 \mathrm{I} u \sqrt{3} 2^{\frac{2}{3}}+\frac{32^{\frac{1}{3}}}{2}-\frac{3}{3}\right.$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
\frac{32^{\frac{1}{3}}(\mathrm{I} \sqrt{3}-1) r(r-2) a_{0} u^{r-1}}{2}+\left(\frac{32^{\frac{1}{3}}(\mathrm{I} \sqrt{3}-1)(1+r)(r-1) a_{1}}{2}-\frac{32^{\frac{2}{3}}(1+\mathrm{I} \sqrt{3})\left(r^{2}-3 r+1\right) a_{0}}{2}\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(\frac{32^{\frac{1}{3}}(\mathrm{I} \sqrt{3}-1)}{}\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$\frac{32^{\frac{1}{3}}(\mathrm{I} \sqrt{3}-1) r(r-2)}{2}=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term must be 0

$$
\frac{32^{\frac{1}{3}}(\mathrm{I} \sqrt{3}-1)(1+r)(r-1) a_{1}}{2}-\frac{32^{\frac{2}{3}}(1+\mathrm{I} \sqrt{3})\left(r^{2}-3 r+1\right) a_{0}}{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
-\frac{3 a_{k}(1+\mathrm{I} \sqrt{3})\left(k^{2}+(2 r-3) k+r^{2}-3 r+1\right) 2^{\frac{2}{3}}}{2}+\frac{3 \mathrm{I}(k+1+r) a_{k+1} 2^{\frac{1}{3}}(k+r-1) \sqrt{3}}{2}-\frac{3 a_{k+1}(k+1+r)(k+r-1) 2^{\frac{1}{3}}}{2}+2 a_{k-1}(k-
$$

- \quad Shift index using $k->k+1$

$$
-\frac{3 a_{k+1}(1+\mathrm{I} \sqrt{3})\left((k+1)^{2}+(2 r-3)(k+1)+r^{2}-3 r+1\right) 2^{\frac{2}{3}}}{2}+\frac{3 \mathrm{I}(k+2+r) a_{k+2} 2^{\frac{1}{3}}(k+r) \sqrt{3}}{2}-\frac{3 a_{k+2}(k+2+r)(k+r) 2^{\frac{1}{3}}}{2}+2 a_{k}(k
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{\left(3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} r^{2} a_{k+1}+6 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k r a_{k+1}-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} r a_{k+1}-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}+\right.}{6\left(\mathrm{I} \sqrt{3} k^{2}+2 \mathrm{I} \sqrt{3} k r+\mathrm{I} \sqrt{3} r^{2}+2 \mathrm{I} \sqrt{3} k+2\right.}
$$

- \quad Recursion relation for $r=0$

$$
a_{k+2}=\frac{\left(-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}-32^{\frac{2}{3}} k a_{k+1}-3 a_{k+1} 2^{\frac{2}{3}}-4 k^{2} a_{k}+16 k a_{k}-12 a_{k}\right) 2^{\frac{2}{3}}}{6\left(\mathrm{I} \sqrt{3} k^{2}+2 \mathrm{I} \sqrt{3} k-k^{2}-2 k\right)}
$$

- Series not valid for $r=0$, division by 0 in the recursion relation at $k=0$

$$
a_{k+2}=\frac{\left(-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}-3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}-32^{\frac{2}{3}} k a_{k+1}-3 a_{k+1} 2^{\frac{2}{3}}-4 k^{2} a_{k}+16 k a_{k}-12 a_{k}\right) 2^{\frac{2}{3}}}{6\left(\mathrm{I} \sqrt{3} k^{2}+2 \mathrm{I} \sqrt{3} k-k^{2}-2 k\right)}
$$

- Recursion relation for $r=2$

$$
a_{k+2}=\frac{\left(9 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}+92^{\frac{2}{3}} k a_{k+1}+3 a_{k+1} 2^{\frac{2}{3}}-4 k^{2} a_{k}+4 a_{k}\right) 2^{\frac{2}{3}}}{6\left(\mathrm{I} \sqrt{3} k^{2}+6 \mathrm{I} \sqrt{3} k+8 \mathrm{I} \sqrt{3}-k^{2}-6 k-8\right)}
$$

- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+2}=\frac{\left(9 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}+92^{\frac{2}{3}} k a_{k+1}+3 a_{k+1} 2^{\frac{2}{3}}-4 k^{2}\right.}{6\left(\mathrm{I} \sqrt{3} k^{2}+6 \mathrm{I} \sqrt{3} k+8 \mathrm{I} \sqrt{3}-k^{2}-6 k-8\right)}\right.
$$

- \quad Revert the change of variables $u=x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{2^{\frac{2}{3}}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{\frac{2}{3}}}{4}\right)^{k+2}, a_{k+2}=\frac{\left(9 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} k a_{k+1}+3 \mathrm{I} 2^{\frac{2}{3}} \sqrt{3} a_{k+1}+3 \mathrm{I}^{\frac{2}{3}} \sqrt{3} k^{2} a_{k+1}+32^{\frac{2}{3}} k^{2} a_{k+1}+92^{\frac{2}{3}} k a\right.}{6\left(\mathrm{I} \sqrt{3} k^{2}+6 \mathrm{I} \sqrt{3} k+8 \mathrm{I} \sqrt{3}-k^{2}-6 k-8\right)}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve((2*x^3-1)*diff(y(x),x$2)-6*x^2*diff (y(x),x)+6*x*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{2} x^{3}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 2.452 (sec). Leaf size: 19
DSolve[(2*x^3-1)*y' ${ }^{\prime}[\mathrm{x}]-6 * \mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $[\mathrm{x}]+6 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} x-c_{2}\left(x^{3}+1\right)
$$

32.8 problem Ex 8

32.8.1 Solving as second order change of variable on y method 1 ode . 1963
32.8.2 Solving as second order change of variable on y method 2 ode . 1970
32.8.3 Solving using Kovacic algorithm 1975

Internal problem ID [11309]
Internal file name [OUTPUT/10294_Wednesday_December_21_2022_03_47_56_PM_17563448/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_change__of_variable_on_y_method_1", "second_order_change_of__variable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime} x^{2}-2 x(1+x) y^{\prime}+2 y(1+x)=x^{3}
$$

32.8.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2 x^{2}-2 x}{x^{2}} \\
& q(x)=\frac{2+2 x}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2+2 x}{x^{2}}-\frac{\left(\frac{-2 x^{2}-2 x}{x^{2}}\right)^{\prime}}{2}-\frac{\left(\frac{-2 x^{2}-2 x}{x^{2}}\right)^{2}}{4} \\
& =\frac{2+2 x}{x^{2}}-\frac{\left(\frac{-4 x-2}{x^{2}}-\frac{2\left(-2 x^{2}-2 x\right)}{x^{3}}\right)}{2}-\frac{\left(\frac{\left(-2 x^{2}-2 x\right)^{2}}{x^{4}}\right)}{4} \\
& =\frac{2+2 x}{x^{2}}-\left(\frac{-4 x-2}{2 x^{2}}-\frac{-2 x^{2}-2 x}{x^{3}}\right)-\frac{\left(-2 x^{2}-2 x\right)^{2}}{4 x^{4}} \\
& =-1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2 x^{2}-2 x}{x^{2}}} \\
& =x \mathrm{e}^{x} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x \mathrm{e}^{x} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
\mathrm{e}^{x}\left(v^{\prime \prime}(x)-v(x)\right)=1
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)-v(x)=\mathrm{e}^{-x}
$$

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=\mathrm{e}^{-x}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
v^{\prime \prime}(x)-v(x)=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
v(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
v_{p}=A_{1} x \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution v_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution v_{p}, gives the particular solution

$$
v_{p}=-\frac{x \mathrm{e}^{-x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(-\frac{x \mathrm{e}^{-x}}{2}\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}-\frac{x \mathrm{e}^{-x}}{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x \mathrm{e}^{x}
$$

Hence (7) becomes

$$
y=\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}-\frac{x \mathrm{e}^{-x}}{2}\right) x \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}-\frac{x \mathrm{e}^{-x}}{2}\right) x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} x \\
& y_{2}=\mathrm{e}^{-x} x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} x & \mathrm{e}^{-x} x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x} x\right) & \frac{d}{d x}\left(\mathrm{e}^{-x} x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} x & \mathrm{e}^{-x} x \mathrm{e}^{x} \\
\mathrm{e}^{2 x}+2 \mathrm{e}^{2 x} x & \mathrm{e}^{x} \mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x} x\right)\left(\mathrm{e}^{x} \mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x} x \mathrm{e}^{x}\right)\left(\mathrm{e}^{2 x}+2 \mathrm{e}^{2 x} x\right)
$$

Which simplifies to

$$
W=-2 \mathrm{e}^{-x} \mathrm{e}^{3 x} x^{2}
$$

Which simplifies to

$$
W=-2 x^{2} \mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-x} x^{4} \mathrm{e}^{x}}{-2 x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-2 x}}{2} d x
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{-2 x}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \mathrm{e}^{2 x}}{-2 x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{1}{2} d x
$$

Hence

$$
u_{2}=-\frac{x}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x} x \mathrm{e}^{2 x}}{4}-\frac{x^{2} \mathrm{e}^{-x} \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{1}{4} x-\frac{1}{2} x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}-\frac{x \mathrm{e}^{-x}}{2}\right) x \mathrm{e}^{x}\right)+\left(-\frac{1}{4} x-\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x\left(-2 c_{1} \mathrm{e}^{2 x}-2 c_{2}+x\right)}{2}-\frac{x}{4}-\frac{x^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x\left(-2 c_{1} \mathrm{e}^{2 x}-2 c_{2}+x\right)}{2}-\frac{x}{4}-\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x\left(-2 c_{1} \mathrm{e}^{2 x}-2 c_{2}+x\right)}{2}-\frac{x}{4}-\frac{x^{2}}{2}
$$

Verified OK.

32.8.2 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-2 x^{2}-2 x, C=2+2 x, f(x)=x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2 x-2}{x} \\
& q(x)=\frac{2+2 x}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(-2 x-2)}{x^{2}}+\frac{2+2 x}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{-2 x-2}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)-2 v^{\prime}(x) & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)-2 u(x)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 u} d u & =\int d x \\
\frac{\ln (u)}{2} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\sqrt{u}=c_{2} \mathrm{e}^{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{3} \\
& =\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}+c_{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}+c_{3}\right) x \\
& =\frac{\left(\mathrm{e}^{2 x} c_{2}^{2}+2 c_{3}\right) x}{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\mathrm{e}^{2 x} x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{2 x} x \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\mathrm{e}^{2 x} x\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \mathrm{e}^{2 x} x \\
1 & \mathrm{e}^{2 x}+2 \mathrm{e}^{2 x} x
\end{array}\right|
$$

Therefore

$$
W=(x)\left(\mathrm{e}^{2 x}+2 \mathrm{e}^{2 x} x\right)-\left(\mathrm{e}^{2 x} x\right)(1)
$$

Which simplifies to

$$
W=2 x^{2} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=2 x^{2} \mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4} \mathrm{e}^{2 x}}{2 x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{2} d x
$$

Hence

$$
u_{1}=-\frac{x}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4}}{2 x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x}}{2} d x
$$

Hence

$$
u_{2}=-\frac{\mathrm{e}^{-2 x}}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2}}{2}-\frac{\mathrm{e}^{-2 x} x \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{1}{4} x-\frac{1}{2} x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}+c_{3}\right) x\right)+\left(-\frac{1}{4} x-\frac{1}{2} x^{2}\right) \\
& =-\frac{x}{4}-\frac{x^{2}}{2}+\left(\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}+c_{3}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{\left(-\mathrm{e}^{2 x} c_{2}^{2}+x-2 c_{3}+\frac{1}{2}\right) x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(-\mathrm{e}^{2 x} c_{2}^{2}+x-2 c_{3}+\frac{1}{2}\right) x}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(-\mathrm{e}^{2 x} c_{2}^{2}+x-2 c_{3}+\frac{1}{2}\right) x}{2}
$$

Verified OK.

32.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-2 x^{2}-2 x \tag{3}\\
& C=2+2 x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 201: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

$$
\begin{aligned}
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x^{2}-2 x}{x^{2}} d x} \\
& =z_{1} e^{x+\ln (x)} \\
& =z_{1}\left(x \mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x^{2}-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x+2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x+\frac{c_{2} \mathrm{e}^{2 x} x}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{\mathrm{e}^{2 x} x}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{\mathrm{e}^{2 x} x}{2} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x} x}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{\mathrm{e}^{2 x} x}{2} \\
1 & \frac{\mathrm{e}^{2 x}}{2}+\mathrm{e}^{2 x} x
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(\frac{\mathrm{e}^{2 x}}{2}+\mathrm{e}^{2 x} x\right)-\left(\frac{\mathrm{e}^{2 x} x}{2}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{4} \mathrm{e}^{2 x}}{2}}{x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{2} d x
$$

Hence

$$
u_{1}=-\frac{x}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4}}{x^{4} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-2 x} d x
$$

Hence

$$
u_{2}=-\frac{\mathrm{e}^{-2 x}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2}}{2}-\frac{\mathrm{e}^{-2 x} x \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{1}{4} x-\frac{1}{2} x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x+\frac{c_{2} \mathrm{e}^{2 x} x}{2}\right)+\left(-\frac{1}{4} x-\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)-\frac{x}{4}-\frac{x^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)-\frac{x}{4}-\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)-\frac{x}{4}-\frac{x^{2}}{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x$2)-2*x*(1+x)*diff (y (x),x)+2*(1+x)*y(x)=x^3,y(x), singsol=all)
```

$$
y(x)=-\frac{x\left(-2 \mathrm{e}^{2 x} c_{1}-2 c_{2}+x\right)}{2}
$$

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 28
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}[x]-2 * x *(1+x) * y\right.$ ' $[x]+2 *(1+x) * y[x]==x \wedge 3, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow-\frac{1}{4} x\left(2 x-2 c_{2} e^{2 x}+1-4 c_{1}\right)
$$

32.9 problem Ex 9

Internal problem ID [11310]
Internal file name [OUTPUT/10295_Wednesday_December_21_2022_03_47_59_PM_73161115/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime} x^{2}-2 n x(1+x) y^{\prime}+\left(a^{2} x^{2}+n^{2}+n\right) y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 89

```
dsolve(x^2*diff (y(x),x$2)-2*n*x*(1+x)*diff (y(x),x)+(n^2+n+a^2*x^2)*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\mathrm{e}^{x n} x^{n}\left(\text { WhittakerM }\left(\frac{i n^{2}}{\sqrt{a-n} \sqrt{a+n}}, \frac{1}{2}, 2 i \sqrt{a-n} \sqrt{a+n} x\right) c_{1}\right. \\
& \left.\quad+\text { WhittakerW }\left(\frac{i n^{2}}{\sqrt{a-n} \sqrt{a+n}}, \frac{1}{2}, 2 i \sqrt{a-n} \sqrt{a+n} x\right) c_{2}\right)
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]-2 * n * x *(1+x) * y\right.$ ' $[x]+\left(n \wedge 2+n+a^{\wedge} 2 * x \wedge 2\right) * y[x]==0, y[x], x$, IncludeSingularSolutions

Not solved

32.10 problem Ex 10

Internal problem ID [11311]
Internal file name [OUTPUT/10296_Wednesday_December_21_2022_03_48_01_PM_43515805/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter VIII, Linear differential equations of the second order. Article 55. Summary. Page 129
Problem number: Ex 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x^{4} y^{\prime \prime}+2 x^{3}(1+x) y^{\prime}+y n^{2}=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunD ODE, case c = O
```

Solution by Maple
Time used: 0.422 (sec). Leaf size: 297

```
dsolve(x^4*diff(y(x),x$2)+2*x^3*(1+x)*diff (y(x),x)+n^2*y(x)=0,y(x), singsol=all)
y(x)
    c
```

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 4 * y\right.$ ' ' $[x]+2 * x^{\wedge} 3 *(1+x) * y{ }^{\prime}[x]+n^{\wedge} 2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved33 Chapter IX, Miscellaneous methods for solvingequations of higher order than first. Article 57.Dependent variable absent. Page 132
33.1 problem Ex 1 1988
33.2 problem Ex 2 1992
33.3 problem Ex 3 1995
33.4 problem Ex 4 2008
33.5 problem Ex 5 2023

33.1 problem Ex 1

33.1.1 Solving as second order ode missing y ode 1988
33.1.2 Maple step by step solution . 1990

Internal problem ID [11312]
Internal file name [OUTPUT/10297_Tuesday_December_27_2022_04_05_54_AM_9550685/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 57. Dependent variable absent. Page 132
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type

```
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
```

$$
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=-1
$$

33.1.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(x^{2}+1\right) p^{\prime}(x)+1+p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{-p^{2}-1}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}+1}$ and $g(p)=-p^{2}-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-p^{2}-1} d p & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{-p^{2}-1} d p & =\int \frac{1}{x^{2}+1} d x \\
-\arctan (p) & =\arctan (x)+c_{1}
\end{aligned}
$$

The solution is

$$
-\arctan (p(x))-\arctan (x)-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\arctan \left(y^{\prime}\right)-\arctan (x)-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\tan \left(\arctan (x)+c_{1}\right) \mathrm{d} x \\
& =\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2}
$$

Verified OK.

33.1.2 Maple step by step solution

Let's solve
$\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=-1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$\left(x^{2}+1\right) u^{\prime}(x)+u(x)^{2}=-1$
- Separate variables
$\frac{u^{\prime}(x)}{-u(x)^{2}-1}=\frac{1}{x^{2}+1}$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{-u(x)^{2}-1} d x=\int \frac{1}{x^{2}+1} d x+c_{1}$
- Evaluate integral
$-\arctan (u(x))=\arctan (x)+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\tan \left(\arctan (x)+c_{1}\right)$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\tan \left(\arctan (x)+c_{1}\right)$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\tan \left(\arctan (x)+c_{1}\right)$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\tan \left(\arctan (x)+c_{1}\right) d x+c_{2}$
- Compute integrals
$y=\frac{\mathrm{I} 4^{\mathrm{II} c_{1}} x}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}-\frac{\mathrm{I} x}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 \mathrm{I} c_{1}} \ln \left(\left(-\mathrm{e}^{2 \mathrm{I} c_{1}}+1\right) x+\mathrm{Ie}^{2 \mathrm{I} c_{1}}+\mathrm{I}\right)}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 33

```
dsolve((1+x^2)*diff(y(x),x$2)+1+diff(y(x),x)^2=0,y(x), singsol=all)
```

$$
y(x)=\frac{\ln \left(c_{1} x-1\right) c_{1}^{2}+c_{2} c_{1}^{2}+c_{1} x+\ln \left(c_{1} x-1\right)}{c_{1}^{2}}
$$

\checkmark Solution by Mathematica
Time used: 12.052 (sec). Leaf size: 33
DSolve[(1+x^2)*y''[x]+1+(y'[x])~2==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-x \cot \left(c_{1}\right)+\csc ^{2}\left(c_{1}\right) \log \left(-x \sin \left(c_{1}\right)-\cos \left(c_{1}\right)\right)+c_{2}
$$

33.2 problem Ex 2

Internal problem ID [11313]
Internal file name [OUTPUT/10298_Tuesday_December_27_2022_04_05_55_AM_57654390/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 57. Dependent variable absent. Page 132
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries ]
```

Unable to solve or complete the solution.
Unable to parse ODE.

Maple trace

- Methods for third order ODEs:
*** Sublevel 2 ***
Methods for third order ODEs:
Successful isolation of $d^{\wedge} 3 y / d x \wedge 3$: 2 solutions were found. Trying to solve each resulting
*** Sublevel 3 ***
Methods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(diff(diff(y $(x), x), x), x), x), y(x)-$
Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
<- 3rd order ODE linearizable_by_differentiation successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
<- 3rd order ODE linearizable_by_differentiation successful
\rightarrow Calling odsolve with the ODE`, (diff(diff \((y(x), x), x))^{\wedge} 2=-x^{\wedge} 2+1, y(x)\), singsol \(=\) none`
Methods for second order ODEs:
Successful isolation of $\mathrm{d}^{\wedge} 2 \mathrm{y} / \mathrm{dx}^{\wedge} 2$: 2 solutions were found. Trying to solve each resulting
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
* Tackling next ODE.
*** Sublevel 3
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 94
dsolve($(x * \operatorname{diff}(y(x), x \$ 3)-\operatorname{diff}(y(x), x \$ 2))^{\wedge} 2=\operatorname{diff}(y(x), x \$ 3) \wedge 2+1, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(x^{2}+2\right) \sqrt{-x^{2}+1}}{6}+c_{1} x+\frac{x \arcsin (x)}{2}+c_{2} \\
& y(x)=-\frac{x^{2} \sqrt{-x^{2}+1}}{6}-\frac{\sqrt{-x^{2}+1}}{3}-\frac{x \arcsin (x)}{2}+c_{1} x+c_{2} \\
& y(x)=\frac{\sqrt{c_{1}^{2}-1} x^{3}}{6}+\frac{c_{1} x^{2}}{2}+c_{2} x+c_{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 75
DSolve[(x*y'''[x]-y''[x])~2==(y'''[x]) $2+1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1} x^{3}}{6}-\frac{1}{2} \sqrt{1+c_{1}^{2}} x^{2}+c_{3} x+c_{2} \\
& y(x) \rightarrow \frac{c_{1} x^{3}}{6}+\frac{1}{2} \sqrt{1+c_{1}^{2}} x^{2}+c_{3} x+c_{2}
\end{aligned}
$$

33.3 problem Ex 3

33.3.1 Solving as second order ode missing y ode 1995
33.3.2 Solving using Kovacic algorithm 1997
33.3.3 Maple step by step solution . 2005

Internal problem ID [11314]
Internal file name [OUTPUT/10299_Tuesday_December_27_2022_04_05_56_AM_53925476/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 57. Dependent variable absent. Page 132
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+y^{\prime} x=x
$$

33.3.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+p(x) x-x=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =x(-p+1)
\end{aligned}
$$

Where $f(x)=x$ and $g(p)=-p+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-p+1} d p & =x d x \\
\int \frac{1}{-p+1} d p & =\int x d x \\
-\ln (p-1) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p-1}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p-1}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\left(c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}-c_{1}}}{c_{2}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\left(c_{2} \mathrm{e}^{\frac{x^{2}}{2}+c_{1}}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}-c_{1}}}{c_{2}} \mathrm{~d} x \\
& =\frac{c_{2} x+\frac{\mathrm{e}^{-c_{1} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}}{2}+c_{3}}{c_{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+\frac{\mathrm{e}^{-c_{1}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}}{c_{2}}+c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+\frac{\mathrm{e}^{-c_{1}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}}{c_{2}}+c_{3}
$$

Verified OK.

33.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y^{\prime} x=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =x \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}}{4}+\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 203: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of r at ∞ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞.

Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+\frac{1}{2 x}-\frac{1}{4 x^{3}}+\frac{1}{4 x^{5}}-\frac{5}{16 x^{7}}+\frac{7}{16 x^{9}}-\frac{21}{32 x^{11}}+\frac{33}{32 x^{13}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{0}=1$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{x^{2}}{4}
$$

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in r. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{x^{2}}{4}+\frac{1}{2}\right)+(0) \\
& =\frac{x^{2}}{4}+\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(\frac{1}{2}\right)-(0) \\
& =\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{1}{2}}{\frac{1}{2}}-1\right)=0 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{1}{2}}{\frac{1}{2}}-1\right)=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{x^{2}}{4}+\frac{1}{2}
$$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
-2	$\frac{x}{2}$	0	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=0$, and since there are no poles, then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+\left(\frac{x}{2}\right) \\
& =\frac{x}{2} \\
& =\frac{x}{2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{x}{2}\right)(0)+\left(\left(\frac{1}{2}\right)+\left(\frac{x}{2}\right)^{2}-\left(\frac{x^{2}}{4}+\frac{1}{2}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x}{2} d x} \\
& =\mathrm{e}^{\frac{x^{2}}{4}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{-\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime} x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+\frac{c_{2} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2} \\
0 & \mathrm{e}^{-\frac{x^{2}}{2}}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(1)\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)-\left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}\right) \tag{0}
\end{equation*}
$$

Which simplifies to

$$
W=\mathrm{e}^{-\frac{x^{2}}{2}}
$$

Which simplifies to

$$
W=\mathrm{e}^{-\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) x}{2}}{\mathrm{e}^{-\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) x \mathrm{e}^{\frac{x^{2}}{2}}}{2} d x
$$

Hence

$$
u_{1}=-\frac{\sqrt{2}\left(-\sqrt{2} \mathrm{e}^{\frac{x^{2}}{2}} x \mathrm{e}^{-\frac{x^{2}}{2}}+\mathrm{e}^{\frac{x^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) \sqrt{\pi}\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x}{\mathrm{e}^{-\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x \mathrm{e}^{\frac{x^{2}}{2}} d x
$$

Hence

$$
u_{2}=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\sqrt{2}\left(-\mathrm{e}^{\frac{x^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) \sqrt{\pi}+\sqrt{2} x\right)}{2} \\
& u_{2}=\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sqrt{2}\left(-\mathrm{e}^{\frac{x^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) \sqrt{\pi}+\sqrt{2} x\right)}{2}+\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right) \mathrm{e}^{\frac{x^{2}}{2}}}{2}
$$

Which simplifies to

$$
y_{p}(x)=x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}\right)+(x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\frac{c_{2} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}+x
$$

Verified OK.

33.3.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y^{\prime} x=x$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x)+u(x) x=x$
- \quad Separate variables

$$
\frac{u^{\prime}(x)}{u(x)-1}=-x
$$

- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)-1} d x=\int-x d x+c_{1}$
- Evaluate integral
$\ln (u(x)-1)=-\frac{x^{2}}{2}+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}+1$
- \quad Solve 1 st ODE for $u(x)$
$u(x)=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}+1$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}+1$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int\left(\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}+1\right) d x+c_{2}$
- Compute integrals

$$
y=x+\frac{\mathrm{e}^{c_{1}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)}{2}+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = __b(_a)*_a+_a, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

 *** Sublevel
 \checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)=x, y(x)$, singsol=all)

$$
y(x)=\frac{c_{1} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{x \sqrt{2}}{2}\right)}{2}+x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.137 (sec). Leaf size: 29
DSolve[y''[x]+x*y'[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \sqrt{\frac{\pi}{2}} c_{1} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+x+c_{2}
$$

33.4 problem Ex 4

33.4.1 Solving as second order ode quadrature ode 2008
33.4.2 Solving as second order linear constant coeff ode 2009
33.4.3 Solving as second order integrable as is ode 2012
33.4.4 Solving as second order ode missing y ode 2013
33.4.5 Solving using Kovacic algorithm 2014
33.4.6 Solving as exact linear second order ode ode 2019
33.4.7 Maple step by step solution . 2021

Internal problem ID [11315]
Internal file name [OUTPUT/10300_Tuesday_December_27_2022_04_05_58_AM_2399981/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 57. Dependent variable absent. Page 132
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

33.4.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\mathrm{e}^{x}(x-1)+c_{1}
$$

Integrating again gives

$$
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 242: Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Verified OK.

33.4.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 243: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Verified OK.

33.4.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=\int x \mathrm{e}^{x} d x \\
& y^{\prime}=\mathrm{e}^{x}(x-1)+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 244: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

33.4.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x \mathbf{e}^{x}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int x \mathrm{e}^{x} \mathrm{~d} x \\
& =\mathrm{e}^{x}(x-1)+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\mathrm{e}^{x}(x-1)+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2} \tag{1}
\end{equation*}
$$

Figure 245: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

33.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 205: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 246: Slope field plot
Verification of solutions

$$
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Verified OK.

33.4.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =x \mathrm{e}^{x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int x \mathrm{e}^{x} d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\mathrm{e}^{x}(x-1)+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 247: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

33.4.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial
$r=0$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int x^{2} \mathrm{e}^{x} d x\right)+x\left(\int x \mathrm{e}^{x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=(x-2) \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=(x-2) \mathrm{e}^{x}+c_{2} x+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)=x*exp(x),y(x), singsol=all)
```

$$
y(x)=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19
DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}(x-2)+c_{2} x+c_{1}
$$

33.5 problem Ex 5

33.5.1 Solving as second order ode missing y ode 2023

Internal problem ID [11316]
Internal file name [OUTPUT/10301_Tuesday_December_27_2022_04_05_59_AM_47236562/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 57. Dependent variable absent. Page 132
Problem number: Ex 5.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
\left(y^{\prime}-x y^{\prime \prime}\right)^{2}-y^{\prime \prime 2}=1
$$

33.5.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(p^{\prime}(x) x^{2}-2 p(x) x-p^{\prime}(x)\right) p^{\prime}(x)+p(x)^{2}-1=0
$$

Which is now solve for $p(x)$ as first order ode. This is Clairaut ODE. It has the form

$$
p=x p^{\prime}(x)+g\left(p^{\prime}(x)\right)
$$

Where g is function of $p^{\prime}(x)$. Let $p=p^{\prime}(x)$ the ode becomes

$$
\left(p x^{2}-2 p x-p\right) p+p^{2}=1
$$

Solving for $p(x)$ from the above results in

$$
\begin{align*}
& p(x)=p x+\sqrt{p^{2}+1} \tag{1~A}\\
& p(x)=p x-\sqrt{p^{2}+1} \tag{2~A}
\end{align*}
$$

Each of the above ode's is a Clairaut ode which is now solved. Solving ode 1A We start by replacing $p^{\prime}(x)$ by p which gives

$$
\begin{aligned}
p(x) & =p x+\sqrt{p^{2}+1} \\
& =p x+\sqrt{p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
p(x)=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
p=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\sqrt{p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
p(x)=c_{1} x+\sqrt{c_{1}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\sqrt{p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x+\frac{p}{\sqrt{p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-x \sqrt{-\frac{1}{x^{2}-1}}
$$

Substituting the above back in (1) results in

$$
p(x)_{1}=\sqrt{-\frac{1}{x^{2}-1}}\left(-x^{2}+1\right)
$$

Solving ode 2A We start by replacing $p^{\prime}(x)$ by p which gives

$$
\begin{aligned}
p(x) & =p x-\sqrt{p^{2}+1} \\
& =p x-\sqrt{p^{2}+1}
\end{aligned}
$$

Writing the ode as

$$
p(x)=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
p=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-\sqrt{p^{2}+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
p(x)=c_{2} x-\sqrt{c_{2}^{2}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-\sqrt{p^{2}+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{p}{\sqrt{p^{2}+1}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=x \sqrt{-\frac{1}{x^{2}-1}}
$$

Substituting the above back in (1) results in

$$
p(x)_{1}=\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)
$$

For solution (1) found earlier, since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1} x+\sqrt{c_{1}^{2}+1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} x+\sqrt{c_{1}^{2}+1} \mathrm{~d} x \\
& =\frac{c_{1} x^{2}}{2}+\sqrt{c_{1}^{2}+1} x+c_{3}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\sqrt{-\frac{1}{x^{2}-1}}\left(-x^{2}+1\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right) \mathrm{d} x \\
& =-\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{4}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{2} x-\sqrt{c_{2}^{2}+1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{2} x-\sqrt{c_{2}^{2}+1} \mathrm{~d} x \\
& =\frac{c_{2} x^{2}}{2}-\sqrt{c_{2}^{2}+1} x+c_{5}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \sqrt{-\frac{1}{x^{2}-1}}\left(x^{2}-1\right) \mathrm{d} x \\
& =\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{c_{1} x^{2}}{2}+\sqrt{c_{1}^{2}+1} x+c_{3} \tag{1}\\
& y=-\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{4} \tag{2}\\
& y=\frac{c_{2} x^{2}}{2}-\sqrt{c_{2}^{2}+1} x+c_{5} \tag{3}\\
& y=\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{6} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}}{2}+\sqrt{c_{1}^{2}+1} x+c_{3}
$$

Verified OK.

$$
y=-\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{4}
$$

Verified OK.

$$
y=\frac{c_{2} x^{2}}{2}-\sqrt{c_{2}^{2}+1} x+c_{5}
$$

Verified OK.

$$
y=\frac{\sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right)}{2}+c_{6}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
    *** Sublevel 2 ***
    Methods for second order ODEs:
    Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting
        *** Sublevel 3 ***
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying 2nd order Liouville
        trying 2nd order WeierstrassP
        trying 2nd order JacobiSN
        differential order: 2; trying a linearization to 3rd order
        trying 2nd order ODE linearizable_by_differentiation
        <- 2nd order ODE linearizable_by_differentiation successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying 2nd order Liouville
        trying 2nd order WeierstrassP
        trying 2nd order JacobiSN
        differential order: 2; trying a linearization to 3rd order
        trying 2nd order ODE linearizable_by_differentiation
        <- 2nd order ODE linearizable_by_differentiation successful
-> Calling odsolve with the ODE`, (diff(y(x), x))^2 = - x^2+1, y(x), singsol = none` *** Su
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    <- differential order: 1; missing y(x) successful
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 63
dsolve((diff $(y(x), x)-x * \operatorname{diff}(y(x), x \$ 2))^{\wedge} 2=1+\operatorname{diff}(y(x), x \$ 2) \wedge 2, y(x), \quad$ singsol=all $)$

$$
\begin{aligned}
& y(x)=\frac{x \sqrt{-x^{2}+1}}{2}+\frac{\arcsin (x)}{2}+c_{1} \\
& y(x)=-\frac{x \sqrt{-x^{2}+1}}{2}-\frac{\arcsin (x)}{2}+c_{1} \\
& y(x)=\frac{\sqrt{c_{1}^{2}-1} x^{2}}{2}+c_{1} x+c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 58

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1} x^{2}}{2}-\sqrt{1+c_{1}^{2}} x+c_{2} \\
& y(x) \rightarrow \frac{c_{1} x^{2}}{2}+\sqrt{1+c_{1}^{2}} x+c_{2}
\end{aligned}
$$

34 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 58. Independent variable absent. Page 135

34.1 problem Ex 1 2032
34.2 problem Ex 2 2038
34.3 problem Ex 3 2046
34.4 problem Ex 4 2053

34.1 problem Ex 1

34.1.1 Solving as second order ode missing x ode 2032
34.1.2 Maple step by step solution . 2035

Internal problem ID [11317]
Internal file name [OUTPUT/10302_Tuesday_December_27_2022_04_06_01_AM_77622999/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 58. Independent variable absent. Page 135
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order,
    _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy
    ]]
```

$$
y y^{\prime \prime}-y^{\prime 2}-y^{2} y^{\prime}=0
$$

34.1.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+\left(-p(y)-y^{2}\right) p(y)=0
$$

Which is now solved as first order ode for $p(y)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d y} p(y)+p(y) p(y)=q(y)
$$

Where here

$$
\begin{aligned}
& p(y)=-\frac{1}{y} \\
& q(y)=y
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d y} p(y)-\frac{p(y)}{y}=y
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{y} d y} \\
& =\frac{1}{y}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} y}(\mu p) & =(\mu)(y) \\
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\frac{p}{y}\right) & =\left(\frac{1}{y}\right)(y) \\
\mathrm{d}\left(\frac{p}{y}\right) & =\mathrm{d} y
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{p}{y}=\int \mathrm{d} y \\
& \frac{p}{y}=y+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{y}$ results in

$$
p(y)=c_{1} y+y^{2}
$$

which simplifies to

$$
p(y)=y\left(y+c_{1}\right)
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=y\left(y+c_{1}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y\left(y+c_{1}\right)} d y & =\int d x \\
\frac{\ln (y)}{c_{1}}-\frac{\ln \left(y+c_{1}\right)}{c_{1}} & =x+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{c_{1}}\right)\left(\ln (y)-\ln \left(y+c_{1}\right)\right) & =x+c_{2} \\
\ln (y)-\ln \left(y+c_{1}\right) & =\left(c_{1}\right)\left(x+c_{2}\right) \\
& =c_{1}\left(x+c_{2}\right)
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y)-\ln \left(y+c_{1}\right)}=c_{1} c_{2} \mathrm{e}^{c_{1} x}
$$

Which simplifies to

$$
\frac{y}{y+c_{1}}=c_{3} \mathrm{e}^{c_{1} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{3} \mathrm{e}^{c_{1} x} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{3} \mathrm{e}^{c_{1} x} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}
$$

Verified OK.

34.1.2 Maple step by step solution

Let's solve
$y y^{\prime \prime}+\left(-y^{\prime}-y^{2}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE

$$
y u(y)\left(\frac{d}{d y} u(y)\right)+\left(-u(y)-y^{2}\right) u(y)=0
$$

- Isolate the derivative
$\frac{d}{d y} u(y)=\frac{u(y)}{y}+y$
- Group terms with $u(y)$ on the lhs of the ODE and the rest on the rhs of the ODE $\frac{d}{d y} u(y)-\frac{u(y)}{y}=y$
- The ODE is linear; multiply by an integrating factor $\mu(y)$
$\mu(y)\left(\frac{d}{d y} u(y)-\frac{u(y)}{y}\right)=\mu(y) y$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d y}(\mu(y) u(y))$
$\mu(y)\left(\frac{d}{d y} u(y)-\frac{u(y)}{y}\right)=\left(\frac{d}{d y} \mu(y)\right) u(y)+\mu(y)\left(\frac{d}{d y} u(y)\right)$
- Isolate $\frac{d}{d y} \mu(y)$
$\frac{d}{d y} \mu(y)=-\frac{\mu(y)}{y}$
- Solve to find the integrating factor
$\mu(y)=\frac{1}{y}$
- Integrate both sides with respect to y
$\int\left(\frac{d}{d y}(\mu(y) u(y))\right) d y=\int \mu(y) y d y+c_{1}$
- Evaluate the integral on the lhs
$\mu(y) u(y)=\int \mu(y) y d y+c_{1}$
- \quad Solve for $u(y)$
$u(y)=\frac{\int \mu(y) y d y+c_{1}}{\mu(y)}$
- \quad Substitute $\mu(y)=\frac{1}{y}$
$u(y)=y\left(\int 1 d y+c_{1}\right)$
- Evaluate the integrals on the rhs
$u(y)=y\left(y+c_{1}\right)$
- \quad Solve 1st ODE for $u(y)$
$u(y)=y\left(y+c_{1}\right)$
- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=y\left(y+c_{1}\right)$
- Separate variables
$\frac{y^{\prime}}{y\left(y+c_{1}\right)}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y\left(y+c_{1}\right)} d x=\int 1 d x+c_{2}$
- Evaluate integral
$\frac{\ln (y)}{c_{1}}-\frac{\ln \left(y+c_{1}\right)}{c_{1}}=x+c_{2}$
- \quad Solve for y
$y=-\frac{c_{1} e^{c_{2} c_{1}+c_{1} x}}{-1+e^{c_{2} c_{1}+c_{1} x}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 27

```
dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2-y(x)^2*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=-\frac{c_{1} \mathrm{e}^{c_{1}\left(c_{2}+x\right)}}{-1+\mathrm{e}^{c_{1}\left(c_{2}+x\right)}}
\end{aligned}
$$

Solution by Mathematica
Time used: 2.444 (sec). Leaf size: 43
DSolve[y[x]*y''[x]-y'[x]~2-y[x]~2*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{c_{1} e^{c_{1}\left(x+c_{2}\right)}}{-1+e^{c_{1}\left(x+c_{2}\right)}} \\
& y(x) \rightarrow-\frac{1}{x+c_{2}}
\end{aligned}
$$

34.2 problem Ex 2

34.2.1 Solving as second order ode missing x ode 2038
34.2.2 Maple step by step solution . 2041

Internal problem ID [11318]
Internal file name [OUTPUT/10303_Tuesday_December_27_2022_04_06_03_AM_59945777/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 58. Independent variable absent. Page 135
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
y y^{\prime \prime}-y^{\prime 2}=-1
$$

34.2.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=-1
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p^{2}-1}{y p}
\end{aligned}
$$

Where $f(y)=\frac{1}{y}$ and $g(p)=\frac{p^{2}-1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{p^{2}-1}{p}} d p & =\frac{1}{y} d y \\
\int \frac{1}{\frac{p^{2}-1}{p}} d p & =\int \frac{1}{y} d y \\
\frac{\ln (p-1)}{2}+\frac{\ln (p+1)}{2} & =\ln (y)+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (p-1)+\ln (p+1)) & =\ln (y)+2 c_{1} \\
\ln (p-1)+\ln (p+1) & =(2)\left(\ln (y)+2 c_{1}\right) \\
& =2 \ln (y)+4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (p-1)+\ln (p+1)}=\mathrm{e}^{2 \ln (y)+2 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
p^{2}-1 & =2 c_{1} y^{2} \\
& =c_{2} y^{2}
\end{aligned}
$$

The solution is

$$
p(y)^{2}-1=c_{2} y^{2}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime 2}-1=c_{2} y^{2}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{c_{2} y^{2}+1} \tag{1}\\
y^{\prime} & =-\sqrt{c_{2} y^{2}+1} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{c_{2} y^{2}+1}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right)}{\sqrt{c_{2}}} & =c_{3}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right.}{\sqrt{c_{2}}}}=\mathrm{e}^{c_{3}+x}
$$

Which simplifies to

$$
\left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right)^{\frac{1}{\sqrt{c_{2}}}}=\mathrm{e}^{x} c_{4}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{c_{2} y^{2}+1}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right)}{\sqrt{c_{2}}} & =x+c_{5}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right)}{\sqrt{c_{2}}}}=\mathrm{e}^{x+c_{5}}
$$

Which simplifies to

$$
\left(y \sqrt{c_{2}}+\sqrt{c_{2} y^{2}+1}\right)^{-\frac{1}{\sqrt{c_{2}}}}=c_{6} \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\left(\mathrm{e}^{x} c_{4}\right)^{2 \sqrt{c_{2}}}-1\right)\left(\mathrm{e}^{x} c_{4}\right)^{-\sqrt{c_{2}}}}{2 \sqrt{c_{2}}} \tag{1}\\
& y=\frac{\left(\left(c_{6} \mathrm{e}^{x}\right)^{-2 \sqrt{c_{2}}}-1\right)\left(c_{6} \mathrm{e}^{x}\right)^{\sqrt{c_{2}}}}{2 \sqrt{c_{2}}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\frac{\left(\left(\mathrm{e}^{x} c_{4}\right)^{2 \sqrt{c_{2}}}-1\right)\left(\mathrm{e}^{x} c_{4}\right)^{-\sqrt{c_{2}}}}{2 \sqrt{c_{2}}}
$$

Verified OK.

$$
y=\frac{\left(\left(c_{6} \mathrm{e}^{x}\right)^{-2 \sqrt{c_{2}}}-1\right)\left(c_{6} \mathrm{e}^{x}\right)^{\sqrt{c_{2}}}}{2 \sqrt{c_{2}}}
$$

Verified OK.

34.2.2 Maple step by step solution

Let's solve
$y y^{\prime \prime}-y^{\prime 2}=-1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE

$$
y u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=-1
$$

- Separate variables

$$
\frac{\left(\frac{d}{d y} u(y)\right) u(y)}{u(y)^{2}-1}=\frac{1}{y}
$$

- Integrate both sides with respect to y
$\int \frac{\left(\frac{d}{d y} u(y)\right) u(y)}{u(y)^{2}-1} d y=\int \frac{1}{y} d y+c_{1}$
- Evaluate integral
$\frac{\ln (u(y)-1)}{2}+\frac{\ln (u(y)+1)}{2}=\ln (y)+c_{1}$
- \quad Solve for $u(y)$

$$
\left\{u(y)=\frac{\mathrm{e}^{2 c_{1}}\left(-1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1, u(y)=-\frac{\mathrm{e}^{2 c_{1}}\left(1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1\right\}
$$

- \quad Solve 1st ODE for $u(y)$

$$
u(y)=\frac{\mathrm{e}^{2 c_{1}}\left(-1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\frac{\mathrm{e}^{2 c_{1}}\left(-1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1
$$

- Separate variables

$$
\frac{y^{\prime}}{\frac{\mathrm{e}^{2 c_{1}}\left(-1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\frac{\mathrm{e}^{2 c_{1}}\left(-1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1} d x=\int 1 d x+c_{2}
$$

- Evaluate integral

- \quad Solve for y

$$
y=-\frac{\left(\left(\mathrm{e}^{c_{1}}\right)^{2}-\left(\mathrm{e}^{\left.\mathrm{c}_{1} c_{2}+\mathrm{e}^{c_{1 x}+c_{1}}\right)^{2}}\right) \mathrm{e}^{-3 c_{1}-\mathrm{e}^{c_{1} c_{2}-\mathrm{e}^{c_{1 x}}}}\right.}{2}
$$

- \quad Solve 2nd ODE for $u(y)$
$u(y)=-\frac{\mathrm{e}^{2 c_{1}}\left(1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1$
- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=-\frac{\mathrm{e}^{2 c_{1}}\left(1+\sqrt{\left(\mathrm{e}^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{-\frac{\mathrm{e}^{2 c_{1}}\left(1+\sqrt{\left(e^{c_{1}}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}+1}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-\frac{\mathrm{e}^{2 c_{1}}\left(1+\sqrt{\left(\mathrm{e}_{1}\right)^{2} y^{2}+1}\right)}{\left(\mathrm{e}^{c_{1}}\right)^{2}}} d x=\int 1 d x+c_{2}
$$

- Evaluate integral
- \quad Solve for y

$$
y=\frac{\left(\left(\mathrm{e}^{\left.c_{1}-\mathrm{e}^{c_{1} c_{2}-\mathrm{e}^{c_{1 x}}}\right)^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}\right) \mathrm{e}^{-3 c_{1}+\mathrm{e}^{c_{1} c_{2}+\mathrm{e}_{1 x}}}\right.}{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x, y)
trying differential order: 2; missing variables
$`, ~->$ Computing symmetries using: way $=3$
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful-
\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 59
dsolve $\left(y(x) * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)^{\wedge} 2+1=0, y(x), \quad\right.$ singsol=all)

$$
\begin{aligned}
& y(x)=\frac{c_{1}\left(-\mathrm{e}^{\frac{c_{2}+x}{c_{1}}}+\mathrm{e}^{\frac{-c_{2}-x}{c_{1}}}\right)}{2} \\
& y(x)=-\frac{c_{1}\left(-\mathrm{e}^{\frac{c_{2}+x}{c_{1}}}+\mathrm{e}^{\frac{-c_{2}-x}{c_{1}}}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 60.222 (sec). Leaf size: 85
DSolve[y[x]*y''[x]-y'[x]~2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(x) & \rightarrow-\frac{i e^{-c_{1}} \tanh \left(e^{c_{1}}\left(x+c_{2}\right)\right)}{\sqrt{-\operatorname{sech}^{2}\left(e^{c_{1}}\left(x+c_{2}\right)\right)}} \\
y(x) & \rightarrow \frac{i e^{-c_{1}} \tanh \left(e^{c_{1}}\left(x+c_{2}\right)\right)}{\sqrt{-\operatorname{sech}^{2}\left(e^{c_{1}}\left(x+c_{2}\right)\right)}}
\end{aligned}
$$

34.3 problem Ex 3

34.3.1 Solving as second order ode can be made integrable ode 2046
34.3.2 Solving as second order ode missing x ode 2048
34.3.3 Maple step by step solution . 2050

Internal problem ID [11319]
Internal file name [OUTPUT/10304_Tuesday_December_27_2022_04_06_07_AM_10455936/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 58. Independent variable absent. Page 135
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
2 y^{\prime \prime}-\mathrm{e}^{y}=0
$$

34.3.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
2 y^{\prime} y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime} y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}\right) d x=0 \\
y^{\prime 2}-\mathrm{e}^{y}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{\mathrm{e}^{y}+c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{\mathrm{e}^{y}+c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{\mathrm{e}^{y}+c_{1}}} d y & =\int d x \\
-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{\mathrm{e}^{y}+c_{1}}} d y & =\int d x \\
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2} \tag{1}\\
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{3}+x \tag{2}
\end{align*}
$$

Verification of solutions

$$
-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}
$$

Verified OK.

$$
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{e^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=c_{3}+x
$$

Verified OK.

34.3.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
2 p(y)\left(\frac{d}{d y} p(y)\right)=\mathrm{e}^{y}
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{\mathrm{e}^{y}}{2 p}
\end{aligned}
$$

Where $f(y)=\frac{\mathrm{e}^{y}}{2}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =\frac{\mathrm{e}^{y}}{2} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int \frac{\mathrm{e}^{y}}{2} d y \\
\frac{p^{2}}{2} & =\frac{\mathrm{e}^{y}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}-\frac{\mathrm{e}^{y}}{2}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}-\frac{\mathrm{e}^{y}}{2}-c_{1}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{\mathrm{e}^{y}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{\mathrm{e}^{y}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{\mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{\mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\ln \left(2 \tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}-2 c_{1}\right) \tag{1}\\
& y=\ln \left(2 \tanh \left(\frac{\sqrt{c_{1}}\left(c_{3}+x\right) \sqrt{2}}{2}\right)^{2} c_{1}-2 c_{1}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\ln \left(2 \tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}-2 c_{1}\right)
$$

Verified OK.

$$
y=\ln \left(2 \tanh \left(\frac{\sqrt{c_{1}}\left(c_{3}+x\right) \sqrt{2}}{2}\right)^{2} c_{1}-2 c_{1}\right)
$$

Verified OK.

34.3.3 Maple step by step solution

Let's solve
$2 y^{\prime \prime}=\mathrm{e}^{y}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $2 u(y)\left(\frac{d}{d y} u(y)\right)=\mathrm{e}^{y}$
- Integrate both sides with respect to y
$\int 2 u(y)\left(\frac{d}{d y} u(y)\right) d y=\int \mathrm{e}^{y} d y+c_{1}$
- Evaluate integral
$u(y)^{2}=\mathrm{e}^{y}+c_{1}$
- \quad Solve for $u(y)$
$\left\{u(y)=\sqrt{\mathrm{e}^{y}+c_{1}}, u(y)=-\sqrt{\mathrm{e}^{y}+c_{1}}\right\}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\sqrt{\mathrm{e}^{y}+c_{1}}$
- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=\sqrt{\mathrm{e}^{y}+c_{1}}$
- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{\mathrm{e}^{y}+c_{1}}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{e^{y}+c_{1}}} d x=\int 1 d x+c_{2}$
- Evaluate integral
$-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}$
- \quad Solve for y
$y=\ln \left(\tanh \left(\frac{c_{2} \sqrt{c_{1}}}{2}+\frac{x \sqrt{c_{1}}}{2}\right)^{2} c_{1}-c_{1}\right)$
- \quad Solve 2nd ODE for $u(y)$
$u(y)=-\sqrt{\mathrm{e}^{y}+c_{1}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$ $y^{\prime}=-\sqrt{\mathrm{e}^{y}+c_{1}}$
- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{e^{y}+c_{1}}}=-1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{e^{y}+c_{1}}} d x=\int(-1) d x+c_{2}$
- Evaluate integral

$$
-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{e^{y}+c_{1}}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=-x+c_{2}
$$

- \quad Solve for y
$y=\ln \left(\tanh \left(\frac{c_{2} \sqrt{c_{1}}}{2}-\frac{x \sqrt{c_{1}}}{2}\right)^{2} c_{1}-c_{1}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/2)*exp(_a) = 0, _b(_a), HINT
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 1/2*_b]
```

\checkmark Solution by Maple
Time used: 0.469 (sec). Leaf size: 20

```
dsolve(2*diff(y(x),x$2)=exp(y(x)),y(x), singsol=all)
```

$$
y(x)=\ln \left(\frac{\sec \left(\frac{c_{2}+x}{2 c_{1}}\right)^{2}}{c_{1}^{2}}\right)
$$

\checkmark Solution by Mathematica
Time used: 60.049 (sec). Leaf size: 30
DSolve[2*y''[x]==Exp[y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log \left(-c_{1} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{c_{1}\left(x+c_{2}\right)^{2}}\right)\right)
$$

34.4 problem Ex 4

34.4.1 Solving as second order ode missing x ode 2053
34.4.2 Maple step by step solution . 2055

Internal problem ID [11320]
Internal file name [OUTPUT/10305_Tuesday_December_27_2022_04_06_08_AM_66861636/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 58. Independent variable absent. Page 135
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
```

$$
y y^{\prime \prime}+2 y^{\prime}-y^{\prime 2}=0
$$

34.4.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+(2-p(y)) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{-2+p}{y}
\end{aligned}
$$

Where $f(y)=\frac{1}{y}$ and $g(p)=-2+p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-2+p} d p & =\frac{1}{y} d y \\
\int \frac{1}{-2+p} d p & =\int \frac{1}{y} d y \\
\ln (-2+p) & =\ln (y)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
-2+p=\mathrm{e}^{\ln (y)+c_{1}}
$$

Which simplifies to

$$
-2+p=c_{2} y
$$

Which simplifies to

$$
p(y)=c_{2} y \mathrm{e}^{c_{1}}+2
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=c_{2} y \mathrm{e}^{c_{1}}+2
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{c_{2} y \mathrm{e}^{c_{1}}+2} d y & =\int d x \\
\frac{\ln \left(c_{2} y \mathrm{e}^{c_{1}}+2\right) \mathrm{e}^{-c_{1}}}{c_{2}} & =c_{3}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(c_{2} y \mathrm{e}^{\left.c_{1}+2\right)} \mathrm{e}^{-c_{1}}\right.}{c_{2}}}=\mathrm{e}^{c_{3}+x}
$$

Which simplifies to

$$
\left(c_{2} y \mathrm{e}^{c_{1}}+2\right)^{\frac{\mathrm{e}^{-c_{1}}}{c_{2}}}=\mathrm{e}^{x} c_{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\left(\mathrm{e}^{x} c_{4}\right)^{\mathrm{e}^{c_{1}} c_{2}}-2\right) \mathrm{e}^{-c_{1}}}{c_{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\left(\mathrm{e}^{x} c_{4}\right)^{\mathrm{e}^{c_{1} c_{2}}}-2\right) \mathrm{e}^{-c_{1}}}{c_{2}}
$$

Verified OK.

34.4.2 Maple step by step solution

Let's solve
$y y^{\prime \prime}+\left(2-y^{\prime}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u $u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE

$$
y u(y)\left(\frac{d}{d y} u(y)\right)+(2-u(y)) u(y)=0
$$

- Separate variables
$\frac{\frac{d}{d y} u(y)}{2-u(y)}=-\frac{1}{y}$
- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{2-u(y)} d y=\int-\frac{1}{y} d y+c_{1}$
- Evaluate integral
$-\ln (2-u(y))=-\ln (y)+c_{1}$
- \quad Solve for $u(y)$
$u(y)=\frac{2 \mathrm{e}^{c_{1}}-y}{\mathrm{e}^{c_{1}}}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\frac{2 \mathrm{e}^{c_{1}-y}}{\mathrm{e}^{c_{1}}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=\frac{2 \mathrm{e}^{c_{1}}-y}{\mathrm{e}^{c_{1}}}$
- Separate variables
$\frac{y^{\prime}}{2 \mathrm{e}^{c_{1}}-y}=\frac{1}{\mathrm{e}^{c_{1}}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{2 \mathrm{e}^{c_{1}}-y} d x=\int \frac{1}{\mathrm{e}^{c_{1}}} d x+c_{2}$
- Evaluate integral
$-\ln \left(2 \mathrm{e}^{c_{1}}-y\right)=\frac{x}{\mathrm{e}^{c_{1}}}+c_{2}$
- \quad Solve for y
$y=-\mathrm{e}^{-\frac{\mathrm{e}^{c_{1} c_{2}+x}}{\mathrm{e}^{c}}}+2 \mathrm{e}^{c_{1}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-_b(_a)*(_b(_a)-2)/_a = 0, _b(_a)
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 20

```
dsolve(y(x)*diff(y(x),x$2)+2*diff(y(x),x)-diff(y(x),x)^2=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\mathrm{e}^{c_{1}\left(c_{2}+x\right)}-2}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.726 (sec). Leaf size: 26
DSolve[y[x]*y' ' $[x]+2 * y$ '[x]-y'[x] $2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-2+e^{c_{1}\left(x+c_{2}\right)}}{c_{1}} \\
& y(x) \rightarrow \text { Indeterminate }
\end{aligned}
$$

35 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 59. Linear equations with particular integral known. Page 136

35.1 problem Ex 1 . 2059
35.2 problem Ex 2

2061

35.1 problem Ex 1

Internal problem ID [11321]
Internal file name [OUTPUT/10306_Tuesday_December_27_2022_04_06_09_AM_65226813/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 59. Linear equations with particular integral known. Page 136
Problem number: Ex 1.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
\left(x^{2}-2 x+2\right) y^{\prime \prime \prime}-y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0
$$

Unable to solve this ODE.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
Equation is the LCLM of -1/x*y(x)+diff(y(x),x), -2/x*y(x)+diff(y(x),x), - y(x)+diff(y(x),x)
trying differential order: 1; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful
trying differential order: 1; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful
trying differential order: 1; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving the LCLM ode successful
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

$$
y(x)=c_{1} x+c_{2} x^{2}+c_{3} \mathrm{e}^{x}
$$

Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 27
DSolve $\left[\left(x^{\wedge} 2-2 * x+2\right) * y\right.$ ' ' $\quad[x]-x^{\wedge} 2 * y$ ' ' $[x]+2 * x * y$ ' $[x]-2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{2}\left(c_{2} x^{2}+2 c_{1} x+c_{3} e^{x}\right)
$$

35.2 problem Ex 2

35.2.1 Maple step by step solution . 2061

Internal problem ID [11322]
Internal file name [OUTPUT/10307_Tuesday_December_27_2022_04_06_10_AM_81835214/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 59. Linear equations with particular integral known. Page 136
Problem number: Ex 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime} x+y=-x^{2}+1
$$

Unable to solve this ODE.

35.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime} x-y^{\prime \prime}-y^{\prime} x+y=-x^{2}+1
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
Equation is the LCLM of -1/x*y(x)+diff(y(x),x), y(x)+diff(y(x),x), -y(x)+diff(y(x),x)
trying differential order: 1; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful
trying differential order: 1; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful
trying differential order: 1; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving the LCLM ode successful `
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(x*diff(y(x),x$3)-diff(y(x),x$2)-x*diff(y(x),x)+y(x)=1-x^2,y(x), singsol=all)
```

$$
y(x)=x^{2}+3+c_{1} x+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 28
DSolve[x*y' ''[x]-y''[x]-x*y'[x]+y[x]==1-x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+c_{1} x-c_{2} \cosh (x)+i c_{3} \sinh (x)+3
$$

36 Chapter IX, Miscellaneous methods for solvingequations of higher order than first. Article 60.Exact equation. Integrating factor. Page 139
36.1 problem Ex 1 2064
36.2 problem Ex 2 2072
36.3 problem Ex 3 2107
36.4 problem Ex 4 2132
36.5 problem Ex 5 2137
36.6 problem Ex 6 2140
36.7 problem Ex 7 2150
36.8 problem Ex 8 2155
36.9 problem Ex 10 2160

36.1 problem Ex 1

36.1.1 Maple step by step solution . 2070

Internal problem ID [11323]
Internal file name [OUTPUT/10308_Tuesday_December_27_2022_04_06_11_AM_15567907/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 1.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__missing_y"
Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
(x+2)^{2} y^{\prime \prime \prime}+(x+2) y^{\prime \prime}+y^{\prime}=1
$$

Since y is missing from the ode then we can use the substitution $y^{\prime}=v(x)$ to reduce the order by one. The ODE becomes

$$
v(x)+(x+2) v^{\prime}(x)+\left(x^{2}+4 x+4\right) v^{\prime \prime}(x)=0
$$

In normal form the ode

$$
\begin{equation*}
v^{\prime \prime}(x)(x+2)^{2}+(x+2) v^{\prime}(x)+v(x)=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
v^{\prime \prime}(x)+p(x) v^{\prime}(x)+q(x) v(x)=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x+2} \\
q(x) & =\frac{1}{(x+2)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} v(\tau)+p_{1}\left(\frac{d}{d \tau} v(\tau)\right)+q_{1} v(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x+2} d x\right)} d x \\
& =\int e^{-\ln (x+2)} d x \\
& =\int \frac{1}{x+2} d x \\
& =\ln (x+2) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{(x+2)^{2}}}{\frac{1}{(x+2)^{2}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} v(\tau)+q_{1} v(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} v(\tau)+v(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $v(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(\tau)+B v^{\prime}(\tau)+C v(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $v(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
v(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
v(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
v(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to $v(x)$ using (6) which results in

$$
v(x)=c_{1} \cos (\ln (x+2))+c_{2} \sin (\ln (x+2))
$$

But since $y^{\prime}=v(x)$ then we now need to solve the ode $y^{\prime}=c_{1} \cos (\ln (x+2))+$ $c_{2} \sin (\ln (x+2))$. Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \cos (\ln (x+2))+c_{2} \sin (\ln (x+2)) \mathrm{d} x \\
& =c_{1}\left(\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right)+c_{2}\left(-\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin ()}{2}\right.
\end{aligned}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime}+(x+2) y^{\prime \prime}+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}=0
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
1 & -\frac{(x+2)(\cos (\ln (x+2))-\sin (\ln (x+2)))}{2} & \frac{(x+2)(\cos (\ln (x+2))+\sin (\ln (x+2)))}{2} \\
0 & \sin (\ln (x+2)) & \cos (\ln (x+2)) \\
0 & \frac{\cos (\ln (x+2))}{x+2} & -\frac{\sin (\ln (x+2))}{x+2}
\end{array}\right] \\
|W| & =-\frac{\cos (\ln (x+2))^{2}+\sin (\ln (x+2))^{2}}{x+2}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-\frac{1}{x+2}
$$

Now we determine W_{i} for each U_{i}.

$$
\left.\left.\begin{array}{l}
W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
-\frac{(x+2)(\cos (\ln (x+2))-\sin (\ln (x+2)))}{2} & \frac{(x+2)(\cos (\ln (x+2))+\sin (\ln (x+2)))}{2} \\
\sin (\ln (x+2)) & \cos (\ln (x+2))
\end{array}\right] \\
=-\frac{x}{2}-1
\end{array}\right] \begin{array}{rl}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ll}
1 & \frac{(x+2)(\cos (\ln (x+2))+\sin (\ln (x+2)))}{2} \\
0 & \cos (\ln (x+2))
\end{array}\right] \\
& =\cos (\ln (x+2))
\end{array}\right] \begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ll}
1 & -\frac{(x+2)(\cos (\ln (x+2))-\sin (\ln (x+2)))}{2} \\
0 & \sin (\ln (x+2))
\end{array}\right] \\
& =\sin (\ln (x+2))
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right)\left(-\frac{x}{2}-1\right)}{\left(x^{2}+4 x+4\right)\left(-\frac{1}{x+2}\right)} d x \\
& =\int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right)\left(-\frac{x}{2}-1\right)}{-\frac{x^{2}+4 x+4}{x+2}} d x \\
& =\int\left(\frac{1}{2}\right) d x \\
& =\frac{x}{2}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right)(\cos (\ln (x+2)))}{\left(x^{2}+4 x+4\right)\left(-\frac{1}{x+2}\right)} d x \\
& =-\int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right) \cos (\ln (x+2))}{-\frac{x^{2}+4 x+4}{x+2}} d x \\
& =-\int\left(-\frac{\cos (\ln (x+2))}{x+2}\right) d x \\
& =\sin (\ln (x+2)) \\
& =(-1)^{0} \int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right)(\sin (\ln (x+2)))}{\left(x^{2}+4 x+4\right)\left(-\frac{1}{x+2}\right)} d x \\
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =\int \frac{\left(-(x+2)^{2} y^{\prime \prime \prime}+1+\left(x^{2}+4 x+4\right) y^{\prime \prime \prime}\right) \sin (\ln (x+2))}{-\frac{x^{2}+4 x+4}{x+2}} d x \\
& =\int\left(-\frac{\sin (\ln (x+2))}{x+2}\right) d x \\
& =\cos (\ln (x+2))
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{x}{2}\right) \\
& +(\sin (\ln (x+2)))\left(-\frac{\cos (\ln (x+2)) x}{2}-\cos (\ln (x+2))+\frac{\sin (\ln (x+2)) x}{2}+\sin (\ln (x+2))\right) \\
& +(\cos (\ln (x+2)))\left(\frac{\cos (\ln (x+2)) x}{2}+\cos (\ln (x+2))+\frac{\sin (\ln (x+2)) x}{2}+\sin (\ln (x+2))\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=1+x
$$

Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
\begin{aligned}
= & (y \\
= & c_{1}\left(\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right) \\
& \left.\quad+c_{2}\left(-\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right)+c_{3}\right)+(1+x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right) \tag{1}\\
& +c_{2}\left(-\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right)+c_{3}+1+x
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right) \\
& +c_{2}\left(-\frac{\cos (\ln (x+2))(x+2)}{2}+\frac{(x+2) \sin (\ln (x+2))}{2}\right)+c_{3}+1+x
\end{aligned}
$$

Verified OK.

36.1.1 Maple step by step solution

Let's solve

$$
(x+2)^{2} y^{\prime \prime \prime}+(x+2) y^{\prime \prime}+y^{\prime}=1
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -((diff(_b(_a), _a))*_a+2*(di
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        checking if the LODE is of Euler type
        <- LODE of Euler type successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

```
dsolve((x+2)^2*diff (y(x),x$3)+(x+2)*diff(y(x),x$2)+diff (y (x), x)=1,y(x), singsol=all)
```

$$
y(x)=\frac{\left(c_{1}-c_{2}\right)(x+2) \cos (\ln (x+2))}{2}+\frac{\left(c_{2}+c_{1}\right)(x+2) \sin (\ln (x+2))}{2}+x+c_{3}
$$

\checkmark Solution by Mathematica

Time used: 0.202 (sec). Leaf size: 45

$$
\begin{aligned}
& \text { DSolve }\left[(\mathrm{x}+2)^{\wedge} 2 * \mathrm{y} \mathrm{'}^{\prime \prime}[\mathrm{x}]+(\mathrm{x}+2) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\mathrm{y} \text { ' }[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& y(x) \rightarrow x+\frac{1}{2}\left(c_{1}-c_{2}\right)(x+2) \cos (\log (x+2))+\frac{1}{2}\left(c_{1}+c_{2}\right)(x+2) \sin (\log (x+2))+c_{3}
\end{aligned}
$$

36.2 problem Ex 2

36.2.1 Solving as second order euler ode ode 2073
36.2.2 Solving as second order change of variable on x method 2 ode . 2076
36.2.3 Solving as second order change of variable on x method 1 ode . 2082
36.2.4 Solving as second order change of variable on y method 2 ode . 2087
36.2.5 Solving as second order integrable as is ode 2093

36.2.7 Solving using Kovacic algorithm 2096
36.2.8 Solving as exact linear second order ode ode 2103

Internal problem ID [11324]
Internal file name [OUTPUT/10309_Tuesday_December_27_2022_04_06_12_AM_11809622/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=x
$$

36.2 1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+3 r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+3 r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+2 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
$$

Next, we find the particular solution to the ODE

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \ln (x)}{2}+\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{1}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x(-1+2 \ln (x))}{4}+\frac{x \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{x}{4}+\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{4}+\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x}{4}+\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
$$

Verified OK.

36.2.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{\frac{1}{x^{6}}} \\
& =x^{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{gathered}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+x^{4} y(\tau)=0
\end{gathered}
$$

But in terms of τ

$$
x^{4}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right) x}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{-\frac{1}{x^{2}}}\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) x^{2}}{2} d x
$$

Hence

$$
u_{1}=-\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{4}+\frac{x^{3} \sqrt{-\frac{1}{x^{2}}}(\ln (2)-1)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x^{2} \sqrt{2}}{2} d x
$$

Hence

$$
u_{2}=\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\sqrt{-\frac{1}{x^{2}}} x^{3}\left(\ln \left(-\frac{1}{x^{2}}\right)-\ln (2)+1\right)}{4} \\
& u_{2}=\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x\left(\ln \left(-\frac{1}{x^{2}}\right)-\ln (2)+1\right)}{4}+\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}\right)+\left(\frac{x}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}+\frac{x}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}+\frac{x}{4}
$$

Verified OK.

36.2.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}} x^{3}}}+\frac{3}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1}}{x}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Which simplifies to

$$
W=\frac{\sqrt{2}}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right) x}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{-\frac{1}{x^{2}}}\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) x^{2}}{2} d x
$$

Hence

$$
u_{1}=-\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{4}+\frac{x^{3} \sqrt{-\frac{1}{x^{2}}}(\ln (2)-1)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x}{\frac{\sqrt{2}}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{-\frac{1}{x^{2}}} x^{2} \sqrt{2}}{2} d x
$$

Hence

$$
u_{2}=\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\sqrt{-\frac{1}{x^{2}}} x^{3}\left(\ln \left(-\frac{1}{x^{2}}\right)-\ln (2)+1\right)}{4} \\
& u_{2}=\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x\left(\ln \left(-\frac{1}{x^{2}}\right)-\ln (2)+1\right)}{4}+\frac{x^{3} \sqrt{-\frac{1}{x^{2}}} \sqrt{2}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}\right)+\left(\frac{x}{4}\right) \\
& =\frac{x}{4}+\frac{c_{1}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x}{4}+\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{4}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x}{4}+\frac{c_{1}}{x}
$$

Verified OK.

36.2.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=3 x, C=1, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \ln (x)}{2}+\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{1}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x(-1+2 \ln (x))}{4}+\frac{x \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \ln (x)+c_{2}}{x}\right)+\left(\frac{x}{4}\right) \\
& =\frac{x}{4}+\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x}{4}+\frac{c_{1} \ln (x)+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{4}+\frac{c_{1} \ln (x)+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x}{4}+\frac{c_{1} \ln (x)+c_{2}}{x}
$$

Verified OK.

36.2.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime} x^{2}+3 y^{\prime} x+y\right) d x=\int x d x \\
& x^{2} y^{\prime}+y x=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{x^{2}+2 c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{x^{2}+2 c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{x^{2}+2 c_{1}}{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& x y=\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\frac{x^{2}}{4}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Verified OK.

36.2.6 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=x
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime} x^{2}+3 y^{\prime} x+y\right) d x=\int x d x \\
& x^{2} y^{\prime}+y x=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{x^{2}+2 c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{x^{2}+2 c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{x^{2}+2 c_{1}}{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& x y=\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\frac{x^{2}}{4}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Verified OK.

36.2.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}+3 y^{\prime} x+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=3 x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 213: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Which simplifies to

$$
W=\frac{1}{x^{3}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \ln (x)}{2}+\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{1}{\frac{1}{x}} d x
$$

Which simplifies to

$$
u_{2}=\int x d x
$$

Hence

$$
u_{2}=\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x(-1+2 \ln (x))}{4}+\frac{x \ln (x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}\right)+\left(\frac{x}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{1}+\ln (x) c_{2}}{x}+\frac{x}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}+\ln (x) c_{2}}{x}+\frac{x}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}+\ln (x) c_{2}}{x}+\frac{x}{4}
$$

Verified OK.

36.2.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =3 x \\
r(x) & =1 \\
s(x) & =x
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =3
\end{aligned}
$$

Therefore (1) becomes

$$
2-(3)+(1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}+y x=\int x d x
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}+y x=\frac{x^{2}}{2}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{x^{2}+2 c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{x^{2}+2 c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{x^{2}+2 c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{x^{2}+2 c_{1}}{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& x y=\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\frac{x^{2}}{4}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+\frac{x^{2}}{4}+c_{2}}{x}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=x,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2}}{x}+\frac{x}{4}+\frac{\ln (x) c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 26

```
DSolve[x^2*y''[x]+3*x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{x^{2}+4 c_{2} \log (x)+4 c_{1}}{4 x}
$$

36.3 problem Ex 3

$$
\begin{aligned}
& \text { 36.3.1 Solving as linear second order ode solved by an integrating factor } \\
& \text { ode . } 2108
\end{aligned}
$$

36.3.2 Solving as second order change of variable on x method 2 ode . 2109
36.3.3 Solving as second order change of variable on y method 1 ode . 2115
36.3.4 Solving as second order integrable as is ode 2120
36.3.5 Solving as type second_order_integrable_as_is (not using ABC version)

2121
36.3.6 Solving using Kovacic algorithm 2123
36.3.7 Solving as exact linear second order ode ode 2129

Internal problem ID [11325]
Internal file name [OUTPUT/10310_Tuesday_December_27_2022_04_06_14_AM_40293410/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_change_of__variable_on_x_method_2", "second_order_change_of__variable_on_y_method_1", "linear_second__order_ode__solved__by__an__integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
(x-1)^{2} y^{\prime \prime}+4(x-1) y^{\prime}+2 y=\cos (x)
$$

36.3.1 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{4}{x-1}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4}{x-1} d x} \\
& =(x-1)^{2}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\cos (x) \\
\left((x-1)^{2} y\right)^{\prime \prime} & =\cos (x)
\end{aligned}
$$

Integrating once gives

$$
\left((x-1)^{2} y\right)^{\prime}=\sin (x)+c_{1}
$$

Integrating again gives

$$
\left((x-1)^{2} y\right)=c_{1} x-\cos (x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Or

$$
y=\frac{c_{1} x}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}}
$$

Verified OK.

36.3.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{4}{x-1} \\
q(x) & =\frac{2}{(x-1)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{4}{x-1} d x\right)} d x \\
& =\int e^{-4 \ln (x-1)} d x \\
& =\int \frac{1}{(x-1)^{4}} d x \\
& =-\frac{1}{3(x-1)^{3}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{(x-1)^{2}}}{\frac{1}{(x-1)^{8}}} \\
& =2(x-1)^{6} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2(x-1)^{6} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
2(x-1)^{6}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}(x-1)^{4}} & \frac{1}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}(x-1)^{4}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}(x-1)^{4}}\right) \\
& -\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}(x-1)^{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \cos (x)}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \cos (x)(x-1)^{2} d x
$$

Hence

$$
u_{1}=-\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \sin (x)(x-1)^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)(x-1)^{2} d x
$$

Hence

$$
u_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)(x-1)+\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \sin (x)(x-1)^{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \sin (x)(x-1)^{2} \\
& u_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}((x-1) \sin (x)+\cos (x))(x-1)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x)}{x-1}-\frac{(x-1) \sin (x)+\cos (x)}{(x-1)^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{(x-1)^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}}{3}\right)+\left(-\frac{\cos (x)}{(x-1)^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}}{3}-\frac{\cos (x)}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}}{3}-\frac{\cos (x)}{(x-1)^{2}}
$$

Verified OK.

36.3.3 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{4 x-4}{x^{2}-2 x+1} \\
q(x) & =\frac{2}{x^{2}-2 x+1}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}-2 x+1}-\frac{\left(\frac{4 x-4}{x^{2}-2 x+1}\right)^{\prime}}{2}-\frac{\left(\frac{4 x-4}{x^{2}-2 x+1}\right)^{2}}{4} \\
& =\frac{2}{x^{2}-2 x+1}-\frac{\left(\frac{4}{x^{2}-2 x+1}-\frac{(4 x-4)(2 x-2)}{\left(x^{2}-2 x+1\right)^{2}}\right)}{2}-\frac{\left(\frac{(4 x-4)^{2}}{\left(x^{2}-2 x+1\right)^{2}}\right)}{4} \\
& =\frac{2}{x^{2}-2 x+1}-\left(\frac{2}{x^{2}-2 x+1}-\frac{(4 x-4)(2 x-2)}{2\left(x^{2}-2 x+1\right)^{2}}\right)-\frac{(4 x-4)^{2}}{4\left(x^{2}-2 x+1\right)^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{\frac{4 x-4}{x^{2}-2 x+1}}{2}} \\
& =\frac{1}{(x-1)^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{(x-1)^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=\cos (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=\sin (x)+c_{1}
$$

Integrating again gives

$$
v(x)=-\cos (x)+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x-\cos (x)+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{(x-1)^{2}}
$$

Hence (7) becomes

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}(x-1)^{4}} & \frac{2}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}(x-1)^{4}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}(x-1)^{4}}\right) \\
& -\left(\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}}(x-1)^{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \cos (x)}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \cos (x)(x-1)^{2} d x
$$

Hence

$$
u_{1}=-\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \sin (x)(x-1)^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)(x-1)^{2} d x
$$

Hence

$$
u_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \cos (x)(x-1)+\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}} \sin (x)(x-1)^{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{2}{3}} \sin (x)(x-1)^{2} \\
& u_{2}=\left(-\frac{1}{(x-1)^{3}}\right)^{\frac{1}{3}}((x-1) \sin (x)+\cos (x))(x-1)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x)}{x-1}-\frac{(x-1) \sin (x)+\cos (x)}{(x-1)^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{(x-1)^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}\right)+\left(-\frac{\cos (x)}{(x-1)^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}}
$$

Verified OK.

36.3.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left((x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y\right) d x=\int \cos (x) d x \\
& (2 x-2) y+\left(x^{2}-2 x+1\right) y^{\prime}=\sin (x)+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x-1} \\
q(x) & =\frac{\sin (x)+c_{1}}{(x-1)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x-1}=\frac{\sin (x)+c_{1}}{(x-1)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x-1} d x} \\
& =(x-1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x-1)^{2} y\right) & =\left((x-1)^{2}\right)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\mathrm{d}\left((x-1)^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x-1)^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& (x-1)^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(x-1)^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Verified OK.

36.3.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y=\cos (x)
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left((x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y\right) d x=\int \cos (x) d x \\
& (2 x-2) y+\left(x^{2}-2 x+1\right) y^{\prime}=\sin (x)+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x-1} \\
& q(x)=\frac{\sin (x)+c_{1}}{(x-1)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x-1}=\frac{\sin (x)+c_{1}}{(x-1)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x-1} d x} \\
& =(x-1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x-1)^{2} y\right) & =\left((x-1)^{2}\right)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\mathrm{d}\left((x-1)^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x-1)^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& (x-1)^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(x-1)^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Verified OK.

36.3.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(x-1)^{2} \\
& B=4 x-4 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 214: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4 x-4}{(x-1)^{2}} d x} \\
& =z_{1} e^{-2 \ln (x-1)} \\
& =z_{1}\left(\frac{1}{(x-1)^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{(x-1)^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x-4}{(x-1)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x-1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{(x-1)^{2}}\right)+c_{2}\left(\frac{1}{(x-1)^{2}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(x-1)^{2} y^{\prime \prime}+(4 x-4) y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{(x-1)^{2}}+\frac{c_{2} x}{(x-1)^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{(x-1)^{2}} \\
& y_{2}=\frac{x}{(x-1)^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{(x-1)^{2}} & \frac{x}{(x-1)^{2}} \\
\frac{d}{d x}\left(\frac{1}{(x-1)^{2}}\right) & \frac{d}{d x}\left(\frac{x}{(x-1)^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{(x-1)^{2}} & \frac{x}{(x-1)^{2}} \\
-\frac{2}{(x-1)^{3}} & \frac{1}{(x-1)^{2}}-\frac{2 x}{(x-1)^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{(x-1)^{2}}\right)\left(\frac{1}{(x-1)^{2}}-\frac{2 x}{(x-1)^{3}}\right)-\left(\frac{x}{(x-1)^{2}}\right)\left(-\frac{2}{(x-1)^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Which simplifies to

$$
W=\frac{1}{(x-1)^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \cos (x)}{(x-1)^{2}}}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) x d x
$$

Hence

$$
u_{1}=-\cos (x)-x \sin (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{(x-1)^{2}}}{\frac{1}{(x-1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) d x
$$

Hence

$$
u_{2}=\sin (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\cos (x)-x \sin (x)}{(x-1)^{2}}+\frac{x \sin (x)}{(x-1)^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{(x-1)^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{(x-1)^{2}}+\frac{c_{2} x}{(x-1)^{2}}\right)+\left(-\frac{\cos (x)}{(x-1)^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} x+c_{1}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+c_{1}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+c_{1}}{(x-1)^{2}}-\frac{\cos (x)}{(x-1)^{2}}
$$

Verified OK.

36.3.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =(x-1)^{2} \\
q(x) & =4 x-4 \\
r(x) & =2 \\
s(x) & =\cos (x)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
(x-1)^{2} y^{\prime}+(2 x-2) y=\int \cos (x) d x
$$

We now have a first order ode to solve which is

$$
(x-1)^{2} y^{\prime}+(2 x-2) y=\sin (x)+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x-1} \\
& q(x)=\frac{\sin (x)+c_{1}}{(x-1)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x-1}=\frac{\sin (x)+c_{1}}{(x-1)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x-1} d x} \\
& =(x-1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((x-1)^{2} y\right) & =\left((x-1)^{2}\right)\left(\frac{\sin (x)+c_{1}}{(x-1)^{2}}\right) \\
\mathrm{d}\left((x-1)^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x-1)^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& (x-1)^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(x-1)^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{(x-1)^{2}}+\frac{c_{2}}{(x-1)^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{(x-1)^{2}}
$$

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve ($(x-1) \sim 2 * \operatorname{diff}(y(x), x \$ 2)+4 *(x-1) * \operatorname{diff}(y(x), x)+2 * y(x)=\cos (x), y(x)$, singsol $=a l l)$

$$
y(x)=\frac{c_{2}+c_{1} x-\cos (x)}{(-1+x)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 24
DSolve $\left[(x-1)^{\wedge} 2 * y{ }^{\prime}\right.$ ' $[x]+4 *(x-1) * y$ ' $[x]+2 * y[x]==\operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{-\cos (x)+c_{1}(x-1)+c_{2}}{(x-1)^{2}}
$$

36.4 problem Ex 4

36.4.1 Maple step by step solution . 2132

Internal problem ID [11326]
Internal file name [OUTPUT/10311_Tuesday_December_27_2022_04_06_15_AM_43338447/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 4.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _fully, _exact, _linear]]
Unable to solve or complete the solution.

$$
\left(x^{3}-x\right) y^{\prime \prime \prime}+\left(8 x^{2}-3\right) y^{\prime \prime}+14 y^{\prime} x+4 y=0
$$

Unable to solve this ODE.

36.4.1 Maple step by step solution

Let's solve
$\left(x^{3}-x\right) y^{\prime \prime \prime}+\left(8 x^{2}-3\right) y^{\prime \prime}+14 y^{\prime} x+4 y=0$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{8 x^{2}-3}{\left(x^{2}-1\right) x}, P_{3}(x)=\frac{14}{x^{2}-1}, P_{4}(x)=\frac{4}{\left(x^{2}-1\right) x}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{5}{2}$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $(1+x)^{3} \cdot P_{4}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{3} \cdot P_{4}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators

$$
\left(x^{2}-1\right) x y^{\prime \prime \prime}+\left(8 x^{2}-3\right) y^{\prime \prime}+14 y^{\prime} x+4 y=0
$$

- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{3}-3 u^{2}+2 u\right)\left(\frac{d^{3}}{d u^{3}} y(u)\right)+\left(8 u^{2}-16 u+5\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(14 u-14)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .2$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}$
- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
- Convert $u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1)(k+r-2) u^{k+r-3+m}
$$

- Shift index using $k->k+3-m$

$$
u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)=\sum_{k=-3+m}^{\infty} a_{k+3-m}(k+3-m+r)(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(1+2 r)(-1+r) u^{-2+r}+\left(a_{1}(r+1)(2 r+3) r-a_{0} r(3 r+4)(r+1)\right) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(a_{k+2}(2+\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r(1+2 r)(-1+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{0,1,-\frac{1}{2}\right\}
$$

- Each term in the series must be 0, giving the recursion relation
$(k+r+1)\left(\left(a_{k}-3 a_{k+1}+2 a_{k+2}\right) k+\left(a_{k}-3 a_{k+1}+2 a_{k+2}\right) r+2 a_{k}-7 a_{k+1}+5 a_{k+2}\right)(2+k+r)$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+r a_{k}-3 r a_{k+1}+2 a_{k}-7 a_{k+1}}{2 k+5+2 r}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+2 a_{k}-7 a_{k+1}}{2 k+5}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+2 a_{k}-7 a_{k+1}}{2 k+5}, 0=0\right]
$$

- \quad Revert the change of variables $u=1+x$
$\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+2 a_{k}-7 a_{k+1}}{2 k+5}, 0=0\right]$
- \quad Recursion relation for $r=1$

$$
a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+3 a_{k}-10 a_{k+1}}{2 k+7}
$$

- \quad Solution for $r=1$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+1}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+3 a_{k}-10 a_{k+1}}{2 k+7}, 10 a_{1}-14 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+1}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+3 a_{k}-10 a_{k+1}}{2 k+7}, 10 a_{1}-14 a_{0}=0\right]
$$

- Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+\frac{3}{2} a_{k}-\frac{11}{2} a_{k+1}}{2 k+4}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+\frac{3}{2} a_{k}-\frac{11}{2} a_{k+1}}{2 k+4},-\frac{a_{1}}{2}+\frac{5 a_{0}}{8}=0\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-\frac{1}{2}}, a_{k+2}=-\frac{k a_{k}-3 k a_{k+1}+\frac{3}{2} a_{k}-\frac{11}{2} a_{k+1}}{2 k+4},-\frac{a_{1}}{2}+\frac{5 a_{0}}{8}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{1+k}\right)+\left(\sum_{k=0}^{\infty} c_{k}(1+x)^{k-\frac{1}{2}}\right), a_{k+2}=-\frac{k a_{k}-3 k a_{1+k}+2 a_{k}-7 a_{2}}{2 k+5}\right.
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 41

```
dsolve((x^3-x)*diff (y(x),x$3)+(8*x^2-3)*diff(y(x),x$2)+14*x*diff (y(x),x)+4*y(x)=0,y(x), sing
```

$$
y(x)=\frac{\frac{c_{3}}{\sqrt{1+x} \sqrt{-1+x}}+c_{1}+\frac{c_{2} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 51
DSolve $\left[\left(x^{\wedge} 3-x\right) * y\right.$ ' $'$ ' $[x]+\left(8 * x^{\wedge} 2-3\right) * y$ ' $'[x]+14 * x * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{-\frac{c_{2}}{\sqrt{x^{2}-1}}+\frac{c_{3} \log \left(\sqrt{x^{2}-1}-x\right)}{\sqrt{x^{2}-1}}+c_{1}}{x}
$$

36.5 problem Ex 5

Internal problem ID [11327]
Internal file name [OUTPUT/10312_Tuesday_December_27_2022_04_06_16_AM_28478648/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type

```
[[_3rd_order, _exact, _nonlinear], [_3rd_order,
    _with_linear_symmetries]]
```

Unable to solve or complete the solution.
Unable to parse ODE.

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
differential order: 3; trying a linearization to 4th order
trying differential order: 3; missing variables
trying differential order: 3; exact nonlinear
-> Calling odsolve with the ODE`, _b(_a)*(diff(diff(_b(_a), _a), _a))*_a^3+_a``*(diff(_b(_a)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying 2nd order Liouville
    trying 2nd order WeierstrassP
    trying 2nd order JacobiSN
    differential order: 2; trying a linearization to 3rd order
    trying 2nd order ODE linearizable_by_differentiation
    trying 2nd order, 2 integrating factors of the form mu(x,y)
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
    <- 2nd order, 2 integrating factors of the form mu(x,y) successful
<- differential order: 3; exact nonlinear successful`
```


Solution by Maple

Time used: 0.094 (sec). Leaf size: 56

```
dsolve(2*x^3*y(x)*diff (y (x),x$3)+6*x^3*diff(y(x),x)*diff (y (x),x$2)+18*x^2*y (x)*diff (y (x),x$2
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\sqrt{-x\left(c_{1} x^{2}+2 c_{2} x-2 c_{3}\right)}}{x^{2}} \\
& y(x)=-\frac{\sqrt{-x\left(c_{1} x^{2}+2 c_{2} x-2 c_{3}\right)}}{x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.389 (sec). Leaf size: 60

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{c_{1} x^{2}+c_{3} x+2 c_{2}}}{x^{3 / 2}} \\
& y(x) \rightarrow \frac{\sqrt{c_{1} x^{2}+c_{3} x+2 c_{2}}}{x^{3 / 2}}
\end{aligned}
$$

36.6 problem Ex 6

36.6.1 Solving as second order change of variable on y method 2 ode . 2140
36.6.2 Solving using Kovacic algorithm 2143

Internal problem ID [11328]
Internal file name [OUTPUT/10313_Tuesday_December_27_2022_04_06_17_AM_93956182/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{5} y^{\prime \prime}+\left(2 x^{4}-x\right) y^{\prime}-\left(2 x^{3}-1\right) y=0
$$

36.6.1 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{5} y^{\prime \prime}+\left(2 x^{4}-x\right) y^{\prime}+\left(-2 x^{3}+1\right) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 x^{3}-1}{x^{4}} \\
& q(x)=\frac{-2 x^{3}+1}{x^{5}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(2 x^{3}-1\right)}{x^{5}}+\frac{-2 x^{3}+1}{x^{5}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{2 x^{3}-1}{x^{4}}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(4 x^{3}-1\right) v^{\prime}(x)}{x^{4}} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{\left(4 x^{3}-1\right) u(x)}{x^{4}}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\left(4 x^{3}-1\right) u}{x^{4}}
\end{aligned}
$$

Where $f(x)=-\frac{4 x^{3}-1}{x^{4}}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4 x^{3}-1}{x^{4}} d x \\
\int \frac{1}{u} d u & =\int-\frac{4 x^{3}-1}{x^{4}} d x \\
\ln (u) & =-\frac{1}{3 x^{3}}-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-\frac{1}{3 x^{3}}-4 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}-4 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}}{x^{4}}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}+c_{2}\right) x \\
& =\left(c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \mathrm{e}^{-\frac{1}{3 x^{3}}}+c_{2}\right) x
$$

Verified OK.

36.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{5} y^{\prime \prime}+\left(2 x^{4}-x\right) y^{\prime}+\left(-2 x^{3}+1\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{5} \\
& B=2 x^{4}-x \tag{3}\\
& C=-2 x^{3}+1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{8 x^{6}+1}{4 x^{8}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=8 x^{6}+1 \\
& t=4 x^{8}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{8 x^{6}+1}{4 x^{8}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 216: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =8-6 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{8}$. There is a pole at $x=0$ of order 8 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one). Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(x-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of \sqrt{r} expanded around each pole c. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(x-c)^{i}} \tag{1B}
\end{equation*}
$$

Let a be the coefficient of the term $\frac{1}{(x-c)^{v}}$ in the above where v is the pole order divided by 2 . Let b be the coefficient of $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of $\frac{1}{(x-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of r is

$$
r=\frac{2}{x^{2}}+\frac{1}{4 x^{8}}
$$

There is pole in r at $x=0$ of order 8 , hence $v=4$. Expanding \sqrt{r} as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{1}{2 x^{4}}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=4$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{1}{2 x^{4}} \tag{3~B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(x-0)^{4}}$ is

$$
a=\frac{1}{2}
$$

Now we need to find b. let b be the coefficient of the term $\frac{1}{(x-c)^{v+1}}$ in r minus the coefficient of the same term but in the sum $\left[\sqrt{r}_{c}\right.$ found in eq. (3B). Here c is current pole which is $c=0$. This term becomes $\frac{1}{x^{5}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term r is found from the partial fraction decomposition from above to be 0 . Therefore

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =\frac{1}{2 x^{4}} \\
\alpha_{c}^{+} & =\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{0}{\frac{1}{2}}+4\right)=2 \\
\alpha_{c}^{-} & =\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{0}{\frac{1}{2}}+4\right)=2
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{8 x^{6}+1}{4 x^{8}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{8 x^{6}+1}{4 x^{8}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	8	$\frac{1}{2 x^{4}}$	2	2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =2-(2) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x^{4}}+\frac{2}{x}+(0) \\
& =-\frac{1}{2 x^{4}}+\frac{2}{x} \\
& =-\frac{1}{2 x^{4}}+\frac{2}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x^{4}}+\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{5}}-\frac{2}{x^{2}}\right)+\left(-\frac{1}{2 x^{4}}+\frac{2}{x}\right)^{2}-\left(\frac{8 x^{6}+1}{4 x^{8}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x^{4}+\frac{2}{x}}\right) d x} \\
& =x^{2} \frac{1}{6 x^{3}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x^{4}-x}{x^{5}} d x} \\
& =z_{1} e^{-\frac{1}{6 x^{3}}-\ln (x)} \\
& =z_{1}\left(\frac{\mathrm{e}^{-\frac{1}{6 x^{3}}}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x^{4}-x}{x^{5}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{1}{3 x^{3}}-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{-\frac{1}{3 x^{3}}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\mathrm{e}^{-\frac{1}{3 x^{3}}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \mathrm{e}^{-\frac{1}{3 x^{3}}} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} \mathrm{e}^{-\frac{1}{3 x^{3}} x}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

$$
\begin{gathered}
\text { dsolve }\left(\mathrm{x}^{\wedge} 5 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\left(2 * \mathrm{x}^{\wedge} 4-\mathrm{x}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\left(2 * \mathrm{x}^{\wedge} 3-1\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { singsol }=a l l\right) \\
y(x)=x\left(c_{1}+c_{2} \mathrm{e}^{-\frac{1}{3 x^{3}}}\right)
\end{gathered}
$$

Solution by Mathematica
Time used: 0.152 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 5 * y^{\prime \prime}[x]+\left(2 * x^{\wedge} 4-x\right) * y\right.$ ' $[x]-\left(2 * x^{\wedge} 3-1\right) * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(c_{2} e^{-\frac{1}{3 x^{3}}}+c_{1}\right)
$$

36.7 problem Ex 7

36.7.1 Maple step by step solution . 2150

Internal problem ID [11329]
Internal file name [OUTPUT/10314_Tuesday_December_27_2022_04_06_19_AM_27016616/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{2}\left(-x^{3}+1\right) y^{\prime \prime}-y^{\prime} x^{3}-2 y=0
$$

36.7.1 Maple step by step solution

Let's solve

$$
\left(-x^{5}+x^{2}\right) y^{\prime \prime}-y^{\prime} x^{3}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y}{x^{2}\left(x^{3}-1\right)}-\frac{y^{\prime} x}{x^{3}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime} x}{x^{3}-1}+\frac{2 y}{x^{2}\left(x^{3}-1\right)}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{x}{x^{3}-1}, P_{3}(x)=\frac{2}{x^{2}\left(x^{3}-1\right)}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2
$$

- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}\left(x^{3}-1\right)+y^{\prime} x^{3}+2 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{3} \cdot y^{\prime}$ to series expansion

$$
x^{3} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+2}
$$

- \quad Shift index using $k->k-2$

$$
x^{3} \cdot y^{\prime}=\sum_{k=2}^{\infty} a_{k-2}(k-2+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .5$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0}(1+r)(-2+r) x^{r}-a_{1}(2+r)(-1+r) x^{1+r}+\left(-a_{2}(3+r) r+a_{0} r\right) x^{2+r}+\left(\sum _ { k = 3 } ^ { \infty } \left(-a_{k}(k+\imath\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,2\}$
- The coefficients of each power of x must be 0

$$
\left[-a_{1}(2+r)(-1+r)=0,-a_{2}(3+r) r+a_{0} r=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=0, a_{2}=\frac{a_{0}}{3+r}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation
$-a_{k}(k+r+1)(k-2+r)+a_{k-2}(k-2+r)+a_{k-3}(k-3+r)(k-4+r)=0$
- \quad Shift index using $k->k+3$
$-a_{k+3}(k+4+r)(k+r+1)+a_{k+1}(k+r+1)+a_{k}(k+r)(k+r-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+3}=\frac{k^{2} a_{k}+2 k r a_{k}+r^{2} a_{k}-k a_{k}+k a_{k+1}-r a_{k}+r a_{k+1}+a_{k+1}}{(k+4+r)(k+r+1)}$
- Recursion relation for $r=-1$
$a_{k+3}=\frac{k^{2} a_{k}-3 k a_{k}+k a_{k+1}+2 a_{k}}{(k+3) k}$
- \quad Series not valid for $r=-1$, division by 0 in the recursion relation at $k=0$
$a_{k+3}=\frac{k^{2} a_{k}-3 k a_{k}+k a_{k+1}+2 a_{k}}{(k+3) k}$
- \quad Recursion relation for $r=2$
$a_{k+3}=\frac{k^{2} a_{k}+3 k a_{k}+k a_{k+1}+2 a_{k}+3 a_{k+1}}{(k+6)(k+3)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+3}=\frac{k^{2} a_{k}+3 k a_{k}+k a_{k+1}+2 a_{k}+3 a_{k+1}}{(k+6)(k+3)}, a_{1}=0, a_{2}=\frac{a_{0}}{5}\right]
$$

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear $Q_{2} \mathrm{E} 3^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type

X Solution by Maple
dsolve($x^{\wedge} 2 *\left(1-x^{\wedge} 3\right) * \operatorname{diff}(y(x), x \$ 2)-x^{\wedge} 3 * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x), \quad$ singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[x^{\wedge} 2 *\left(1-x^{\wedge} 3\right) * y^{\prime \prime}[x]-x^{\wedge} 3 * y\right.$ ' $[x]-2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
Not solved

36.8 problem Ex 8

36.8.1 Maple step by step solution . 2155

Internal problem ID [11330]
Internal file name [OUTPUT/10315_Tuesday_December_27_2022_04_07_29_AM_43734921/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 8.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x^{2} y^{\prime \prime \prime}-5 x y^{\prime \prime}+\left(4 x^{4}+5\right) y^{\prime}-8 y x^{3}=0
$$

Unable to solve this ODE.

36.8.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime} x^{2}-5 y^{\prime \prime} x+\left(4 x^{4}+5\right) y^{\prime}-8 y x^{3}=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{5}{x}, P_{3}(x)=\frac{4 x^{4}+5}{x^{2}}, P_{4}(x)=-8 x\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-5
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=5
$$

- $x^{3} \cdot P_{4}(x)$ is analytic at $x=0$
$\left.\left(x^{3} \cdot P_{4}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{3} \cdot y$ to series expansion

$$
x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}
$$

- \quad Shift index using $k->k-3$

$$
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .4$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1)(k+r-2) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x^{2} \cdot y^{\prime \prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-2+r)(-6+r) x^{-1+r}+a_{1}(1+r)(-1+r)(-5+r) x^{r}+a_{2}(2+r) r(-4+r) x^{1+r}+a_{3}(3
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-2+r)(-6+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2,6\}$
- \quad The coefficients of each power of x must be 0

$$
\left[a_{1}(1+r)(-1+r)(-5+r)=0, a_{2}(2+r) r(-4+r)=0, a_{3}(3+r)(1+r)(-3+r)=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}
$$

- \quad Each term in the series must be 0 , giving the recursion relation

$$
(k-5+r)\left(a_{k+1}(k+1+r)(k+r-1)+4 a_{k-3}\right)=0
$$

- \quad Shift index using $k->k+3$

$$
(k+r-2)\left(a_{k+4}(k+4+r)(k+2+r)+4 a_{k}\right)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+2+r)}
$$

- Recursion relation for $r=0$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- \quad Recursion relation for $r=2$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Recursion relation for $r=6$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+10)(k+8)}
$$

- \quad Solution for $r=6$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+6}, a_{k+4}=-\frac{4 a_{k}}{(k+10)(k+8)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} c_{k} x^{k+6}\right), a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k}\right.
$$

Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients checking if the LODE is of Euler type trying high order exact linear fully integrable trying to convert to a linear ODE with constant coefficients trying differential order: 3; missing the dependent variable
Equation is the LCLM of $-2 / x * y(x)+\operatorname{diff}(y(x), x), 4 * x^{\wedge} 2 * y(x)-1 / x * \operatorname{diff}(y(x), x)+\operatorname{diff}(\operatorname{diff}(y(x), x$ trying differential order: 1; missing the dependent variable checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- solving the LCLM ode successful -
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 3)-5 * x * \operatorname{diff}(y(x), x \$ 2)+\left(4 * x^{\wedge} 4+5\right) * \operatorname{diff}(y(x), x)-8 * x^{\wedge} 3 * y(x)=0, y(x)\right.$, sings

$$
y(x)=c_{1} x^{2}+c_{2} \cos \left(x^{2}\right)+c_{3} \sin \left(x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.507 (sec). Leaf size: 44
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}{ }^{\prime}[x]-5 * x * y^{\prime} '[x]+\left(4 * x^{\wedge} 4+5\right) * y^{\prime}[x]-8 * x^{\wedge} 3 * y[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow c_{1} x^{2}+\frac{1}{2} i c_{2} e^{-i x^{2}}-\frac{1}{8} c_{3} e^{i x^{2}}
$$

36.9 problem Ex 10

36.9.1 Solving as second order ode missing y ode 2160

Internal problem ID [11331]
Internal file name [OUTPUT/10316_Tuesday_December_27_2022_04_07_30_AM_93030666/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+2 \cot (x) y^{\prime}+2 \tan (x) y^{\prime 2}=0
$$

36.9.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+(2 \cot (x)+2 p(x) \tan (x)) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Writing the ode as

$$
\begin{aligned}
p^{\prime}(x) & =-2 p(p \tan (x)+\cot (x)) \\
p^{\prime}(x) & =\omega(x, p)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 219: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, p)=0 \\
& \eta(x, p)=p^{2} \sin (x)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{p^{2} \sin (x)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{\sin (x)^{2} p}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, p) S_{p}}{R_{x}+\omega(x, p) R_{p}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{p}, S_{x}, S_{p}$ are all partial derivatives and $\omega(x, p)$ is the right hand side of the original ode given by

$$
\omega(x, p)=-2 p(p \tan (x)+\cot (x))
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{p} & =0 \\
S_{x} & =\frac{2 \csc (x)^{2} \cot (x)}{p} \\
S_{p} & =\frac{\csc (x)^{2}}{p^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2 \sec (x) \csc (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, p in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2 \sec (R) \csc (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (\tan (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, p coordinates. This results in

$$
-\frac{\csc (x)^{2}}{p(x)}=-2 \ln (\tan (x))+c_{1}
$$

Which simplifies to

$$
-\frac{\csc (x)^{2}}{p(x)}=-2 \ln (\tan (x))+c_{1}
$$

Which gives

$$
p(x)=\frac{\csc (x)^{2}}{2 \ln (\tan (x))-c_{1}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\csc (x)^{2}}{2 \ln (\tan (x))-c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\csc (x)^{2}}{2 \ln (\tan (x))-c_{1}} \mathrm{~d} x \\
& =-\frac{\mathrm{e}^{-\frac{c_{1}}{2}} \exp \text { Integral }_{1}\left(\ln (\tan (x))-\frac{c_{1}}{2}\right)}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{c_{1}}{2}} \exp \operatorname{Integral}_{1}\left(\ln (\tan (x))-\frac{c_{1}}{2}\right)}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-\frac{c_{1}}{2}} \exp \operatorname{Integral}_{1}\left(\ln (\tan (x))-\frac{c_{1}}{2}\right)}{2}+c_{2}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -2*tan(_a)*_b(_a)^2-2*cot(_a)*_b(_a),
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve (diff $(y(x), x \$ 2)+2 * \cot (x) * \operatorname{diff}(y(x), x)+2 * \tan (x) * \operatorname{diff}(y(x), x) \sim 2=0, y(x)$, singsol=all)

$$
y(x)=-\frac{\mathrm{e}^{\frac{c_{1}}{2}} \exp \text { Integral }_{1}\left(\ln (\tan (x))+\frac{c_{1}}{2}\right)}{2}+c_{2}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]+2*Cot[x]*y'[x]+2*Tan[x]*y'[x] 2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

Not solved

37 Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 61. Transformation of variables. Page 143

37.1 problem Ex 1 2167
37.2 problem Ex 2 2169
37.3 problem Ex 3 2171
37.4 problem Ex 4 2173

37.1 problem Ex 1

Internal problem ID [11332]
Internal file name [OUTPUT/10317_Tuesday_December_27_2022_04_07_32_AM_86152449/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 61. Transformation of variables. Page 143
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible
    , _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
```

Unable to solve or complete the solution.

$$
x^{2} y y^{\prime \prime}+\left(y^{\prime} x-y\right)^{2}=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 44
dsolve ($\mathrm{x} \sim 2 * y(x) * \operatorname{diff}(y(x), x \$ 2)+(x * \operatorname{diff}(y(x), x)-y(x)) \wedge 2=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\sqrt{2} \sqrt{-x\left(c_{1} x-c_{2}\right)} \\
& y(x)=-\sqrt{2} \sqrt{-x\left(c_{1} x-c_{2}\right)}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.388 (sec). Leaf size: 23
DSolve $\left[x^{\wedge} 2 * y[x] * y\right.$ ' $\quad[x]+(x * y$ ' $[x]-y[x]) \wedge 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2} \sqrt{x} \sqrt{2 x+c_{1}}
$$

37.2 problem Ex 2

Internal problem ID [11333]
Internal file name [OUTPUT/10318_Tuesday_December_27_2022_04_07_33_AM_17358228/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 61. Transformation of variables. Page 143
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible
    , _mu_xy]]
```

Unable to solve or complete the solution.

$$
x^{3} y^{\prime \prime}-\left(y^{\prime} x-y\right)^{2}=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
<- quadrature successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19
dsolve $\left(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 2)-(x * \operatorname{diff}(y(x), x)-y(x)) \wedge 2=0, y(x)\right.$, singsol=all)

$$
y(x)=-x \ln \left(\frac{c_{1} x-c_{2}}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.65 (sec). Leaf size: 21
DSolve[x^3*y''[x]-(x*y'[x]-y[x])~2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \log \left(-\frac{c_{2} x+c_{1}}{x}\right)
$$

37.3 problem Ex 3

Internal problem ID [11334]
Internal file name [OUTPUT/10319_Tuesday_December_27_2022_04_07_34_AM_59523079/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 61. Transformation of variables. Page 143
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _reducible, _mu_xy]]
```

Unable to solve or complete the solution.

$$
y y^{\prime \prime}-y^{\prime 2}-y^{2} \ln (y)+x^{2} y^{2}=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 22
dsolve $\left(y(x) * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)^{\wedge} 2=y(x) \wedge 2 * \ln (y(x))-x^{\wedge} 2 * y(x) \wedge 2, y(x)\right.$, singsol=all)

$$
y(x)=\mathrm{e}^{x^{2}+2-\frac{c_{2} \mathrm{e}^{x}}{2}+\frac{c_{1} \mathrm{e}^{-x}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 1.156 (sec). Leaf size: 30
DSolve $\left[y[x] * y{ }^{\prime \prime}[x]-y{ }^{\prime}[x] \sim 2==y[x] \wedge 2 * \log [y[x]]-x^{\wedge} 2 * y[x] \sim 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
y(x) \rightarrow e^{x^{2}-\frac{c_{1} e^{x}}{2}-c_{2} e^{-x}+2}
$$

37.4 problem Ex 4

37.4.1 Maple step by step solution . 2173

Internal problem ID [11335]
Internal file name [OUTPUT/10320_Tuesday_December_27_2022_04_07_35_AM_56107345/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 61. Transformation of variables. Page 143
Problem number: Ex 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
\sin (x)^{2} y^{\prime \prime}-2 y=0
$$

37.4.1 Maple step by step solution

Let's solve
$\sin (x)^{2} y^{\prime \prime}-2 y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y}{\sin (x)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{2 y}{\sin (x)^{2}}=0$
- Multiply by denominators of the ODE
$\sin (x)^{2} y^{\prime \prime}-2 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\sin (x)^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-2 y(t)=0$
- Simplify
$\frac{\sin (x)^{2}\left(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)\right)}{x^{2}}-2 y(t)=0$
- Isolate 2 nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=\frac{2 x^{2} y(t)}{\sin (x)^{2}}+\frac{d}{d t} y(t)$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-\frac{2 x^{2} y(t)}{\sin (x)^{2}}-\frac{d}{d t} y(t)=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{2 x^{2}}{\sin (x)^{2}}-r=0
$$

- Factor the characteristic polynomial

$$
\frac{r^{2} \sin (x)^{2}-r \sin (x)^{2}-2 x^{2}}{\sin (x)^{2}}=0
$$

- Roots of the characteristic polynomial
$r=\left(\frac{\frac{\sin (x)}{2}+\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}}{\sin (x)}, \frac{\frac{\sin (x)}{2}-\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}}{\sin (x)}\right)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{\left(\frac{\sin (x)}{2}+\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}\right) t}{\sin (x)}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{\frac{\left(\frac{\sin (x)}{2}-\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}\right) t}{\sin (x)}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{\frac{\left(\frac{\sin (x)}{2}+\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}\right) t}{\sin (x)}+c_{2} \mathrm{e}^{\frac{\left(\frac{\sin (x)}{2}-\frac{\sqrt{\sin (x)^{2}+8 x^{2}}}{2}\right) t}{\sin (x)}}+{ }^{\frac{1}{2}}}$
- Change variables back using $t=\ln (x)$
- Simplify
$y=\sqrt{x}\left(c_{1} x^{\frac{\csc (x) \sqrt{\sin (x)^{2}+8 x^{2}}}{2}}+c_{2} x^{-\frac{\csc (x) \sqrt{\sin (x)^{2}+8 x^{2}}}{2}}\right)$

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[$\mathrm{x}=1 / 2 * \arccos (\mathrm{t})]$
Linear ODE actually solved:
$-u(t)+(t \wedge 2-t) * \operatorname{diff}(u(t), t)+(t \wedge 3-t \wedge 2-t+1) * \operatorname{diff}(\operatorname{diff}(u(t), t), t)=0$
<- change of variables successful-

Solution by Maple
Time used: 0.344 (sec). Leaf size: 31

```
dsolve(sin(x)^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=-i \cot (x) \ln (\cos (2 x)+i \sin (2 x)) c_{2}-2 c_{2}+c_{1} \cot (x)
$$

\checkmark Solution by Mathematica
Time used: 0.339 (sec). Leaf size: 46

```
DSolve[Sin[x] ~2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{\cos (x)\left(c_{1}-c_{2} \log \left(\sqrt{-\sin ^{2}(x)}-\cos (x)\right)\right)}{\sqrt{-\sin ^{2}(x)}}-c_{2}
$$

38 Chapter IX, Miscellaneous methods for solvingequations of higher order than first. Article 62.Summary. Page 144
38.1 problem Ex 1 2178
38.2 problem Ex 2 2183
38.3 problem Ex 3 2197
38.4 problem Ex 4 2205
38.5 problem Ex 5 2210
38.6 problem Ex 6 2225
38.7 problem Ex 7 2230
38.8 problem Ex 8 2245
38.9 problem Ex 9 2253
38.10problem Ex 10 2258
38.11problem Ex 11 2278
38.12problem Ex 12 2285

38.1 problem Ex 1

38.1.1 Solving as second order ode missing y ode 2178
38.1.2 Solving as second order ode missing x ode 2179
38.1.3 Maple step by step solution . 2181

Internal problem ID [11336]
Internal file name [OUTPUT/10322_Friday_January_27_2023_02_36_51_AM_75656588/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second__order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$
y^{\prime \prime}-y^{\prime 2}=1
$$

38.1.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-p(x)^{2}-1=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{p^{2}+1} d p & =x+c_{1} \\
\arctan (p) & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=\tan \left(x+c_{1}\right)
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\tan \left(x+c_{1}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \tan \left(x+c_{1}\right) \mathrm{d} x \\
& =\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
$$

Verified OK.

38.1.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=1
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{p}{p^{2}+1} d p & =\int d y \\
\frac{\ln \left(p^{2}+1\right)}{2} & =y+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{p^{2}+1}=\mathrm{e}^{y+c_{1}}
$$

Which simplifies to

$$
\sqrt{p^{2}+1}=c_{2} \mathrm{e}^{y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)
$$

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)} d y=\int d x \\
&\left.\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a\right.}+1\right) \\
& d _a=c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2} _^{a}+1\right)} d _a=c_{3}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a+1\right)} d _a=c_{3}+x
$$

Verified OK.

38.1.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-y^{\prime 2}=1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x)-u(x)^{2}=1$
- \quad Separate variables

$$
\frac{u^{\prime}(x)}{u(x)^{2}+1}=1
$$

- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{2}+1} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\arctan (u(x))=x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\tan \left(x+c_{1}\right)$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\tan \left(x+c_{1}\right)$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\tan \left(x+c_{1}\right)$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \tan \left(x+c_{1}\right) d x+c_{2}$
- Compute integrals
$y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)=diff(y(x),x)^2+1,y(x), singsol=all)
```

$$
y(x)=-\ln \left(c_{1} \sin (x)-c_{2} \cos (x)\right)
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 3.079 (sec). Leaf size: 16
DSolve[y''[x]==y'[x]~2+1,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{2}-\log \left(\cos \left(x+c_{1}\right)\right)
$$

38.2 problem Ex 2

38.2.1 Solving as second order ode missing y ode 2183
38.2.2 Solving using Kovacic algorithm 2185
38.2.3 Maple step by step solution . 2195

Internal problem ID [11337]
Internal file name [OUTPUT/10323_Friday_January_27_2023_02_36_54_AM_64126668/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__ode__missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x=2
$$

38.2.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(-x^{2}+1\right) p^{\prime}(x)-p(x) x-2=0
$$

Which is now solve for $p(x)$ as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =-\frac{2}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{x p(x)}{x^{2}-1}=-\frac{2}{x^{2}-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{x}{x^{2}-1} d x} \\
& =\mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (1+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sqrt{x-1} \sqrt{1+x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(-\frac{2}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x-1} \sqrt{1+x} p) & =(\sqrt{x-1} \sqrt{1+x})\left(-\frac{2}{x^{2}-1}\right) \\
\mathrm{d}(\sqrt{x-1} \sqrt{1+x} p) & =\left(-\frac{2 \sqrt{x-1} \sqrt{1+x}}{x^{2}-1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x-1} \sqrt{1+x} p=\int-\frac{2 \sqrt{x-1} \sqrt{1+x}}{x^{2}-1} \mathrm{~d} x \\
& \sqrt{x-1} \sqrt{1+x} p=-\frac{2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x-1} \sqrt{1+x}$ results in

$$
p(x)=-\frac{2 \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}+\frac{c_{1}}{\sqrt{x-1} \sqrt{1+x}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{2 \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}+\frac{c_{1}}{\sqrt{x-1} \sqrt{1+x}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{-2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}} \mathrm{~d} x \\
& =\frac{c_{1} \sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}}-\ln \left(x+\sqrt{x^{2}-1}\right)^{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}}-\ln \left(x+\sqrt{x^{2}-1}\right)^{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}}-\ln \left(x+\sqrt{x^{2}-1}\right)^{2}+c_{2}
$$

Verified OK.

38.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=-x^{2}+1 \\
& B=-x \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-x^{2}-2}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-x^{2}-2 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-x^{2}-2}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 223: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-1\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{16 x-16}-\frac{3}{16(x-1)^{2}}-\frac{3}{16(1+x)^{2}}-\frac{1}{16(1+x)}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{-x^{2}-2}{4\left(x^{2}-1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{-x^{2}-2}{4\left(x^{2}-1\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{4}$	$\frac{1}{4}$
-1	2	0	$\frac{3}{4}$	$\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{4 x-4}+\frac{1}{4+4 x}+(-)(0) \\
& =\frac{1}{4 x-4}+\frac{1}{4+4 x} \\
& =\frac{x}{2 x^{2}-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{1}{4 x-4}+\frac{1}{4+4 x}\right)(0)+\left(\left(-\frac{1}{4(x-1)^{2}}-\frac{1}{4(1+x)^{2}}\right)+\left(\frac{1}{4 x-4}+\frac{1}{4+4 x}\right)^{2}-\left(\frac{-x^{2}-2}{4\left(x^{2}-1\right)^{2}}\right)\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{4 x-4}+\frac{1}{4+4 x}\right) d x} \\
& =(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x}{-x^{2}+1} d x} \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{-x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)+c_{2}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}+\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& y_{2}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} & \frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
\frac{d}{d x}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) & \frac{d}{d x}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{gathered}\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\ \frac{x}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}}\end{gathered} \frac{\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln (x+}{(x-1)^{\frac{1}{4}}\left(1+\sqrt{x^{2}-1}\right) x}}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{(x}{}\right.$

Therefore

$$
\begin{aligned}
& W=\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)\left(\frac{\ln \left(x+\sqrt{x^{2}-1}\right) x}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right. \\
&-\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}} \\
&\left.+\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(1+\frac{x}{\sqrt{x^{2}-1}}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)}\right) \\
&-\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)\left(\frac{x}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right. \\
&\left.-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{1}{\sqrt{x-1} \sqrt{1+x}}
$$

Which simplifies to

$$
W=\frac{1}{\sqrt{x-1} \sqrt{1+x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}}{\frac{-x^{2}+1}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{\left(x^{2}-1\right)^{\frac{3}{4}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{2(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}}{\frac{-x^{2}+1}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{2(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}{\left(x^{2}-1\right)^{\frac{3}{4}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{2(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=2\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \\
& u_{2}=-2\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{2\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& -\frac{2\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}+\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}} \ln \left(x+\sqrt{x^{2}-1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) \\
& +\left(-\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right) c_{2}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& -\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right) c_{2}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& -\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right) c_{2}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& -\frac{2\left(x^{2}-1\right)^{\frac{1}{4}}\left(\ln \left(x+\sqrt{x^{2}-1}\right)\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}} \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Verified OK.

38.2.3 Maple step by step solution

Let's solve
$\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x=2$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
\left(-x^{2}+1\right) u^{\prime}(x)-u(x) x=2
$$

- Isolate the derivative
$u^{\prime}(x)=-\frac{x u(x)}{x^{2}-1}-\frac{2}{x^{2}-1}$
- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(x)+\frac{x u(x)}{x^{2}-1}=-\frac{2}{x^{2}-1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)+\frac{x u(x)}{x^{2}-1}\right)=-\frac{2 \mu(x)}{x^{2}-1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)+\frac{x u(x)}{x^{2}-1}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) x}{x^{2}-1}$
- Solve to find the integrating factor

$$
\mu(x)=\sqrt{x-1} \sqrt{1+x}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int-\frac{2 \mu(x)}{x^{2}-1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int-\frac{2 \mu(x)}{x^{2}-1} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int-\frac{2 \mu(x)}{x^{2}-1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sqrt{x-1} \sqrt{1+x}$
$u(x)=\frac{\int-\frac{2 \sqrt{x-1} \sqrt{1+x}}{x^{2}-1} d x+c_{1}}{\sqrt{x-1} \sqrt{1+x}}$
- Evaluate the integrals on the rhs

$$
u(x)=\frac{-\frac{2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}+c_{1}}{\sqrt{x-1} \sqrt{1+x}}
$$

- Simplify

$$
u(x)=\frac{-2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}
$$

- \quad Solve 1st ODE for $u(x)$

$$
u(x)=\frac{-2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}
$$

- Make substitution $u=y^{\prime}$

$$
y^{\prime}=\frac{-2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}
$$

- Integrate both sides to solve for y

$$
\int y^{\prime} d x=\int \frac{-2 \sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}} d x+c_{2}
$$

- Compute integrals

$$
y=\frac{c_{1} \sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}}-\ln \left(x+{\left.\sqrt{x^{2}-1}\right)^{2}+c_{2} .}^{2}\right.
$$

\checkmark Solution by Maple
Time used: 0.235 (sec). Leaf size: 59

```
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)=2,y(x), singsol=all)
```

$$
y(x)=-\left(\int-\frac{-2 \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right) \sqrt{-1+x} \sqrt{1+x}+c_{1}\left(x^{2}-1\right)}{(-1+x)^{\frac{3}{2}}(1+x)^{\frac{3}{2}}} d x\right)+c_{2}
$$

Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 48

```
DSolve[(1-x^2)*y''[x]-x*y'[x]==2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2}-\frac{1}{4}\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)+c_{1}\right)^{2}
$$

38.3 problem Ex 3

38.3.1 Solving as second order integrable as is ode 2197
38.3.2 Solving as second order ode missing x ode 2198
38.3.3 Solving as type second_order_integrable_as_is (not using ABC version)

2200
38.3.4 Solving as exact nonlinear second order ode ode 2201
38.3.5 Maple step by step solution . 2202

Internal problem ID [11338]
Internal file name [OUTPUT/10324_Friday_January_27_2023_02_36_57_AM_26690807/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear],
    _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
    _reducible, _mu_xy]]
```

$$
y^{\prime \prime}+y y^{\prime}=0
$$

38.3.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{2}}{2}+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{y^{2}}{2}+c_{1}} d y & =x+c_{2} \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Verified OK.

38.3.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)+y p(y)=0
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
p(y) & =\int-y \mathrm{~d} y \\
& =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=-\frac{y^{2}}{2}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{y^{2}}{2}+c_{1}} d y & =x+c_{2} \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Verified OK.

38.3.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+y y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{2}}{2}+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{y^{2}}{2}+c_{1}} d y & =x+c_{2} \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Verified OK.

38.3.4 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

$$
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
$$

Where the following conditions are satisfied

$$
\begin{aligned}
& \frac{\partial a_{2}}{\partial y}=\frac{\partial a_{1}}{\partial y^{\prime}} \\
& \frac{\partial a_{2}}{\partial x}=\frac{\partial a_{0}}{\partial y^{\prime}} \\
& \frac{\partial a_{1}}{\partial x}=\frac{\partial a_{0}}{\partial y}
\end{aligned}
$$

Looking at the the ode given we see that

$$
\begin{aligned}
a_{2} & =1 \\
a_{1} & =y \\
a_{0} & =0
\end{aligned}
$$

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by

$$
\begin{array}{r}
\int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
\int 1 d y^{\prime}+\int y d y+\int 0 d x=c_{1}
\end{array}
$$

Which results in

$$
\frac{y^{2}}{2}+y^{\prime}=c_{1}
$$

Which is now solved Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{y^{2}}{2}+c_{1}} d y & =x+c_{2} \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
$$

Verified OK.

38.3.5 Maple step by step solution

Let's solve
$y^{\prime \prime}+y y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $u(y)\left(\frac{d}{d y} u(y)\right)+y u(y)=0$
- Separate variables
$\frac{d}{d y} u(y)=-y$
- Integrate both sides with respect to y
$\int\left(\frac{d}{d y} u(y)\right) d y=\int-y d y+c_{1}$
- Evaluate integral

$$
u(y)=-\frac{y^{2}}{2}+c_{1}
$$

- \quad Solve for $u(y)$
$u(y)=-\frac{y^{2}}{2}+c_{1}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=-\frac{y^{2}}{2}+c_{1}$
- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=-\frac{y^{2}}{2}+c_{1}$
- Separate variables
$\frac{y^{\prime}}{-\frac{y^{2}}{2}+c_{1}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-\frac{y^{2}}{2}+c_{1}} d x=\int 1 d x+c_{2}$
- Evaluate integral
$\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}$
- \quad Solve for y
$y=\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)*_a = 0, _b(_a), HINT = [[
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 2*_b]
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\tanh \left(\frac{\left(c_{2}+x\right) \sqrt{2}}{2 c_{1}}\right) \sqrt{2}}{c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 20.03 (sec). Leaf size: 34
DSolve[y''[x]+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \sqrt{2} \sqrt{c_{1}} \tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right)}{\sqrt{2}}\right)
$$

38.4 problem Ex 4

38.4.1 Maple step by step solution . 2205

Internal problem ID [11339]
Internal file name [OUTPUT/10325_Friday_January_27_2023_02_36_58_AM_31623902/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 4.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _fully, _exact, _linear]]
Unable to solve or complete the solution.

$$
\left(x^{3}+1\right) y^{\prime \prime \prime}+9 y^{\prime \prime} x^{2}+18 y^{\prime} x+6 y=0
$$

Unable to solve this ODE.

38.4.1 Maple step by step solution

Let's solve
$\left(x^{3}+1\right) y^{\prime \prime \prime}+9 y^{\prime \prime} x^{2}+18 y^{\prime} x+6 y=0$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{9 x^{2}}{x^{3}+1}, P_{3}(x)=\frac{18 x}{x^{3}+1}, P_{4}(x)=\frac{6}{x^{3}+1}\right]
$$

- $\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \cdot P_{2}(x)$ is analytic at $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left.\left(\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}=0
$$

- $\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left.\left(\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}=0
$$

- $\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3} \cdot P_{4}(x)$ is analytic at $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left.\left(\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3} \cdot P_{4}(x)\right)\right|_{x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}=0
$$

- $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}
$$

- Change variables using $x=u+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$ so that the regular singular point is at $u=0$ $\left(u^{3}+\frac{3 u^{2}}{2}-\frac{3 \mathrm{I} u^{2} \sqrt{3}}{2}-\frac{3 u}{2}-\frac{3 \mathrm{I} u \sqrt{3}}{2}\right)\left(\frac{d^{3}}{d u^{3}} y(u)\right)+\left(9 u^{2}+9 u-9 \mathrm{I} u \sqrt{3}-\frac{9}{2}-\frac{9 \mathrm{I} \sqrt{3}}{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+($
- \quad Assume series solution for $y(u)$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
$$

Rewrite ODE with series expansions

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1)(k+r-2) u^{k+r-3+m}
$$

- Shift index using $k->k+3-m$

$$
u^{m} \cdot\left(\frac{d^{3}}{d u^{3}} y(u)\right)=\sum_{k=-3+m}^{\infty} a_{k+3-m}(k+3-m+r)(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-\frac{3(1+\mathrm{I} \sqrt{3})(r-1)(r+1) r a_{0} u^{-2+r}}{2}+\left(-\frac{3(1+\mathrm{I} \sqrt{3}) r(r+2)(r+1) a_{1}}{2}-\frac{3(\mathrm{I} \sqrt{3}-1) r(r+1)(r+2) a_{0}}{2}\right) u^{r-1}+\left(\sum _ { k = 0 } ^ { \infty } \left(-\frac{3(1}{}\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-\frac{3(1+\mathrm{I} \sqrt{3})(r-1)(r+1) r}{2}=0
$$

- Values of r that satisfy the indicial equation
$r \in\{-1,0,1\}$
- Each term in the series must be 0 , giving the recursion relation

$$
\frac{3(r+1+k)(r+3+k)(r+2+k)\left(-\mathrm{I}\left(a_{k+1}+a_{k+2}\right) \sqrt{3}+\frac{2 a_{k}}{3}+a_{k+1}-a_{k+2}\right)}{2}=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}$
- \quad Recursion relation for $r=-1$

$$
a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}
$$

- \quad Solution for $r=-1$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-1}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}, 0=0\right]$
- \quad Revert the change of variables $u=x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k-1}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}, 0=0\right]$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}, 0=0\right]
$$

- \quad Revert the change of variables $u=x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}, 0=0\right]
$$

- \quad Recursion relation for $r=1$

$$
a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})}
$$

- \quad Solution for $r=1$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+1}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})},-9(1+\mathrm{I} \sqrt{3}) a_{1}-9(\mathrm{I} \sqrt{3}-1) a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k+1}, a_{k+2}=-\frac{3 \mathrm{I} \sqrt{3} a_{k+1}-2 a_{k}-3 a_{k+1}}{3(1+\mathrm{I} \sqrt{3})},-9(1+\mathrm{I} \sqrt{3}) a_{1}-9(\mathrm{I} \sqrt{3}-1) a_{0}=0\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} c_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{1+k}\right), a_{k+2}\right.
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve((1+x^3)*diff (y (x),x$3)+9*x^2*diff(y(x),x$2)+18*x*diff (y (x), x)+6*y(x)=0,y(x), singsol=
```

$$
y(x)=\frac{c_{1} x^{2}+c_{2} x+c_{3}}{(1+x)\left(x^{2}-x+1\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 31
DSolve $\left[\left(1+x^{\wedge} 3\right) * y\right.$ ' ' ' $[x]+9 * x^{\wedge} 2 * y$ ' $\quad[x]+18 * x * y$ ' $[x]+6 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{c_{3} x^{2}+2 c_{2} x+2 c_{1}}{2 x^{3}+2}
$$

38.5 problem Ex 5

38.5.1 Solving as second order integrable as is ode 2210
38.5.2 Solving as type second_order_integrable_as_is (not using ABC version)
. 2212
38.5.3 Solving using Kovacic algorithm 2214
38.5.4 Solving as exact linear second order ode ode 2219
38.5.5 Maple step by step solution . 2221

Internal problem ID [11340]
Internal file name [OUTPUT/10326_Friday_January_27_2023_02_36_59_AM_16834199/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y=0
$$

38.5.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y\right) d x=0 \\
(3+2 x) y+\left(x^{2}-x\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{-2 x-3}{x(x-1)} \\
q(x) & =\frac{c_{1}}{x(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x-3) y}{x(x-1)}=\frac{c_{1}}{x(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x-3}{x(x-1)} d x} \\
& =\mathrm{e}^{5 \ln (x-1)-3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x-1)^{5}}{x^{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{5}}{x^{3}}\right)\left(\frac{c_{1}}{x(x-1)}\right) \\
\mathrm{d}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{4} c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x-1)^{5} y}{x^{3}}=\int \frac{(x-1)^{4} c_{1}}{x^{4}} \mathrm{~d} x \\
& \frac{(x-1)^{5} y}{x^{3}}=c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(x-1)^{5}}{x^{3}}$ results in

$$
y=\frac{x^{3} c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)}{(x-1)^{5}}+\frac{c_{2} x^{3}}{(x-1)^{5}}
$$

which simplifies to

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Verified OK.

38.5.2 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y\right) d x=0 \\
(3+2 x) y+\left(x^{2}-x\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{-2 x-3}{x(x-1)} \\
q(x) & =\frac{c_{1}}{x(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x-3) y}{x(x-1)}=\frac{c_{1}}{x(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x-3}{x(x-1)} d x} \\
& =\mathrm{e}^{5 \ln (x-1)-3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x-1)^{5}}{x^{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{5}}{x^{3}}\right)\left(\frac{c_{1}}{x(x-1)}\right) \\
\mathrm{d}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{4} c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x-1)^{5} y}{x^{3}}=\int \frac{(x-1)^{4} c_{1}}{x^{4}} \mathrm{~d} x \\
& \frac{(x-1)^{5} y}{x^{3}}=c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(x-1)^{5}}{x^{3}}$ results in

$$
y=\frac{x^{3} c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)}{(x-1)^{5}}+\frac{c_{2} x^{3}}{(x-1)^{5}}
$$

which simplifies to

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Verified OK.

38.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}-x \\
& B=4 x+2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 x+2}{\left(x^{2}-x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 x+2 \\
& t=\left(x^{2}-x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 x+2}{\left(x^{2}-x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 227: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-1 \\
& =3
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}-x\right)^{2}$. There is a pole at $x=0$ of order 2 . There is a pole at $x=1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}-\frac{8}{x-1}+\frac{6}{(x-1)^{2}}+\frac{8}{x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

Since the order of r at ∞ is $3>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{4 x+2}{\left(x^{2}-x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1
1	2	0	3	-2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
3	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=0$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{+}+\alpha_{c_{2}}^{-}\right) \\
& =0-(0) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((+)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{+}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =\frac{2}{x}-\frac{2}{x-1}+(0) \\
& =\frac{2}{x}-\frac{2}{x-1} \\
& =-\frac{2}{x(x-1)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{2}{x}-\frac{2}{x-1}\right)(0)+\left(\left(-\frac{2}{x^{2}}+\frac{2}{(x-1)^{2}}\right)+\left(\frac{2}{x}-\frac{2}{x-1}\right)^{2}-\left(\frac{4 x+2}{\left(x^{2}-x\right)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{2}{x}-\frac{2}{x-1}\right) d x} \\
& =\frac{x^{2}}{(x-1)^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{14 x+2}{x^{2}-x} d x} \\
& =z_{1} e^{-3 \ln (x-1)+\ln (x)} \\
& =z_{1}\left(\frac{x}{(x-1)^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{x^{3}}{(x-1)^{5}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x+2}{x^{2}-x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 \ln (x-1)+2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{x^{3}}{(x-1)^{5}}\right)+c_{2}\left(\frac{x^{3}}{(x-1)^{5}}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{3}}{(x-1)^{5}}+\frac{c_{2}\left(-12 \ln (x) x^{3}+3 x^{4}-18 x^{2}+6 x-1\right)}{3(x-1)^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{3}}{(x-1)^{5}}+\frac{c_{2}\left(-12 \ln (x) x^{3}+3 x^{4}-18 x^{2}+6 x-1\right)}{3(x-1)^{5}}
$$

Verified OK.

38.5.4 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2}-x \\
& q(x)=4 x+2 \\
& r(x)=2 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
(3+2 x) y+\left(x^{2}-x\right) y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
(3+2 x) y+\left(x^{2}-x\right) y^{\prime}=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{-2 x-3}{x(x-1)} \\
q(x) & =\frac{c_{1}}{x(x-1)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x-3) y}{x(x-1)}=\frac{c_{1}}{x(x-1)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x-3}{x(x-1)} d x} \\
& =\mathrm{e}^{5 \ln (x-1)-3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x-1)^{5}}{x^{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x(x-1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{5}}{x^{3}}\right)\left(\frac{c_{1}}{x(x-1)}\right) \\
\mathrm{d}\left(\frac{(x-1)^{5} y}{x^{3}}\right) & =\left(\frac{(x-1)^{4} c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x-1)^{5} y}{x^{3}}=\int \frac{(x-1)^{4} c_{1}}{x^{4}} \mathrm{~d} x \\
& \frac{(x-1)^{5} y}{x^{3}}=c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(x-1)^{5}}{x^{3}}$ results in

$$
y=\frac{x^{3} c_{1}\left(x+\frac{2}{x^{2}}-\frac{1}{3 x^{3}}-\frac{6}{x}-4 \ln (x)\right)}{(x-1)^{5}}+\frac{c_{2} x^{3}}{(x-1)^{5}}
$$

which simplifies to

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-12 \ln (x) c_{1} x^{3}+\left(3 x^{4}-18 x^{2}+6 x-1\right) c_{1}+3 c_{2} x^{3}}{3(x-1)^{5}}
$$

Verified OK.

38.5.5 Maple step by step solution

Let's solve
$\left(x^{2}-x\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y}{x(x-1)}-\frac{2(2 x+1) y^{\prime}}{x(x-1)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2(2 x+1) y^{\prime}}{x(x-1)}+\frac{2 y}{x(x-1)}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2(2 x+1)}{x(x-1)}, P_{3}(x)=\frac{2}{x(x-1)}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x(x-1)+(4 x+2) y^{\prime}+2 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-3+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+r+1)(k-2+r)+a_{k}(k+r+2)(k+r+1)\right) x^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-3+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{0,3\}
$$

- Each term in the series must be 0, giving the recursion relation

$$
(k+r+1)\left((-k-r+2) a_{k+1}+a_{k}(k+r+2)\right)=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r+2)}{k-2+r}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}(k+2)}{k-2}$
- Series not valid for $r=0$, division by 0 in the recursion relation at $k=2$
$a_{k+1}=\frac{a_{k}(k+2)}{k-2}$
- Recursion relation for $r=3$

$$
a_{k+1}=\frac{a_{k}(k+5)}{k+1}
$$

- \quad Solution for $r=3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+1}=\frac{a_{k}(k+5)}{k+1}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve($\left(x^{\wedge} 2-x\right) * \operatorname{diff}(y(x), x \$ 2)+(4 * x+2) * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\frac{12 \ln (x) c_{1} x^{3}+\left(-3 x^{4}+18 x^{2}-6 x+1\right) c_{1}+c_{2} x^{3}}{(-1+x)^{5}}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 52
DSolve[($\left.x^{\wedge} 2-x\right) * y$ ' ' $[x]+(4 * x+2) * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-3 c_{2} x^{4}-3 c_{1} x^{3}+12 c_{2} x^{3} \log (x)+18 c_{2} x^{2}-6 c_{2} x+c_{2}}{3(x-1)^{5}}
$$

38.6 problem Ex 6

38.6.1 Solving as second order ode missing x ode 2225
38.6.2 Maple step by step solution . 2227

Internal problem ID [11341]
Internal file name [OUTPUT/10327_Friday_January_27_2023_02_37_01_AM_40293410/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
    _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
```

$$
y(1-\ln (y)) y^{\prime \prime}+(1+\ln (y)) y^{\prime 2}=0
$$

38.6.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
(-\ln (y) y+y) p(y)\left(\frac{d}{d y} p(y)\right)+(\ln (y) p(y)+p(y)) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p(1+\ln (y))}{y(-1+\ln (y))}
\end{aligned}
$$

Where $f(y)=\frac{1+\ln (y)}{y(-1+\ln (y))}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{1+\ln (y)}{y(-1+\ln (y))} d y \\
\int \frac{1}{p} d p & =\int \frac{1+\ln (y)}{y(-1+\ln (y))} d y \\
\ln (p) & =\ln (y)+2 \ln (-1+\ln (y))+c_{1} \\
p & =\mathrm{e}^{\ln (y)+2 \ln (-1+\ln (y))+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln (y)+2 \ln (-1+\ln (y))}
\end{aligned}
$$

Which simplifies to

$$
p(y)=c_{1}\left(y-2 \ln (y) y+y \ln (y)^{2}\right)
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=c_{1}\left(y-2 \ln (y) y+y \ln (y)^{2}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{c_{1} y\left(1-2 \ln (y)+\ln (y)^{2}\right)} d y & =\int d x \\
-\frac{1}{c_{1}(-1+\ln (y))} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{1}{c_{1}(-1+\ln (y))}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{1}{c_{1}(-1+\ln (y))}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{c_{1} \ln \left(c_{3}\right)+c_{1} x-1}{\left(\ln \left(c_{3}\right)+x\right) c_{1}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{c_{1} \ln \left(c_{3}\right)+c_{1} x-1}{\left(\ln \left(c_{3}\right)+x\right) c_{1}}}
$$

Verified OK.

38.6.2 Maple step by step solution

Let's solve
$(-\ln (y) y+y) y^{\prime \prime}+\left(\ln (y) y^{\prime}+y^{\prime}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $(-\ln (y) y+y) u(y)\left(\frac{d}{d y} u(y)\right)+(\ln (y) u(y)+u(y)) u(y)=0$
- \quad Separate variables

$$
\frac{\frac{d}{d y} u(y)}{u(y)}=\frac{1+\ln (y)}{y(-1+\ln (y))}
$$

- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int \frac{1+\ln (y)}{y(-1+\ln (y))} d y+c_{1}$
- Evaluate integral

$$
\ln (u(y))=\ln (y)+2 \ln (-1+\ln (y))+c_{1}
$$

- \quad Solve for $u(y)$

$$
u(y)=\mathrm{e}^{c_{1}} y(-1+\ln (y))^{2}
$$

- \quad Solve 1st ODE for $u(y)$

$$
u(y)=\mathrm{e}^{c_{1}} y(-1+\ln (y))^{2}
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\mathrm{e}^{c_{1}} y(\ln (y)-1)^{2}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y(\ln (y)-1)^{2}}=\mathrm{e}^{c_{1}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y(\ln (y)-1)^{2}} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
$$

- Evaluate integral

$$
-\frac{1}{\ln (y)-1}=\mathrm{e}^{c_{1}} x+c_{2}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\mathrm{e}^{c_{1} x+c_{2}-1}}{\mathrm{e}^{c_{1}} x+c_{2}}}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(y(x)*(1-ln}(y(x)))*\operatorname{diff}(y(x),x$2)+(1+\operatorname{ln}(y(x)))*\operatorname{diff}(y(x),x)~2=0,y(x), singsol=all
```

$$
y(x)=\mathrm{e}^{\frac{c_{1} x+c_{2}-1}{c_{1} x+c_{2}}}
$$

\checkmark Solution by Mathematica
Time used: 1.021 (sec). Leaf size: 34
DSolve $\left[y[x] *(1-\log [y[x]]) * y^{\prime} '[x]+(1+\log [y[x]]) * y '[x] \sim 2==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow e^{\frac{c_{1} x-1+c_{2} c_{1}}{c_{1}\left(x+c_{2}\right)}} \\
& y(x) \rightarrow e
\end{aligned}
$$

38.7 problem Ex 7

38.7.1 Solving as second order integrable as is ode 2231
38.7.2 Solving as second order ode missing y ode 2231
38.7.3 Solving as second order ode non constant coeff transformation
on B ode . 2232
38.7.4 Solving as type second_order_integrable_as_is (not using ABC
version) . 2235
38.7.5 Solving using Kovacic algorithm 2235
38.7.6 Solving as exact linear second order ode ode 2240
38.7.7 Maple step by step solution . 2242

Internal problem ID [11342]
Internal file name [OUTPUT/10328_Friday_January_27_2023_02_37_03_AM_6094788/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 62. Summary. Page 144
Problem number: Ex 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second_oorder__ode__non__constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}=0
$$

38.7.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x y^{\prime \prime}+y^{\prime}\right) d x=0 \\
y^{\prime} x=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK.

38.7.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x) x+p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{p}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =-\frac{1}{x} d x \\
\int \frac{1}{p} d p & =\int-\frac{1}{x} d x \\
\ln (p) & =-\ln (x)+c_{1} \\
p & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{c_{1}}{x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK.

38.7.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x \\
& B=1 \\
& C=0 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(1)(0)+(0)(1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(1)\left(c_{1} \ln (x)+c_{2}\right) \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK.

38.7.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x y^{\prime \prime}+y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x y^{\prime \prime}+y^{\prime}\right) d x=0 \\
y^{\prime} x=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK.

38.7.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x y^{\prime \prime}+y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =x \\
B & =1 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 230: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\ln (x) c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\ln (x) c_{2}
$$

Verified OK.

38.7.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x \\
& q(x)=1 \\
& r(x)=0 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} x=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}
$$

Verified OK.

38.7.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x+y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x+\frac{\frac{d}{d t} y(t)}{x}=0\right.
$$

- Simplify

$$
\frac{\frac{d^{2}}{d t^{2}} y(t)}{x}=0
$$

- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- 1st solution of the ODE

$$
y_{1}(t)=1
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{2} t+c_{1}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1}+\ln (x) c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff($y(x), x \$ 2)+1 / x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \ln (x)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 13
DSolve[y''[x]+1/x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \log (x)+c_{2}
$$

38.8 problem Ex 8

38.8.1 Solving as second order integrable as is ode 2245
38.8.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2248

Internal problem ID [11343]
Internal file name [OUTPUT/10329_Friday_January_27_2023_02_37_04_AM_83539008/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is"
Maple gives the following as the ode type

```
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible,
    _mu_xy]]
```

$$
x(x+2 y) y^{\prime \prime}+2 x y^{\prime 2}+4(y+x) y^{\prime}+2 y=-x^{2}
$$

38.8.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(2 y x+x^{2}\right) y^{\prime \prime}+\left(\left(2 y^{\prime}+4\right) x+4 y\right) y^{\prime}+2 y\right) d x=\int-x^{2} d x \\
2 y x+y^{2}+\left(2 y x+x^{2}\right) y^{\prime}=-\frac{x^{3}}{3}+c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+2 x y\right) \mathrm{d} y & =\left(-2 x y-y^{2}-\frac{1}{3} x^{3}+c_{1}\right) \mathrm{d} x \\
\left(2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1}\right) \mathrm{d} x+\left(x^{2}+2 x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1} \\
N(x, y) & =x^{2}+2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1}\right) \\
& =2 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+2 x y\right) \\
& =2 y+2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1} \mathrm{~d} x \\
\phi & =\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x(12 x+24 y)}{12}+f^{\prime}(y) \tag{4}\\
& =x(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+2 x y=x(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{2}
$$

Where c_{2} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}+c_{2}
$$

But since ϕ itself is a constant function, then let $\phi=c_{3}$ where c_{3} is new constant and combining c_{2} and c_{3} constants into new constant c_{2} gives the solution as

$$
c_{2}=\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x\left(x^{3}+12 y x+12 y^{2}-12 c_{1}\right)}{12}=c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{x\left(x^{3}+12 y x+12 y^{2}-12 c_{1}\right)}{12}=c_{2}
$$

Verified OK.

38.8.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\left(2 y x+x^{2}\right) y^{\prime \prime}+\left(\left(2 y^{\prime}+4\right) x+4 y\right) y^{\prime}+2 y=-x^{2}
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(2 y x+x^{2}\right) y^{\prime \prime}+\left(\left(2 y^{\prime}+4\right) x+4 y\right) y^{\prime}+2 y\right) d x=\int-x^{2} d x \\
2 y x+y^{2}+\left(2 y x+x^{2}\right) y^{\prime}=-\frac{x^{3}}{3}+c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+2 x y\right) \mathrm{d} y & =\left(-2 x y-y^{2}-\frac{1}{3} x^{3}+c_{1}\right) \mathrm{d} x \\
\left(2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1}\right) \mathrm{d} x+\left(x^{2}+2 x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1} \\
N(x, y) & =x^{2}+2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1}\right) \\
& =2 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+2 x y\right) \\
& =2 y+2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y+y^{2}+\frac{1}{3} x^{3}-c_{1} \mathrm{~d} x \\
\phi & =\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x(12 x+24 y)}{12}+f^{\prime}(y) \tag{4}\\
& =x(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+2 x y=x(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{2}
$$

Where c_{2} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}+c_{2}
$$

But since ϕ itself is a constant function, then let $\phi=c_{3}$ where c_{3} is new constant and combining c_{2} and c_{3} constants into new constant c_{2} gives the solution as

$$
c_{2}=\frac{x\left(x^{3}+12 x y+12 y^{2}-12 c_{1}\right)}{12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x\left(x^{3}+12 y x+12 y^{2}-12 c_{1}\right)}{12}=c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{x\left(x^{3}+12 y x+12 y^{2}-12 c_{1}\right)}{12}=c_{2}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```


Solution by Maple

Time used: 0.046 (sec). Leaf size: 80

```
dsolve(x*(x+2*y(x))*diff (y (x),x$2)+2*x*(diff(y(x),x))^2+4*(x+y(x))*\operatorname{diff}(y(x),x)+2*y(x)+x^2=0
```

$$
\begin{aligned}
& y(x)=\frac{-3 x^{2}+\sqrt{3} \sqrt{-x\left(x^{4}-3 x^{3}+12 c_{2} x-12 c_{1}\right)}}{6 x} \\
& y(x)=\frac{-3 x^{2}-\sqrt{3} \sqrt{-x\left(x^{4}-3 x^{3}+12 c_{2} x-12 c_{1}\right)}}{6 x}
\end{aligned}
$$

Solution by Mathematica
Time used: 2.35 (sec). Leaf size: 104
DSolve $\left[x *(x+2 * y[x]) * y{ }^{\prime} \cdot[x]+2 * x *(y '[x]) \sim 2+4 *(x+y[x]) * y '[x]+2 * y[x]+x^{\wedge} 2==0, y[x], x\right.$, IncludeSingul

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{6}\left(-3 x-\sqrt{3} \sqrt{\frac{1}{x^{2}}} \sqrt{x\left(-x^{4}+3 x^{3}+12 c_{2} x+12 c_{1}\right)}\right) \\
& y(x) \rightarrow \frac{1}{6}\left(-3 x+\sqrt{3} \sqrt{\frac{1}{x^{2}}} \sqrt{x\left(-x^{4}+3 x^{3}+12 c_{2} x+12 c_{1}\right)}\right)
\end{aligned}
$$

38.9 problem Ex 9

38.9.1 Solving as second order ode missing y ode 2253
38.9.2 Solving as second order ode missing x ode 2254
38.9.3 Maple step by step solution . 2256

Internal problem ID [11344]
Internal file name [OUTPUT/10330_Friday_January_27_2023_02_37_06_AM_1081674/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__ode__missing_x", "second_oorder_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

$$
y^{\prime \prime}+y^{\prime 2}=-1
$$

38.9.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+p(x)^{2}+1=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-p^{2}-1} d p & =x+c_{1} \\
-\arctan (p) & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=-\tan \left(x+c_{1}\right)
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\tan \left(x+c_{1}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\tan \left(x+c_{1}\right) \mathrm{d} x \\
& =-\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
$$

Verified OK.

38.9.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{2}=-1
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{p}{p^{2}+1} d p & =\int d y \\
-\frac{\ln \left(p^{2}+1\right)}{2} & =y+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{p^{2}+1}}=\mathrm{e}^{y+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{p^{2}+1}}=c_{2} \mathrm{e}^{y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\operatorname{RootOf}\left(_Z^{2} c_{2}^{2} \mathrm{e}^{2 y}+c_{2}^{2} \mathrm{e}^{2 y}-1\right)
$$

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\operatorname{RootOf}\left(_Z^{2} c_{2}^{2} \mathrm{e}^{2 y}+c_{2}^{2} \mathrm{e}^{2 y}-1\right)} d y=\int d x \\
&\left.\int^{y} \frac{1}{\operatorname{RootOf}\left(Z^{2} c_{2}^{2} \mathrm{e}^{2}-a\right.}+c_{2}^{2} \mathrm{e}^{2 _a}-1\right) \\
& d _a
\end{aligned}=c_{3}+x .
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(Z^{2} c_{2}^{2} \mathrm{e}^{2}-a+c_{2}^{2} \mathrm{e}^{2} _^{a}-1\right)} d _a=c_{3}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{\operatorname{RootOf}\left(Z^{2} c_{2}^{2} \mathrm{e}^{2}-a+c_{2}^{2} \mathrm{e}^{2} _a-1\right)} d _a=c_{3}+x
$$

Verified OK.

38.9.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y^{\prime 2}=-1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x)+u(x)^{2}=-1$
- \quad Separate variables

$$
\frac{u^{\prime}(x)}{-u(x)^{2}-1}=1
$$

- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{-u(x)^{2}-1} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\arctan (u(x))=x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\tan \left(x+c_{1}\right)$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\tan \left(x+c_{1}\right)$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\tan \left(x+c_{1}\right)$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\tan \left(x+c_{1}\right) d x+c_{2}$
- Compute integrals
$y=-\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)+diff(y(x),x)^2+1=0,y(x), singsol=all)
```

$$
y(x)=\ln \left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 3.113 (sec). Leaf size: 16
DSolve[y''[x]+y'[x]~2+1==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log \left(\cos \left(x-c_{1}\right)\right)+c_{2}
$$

38.10 problem Ex 10

38.10.1 Solving as second order ode missing y ode 2258
38.10.2 Solving as second order ode non constant coeff transformation
on B ode . 2260
38.10.3 Solving using Kovacic algorithm 2265
38.10.4 Maple step by step solution . 2275

Internal problem ID [11345]
Internal file name [OUTPUT/10331_Friday_January_27_2023_02_37_09_AM_12373053/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_ode_missing_y", "second_oorder__ode__non_constant_ccoeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-\frac{y^{\prime}}{x}=-x^{2}
$$

38.10.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(-x^{2}+1\right) p^{\prime}(x)-\frac{p(x)}{x}+x^{2}=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x^{3}-x} \\
q(x) & =\frac{x^{2}}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{x^{3}-x}=\frac{x^{2}}{x^{2}-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{3}-x} d x} \\
& =\mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (1+x)}{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{x-1} \sqrt{1+x}}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{x^{2}}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{x-1} \sqrt{1+x} p}{x}\right) & =\left(\frac{\sqrt{x-1} \sqrt{1+x}}{x}\right)\left(\frac{x^{2}}{x^{2}-1}\right) \\
\mathrm{d}\left(\frac{\sqrt{x-1} \sqrt{1+x} p}{x}\right) & =\left(\frac{x \sqrt{x-1} \sqrt{1+x}}{x^{2}-1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\sqrt{x-1} \sqrt{1+x} p}{x}=\int \frac{x \sqrt{x-1} \sqrt{1+x}}{x^{2}-1} \mathrm{~d} x \\
& \frac{\sqrt{x-1} \sqrt{1+x} p}{x}=\frac{(x-1)^{\frac{3}{2}}(1+x)^{\frac{3}{2}}}{x^{2}-1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{x-1} \sqrt{1+x}}{x}$ results in

$$
p(x)=\frac{(x-1)(1+x) x}{x^{2}-1}+\frac{c_{1} x}{\sqrt{x-1} \sqrt{1+x}}
$$

which simplifies to

$$
p(x)=x\left(1+\frac{c_{1}}{\sqrt{x-1} \sqrt{1+x}}\right)
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x\left(1+\frac{c_{1}}{\sqrt{x-1} \sqrt{1+x}}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x\left(\sqrt{x-1} \sqrt{1+x}+c_{1}\right)}{\sqrt{x-1} \sqrt{1+x}} \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{1} \sqrt{x-1} \sqrt{1+x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+c_{1} \sqrt{x-1} \sqrt{1+x}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}}{2}+c_{1} \sqrt{x-1} \sqrt{1+x}+c_{2}
$$

Verified OK.

38.10.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The ODE is now normalized to

$$
x\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime}=-x^{2}
$$

Where now

$$
\begin{aligned}
& A=x\left(-x^{2}+1\right) \\
& B=-1 \\
& C=0 \\
& F=-x^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x\left(-x^{2}+1\right)\right)(0)+(-1)(0)+(0)(-1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3}-x v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(x^{3}-x\right) u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{\left(x^{2}-1\right) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{\left(x^{2}-1\right) x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{\left(x^{2}-1\right) x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{\left(x^{2}-1\right) x} d x \\
\ln (u) & =-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x}{\sqrt{x-1} \sqrt{1+x}}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} x}{\sqrt{x-1} \sqrt{1+x}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} x}{\sqrt{x-1} \sqrt{1+x}} \mathrm{~d} x \\
& =c_{1} \sqrt{x-1} \sqrt{1+x}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-1)\left(c_{1} \sqrt{x-1} \sqrt{1+x}+c_{2}\right) \\
& =-c_{1} \sqrt{x-1} \sqrt{1+x}-c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-1 \\
& y_{2}=\sqrt{x-1} \sqrt{1+x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-1 & \sqrt{x-1} \sqrt{1+x} \\
\frac{d}{d x}(-1) & \frac{d}{d x}(\sqrt{x-1} \sqrt{1+x})
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-1 & \sqrt{x-1} \sqrt{1+x} \\
0 & \frac{\sqrt{1+x}}{2 \sqrt{x-1}}+\frac{\sqrt{x-1}}{2 \sqrt{1+x}}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(-1)\left(\frac{\sqrt{1+x}}{2 \sqrt{x-1}}+\frac{\sqrt{x-1}}{2 \sqrt{1+x}}\right)-(\sqrt{x-1} \sqrt{1+x}) \tag{0}
\end{equation*}
$$

Which simplifies to

$$
W=-\frac{x}{\sqrt{x-1} \sqrt{1+x}}
$$

Which simplifies to

$$
W=-\frac{x}{\sqrt{x-1} \sqrt{1+x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\sqrt{x-1} \sqrt{1+x} x^{2}}{-\frac{x^{2}\left(-x^{2}+1\right)}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}}{-\frac{x^{2}\left(-x^{2}+1\right)}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{x-1} \sqrt{1+x}}{x^{2}-1} d x
$$

Hence

$$
u_{2}=\frac{\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x+\frac{(x-1)(1+x) \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln \left(x+\sqrt{x^{2}-1}\right) x^{2}-x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-c_{1} \sqrt{x-1} \sqrt{1+x}-c_{2}\right)+\left(\frac{\ln \left(x+\sqrt{x^{2}-1}\right) x^{2}-x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}\right) \\
& =\frac{\left(x^{2}-1\right) \ln \left(x+\sqrt{x^{2}-1}\right)-\sqrt{x^{2}-1}\left(c_{1} \sqrt{x-1} \sqrt{1+x}+x+c_{2}\right)}{\sqrt{x^{2}-1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{2}-1\right) \ln \left(x+\sqrt{x^{2}-1}\right)-\sqrt{x^{2}-1}\left(c_{1} \sqrt{x-1} \sqrt{1+x}+x+c_{2}\right)}{\sqrt{x^{2}-1}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(x^{2}-1\right) \ln \left(x+\sqrt{x^{2}-1}\right)-\sqrt{x^{2}-1}\left(c_{1} \sqrt{x-1} \sqrt{1+x}+x+c_{2}\right)}{\sqrt{x^{2}-1}}
$$

Verified OK.

38.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(-x^{3}+x\right) y^{\prime \prime}-y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=-x^{3}+x \\
& B=-1 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-6 x^{2}+3}{4\left(x^{3}-x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-6 x^{2}+3 \\
& t=4\left(x^{3}-x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-6 x^{2}+3}{4\left(x^{3}-x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 233: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =6-2 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{3}-x\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}-\frac{3}{16(x-1)}-\frac{3}{16(x-1)^{2}}-\frac{3}{16(1+x)^{2}}+\frac{3}{16(1+x)}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{-6 x^{2}+3}{4\left(x^{3}-x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
1	2	0	$\frac{3}{4}$	$\frac{1}{4}$
-1	2	0	$\frac{3}{4}$	$\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
4	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=0$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{-}+\alpha_{c_{3}}^{-}\right) \\
& =0-(0) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+\left((-)[\sqrt{r}]_{c_{3}}+\frac{\alpha_{c_{3}}^{-}}{x-c_{3}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+\frac{1}{4 x-4}+\frac{1}{4+4 x}+(0) \\
& =-\frac{1}{2 x}+\frac{1}{4 x-4}+\frac{1}{4+4 x} \\
& =\frac{1}{2 x^{3}-2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{1}{2 x}+\frac{1}{4 x-4}+\frac{1}{4+4 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}-\frac{1}{4(x-1)^{2}}-\frac{1}{4(1+x)^{2}}\right)+\left(-\frac{1}{2 x}+\frac{1}{4 x-4}+\frac{1}{4+4}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}+\frac{1}{4 x-4}+\frac{1}{4+4 x}\right) d x} \\
& =\frac{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2}-\frac{1}{-x^{3}+x} d x} \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{\sqrt{x}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{-x^{3}+x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\sqrt{x^{2}-1}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)+c_{2}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\left(\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(-x^{3}+x\right) y^{\prime \prime}-y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}+\frac{c_{2}\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& y_{2}=\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.

The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} & \frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
\frac{d}{d x}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) & \frac{d}{d x}\left(\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} & \frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
\frac{x}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}} & \left.\frac{3 x}{2\left(x^{2}-1\right)^{\frac{1}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right.}{4(x-1)^{\frac{1}{4}}(}\right)
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)\left(\frac{3 x}{2\left(x^{2}-1\right)^{\frac{1}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}\right. \\
&\left.-\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}}\right)-\left(\frac{\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)\left(\frac{x}{2\left(x^{2}-1\right)^{\frac{3}{4}}(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right. \\
&\left.-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{5}{4}}(1+x)^{\frac{1}{4}}}-\frac{\left(x^{2}-1\right)^{\frac{1}{4}}}{4(x-1)^{\frac{1}{4}}(1+x)^{\frac{5}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{x}{\sqrt{x-1} \sqrt{1+x}}
$$

Which simplifies to

$$
W=\frac{x}{\sqrt{x-1} \sqrt{1+x}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\left(x^{2}-1\right)^{\frac{3}{4}} x^{2}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}}{\frac{\left(-x^{3}+x\right) x}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}{\left(x^{2}-1\right)^{\frac{1}{4}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{\left(x^{2}-1\right)^{\frac{1}{4}} x^{2}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}}{\frac{\left(-x^{+x) x}\right.}{\sqrt{x-1} \sqrt{1+x}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}{\left(x^{2}-1\right)^{\frac{3}{4}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}+\frac{\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right)\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \sqrt{x^{2}-1}-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}+\frac{c_{2}\left(x^{2}-1\right)^{\frac{3}{4}}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) \\
& +\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}(1+\alpha)^{\frac{1}{4}}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \sqrt{x^{2}-1}-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{2}-1}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& +\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \sqrt{x^{2}-1}-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{2}-1}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& +\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \sqrt{x^{2}-1}-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{2}-1}+c_{1}\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \\
& +\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{3}{4}}} d \alpha\right) \sqrt{x^{2}-1}-\left(\int_{0}^{x} \frac{(\alpha-1)^{\frac{1}{4}}(1+\alpha)^{\frac{1}{4}}}{\left(\alpha^{2}-1\right)^{\frac{1}{4}}} d \alpha\right)\right)}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
\end{aligned}
$$

Verified OK.

38.10.4 Maple step by step solution

Let's solve
$x\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime}=-x^{2}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$x\left(-x^{2}+1\right) u^{\prime}(x)-u(x)=-x^{2}$
- Isolate the derivative
$u^{\prime}(x)=-\frac{u(x)}{\left(x^{2}-1\right) x}+\frac{x}{x^{2}-1}$
- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE
$u^{\prime}(x)+\frac{u(x)}{\left(x^{2}-1\right) x}=\frac{x}{x^{2}-1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{\left(x^{2}-1\right) x}\right)=\frac{\mu(x) x}{x^{2}-1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{\left(x^{2}-1\right) x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{\left(x^{2}-1\right) x}$
- Solve to find the integrating factor
$\mu(x)=\frac{\sqrt{x-1} \sqrt{1+x}}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int \frac{\mu(x) x}{x^{2}-1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int \frac{\mu(x) x}{x^{2}-1} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int \frac{\mu(x) x}{x^{2}-1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\sqrt{x-1} \sqrt{1+x}}{x}$
$u(x)=\frac{x\left(\int \frac{\sqrt{x-1} \sqrt{1+x}}{x^{2}-1} d x+c_{1}\right)}{\sqrt{x-1} \sqrt{1+x}}$
- Evaluate the integrals on the rhs
$u(x)=\frac{x\left(\frac{\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1}}+c_{1}\right)}{\sqrt{x-1} \sqrt{1+x}}$
- Simplify
$u(x)=\frac{x\left(\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{x\left(\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}$
- Make substitution $u=y^{\prime}$

$$
y^{\prime}=\frac{x\left(\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}}
$$

- Integrate both sides to solve for y

$$
\int y^{\prime} d x=\int \frac{x\left(\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}} d x+c_{2}
$$

- Compute integrals

$$
y=\int \frac{x\left(\sqrt{x-1} \sqrt{1+x} \ln \left(x+\sqrt{x^{2}-1}\right)+c_{1} \sqrt{x^{2}-1}\right)}{\sqrt{x^{2}-1} \sqrt{x-1} \sqrt{1+x}} d x+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-_a^3+_b(_a))/(_a*(_a-1)*(_a+1)), _b(
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve $\left(\left(1-x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)-1 / x * \operatorname{diff}(y(x), x)+x^{\wedge} 2=0, y(x), \quad\right.$ singsol $\left.=a l l\right)$

$$
y(x)=\frac{x^{2}}{2}+\sqrt{-1+x} \sqrt{1+x} c_{1}+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 30
DSolve[(1-x^2)*y''[x]-1/x*y'[x]+x^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{2}}{2}-c_{1} \sqrt{1-x^{2}}+c_{2}
$$

38.11 problem Ex 11

38.11.1 Maple step by step solution 2279

Internal problem ID [11346]
Internal file name [OUTPUT/10332_Friday_January_27_2023_02_37_11_AM_81805463/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 11.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__missing_y"
Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
4 x^{2} y^{\prime \prime \prime}+8 x y^{\prime \prime}+y^{\prime}=0
$$

Since y is missing from the ode then we can use the substitution $y^{\prime}=v(x)$ to reduce the order by one. The ODE becomes

$$
4 v^{\prime \prime}(x) x^{2}+8 v^{\prime}(x) x+v(x)=0
$$

This is Euler second order ODE. Let the solution be $v(x)=x^{r}$, then $v^{\prime}=r x^{r-1}$ and $v^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
4 x^{2}(r(r-1)) x^{r-2}+8 x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
4 r(r-1) x^{r}+8 r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
4 r(r-1)+8 r+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}+4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
v(x)=c_{1} v_{1}+c_{2} v_{2}
$$

Where $v_{1}=x^{r}$ and $v_{2}=x^{r} \ln (x)$. Hence

$$
v(x)=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2} \ln (x)}{\sqrt{x}}
$$

But since $y^{\prime}=v(x)$ then we now need to solve the ode $y^{\prime}=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2} \ln (x)}{\sqrt{x}}$. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}+\ln (x) c_{2}}{\sqrt{x}} \mathrm{~d} x \\
& =2 \sqrt{x} c_{1}+2 \ln (x) \sqrt{x} c_{2}-4 \sqrt{x} c_{2}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sqrt{x} c_{1}+2 \ln (x) \sqrt{x} c_{2}-4 \sqrt{x} c_{2}+c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \sqrt{x} c_{1}+2 \ln (x) \sqrt{x} c_{2}-4 \sqrt{x} c_{2}+c_{3}
$$

Verified OK.

38.11.1 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime \prime} x^{2}+8 y^{\prime \prime} x+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{y^{\prime}+8 y^{\prime \prime} x}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{x}+\frac{y^{\prime}}{4 x^{2}}=0$
- Multiply by denominators of the ODE
$4 y^{\prime \prime \prime} x^{2}+8 y^{\prime \prime} x+y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d l} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{t} y(t)}{x^{2}}
$$

- Calculate the 3rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative
$y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t} t^{2} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}$
Substitute the change of variables back into the ODE
$4\left(\frac{d^{3}}{\frac{d}{} t^{3} y(t)} \underset{x^{3}}{ }-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}+8\left(\frac{\frac{d^{2}}{d t} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{\frac{d}{d t} y(t)}{x}=0$
- Simplify

$$
\frac{4 \frac{d^{3}}{d t^{3}} y(t)-4 \frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=\frac{d^{2}}{d t^{2}} y(t)-\frac{\frac{d}{d y} y(t)}{4}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)+\frac{\frac{d}{d t} y(t)}{4}=0$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$
$y_{1}(t)=y(t)$
- Define new variable $y_{2}(t)$
$y_{2}(t)=\frac{d}{d t} y(t)$
- Define new variable $y_{3}(t)$
$y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)$
- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE
$\frac{d}{d t} y_{3}(t)=y_{3}(t)-\frac{y_{2}(t)}{4}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{3}(t)-\frac{y_{2}(t)}{4}\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{1}{4} & 1
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{1}{4} & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{2}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- \quad Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=\frac{1}{2}$ is the eigenvalue, an $\vec{y}_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $\frac{1}{2}$

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{1}{4} & 1
\end{array}\right]-\frac{1}{2} \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-8 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{3}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y(t)=\left((4 t-8) c_{3}+4 c_{2}\right) \mathrm{e}^{\frac{t}{2}}+c_{1}$
- Change variables back using $t=\ln (x)$
$y=\left((4 \ln (x)-8) c_{3}+4 c_{2}\right) \sqrt{x}+c_{1}$
- Simplify

$$
y=\left(4 c_{3} \ln (x)+4 c_{2}-8 c_{3}\right) \sqrt{x}+c_{1}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(4*x^2*diff (y (x),x$3)+8*x*diff(y(x),x$2)+diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} \ln (x)+c_{2}\right) \sqrt{x}+c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 28

$$
\begin{aligned}
& y(x) \rightarrow \sqrt{x}\left(c_{2} \log (x)+2 c_{1}-2 c_{2}\right)+c_{3}
\end{aligned}
$$

38.12 problem Ex 12

38.12.1 Solving as second order integrable as is ode
38.12.2 Solving as type second_order_integrable_as_is (not using ABC version) . 2287
38.12.3 Solving as exact linear second order ode ode 2288

Internal problem ID [11347]
Internal file name [OUTPUT/10333_Friday_January_27_2023_02_37_12_AM_61649637/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first.
Article 62. Summary. Page 144
Problem number: Ex 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\sin (x) y^{\prime \prime}-\cos (x) y^{\prime}+2 \sin (x) y=0
$$

38.12.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\sin (x) y^{\prime \prime}-\cos (x) y^{\prime}+2 \sin (x) y\right) d x=0 \\
-2 y \cos (x)+y^{\prime} \sin (x)=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \cot (x) \\
& q(x)=\csc (x) c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y \cot (x)=\csc (x) c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \cot (x) d x} \\
& =\frac{1}{\sin (x)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\csc (x) c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\frac{1}{\sin (x)^{2}}\right)\left(\csc (x) c_{1}\right) \\
\mathrm{d}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\csc (x)^{3} c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sin (x)^{2}}=\int \csc (x)^{3} c_{1} \mathrm{~d} x \\
& \frac{y}{\sin (x)^{2}}=c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sin (x)^{2}}$ results in

$$
y=\sin (x)^{2} c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2} \sin (x)^{2}
$$

which simplifies to

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Verified OK.

38.12.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\sin (x) y^{\prime \prime}-\cos (x) y^{\prime}+2 \sin (x) y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\sin (x) y^{\prime \prime}-\cos (x) y^{\prime}+2 \sin (x) y\right) d x=0 \\
-2 y \cos (x)+y^{\prime} \sin (x)=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \cot (x) \\
& q(x)=\csc (x) c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y \cot (x)=\csc (x) c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \cot (x) d x} \\
& =\frac{1}{\sin (x)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\csc (x) c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\frac{1}{\sin (x)^{2}}\right)\left(\csc (x) c_{1}\right) \\
\mathrm{d}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\csc (x)^{3} c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sin (x)^{2}}=\int \csc (x)^{3} c_{1} \mathrm{~d} x \\
& \frac{y}{\sin (x)^{2}}=c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sin (x)^{2}}$ results in

$$
y=\sin (x)^{2} c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2} \sin (x)^{2}
$$

which simplifies to

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Verified OK.

38.12.3 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =\sin (x) \\
q(x) & =-\cos (x) \\
r(x) & =2 \sin (x) \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =-\sin (x) \\
q^{\prime}(x) & =\sin (x)
\end{aligned}
$$

Therefore (1) becomes

$$
-\sin (x)-(\sin (x))+(2 \sin (x))=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
-2 y \cos (x)+y^{\prime} \sin (x)=c_{1}
$$

We now have a first order ode to solve which is

$$
-2 y \cos (x)+y^{\prime} \sin (x)=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \cot (x) \\
& q(x)=\csc (x) c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y \cot (x)=\csc (x) c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \cot (x) d x} \\
& =\frac{1}{\sin (x)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\csc (x) c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\frac{1}{\sin (x)^{2}}\right)\left(\csc (x) c_{1}\right) \\
\mathrm{d}\left(\frac{y}{\sin (x)^{2}}\right) & =\left(\csc (x)^{3} c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sin (x)^{2}}=\int \csc (x)^{3} c_{1} \mathrm{~d} x \\
& \frac{y}{\sin (x)^{2}}=c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sin (x)^{2}}$ results in

$$
y=\sin (x)^{2} c_{1}\left(-\frac{\csc (x) \cot (x)}{2}+\frac{\ln (\csc (x)-\cot (x))}{2}\right)+c_{2} \sin (x)^{2}
$$

which simplifies to

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin (x)^{2}\left(\frac{c_{1}(-\csc (x) \cot (x)+\ln (\csc (x)-\cot (x)))}{2}+c_{2}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    <- linear_1 successful
    Change of variables used:
        [x = arccos(t)]
    Linear ODE actually solved:
        2*u(t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```


\checkmark Solution by Maple

Time used: 0.14 (sec). Leaf size: 39

```
dsolve(sin}(\textrm{x})*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x}$2)-\operatorname{cos}(\textrm{x})*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+2*\operatorname{sin}(\textrm{x})*\textrm{y}(\textrm{x})=0,y(\textrm{x}),\quad\mathrm{ singsol=all)
```

$y(x)=\ln (\cos (x)-1) c_{2} \sin (x)^{2}-\ln (\cos (x)+1) c_{2} \sin (x)^{2}+c_{1} \sin (x)^{2}-2 c_{2} \cos (x)$
\checkmark Solution by Mathematica
Time used: 0.235 (sec). Leaf size: 45

```
DSolve[Sin[x]*y''[x]-Cos[x]*y'[x]+2*Sin[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-c_{1} \sin ^{2}(x)-\frac{1}{4} c_{2}\left(2 \cos (x)+\sin ^{2}(x)(\log (\cos (x)+1)-\log (1-\cos (x)))\right)
$$

39 Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150
39.1 problem Ex 1 . 2293

39.1 problem Ex 1

39.1.1 Solution using Matrix exponential method 2293
39.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2295
39.1.3 Maple step by step solution . 2300

Internal problem ID [11348]
Internal file name [OUTPUT/10334_Friday_January_27_2023_02_37_14_AM_38590850/index.tex]
Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter X, System of simulataneous equations. Article 64. Systems of linear equations with constant coefficients. Page 150
Problem number: Ex 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=-x(t)-\frac{2 y(t)}{3}+\frac{\mathrm{e}^{t}}{3} \\
& y^{\prime}(t)=\frac{4 x(t)}{3}+y(t)-t
\end{aligned}
$$

39.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}} \\
2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}} & -\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}} \\
2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}} & -\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}}\right) c_{1}+\left(-\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}}\right) c_{2} \\
\left(2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}}\right) c_{1}+\left(-\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}+c_{2}\right) \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}}\left(c_{1}+c_{2}\right) \\
\left(-2 c_{1}-c_{2}\right) \mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}\left(c_{1}+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{\frac{t}{3}}-\mathrm{e}^{-\frac{t}{3}} \\
-2 \mathrm{e}^{\frac{t}{3}}+2 \mathrm{e}^{-\frac{t}{3}} & 2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\left.\begin{array}{rl}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}} \\
2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}} & -\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}
\end{array}\right] \int\left[\begin{array}{cc}
-\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{\frac{t}{3}}-\mathrm{e}^{-\frac{t}{3}} \\
-2 \mathrm{e}^{\frac{t}{3}}+2 \mathrm{e}^{-\frac{t}{3}} & 2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}} \\
2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}} & -\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}
\end{array}\right]\left[\begin{array}{c}
3(-3-t) \mathrm{e}^{-\frac{t}{3}}+3(3-t) \mathrm{e}^{\frac{t}{3}}-\frac{\mathrm{e}^{\frac{2 t}{3}}}{2}+\frac{\mathrm{e}^{\frac{4 t}{3}}}{2} \\
6(3+t) \mathrm{e}^{-\frac{t}{3}}+3(-3+t) \mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{\frac{2 t}{3}}-\frac{\frac{4 t}{3}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-6 t \\
9+\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
\end{array}\right]
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\left(2 c_{1}+c_{2}\right) \mathrm{e}^{-\frac{t}{3}}+\left(-c_{1}-c_{2}\right) \mathrm{e}^{\frac{t}{3}}-6 t \\
\left(-2 c_{1}-c_{2}\right) \mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}\left(c_{1}+c_{2}\right)+9+\frac{\mathrm{e}^{t}}{2}+9 t
\end{array}\right]
\end{aligned}
$$

39.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -\frac{2}{3} \\
\frac{4}{3} & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\frac{1}{9}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{3} \\
\lambda_{2} & =-\frac{1}{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{3}$	1	real eigenvalue
$\frac{1}{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]-\left(-\frac{1}{3}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{2}{3} & -\frac{2}{3} \\
\frac{4}{3} & \frac{4}{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{2}{3} & -\frac{2}{3} & 0 \\
\frac{4}{3} & \frac{4}{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{2}{3} & -\frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{2}{3} & -\frac{2}{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]-\left(\frac{1}{3}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{4}{3} & -\frac{2}{3} \\
\frac{4}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{4}{3} & -\frac{2}{3} & 0 \\
\frac{4}{3} & \frac{2}{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{4}{3} & -\frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{4}{3} & -\frac{2}{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{3}$	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
$-\frac{1}{3}$	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{1}{3}$ is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\frac{t}{3}} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{\frac{t}{3}}
\end{aligned}
$$

Since eigenvalue $-\frac{1}{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\frac{t}{3}} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-\frac{t}{3}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{t}{3}}}{2} \\
\mathrm{e}^{\frac{t}{3}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-\frac{t}{3}} \\
\mathrm{e}^{-\frac{t}{3}}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{3}}}{2} & -\mathrm{e}^{-\frac{t}{3}} \\
\mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{-\frac{t}{3}}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}} & 2 \mathrm{e}^{-\frac{t}{3}} \\
-2 \mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}
\end{array}\right]
$$

Hence

$$
\left.\begin{array}{rl}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{3}}}{2} & -\mathrm{e}^{-\frac{t}{3}} \\
\mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{-\frac{t}{3}}
\end{array}\right] \int\left[\begin{array}{cc}
2 \mathrm{e}^{-\frac{t}{3}} & 2 \mathrm{e}^{-\frac{t}{3}} \\
-2 \mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{3}}}{2} & -\mathrm{e}^{-\frac{t}{3}} \\
\mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{-\frac{t}{3}}
\end{array}\right] \int\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\frac{2 t}{3}}}{3}-2 t \mathrm{e}^{-\frac{t}{3}} \\
-\frac{2 \mathrm{e}^{\frac{4 t}{3}}}{3}+t \mathrm{e}^{\frac{t}{3}}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{3}}}{2} & -\mathrm{e}^{-\frac{t}{3}} \\
\mathrm{e}^{\frac{t}{3}} & \mathrm{e}^{-\frac{t}{3}}
\end{array}\right]\left[\begin{array}{c}
6(3+t) \mathrm{e}^{-\frac{t}{3}}+\mathrm{e}^{\frac{2 t}{3}} \\
3(-3+t) \mathrm{e}^{\frac{t}{3}}-\frac{\mathrm{e}^{\frac{4 t}{3}}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-6 t \\
9+\frac{\mathrm{e}^{t}}{2}
\end{array}\right] 9 t
\end{array}\right] \quad \$ \mathrm{c}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{\frac{t}{3}}}{2} \\
c_{1} \mathrm{e}^{\frac{t}{3}}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \mathrm{e}^{-\frac{t}{3}} \\
c_{2} \mathrm{e}^{-\frac{t}{3}}
\end{array}\right]+\left[\begin{array}{c}
-6 t \\
9+\frac{\mathrm{e}^{t}}{2}+9 t
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{\frac{t}{3}}}{2}-c_{2} \mathrm{e}^{-\frac{t}{3}}-6 t \\
c_{1} \mathrm{e}^{\frac{t}{3}}+c_{2} \mathrm{e}^{-\frac{t}{3}}+9+\frac{\mathrm{e}^{t}}{2}+9 t
\end{array}\right]
$$

39.1.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)-\frac{2 y(t)}{3}+\frac{\mathrm{e}^{t}}{3}, y^{\prime}(t)=\frac{4 x(t)}{3}+y(t)-t\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
-t
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}\mathrm{e}^{t} \\ 3 \\ -t\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -\frac{2}{3} \\
\frac{4}{3} & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{3},\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[\frac{1}{3},\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{1}{3},\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-\frac{t}{3}} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\frac{1}{3},\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{\frac{t}{3}} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\mathrm{e}^{-\frac{t}{3}} & -\frac{\mathrm{e}^{\frac{t}{3}}}{2} \\ \mathrm{e}^{-\frac{t}{3}} & \mathrm{e}^{\frac{t}{3}}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}-\mathrm{e}^{-\frac{t}{3}} & -\frac{\mathrm{e}^{\frac{t}{3}}}{2} \\ \mathrm{e}^{-\frac{t}{3}} & \mathrm{e}^{\frac{t}{3}}\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}-1 & -\frac{1}{2} \\ 1 & 1\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{cc}2 \mathrm{e}^{-\frac{t}{3}}-\mathrm{e}^{\frac{t}{3}} & -\mathrm{e}^{\frac{t}{3}}+\mathrm{e}^{-\frac{t}{3}} \\ 2 \mathrm{e}^{\frac{t}{3}}-2 \mathrm{e}^{-\frac{t}{3}} & -\mathrm{e}^{-\frac{t}{3}}+2 \mathrm{e}^{\frac{t}{3}}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution $\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-6 t+\frac{19 \mathrm{e}^{\frac{t}{3}}}{2}-\frac{19 \mathrm{e}^{-\frac{t}{3}}}{2} \\
9+\frac{\mathrm{e}^{t}}{2}+\frac{19 \mathrm{e}^{-\frac{t}{3}}}{2}+9 t-19 \mathrm{e}^{\frac{t}{3}}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
-6 t+\frac{19 \mathrm{e}^{\frac{t}{3}}}{2}-\frac{19 \mathrm{e}^{-\frac{t}{3}}}{2} \\
9+\frac{\mathrm{e}^{t}}{2}+\frac{19 \mathrm{e}^{-\frac{t}{3}}}{2}+9 t-19 \mathrm{e}^{\frac{t}{3}}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-2 c_{1}-19\right) \mathrm{e}^{-\frac{t}{3}}}{2}+\frac{\left(-c_{2}+19\right) \mathrm{e}^{\frac{t}{3}}}{2}-6 t \\
9+\frac{\left(2 c_{1}+19\right) \mathrm{e}^{-\frac{t}{3}}}{2}+\left(c_{2}-19\right) \mathrm{e}^{\frac{t}{3}}+9 t+\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-2 c_{1}-19\right) \mathrm{e}^{-\frac{t}{3}}}{2}+\frac{\left(-c_{2}+19\right) \mathrm{e}^{\frac{t}{3}}}{2}-6 t, y(t)=9+\frac{\left(2 c_{1}+19\right) \mathrm{e}^{-\frac{t}{3}}}{2}+\left(c_{2}-19\right) \mathrm{e}^{\frac{t}{3}}+9 t+\frac{\mathrm{e}^{t}}{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 47
dsolve([3*diff $(x(t), t)+3 * x(t)+2 * y(t)=\exp (t), 4 * x(t)-3 * \operatorname{diff}(y(t), t)+3 * y(t)=3 * t]$, singsol $=a l l)$

$$
\begin{aligned}
& x(t)=-\frac{\mathrm{e}^{\frac{t}{3}} c_{2}}{2}-\mathrm{e}^{-\frac{t}{3}} c_{1}-6 t \\
& y(t)=\mathrm{e}^{\frac{t}{3}} c_{2}+\mathrm{e}^{-\frac{t}{3}} c_{1}+9 t+9+\frac{\mathrm{e}^{t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.125 (sec). Leaf size: 90
DSolve $\left[\left\{3 * x^{\prime}[t]+3 * x[t]+2 * y[t]==\operatorname{Exp}[t], 4 * x[t]-3 * y^{\prime}[t]+3 * y[t]==3 * t\right\},\{x[t], y[t]\}, t\right.$, IncludeSingu

$$
\begin{aligned}
& x(t) \rightarrow e^{-t / 3}\left(-6 e^{t / 3} t-\left(c_{1}+c_{2}\right) e^{2 t / 3}+2 c_{1}+c_{2}\right) \\
& y(t) \rightarrow 9(t+1)+\frac{e^{t}}{2}+2\left(c_{1}+c_{2}\right) e^{t / 3}-\left(2 c_{1}+c_{2}\right) e^{-t / 3}
\end{aligned}
$$

