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1.1 problem 1(a)

1.1.1 Solving as quadratureode . . . . . .. ... ... ... .....
1.1.2 Maple step by step solution . . . . ... ... ... ....... izl

Internal problem ID [3002]
Internal file name [OUTPUT/2494_Sunday_June_05_2022_03_16_45_AM_98176719/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

1.1.1 Solving as quadrature ode

yz/e_wdx

=—e " +

Integrating both sides gives

Summary
The solution(s) found are the following

y=—e"40c (1)



Verification of solutions

Verified OK.

——,—————— s

VA P
Y P
VA P
ST
S
Y P
VA P
VA P
S
Y P
VA P
ST
Y P
Y P
VA P
S
Y P
VA P
VA P
Y P

B e e e e e e e e e e e e e e e e e T )
S S N N
N N N e N Y N Y Y NN
I I I N N N e N N N N N N e N N N

|
08}

— T T

o 1 2 3
X

I
0o
I

Figure 1: Slope field plot

y=—e"4+¢

1.1.2 Maple step by step solution

Let’s solve

yl — e—.’l?

Highest derivative means the order of the ODE is 1

/

Y

Integrate both sides with respect to x

[ydx = [e"dz+c

Evaluate integral

y=—e"4+ac
Solve for y
y=—-e"+4¢



Maple trace

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)=exp(—x),y(x), singsol=all)

y(z) =—e"+¢

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15

tDSolve[y'[x]==Exp[-x],y[x],x,IncludeSingularSolutions -> True]

ylx) > —e "+



1.2 problem 1(b)

1.2.1 Solving as quadratureode . . . . . .. ... ... ... ... 6
1.2.2 Maple step by step solution . . . . ... ... ... ....... [

Internal problem ID [3003]
Internal file name [OUTPUT/2495_Sunday_June_05_2022_03_16_47_AM_24614121/index. tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Y =1-2°"+x

1.2.1 Solving as quadrature ode

Integrating both sides gives

y=/1—x5+\/5dx

2z b
=x+ 3 — E +c
Summary
The solution(s) found are the following
2v2  zb
= _ 1
y=2x+ 3 6 +c (1)
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Figure 2: Slope field plot

Verification of solutions

of the ODE is 1

N 2z: 28 N
= ——+c
y=x 3 6 1
Verified OK.
1.2.2 Maple step by step solution
Let’s solve
Yy =1-2+/x
° Highest derivative means the order
y/
° Integrate both sides with respect to x

[yYdo=[(1-2°+z)do+ 1
° Evaluate integral
3

° Solve for y




3
22 6

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

L<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve (diff (y(x) ,x)=1-x"b+sqrt(x),y(x), singsol=all)

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 25

LDSolve[y'[x]==1—x“5+Sqrt[x],y[x],x,IncludeSingularSolutions -> True]

2.’173/2 xﬁ
3 — E+.’L‘+Cl

y(z) —



1.3 problem 1(c)

1.3.1 Solving aslinearode . . . . . .. ... ... ... ... ... )
1.3.2 Solving as differentialTypeode . . . . .. ... ... ... ... 11
1.3.3 Solving as homogeneousTypeMapleCode. . . . . ... ... .. T3]
1.3.4 Solving as first order ode lie symmetry lookup ode . .. .. .. 16
1.3.5 Solvingasexactode ... ... .. .. ... ........... 20
1.3.6 Maple step by step solution . . . . ... ... ... ....... 24

Internal problem ID [3004]
Internal file name [OUTPUT/2496_Sunday_June_05_2022_03_16_48_AM_49830060/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"homogeneousTypeMapleC", "first_ order_ ode_ liesymmetry_ lookup"

Maple gives the following as the ode type

[_linear]

3y+ Bz —2)y =2z

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(@)y = q(z)

Where here
3
p(z) = 35 _3
2z
q(z) = T
Hence the ode is
, 3y 2z

Yt s 2 32



The integrating factor u is

The ode becomes

Integrating gives

3
M = ef 33:—2dm

=3z -2

=0 (3255)
d 2z
L Ea-20) = o-2) (32
d((3z — 2)y) = (2z) dz

(3x—2)y=/2mdx
Bz —2)y=2>+¢c

Dividing both sides by the integrating factor u = 3z — 2 results in

which simplifies to

Summary

x? c1

“3%_2 32

Y

The solution(s) found are the following

o
y= 3r —2
22+ ¢
= 1
v=50 (1)

10
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Verification of solutions

Verified OK.

Which becomes

Writing the ode as

0
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Figure 3: Slope field plot
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1.3.2 Solving as differentialType ode

’_ -3y + 2z
3z — 2

= (—3z +2)dy + (—3y + 2z) dz

But the RHS is complete differential because

(=3z +2) dy + (—3y + 2z) dz = d(z° — 3zy + 2y)

Hence (2) becomes

0= d(:):2 — 3xy + 2y)

11



Integrating both sides gives gives these solutions

_$2+Cl
y= 3r—2

+c

Summary
The solution(s) found are the following

T4+
Y 3x_2+01 (1)
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Verification of solutions

Verified OK.
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1.3.3 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z, then the above is transformed to new ode in Y (X)

iY(X) _ _—2X — 21170 +3Y(X) -|-3y0
dX 3X +3z9—2
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
2
Tog = g
_4
Yo = 9
Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
d _ —2X +3Y(X)
ax' &) =""3x

In canonical form, the ODE is

Y'=F(X,Y)

_ —2X+3Y

“Tx M

An ode of the form Y’ = %g?j)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 2X —3Y and N = 3.X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = ¥, or

X
Y = uX. Hence

Applying the transformation Y = uX to the above ODE in (1) gives

2
X Tu=gTu
du 3 —2u(X)

dX X

13



d 2 — 2u(X)
ax X =% =0

3(%14)()) X 4 6u(X) — 2= 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

= F(X,u)
= f(X)g(v)
—2u+§
X

Where f(X) = + and g(u) = —2u + 2. Integrating both sides gives

1

——du= - dX

—2u -|— 3
/ 5 du = / —dX

—2u + 3
In (— 1
_% —In(X) + 0
Raising both side to exponential gives
1 — eln(X)—l—cg

vV=3u+1

Which simplifies to

Now u in the above solution is replaced back by Y using u = % which results in the

solution 5 96 w0 )
(cze*2X? — 1) e 22

3X c2

Y(X) =
Using the solution for Y (X)

(Re?2X? —1)e 22

Y(X)= 3X &2

14



And replacing back terms in the above solution using

Y=y+y
X =z+x

Summary
The solution(s) found are the following
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Verification of solutions

Verified OK.

1.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

;_ 3y -2
3z — 2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - w2€y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

16



Table 3: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) "M@+ 4 f(z) | & Jof ;?;‘;f—h(@ f(z)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
n@,y) = 3—5 (A1)

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ 7

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

17



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
_ 1

= / Y
3r—2

S=03Bz—-2)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

w(z,y) = 3y —2
3z — 2
Evaluating all the partial derivatives gives
R, =1
R,=0
S: =3y
Sy =3z —2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

2z (2A)

2R

It converts an ode, no matter how complicated it is, to one that can be solved by

18



integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) == R2 +c

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

=24 c

3z —2)y

Which simplifies to

=2>+¢

3z —2)y

Which gives

22+ ¢
3r—2

y:

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary

The solution(s) found are the following

(1)

22+ ¢
3x—2
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Verification of solutions

Verified OK.

Sk IENCVEEN W
W NN NN\

\
1 0 1
x

Figure 6: Slope field plot

2+
3z —2

Y

1.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@whﬁ=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢

Hence

w.r.t. T gives

d

09 , 90 dy _

dr ' Oydz =0

20



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(3z —2)dy = (—3y + 2z)dz
By —2z)dz+(3z —2)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =3y — 2z
N(z,y) =3z — 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
—=—By—-2
oy 8y( y — 2x)
=3
And
ON 0

21



Since %M = 5. N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
¢

Integrating (1) w.r.t. z gives

—dm—/de

/a—xdw=/3y—2xdx

¢ =—=z(z —3y) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
Oy

=3z + f'(y) (4)
But equation (2) says that ‘g—z = 3z — 2. Therefore equation (4) becomes
3z —2=3z+ f'(y) (5)

Solving equation (5) for f'(y) gives

f'y) = -
Integrating the above w.r.t y gives

[rwa= [ 2
fy)=-2y+ac

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—z(z—3y) -2y +a

22



But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution becomes

Summary

a1 = —z(z —3y) — 2y

The solution(s) found are the following

Verification of solutions

Verified OK.
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1.3.6 Maple step by step solution

Let’s solve
3y+ Bz —2)y =2z
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
V=gt

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 3y _ 2z
Y+33= 322

° The ODE is linear; multiply by an integrating factor u(x)
@) (v + 5t5) = 525

o Assume the Ihs of the ODE is the total derivative - (u(z)y)
W) (v +3.5) = W(@)y +u@)y

e  Isolate p/(x)

HORS =

° Solve to find the integrating factor
wu(z) =3z — 2

° Integrate both sides with respect to x

J (& (u(2)y)) do = [ 2024y 4

° Evaluate the integral on the lhs
wa)y = [ 2Ly 4 ¢

3x—2
° Solve for y
72”(z)mdw+c1
—_ 3r—2
)
o Substitute p(z) = 3z — 2
[ 2zdz+c
Y="%3
° Evaluate the integrals on the rhs
$2 C
y= 3;;21

24



Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve((3*y(x)-2*x)+(3*x-2)*diff(y(x),x)=0,y(x), singsol=all) J
22 +c
y(@) = -2+ 3z

v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 21

LDSolve[(3*y[x]-2*x)+(3*x—2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]J

2 —c

y(r) — -

25



1.4 problem 1(d)

1.4.1 Solving as separableode . . . . . .. ... ... ... ..., 261
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 28]
1.43 Solvingasexactode . ... ... ... ... ... ...,
1.4.4 Maple step by step solution . . . . ... ... ... ... ... 3061

Internal problem ID [3005]
Internal file name [OUTPUT/2497_Sunday_June_05_2022_03_16_50_AM_77083438/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

Quz+y)y =—2*—z+1

1.4.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)9(v)
__ste—1
y (14 2z)
Where f(z) = —””if;;l and g(y) = . Integrating both sides gives
1 2+ —1
L P
1 1+20
Yy
1 2 +x—1
Say= [ ErTLy
/ i / 1+ 22 o
Y
2 2
y* 2z =z  5In(1+2z)
0~ 1 1t g *a
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Which results in

/222 +5In (14 2z) + 8¢, — 2z

Y

y:

Summary

2

_/~222+5In (14 2z) +8¢; — 2z

The solution(s) found are the following

2

/222 +5In (14 2z) + 8¢, — 2z

Y 5 (1)
V=222 +5In (1 +22) + 8¢; — 2z
y=- 5 (2)

3{ —m—————\\ 1 P N N O L

s\ 1 P S N N N

P e N P U R SN

P g e NN 1 J o ———s~aNONN\\

P O e O S V) N VO W

VO SN B AP N S N N

H77 7=\ /7= =SSN\

/7 77NN\ /7NN

17775NNV 17NNV

(x) oA T TTTZNVEET 7NV VLV

Y VAVNNZ bV ANZ7 T o

NANNN~~/ T | \NN\~=7777111

1_\\\\\/// \N~—=~/7777171

NN\~ N\ 7]

NN\ ~—— |\~

=2l NN~ ——_ L NN———> > > 7 7 7 7

NN———_= L N~—— = > > 7 7 7
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—3H N—_——— \ N—~———— -~ _F 7 7
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Figure 8: Slope field plot
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Verification of solutions

_ /—2z2+5In(1+2z) + 8¢, — 2z
B 2

Y

Verified OK.

vV —222 +51n (1 + 2z) + 8¢; — 2z
y=-
2

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, wP4z—1
V= y (14 2z)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2€y —wz —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 6: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode y = f(m) Y+ g(x) y" 0 e f(n—l)f(x)d:cyn
Reduced Riccati v = fi(x)y + folx) y? 0 e— [ fidz
The above table shows that
1+ 22
{(z,y) = R
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case
R=y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 2?2+z—1
Y y(1+22)
Evaluating all the partial derivatives gives
R,=0
R, =1
S — —x?—z+1
1+ 2z
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

Y (2A)

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

2

2 1

S(R) (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

z2 z 5ln(l1+2z) ¢?
11t s gt
Which simplifies to

z? x+51n(1+2z)_y_2+c
4 4 8 T2 T

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . )

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _ z’+a-—1 das __ R
dr — y(1+2z) dR —

BT bbb~ bbb —a a5 ~a Na Sa \, \, \, \ \1 \ N\ a7 A f f f f f f
e e e N i S S L T S = = O A A
LTI UEITIIIIIN SEREEINN IS

AT A T Na AT —e~a~aNa N N N\ N\ o ]~ 7
/////»ﬁa\/»»»\\x\\\\ x&x\\\QQ\»»///ffffff
VUt AW BN R N VAV VN NNNNZ e g A rpp
PAAAA TN\ Sl NN N N VAV NN NN NN A
PRPAS AN PN N R=y VAV VNN NN NS s p
T TN : AT

— - — e S
NN R NS SRR E Y z_x__§+5ln(ll_+ NN N I P R N R N
R 44 g PV VINNNNNL ey
AR R R e g VANV N N NS A AR
NN e e e e e e VAV NN
NN 7 e e e e e e NN N R S N N
NSRS Dttt VAV AVNANNNS s af
R T B e e e O Pl VYV VNN NN A
NN~ bbb T (| > _T_T ¥ ¥ T 7 \, \, \1 \ \ NN N Nl A 2t f f /‘ f f
A A bbb T bbb _T_T_T_T x [ N VA f

Summary
The solution(s) found are the following
2z 5ln(l1+2z) o?
- ==+ ==+ (1)

4 4 8 2
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Figure 9: Slope field plot

Verification of solutions

z? x+51n(1+2x) _y2+c
4 4 8 — 9 T

Verified OK.

1.4.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 04d
—_— ——y =
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

?+zr—1
R e e

( 24+r—1

T+ %2 ) dz+(—y)dy =0 (2A)

Comparing (1A) and (2A) shows that

2?2+x—1

N(CL‘,y) =Y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0 ( z»+z-1
oy Oy 1+ 2z
=0
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And
ON 0
o = os Y
=0

Since %i; = %{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

09
¢ _ N

Integrating (1) w.r.t. z gives

%dz=/de
ox

¢ 2+r—1
£m_/—1+% dz

¢=_a:_2_£+51n(1+2:c)

11 g + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢

— =0+ f 4

=0+ (@)
But equation (2) says that g—‘g = —y. Therefore equation (4) becomes

—y=0+f'(y) (5)

Solving equation (5) for f'(y) gives
fly)=—y
Integrating the above w.r.t y gives

[rwa= [ v

2

f(y)z—%‘i‘cl
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢:_

2 5,
4 4 8

2 2
z 5In(l+2zx
2
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

cL=—F—

z? £+51n(1+2x) ¥
4 4 8 2

Summary
The solution(s) found are the following

z? N 5In(1+2z) =z ?
4 8 4 2

H AN ] S N
D e N B e e 5 S SN
P SN 1 s~ NN\
P et AN 1 Ve . D
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Figure 10: Slope field plot

Verification of solutions

z2 5ln(l1+2z) =z ¢
it s i z°©

Verified OK.
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1.4.4 Maple step by step solution

Let’s solve
2yz+y)y = -2’ -z +1
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

P x’4az—1
Y9 = 15

. Integrate both sides with respect to x

[yydz = [ —’”ji‘;;ldx +c

° Evaluate integral

2 2 51n(14-2z)
v _ _ 22 _ =z 5n(1+27)
s =—7T a1t 8 ta

° Solve for y
{y _ /—2¢2351n(1422)+8¢1 —2x y = \/—2m2+51n(1+2m)+801—2:c}
- 2 rd 2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 55

Ldsolve((x‘2+x—1)+(2*x*y(x)+y(x))*diff(y(x),x)=0,y(x), singsol=all)

y(z) = _\/—2x2+51n(2;+1)+4cl -2z

y(z) = \/—2x2+51n(2;+1)+4cl -2z
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v/ Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 73

kDSolve [(x"2+x-1)+(2*x*y [x] +y [x]) *y' [x]==0,y[x],x,IncludeSingularSolutions -> jl‘rue]

1 1
y(z) — —E\/—2z2 —2z+5log(2z+1) — 3 + 8¢y

1 1
y(z) — 5\/—2352 —2z+5log(2z+1) — 3 + 8¢,
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1.5 problem 1(e)

1.5.1 Solving as separableode . . . . . . ... ... ... ... ... 38
1.5.2 Solving as first order special form ID 1ode. . . . . . .. .. .. 40}
1.5.3 Solving as first order ode lie symmetry lookup ode . .. .. .. [4T]
1.5.4 Solvingasexactode . ... ... ... .. ... ......... 45]
1.5.5 Maple step by step solution . . . . ... ... ... .. ... .. 49]

Internal problem ID [3006]
Internal file name [OUTPUT/2498_Sunday_June_05_2022_03_16_53_AM_28461493/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

e+ (x+1)y =0

1.5.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)g(y)
oz +1
Where f(z) = —#1 and g(y) = e?. Integrating both sides gives
1 1
—dy = — d
e Y g1
1
e YT / o1
e~
—T = —ln(x—i-l) +Cl
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Which results in

1
In < 21ln(z+1)—2c1 )
2

y:

Summary
The solution(s) found are the following

1
In ( 2ln(z+1)—2c1 )

Y 5 (1)
CREE PEEEE R R
111 PELEEEEEL L
111 PEL LR
H 11 AEEEERREER
111 PELLLL LV VLY
[ 11 R EEEERRRN
H111 BAERRRRARRRR
1111 BREARRRARRARRRR
77701V NNONNNNN
0_////// (AR R S S SN
y(x) o777 71 N NN NN S S
A AR TS S S e N
__s))//// \\\\ dddddddddd
il & P //\\\\—x
AAAAAA S ~N—
— D .
— 31

Figure 11: Slope field plot

Verification of solutions

1
In ( 2In(z+1)—2c1 >
2

y:

Verified OK.
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1.5.2 Solving as first order special form ID 1 ode
Writing the ode as

/
= 1
Y z+1 (1)
And using the substitution u = e=2¥ then
u/ — _2y/e—2y
The above shows that
v (z) e
I —
Y 2
__u(z)
T 2u
Substituting this in (1) gives
CAC) DU
2u  (z+1u
The above simplifies to
2
!/
= 2
W(e) = 2 ©)
Now ode (2) is solved for u(x) Integrating both sides gives
2
= d
=2In(z+1)+¢
Substituting the solution found for u(z) in u = e~?¥ gives
In (u(z
)= )
In(2ln(z+1)+¢)
T 2
In@2n(z+1)+a)
B 2
Summary
The solution(s) found are the following
In2ln(z+1)+c
y=— ( ( 5 ) 1) (1)
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Figure 12: Slope field plot

Verification of solutions

In2ln(z+1) 4+ ¢1)
y=- B

Verified OK.

1.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

o e?
y= r+1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - fx) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 9: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S:/—dx
3
1
=/_x_1dz

S=—-In(—z—-1)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ _ Set+w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

e

Evaluating all the partial derivatives gives

R,=0

R, =1

1
Sy =
—r—1
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

— = 2A

IR = ° (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

e—2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
e—2R
S(R):— 9 +c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
e
—11'1(—1,'— 1) = —T +Cl

Which simplifies to

—ln(—z-1) :—e——i—cl

Which gives

y:

2

_In@2In(-z-1)+2a)

2

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,5)

IS
<
@
N
<

ISy
8
8
+
—

\ Mo
\ s>
N e —p—e——s—sb
N e
N e bbbt
b S s>
=
J o e
I e
U/ e
J o et
J o e
J i e
| e
| f e

——e—s—p——b

_,JA J ¥ e

sle—e—<a—a—a—a—a—a—a—a—
F o a—a—atie e oo
.J A e e

Sl%
I

[
=

e—2R

B S G G S S

A bbb

A oo bbb

B
GGG S NN
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A e

e e e o
B T T e R O
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Summary
The solution(s) found are the following

In(2In(—z — 1) 4+ 2¢y)

y=— 5 (1)
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Figure 13: Slope field plot
Verification of solutions
In(2ln (—z — 1) 4+ 2¢;)
y=—- B

Verified OK.

1.5.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
M(z,9)+ N(z,y) % = 0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
- M
ox
o
T _N
Ay
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—e™®)dy = (a: _1'_ 1) dx
<—z - 1) dz+(—e ) dy =0 (2A)

Comparing (1A) and (2A) shows that

1
M(z,y) = —
N(m’y) = _e_2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
0y Oz

oM _o( 1)
oy Oy\ z+1

Using result found above gives
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And

ON 0 _
o =)
=0

Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
0p

=M (1)
9¢
o =V 2)

Integrating (1) w.r.t. z gives

op .
%dw—/de

oo . 1
%dx_/_x-l—ldx

¢=—In(z+1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

— =0 ! 4
=0+ (@)
But equation (2) says that g_ﬁ = —e~ %, Therefore equation (4) becomes

—e™ =0+ f'(y) ()

Solving equation (5) for f’(y) gives

flly) = —e

frd —e_2y

Integrating the above w.r.t y results in

/ f'y)dy = / (—e ) dy
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

—2y
¢:—ln(x+1)+e—+61

2

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1:—ln(x+1)+eT

The solution becomes
In@2hn(z+1)+2a)
2

y:

Summary
The solution(s) found are the following

In@2hn(z+1)+2a)

y= : 1)
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d1 11 EERRRRRRARR
11111 EEARRRARRRRRR
777111 LV NN NN
1777777111 1NN NN S S
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R et A AR S S e e
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X

Figure 14: Slope field plot
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Verification of solutions

In(2ln(z 4+ 1) 4+ 2¢;)
y=- 9

Verified OK.

1.5.5 Maple step by step solution

Let’s solve
e+ (z+1)y =0
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables

. Integrate both sides with respect to x
[ Lde = [—sqde+a

° Evaluate integral

—smp =—In(z+1)+¢
° Solve for y
y = ln<2<ln<zjl>fc1>)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

Ldsolve (exp(2*y (x))+(1+x)*diff (y(x),x)=0,y(x), singsol=all) J

In(2) In(ln(z+1)+¢)
2 2

v/ Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 21

-

N
kDSolve [Exp [2*y [x]]1+(1+x) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True] J

(&) = 3 log(2og(z + 1) ~ )
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1.6 problem 1(f)

1.6.1 Solving as separableode . . . . . ... ... ...

1.6.2 Solving as first order ode lie symmetry lookup ode
1.6.3 Solvingasexactode .. ... ... .......
1.6.4 Solving asriccatiode. . . . ... ... ... ..
1.6.5 Maple step by step solution . . . ... ... ..

Internal problem ID [3007]

Internal file name [OUTPUT/2499_Sunday_June_05_2022_03_16_55_AM_1089413/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960

Section: Exercises, page 14
Problem number: 1(f).
ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separablel

(z+1)y —y’z> =0

1.6.1 Solving as separable ode

In canonical form the ODE is

Where f(z) = z‘”—; and g(y) = y%. Integrating both sides gives

x

e

dz

dy = 1

1
¥
1

2l
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1)

x
—m+5+ln(w+1)+cl

224+2In(z+1) 4 2¢; — 22

224+ 2In(z+1) +2¢; — 22

111111 ~~\ »— N N~ ————
111111 ~X A\ AN N ——————
11111 ~~\ / / N ™ S ———
11111 ~\ / / NN S~ ——— |
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The solution(s) found are the following

Which results in
Summary

X
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Figure 15: Slope field plot
224+ 2In(z+1)+2¢; — 22

Verification of solutions

Verified OK.



1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl _ y2x2
r+1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 12: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz
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The above table shows that

n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/%dx
_ 1

—/z_ﬂdx

2

S is found from

Which results in

22
S’=—x+?—|—ln(az—|—1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y2x2

r+1

w(x7y) =
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Evaluating all the partial derivatives gives

R,=0
R, =1
22
*T r+1
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ 2A
dR 9?2 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds _ 1
dR R?

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —}% te @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2
1
—x—l—%-l—ln(z-l—l) = —;-I—cl
Which simplifies to
2
1
—x—l—%-l—ln(w-l—l) = —;-I—cl
Which gives

2
S22 42In(z+1) —2¢ — 2z

y:
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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= tretrrrerr e e
= rrrrrrrr et T e e
.= Prrrrrr e r e
° »44»44»44»»~K»»4)»44»
) R R S S R
Q AR TR TR TATRY AR TR TR TR TR R SR S
S o ANARAXAAXRRARXARRIANAN
.ﬂ.a\Qlu/ > NN NS NN
2 I e
Omrb.\ S_R URCR IR R R R R s s s
= SROUNNNOR A ARAR N AR AN
5] AT E TR R Ay
IBEEEAEEEEIIEEEE R
R= IR
Prrrrrr T r e
= rrrrrrrrr Rt T L e e e
A trrrtrtrer e e e
@) L3 O 3 O O R R
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224+2In(z+1) — 2¢; — 2z

y:

The solution(s) found are the following

Summary
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ALl
Vbbbl = 1111111
bbbl == 71001

AV VLV VL 7= 11
VIVI VYL 7=—=rr 771111
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=2 bbbV =
Vbbb == 7101111
Vbl =—=770111111
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Figure 16:

Verification of solutions

Slope field plot

2

y prd
Verified OK.

1.6.3 Solving as exact ode

224 2In(z+1) —2¢; — 2z

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) o =0

dz

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

dz

Hence 96
oz +

4 hey) =0

Opdy _

8_ydz_0
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Comparing (A,B) shows that

But since % = % then for the above to be valid, we require that
Y yox

oM _ ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1 z?
()= (%) =
z? 1
Comparing (1A) and (2A) shows that
2
x
1
N(z,y) = 7

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON
oy Oz
Using result found above gives
oM _o( o
oy Oy\ z+1
=0
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And
N _ 0 (1
oxr  Ox \y?
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

@dx=/de
ox

2
@dz—/— z dz

ozx o z+1

2

¢=—%+x—ln(m+1)+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ 1"(y) (4)

But equation (2) says that g—ﬁ = y—12 Therefore equation (4) becomes

1
20t f') (5)
Solving equation (5) for f'(y) gives

f'ly) =

@Nl —
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Integrating the above w.r.t y gives

[rwa=[(5)w

f(?/)=—$+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2

1
¢=—%+x—1n(a:+1)—§+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

IE2

1
5 +x—ln(x+1)—§

C1 =

The solution becomes

2
" 224+ 2In(z+1)+2¢c; — 2z

y:

Summary
The solution(s) found are the following

2
T 2+2ln(z+1)+2¢ — 22

y:

1)
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Figure 17: Slope field plot

Verification of solutions

22+ 2In(z+1) 4 2¢; — 22

Verified OK.

1.6.4 Solving as riccati ode

In canonical form the ODE is

F(z,y)
y2x2

/

Y

z+1

This is a Riccati ODE. Comparing the ODE to solve

y2w2
r+1

/

Y

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) =0, fi(z) =0 and fo(z) = 5. Let

V= fzu

= 2u 1)

z+1

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

o (z) = (f5 + fifo) W/ (2) + f3 fou(z) =0 (2)
But
- 20 z?
2 x+1 (x_'_ 1)2
fif2=0
f3fo=0
Substituting the above terms back in equation (2) gives
2,1 2
xu(m)_(Qm .z 2)u'(x)=0

Solving the above ODE (this ode solved using Maple, not this program), gives

(2 — 27) ¢y

u(z) =coln(z+1)+ 5

+c

The above shows that

2
’ . Co
vie) = z+1
Using the above in (1) gives the solution
Co

y=- -
CQIn(x+1)+(xQ%)C2+cl

Dividing both numerator and denominator by c; gives, after renaming the constant
2 =c3 the following solution

2
224+ 2In(z+1) + 2c5 — 2z

y:
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1)

224+ 2In(x 4+ 1)+ 2¢3 — 2z

Y

The solution(s) found are the following

Summary
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Figure 18: Slope field plot
224+ 2In(x+ 1)+ 2¢3 — 2z

)
Highest derivative means the order of the ODE is 1

(z+1)y —y?22=0
Separate variables

Let’s solve

1.6.5 Maple step by step solution
[ J

Verification of solutions

Verified OK.



y _ 2
y2 z+1

. Integrate both sides with respect to x
[ %dz = [ Zrdz + o
° Evaluate integral

—iz—z+§+ln(m+l)+cl

° Solve for y

_ 2
Y= 22+421In(z+1)+2c1 -2z

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve((x+1)*diff(y(x),x)—x“2*y(x)“2=0,y(x), singsol=all)

2
22 +2ln(z+1) —2¢ — 22

y(z) =

v Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 32

LDSolve[(x+1)*y'[x]—x“2*y[x]“2== ,y[x],x,IncludeSingularSolutions -> True]

2
T 22— 2z +2log(z + 1) — 3+ 2¢

64



1.7 problem 1(g)

1.7.1 Solving aslinearode . . . . . .. ... ... ... 651
1.7.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 671
1.7.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 68
1.74 Solvingasexactode . . ... ... .. ... .. ......... 72
1.7.5 Maple step by step solution . . . . ... ... ... .. ... .. rar

Internal problem ID [3008]
Internal file name [OUTPUT/2500_Sunday_June_05_2022_03_16_57_AM_75808387/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(g).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = Tz
q(z) = -2
Hence the ode is
y—2L=—2
z
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The integrating factor u is

The ode becomes

Integrating gives

—2In(z)+ ¢

Dividing both sides by the integrating factor u = % results in
y=—12ln(z)x+cz

which simplifies to
y=z(—2In(z) + 1)

Summary
The solution(s) found are the following

y=z(—2In(z) + 1) (1)
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Figure 19: Slope field plot

Verification of solutions

y=z(—2n(z) + 1)

Verified OK.

1.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

0

u(z)z — 2z
T

v (z) z + u(zr) —

Integrating both sides gives

=—-2In(z)+c

Therefore the solution y is

Yy =uzr

z(—21In (z) + ¢2)
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Summary

The solution(s) found are the following

1)

y=xz(—2In(z) + c)
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Figure 20: Slope field plot

Verification of solutions

y=z(—2In(z) + )

Verified OK.

1.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

=0

Nz + W(ny - gz) - wzfy —wg€ — Wy
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 15: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

£(z,y) =0

n(z,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S= [ -dy
n
1
- [ Ly
T
Which results in
s=1Y
T

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —2rty
’y - T
Evaluating all the partial derivatives gives

R, =1

R,=0

Y
Sx = _ﬁ
1
Sy - 5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 2

"~ __Zz 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR~ R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—-2In(R)+ 1 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
% =—2In(z)+ ¢
Which simplifies to
% =—2ln(z)+c

Which gives
y=—z(2ln(x) —c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

The solution(s) found are the following

y=—z(2ln(z) — c1)
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Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —2z+y ds 2
dz T dR R
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Figure 21: Slope field plot

Verification of solutions

y=—-2z2In(z) — 1)

Verified OK.

1.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d(z,y) =0

a
dz

Hence
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Comparing (A,B) shows that

09
M
Oz
9 _ n
Ay
But since %{% = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
T
(—#) dr+dy=0 (2A)

Comparing (1A) and (2A) shows that

—2r+vy
M(z,y) = ———2

N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives

oD ()
oy Oy x
1

T
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And

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

a_M_a_N
oy or

(%))

X

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e S —% dz
The result of integrating gives
p=e" In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
_ (2= ty
oz x
2z —y

And

=

Il I

— — =
8|8 S
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

m+NY _o
dz

(=) (@)=

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
6
3y N (2)
Integrating (1) w.r.t. = gives
jdx = /de
3(15 2 —y
ax / x2 dz
6="+2n(2)+ /() 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 1
4
L") (@)
But equation (2) says that a¢ = 1. Therefore equation (4) becomes
11,
2z f'(y) (5)
Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fly) =a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

¢=%+2ln(z)+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

Y
==+421
a=_ n(zx)

The solution becomes

y=—-22In(z) — 1)

Summary
The solution(s) found are the following

y=—z(2In(z) — c1) (1)
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Figure 22: Slope field plot

Verification of solutions

y=—z(2ln(z) — c1)

Verified OK.
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1.7.5 Maple step by step solution

Let’s solve
yl _ y—2x — O
T

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=-2+¢

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—t=-2

° The ODE is linear; multiply by an integrating factor u(x)
u(x) (v — %) = —2u(x)

o Assume the lhs of the ODE is the total derivative - (u(z) y)
p(z) (v — %) = w'(z)y + ple)y

o Isolate u'(x)

_u(@)

w(z) =
° Solve to find the integrating factor
p(z) =3
° Integrate both sides with respect to x
J (& (u(2)y)) do = [ —2u(z) dz + 1

° Evaluate the integral on the lhs
w@)y = [ —2u(z)dz +c

° Solve for y
_ [ —2u(@)dzter
Y= ""uw

o Substitute u(z) = 91_6
y= x(f—%dx—l—cl)
° Evaluate the integrals on the rhs

y=z(—2In(z) + )
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)=(y(x)-2*x)/x,y(x), singsol=all)

y(e) = (=2In(z) + c1) =

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 14

LDSolve[y'[x]==(y[x]-2*x)/x,y[x],x,IncludeSingularSolutions -> True]

y(z) = z(-2log(x) + 1)
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1.8 problem 1(h)

1.8.1 Solving as homogeneousTypeD2ode . .. ... ... .. .... [79]
1.8.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 811
1.8.3 Solving as bernoulliode . . .. .. ... ... .......... 851
1.8.4 Solvingasexactode . ... ... ... ... ........... 9]

Internal problem ID [3009]
Internal file name [OUTPUT/2501_Sunday_June_05_2022_03_16_59_AM_35539033/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(h).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _Bernoulli]

v — ayy = —a

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
u(z)® 2 — 2u(z)? (W (z)  + u(z)) = —2°
In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
_ L

Uiz
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Where f(z) = L and g(u) = . Integrating both sides gives

1 1
T du = — dz
uZ
1
2
ud
5 =) +e
The solution is
u(z)’
—In(z) —c2=0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

@—ln(x)—Q:O
3

Y

ﬁ—ln(:c)—Q:O

Summary
The solution(s) found are the following

%
@—ln(z)—@:O (1)
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Figure 23: Slope field plot
3x3

Verification of solutions

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny — &) — Wny — wz§ —wyn

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7



Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that
£(z,y) =0
3

n(r,y) = " (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
y?
Which results in
_ v
3z3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3+ 9P
LU(.’E ) y) - T y2
Evaluating all the partial derivatives gives
R, =1
R,=0
3
Yy
Sx == —g
2
Y
Sy == E

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
oz 2A
dR =z (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 1
dR R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =In(R) + & (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

o
355 = In(z)+c
Which simplifies to
Y

ﬁ=ln(z)+cl

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, )
transformation ’
dy _ 2’4y’ as _ 1
dr = zy? dR ~— R
NN NNV PP AL S OO L I S O
AreSNNNN VAP AP NN LI e
srmsNNNVU PP AP RS S S SN [ P
et IR —————— NI IR iataiaintat
pr AKXt bttt R 9 RN | B e
tttttr A=t A N SNV L O 5
SRR R EEE R=zx RN I
Y I A A N
Tttt Tt ittt att y3 RSSO NSNS Y I s e
trtrtr it s N—=2 0 — —— e\ Y A
ttrrrrrr N NN—=r ] S S SOV S By 25 O 5 S
PEPPAZ72 P NN N r s/} S S SN L P S e e
PAAIPEAFE PN NN e SRR | I e
A N LN N RN | | I e
P2222F P HE LV VN N e e e S O N R Pttt g
Summary
The solution(s) found are the following
Y
“— =In(zx)+c 1
L =ln(2) ®
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Figure 24: Slope field plot

Verification of solutions

Verified OK.

1.8.3 Solving as bernoulli ode

In canonical form, the ODE is

F(z,y)

y =

25 4P
xy?

— |
[a\]
8
|_l
=)

— |8
Il
=Y

=

()

@)

=

o

<

—

[«b]

m

S

R

R

<

=

(1)

The standard Bernoulli ODE has the form

2)

y = fo(z)y + fi(z)y"

The first step is to divide the above equation by y™ which gives

3)

/!

Y

= fo(z)y' ™" + fi(2)

n

P~
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) =~
fi(z) = 2®
n=-—2

y
Yy’ = —+ z’ (4)

Let

=y’ (5)
Taking derivative of equation (5) w.r.t  gives

w' = 3y’y’ (6)
Substituting equations (5) and (6) into equation (4) gives

wiz) _ wiz)

_ 2
3 =z te
w =3 4 352 (1)
A

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(r)w(z) = q(z)

Where here
3
p(x) = Tz
q(z) = 32°
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Hence the ode is

3
w'(z) — w(z) _ 3z?
x
The integrating factor y is
b= ef—:dz
1
T2

The ode becomes

Integrating gives

w

5= 3ln(z)+ ¢

Dividing both sides by the integrating factor u = x% results in
w(z) = 3z°In (z) + c12°

which simplifies to

w(z) = 2°(31In () + ¢1)

Replacing w in the above by 3 using equation (5) gives the final solution.
y® = 2*(31In () + c1)
Solving for y gives
y(@) = (3l (2) +a)ia
Bl +a) (-1+iv3)z

y(z) = 5
y(z) = _(31n (x) + c1)23 (14+iv3)z
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Summary
The solution(s) found are the following
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Figure 25: Slope field plot
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Verification of solutions

W=

y=BIn(z)+c)dz
Verified OK.
(3In(z) +c1)® (-14+iV3)z
Y= 5
Verified OK.
(3In(z) + ¢1)® (1+iV3)z
y=- 5
Verified OK.

1.8.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 96 96d
Y
il T it A B
Oor Oydx 0 (B)
Comparing (A,B) shows that

8¢_
%—M
8¢_
ay N

8¢ 8¢

Bady = Byds then for the above to be valid, we require that

But since

oM  ON

oy  Ox
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
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59; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—x y2) dy = (—z3 - y3) dx
(2 +y®)de+(—zy®)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =2° +y°
N(x,y) = —xy2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM 0
oy ~ oy Y
= 3y2
And
ON 0
o~ oY)
= —y2

Since %i: # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] <8M 8N)

- N Oy ox
- (6 = (=4)
_ ¢
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —% dz
The result of integrating gives
w= 6_4 In(z)
1
Tt

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N-2=0
+ dx

2+ 3 y?\ dy
() + (%)@=

The following equations are now set up to solve for the function ¢(z,y)

0  —
g—x—M (1)
6
=N @)
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Integrating (1) w.r.t. z gives

@dx= /de
ox

3 3
%dxz/x ty dzx

oz 4

y3

¢=—o5+In(x)+ f(y) 3)

33

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

06 _ v .
T 7 4
1) (@)
But equation (2) says that g—‘;’ = —Z—z. Therefore equation (4) becomes
2 2
Y Y
_F:_E—Ff(y) (5)
Solving equation (5) for f'(y) gives
f'ly)=0
Therefore
fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
y?
=———+4+In(z)+c
But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

y3
C1 = —@ + In (.’,C)

Summary
The solution(s) found are the following

%
3.5 +In(z)=¢ (1)
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Figure 26: Slope field plot

Verification of solutions

1

+1In(z) =

Yy
3x3

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 58

Ldsolve((x“3+y(x) ~3)-x*y (x) “2*diff (y(x),x)=0,y(x), singsol=all) J

1

y(z) = Bln(z)+ 1)z
Bln(z)+c1)? (1+4V3)
2

-

y(z) = —

Bln(z) + c1)
2

ol

(iv3—1)z

y(z) =

v/ Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 63

LDSolve [(x"3+y[x] ~3) -x*y[x] "2*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

y(z) = z~v/3log(z) + 1
y(x) = —v/—1z/3log(x) + c;
y(z) — (—1)2/3x\3/3log(x) +
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1.9 problem 1(i)

1.9.1 Solving as quadratureode . . . . . .. ... ... ... ... 951
1.9.2 Maple step by step solution . . . . . ... ... ... ... ... 96!

Internal problem ID [3010]
Internal file name [OUTPUT/2502_Sunday_June_05_2022_03_17_03_AM_30374513/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(i).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y+y=0

1.9.1 Solving as quadrature ode

/—ldyz/dx
)

—In(y)=z+ac

Integrating both sides gives

Raising both side to exponential gives

1 _ ew+c1
Y
Which simplifies to
- = CQGx
Y
Summary
The solution(s) found are the following
= 1
y=- 1)
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Figure 27: Slope field plot

Verification of solutions

Verified OK.

1.9.2 Maple step by step solution

Let’s solve
y+y=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
U |
Y
° Integrate both sides with respect to x
i %dz = [(-1)dz+¢c
° Evaluate integral
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In(y)=—z+¢

° Solve for y

y — e—z—}-cl

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

tdsolve(diff(y(x),x)+y(x)=0,y(x), singsol=all)

y(x) =e"c

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18

LDSolve[y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

T

y(x) = cre”
y(z) =0
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1.10 problem 1(j)

1.10.1 Solving aslinearode . . . . . .. ... ... ... ... ... . O8]
1.10.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 100l
1.10.3 Solvingasexactode . . .. ... ... ... .. ... ... . 104
1.10.4 Maple step by step solution . . . . . ... .. ... ... ... T08]

Internal problem ID [3011]
Internal file name [OUTPUT/2503_Sunday_June_05_2022_03_17_04_AM_34495165/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 1(j).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

Y +y=1>+2

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) =
q(z) = 2° 42
Hence the ode is
Yy +y=12"+2
The integrating factor u is
p= ef 1ldz

98



1)

(ny) = (u) (2* +2)

(€"y) = (e°) (2* +2)
(r°—2z+4) "+ ¢
22 —2x+44ce®
22— 2+ 4+ cre’®

d(e”y) = ((z*> +2) €*) dz

Y
Y

e’y = / (xz + 2) e’ dx

dz
dzx
e’y
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Figure 28: Slope field plot
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y=e"* (x2 — 2z + 4) e +ce”

Dividing both sides by the integrating factor u = €® results in

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary



Verification of solutions

y=a>—2x+4+4ce”
Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl:w2_y+2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fx) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =e"

x

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
=/édy
eiE

S =e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =2> —y+2

Evaluating all the partial derivatives gives

R, =1
Ryz

S, =€y
Sy =¢”

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as -
Fioi (2 +2)e (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds

- R2 9 R

iR ( + ) e
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=(R*—2R+4)e" +¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y= (2" —2z+4)e" + ¢
Which simplifies to
y= (2" —2z+4)e" + ¢
Which gives
y= (2" —2ze" +4e" +¢;)e”

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation

98 = (R*+2)ef
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Summary
The solution(s) found are the following

y= (2%" —2ze" +4e" +¢1) ™" (1)
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Figure 29: Slope field plot

Verification of solutions

(x2ex —2xe” +4e” + cl) e ”

y:

Verified OK.

1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

é(z,y) =0

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (x2—y+2)dx
(-2 +y—2)dz+dy=0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —2* +y — 2
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 9
T (= -9
Oy 8y( v +y—2)
=1
And
oN _ 2
oxr Oz
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Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM _oN
N\ Oy Oz

(1) = (0))

1
1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— efldz

I

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=e"(—z’+y—2)
=—e"(2? —y+2)

And
N =uN
=e(1)
= e:l:

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dx
dy
—e (% — 2 2 =
(—e"(z® —y+ ))+(e)dx
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oo —
=N 2
o &)
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Integrating (1) w.r.t. z gives

@dx= /Mdz
ox

a¢ _ P 2
%dx—/ e(x y+2)dx

p=—(2-2z—y+4)e" + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a¢ T /
6_y:e + f'(y) (4)

But equation (2) says that Z_Zj = e”. Therefore equation (4) becomes

e’ =e" + f'(y) (5)
Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly) =a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—(z"-2z—-y+4) e+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

cl=—(ac2—23lc—y—|-4)ez

The solution becomes
y= (a:Qe“" —2xe® +4e” + cl) e ”

Summary
The solution(s) found are the following

y=(z%" —2ze" +46" +¢1)e” (1)
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Figure 30: Slope field plot

Verification of solutions

(x2ex —2xe” +4e” + cl) e ”

y:

Verified OK.

1.10.4 Maple step by step solution

Let’s solve

y+y=x*+2

Highest derivative means the order of the ODE is 1

Isolate the derivative
y=-y+a’+2

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y+y=2+2

The ODE is linear; multiply by an integrating factor u(x)

= u(z) (¢ +2)

w(z) (Y +y)
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(z) (¥ +y) = p(z)y+ @)y
o Isolate y'(x)

' (z) = p(z)

° Solve to find the integrating factor
pu(z) =€

° Integrate both sides with respect to x

J (G (u(z)y)) de = [ p(z) (2% +2)dz +
° Evaluate the integral on the lhs

we)y = [ () (@ +2) do + e,

° Solve for y
[ u(=) (z24+2)daz+c1

y= u(@)
) Substitute u(z) = e*

y = f(z2+22:’”dx+cl
° Evaluate the integrals on the rhs

z2—2z+4)e®+c
y = 2ottt

° Simplify
y=2>—-2x+4+ce”®

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x)+y(x)=x‘2+2,y(x), singsol=all)

y(x) =2 — 22+ 4+e ¢

v/ Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 21

LDSolve [y' [x]+y[x]==x"2+2,y[x] ,x,IncludeSingularSolutions -> True]

y(x) = 2° -2z +cre +4
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1.11 problem 2(a)

1.11.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 111
1.11.2 Solving as linearode . . . . . . . . .. ... ... ... .. 1121
1.11.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 114
1.11.4 Solvingasexactode . . ... ... ... ... . ......... 18]
1.11.5 Maple step by step solution . . . . . .. ... ... ... ... 122]

Internal problem ID [3012]
Internal file name [OUTPUT/2504_Sunday_June_05_2022_03_17_06_AM_75331586/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y —ytan(z) ==z

With initial conditions

[y(0) = 0]

1.11.1 Existence and uniqueness analysis
This is a linear ODE. In canonical form it is written as
y +p(@)y = q(z)

Where here
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Hence the ode is
y —ytan(z) =z

The domain of p(z) = —tan (x) is
1 1
T < §7r +7 Z142V §7T+7T_Zl42 <z

And the point zy = 0 is inside this domain. The domain of ¢(z) = z is

{—00 <z < o0}
And the point zq = 0 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor u is
L= ef—tan(a:)dm

= cos ()

The ode becomes
d
= (1) = () (@)

< (003 (2)y) = (co8 (1) (2)
d(cos (z)y) = (cos (z) z) dx

Integrating gives
cos (z)y = /cos (z) zdx
cos (z)y = zsin (z) + cos (z) + ¢
Dividing both sides by the integrating factor u = cos (x) results in
y = sec (z) (xsin (z) + cos (z)) + c1 sec (z)
which simplifies to

y =tan (x)z + 1+ c; sec(x)
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(1)

0=Cl+1

Cl=—1
y=1+tan(z)z — sec(z)

Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above
y =1+ tan (z) z — sec(x)

solution gives an equation to solve for the constant of integration.

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary
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/ ()

y=1+tan(z)z — sec(z)

(a) Solution plot

Verification of solutions

Verified OK.



1.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =tan(z)y+z

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

§(z,y) =0
1
cos (z)

n(z,y) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

e =y =9 (1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
Sz/—dy
n
_ 1

[

cos(z)

S is found from

Which results in
S =cos(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =tan(z)y + x
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Evaluating all the partial derivatives gives

R, =1

R,=0

Sy = —sin(z)y
Sy = cos (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

g 2A

Jp = 08 () x (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

=cos(R)R

gives
S(R) =cos(R)+sin(R)R+ ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

cos (z)y = zsin (z) + cos (z) + ¢;
Which simplifies to

cos (z)y = zsin (z) + cos (z) + ¢;
Which gives

_ zsin (z) + cos (z) + ¢
cos ()
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Original ode in z,y coordinates
dx

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0==Cl+'1
01:-—1

(1)

1+ tan (z) z — sec (z)
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y =1+ tan (z) z — sec (z)

Y

Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary
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(b) Slope field plot

(a) Solution plot

Verification of solutions

y=1+tan(z)z — sec(z)

Verified OK.

1.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)ﬁ=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

a
dz

d(z,y) =0

Hence

,B) shows that

Comparing (A

118



But since aa g = a a then for the above to be valid, we require that
yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (tan (z)y + z) dz
(—tan (z)y —z)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —tan(z)y — x
N(z,y) =1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
oy Oz
Using result found above gives

oM 0
E 8—y(—tan (z)y — )

= — tan (z)
And
ON _
. (1)
= 0

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

i)

Oy or
= 1((—tan (z)) — (0))
= —tan (z)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is
p=e JAdz
— ef—tan(x) dz
The result of integrating gives
L= eln(cos(a:))
= cos ()
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= cos (z) (—tan (z) y — x)
= —cos(z)z —sin(z)y

And

= cos (z) (1)
= cos ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

_ _dy
M = _
+ P 0
: dy
(— cos (z) z — sin (z) y) + (cos (z)) i 0
The following equations are now set up to solve for the function ¢(z,y)
0p —
— =M 1
o (1)
0p —
— =N 2
5 @)

Integrating (1) w.r.t. z gives

0p . [+
%dx—/de

%dx = /—cos(ac)x—sin(x)yd$

¢ = (y — 1) cos (z) — zsin () + f(y) (3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /
oy (@) + f'(v) (4)

But equation (2) says that g—z = cos (z). Therefore equation (4) becomes
cos () = cos () + f'(y) (5)
Solving equation (5) for f'(y) gives

fly)=0

Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y—1)cos(z) —zsin(z) +

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into new constant c; gives the solution as

¢ = (y—1)cos(z) — zsin (z)
The solution becomes

zsin (z) + cos (z) + ¢
y =
cos ()

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

Ozcl—i-l

C = -1
Substituting c¢; found above in the general solution gives

y =1+ tan (z) x — sec ()
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Summary

The solution(s) found are the following

1)

y =1+ tan (z)x — sec(x)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

y=1+tan(z)z — sec(z)

Verified OK.

1.11.5 Maple step by step solution

Let’s solve

z,y(0) = 0]

)

T

(

Highest derivative means the order of the ODE is 1

[y — ytan

Isolate the derivative

Y =ytan(z) +

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y —ytan(z) =z

The ODE is linear; multiply by an integrating factor u(x)
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u(z) (v — ytan (z)) = p(z)

Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (y' — ytan (z)) = p'(z) y + p(z)y'
Isolate ()

W (z) = —p(z) tan (z)

Solve to find the integrating factor
p(z) = cos (z)

Integrate both sides with respect to x
[ (L (ule)v)) do = [ p(z)adz +
Evaluate the integral on the lhs

p(@)y = [ ple) zdz + ¢

Solve for y

_ Ju@)zdeter
Y="u

Substitute u(z) = cos (z)

y= fcosc((a;;s)(zj)z-i-cl

Evaluate the integrals on the rhs

__ zsin(x)+cos(z)+c1

y= cos(x)

Simplify

y =tan(z)z + 1+ c1sec(x)

Use initial condition y(0) =0

O=c+1

Solve for ¢;

cp=-—1

Substitute c; = —1 into general solution and simplify
=1+ tan (z) z — sec (z)

Solution to the IVP

y =1+ tan (z) x — sec(x)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve([diff(y(x),x)-y(x)*tan(x)=x,y(0) = 0],y(x), singsol=all) J

y(xz) =1+ tan (x) x — sec (z)

v/ Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 15

LDSolve[{y'Dd—y[x]*Tan[x]==x,y[0]==0},y[x]ﬂgIncludeSingularSolutions -> Trug?

y(z) — ztan(z) — sec(z) + 1
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1.12 problem 2(b)

1.12.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 125
1.12.2 Solving as separableode . . . . . . .. ... ... ... ..... 126
1.12.3 Solving as first order special form ID 1ode. . . . . . . . .. .. 128]
1.12.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 130
1.12.5 Solvingasexactode . . ... ... ... ... .......... 134
1.12.6 Maple step by step solution . . . . ... ... ... ....... 138

Internal problem ID [3013]
Internal file name [OUTPUT/2505_Sunday_June_05_2022_03_17_09_AM_46567828/index . tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions

1.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
— ez—2y

The = domain of f(z,y) when y =0 is

{—o0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is
{—o0 <y < o0}

And the point yy = 0 is inside this domain. Now we will look at the continuity of

8_f — g z—2y
ay - ay (e )
= —2¢"%

The x domain of % when y =0 is
{—0 <z < o0}

And the point 2o = 0 is inside this domain. The y domain of %5 when z = 0 is
{—00 <y < o0}

And the point yo = 0 is inside this domain. Therefore solution exists and is unique.

1.12.2 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L‘,y)
= f(z)g(y)

= e%e ¥

Where f(x) = e” and g(y) = e~2Y. Integrating both sides gives

1 T
e_—2ydy:e dz

1 x
/e_—zydy=/e dx

2y

e

— ="+
2

Which results in
In (2e* 4+ 2¢;)
2

126



Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

In (2) 4 In(c; +1)

Substituting c; found above in the general solution gives

In(2e*—1)

y= 2

Summary
The solution(s) found are the following

y:ln(2e2””—1) 1)

_0.5.

(a) Solution plot (b) Slope field plot

Verification of solutions

In(2e* -1
,_lee-1

Verified OK.
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1.12.3 Solving as first order special form ID 1 ode

Writing the ode as
y = 1)

And using the substitution © = e? then

ul — 2y/62y
The above shows that
/ —2
,_u(z)e™™
Y=
_ u(z)
 2u
Substituting this in (1) gives
u'(z)  e”
u  wu
The above simplifies to
u'(z) = 26" (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(z) = /2e“ dz

=2ez+01

Substituting the solution found for u(z) in u = e* gives
In (u(z))
¥y=7"">
In(2€” +¢)
2
In(2e” +¢1)
2

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

In(2+¢)

0= 5
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012—1

Substituting c¢; found above in the general solution gives

Summary

The solution(s) found are the following

Verification of solutions

_In(2e*—1)

2

In(2e* —1)

2

(a) Solution plot

Verified OK.

_ In(2e*—1)
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1.12.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — ez—2y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

{(z,y) =e""

n(z,y) =0 (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is

dr dy

& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1

Sz/—dx
13

~ [ o
e$

S=¢"

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = P

Evaluating all the partial derivatives gives

R, =0
R, =1
S, =¢€"
Sy =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

S 2A

dR ~° (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives
dS o
drR ~°
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
o2R
S (R) = 7 + (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
e
T _—
e = 2 + ¢
Which simplifies to
e?y
zr —
e = 5 +c

Which gives

In(2e® — 2¢
= e =)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation

dy _ x—2y das _ 2R
dr — © R=e
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Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

In(2) In(l-¢)

Substituting c¢; found above in the general solution gives

In(2e*—1)

y: 2

Summary
The solution(s) found are the following

In(26* —1)

y=—"3 1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

In(2e* -1
,_ e 1)

Verified OK.

1.12.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) & =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%ﬁb(xa y) =0
Hence 06 9pd
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
0p
P M
0p
3y N
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(e*) dy = (e*)dz
(—e”)dz +(e*) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —€”
N(z,y) = e

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 0
0y Oy
=0
And
ON 0  ,,
o 5
=0
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
9 =M (1)
o
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Integrating (1) w.r.t. z gives

/@dx=/de
ox
0¢ . x
%dx—/ e’ dz

¢ =—e"+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ f'(y) (4)

But equation (2) says that g—‘z = e%. Therefore equation (4) becomes

e® =0+ f'(y) ()
Solving equation (5) for f'(y) gives
fly)=e®

Integrating the above w.r.t y gives

/ f'y)dy = / (™) dy

e

f(y)=7+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
p=—-e"+—+c
2
But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2y

e

cp=—€e"+—
2
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The solution becomes
In (2€” + 2¢;)
2

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

_In (2) 4 In(c; +1)

0 2 2

]
17 7

Substituting ¢; found above in the general solution gives

In(2e* -1
,_ e 1)

2
Summary
The solution(s) found are the following
In(2e* —1)
=_—\=r 1
y 5 (1)
157 o
1-
1_
0.5
0 01
~0.5
yx) Y y(x) 7
—1.51
—2 —21
—2.5
_3.
— 3
-35 _4]
_4.
-2 -1 0 1 2 3 0 1 2 3
X
(a) Solution plot (b) Slope field plot
Verification of solutions
In(2e* —1)
Y= - 9

Verified OK.
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1.12.6 Maple step by step solution

Let’s solve
[y —e*=* =0,y(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
y(e¥)’ =e°

° Integrate both sides with respect to x
[v'(e¥) dz = [ e*dx + c;

° Evaluate integral

o e

° Solve for y

_ In(2e"42¢1)
y= 2

o Use initial condition y(0) =0
0= In(24+2¢1)
2

° Solve for ¢;
G =-—3

° Substitute ¢c; = —% into general solution and simplify
y =g

° Solution to the IVP
y =g

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 13

Ldsolve([diff(y(x),x)=exp(x—2*y(x)),y(0) = 0],y(x), singsol=all) J

In(2e*—1)

y(z) = 5

v/ Solution by Mathematica
Time used: 0.824 (sec). Leaf size: 17

e B
kDSolve [{y' [x]==Exp[x-2*y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True}]

1
y(x) — 3 log (2¢° — 1)
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1.13 problem 2(c)

1.13.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. [1401
1.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 142
1.13.3 Solving asriccatiode . . . . . . . . ... ... ... 148}

Internal problem ID [3014]
Internal file name [OUTPUT/2506_Sunday_June_05_2022_03_17_11_AM_66234823/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Riccatil

)y t+a’

- 2g2 =0

1.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

2,92 2
, u(z) z*+x
2 T )
u'(z) z + u(z) 507
In canonical form the ODE is
v = F(z,u)
= f(z)g(v)
w4}
o z
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Where f(z) = L and g(u) = —u + 3u® + 3. Integrating both sides gives

1 1
ﬁdu=—dx
—u+5u°+ 3
d
/ —u+ u2 / ’
_u—l =In ( )+02
The solution is
——u(z)_l—ln(x)—CQZO

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

_yil —In(z) —c;=0
(In(z) +c2)y — z(cz + In(2) — 2) =0
_y_|_x

Summary
The solution(s) found are the following

(In(z) 4+ c2)y — z(co + In(z) — 2)
-yt+z

=0 1)
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Figure 38: Slope field plot

Verification of solutions

(In(z) +c2)y —x(co + In(z) — 2) _
—y+z

0

Verified OK.

1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,_x2+y2
y= 2x2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - fz) - W2€y — wz§ — wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)
(2E)

& = xas +yaz + a;
n = zby + ybs + by
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Where the unknown coeflicients are

{al, az,as, b1, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by + (#* +y*) (b —ar) (2°+ 1) as

212 44 (5E)
1 2 2
(T (za2+ya3+a1)—y(xb2+yb3+b1)=0
T 3 T2

Putting the above in normal form gives

2ztay + ztag — 4byx* — 22%b3 + 423yby — 222y ay + 22%y%as + 22%y2bs — 4z y3as + ytas + 4xPyb, — 4a
4zt

=0
Setting the numerator to zero gives

—2z%ay — 2tag + 4bozt + 22%b5 — 423yby + 22%y2as — 2%y as (6E)
— 222%y%bs + 4z yias — ylas — 42’yby + 4z y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =9}
The above PDE (6E) now becomes

4 2,2 4 2,2 4 4
—2a,v] + 2020205 — azvy — 2a3v1v3 + 4azvivs — azvy + 4byv] (7E)

— 4bzvi’v2 + 2b31fll — 2b311fv§ + 4a1vlv§ — 4b1’0%’02 =0

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

(—2a2 — as + 4b2 + 2b3) ’Ui1 - 4b2’Ui”02 + (2(12 - 2(13 - 2b3) ’U%’U% (8E)
— 4blvf02 + 40,31)121;’ + 4a1vlv§ — a3v§1 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a; =0
—a3=0
4a3 =0
—4b; =0
—4by =0

2a2 - 2&3 — 2b3 =0
—267,2 — as +4b2 + 2b3 =0

Solving the above equations for the unknowns gives

a; =0
as = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)¢
- () @

—2% + 2zy — 2
2z

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _
§ n

The above comes from the requirements that ({f a% + 77(%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

Which results in
2r
y—z
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

22 +y?
22

w(z,y) =
Evaluating all the partial derivatives gives

R, =1
R, =0

_ %
 (~y+a)’

2z
g, =T
Y (~y+a)

T

145



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—-In(R)+ ¢ 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2x
— =—In(z)+c
—y+z (z) !
Which simplifies to
2r
— =—In(z)+c
—-y+z () !

Which gives

_ z(ln(z) — ¢ —2)
In(z) —
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

The solution(s) found are the following

_z(ln(z) —c1 —2)

In(z) — ¢
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Canonical

. . ) i ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ z’+y° s _ _ 1
dz 272 dR R
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Figure 39: Slope field plot

Verification of solutions

_ z(ln(z) — ¢ — 2)
In(z) — ¢

Verified OK.

1.13.3 Solving as riccati ode

In canonical form the ODE is

y = F(z,y)
_ x? + y2
22

This is a Riccati ODE. Comparing the ODE to solve

/

2
. Yy
y= +2z2

N+

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) = 3, fi(z) =0 and fo(z) = 5. Let

= (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) — (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
, 1
fz = _;
fifa=0
f2fo=
2J0 — @

Substituting the above terms back in equation (2) gives

u'(z)  uw(z)  u(z)
212 + 3 + 8t

Solving the above ODE (this ode solved using Maple, not this program), gives

=0

_c+cln(z)

u(z) = z

The above shows that
coln(z) + ¢ — 2¢o

3
22

u'(z) = —

Using the above in (1) gives the solution

_(eeln(z)4+c1—2¢)x
B c1+c2ln(z)

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

(In(z)+c3—2)z
cs+In(x)
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Summary
The solution(s) found are the following

(In(x)+c3—2)x

Y c3 + In(z) (1)
N/777 7111 ‘11177777
777777111 (11777777
777777111 V11777777
777777111 1117777777
s777777 1 117777777
s 7777 71 117777777
d-rrrrr77 | /7777 s
7] ] PP POl
oo S

0_////////////////////
y(x) I ]IS

VOO OO OO oAV PIOor ol
oINS
Wi ry7 | /7777 s
77771 117777777
s777777 1 117777777
-2 ,777777111 117777777
77777711 V11777777
7777717111 ‘111777777
=3Hs777711111 ‘11177777
-3 -2 -1 0 1 2 3

Figure 40: Slope field plot

Verification of solutions

(In(x)+c3—2)x
c3+ In(z)

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve(diff (y(x),x)=(x"2+y(x)"2)/(2%x"2) ,y(x), singsol=all) J

z(ln(z) +c1 —2)
y(@) = In(z) + ¢

v/ Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 29

LDSolve[y'[x]==(x‘2+y[x]‘2)/(2*x‘2),y[x],x,IncludeSingularSolutions -> True] J

z(log(z) — 2+ 2¢)
log(z) + 2¢;
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1.14 problem 2(d)

1.14.1 Existence and uniqueness analysis. . . . . . . .. ... .. ... 1521
1.14.2 Solving as linearode . . . . . . . . .. ... ... ... .. 153]
1.14.3 Solving as homogeneousTypeD2ode . .. ... ... . ... .. 154
1.14.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 155]
1.14.5 Solving asexactode . . . .. . ... ... ... ... ... .. 150
1.14.6 Maple step by step solution . . . . . ... ... ... ...... 163

Internal problem ID [3015]
Internal file name [OUTPUT/2507_Sunday_June_05_2022_03_17_14_AM_17946256/index . tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y —y=2x

With initial conditions
[y(-1) = -1

1.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
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Hence the ode is

1

The domain of p(x) = — is

{r<0VvO0<uz}

And the point £y = —1 is inside this domain. The domain of ¢(z) =1 is

{—00 <z < o0}
And the point £y = —1 is also inside this domain. Hence solution exists and is unique.

1.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

o= ef—idw
_1
oz
The ode becomes
d
g M) =

Integrating gives

z/ldx
T

=In(z)+ ¢

|8l 8w

Dividing both sides by the integrating factor u = % results in
y=cz+In(z)z
which simplifies to

y=z(In(z) + ¢1)
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Initial conditions are used to solve for c;. Substituting x = —1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

—-1= —iﬂ'—Cl

Ci = —im+1
Substituting ¢; found above in the general solution gives
y=—irz+In(z)r+z

Summary
The solution(s) found are the following

y=—irc+n(z)z+z (1)

Verification of solutions

y=—irc+In(z)x+z
Verified OK.
1.14.3 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(z) « on the above ode results in new ode in u(z)
z(u(z)z +u(z)) —u(z)z =2

Integrating both sides gives

Therefore the solution y is

Yy =uz
=z(In(z) + c)

Initial conditions are used to solve for cy. Substituting x = —1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

—-1= —iﬂ'—Cz

co=—im+1
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Substituting c, found above in the general solution gives
y=—irz+In(z)z+z

Summary
The solution(s) found are the following

y=—irz+In(z)z+z (1)

Verification of solutions

y=—irc+n(z)z+z
Verified OK.

1.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, Ytz
y =
i
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fz) - w2€y —wg€ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(r,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Ytz
W(CL' ) y) - x
Evaluating all the partial derivatives gives

R, =1
R,=0

Y

Sg = — 2
1
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _1

dR =z
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = In(R) + e (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

=In(z)+ ¢

8|

Which simplifies to

8|

=In(z)+ ¢
Which gives
y =z(In(z) + )

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation ’

dy _ ytz as _ 1

dx z dR R
SNVt r A SN P I
e SNNN VYRR PP R N N S S
e\ N\NV4P PP e e e S OOV NN L B S Catad
NN I NN NN Y RN | D
oo XNV L2 IIPIIIT N N e
G tatatasn e L N A e N e g
AAAARAm 2NN PSP S S OOV L I S O
AAAAASAmN PP R=zx s\ | A
SIPPIPIATA PSP e e S G B | s e i
TR AR PR A P A AR Y S S WG| A A
A N acatatel sttt S== NN A gy
AR IR ettt x RN Attt
/////ffft%x\\%»»//// w\w\\\\\X{f////ﬂ»})»
2222220 HY \ e v 7~ e e e S N N P e g
VAV A A A B B | E NN VOO ———wwmNaN\ N[ A
PV IV B B A B 3 § SV N VN S S SV NN | I 5 O S
P I I I B B T U B SN NN NN LI
FEAPEEEE DL YN N N | I I S

Initial conditions are used to solve for c;. Substituting x = —1 and y = —1 in the above

solution gives an equation to solve for the constant of integration.

—1=—ir—¢
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Ci = —im+1
Substituting ¢; found above in the general solution gives
y=—irz+In(z)r+z

Summary
The solution(s) found are the following

y=—irc+In(z)x+z (1)

Verification of solutions

y=—inc+n(x)z+z
Verified OK.

1.14.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o
T M
ox
o
T _N
Oy
2¢ _ 9%
O0zdy oyor

But since then for the above to be valid, we require that

OM _ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
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59; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (y +z)dz
(—y—z)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M({E,y) =-Yy—
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM_o
oy Oy y
=-1
And
ON 0
o~ oo
=1

Since %i: # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Al L(0M _oN
N\ Oy Oz

= (-1 -(@1)

—_

8
[\

8
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —% dz
The result of integrating gives
w= 6_2 In(z)
1
Tz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=o
dz

—y—x 1\ dy
()G

The following equations are now set up to solve for the function ¢(z,y)

3(15_—
g—%_M 1)
6
6_y_N (2)
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Integrating (1) w.r.t. z gives

09 . [+
%dx—/de

a¢dx=/_y_xdm

oz 2

6="2-In(2)+f) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

op 1 ,
6_y25+f(y) (4)

But equation (2) says that g—;’j = 1. Therefore equation (4) becomes

L) )
Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fy)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

¢=%—ln(r)+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

_Y_
o= In (z)

The solution becomes
y=2(In(z) +c1)
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Initial conditions are used to solve for c;. Substituting x = —1 and y = —1 in the above

solution gives an equation to solve for the constant of integration.

—1=—ir—c

Ci = —im+1
Substituting c¢; found above in the general solution gives
y=—inz+In(z)z+z

Summary
The solution(s) found are the following

y=—irz+In(z)z+z

Verification of solutions

y=—irc+n(z)x+z
Verified OK.

1.14.6 Maple step by step solution

Let’s solve

[z —y = z,y(-1) = 1]
° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
y=:z+1

(1)

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y—-:=1
° The ODE is linear; multiply by an integrating factor u(x)
w(@) (¥ — %) = (=)

o Assume the lhs of the ODE is the total derivative - (u(z) y)

pe) (Y = %) = W)y + uz)y
o  Isolate p/(x)
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yC)]

p(z)=—=5

° Solve to find the integrating factor
px) = ;

° Integrate both sides with respect to x
J (G (u(z)y)) dz = [ p(z)dz +

° Evaluate the integral on the lhs
p@)y = [ ple)de +a

° Solve for y
_ [ p(@)dz+c
Y= " uw

° Substitute p(z) = %
y=z([ zdz+ac)

. Evaluate the integrals on the rhs
y=z(n(z)+ ¢1)

o Use initial condition y(—1) = —1

—1l=-Ir—q
° Solve for ¢;
cg=-Ir+1
° Substitute c; = —I7 + 1 into general solution and simplify

y=(n(z)-Ir+1)x
. Solution to the IVP
y=(n(z)-Ir+1)x

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

Ldsolve([x*diff(y(x),x)=x+y(x),y(—l) = -1],y(x), singsol=all) J

yz)=(n(z)+1—im)z

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 16

LDSolve [{x*y' [x]==x+y[x],y[-1]==-1},y[x] ,x,IncludeSingularSolutions -> True] J

y(x) = z(log(z) —im + 1)
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1.15 problem 2(e)

1.15.1 Existence and uniqueness analysis . . . . . ... ... .. .... 166]
1.15.2 Solving as separableode . . . . . . .. ... ... ... ..... 167
1.15.3 Solving as first order special form ID 1ode. . . . . . . . .. .. 169
1.15.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 1770
1.15.5 Solvingasexactode . . ... ... ... ... .......... 174
1.15.6 Maple step by step solution . . . . ... ... ... ....... 178

Internal problem ID [3016]
Internal file name [OUTPUT/2508_Sunday_June_05_2022_03_17_16_AM_91803760/index . tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

e?+ (22+1)y =0

With initial conditions
[y(0) = 0]

1.15.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)
e_y
o241
The z domain of f(z,y) when y =0 is

{—c0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o00 <y < oo}
And the point yy = 0 is inside this domain. Now we will look at the continuity of

of 9 (_ "
dy Oy\ 22+1

e_y
241

The z domain of 2—5 when y =0 is
{—o0 <z < o0}

And the point zo = 0 is inside this domain. The y domain of g—i when z = 0 is
{—o0 <y < o0}

And the point yo = 0 is inside this domain. Therefore solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)9(v)
e_y
T2+l
Where f(z) = — .5 and g(y) = e™¥. Integrating both sides gives
1 1
S dy————d
ev Y x2+1 o
1 1
~dy= [ - d
/ v W / 2 +1 v
e¥ = —arctan (z) + ¢

Which results in

T
arctan (x) — ¢
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0=—-In (l)
(4]

Cl=1

Substituting ¢; found above in the general solution gives

e .
V= arctan (z) — 1

Summary
The solution(s) found are the following

arctan (z) — 1

~—

———

T N N N N Ry

0os4 T~ =T N D D e

—————

—_— -/

de————— e — —

—3-25-2-15-1-050 05 1 15 -3 -2

X X

(a) Solution plot (b) Slope field plot

Verification of solutions

=—In L
v= arctan (z) — 1
Verified OK.
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1.15.3 Solving as first order special form ID 1 ode

Writing the ode as

And using the substitution u = e¥ then
u =1qy'eY

The above shows that

_ u(z)
o
Substituting this in (1) gives
u'(z) B 1
v (22+1)u
The above simplifies to
1
/ —_— -
u(z) = 2 +1

Now ode (2) is solved for u(z) Integrating both sides gives

1
u(x)=/—x2+1 dz

= —arctan (z) + ¢;

Substituting the solution found for u(z) in u = e¥ gives

y = In (u(z))
= In (—arctan (z) + ¢1)

= In (— arctan (z) + ¢)

(1)

2)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0=1In(c)

01=].
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Substituting c¢; found above in the general solution gives
y = In (—arctan (z) + 1)

Summary
The solution(s) found are the following

y = In (—arctan (z) + 1) (1)
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\
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|

—3-25-2-15-1-050 05 1 L5 -3 S
X X

(a) Solution plot (b) Slope field plot

Verification of solutions

y = In (—arctan (z) + 1)
Verified OK.

1.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - w2€y - wxf — Wyl = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode v = f(z)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — [bf(z)dz—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

E(CL’,y) = _xQ -1

n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

171

as

1)




The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S:/—dx
3
1
_/—x2—1dx

S = —arctan (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

CU(.’E,y) = _1172 +1
Evaluating all the partial derivatives gives
R, =0
Ry =1
1
Sy =—
x2+1
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

IR—G

e” (2A)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =ef + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—arctan (z) = €¥ + ¢;
Which simplifies to
—arctan (z) =e¥ + ¢
Which gives
y = In (—arctan (z) — ¢1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates

(R, S)

(¢)
s

dy _ _ e7¥ das _
de = x2+41 dR ~—

————b—b—b—b b Al a b ——>——b—>—> R ————b—b > ¥ 7 7

=3 %+
i I S = — arctan (CC) BN

— s~ aa N\

e e e e e e S S SN VT

!

!

'

|

]

/

'

&

r'e

'

v

/

'

'

'

i

)

!

4

)

!

4

Ky

\

\

: Y
NN N N N N N N N NN N N N N N N N NN
N Y T T T
B

et i i
et

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=In(—c)
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Ci = -1
Substituting c¢; found above in the general solution gives
y = In(—arctan (z) + 1)

Summary
The solution(s) found are the following

y = In (—arctan (z) + 1) (1)
1 H—=———————— NN NN S e
(R e S e e (N e N A
ﬂﬂﬂﬂﬂﬂﬂ e D N
0 of e D
N N D e O T
e e NG N N N W W VN N N N
—0.51 S S SNCNO NG N W N NN VAN NN
NN A AR EE R 'R R RSN
—1 _1'\\\\\\\\\\\1\1\1\1\1 NN
y(x) y(x) SO R S A NARNEN
1] SOONNNNN LV LY N\
) D N e N T T T T S A T A ST\ RSV
S2NNNN NV VAV Y
—2 VI VI VO T T A A T WA O
AR
—25 NNYNVMVYV VYRRV WL
B N T T T A A A A A T A Y L
_3 BRI
MAYVV VRV Ry
—3-25-2-15-1-050 05 1 15 -3 -2 - 0 1
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
y = In (—arctan (z) + 1)
Verified OK.
1.15.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
- M
ox
o
T _N
Ay
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1
—e")dy =
(—e?)dy (J;z—i—l)dx
1
_ —e!)dy = 2A
( x2+1)dx+( e’)dy =0 (2A)
Comparing (1A) and (2A) shows that
1
M(z,y) = T2l
N(:L‘, y) = —¢’

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
0y Oz

oM _ 90 ( 1
oy Oy\ 2241

Using result found above gives
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And

ON 0
el A S SR
ox 6z( ¢)
=0
Since %i; = %’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
- M (1)
09
oy N (2)

Integrating (1) w.r.t. z gives

@dx=/Mdz
Oox

0¢ 1
%dw_/_ﬂ—i-ldm

¢ = —arctan () + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

=0 ! 4

5 =0+ 1) @
But equation (2) says that g—z = —e¥. Therefore equation (4) becomes

—e! =0+ f'(y) (5)

Solving equation (5) for f'(y) gives

f'ly) = —¢

= —eY

Integrating the above w.r.t y results in

/f’(y) dy=/(—ey)dy

fly)=—e"+c
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = —arctan () — e’ +¢;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

¢ = —arctan (z) — e?
Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

—1::q

cp=-—1
Substituting ¢; found above in the general solution gives
—arctan (z) —e¥ = —1
Solving for y from the above gives
y = In (—arctan (z) + 1)

Summary
The solution(s) found are the following

y = In (—arctan (z) + 1) (1)

l ‘1_ ““““““ e e e
os4 T~ T A D D
‘‘‘‘‘‘ SOOI S
0 o S e S N N T D N
\\\\\ O R e NN
N N S R R RN
—0.51 R N O AW NN
e S A N R RO
-1 L SO RN N W N N SR TR ARARR
(%) S N N N N A R R R N
L SSNNANAA L W
: AAAMMREERERRRR VN
=S2INNNNNN MV VLV L VM
—21 SNNNNVA VLY VAV
AAMARRRERERE A
—25 AR EERERERE A
NV LAV
_3 MYVAYVER VLRV b
MAVVVV LRV LR R

—3-25-2-15-1-050 05 1 15 -3 -2 -l 0 1

X X
(a) Solution plot (b) Slope field plot
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Verification of solutions

y = In (—arctan (z) + 1)
Verified OK.

1.15.6 Maple step by step solution

Let’s solve
™+ (2* + 1)y = 0,(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y 1
e"v T z2+41
° Integrate both sides with respect to x
[ 5de = [ —Zlqde+
° Evaluate integral
L = —arctan (z) + ¢
° Solve for y

— 1
y=- In <_arctan(a))—cl>

) Use initial condition y(0) =0

0=—In (i)

) Solve for ¢;
Ccl = 1
° Substitute c; = 1 into general solution and simplify

y=- In <_arctanl(x)—1>
° Solution to the IVP

y=- In <_arctanl(x)—1>
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 11

Ldsolve([exp(—y(x))+(1+x"2)*diff(y(x),X)=O,y(0) = 0],y(x), singsol=all) J

y(z) = In (— arctan (z) + 1)

v/ Solution by Mathematica
Time used: 0.391 (sec). Leaf size: 12

e \

tDSolve[{Exp[-y[x]]+(1+x‘2)*y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions f> True]

y(x) — log(1 — arctan(x))
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1.16 problem 2(f)

1.16.1 Existence and uniqueness analysis. . . . . .. ... ... .... 180l
1.16.2 Solving as quadratureode . . . . . . ... ... ... .. .... 181
1.16.3 Maple step by step solution . . . . . ... ... ... ... ... 182

Internal problem ID [3017]
Internal file name [OUTPUT/2509_Sunday_June_05_2022_03_17_18_AM_43139761/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(f).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y' = e”sin (z)

With initial conditions
[y(0) = 0]

1.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

¥ +p(@)y = q(z)

Where here

Hence the ode is
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The domain of p(z) = 0 is
{—00 <z < o0}

And the point 2o = 0 is inside this domain. The domain of ¢(z) = e”sin () is

{—00 <z < o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.16.2 Solving as quadrature ode
Integrating both sides gives

y= /e’”sin (z) dz

T

_ _cos(z)e + e” sin ()
B 2 2

+ ¢

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

1
0261—5

1
0125

Substituting c¢; found above in the general solution gives

_ cos(x)e” e”sin(z) 1
O R R

Summary
The solution(s) found are the following

cos(z)e® e*sin(z) 1
_ - 1
2 + 2 2 (1)

y:
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114
107

N ~ o o
1 h f I

.

Verification of solutions

Verified OK.

cos(z)e® e*sin(z) 1

VST T T

1.16.3 Maple step by step solution

Let’s solve

[y = e"sin (x),y(0) = 0]
Highest derivative means the order of the ODE is 1

/

Y

Integrate both sides with respect to x
[ydx = [e"sin(z)dz +

Evaluate integral

y = _cos(;c)e“ + e” si2n(:1:) +¢

Solve for y

y = _cos(;:)e’” + e” si2n(:t) T
Use initial condition y(0) =0

0=Cl—%
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(a) Solution plot (b) Slope field plot




° Solve for ¢;

1
Cl=§

° Substitute ¢; = % into general solution and simplify

y = %‘l‘ (—cos(z);—sin(w))ez

. Solution to the IVP
1 (= cos(z)+sin(z))e
2+ 2

T

y:

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---

‘trying a quadrature ‘
‘<— quadrature successful”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve([diff(y(x),x)=exp(x)*sin(x),y(0) = 0],y(x), singsol=all) J

1 4 e”(sin (z) — cos (x))

y(z) = ) 9

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24

LDSolve[{y'[x]==Exp[x]*Sin[x],y[0]==0},y[x],x,IncludeSingularSolutions -> Trug?

y(z) — %(e"‘c sin(z) — €” cos(z) + 1)
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1.17 problem 2(g)

1.17.1 Existence and uniqueness analysis. . . . . .. ... ... .... 1841
1.17.2 Solving as linearode . . . . . .. . .. ... ... ... ... 185
1.17.3 Solving as first order ode lie symmetry lookup ode . . .. . .. 187
1.17.4 Solvingasexactode . . ... ... ... ... . ......... 191l
1.17.5 Maple step by step solution . . . . . .. ... ... .. ... .. 195

Internal problem ID [3018]
Internal file name [OUTPUT/2510_Sunday_June_05_2022_03_17_20_AM_75488550/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(g).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

With initial conditions

1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(@)y = q(z)

Where here
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Hence the ode is
yl _ 3y — e3:c + e—3z

The domain of p(z) = —3 is
{—00 <z < o0}

And the point zy = 5 is inside this domain. The domain of q(z) = €3* + 737 is

{—00 <z < o0}
And the point zy = 5 is also inside this domain. Hence solution exists and is unique.

1.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

/’l’ — ef(—?))d:l}

The ode becomes

Integrating gives

e 3%y = /e_&” + 1dx

e—6ac

—3x
e =T — +c
) 6 1

—3x

Dividing both sides by the integrating factor u = e™°® results in

3x( e—6m> 3
y=e T — 6 + cie

which simplifies to

e—3:c

6

y=(z+c)e* —
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Initial conditions are used to solve for c¢;. Substituting x = 5 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

—15

5=e¢ + 56!’ — eT

(30e!® —e™15 —30)e715
6

Cl = —

Substituting ¢; found above in the general solution gives

3 5 3z—30 3015 e—3:1:
=zxe* —be+ —— 45 — ——
y 6 6
Summary
The solution(s) found are the following
3x—30 e—3x
y = xeSx _ 5e3x + + 5e3w—15 _ (1)
6 6
- =]
N\ S
— 500001 MV VYW
N
1000007 =1000001 |4y bR
SERERRRY
— 1500001 RN A
I
y(x) —2000001 y(x) —200000 \ HY
| [
—250000- t t \:
—300000
— 3000001 % % t }“
| b1y
—350000- | Ly
—4000004 | LW
—400000- l l .l \ :
2 3 4 5 6 71 8 2 3 4 5 6 71 8
X
(a) Solution plot (b) Slope field plot

Verification of solutions

3x—30 e—3x
y=ze? —5e* + 6 +5e¥ 715 o

Verified OK.
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1.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl — 3y + 631' + e—3z

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz

187




The above table shows that

§(z,y) =0
n(z,y) = & (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
S:/—dy
n
1

S =e %y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ 5 + w(z,y)S, (2)
dR R, +w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =3y + > + e

Evaluating all the partial derivatives gives

R, =1
R,=0

S, = —3e 3%y
S, =e"
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
s 6
o —e %74 2A
R~ T (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

=e %f 41

gives
e 6R

S(R)=—T+R+C1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e—6a:
e 3%y = — +z4+¢
6
Which simplifies to
e—Gw
e 3%y = — 5 +z4+c

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates

transformation

ODE in canonical coordinates

(R,5)

S_Z :3y+63w+e—3w

=
&

N N
NN
NN
N\

A
NN
N\

PG I ——
N

_,

et

—a—a—a—a—a—a ) \‘ P i ———

ey \ A s>
=

B S S e R e N . G G

AR N N N
A R Y

=]

R e D R S Y YN
NN N N N N NN

I R T T A e e N
I R N Y A e e e e
N R T D T A e N
NN N N N NN

R N D e Y Y
A R D N S Y Y

A T D T A N

A D AR NN

Initial conditions are used to solve for c¢;. Substituting x = 5 and y = 5 in the above

solution gives an equation to solve for the constant of integration.

—15

5=ce'c; +5e!° — eT

(30e!® —e™1° — 30)e1°
6

Ci = —

Substituting c¢; found above in the general solution gives

3z—30 e—3z
yzxe3z_5e3ac+ +5e3m—15_ 5
Summary
The solution(s) found are the following
3z—30 e—3m
y=xe3m_5e3z+ _+_5e3z—15_ 5
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(a) Solution plot (b) Slope field plot
Verification of solutions
3 5 3z—30 3015 e—3x
=ze’ —be+ — 4577 — ——
y 6 6
Verified OK.
1.17.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 72 =0 (A)

dz
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

a_y =N
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But since aa g = a a then for the above to be valid, we require that
yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (3y +e3 4+ e_3m) dx
(—3y—e* —e ) dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = -3y — &> — e
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
—3y — -3z
By 8y( y—e* —e™)
= -3
And
8N
1
. ( )

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

oM ON
A= (a—y - %)
= 1((=3) - (0))
=-3
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is
—e JAdz

— ef—3dz

The result of integrating gives

U= 6—3:1:

— o3
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = puM
_ e—3x(_3y _ BT _ e—3x>
_ (_er _3ye — 1) o—67
And
N =uN
=e (1)
—3z

=€

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
—dy

M =
+ Az 0
dy
_ bz 3r 1 —6x —3z\ I _
((—e* —3ye )e %) + (e )dx 0
The following equations are now set up to solve for the function ¢(z,y)
0o —
9 _m 1
% (1)
0 —
9 _N 2
o 2

Integrating (1) w.r.t. z gives
% dx = / M dx
ox

a¢ T T —6z
gdx=/(—eﬁ —3yed —l)e 6 dx

—6z

e
p=—c+ 6

+e Y+ f(y) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

L") @

—3x

But equation (2) says that g—‘z = e~ %*. Therefore equation (4) becomes

e =¥ 4 fy) )

Solving equation (5) for f'(y) gives
f'ly)=0

Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
e—6x

+e ¥y +¢
6 ) 1

p=—c+

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy; constants into new constant c¢; gives the solution as

e—6x

6

c1=—c+ +e 3%y

The solution becomes

(e7%% — 6c; — 6) €3
6

Yy=-

Initial conditions are used to solve for c¢;. Substituting x = 5 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

—15

5=c¢eBc; +5el® — eT

(30e5 —e™15 —30)e715
6

Cl = —
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Substituting c¢; found above in the general solution gives

3x—30 e—3:1:
y=ze* —5e* + —— 4+ 53715 — e
Summary
The solution(s) found are the following
e3ac—3O e—3x
y=2e* —5e¥ 4+ —— 455~ (1)
6 6
B of 11
NN
500001 ANV
VAVVAVNNZ
-l N
BEREERRY
— 1500001 ARERER Y
i
y(x) —200000- y(x) 200000 Y
| L1y
—2500007 t t \:
— 3000001 —3000001 % % t :“
| N
—350000- | b
—4000001 | by
—400000- ; l ARRAE
2 3 4 5 6 71 8 2 3 4 5 6 71 8§
X
(a) Solution plot (b) Slope field plot
Verification of solutions
3x—30 e—3m
y=1xe> -5 4+ —+—5e3“”_15——6

Verified OK.
1.17.5 Maple step by step solution

Let’s solve
[y — 3y = e* + e, y(5) = 5]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
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Y =3y+e+e 3

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y —3y=e34e3

The ODE is linear; multiply by an integrating factor u(x)

u(@) (¥ — 3y) = p(z) (€% +e7%)

Assume the lhs of the ODE is the total derivative - (u(z) y)

w(z) (v —3y) = W' (x)y + p(x)y'

Isolate ()

' (z) = —3u(z)

Solve to find the integrating factor

p(z) =e

Integrate both sides with respect to x

J (G (u(=)y)) de = [ p(z) (€% +e7%) dz +
Evaluate the integral on the lhs

w(e)y = [ () (€ + %) do+ e
Solve for y

(=) (e +e3%)dz+tcy
vy= H(@)

Substitute u(z) = e™3*
_ J‘(e3z+e—3z)e—3zdm+cl

y e—3w

Evaluate the integrals on the rhs
gt

Y= —=3z —

Simplify
y=(z+c1)e* — %

Use initial condition y(5) =5

15

5= (c1+5)e® —

Solve for ¢;

_ 30e!®—e~15-30
L = — 6eld

Substitute ¢c; = —W into general solution and simplify

e32—30 —3z

y=—6 +563x_15+(m—5)e3x—"T
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° Solution to the IVP

e3:c—30 —3z

y=%— 4514 (r -5 —

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.109 (sec). Leaf size: 31

Ldsolve([diff(y(x),x)-3*y(x)=exp(3*x)+exp(-3*x),y(5) = 5],y(x), singsol=all) J

e3:15—30 e—3z
y(x) — 5 +5e3m—15+(m_5)e3z_ 5

v Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 48

LDSolve[{y'[x]—3*y[x]==Exp[3*x]+Exp[-3*x],y[5]==5},y[x],x,IncludeSingularSolu#ﬁons -> Truel

1
y(z) = 66—3(x+10) (666(x+5) (z — 5) + €5 + 30e57+15 — 630)
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1.18 problem 2(h)

1.18.1 Existence and uniqueness analysis . . . . . .. ... ... .... 198]
1.18.2 Solving as quadratureode . . . . . . ... .. ... ... ..., 199
1.18.3 Maple step by step solution . . . . . ... .. ... .. ... .. 2001

Internal problem ID [3019]
Internal file name [OUTPUT/2511_Sunday_June_05_2022_03_17_23_AM_72583526/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(h).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

, 1
y=x+ -
T
With initial conditions
[y(—2) = 5]

1.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
p(z) =
2 +1
q(z) = —
Hence the ode is
, T+
y= T
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The domain of p(z) = 0 is
{—00 <z < o0}

And the point o = —2 is inside this domain. The domain of g(z) = % is

{r<0Vvo<az}
And the point £y = —2 is also inside this domain. Hence solution exists and is unique.

1.18.2 Solving as quadrature ode

2
1
y=/w+ dz
T

2

x
=ln(ac)—|-§+cl

Integrating both sides gives

Initial conditions are used to solve for c;. Substituting £ = —2 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5=ln2)+ir+2+¢

c1=—imr—In(2)+3

Substituting c¢; found above in the general solution gives

2
yzln(a:)+% —imr—1In(2)+3

Summary

The solution(s) found are the following

2

y:ln(w)+%—i7r—ln(2)+3 (1)

Verification of solutions

2
y=ln(x)+%—i7r—ln(2)+3

Verified OK.
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1.18.3 Maple step by step solution

Let’s solve
[ =x+21y(-2) =5
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[yYdo=[(z+21)dz+a

° Evaluate integral

yzln(x)—l-”g—z—l—cl

° Solve for y
yzln(x)—l-”g—z—l—cl

o Use initial condition y(—2) =5
5=In2)+In+2+¢

° Solve for ¢;
Ci = —I7r—ln(2)+3
o Substitute ¢; = —Ir — In (2) + 3 into general solution and simplify

y=In(z)+% —Ir—In(2)+3
. Solution to the IVP
y=ln(a:)+’”2—2—l7r—ln(2)+3

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 21

Ldsolve([diff(y(x),x)=x+1/x,y(—2) = 5],y(x), singsol=all)

2

y(z):%+ln(x)+3—ln(2)—i7r

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25

-

LDSolve [{y' [x]==x+1/x,y[-2]==5},y[x],x,IncludeSingularSolutions -> Truel

-/

2

T
y(x) — 5 + log (

T

2>—i7r+3
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1.19 problem 2(i)

1.19.1 Existence and uniqueness analysis . . . . . ... ... .. .... 2021
1.19.2 Solving aslinearode . . . . . . . . .. ... .. ... ... 203]
1.19.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 205]
1.19.4 Solvingasexactode . . ... ... .. ... .. ......... 20091
1.19.5 Maple step by step solution . . . . . .. ... ... ... ... 213]

Internal problem ID [3020]
Internal file name [OUTPUT/2512_Sunday_June_05_2022_03_17_25_AM_82627847/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(i).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

zy + 2y = (2 + 3z)e*

With initial conditions
[y(1) =1]

1.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
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Hence the ode is

2

The domain of p(z) = £ is

{r<0VvVO0<uz}

e3%(2+3z) .
T

And the point zy = 1 is inside this domain. The domain of ¢(z) = is

{r<0VO0<z}
And the point zy = 1 is also inside this domain. Hence solution exists and is unique.

1.19.2 Solving as linear ode
Entering Linear first order ODE solver. The integrating factor u is

u:ef%dac

:x2

The ode becomes

%(uy) = (w) (—6%(2; 3x)>

d
d e3%(2+ 3z
) = () ()
x
d(z*y) = (6*(2+ 32) z) dz
Integrating gives
2. 3z

x y—/e (2+3z)zdx

2y = %% + ¢,
Dividing both sides by the integrating factor u = z? results in

C
3z 1
y e + _2

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

l=e4¢
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(1)

———————————— ~— e~ ——~———~——

P T AN S e |
L AN N N

—_——— = = -~~~
e e e - - =

————— e e ~ ~ -

~—

61:1—63

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

30007
2500
20001
1500
1000
500
—5001

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 3re’® 423 —

2y

Z
/

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

£(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

n

1

S is found from

1132
Which results in
S = z%y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3re3® 4+ 2e3 — 2y
T

w(z,y) =
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Evaluating all the partial derivatives gives

R, =1
R,=0
S = 2xy
S, = z?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

e*(2+3z)x (2A)

2+ 3R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = e3RR2 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

r’y = 2%e* + ¢

Which simplifies to

’y = 1%e* + ¢

Which gives
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ; .
ODE in canonical coordinates

Original ode in z,y coordinates coordinates
g ) y (R, S)

transformation

szt ieie 2y 45 _ ¢3R(2 4 3R) R

Fl&
I

e
Soo—a—s—

NN N N N e

A

NN N Na Na S a

ARV
N Na Sa e

NN N N e e as
N N N e e
N e
J R G
—— b Ny 4 e

e e

i
Y
JIJA
i
i
y

~ e Saa

N S N R Y

D e e e A A o

P e
b s
e w YT
D T

s o o

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=e3+01

cg=1-—¢3
Substituting ¢; found above in the general solution gives
%’ —e3 + 1
Summary

The solution(s) found are the following

x?e3® —ed 41

Y= (1)
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f111 EERRRAY
30001 BERA RN
3000{ /1111 ERRERY
25001 1t EERRRY
HUBRINS
20001 11 LV VN~
20000 77111 VAN~
1500 AR AR RN
y(x) b A A R R RS NN
10007 10004 /7711 VA NN~/
77711 RR S/
5001 77777 AR
7] \ N\ N—7F7
0_)))/—/ N—— //
0 —~—— 77
SN 177771
— 5001 AN 1777171
NN\ 117711

-2 -1 0 1 2 3 4 -2 1 0 1 2 3 4

X

(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.

1.19.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

P M

0p

3y N
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But since 22 = 24 then for the above to be valid, we require that

ozxdy ~ Oyoz

oM _ ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z)dy = (—2y + (2+ 3z) €¥) dz
(2y — (24 3z) €*) dz +(z)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2y — (2 + 3z) €™
N(z,y) ==

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
o 2 2 _ 2 3x
By y( y — (24 3z) e*)
=2
And
ON 0
% 5

=1

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON
N\ oy ox

(@) =)

SHEESRE
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Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor u is
— efAdm

— ef%dx

7

The result of integrating gives
— eln(z)

W
=z
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = puM
=z(2y — (2+ 3z) *)
= (—3332 — 23:) e3? 4 2zy

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
. __dy
M+ N2 =
+ P 0
d
dy _

((—3.’102 — 2x) e 4+ 2zy) + (x2) iz

The following equations are now set up to solve for the function ¢(z,y)

(1)

0  —
g—x—M

6

B_y_N (2)

Integrating (1) w.r.t. = gives
% dx = / M dz
ox

% dx = / (—3:102 — Qx) e + 2zydx

or
¢ =z* (=" +y) + f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

00 _ 5
8—y=$+f(y) (4)

But equation (2) says that 22 = z2. Therefore equation (4) becomes
Y dy

2’ =2 + f'(y) (5)
Solving equation (5) for f'(y) gives

flly)=0

Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢=2*(—€"+y)+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

a =z (—e* +y)

The solution becomes
z%e3® 4 ¢;

Y= 72

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=t +¢

Cl = 1-— 63
Substituting ¢; found above in the general solution gives

x2e3® —ed 41

y= 72
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Summary
The solution(s) found are the following

y= . (1)
r111 AR/
30001 RERN PLLV AN
3000{ /1111 Py VAN
25001 1111 PV VAN
HIH RIS
2000 1111 Ph VAV N—T
20000 77111 BERNEe/
15001 AR R RN
y(x) e N S A R R R RSN
10007 100{ /77711 VAN~
777111 VANN—71
5001 7777711 VANNNN—/
77 I ANNNS=ZT |
=== I \ ==V [ |
01 —~~~~\\ 7
SSsNN\N\\ V7777711
— 5001 NANNN Y 1777711
NN 1177111
-2 -1 0 1 2 3 4 2 210 1 > 3 4
X
(a) Solution plot (b) Slope field plot
Verification of solutions
x2e —e3 +1
y:

Verified OK.

1.19.5 Maple step by step solution

Let’s solve
[y’ +2y = (2+ 3z) *,y(1) = 1]
° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
y, frd —2?31 + 831:(23;4—3:1:)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

o 2y _ e3%(2+32)
Y+ f -z
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The ODE is linear; multiply by an integrating factor u(x)
o) (v + %) = s

T

Assume the lhs of the ODE is the total derivative - (u(z) y)
w@) (v + %) = W(@)y + u(z)y’

Isolate ()
p (z) = 242

Solve to find the integrating factor

W) = z*

Integrate both sides with respect to x

[ (E(u(x)y) de= [ wdw +c
Evaluate the integral on the lhs

w(@)y = [ u(z)e31(2+3x) dz + ¢,

Solve for y
I u(z)eSZ 2+32) g0t o)

y= (@)
Substitute p(z) = 2

_ [e®®(24+3z)zdz+C1
y= o
Evaluate the integrals on the rhs

223

xZ

Use initial condition y(1) =1

l1=e’+¢

Solve for ¢;

cg=1-¢€

Substitute ¢; = 1 — €? into general solution and simplify
y = w2e3z$—2e3+1

Solution to the IVP

w2e3z —63+1

Y= 72
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 19

Ldsolve([x*diff(y(x),x)+2*y(x)=(3*x+2)*exp(3*x),y(1) = 1],y(x), singsol=all) J

x2e —e3 41

y(z) = p

v Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 22

LDSolve[{x*y'[x]+2*y[x]==(3*x+2)*Exp[3*x],y[1]==1},y[x],x,IncludeSingularSolu#ﬁons -> Truel
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1.20 problem 2(j)

1.20.1 Existence and uniqueness analysis. . . . . .. ... ... .... 216
1.20.2 Solving as separableode . . . . . . .. .. ... ... ... ... 217
1.20.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 219]
1.20.4 Solvingasexactode . . ... ... ... ... ... ..... 224

Internal problem ID [3021]
Internal file name [OUTPUT/2513_Sunday_June_05_2022_03_17_27_AM_79562150/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(j).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

2sin (3z) sin (2y) y' — 3cos (3z) cos (2y) =0

With initial conditions
(%) =5

1.20.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
y = f(z,y)

_ 3cos (3x) cos (2y)
25sin (3z) sin (2y)

The = domain of f(z,y) when y = % is

w_Z155 w7155
T < 3 \Y4 3 <z
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And the point zy = {5 is inside this domain. The y domain of f(x,y) when z = {5 is

w_Z156 w7156
y < 9 \Y 2 <y

And the point yo = 3 is inside this domain. Now we will look at the continuity of

of _ 0 (3 cos (3z) cos (2y))
Jy Oy \ 2sin (3z)sin (2y)
__3cos (3z)  3cos(3z)cos (2y)°
sin (3z) sin (3z) sin (2y)*

The z domain of 2 when y = Z is
dy 8

w Z155 w Z155
T < 3 Vv 3 <z

And the point zy = {5 is inside this domain. The y domain of g—i when z = {5 is

w Z156 w Z156
y < 9 \Y2 2 <y

And the point yo = 3 is inside this domain. Therefore solution exists and is unique.

1.20.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)9(y)
_ 3cos (3z) cot (2y)
2sin (3z)

Where f(z) = ;’2?5((32)) and g(y) = cot (2y). Integrating both sides gives

1 _ 3cos(3z) .
cot (2y) Y= 2sin (3x)
1

| wiey®=/ Zn—ggd“

_ In(cos (2y)) _In (sin (37)) +c

2 2
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Raising both side to exponential gives

1 eln(sil;(Sz)) +a

\/cos (2y) -

Which simplifies to
1
———— = c9/sin (3z)
cos (2y)

Initial conditions are used to solve for c;. Substituting z = {5 and y = % in the above
solution gives an equation to solve for the constant of integration.

. —2c
arcsin <%>
2

Substituting ¢; found above in the general solution gives

: 1
arcsin <2$T(3z)>

4 2

13

y:

Summary
The solution(s) found are the following

: 1
arcsin < m )

T
= — — 1
y=7 5 (1)
ST I YTy
- S O O O A B O O
’ VIT b7t bVt rr vttt
AR AR AR R A
1.2 NEREERRERREARR RS
oA NI VAT NIV AN VA
VAR AR Y AR RAYARES/
3 ANZ N INT IV IS [V
NANSANANSANA NS,
y(x) 08 Y(x) o8] ’ b
NN\ N /=N N =N\
0.6 061 7N 7=\ N 7=\ [N /7~)\
INVI~VI7ZNLIRVTIZN | TN
| ARSI AR NN
0.4 B AR N AR NEVAREAY
TVEINET T NL VTN
0.2 0211V INLT ) NPTV RN
PLEINEE TV
of T LTVttt ittty
—25 —15 —050 05 1 15 2 25 3 2 =1 0 1 2 3
X X
(a) Solution plot (b) Slope field plot
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Verification of solutions

: 1
arcsin <2sT(31‘)>

T
4 2

y prnd
Verified OK.

1.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _ 3cos(3z) cos (2y)
Y= 2sin (3x) sin (2y)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny -&) — w2€y —wf —wyn=0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polymomial type ode | y = &ttte e
Bernoulli ode v =fx)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
2sin (3z
§@y) = 3 cos ((3:c))
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
3 n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S = /—d:c
£
1
:/ 2sin(3z) dx

3cos(3z)

S is found from

Which results in
In (sin (3z))
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

aS Sy +w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ 3cos (3z) cos (2y)
2sin (3z) sin (2y)

Evaluating all the partial derivatives gives

w(z,y)

R, =0

R,=1

s, — 3 cot (3x)
2

S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
R= tan (2y) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
IR = tan (2R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

In (1 + tan (2R)?)

S(R) = ;

+c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In (sin (3z)) In(1+tan (2y)2)
= —|— Cl

2 4

Which simplifies to
In (sin (3z)) In(sec(2y)) _

— —C =

2 2

Which gives

_arcsec (sin (3z) e72)
B 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )

. . ) . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy __ 3cos(3z) cos(2y) ds _
dz = 2sin(3z) sin(2y) dR — tan (QR)

FNINANANANMANANANANN A ENEE BN N N N ¢
\f\af\a/‘\f\j;\f\af\f\f\f DA N NP ;:/' ~.7 \/t\/
FNINANANANANANANAN N DA ENEE NS B S RN R N N
\f\af\_/"yix‘fl\f\/‘\f\f\f\f 7 \/SI@ 7L~ \/t\/
ﬂﬂﬂﬂﬂ DU DRSNS N N R AR
EFNANANANARANANANAN 2N Nt b A L s |
NANANANANANANENENENS R R RN R S R E SR \/vt\/
= a7 Sa a7 a7 ~a A ~Na 7 ~a A
ENANANANANIAN AN SN AN AN y ) MM R RN R N R
VA NI NN N AN N AN T g ln(sm(3x)) :i“‘::: _z:: 3:: ::;i :;t:;
PNANINANAAMAN AN AN AN 2 = 9 NPT RS S B 4 B £ B
NVANANANANAINANANE NN NN N ] | \/t\/
AR TAYAYATATAYATATR NN NN L o |
NANANANANANANANANENY N4 RS BN S ENE SR \/t\/
»»»»»»»» gy bbb IS B S I d N N I B N 4
AT TAYAYRATIATAYATATR NN PN N e |
NVANANANANANANANANENS NS RS RS IS S N S
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Initial conditions are used to solve for c;. Substituting z = {5 and y = % in the above
solution gives an equation to solve for the constant of integration.

arcsin (v/2 %)
2

T_T_
8 4

In (2)

1= ——

2

Substituting ¢; found above in the general solution gives

: 1
a arcsin <25in(3x)>

y=34~ 2

Summary
The solution(s) found are the following

: 1
arcsin < 2sin(3z) )

s
= — — 1
y=7 5 (1)
16_1l BERRER RN RN RRY
- Sl A O O O A O I
’ BRERERERREREREREEEA
I RN R A A R A
1.21 AR R AR R AR RYA
AN NN VANV A
VAR AR Y AR SRR YA REE/
1 UNZ NN TN~ AN TN~
NN AN IN=T AN N~
y(x) 03] ORI I RANAA A NS
ANV /=N N /=N =N\
0.61 064 7NV /=\NT NP 7=\[-N|/~\
INVI~VI7ZNLIRVTIZN | 1)
o RIS AN
- TNV EINV 7 NEFARERY
FVEINLT N7 VETN
0.2- 02971 VP INL ) NPTV TN
PP RINEI TV ETNEL by
0% A A O A A I I A O B A
—25 —15 —050 05 1 15 2 25 3 -2 =1 0 1 2 3
X X
a) Solution plo ope field plo
Soluti lot b) SI field plot

Verification of solutions

: 1
arcsin ( 2sin(3z) )

71'
4 2

y:

Verified OK.
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1.20.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

M) = -5 )
25sin (2y)
N(z,y) = 3 cos (2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON

TR
Using result found above gives

oM 0 ( cos(3x))

8y Ay \ sin(3z)
=0
And
ON _ 9 (2sin(2y)
Or  Ox \ 3cos(2y)
=0
Since %i: = %’, then the ODE is exact The following equations are now set up to solve
for the function ¢(zx,y)
o¢
L =M 1
e (1)
o¢
2 =N 2
o )

Integrating (1) w.r.t. z gives

%dxz/Mdz
or

op . cos (3z)
oz do = /_sin (3x) de

o= -2ERED | g ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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__ 2sin(2y)

. 8
But equation (2) says that a—z = Scos(2y)"

Therefore equation (4) becomes

25sin (2y)

m=0+f/(y) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y results in

/f’(y) dy=/<2tan—3(2y)> dy

~In (1+ tan (2y)2)
- 6

f() +a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In (sin (3z)) =~ In(1+ tan (2y)2)

A 6

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

In (SiIl (3;1;)) In (1 + tan (2y)2)
3 + 6

Ci = —

Initial conditions are used to solve for c;. Substituting z = 75 and y = % in the above
solution gives an equation to solve for the constant of integration.

In (2)
3

=Cl

In (2)
3

CcC =
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Substituting c¢; found above in the general solution gives

+

In (sin (3z))

In (2)
3

In (14 tan (2y)2)
6

Solving for y from the above gives

arcsec (2sin (3z))

y:

The solution(s) found are the following

Summary

(1)

arcsec (2sin (3x))

y:

——————~ N\

————————————— N

———~NNANA A

J S ————

——————~ N\
~————— 7 ] \

lllllllll | ~———————
11111111 ~N\ e e —
——~NNANANANANAVY T s
lllllll -7 N N TS ———
—— =N\ ] S

AN NN S ————

—050 05 1 1.5 2 25 3

—25 —15

TTE g T 5 L E & e
—_ = (= — =)
=
~
T8 - & & % g
—_— - = = e =
B
~

X

(b) Slope field plot

(a) Solution plot

Verification of solutions

arcsec (2sin (3z))

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.359 (sec). Leaf size: 17

Ldsolve( [2%sin(3*x)*sin(2xy (x))*diff (y(x) ,x)—3*cos(3*x)*cos(2*y(x))=O,y(1/12*Pj'1) = 1/8%Pi],y(

1
y(m) _ ﬁ _ arctan («/1—2005(635))
4 2

v Solution by Mathematica
Time used: 6.727 (sec). Leaf size: 18

Lnsme [{2+Sin [3*x]*Sin[2%y [x]]*y' [x]-3*Cos [3*x]*Cos [2*y [x]]==0,y[Pi/12] ==pi/s}; ,y[x1,x,Includ

y(x) — %arccos (% csc(3a:))
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1.21 problem 2(k)

1.21.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 229
1.21.2 Solving as separableode . . . . . . ... ... ... ... ... . 230
1.21.3 Solving as first order ode lie symmetry lookup ode . . . .. ..
1.21.4 Solvingasexactode . . ... ... ... ... ... ..... 237
1.21.5 Maple step by step solution . . . . . .. ... ... ... .. .. 2400

Internal problem ID [3022]
Internal file name [OUTPUT/2514_Sunday_June_05_2022_03_17_31_AM_74195310/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(k).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

zyy —(z+1)(y+1)=0

With initial conditions
[y(1) =1]

1.21.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

_xy+z+y+1
= -

The z domain of f(x,y) when y =1 is

{r<0VvVO0<uz}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

{y<0vo<y}

And the point yy = 1 is inside this domain. Now we will look at the continuity of

g_ﬁ<xy+x+y+1)

dy By zy
x4+l wytar+y+l
Ty x y?

The z domain of % when y =1 is
{r<0VO0<z}

And the point o = 1 is inside this domain. The y domain of g—i when z =1 is
{y<0VvOo<y}

And the point yo = 1 is inside this domain. Therefore solution exists and is unique.

1.21.2 Solving as separable ode

In canonical form the ODE is

(z+1)(y+1)
ryY
Where f(z) = Zt and g(y) = %1 Integrating both sides gives

_a:-l—l
yrl 7

)
1 z+1

dx

Which results in
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Since ¢, is constant, then exponential powers of this constant are constants also, and
these can be simplified to just ¢; in the above solution. The solution becomes

—z—1
y = — LambertW (_e ) -1
1T

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

o2
1 = — LambertW (——) -1
C1

1
Ci = <

2

Substituting c; found above in the general solution gives

2 —z—1
y = — LambertW (_eT> —1

Summary
The solution(s) found are the following

2e—z—1
y = — LambertW | —1, e 1 (1)

6.57 WIS T TS 7T IS SIS
J 77777777 7777777777,
JIT 7777777777777 7377
5.57 AN/ /7777777777777 7777
J 777777777777 777777
JI7 7777777777777
SN/ 7777777778 7777777
J 77777777 7777777777

(a) Solution plot (b) Slope field plot
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Verification of solutions

2 —z—1
y = — LambertW (—1, — ex ) -1

Verified OK.

1.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_rytzx+y+1
Yy 7y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —we€ —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
x
z,y) =
§@y) =~
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ 1

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S=/%dm
_ (1

/xdx
z+1

S=z+In(z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ S + w(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

zytr+y+1
zy

w(z,y) =

Evaluating all the partial derivatives gives

R,=0
R, =1
SgczlJr1
T
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds Y
-~ g 2A
dR y+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(RA)=R-In(R+1)+c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

z+hn(z)=y—In(y+1)+a
Which simplifies to
z4+ln(x)=y—In(y+1)+¢

—z—14c1

e T

_) 1
T

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Which gives

y = — LambertW (—

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ zytzty+1 dS _ R
dz Ty dR R+1

R et DA A e et
ApAAA AN F PSS A R e
Rttt k) DAV AV AV FAPPAPL N A r oA
Rttt R DAV A A e e
//////ig\xrffff//f// /////f;@x\»/////////
e IRy, poa o YRS L
Rttt 1 L) AAPSAPI NN R
At IR, AR I sttty
R TR R R— A A e ettt el
SENSNNVAYISEREEREEE, =Y LA IP IS NN g
RSN RN AR g 1 A TR RRN Sl AT
—~ e —a——>—> 7|\ N SaSa e aaaa — I e el »
P S NV PP PP PP //‘/‘/’/’/’ff\‘_?g»/'/’/'/"/’/’//’/
o mwrww e\ AR FAPIPEE N A A2
S tatatatatatn e N A A B ettt i atsl
AmAam g\ PPAAAASAS VAV SR P G P
e atatatatataan AV ek AR . e s
AAAAAm e\ PSS A A T ettt
ArAAAmm e\ PSS SRS PPN A A A
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Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = — LambertW (—e_2+cl)




c1 =In(2)

Substituting c¢; found above in the general solution gives

—z—1
y = — LambertW (_Ze_) -1

T

Summary
The solution(s) found are the following

T

2 —z—1
y = — LambertW (—1, _e—) -1

6.5 WS 777 SIS S S
J 77777777 7777777777,
J 77777777 77777777377
5.51 A/ 777777777777 77777
T/ /7777777777 F 77
J /777777777777 77777
4.5 Nyssr7777777 67777777
J /777777777 7777777

N
W
1
SSONONONONONINNN N

(a) Solution plot (b) Slope field plot

Verification of solutions

—z—1
y = — LambertW (—1, —26—) -1

T

Verified OK.
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1.21.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

oM _on
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

z+1
M(z,y) = — .

()
N(z,y) = ——
(z,9) |

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM 0 (_x+1)

By dy\ =
=0
And
ON_9( y
or Oz \y+1
=0
Since %—Aj = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
ox (1)
99
2 =N 2
o e

Integrating (1) w.r.t. z gives

%dx:/de
or

8¢dm:/_x+1
z

— d
ox v

¢=—z—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

238



But equation (2) says that g—‘z = .%. Therefore equation (4) becomes

Y '
) 5
ESRAREA) (5)
Solving equation (5) for f'(y) gives
oy Y
=7

Integrating the above w.r.t y gives

/f’(y)dy=/(yy?) dy

f)=y—In(y+1)+c

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—2z—In(z)+y—In(y+1)+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

a=—-z—In(@)+y—In(y+1)

The solution becomes

—1—x—c1
y = — LambertW (—GT> -1

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = — LambertW (—e™7?%) — 1

C1 = —In (2)
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Substituting c¢; found above in the general solution gives

2 —z—1
y = — LambertW (_eT) -1

Summary
The solution(s) found are the following

2e—x—1
y = — LambertW ( —1,-=——— ) —1 (1)

6.5 W77 77 S S
J 7777 7777777777777,

J 77777777 77777777377
5.51 A/ 777777777777 777
T/ /7777777777 F 7
J 7777777777777 77777
4.5 Nyssr7777777 67777777

(a) Solution plot (b) Slope field plot

Verification of solutions

—z—1
y = — LambertW (—1, —26—) ~1
T

Verified OK.

1.21.5 Maple step by step solution

Let’s solve

[zyy' = (z+1) (y +1) =0,y(1) =1]
° Highest derivative means the order of the ODE is 1

!/

Y

240



Maple trace

Separate variables

vy _ z+1

y+1 x

Integrate both sides with respect to x

f?%dx:f%ﬂdx—l-cl

Evaluate integral
y—In(y+1)=z+In(z)+ ¢
Solve for y

Y= —LambertW(—efl;17cl> -1

Use initial condition y(1) =1

1 = —LambertW(—e 72) — 1

Solve for ¢;

c; =—1In(2)

Substitute ¢; = —In (2) into general solution and simplify

y= —LambertW<—2e;z71> -1

Solution to the IVP
y = —Lamber‘tW(—%_z_l) -1

x

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful
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v/ Solution by Maple
Time used: 0.172 (sec). Leaf size: 21

Ldsolve( [xxy (x) *¥diff (y(x),x)=(x+1)*(y(x)+1),y(1) = 1],y(x), singsol=all) J

2 e—m—l
y(z) = — LambertW | —1, — - -1

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [{x*xy[x]*y' [x]==(x+1)*(y[x]+1) ,y[1]==1},y[x] ,x, IncludeSingularSolutionsJ -> True]

{3

242



1.22 problem 2(L)

1.22.1 Existence and uniqueness analysis. . . . . . .. ... ... ... 243]
1.22.2 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. 244
1.22.3 Solving as first order ode lie symmetry calculated ode . . . . . . 245

Internal problem ID [3023]
Internal file name [OUTPUT/2515_Sunday_June_05_2022_03_17_33_AM_12604559/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(L).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first__or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class A~]]

/ 2r — Yy
y —_ =
Y+ 2z
With initial conditions
[y(2) = 2]

1.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
-2z +y
2z +y

The = domain of f(z,y) when y =2 is

{r<-1v-1<z}
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And the point zo = 2 is inside this domain. The y domain of f(z,y) when x = 2 is
{y<—-4v-4<y}
And the point yo = 2 is inside this domain. Now we will look at the continuity of
of _ 0 (_—2+y
oy Oy 2z +y
1 —2z+4+y
2c+y (2 +4y)°

The z domain of % when y = 2 is
{r<-1v-1<z}

And the point zy = 2 is inside this domain. The y domain of g—i when z = 2 is
{y<—-4v-4<y}

And the point y, = 2 is inside this domain. Therefore solution exists and is unique.

1.22.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

2z —u(z)
/ _— L =
v (z) z + u(x) W@ s+ 2 0
In canonical form the ODE is
u = F(z,u)
= f(z)g(u)
. wW+3u-2
- z(u+2)
Where f(z) = —1 and g(u) = % Integrating both sides gives
1 1
Py du = — dr
u+2
1 1
/ Prauz W= / -,
u+2
(2u+3)V17
In (u2 +3u—2) V/17 arctanh (T)
- =—In(z) + ¢

2 17
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The solution is

. (2u(e) 13T
In (u(x)z + 3u(x) _ 2) B 17 arctanh ( 17 ) + In (Z') —Cy = 0
5 7

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

B13)yT7
In (% + 3y _ 2) /17 arctanh ((”+1—37)17>
5 - I7 +In(z) —ce=0
In (%; + 3% - 2) V17 arctanh (—(3z+127?£‘m)
5 - 17 +In(z) —ce=0

5v17
31n(2) _ V17 arctanh(?)
2 17 :

Substituting initial conditions and solving for ¢, gives c; =
Summary

The solution(s) found are the following

2 3 3x+2 \/ﬁ
Hence the solution becomes 11 (%2 +7 - 2) V1T arctanh <( 2 )

17z
2 17
31n(2) /17 arctanh <%7177)
(@) - —— 17 -

Verification of solutions

In (z—z + ?;—y — 2) V17 arctanh <M>

17x
2 17
3In(2) /17 arctanh <%7177)
M I 17 =0

Verified OK.

1.22.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y_ T2ty
y 2z +y
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - fx) - w2€y - wx€ — Wyl = 0 (A)
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The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
1 = xbs + ybs + by (2E)

Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — (=22 +y) (b3 —a2) (—2z+ y)’ as
2% +y 2z + 1)
2 —4x + 2y (5E)
_ (2:1: vl cy y)2) (zag + yaz + aq)

1 —2x +
(ks e

— by +ybs +b) =0
2% +y (2x—l-y)2)(x2 Y03 1)

Putting the above in normal form gives

4x%ay + 4z%a3 — 8%by — 42%b3 + dxyay — dryas — dzybs — dxybs — y2as + 5y’as — y2by + y2bs — 4xb;

2z +y)?
—0

Setting the numerator to zero gives

—4z%ay — 42%a3 + 8%by + 42°b3 — 4zyas + 4xyas + 4zyb, (6E)
+ 4aybs + y2ay — 5yPas + y?by — y?bs + 4xb; — 4ya; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y}

in them

{r =v1,y = v}
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The above PDE (6E) now becomes

—4a2vf — 4a9v1v9 + agvg — 4a3vf + dasvive — 5a3v§ + 8b2v% (TE)
+ 4b2’l)1’l)2 + bg’ljg + 4b3’l)% + 4b3’U1’02 - bg?)g — 4(11’02 + 4b1U1 =0

Collecting the above on the terms v; introduced, and these are
{vla ’Ug}

Equation (7E) now becomes

(—4a2 — 4CL3 —|— 8b2 + 4b3) ’U% + (—402 —|— 4CL3 —|— 4b2 + 4b3) V1V (8E)
-+ 4b1’Ul + (a2 - 5&3 + b2 — b3) ’U% — 4(111}2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—4a; =0

4b; =0

—4as — 4a3 + 8by + 4b3 =0
—4as + 4a3 + 4by + 4b3 =0
as —baz+by—b3 =0

Solving the above equations for the unknowns gives

a; =0

as = 3az + b
as = as

by =0

by = 2a3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-—wxy)
—2r+vy
—Y ( 2r+y ) (=)
—222 4 3zy + y?
2z +y

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

1
=/ —2x2+3xy+y? dy

2x+y
Which results in

3z+2y)V17
In (—222 + 32y + 32) /17 arctanh (—( 17?2 )
5= 2 - 17

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ S, +w(z,y)S, -
dR R, +w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

-2z +y
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Evaluating all the partial derivatives gives

R, =1
R,=0
2z —y
Se = 222 — 3zy — y?
—2r—y
S =
Y 222 — 3xy — o2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(3x+2 )\/ﬁ
In (y? + 3yz — 27?) V17 arctanh <+>

2 - 17 -a
Which simplifies to
3z+2y)v17
In (y? + 3yz — 22?) V17 arctanh (%)
2 - 17 —a
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) ) i ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy —2z+y ds 0

dx 2x+y dR —
A A B T I D -
DA A A B B T e o
P A TN D g Gt 4
TN Seeseeees

N> T ¥ T Vv T 7 N

EERY RN aaastii SR
A B Rttt a
PPPPILI N N\aerrrm 7 A R==zx
FAPAPPPLP N mmrm 22 2
AIXAIIIND. SRR FFNE,
//.2’//’/_‘/2’//"'6 f/z///4// \ =4 —'Z 5 T
R (RN, In (—222 + 3zy +/y* 7
ettt atatatatnd NI IV SV A S =
atatatatatacnay " NS ISV VIV IV 2 =
Aammm s rmaSNINNE PSS
ettt e N AR s
e N ARy,
tatatadadnsnans = IR O A A ¥
SCatadadada s R A N A
batadndnn s =NNNV VPP

Initial conditions are used to solve for ¢;. Substituting x = 2 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

3in(z) V17 arccoth (247) L VT
2 17 34

=cl

31n (2) ~ /17 arccoth ( > ’L\/_7T
2 17 34

Substituting c¢; found above in the general solution gives

(Bz+2y)V17 5V17
In (—22% + 3oy +y?) V17 arctanh (#) _3m@ V17 arccoth( ) L iVITx
2 17 2 17 34

Summary
The solution(s) found are the following

C =

In (y2 1 3y — 2x2) V/17 arctanh (%ﬁ)
2 17 1)
_ 3Iln(2) V17 arccoth (%ﬁ) L iTTn
2 17 34
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Verification of solutions

3z+2y)V/17
In (y? + 3yz — 27?) V17 arctanh (%)

2 17
_ 3ln(2) V17 arccoth (24) L VT
2 17 34

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v/ Solution by Maple
Time used: 2.297 (sec). Leaf size: 66

Ldsolve([diff(y(x),x)=(2*x-y(x))/(2*x+y(X)),y(2) = 2],y(x), singsol=all)

17

y(z) = RootOf <—2\/1_7 arctanh (5—\/ﬁ) + 24/17 arctanh ((3x +2 2)V17

17z

)

2 4+3x Z— 212

+51In(2) —34In(z) —171n (
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v/ Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 137

e

tDSolve[{y'[x]==(2*x-y[x])/(2*x+y[x]),y[2]==2},y[x],x,IncludeSingularSolution

gJ—> Truel

Solve [3% <(17 + \/1_7) log (—2‘”—(‘”) + V17— 3)

X

_ (m_ 17) log (2y—(36)+x/1_7+3>> = —log(x)

X

+ 3i4¢<17 + \/ﬁ) ™+ 3i4 (34 log(2) + 17log (5 - \/ﬁ)

+v/17log (5 — \/1_7) + 17log <5 + \/ﬁ) —+/171log (5-!— \/1_7)> ,y(z)}
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1.23 problem 2(m)

1.23.1 Existence and uniqueness analysis. . . . . .. ... ... .... 253]
1.23.2 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 254
1.23.3 Solving as first order ode lie symmetry calculated ode . . . . . . 257

Internal problem ID [3024]
Internal file name [OUTPUT/2516_Sunday_June_05_2022_03_17_42_AM_65814307/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(m).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, ~2nd type’,
class A~]]

- 3r—y+1 ~0
3y—x+5
With initial conditions
[y(0) = 0]

1.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
_—3zc+y—1
3y—x+5

The = domain of f(z,y) when y =0 is

{r<5VvVb<uz}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

<Syis
Y 3 3 )
And the point yo = 0 is inside this domain. Now we will look at the continuity of
8_f . ﬁ 3ty -—1
oy Oy 3y—x+5
_ 1 4 -9+ 3y -3
3y—z+5 (By—xz+5)°

The z domain of % when y = 0 is
{r<5V5<uz}

And the point zy = 0 is inside this domain. The y domain of ‘g—i when z = 0 is

< 5 \Y 5 <
And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.23.2 Solving as homogeneousTypeMapleC ode
Let Y =y +yo and X = x + z then the above is transformed to new ode in Y (X)

iy(X)___3X_3$0+Y(X)+yO_1
dX Y (X)+3y—-X—z0+5

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

Ty = -1

Yo = —2
Using these values now it is possible to easily solve for Y (X). The above ode now

becomes

d —3X +Y(X)
x’ =" -x
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In canonical form, the ODE is

Y' = F(X,Y)
3X+Y
T3y -—X (1)

An ode of the form Y’ = % is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

FEX,4"Y) = " f(X,Y)

In this case, it can be seen that both M = —3X +Y and N = —3Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u =
or Y =uX. Hence

Y
X

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du —u+3
Xt g
du ooy — u(X)
dx X
Or —u(X)+3
iu(X) B suce-1 — wWX) 0
dX X B
Or p p
2 —
3(qu(X)> Xu(X) (qu(X)>X+3u(X) 3=0
Or

—3+X@mxy—n(i%mxo+amxf=o

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)
= f(X)g(u)
3(u?—1)
X (Bu—1)
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Where f(X) = —2 and g(u) = L=1. Integrating both sides gives

3
du=——dX
w2—
3u—i X
1 3
Y du = /——dX
wZ_
[e*=/ =

In(u—1)4+2In(u+1)=-3In(X)+c
Raising both side to exponential gives

eln(u—1)+2ln(u+1) — e—3 In(X)+c2
Which simplifies to

C3
The solution is

C3
(u(X) = 1) (u(X) +1)* = X3
Now u in the above solution is replaced back by Y using u = % which results in the
solution

SICSOR

X3
Which simplifies to

—(=Y(X)+ X) (Y(X) + X)* = c3
Using the solution for Y'(X)

—(-Y(X)+ X) (Y (X)+ X)* = c3

And replacing back terms in the above solution using

Y=y+uw
X=.’L'+.’130
Y=y—-2

X=x-1
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Then the solution in y becomes
—(—y—1+42z)(y+3+2)° =cs

Initial conditions are used to solve for c3. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

9=C3

C3 = 9
Substituting c; found above in the general solution gives
—(z-1-y)(z+3+y)" =9

Summary
The solution(s) found are the following

~(~y—1+z)(y+3+2)*=9 (1)

Verification of solutions

—(-y—1+2)(y+3+2)° =9
Verified OK.

1.23.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,__—3a:+y—1
vy= 3y—x+5
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + o (1E)
1 = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b _ (“3z+y—1)(bs—a) (3Bz+y-— 1)% as
2 Jy—zr+5 (3y — z + 5)°
3 —3z+y—1 (5E)
- - +yas +
(3y -z+5 (By—z+ 5)2> (w02 +yas + o)

1 -9 3y—3
—< T+ 5y )(xb2+yb3+b1)=0

— +
3y—z+5 (By—z+5)°
Putting the above in normal form gives

3x2ay — 92%as + 922by — 32%b3 — 18zyay + 6zyas — 6xyby + 18zybs + 3y2as — 9y2as + 9y2by — 3y2bs — 3
(=3

=0

Setting the numerator to zero gives

32%ay — 9z%as + 92%by — 32%bs — 18zyay + 6xyas — 6xyby + 18zybs + 3y%ay (6E)
— 99%as + 9y°by — 3y’bs — 30zay — 6zas + 8xby — 2xby + 14xbs — Syay
+ 2yas — 14yas + 30ybs + 6ybs — 16a; — H5as — ag + 8by + 25bs + bbs =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

3a2v% —18ayv1v9 + 3a2v§ — 9a3vf +6a3v1vy — 9a3v§ + ng’U% — 6b9v109 + ng’U% (TE)
- 3b3’U% + 18b3’l}1’l)2 — 3b3’l)% — 8a1’l)2 — 30@2’01 + 2(121)2 — 6(13111 — 14a3v2 + 8b1’l}1
- 2b2’l)1 + 30b2U2 + ].4b3’01 + 6b3’02 - 160,1 - 5(12 — as + 8b1 + 25b2 + 5b3 =0

258



Collecting the above on the terms v; introduced, and these are
{vla ’Uz}

Equation (7E) now becomes

(3az — 9az + 9by — 3b3) v + (—18ay + 6az — 6by + 18b3) v1v, (8E)
+ (—30612 — 6&3 + 8b1 — 2b2 + 14b3) 1+ (30,2 — 90,3 + 9b2 - 3b3) ’Ug
+ (—8(11 + 20,2 - 14(1,3 + 30b2 + 6b3) Vg — 160,1 - 5&2 —as+ 8b1 + 25b2 + 5b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—18as + 6a3 — 6by + 18b3 = 0

3as — 9ag + 9b; — 3b3 =0

—8a; + 2a9 — 14asz + 30by + 6b3 =0
—30as — 6ag + 8b; — 2by + 14b3 = 0
—16a; — 5as — az + 8b; + 25bs + 5b3 =0

Solving the above equations for the unknowns gives

a1 = 2by + b3
as = bs
az = by
by = by + 2b3
by = by
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=z+1
n=y+2

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)§

=y+2—(—jﬁiﬁ:i)@+n

3y—x+5
_3w2—3y2+6x—12y—9
N -3y+z—5
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
13 n

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n

1
= 73y dy
3x2—3y*46x—12y—9
—3y+z—5

S is found from

Which results in

In(y+1—z) 2In(z+3+y)
3 + 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

ﬁ _ Satw(z,y)Sy (2)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = _3z4+y-—1
Y= 3y—z+5
Evaluating all the partial derivatives gives

R,=1

R,=0

1 2
S, = +
—3+3x—-3y 3zx+9+3y

g —3y+x—5
Y 3(@+3+y)(z—1-y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

- - 2A

T (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y+1—2z) 2In(y+3+xz)
+ =0
3 3

Which simplifies to

In(y+1—2z) 2In(y+3+xz)
+
3 3
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

:Cl

Canonical

- . . : ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation

dy _ _ —3z4y-1 as 0

Tz 3y—z+5 iE =
NN N SN N S Sa A A s — 5 o T
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.
21n (3)

—:cl

3

2In (3)

1= — 5

3

Substituting c¢; found above in the general solution gives

In(y+1—2z) 2In(z+3+y) 2In(3)
3 * 3 BE

Summary
The solution(s) found are the following

In(y+1—2z) 2In(y+3+z) 2In(3)
3 + 3 !

(1)

Verification of solutions

In(y+1—2z) 2In(y+3+z) 2In(3)
3 * 3 E

Verified OK.
Maple trace

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 2.937 (sec). Leaf size: 84

Ldsolve( [diff (y(x),x)=(3*x-y(x)+1)/(3*y(x)-x+5),y(0) = 0],y(x), singsol=all) J

y(x)
4 2
(—324 + 12¢/9623 + 288z + 288z + 825) * — 12(—324 4 12/9623 + 28822 + 288z + 825)° z — 84(—

36 (—324 + 12v/9623 + 2882 + 288 + 82

v/ Solution by Mathematica
Time used: 60.775 (sec). Leaf size: 341

kDSolve [{y' [x]==(3*x-y[x]+1)/(3*y [x]-x+5) ,y[0]==0},y [x] ,x, IncludeSingularSolutjions -> True]

y(x)
2Root [#1°(10242° 4 61442° + 15360z* + 2048023 + 153602 4 6144z — 58025) + #1*(—384z* — 15:

_)
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1.24 problem 2(n)

1.24.1 Existence and uniqueness analysis. . . . . . . ... .. ... .. 264
1.24.2 Solving as homogeneousTypeMapleCode . . . . . . ... .. .. 265]
1.24.3 Solving as first order ode lie symmetry calculated ode . . . . . . 268]

Internal problem ID [3025]
Internal file name [OUTPUT/2517_Sunday_June_05_2022_03_17_49_AM_46988216/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(n).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, ~2nd type’,
class A~]]

3y+ (Ty—3x+3)y =7z -7

With initial conditions
[y(0) = 0]

1.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
__3y—7a:+7
 Ty—3z+3

The = domain of f(z,y) when y =0 is

{r<1lvil<az}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

<2y 3c
Y 7 7 )
And the point yo = 0 is inside this domain. Now we will look at the continuity of

df 0 ( 3y—Tz+7
EE‘EECWy—&Hﬂ)

B 3 L 2y — 493 +49
Ty—3cx+3  (Ty—3z+3)°

The z domain of % when y = 0 is
{r<1lvi<az}

And the point zy = 0 is inside this domain. The y domain of ‘g—i when z = 0 is

<-2v-2c
Y 7 7 Y

And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.24.2 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + x, then the above is transformed to new ode in Y (X)

d 3Y(X) + 3y — 7X — Tzo + 7
S Y(X)=-—
7Y (X) + Tyo — 3X — 370 + 3

dX

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

Tog =

Yo =0
Using these values now it is possible to easily solve for Y (X). The above ode now

becomes

d _3Y(X)-TX
Y (X)-3X
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In canonical form, the ODE is

Y' = F(X,Y)
3Y —7X
T 7Y —3X (1)

An ode of the form Y’ = % is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 3Y — 7X and N = —7Y + 3X are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y =uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du =3u+7
x>t s
dx X
Or —3u(X)+7
iu(X) B ao0-3 — X)) 0
dX X B
Or p p
2 —
7(qu(X)> Xu(X) 3(qu(X))X+7u(X) 7=0
Or p

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)
= f(X)g(u)
T(u? —1)
X (a3
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Where f(X) = —Z and g(u) = £=1. Integrating both sides gives

1 7
Tu—3
2In(u—1)+5ln(u+1)=-7TIn(X) + ¢
Raising both side to exponential gives
ten(u—1)+5 In(u+1) _ e—71n(X)+02
Which simplifies to
C3
(=17 w+ 1) = o

Now u in the above solution is replaced back by Y using u = % which results in the
solution

Y(X) =RootOf (X" +3X° Z+X° 7 -5X* 72 —5X° 7'+ X* Z+3X_2'+_7 —c3)
Using the solution for Y (X)
Y(X) =RootOf (X" +3X° Z+X° 7 —-5X* 72 —5X° 7'+ X* Z’+3X_2'+_7 —c3)

And replacing back terms in the above solution using

Y=y+uw
X=z+x
Or
Y=y
X=xz+1

Then the solution in y becomes
y = RootOf (_Z7 + (3z — 3) By (x2 — 2z + 1) D+ (—5x3 + 1522 — 15z + 5) AT (—51:4 + 2023

Unable to solve for constant of integration due to RootOf in solution.
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Summary
The solution(s) found are the following

y =RootOf (_Z"+ 3z —3)_Z°+ (2* —2z+1) _Z° + (—52° + 152% — 152+ 5) _Z"*
+ (=5z* +20z® — 302® + 20z — 5) __Z° + (¢° — 5z* + 102° — 102> + 5z — 1)

+ (32° — 182° + 453" — 602> + 452° — 18z + 3) _Z+ z" — 72% + 212° — 353"

+352° — 212° — c3 + Tz — 1)

Verification of solutions

y = RootOf (_Z"+ 3z —3)_Z°+ (2* =2z + 1) _Z° + (52 + 152° — 15z + 5) _Z*
+ (—5z* + 202° — 302® + 20z — 5) _Z° + (z° — 5a* + 10z® — 102* + 5z — 1) _Z°

+ (3x6 — 182% + 452 — 6023 + 4522 — 18z + 3) 74z — 725 4+ 212° — 3524

+ 352 — 21z% —c3 + Tz — 1)

Verified OK.

1.24.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,__3y—7x+7
- Ty—3z+3
y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - Ez) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =zas+yas + a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{al, az, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(By—Tz+7)(bs—as) (By—Tz+7)as
by — - 5
Ty—3x+3 (Ty — 3z + 3)
7 3(3y—7x+7)> (5E)
— — Tas +yas +a
(7y—31’—|—3 (Ty — 3z + 3)° (w02 +yas + o)
3 21y—49x+49>
S + zby +ybs + b)) =0
( Ty—3z+3  (Ty—3z+3)° (wb2 +yba +b1)

Putting the above in normal form gives

21z2ay — 49x2%a3 + 492%by — 212%b3 — 98zyay + 42zyas — 42zybs + 98xybs + 21y2as — 49y%as + 49y°b, -

=0
Setting the numerator to zero gives

21z%ay — 492%as + 492°by — 212%b3 — 98xyay + 42xyas — 42xybs + 98zybs (6E)
+21y%as — 49y*az +49y°by — 21y°b; — 42z as + 98z a3 +40zb; — 58zby +42xbs
- 40ya1 + 58ya2 - 42ya3 + 42yb2 - 98yb3 + 21@2 - 49@3 - 40b1 + 9b2 - 21b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{CB =0,y = UQ}
The above PDE (6E) now becomes

21@1}% — 98asv1v + 21a22)§ — 49a3v% + 42a3v1v9 — 49a31)§ + 49b2vf

- 42b2’l}1’l)2 + 49b2’l}g - 21b3’U% + 98b3’l}1’l}2 - 2].b3’l); - 40&1’02
- 42a2111 + 58&2’02 + 98(13’01 - 42&3’02 + 4Ob1’01 - 58b2’l}1 + 42b2’l)2
+ 42b3’01 - 98b3’l)2 + 21(12 - 49(13 - 40b1 + 9b2 - 21b3 =0

(7E)

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

(21ag — 49a3 + 49b, — 21b3) v3 + (—98ay + 42a3 — 42by + 98b3) V1V,
+ (—42CL2 + 98@3 + 40b1 - 58b2 + 42b3) v1 + (21&2 - 49&3 + 49b2 - 21b3) ’Ug
+ (—40&1 + 58(12 - 42(13 +42b2 - 98b3) Vg + 21a2 - 49&3 - 40b1 + 9b2 - 21b3 =0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—98as + 42a3 — 42by + 98b3 = 0

21ay — 49a3 + 49b; — 2163 =0

—40a; + 58as — 42a3 + 42by — 98b3 = 0
—42ay + 98as + 40b; — 58bs 4+ 42b3 =0
21ay — 49a3 — 40b; + 9by — 2103 =0

Solving the above equations for the unknowns gives

a; = —bs
az =bs
az = by
by = —bs
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=z—1

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)§
3y—Tx+7
—p—1— (2 =T°
v ( 7y—3:c+3>(y)
322 —-3y -6z +3
- —Ty+3z-3
§=0

270



The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx dy
&

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

= dS (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

S = /dy

/3.7c2 —3y2—6z+3 dy
—Ty+3z—3

S is found from

Which results in

S5ln(z—1+y) 2ln(y+1-—x)
+
3 3
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
w(z,y) = 3y =Tz +7

Y T 8+ 3

Evaluating all the partial derivatives gives

R, =1
R,=0

B 5 2
x_3a:—3+3y+—3+3w—3y

5 2
Sy = — - = —
3z —3+ 3y 3+ 3z — 3y

271



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

- - 2A

T (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives
as
R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

S5ln(y+z—1) 2ln(y+1-—=z)
=cl
3 3
Which simplifies to
Sln(y+z—1) 2ln(y+1-—=z)
3 3 -

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
o . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 3y—Tz+7 das 0
dx Ty—3z+3 dR
A O R S e e
N R R
A R R R R R et 4
\\\\\\\\\\\\\»ﬁd///;
NN N v
\\\\\\J&.Q\\\\&\w»/;’;f # S(RY
NN A MO %
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R R S I I TS SR s R=z
HEHEHE ,
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DV NNy | g dnle—l4y) )2 R
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IR A N 0 e Y =
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A Pt o SOOIV N W VN
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

5Zl—c
3—1
o =
1773

Substituting c¢; found above in the general solution gives

S5ln(z—1+y) +2ln(y+1—x) _ bim

3 3 3

Summary
The solution(s) found are the following

5ln(y—|3—x—1)+2ln(y—i?:1—x):? (1)

Verification of solutions

5ln(y+x—1)+2ln(y+1—x) 5im
3 3 3

Verified OK.
Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 1.843 (sec). Leaf size: 5735

Ldsolve([(3*y(x)—7*X+7)+(7*Y(X)‘3*X+3)*diff(y(X)’X)=O’y(0) =0],y(x), singsol=§all)

Expression too large to display

v/ Solution by Mathematica
Time used: 88.015 (sec). Leaf size: 1602

LDSolve [{ (3xy [x] -7*x+7) + (7xy [x] -3*x+3) *y ' [x]==0,y[0]==0},y[x] ,x,IncludeSingularSolutions -> T

Too large to display
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1.25 problem 2(0)
1.25.1 Solving as quadratureode . . . . . .. .. ... ... .. ... 275
1.25.2 Maple step by step solution . . . . .. ... ... ... . .... 2776

Internal problem ID [3026]
Internal file name [OUTPUT/2518_Sunday_June_05_2022_03_17_55_AM_70956231/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(0).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

C-z+2)y —2y(y - 1) ==

1.25.1 Solving as quadrature ode

x
= d
4 /1’—2 o

=z+2ln(z—-2)+¢

Integrating both sides gives

Summary
The solution(s) found are the following

y=z+2In(z—2)+¢ (1)
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Figure 58: Slope field plot

Verification of solutions

y=z+2In(z—2)+¢
Verified OK.

1.25.2 Maple step by step solution

Let’s solve
C-z+2)y —2yly - 1) =-2x
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
V=15

. Integrate both sides with respect to x
Jyde = [ Zsdz+c

° Evaluate integral
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y=z+2ln(z—-2)+¢
° Solve for y

y=z+2ln(z—-2)+¢

Maple trace

“Methods for first order ODEs:

‘-—— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve(x+(2—x+2*y(x))*di:ff (y(x) ,x)=x*y (x) *(diff (y(x) ,x)-1),y(x), singsol=a11)J

y(z) = —1
yz)=z+2In(-2+z)+¢

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20

LDSolve[x+(2—x+2*y[x])*y'[x]==x*y[x]*(y'[x]—l),y[x],x,IncludeSingularSolutionéJ—> True]

y(z) = —1
y(xz) = z+2log(z — 2) + ¢
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1.26 problem 2(p)

1.26.1 Existence and uniqueness analysis. . . . . ... ... .. .... 278
1.26.2 Solving aslinearode . . . . . . . . .. ... ... ... 279
1.26.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 2&T]
1.26.4 Solvingasexactode . . ... ... ... ... ... ..... 285]
1.26.5 Maple step by step solution . . . . . ... ... ... .. ... 289

Internal problem ID [3027]
Internal file name [OUTPUT/2519_Sunday_June_05_2022_03_17_56_AM_91197894/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(p).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' cos (z) +ysin (z) =1

With initial conditions

[y(0) = 0]

1.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
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Hence the ode is
Y + ytan (z) = sec ()

The domain of p(z) = tan (z) is
1 1
{x < §7r +7 Z142V §7r +7 Z142 < x}
And the point zy = 0 is inside this domain. The domain of ¢(x) = sec (z) is
1 1
{:c < 577 +7 Z142V §7r +m 7142 < x}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.26.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

b= ef tan(z)dz
1
~ cos(z)

Which simplifies to
u = sec (x)

The ode becomes

L () = (1) (sec (2))

L (sec (2) ) = (sec (¢)) (sec (2))
d(sec (z) y) = sec (z)* dz

Integrating gives

sec(z)y = /sec (z)* dz

sec(z)y = tan (z) + ¢
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Dividing both sides by the integrating factor u = sec () results in
y = cos () tan (z) + ¢; cos ()
which simplifies to
y = ¢ cos (x) + sin (z)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=Cl

C1 = 0
Substituting ¢; found above in the general solution gives
y = sin ()

Summary
The solution(s) found are the following

y = sin (z) (1)

0.8
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0.44

0.2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (z)

Verified OK.
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1.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, —1+sin(x)y
Y=—""7",3N
cos ()
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzfy - wx§ — Wyn = 0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

£(z,y) =0
n(z,y) = cos () (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
1
_/cos(x)dy

_ Y
cos (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—1+sin(z)y

w(z,y) = - cos (z)
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Evaluating all the partial derivatives gives

R, =1

R,=0

Sy =sec(z)tan (z)y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 2
JR = sec (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
JR = Se¢ (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =tan (R) + 1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ysec (z) = tan (z) + ¢
Which simplifies to

ysec (z) = tan (z) + ¢
Which gives

_ tan(z) +
sec (z)
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

—~

i

N—r

oun Youn

8 53

.Cl o ~— ~
i I e = 2
— [a]

o 9 i i

) )

Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary
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(b) Slope field plot
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y = sin (z)
¢(z,y) =0

d
M(z,y) + N(z,y) 57 =0
d

(a) Solution plot
shows that
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We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

1.26.4 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. z gives

To solve an ode of the form

Verification of solutions
Verified OK.

Hence

Comparing (A,B)



But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(cos(z))dy = (—sin(z)y + 1)dz
(—1 +sin (z) y) dz +(cos (z))dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —1 +sin(z)y
N(z,y) = cos(x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
2 Y (-1 +si
3 ay( + sin (z) y)
= sin (z)
And
ON 0
o a(cos (x))
= —sin (z)

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

~ N\ oy ox
= sec (z) ((sin (z)) — (—sin (x)))
= 2tan ()

286



Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e [Adz
— ethan(x) dz
The result of integrating gives
b= e—21n(cos(z))

= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (z)? (=1 + sin (z) y)
= (=14 sin (z) y) sec (z)°
And

= sec (z)? (cos (z))
= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

_ _dy
M = _
+ e 0
. 2 dy
((—1 +sin (z) y) sec (z)°) + (sec(z)) = 0
The following equations are now set up to solve for the function ¢(z,y)
0p —
— =M 1
o (1)
0p —
— =N 2
5 @)

Integrating (1) w.r.t. z gives

0p . [+
%dx—/de

% dz = / (—1 +sin (z) y) sec (z)* dz

¢ = sec(z)y — tan (z) + f(y) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sec(a) + ) (@)
But equation (2) says that g—z = sec (). Therefore equation (4) becomes
sec (z) = sec (z) + f'(y) (5)
Solving equation (5) for f'(y) gives

fly)=0

Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =sec(z)y —tan (z) + &1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into new constant c; gives the solution as

¢; = sec (z) y — tan (z)

The solution becomes
tan (z) + ¢
Y= —"—"—"T~—"
sec (x)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0261

C = 0
Substituting c¢; found above in the general solution gives

y = sin ()
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Summary
The solution(s) found are the following

y = sin (z) (1)
! VYV V01775 N\
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—0.81 NN
1 WNNSIAZ 771V
-2 —1 0 1 2 3 -3 -2 —1 0 1 2 3
a) dolution plo ope field plo
Solut lot b) Slope field plot

Verification of solutions

y = sin (z)
Verified OK.

1.26.5 Maple step by step solution

Let’s solve
[/ cos (z) + ysin (z) = 1,y(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

__sin(z)y

/I __ 1
¥y = cos(z) + cos(z)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

’ sin(z)y __ 1
+ cos(z) ~ cos(z)

° The ODE is linear; multiply by an integrating factor u(x)
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() (y + Sl ) = )
Assume the lhs of the ODE is the total derivative - (u(z) y)
u(a) (v + %) = W@y + i)y
Isolate ()
() = HE)sintz)

" cos(z)

Solve to find the integrating factor

/,L(l') = cosl(x)

Integrate both sides with respect to x

[ (E(u()y) de= [ %dw + ¢

Evaluate the integral on the lhs
z)y = [ 29 4y 4 ¢,

cos(z)
Solve for y
_ I c’o‘éfg) dz+c1
VY="u>
Substitute (z) = 2

y = cos () <f @i+ cl>
Evaluate the integrals on the rhs
y = cos (z) (tan (z) + ¢1)
Simplify

y = ¢y cos (z) +sin (z)

Use initial condition y(0) =0
0=¢

Solve for ¢;

=0

Substitute ¢c; = 0 into general solution and simplify
y = sin (z)

Solution to the IVP

y = sin ()
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 6

Ldsolve([diff(y(x),x)*cos(x)+y(x)*sin(x)=1,y(O) = 0],y(x), singsol=all) J

y(x) = sin (z)

v/ Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 7

LDSolve[{y'[x]*Cos[x]+y[x]*Sin[x]==1,y[0]==0},y[x],x,IncludeSingularSolutions f> True]

y(x) — sin(z)
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1.27 problem 2(q)

1.27.1 Existence and uniqueness analysis . . . . . .. ... ... .... 292
1.27.2 Solving as differentialTypeode . . . . . . . .. ... ... ... 293]
1.27.3 Solvingasexactode . . ... ... ... ... ... ..., 295

Internal problem ID [3028]

Internal file name [OUTPUT/2520_Sunday_June_05_2022_03_17_59_AM_84763816/index.tex|

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14

Problem number: 2(q).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type

[_exact, _rationall]

With initial conditions

1.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
=zt +ty
24z

The x domain of f(x,y) when y =1 is
{r<-1Vv-1<z}
And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

{—c0 <y < o0}
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And the point yy = 1 is inside this domain. Now we will look at the continuity of

of 0 ( —x*+y
8_y_8_y(_ v+ )
_ 1 2(—z%+y)y
Yt (P

The z domain of % when y =1 is
{r<-1V-1<z}
And the point zy = 1 is inside this domain. The y domain of g—i when z =1 is
{—o0 <y < o0}
And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.27.2 Solving as differentialType ode
Writing the ode as

/:x2_y
x + y?

(1)
Which becomes

(") dy = (—z)dy + (2* — y) dz (2)

But the RHS is complete differential because

(—z)dy + (2" —y) dz = d(%x?’ — :cy)

Hence (2) becomes

(42) dy = d(%z?’ _ wy)
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Integrating both sides gives gives these solutions

"

<4a:3 + 12¢; + 4/25 + 6123 + 423 + 90%) : o N
Y= - €1

2
<4x3 +12¢; + 41/28 + 6c123 + 423 + 90%)

=

=
.
<

<4z3 + 12¢; + 4/25 + 6123 + 423 + 90%) ° r
y=- i +

T
|

(43:3 + 12¢; + 41/28 + 6123 + 423 + 90%) :

=
.
<

(41'3 + 12¢; + 4+/8 + 6¢173 + 423 + 90%) ? "
y=- 1 + -
(43:3 +12¢; + 44/25 + 6¢73 + 423 + 90%)

Wl

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

2
3

2
—iV/3 (4 +12¢1 + 41/92 + 60, + 5) P 43— (4 +12¢1 + 4,/92 + 60, F 5) +de, (4 +12¢; +-
1
4 <4+ 12¢1 + 44/9 + 6, +5) ’

Warning: Unable to solve for constant of integration. Initial conditions are used to solve

1=

for ¢;. Substituting £ = 1 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

iv/3 (4 +12¢; + 4/98 + 661 + 5)
1=

2
3

Wi

+4iy/3 — (4 +12¢; + 4/9E + 61 + 5)
1
4 (4 +12¢; + 4/98 + 61 + 5) ’

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c¢;. Substituting x = 1 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

2 1
(4+12c1 +4,/93 1 6c; +5)3 +2c1<4+12cl +4\/903+601+5>3 4
1
2 (4+ 12¢1 + 41/93 + 661 +5>3

Warning: Unable to solve for constant of integration.

+4c; (4 + 12¢; + 4\

1=

Verification of solutions N/A
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1.27.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(v’ +2z)dy = (2" —y) dz
(—2*+y)dz+(y* +2)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(.’L’,y) = _x2+y
N(z,y) =y’ +z
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0 9
o~y Y
=1
And
ON 0 ,,
o " eV T
=1
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
9 (1)
09
— =N 2
5 e

Integrating (1) w.r.t. z gives

%dxz/Mdm
or

@dx=/—x2+ydx
or

b=—37" +ay + f(y) 6

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99 _ /
3—y—w+f(y) (4)

But equation (2) says that g—i = y? + . Therefore equation (4) becomes

v+ =1+ f(y) (5)
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Solving equation (5) for f'(y) gives
fly) =y

Integrating the above w.r.t y gives

/ﬂw®=/@5®

3

f(y)=y§+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
14 13
=T +zy+ 7y +c
¢ 3 Yy 3y 1
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

cp=—-x4+xy+ -
1 3 ) 3y
Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1=Cl

Cl=].

Substituting c¢; found above in the general solution gives

1 1
—§x3—|—xy+ §y3 =1

Summary
The solution(s) found are the following

23 %
_z Z =1 1
3 +yzr + 3 (1)
Verification of solutions
73 Y
__ Z =1
3 +yr + 3

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.094 (sec). Leaf size: 56

Ldsolve([(x+y(x)‘2)*diff(y(x),x)+(y(x)-x‘2)=0,y(1) = 1],y(x), singsol=all) J

2
(12 4 42® + 4v/2% + 1023 +9)° — 4
1
2 (12 + 423 + 4v/26 + 1023 + 9)°

y(z) =

v/ Solution by Mathematica
Time used: 3.931 (sec). Leaf size: 66

‘DSolve[{(x+y[X]“2)*y'[x]+(y[x]—x“2)== ,y[1]==1},y[x],x,IncludeSingularSolutio#s -> True]

{’/:v3+\/:v6+10933+9—|—3 V2x
y(.’l))—) \3/— -
2 U8 + VIS T 1028 1943
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