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Internal problem ID [3002]
Internal file name [OUTPUT/2494_Sunday_June_05_2022_03_16_45_AM_98176719/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = e−x

1.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

e−x dx

= −e−x + c1

Summary
The solution(s) found are the following

(1)y = −e−x + c1
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Figure 1: Slope field plot

Verification of solutions

y = −e−x + c1

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
y′ = e−x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
e−xdx+ c1

• Evaluate integral
y = −e−x + c1

• Solve for y
y = −e−x + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=exp(-x),y(x), singsol=all)� �

y(x) = −e−x + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15� �
DSolve[y'[x]==Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−x + c1
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1.2 problem 1(b)
1.2.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7

Internal problem ID [3003]
Internal file name [OUTPUT/2495_Sunday_June_05_2022_03_16_47_AM_24614121/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 1− x5 +
√
x

1.2.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

1− x5 +
√
x dx

= x+ 2x 3
2

3 − x6

6 + c1

Summary
The solution(s) found are the following

(1)y = x+ 2x 3
2

3 − x6

6 + c1
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Figure 2: Slope field plot

Verification of solutions

y = x+ 2x 3
2

3 − x6

6 + c1

Verified OK.

1.2.2 Maple step by step solution

Let’s solve
y′ = 1− x5 +

√
x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫ (
1− x5 +

√
x
)
dx+ c1

• Evaluate integral

y = x+ 2x
3
2

3 − x6

6 + c1

• Solve for y
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y = x+ 2x
3
2

3 − x6

6 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=1-x^5+sqrt(x),y(x), singsol=all)� �

y(x) = 2x 3
2

3 − x6

6 + x+ c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 25� �
DSolve[y'[x]==1-x^5+Sqrt[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3/2

3 − x6

6 + x+ c1
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1.3 problem 1(c)
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 9
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Internal problem ID [3004]
Internal file name [OUTPUT/2496_Sunday_June_05_2022_03_16_48_AM_49830060/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

3y + (3x− 2) y′ = 2x

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
3x− 2

q(x) = 2x
3x− 2

Hence the ode is

y′ + 3y
3x− 2 = 2x

3x− 2

9



The integrating factor µ is

µ = e
∫ 3

3x−2dx

= 3x− 2

The ode becomes

d
dx(µy) = (µ)

(
2x

3x− 2

)
d
dx((3x− 2) y) = (3x− 2)

(
2x

3x− 2

)
d((3x− 2) y) = (2x) dx

Integrating gives

(3x− 2) y =
∫

2x dx

(3x− 2) y = x2 + c1

Dividing both sides by the integrating factor µ = 3x− 2 results in

y = x2

3x− 2 + c1
3x− 2

which simplifies to

y = x2 + c1
3x− 2

Summary
The solution(s) found are the following

(1)y = x2 + c1
3x− 2
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Figure 3: Slope field plot

Verification of solutions

y = x2 + c1
3x− 2

Verified OK.

1.3.2 Solving as differentialType ode

Writing the ode as

y′ = −3y + 2x
3x− 2 (1)

Which becomes

0 = (−3x+ 2) dy + (−3y + 2x) dx (2)

But the RHS is complete differential because

(−3x+ 2) dy + (−3y + 2x) dx = d
(
x2 − 3xy + 2y

)
Hence (2) becomes

0 = d
(
x2 − 3xy + 2y

)
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Integrating both sides gives gives these solutions

y = x2 + c1
3x− 2 + c1

Summary
The solution(s) found are the following

(1)y = x2 + c1
3x− 2 + c1

Figure 4: Slope field plot

Verification of solutions

y = x2 + c1
3x− 2 + c1

Verified OK.
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1.3.3 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−2X − 2x0 + 3Y (X) + 3y0

3X + 3x0 − 2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
2
3

y0 =
4
9

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−2X + 3Y (X)

3X

In canonical form, the ODE is

Y ′ = F (X,Y )

= −−2X + 3Y
3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2X−3Y and N = 3X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 2

3 − u

du
dX =

2
3 − 2u(X)

X

13



Or
d

dX
u(X)−

2
3 − 2u(X)

X
= 0

Or
3
(

d

dX
u(X)

)
X + 6u(X)− 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

=
−2u+ 2

3
X

Where f(X) = 1
X

and g(u) = −2u+ 2
3 . Integrating both sides gives

1
−2u+ 2

3
du = 1

X
dX

∫ 1
−2u+ 2

3
du =

∫ 1
X

dX

− ln (−3u+ 1)
2 = ln (X) + c2

Raising both side to exponential gives

1√
−3u+ 1

= eln(X)+c2

Which simplifies to

1√
−3u+ 1

= c3X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = (c23e2c2X2 − 1) e−2c2

3X c23

Using the solution for Y (X)

Y (X) = (c23e2c2X2 − 1) e−2c2

3X c23
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 4
9

X = x+ 2
3

Then the solution in y becomes

y − 4
9 =

(
c23e2c2

(
x− 2

3

)2 − 1
)
e−2c2

3
(
x− 2

3

)
c23

Summary
The solution(s) found are the following

(1)y − 4
9 =

(
c23e2c2

(
x− 2

3

)2 − 1
)
e−2c2

3
(
x− 2

3

)
c23

Figure 5: Slope field plot
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Verification of solutions

y − 4
9 =

(
c23e2c2

(
x− 2

3

)2 − 1
)
e−2c2

3
(
x− 2

3

)
c23

Verified OK.

1.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y − 2x
3x− 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 3: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
3x− 2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
3x−2

dy

Which results in

S = (3x− 2) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y − 2x
3x− 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y
Sy = 3x− 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

18



integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(3x− 2) y = x2 + c1

Which simplifies to

(3x− 2) y = x2 + c1

Which gives

y = x2 + c1
3x− 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y−2x
3x−2

dS
dR

= 2R

R = x

S = (3x− 2) y

Summary
The solution(s) found are the following

(1)y = x2 + c1
3x− 2
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Figure 6: Slope field plot

Verification of solutions

y = x2 + c1
3x− 2

Verified OK.

1.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(3x− 2) dy = (−3y + 2x) dx
(3y − 2x) dx+(3x− 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y − 2x
N(x, y) = 3x− 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(3y − 2x)

= 3

And
∂N

∂x
= ∂

∂x
(3x− 2)

= 3
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y − 2x dx

(3)φ = −x(x− 3y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3x− 2. Therefore equation (4) becomes

(5)3x− 2 = 3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2) dy

f(y) = −2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− 3y)− 2y + c1

22



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− 3y)− 2y

The solution becomes

y = x2 + c1
3x− 2

Summary
The solution(s) found are the following

(1)y = x2 + c1
3x− 2

Figure 7: Slope field plot

Verification of solutions

y = x2 + c1
3x− 2

Verified OK.
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1.3.6 Maple step by step solution

Let’s solve
3y + (3x− 2) y′ = 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 3y

3x−2 +
2x

3x−2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 3y

3x−2 = 2x
3x−2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 3y

3x−2

)
= 2µ(x)x

3x−2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

3x−2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

3x−2

• Solve to find the integrating factor
µ(x) = 3x− 2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)x
3x−2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)x
3x−2 dx+ c1

• Solve for y

y =
∫ 2µ(x)x

3x−2 dx+c1

µ(x)

• Substitute µ(x) = 3x− 2

y =
∫
2xdx+c1
3x−2

• Evaluate the integrals on the rhs
y = x2+c1

3x−2

24



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((3*y(x)-2*x)+(3*x-2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x2 + c1
−2 + 3x

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 21� �
DSolve[(3*y[x]-2*x)+(3*x-2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − c1
3x− 2
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1.4 problem 1(d)
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 28
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 36

Internal problem ID [3005]
Internal file name [OUTPUT/2497_Sunday_June_05_2022_03_16_50_AM_77083438/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(2yx+ y) y′ = −x2 − x+ 1

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x2 + x− 1
y (1 + 2x)

Where f(x) = −x2+x−1
1+2x and g(y) = 1

y
. Integrating both sides gives

1
1
y

dy = −x2 + x− 1
1 + 2x dx

∫ 1
1
y

dy =
∫

−x2 + x− 1
1 + 2x dx

y2

2 = −x2

4 − x

4 + 5 ln (1 + 2x)
8 + c1
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Which results in

y =
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

y = −
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

Summary
The solution(s) found are the following

(1)y =
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

(2)y = −
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

Figure 8: Slope field plot
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Verification of solutions

y =
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

Verified OK.

y = −
√

−2x2 + 5 ln (1 + 2x) + 8c1 − 2x
2

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + x− 1
y (1 + 2x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 6: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − 1 + 2x
x2 + x− 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1+2x
x2+x−1

dx

Which results in

S = −x2

4 − x

4 + 5 ln (1 + 2x)
8

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + x− 1
y (1 + 2x)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −x2 − x+ 1
1 + 2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

4 − x

4 + 5 ln (1 + 2x)
8 = y2

2 + c1

Which simplifies to

−x2

4 − x

4 + 5 ln (1 + 2x)
8 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+x−1
y(1+2x)

dS
dR

= R

R = y

S = −x2

4 − x

4 + 5 ln (1 + 2x)
8

Summary
The solution(s) found are the following

(1)−x2

4 − x

4 + 5 ln (1 + 2x)
8 = y2

2 + c1
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Figure 9: Slope field plot

Verification of solutions

−x2

4 − x

4 + 5 ln (1 + 2x)
8 = y2

2 + c1

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−y) dy =
(
x2 + x− 1
1 + 2x

)
dx(

−x2 + x− 1
1 + 2x

)
dx+(−y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + x− 1
1 + 2x

N(x, y) = −y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + x− 1

1 + 2x

)
= 0
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And
∂N

∂x
= ∂

∂x
(−y)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + x− 1

1 + 2x dx

(3)φ = −x2

4 − x

4 + 5 ln (1 + 2x)
8 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y. Therefore equation (4) becomes

(5)−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

4 − x

4 + 5 ln (1 + 2x)
8 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

4 − x

4 + 5 ln (1 + 2x)
8 − y2

2

Summary
The solution(s) found are the following

(1)−x2

4 + 5 ln (1 + 2x)
8 − x

4 − y2

2 = c1

Figure 10: Slope field plot

Verification of solutions

−x2

4 + 5 ln (1 + 2x)
8 − x

4 − y2

2 = c1

Verified OK.
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1.4.4 Maple step by step solution

Let’s solve
(2yx+ y) y′ = −x2 − x+ 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = −x2+x−1

1+2x

• Integrate both sides with respect to x∫
yy′dx =

∫
−x2+x−1

1+2x dx+ c1

• Evaluate integral
y2

2 = −x2

4 − x
4 +

5 ln(1+2x)
8 + c1

• Solve for y{
y = −

√
−2x2+5 ln(1+2x)+8c1−2x

2 , y =
√

−2x2+5 ln(1+2x)+8c1−2x
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 55� �
dsolve((x^2+x-1)+(2*x*y(x)+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√

−2x2 + 5 ln (2x+ 1) + 4c1 − 2x
2

y(x) =
√
−2x2 + 5 ln (2x+ 1) + 4c1 − 2x

2
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3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 73� �
DSolve[(x^2+x-1)+(2*x*y[x]+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2

√
−2x2 − 2x+ 5 log(2x+ 1)− 1

2 + 8c1

y(x) → 1
2

√
−2x2 − 2x+ 5 log(2x+ 1)− 1

2 + 8c1
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1.5 problem 1(e)
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 38
1.5.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 40
1.5.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 41
1.5.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 49

Internal problem ID [3006]
Internal file name [OUTPUT/2498_Sunday_June_05_2022_03_16_53_AM_28461493/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

e2y + (x+ 1) y′ = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − e2y
x+ 1

Where f(x) = − 1
x+1 and g(y) = e2y. Integrating both sides gives

1
e2y dy = − 1

x+ 1 dx∫ 1
e2y dy =

∫
− 1
x+ 1 dx

−e−2y

2 = − ln (x+ 1) + c1
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Which results in

y =
ln
(

1
2 ln(x+1)−2c1

)
2

Summary
The solution(s) found are the following

(1)y =
ln
(

1
2 ln(x+1)−2c1

)
2

Figure 11: Slope field plot

Verification of solutions

y =
ln
(

1
2 ln(x+1)−2c1

)
2

Verified OK.
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1.5.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = − e2y
x+ 1 (1)

And using the substitution u = e−2y then

u′ = −2y′e−2y

The above shows that

y′ = −u′(x) e2y
2

= −u′(x)
2u

Substituting this in (1) gives

−u′(x)
2u = − 1

(x+ 1)u

The above simplifies to

u′(x) = 2
x+ 1 (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫ 2

x+ 1 dx

= 2 ln (x+ 1) + c1

Substituting the solution found for u(x) in u = e−2y gives

y = − ln (u(x))
2

= − ln (2 ln (x+ 1) + c1)
2

= − ln (2 ln (x+ 1) + c1)
2

Summary
The solution(s) found are the following

(1)y = − ln (2 ln (x+ 1) + c1)
2
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Figure 12: Slope field plot

Verification of solutions

y = − ln (2 ln (x+ 1) + c1)
2

Verified OK.

1.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − e2y
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 9: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x− 1dx

Which results in

S = − ln (−x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − e2y
x+ 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
−x− 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x− 1) = −e−2y

2 + c1

Which simplifies to

− ln (−x− 1) = −e−2y

2 + c1

Which gives

y = − ln (2 ln (−x− 1) + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − e2y
x+1

dS
dR

= e−2R

R = y

S = − ln (−x− 1)
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Summary
The solution(s) found are the following

(1)y = − ln (2 ln (−x− 1) + 2c1)
2

Figure 13: Slope field plot

Verification of solutions

y = − ln (2 ln (−x− 1) + 2c1)
2

Verified OK.

1.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−e−2y) dy =
(

1
x+ 1

)
dx(

− 1
x+ 1

)
dx+

(
−e−2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ 1

N(x, y) = −e−2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x+ 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−e−2y)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ 1 dx

(3)φ = − ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −e−2y. Therefore equation (4) becomes

(5)−e−2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e−2y

= −e−2y

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
−e−2y) dy

f(y) = e−2y

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ 1) + e−2y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ 1) + e−2y

2

The solution becomes

y = − ln (2 ln (x+ 1) + 2c1)
2

Summary
The solution(s) found are the following

(1)y = − ln (2 ln (x+ 1) + 2c1)
2

Figure 14: Slope field plot
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Verification of solutions

y = − ln (2 ln (x+ 1) + 2c1)
2

Verified OK.

1.5.5 Maple step by step solution

Let’s solve
e2y + (x+ 1) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

e2y = − 1
x+1

• Integrate both sides with respect to x∫
y′

e2y dx =
∫
− 1

x+1dx+ c1

• Evaluate integral
− 1

2 e2y = − ln (x+ 1) + c1

• Solve for y

y =
ln
(

1
2(ln(x+1)−c1)

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(exp(2*y(x))+(1+x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − ln (2)
2 − ln (ln (x+ 1) + c1)

2

3 Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 21� �
DSolve[Exp[2*y[x]]+(1+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2 log(2(log(x+ 1)− c1))
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1.6 problem 1(f)
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 51
1.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 53
1.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 57
1.6.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 61
1.6.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 63

Internal problem ID [3007]
Internal file name [OUTPUT/2499_Sunday_June_05_2022_03_16_55_AM_1089413/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ 1) y′ − y2x2 = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2x2

x+ 1

Where f(x) = x2

x+1 and g(y) = y2. Integrating both sides gives

1
y2

dy = x2

x+ 1 dx∫ 1
y2

dy =
∫

x2

x+ 1 dx
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−1
y
= −x+ x2

2 + ln (x+ 1) + c1

Which results in

y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x

Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x

Figure 15: Slope field plot

Verification of solutions

y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x

Verified OK.
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1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2x2

x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 12: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x+ 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x+1
x2

dx

Which results in

S = −x+ x2

2 + ln (x+ 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2x2

x+ 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x2

x+ 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x+ x2

2 + ln (x+ 1) = −1
y
+ c1

Which simplifies to

−x+ x2

2 + ln (x+ 1) = −1
y
+ c1

Which gives

y = − 2
x2 + 2 ln (x+ 1)− 2c1 − 2x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2x2

x+1
dS
dR

= 1
R2

R = y

S = −x+ x2

2 + ln (x+ 1)

Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2 ln (x+ 1)− 2c1 − 2x
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Figure 16: Slope field plot

Verification of solutions

y = − 2
x2 + 2 ln (x+ 1)− 2c1 − 2x

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

)
dy =

(
x2

x+ 1

)
dx(

− x2

x+ 1

)
dx+

(
1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x2

x+ 1
N(x, y) = 1

y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x2

x+ 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x2

x+ 1 dx

(3)φ = −x2

2 + x− ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + x− ln (x+ 1)− 1
y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + x− ln (x+ 1)− 1
y

The solution becomes

y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x

Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x
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Figure 17: Slope field plot

Verification of solutions

y = − 2
x2 + 2 ln (x+ 1) + 2c1 − 2x

Verified OK.

1.6.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2x2

x+ 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2x2

x+ 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = x2

x+1 . Let

y = −u′

f2u

= −u′

x2u
x+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2x
x+ 1 − x2

(x+ 1)2

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

x2u′′(x)
x+ 1 −

(
2x

x+ 1 − x2

(x+ 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x+ 1) + (x2 − 2x) c2
2 + c1

The above shows that

u′(x) = c2x
2

x+ 1

Using the above in (1) gives the solution

y = − c2

c2 ln (x+ 1) + (x2−2x)c2
2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 2
x2 + 2 ln (x+ 1) + 2c3 − 2x
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Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2 ln (x+ 1) + 2c3 − 2x

Figure 18: Slope field plot

Verification of solutions

y = − 2
x2 + 2 ln (x+ 1) + 2c3 − 2x

Verified OK.

1.6.5 Maple step by step solution

Let’s solve
(x+ 1) y′ − y2x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= x2

x+1

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
x2

x+1dx+ c1

• Evaluate integral
− 1

y
= −x+ x2

2 + ln (x+ 1) + c1

• Solve for y
y = − 2

x2+2 ln(x+1)+2c1−2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve((x+1)*diff(y(x),x)-x^2*y(x)^2=0,y(x), singsol=all)� �

y(x) = − 2
x2 + 2 ln (x+ 1)− 2c1 − 2x

3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 32� �
DSolve[(x+1)*y'[x]-x^2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2
x2 − 2x+ 2 log(x+ 1)− 3 + 2c1

y(x) → 0
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1.7 problem 1(g)
1.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 65
1.7.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 67
1.7.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 68
1.7.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 72
1.7.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 77

Internal problem ID [3008]
Internal file name [OUTPUT/2500_Sunday_June_05_2022_03_16_57_AM_75808387/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(g).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y − 2x
x

= 0

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = −2

Hence the ode is

y′ − y

x
= −2
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (−2)

d
dx

(y
x

)
=
(
1
x

)
(−2)

d
(y
x

)
=
(
−2
x

)
dx

Integrating gives

y

x
=
∫

−2
x
dx

y

x
= −2 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = −2 ln (x)x+ c1x

which simplifies to

y = x(−2 ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(−2 ln (x) + c1)
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Figure 19: Slope field plot

Verification of solutions

y = x(−2 ln (x) + c1)

Verified OK.

1.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x− 2x
x

= 0

Integrating both sides gives

u(x) =
∫

−2
x
dx

= −2 ln (x) + c2

Therefore the solution y is

y = ux

= x(−2 ln (x) + c2)

67



Summary
The solution(s) found are the following

(1)y = x(−2 ln (x) + c2)

Figure 20: Slope field plot

Verification of solutions

y = x(−2 ln (x) + c2)

Verified OK.

1.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x+ y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 15: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= −2 ln (x) + c1

Which simplifies to
y

x
= −2 ln (x) + c1

Which gives

y = −x(2 ln (x)− c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+y
x

dS
dR

= − 2
R

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = −x(2 ln (x)− c1)
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Figure 21: Slope field plot

Verification of solutions

y = −x(2 ln (x)− c1)

Verified OK.

1.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2x+ y

x

)
dx(

−−2x+ y

x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −−2x+ y

x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−−2x+ y

x

)
= −1

x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−−2x+ y

x

)
= 2x− y

x2

And

N = µN

= 1
x
(1)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x− y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x− y

x2 dx

(3)φ = y

x
+ 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y

x
+ 2 ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y

x
+ 2 ln (x)

The solution becomes
y = −x(2 ln (x)− c1)

Summary
The solution(s) found are the following

(1)y = −x(2 ln (x)− c1)

Figure 22: Slope field plot

Verification of solutions

y = −x(2 ln (x)− c1)

Verified OK.
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1.7.5 Maple step by step solution

Let’s solve
y′ − y−2x

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2 + y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= −2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= −2µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−2µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−2µ(x) dx+ c1

• Solve for y

y =
∫
−2µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

− 2
x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(−2 ln (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=(y(x)-2*x)/x,y(x), singsol=all)� �

y(x) = (−2 ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 14� �
DSolve[y'[x]==(y[x]-2*x)/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(−2 log(x) + c1)
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1.8 problem 1(h)
1.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 79
1.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 81
1.8.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 85
1.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 89

Internal problem ID [3009]
Internal file name [OUTPUT/2501_Sunday_June_05_2022_03_16_59_AM_35539033/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(h).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y3 − xy2y′ = −x3

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)3 x3 − x3u(x)2 (u′(x)x+ u(x)) = −x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
u2x
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Where f(x) = 1
x
and g(u) = 1

u2 . Integrating both sides gives

1
1
u2

du = 1
x
dx

∫ 1
1
u2

du =
∫ 1

x
dx

u3

3 = ln (x) + c2

The solution is
u(x)3

3 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

3x3 − ln (x)− c2 = 0

y3

3x3 − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y3

3x3 − ln (x)− c2 = 0
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Figure 23: Slope field plot

Verification of solutions

y3

3x3 − ln (x)− c2 = 0

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y3

x y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x3

y2
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3

y2

dy

Which results in

S = y3

3x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y3

x y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y3

x4

Sy =
y2

x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y3

3x3 = ln (x) + c1

Which simplifies to

y3

3x3 = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y3

x y2
dS
dR

= 1
R

R = x

S = y3

3x3

Summary
The solution(s) found are the following

(1)y3

3x3 = ln (x) + c1
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Figure 24: Slope field plot

Verification of solutions

y3

3x3 = ln (x) + c1

Verified OK.

1.8.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x3 + y3

x y2

This is a Bernoulli ODE.
y′ = 1

x
y + x2 1

y2
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = x2

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = y3

x
+ x2 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = w(x)

x
+ x2

w′ = 3w
x

+ 3x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −3
x

q(x) = 3x2
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Hence the ode is

w′(x)− 3w(x)
x

= 3x2

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes
d
dx(µw) = (µ)

(
3x2)

d
dx

( w
x3

)
=
(

1
x3

)(
3x2)

d
( w
x3

)
=
(
3
x

)
dx

Integrating gives
w

x3 =
∫ 3

x
dx

w

x3 = 3 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x3 results in

w(x) = 3x3 ln (x) + c1x
3

which simplifies to

w(x) = x3(3 ln (x) + c1)

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = x3(3 ln (x) + c1)

Solving for y gives

y(x) = (3 ln (x) + c1)
1
3 x

y(x) =
(3 ln (x) + c1)

1
3
(
−1 + i

√
3
)
x

2

y(x) = −
(3 ln (x) + c1)

1
3
(
1 + i

√
3
)
x

2
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Summary
The solution(s) found are the following

(1)y = (3 ln (x) + c1)
1
3 x

(2)y =
(3 ln (x) + c1)

1
3
(
−1 + i

√
3
)
x

2

(3)y = −
(3 ln (x) + c1)

1
3
(
1 + i

√
3
)
x

2

Figure 25: Slope field plot
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Verification of solutions

y = (3 ln (x) + c1)
1
3 x

Verified OK.

y =
(3 ln (x) + c1)

1
3
(
−1 + i

√
3
)
x

2

Verified OK.

y = −
(3 ln (x) + c1)

1
3
(
1 + i

√
3
)
x

2

Verified OK.

1.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x y2

)
dy =

(
−x3 − y3

)
dx(

x3 + y3
)
dx+

(
−x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3 + y3

N(x, y) = −x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x3 + y3

)
= 3y2

And

∂N

∂x
= ∂

∂x

(
−x y2

)
= −y2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x y2
((
3y2
)
−
(
−y2

))
= −4

x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
x3 + y3

)
= x3 + y3

x4

And

N = µN

= 1
x4

(
−x y2

)
= −y2

x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x3 + y3

x4

)
+
(
−y2

x3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 + y3

x4 dx

(3)φ = − y3

3x3 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −y2

x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y2

x3 . Therefore equation (4) becomes

(5)−y2

x3 = −y2

x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − y3

3x3 + ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − y3

3x3 + ln (x)

Summary
The solution(s) found are the following

(1)− y3

3x3 + ln (x) = c1
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Figure 26: Slope field plot

Verification of solutions

− y3

3x3 + ln (x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
dsolve((x^3+y(x)^3)-x*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = (3 ln (x) + c1)
1
3 x

y(x) = −
(3 ln (x) + c1)

1
3
(
1 + i

√
3
)
x

2

y(x) =
(3 ln (x) + c1)

1
3
(
i
√
3− 1

)
x

2

3 Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 63� �
DSolve[(x^3+y[x]^3)-x*y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x 3
√
3 log(x) + c1

y(x) → − 3
√
−1x 3

√
3 log(x) + c1

y(x) → (−1)2/3x 3
√
3 log(x) + c1
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1.9 problem 1(i)
1.9.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 95
1.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 96

Internal problem ID [3010]
Internal file name [OUTPUT/2502_Sunday_June_05_2022_03_17_03_AM_30374513/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y = 0

1.9.1 Solving as quadrature ode

Integrating both sides gives ∫
−1
y
dy =

∫
dx

− ln (y) = x+ c1

Raising both side to exponential gives

1
y
= ex+c1

Which simplifies to

1
y
= c2ex

Summary
The solution(s) found are the following

(1)y = e−x

c2
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Figure 27: Slope field plot

Verification of solutions

y = e−x

c2

Verified OK.

1.9.2 Maple step by step solution

Let’s solve
y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
(−1) dx+ c1

• Evaluate integral
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ln (y) = −x+ c1

• Solve for y
y = e−x+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

y(x) → 0
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1.10 problem 1(j)
1.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 98
1.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 100
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 104
1.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 108

Internal problem ID [3011]
Internal file name [OUTPUT/2503_Sunday_June_05_2022_03_17_04_AM_34495165/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 1(j).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + y = x2 + 2

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x2 + 2

Hence the ode is

y′ + y = x2 + 2

The integrating factor µ is

µ = e
∫
1dx

= ex
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The ode becomes
d
dx(µy) = (µ)

(
x2 + 2

)
d
dx(e

xy) = (ex)
(
x2 + 2

)
d(exy) =

((
x2 + 2

)
ex
)
dx

Integrating gives

exy =
∫ (

x2 + 2
)
ex dx

exy =
(
x2 − 2x+ 4

)
ex + c1

Dividing both sides by the integrating factor µ = ex results in

y = e−x
(
x2 − 2x+ 4

)
ex + c1e−x

which simplifies to

y = x2 − 2x+ 4 + c1e−x

Summary
The solution(s) found are the following

(1)y = x2 − 2x+ 4 + c1e−x

Figure 28: Slope field plot
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Verification of solutions

y = x2 − 2x+ 4 + c1e−x

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 − y + 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − y + 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy
Sy = ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
x2 + 2

)
ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=
(
R2 + 2

)
eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(
R2 − 2R + 4

)
eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy =
(
x2 − 2x+ 4

)
ex + c1

Which simplifies to

exy =
(
x2 − 2x+ 4

)
ex + c1

Which gives

y =
(
x2ex − 2x ex + 4 ex + c1

)
e−x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 − y + 2 dS
dR

= (R2 + 2) eR

R = x

S = exy

Summary
The solution(s) found are the following

(1)y =
(
x2ex − 2x ex + 4 ex + c1

)
e−x
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Figure 29: Slope field plot

Verification of solutions

y =
(
x2ex − 2x ex + 4 ex + c1

)
e−x

Verified OK.

1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x2 − y + 2

)
dx(

−x2 + y − 2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + y − 2
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + y − 2

)
= 1

And
∂N

∂x
= ∂

∂x
(1)

= 0

105



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((1)− (0))
= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
−x2 + y − 2

)
= −ex

(
x2 − y + 2

)
And

N = µN

= ex(1)
= ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−ex
(
x2 − y + 2

))
+ (ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex

(
x2 − y + 2

)
dx

(3)φ = −
(
x2 − 2x− y + 4

)
ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + f ′(y)

But equation (2) says that ∂φ
∂y

= ex. Therefore equation (4) becomes

(5)ex = ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2 − 2x− y + 4

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2 − 2x− y + 4

)
ex

The solution becomes
y =

(
x2ex − 2x ex + 4 ex + c1

)
e−x

Summary
The solution(s) found are the following

(1)y =
(
x2ex − 2x ex + 4 ex + c1

)
e−x
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Figure 30: Slope field plot

Verification of solutions

y =
(
x2ex − 2x ex + 4 ex + c1

)
e−x

Verified OK.

1.10.4 Maple step by step solution

Let’s solve
y′ + y = x2 + 2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y + x2 + 2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y = x2 + 2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y) = µ(x) (x2 + 2)
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x2 + 2) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x2 + 2) dx+ c1

• Solve for y

y =
∫
µ(x)

(
x2+2

)
dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫ (

x2+2
)
exdx+c1

ex

• Evaluate the integrals on the rhs

y =
(
x2−2x+4

)
ex+c1

ex

• Simplify
y = x2 − 2x+ 4 + c1e−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)+y(x)=x^2+2,y(x), singsol=all)� �

y(x) = x2 − 2x+ 4 + e−xc1

3 Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 21� �
DSolve[y'[x]+y[x]==x^2+2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − 2x+ c1e
−x + 4
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1.11 problem 2(a)
1.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 111
1.11.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 112
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1.11.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 122

Internal problem ID [3012]
Internal file name [OUTPUT/2504_Sunday_June_05_2022_03_17_06_AM_75331586/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = x

With initial conditions

[y(0) = 0]

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = x
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Hence the ode is

y′ − y tan (x) = x

The domain of p(x) = − tan (x) is{
x <

1
2π + π_Z142∨ 1

2π + π_Z142 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes
d
dx(µy) = (µ) (x)

d
dx(cos (x) y) = (cos (x)) (x)

d(cos (x) y) = (cos (x)x) dx

Integrating gives

cos (x) y =
∫

cos (x)x dx

cos (x) y = x sin (x) + cos (x) + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x) (x sin (x) + cos (x)) + c1 sec (x)

which simplifies to

y = tan (x)x+ 1 + c1 sec (x)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + tan (x)x− sec (x)

Summary
The solution(s) found are the following

(1)y = 1 + tan (x)x− sec (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + tan (x)x− sec (x)

Verified OK.
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1.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x) y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x) y + x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R) + sin (R)R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = x sin (x) + cos (x) + c1

Which simplifies to

cos (x) y = x sin (x) + cos (x) + c1

Which gives

y = x sin (x) + cos (x) + c1
cos (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan (x) y + x dS
dR

= cos (R)R

R = x

S = cos (x) y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + tan (x)x− sec (x)

Summary
The solution(s) found are the following

(1)y = 1 + tan (x)x− sec (x)

117



(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + tan (x)x− sec (x)

Verified OK.

1.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (tan (x) y + x) dx
(− tan (x) y − x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x) y − x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− tan (x) y − x)

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (− tan (x) y − x)
= − cos (x)x− sin (x) y

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(− cos (x)x− sin (x) y) + (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x)x− sin (x) y dx

(3)φ = (y − 1) cos (x)− x sin (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − 1) cos (x)− x sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − 1) cos (x)− x sin (x)

The solution becomes

y = x sin (x) + cos (x) + c1
cos (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + tan (x)x− sec (x)
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Summary
The solution(s) found are the following

(1)y = 1 + tan (x)x− sec (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + tan (x)x− sec (x)

Verified OK.

1.11.5 Maple step by step solution

Let’s solve
[y′ − y tan (x) = x, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y tan (x) + x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y tan (x) = x

• The ODE is linear; multiply by an integrating factor µ(x)

122



µ(x) (y′ − y tan (x)) = µ(x)x
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
cos(x)xdx+c1

cos(x)

• Evaluate the integrals on the rhs
y = x sin(x)+cos(x)+c1

cos(x)

• Simplify
y = tan (x)x+ 1 + c1 sec (x)

• Use initial condition y(0) = 0
0 = c1 + 1

• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify
y = 1 + tan (x)x− sec (x)

• Solution to the IVP
y = 1 + tan (x)x− sec (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)-y(x)*tan(x)=x,y(0) = 0],y(x), singsol=all)� �

y(x) = 1 + tan (x)x− sec (x)

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 15� �
DSolve[{y'[x]-y[x]*Tan[x]==x,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(x)− sec(x) + 1
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1.12 problem 2(b)
1.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 125
1.12.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 126
1.12.3 Solving as first order special form ID 1 ode . . . . . . . . . . . . 128
1.12.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 130
1.12.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 134
1.12.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 138

Internal problem ID [3013]
Internal file name [OUTPUT/2505_Sunday_June_05_2022_03_17_09_AM_46567828/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ex−2y = 0

With initial conditions

[y(0) = 0]

1.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= ex−2y

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
ex−2y)

= −2 ex−2y

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.12.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= exe−2y

Where f(x) = ex and g(y) = e−2y. Integrating both sides gives

1
e−2y dy = ex dx∫ 1
e−2y dy =

∫
ex dx

e2y
2 = ex + c1

Which results in

y = ln (2 ex + 2c1)
2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (c1 + 1)

2

c1 = −1
2

Substituting c1 found above in the general solution gives

y = ln (2 ex − 1)
2

Summary
The solution(s) found are the following

(1)y = ln (2 ex − 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (2 ex − 1)
2

Verified OK.
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1.12.3 Solving as first order special form ID 1 ode

Writing the ode as

y′ = ex−2y (1)

And using the substitution u = e2y then

u′ = 2y′e2y

The above shows that

y′ = u′(x) e−2y

2

= u′(x)
2u

Substituting this in (1) gives

u′(x)
2u = ex

u

The above simplifies to

u′(x) = 2 ex (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

2 ex dx

= 2 ex + c1

Substituting the solution found for u(x) in u = e2y gives

y = ln (u(x))
2

= ln (2 ex + c1)
2

= ln (2 ex + c1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2 + c1)
2
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c1 = −1

Substituting c1 found above in the general solution gives

y = ln (2 ex − 1)
2

Summary
The solution(s) found are the following

(1)y = ln (2 ex − 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (2 ex − 1)
2

Verified OK.
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1.12.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex−2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex−2y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e2R
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = e2y
2 + c1

Which simplifies to

ex = e2y
2 + c1

Which gives

y = ln (2 ex − 2c1)
2

132



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ex−2y dS
dR

= e2R

R = y

S = ex

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (1− c1)

2

c1 =
1
2

Substituting c1 found above in the general solution gives

y = ln (2 ex − 1)
2

Summary
The solution(s) found are the following

(1)y = ln (2 ex − 1)
2

133



(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (2 ex − 1)
2

Verified OK.

1.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

e2y
)
dy = (ex) dx

(−ex) dx+
(
e2y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = e2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex)

= 0

And
∂N

∂x
= ∂

∂x

(
e2y
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e2y. Therefore equation (4) becomes

(5)e2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e2y
)
dy

f(y) = e2y
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex + e2y
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex + e2y
2
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The solution becomes

y = ln (2 ex + 2c1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 + ln (c1 + 1)

2

c1 = −1
2

Substituting c1 found above in the general solution gives

y = ln (2 ex − 1)
2

Summary
The solution(s) found are the following

(1)y = ln (2 ex − 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (2 ex − 1)
2

Verified OK.
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1.12.6 Maple step by step solution

Let’s solve
[y′ − ex−2y = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(ey)2 = ex

• Integrate both sides with respect to x∫
y′(ey)2 dx =

∫
exdx+ c1

• Evaluate integral
(ey)2
2 = ex + c1

• Solve for y
y = ln(2 ex+2c1)

2

• Use initial condition y(0) = 0
0 = ln(2+2c1)

2

• Solve for c1
c1 = −1

2

• Substitute c1 = −1
2 into general solution and simplify

y = ln(2 ex−1)
2

• Solution to the IVP
y = ln(2 ex−1)

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)=exp(x-2*y(x)),y(0) = 0],y(x), singsol=all)� �

y(x) = ln (2 ex − 1)
2

3 Solution by Mathematica
Time used: 0.824 (sec). Leaf size: 17� �
DSolve[{y'[x]==Exp[x-2*y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log (2ex − 1)
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1.13 problem 2(c)
1.13.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 140
1.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 142
1.13.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 148

Internal problem ID [3014]
Internal file name [OUTPUT/2506_Sunday_June_05_2022_03_17_11_AM_66234823/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′ − y2 + x2

2x2 = 0

1.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 x2 + x2

2x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−u+ 1

2u
2 + 1

2
x
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Where f(x) = 1
x
and g(u) = −u+ 1

2u
2 + 1

2 . Integrating both sides gives

1
−u+ 1

2u
2 + 1

2
du = 1

x
dx

∫ 1
−u+ 1

2u
2 + 1

2
du =

∫ 1
x
dx

− 2
u− 1 = ln (x) + c2

The solution is

− 2
u (x)− 1 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− 2
y
x
− 1 − ln (x)− c2 = 0

(ln (x) + c2) y − x(c2 + ln (x)− 2)
−y + x

= 0

Summary
The solution(s) found are the following

(1)(ln (x) + c2) y − x(c2 + ln (x)− 2)
−y + x

= 0
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Figure 38: Slope field plot

Verification of solutions

(ln (x) + c2) y − x(c2 + ln (x)− 2)
−y + x

= 0

Verified OK.

1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + y2

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(x2 + y2) (b3 − a2)

2x2 − (x2 + y2)2 a3
4x4

−
(
1
x
− x2 + y2

x3

)
(xa2 + ya3 + a1)−

y(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−2x4a2 + x4a3 − 4b2x4 − 2x4b3 + 4x3yb2 − 2x2y2a2 + 2x2y2a3 + 2x2y2b3 − 4x y3a3 + y4a3 + 4x2yb1 − 4x y2a1
4x4

= 0

Setting the numerator to zero gives

(6E)−2x4a2 − x4a3 + 4b2x4 + 2x4b3 − 4x3yb2 + 2x2y2a2 − 2x2y2a3
− 2x2y2b3 + 4x y3a3 − y4a3 − 4x2yb1 + 4x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v41 + 2a2v21v22 − a3v
4
1 − 2a3v21v22 + 4a3v1v32 − a3v

4
2 + 4b2v41

− 4b2v31v2 + 2b3v41 − 2b3v21v22 + 4a1v1v22 − 4b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(−2a2 − a3 + 4b2 + 2b3) v41 − 4b2v31v2 + (2a2 − 2a3 − 2b3) v21v22
− 4b1v21v2 + 4a3v1v32 + 4a1v1v22 − a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
−a3 = 0
4a3 = 0

−4b1 = 0
−4b2 = 0

2a2 − 2a3 − 2b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + y2

2x2

)
(x)

= −x2 + 2xy − y2

2x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+2xy−y2

2x

dy

Which results in

S = 2x
y − x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y2

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y
(−y + x)2

Sy = − 2x
(−y + x)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 2x
−y + x

= − ln (x) + c1

Which simplifies to

− 2x
−y + x

= − ln (x) + c1

Which gives

y = x(ln (x)− c1 − 2)
ln (x)− c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y2

2x2
dS
dR

= − 1
R

R = x

S = − 2x
−y + x

Summary
The solution(s) found are the following

(1)y = x(ln (x)− c1 − 2)
ln (x)− c1
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Figure 39: Slope field plot

Verification of solutions

y = x(ln (x)− c1 − 2)
ln (x)− c1

Verified OK.

1.13.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + y2

2x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 1
2 + y2

2x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 1
2 , f1(x) = 0 and f2(x) = 1

2x2 . Let

y = −u′

f2u

= −u′

u
2x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x3

f1f2 = 0

f 2
2 f0 =

1
8x4

Substituting the above terms back in equation (2) gives

u′′(x)
2x2 + u′(x)

x3 + u(x)
8x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)√
x

The above shows that

u′(x) = −c2 ln (x) + c1 − 2c2
2x 3

2

Using the above in (1) gives the solution

y = (c2 ln (x) + c1 − 2c2)x
c1 + c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (ln (x) + c3 − 2)x
c3 + ln (x)
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Summary
The solution(s) found are the following

(1)y = (ln (x) + c3 − 2)x
c3 + ln (x)

Figure 40: Slope field plot

Verification of solutions

y = (ln (x) + c3 − 2)x
c3 + ln (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)/(2*x^2),y(x), singsol=all)� �

y(x) = x(ln (x) + c1 − 2)
ln (x) + c1

3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 29� �
DSolve[y'[x]==(x^2+y[x]^2)/(2*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 2 + 2c1)
log(x) + 2c1

y(x) → x
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1.14 problem 2(d)
1.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 152
1.14.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 153
1.14.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 154
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1.14.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 159
1.14.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 163

Internal problem ID [3015]
Internal file name [OUTPUT/2507_Sunday_June_05_2022_03_17_14_AM_17946256/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = x

With initial conditions

[y(−1) = −1]

1.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 1
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Hence the ode is

y′ − y

x
= 1

The domain of p(x) = − 1
x
is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

1.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µy) = µ

d
dx

(y
x

)
= 1

x

d
(y
x

)
= 1

x
dx

Integrating gives

y

x
=
∫ 1

x
dx

y

x
= ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x+ ln (x)x

which simplifies to

y = x(ln (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = −1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = −iπx+ ln (x)x+ x

Summary
The solution(s) found are the following

(1)y = −iπx+ ln (x)x+ x

Verification of solutions

y = −iπx+ ln (x)x+ x

Verified OK.

1.14.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = x

Integrating both sides gives

u(x) =
∫ 1

x
dx

= ln (x) + c2

Therefore the solution y is

y = ux

= x(ln (x) + c2)

Initial conditions are used to solve for c2. Substituting x = −1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c2

c2 = −iπ + 1
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Substituting c2 found above in the general solution gives

y = −iπx+ ln (x)x+ x

Summary
The solution(s) found are the following

(1)y = −iπx+ ln (x)x+ x

Verification of solutions

y = −iπx+ ln (x)x+ x

Verified OK.

1.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= ln (x) + c1

Which simplifies to
y

x
= ln (x) + c1

Which gives

y = x(ln (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x
x

dS
dR

= 1
R

R = x

S = y

x

Initial conditions are used to solve for c1. Substituting x = −1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1
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c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = −iπx+ ln (x)x+ x

Summary
The solution(s) found are the following

(1)y = −iπx+ ln (x)x+ x

Verification of solutions

y = −iπx+ ln (x)x+ x

Verified OK.

1.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (y + x) dx
(−y − x) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − x

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y − x)

= −1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2 (−y − x)

= −y − x

x2

And

N = µN

= 1
x2 (x)

= 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y − x

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

161



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y − x

x2 dx

(3)φ = y

x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y

x
− ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y

x
− ln (x)

The solution becomes
y = x(ln (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = −1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = −iπx+ ln (x)x+ x

Summary
The solution(s) found are the following

(1)y = −iπx+ ln (x)x+ x

Verification of solutions

y = −iπx+ ln (x)x+ x

Verified OK.

1.14.6 Maple step by step solution

Let’s solve
[xy′ − y = x, y(−1) = −1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= 1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
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µ′(x) = −µ(x)
x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫ 1

x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(ln (x) + c1)
• Use initial condition y(−1) = −1

−1 = −Iπ − c1

• Solve for c1
c1 = −Iπ + 1

• Substitute c1 = −Iπ + 1 into general solution and simplify
y = (ln (x)− Iπ + 1)x

• Solution to the IVP
y = (ln (x)− Iπ + 1)x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([x*diff(y(x),x)=x+y(x),y(-1) = -1],y(x), singsol=all)� �

y(x) = (ln (x) + 1− iπ)x

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 16� �
DSolve[{x*y'[x]==x+y[x],y[-1]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− iπ + 1)
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1.15 problem 2(e)
1.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 166
1.15.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 167
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1.15.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 178

Internal problem ID [3016]
Internal file name [OUTPUT/2508_Sunday_June_05_2022_03_17_16_AM_91803760/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

e−y +
(
x2 + 1

)
y′ = 0

With initial conditions

[y(0) = 0]

1.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − e−y

x2 + 1

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
− e−y

x2 + 1

)
= e−y

x2 + 1

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − e−y

x2 + 1

Where f(x) = − 1
x2+1 and g(y) = e−y. Integrating both sides gives

1
e−y

dy = − 1
x2 + 1 dx∫ 1

e−y
dy =

∫
− 1
x2 + 1 dx

ey = − arctan (x) + c1

Which results in

y = − ln
(
− 1
arctan (x)− c1

)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln
(
1
c1

)

c1 = 1

Substituting c1 found above in the general solution gives

y = − ln
(
− 1
arctan (x)− 1

)
Summary
The solution(s) found are the following

(1)y = − ln
(
− 1
arctan (x)− 1

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln
(
− 1
arctan (x)− 1

)
Verified OK.
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1.15.3 Solving as first order special form ID 1 ode

Writing the ode as

y′ = − e−y

x2 + 1 (1)

And using the substitution u = ey then

u′ = y′ey

The above shows that

y′ = u′(x) e−y

= u′(x)
u

Substituting this in (1) gives

u′(x)
u

= − 1
(x2 + 1)u

The above simplifies to

u′(x) = − 1
x2 + 1 (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

− 1
x2 + 1 dx

= − arctan (x) + c1

Substituting the solution found for u(x) in u = ey gives

y = ln (u(x))
= ln (− arctan (x) + c1)
= ln (− arctan (x) + c1)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (c1)

c1 = 1
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Substituting c1 found above in the general solution gives

y = ln (− arctan (x) + 1)

Summary
The solution(s) found are the following

(1)y = ln (− arctan (x) + 1)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (− arctan (x) + 1)

Verified OK.

1.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − e−y

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x2 − 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x2 − 1dx

Which results in

S = − arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − e−y

x2 + 1
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ey (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

172



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctan (x) = ey + c1

Which simplifies to

− arctan (x) = ey + c1

Which gives

y = ln (− arctan (x)− c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − e−y

x2+1
dS
dR

= eR

R = y

S = − arctan (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (−c1)
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c1 = −1

Substituting c1 found above in the general solution gives

y = ln (− arctan (x) + 1)

Summary
The solution(s) found are the following

(1)y = ln (− arctan (x) + 1)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (− arctan (x) + 1)

Verified OK.

1.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−ey) dy =
(

1
x2 + 1

)
dx(

− 1
x2 + 1

)
dx+(−ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = −ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x
(−ey)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −ey. Therefore equation (4) becomes

(5)−ey = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −ey

= −ey

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−ey) dy

f(y) = −ey + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x)− ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x)− ey

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−1 = c1

c1 = −1

Substituting c1 found above in the general solution gives

− arctan (x)− ey = −1

Solving for y from the above gives

y = ln (− arctan (x) + 1)

Summary
The solution(s) found are the following

(1)y = ln (− arctan (x) + 1)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = ln (− arctan (x) + 1)

Verified OK.

1.15.6 Maple step by step solution

Let’s solve
[e−y + (x2 + 1) y′ = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

e−y = − 1
x2+1

• Integrate both sides with respect to x∫
y′

e−y dx =
∫
− 1

x2+1dx+ c1

• Evaluate integral
1

e−y = − arctan (x) + c1

• Solve for y

y = − ln
(
− 1

arctan(x)−c1

)
• Use initial condition y(0) = 0

0 = − ln
(

1
c1

)
• Solve for c1

c1 = 1
• Substitute c1 = 1 into general solution and simplify

y = − ln
(
− 1

arctan(x)−1

)
• Solution to the IVP

y = − ln
(
− 1

arctan(x)−1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 11� �
dsolve([exp(-y(x))+(1+x^2)*diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)� �

y(x) = ln (− arctan (x) + 1)

3 Solution by Mathematica
Time used: 0.391 (sec). Leaf size: 12� �
DSolve[{Exp[-y[x]]+(1+x^2)*y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(1− arctan(x))
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1.16 problem 2(f)
1.16.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 180
1.16.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 181
1.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 182

Internal problem ID [3017]
Internal file name [OUTPUT/2509_Sunday_June_05_2022_03_17_18_AM_43139761/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = ex sin (x)

With initial conditions

[y(0) = 0]

1.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0
q(x) = ex sin (x)

Hence the ode is

y′ = ex sin (x)
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = ex sin (x) is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.16.2 Solving as quadrature ode

Integrating both sides gives

y =
∫

ex sin (x) dx

= −cos (x) ex
2 + ex sin (x)

2 + c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 −
1
2

c1 =
1
2

Substituting c1 found above in the general solution gives

y = −cos (x) ex
2 + ex sin (x)

2 + 1
2

Summary
The solution(s) found are the following

(1)y = −cos (x) ex
2 + ex sin (x)

2 + 1
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −cos (x) ex
2 + ex sin (x)

2 + 1
2

Verified OK.

1.16.3 Maple step by step solution

Let’s solve
[y′ = ex sin (x) , y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
ex sin (x) dx+ c1

• Evaluate integral
y = − cos(x)ex

2 + ex sin(x)
2 + c1

• Solve for y
y = − cos(x)ex

2 + ex sin(x)
2 + c1

• Use initial condition y(0) = 0
0 = c1 − 1

2

182



• Solve for c1
c1 = 1

2

• Substitute c1 = 1
2 into general solution and simplify

y = 1
2 +

(− cos(x)+sin(x))ex
2

• Solution to the IVP
y = 1

2 +
(− cos(x)+sin(x))ex

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)=exp(x)*sin(x),y(0) = 0],y(x), singsol=all)� �

y(x) = 1
2 + ex(sin (x)− cos (x))

2

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24� �
DSolve[{y'[x]==Exp[x]*Sin[x],y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(e

x sin(x)− ex cos(x) + 1)
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1.17 problem 2(g)
1.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 184
1.17.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 185
1.17.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 187
1.17.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 191
1.17.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 195

Internal problem ID [3018]
Internal file name [OUTPUT/2510_Sunday_June_05_2022_03_17_20_AM_75488550/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(g).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − 3y = e3x + e−3x

With initial conditions

[y(5) = 5]

1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −3
q(x) = e3x + e−3x
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Hence the ode is

y′ − 3y = e3x + e−3x

The domain of p(x) = −3 is
{−∞ < x < ∞}

And the point x0 = 5 is inside this domain. The domain of q(x) = e3x + e−3x is

{−∞ < x < ∞}

And the point x0 = 5 is also inside this domain. Hence solution exists and is unique.

1.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
(−3)dx

= e−3x

The ode becomes
d
dx(µy) = (µ)

(
e3x + e−3x)

d
dx
(
e−3xy

)
=
(
e−3x) (e3x + e−3x)

d
(
e−3xy

)
=
(
e−6x + 1

)
dx

Integrating gives

e−3xy =
∫

e−6x + 1dx

e−3xy = x− e−6x

6 + c1

Dividing both sides by the integrating factor µ = e−3x results in

y = e3x
(
x− e−6x

6

)
+ c1e3x

which simplifies to

y = (x+ c1) e3x −
e−3x

6
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Initial conditions are used to solve for c1. Substituting x = 5 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = e15c1 + 5 e15 − e−15

6

c1 = −(30 e15 − e−15 − 30) e−15

6

Substituting c1 found above in the general solution gives

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Summary
The solution(s) found are the following

(1)y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Verified OK.
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1.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3y + e3x + e−3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e3x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e3xdy

Which results in

S = e−3xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3y + e3x + e−3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −3 e−3xy

Sy = e−3x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−6x + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−6R + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−6R

6 +R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−3xy = −e−6x

6 + x+ c1

Which simplifies to

e−3xy = −e−6x

6 + x+ c1

Which gives

y = −(e−6x − 6c1 − 6x) e3x
6
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3y + e3x + e−3x dS
dR

= e−6R + 1

R = x

S = e−3xy

Initial conditions are used to solve for c1. Substituting x = 5 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = e15c1 + 5 e15 − e−15

6

c1 = −(30 e15 − e−15 − 30) e−15

6

Substituting c1 found above in the general solution gives

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Summary
The solution(s) found are the following

(1)y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Verified OK.

1.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
3y + e3x + e−3x) dx(

−3y − e3x − e−3x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y − e3x − e−3x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3y − e3x − e−3x)

= −3

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−3)− (0))
= −3
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−3 dx

The result of integrating gives

µ = e−3x

= e−3x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−3x(−3y − e3x − e−3x)
=
(
−e6x − 3y e3x − 1

)
e−6x

And

N = µN

= e−3x(1)
= e−3x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−e6x − 3y e3x − 1
)
e−6x)+ (e−3x) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−e6x − 3y e3x − 1

)
e−6x dx

(3)φ = −x+ e−6x

6 + e−3xy + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−3x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−3x. Therefore equation (4) becomes

(5)e−3x = e−3x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ e−6x

6 + e−3xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ e−6x

6 + e−3xy

The solution becomes

y = −(e−6x − 6c1 − 6x) e3x
6

Initial conditions are used to solve for c1. Substituting x = 5 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = e15c1 + 5 e15 − e−15

6

c1 = −(30 e15 − e−15 − 30) e−15

6
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Substituting c1 found above in the general solution gives

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Summary
The solution(s) found are the following

(1)y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x e3x − 5 e3x + e3x−30

6 + 5 e3x−15 − e−3x

6

Verified OK.

1.17.5 Maple step by step solution

Let’s solve
[y′ − 3y = e3x + e−3x, y(5) = 5]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = 3y + e3x + e−3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 3y = e3x + e−3x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 3y) = µ(x) (e3x + e−3x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − 3y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −3µ(x)

• Solve to find the integrating factor
µ(x) = e−3x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (e3x + e−3x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (e3x + e−3x) dx+ c1

• Solve for y

y =
∫
µ(x)

(
e3x+e−3x)dx+c1

µ(x)

• Substitute µ(x) = e−3x

y =
∫ (

e3x+e−3x)e−3xdx+c1
e−3x

• Evaluate the integrals on the rhs

y =
x− 1

6(ex)6
+c1

e−3x

• Simplify
y = (x+ c1) e3x − e−3x

6

• Use initial condition y(5) = 5
5 = (c1 + 5) e15 − e−15

6

• Solve for c1
c1 = −30 e15−e−15−30

6 e15

• Substitute c1 = −30e15−e−15−30
6e15 into general solution and simplify

y = e3x−30

6 + 5 e3x−15 + (x− 5) e3x − e−3x

6
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• Solution to the IVP
y = e3x−30

6 + 5 e3x−15 + (x− 5) e3x − e−3x

6

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 31� �
dsolve([diff(y(x),x)-3*y(x)=exp(3*x)+exp(-3*x),y(5) = 5],y(x), singsol=all)� �

y(x) = e3x−30

6 + 5 e3x−15 + (x− 5) e3x − e−3x

6

3 Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 48� �
DSolve[{y'[x]-3*y[x]==Exp[3*x]+Exp[-3*x],y[5]==5},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6e

−3(x+10)(6e6(x+5)(x− 5) + e6x + 30e6x+15 − e30
)
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1.18 problem 2(h)
1.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 198
1.18.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 199
1.18.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 200

Internal problem ID [3019]
Internal file name [OUTPUT/2511_Sunday_June_05_2022_03_17_23_AM_72583526/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(h).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = x+ 1
x

With initial conditions

[y(−2) = 5]

1.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0

q(x) = x2 + 1
x

Hence the ode is

y′ = x2 + 1
x
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = −2 is inside this domain. The domain of q(x) = x2+1
x

is

{x < 0∨ 0 < x}

And the point x0 = −2 is also inside this domain. Hence solution exists and is unique.

1.18.2 Solving as quadrature ode

Integrating both sides gives

y =
∫

x2 + 1
x

dx

= ln (x) + x2

2 + c1

Initial conditions are used to solve for c1. Substituting x = −2 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = ln (2) + iπ + 2 + c1

c1 = −iπ − ln (2) + 3

Substituting c1 found above in the general solution gives

y = ln (x) + x2

2 − iπ − ln (2) + 3

Summary
The solution(s) found are the following

(1)y = ln (x) + x2

2 − iπ − ln (2) + 3

Verification of solutions

y = ln (x) + x2

2 − iπ − ln (2) + 3

Verified OK.
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1.18.3 Maple step by step solution

Let’s solve[
y′ = x+ 1

x
, y(−2) = 5

]
• Highest derivative means the order of the ODE is 1

y′

• Integrate both sides with respect to x∫
y′dx =

∫ (
x+ 1

x

)
dx+ c1

• Evaluate integral
y = ln (x) + x2

2 + c1

• Solve for y
y = ln (x) + x2

2 + c1

• Use initial condition y(−2) = 5
5 = ln (2) + Iπ + 2 + c1

• Solve for c1
c1 = −Iπ − ln (2) + 3

• Substitute c1 = −Iπ − ln (2) + 3 into general solution and simplify
y = ln (x) + x2

2 − Iπ − ln (2) + 3

• Solution to the IVP
y = ln (x) + x2

2 − Iπ − ln (2) + 3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 21� �
dsolve([diff(y(x),x)=x+1/x,y(-2) = 5],y(x), singsol=all)� �

y(x) = x2

2 + ln (x) + 3− ln (2)− iπ

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25� �
DSolve[{y'[x]==x+1/x,y[-2]==5},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + log
(x
2

)
− iπ + 3
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1.19 problem 2(i)
1.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 202
1.19.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 203
1.19.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 205
1.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 209
1.19.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 213

Internal problem ID [3020]
Internal file name [OUTPUT/2512_Sunday_June_05_2022_03_17_25_AM_82627847/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + 2y = (2 + 3x) e3x

With initial conditions

[y(1) = 1]

1.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = e3x(2 + 3x)
x
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Hence the ode is

y′ + 2y
x

= e3x(2 + 3x)
x

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = e3x(2+3x)
x

is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

1.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
e3x(2 + 3x)

x

)
d
dx
(
x2y
)
=
(
x2)(e3x(2 + 3x)

x

)
d
(
x2y
)
=
(
e3x(2 + 3x)x

)
dx

Integrating gives

x2y =
∫

e3x(2 + 3x)x dx

x2y = x2e3x + c1

Dividing both sides by the integrating factor µ = x2 results in

y = e3x + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e3 + c1
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c1 = 1− e3

Substituting c1 found above in the general solution gives

y = x2e3x − e3 + 1
x2

Summary
The solution(s) found are the following

(1)y = x2e3x − e3 + 1
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2e3x − e3 + 1
x2

Verified OK.
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1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x e3x + 2 e3x − 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = x2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x e3x + 2 e3x − 2y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e3x(2 + 3x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e3R(2 + 3R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e3RR2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = x2e3x + c1

Which simplifies to

x2y = x2e3x + c1

Which gives

y = x2e3x + c1
x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x e3x+2 e3x−2y
x

dS
dR

= e3R(2 + 3R)R

R = x

S = x2y

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e3 + c1

c1 = 1− e3

Substituting c1 found above in the general solution gives

y = x2e3x − e3 + 1
x2

Summary
The solution(s) found are the following

(1)y = x2e3x − e3 + 1
x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2e3x − e3 + 1
x2

Verified OK.

1.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy =
(
−2y + (2 + 3x) e3x

)
dx(

2y − (2 + 3x) e3x
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y − (2 + 3x) e3x

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y − (2 + 3x) e3x

)
= 2

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2)− (1))

= 1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
2y − (2 + 3x) e3x

)
=
(
−3x2 − 2x

)
e3x + 2xy

And

N = µN

= x(x)
= x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−3x2 − 2x
)
e3x + 2xy

)
+
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−3x2 − 2x

)
e3x + 2xy dx

(3)φ = x2(−e3x + y
)
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2(−e3x + y
)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2(−e3x + y
)

The solution becomes

y = x2e3x + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e3 + c1

c1 = 1− e3

Substituting c1 found above in the general solution gives

y = x2e3x − e3 + 1
x2
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Summary
The solution(s) found are the following

(1)y = x2e3x − e3 + 1
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2e3x − e3 + 1
x2

Verified OK.

1.19.5 Maple step by step solution

Let’s solve
[xy′ + 2y = (2 + 3x) e3x, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −2y
x
+ e3x(2+3x)

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + 2y
x
= e3x(2+3x)

x
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2y

x

)
= µ(x)e3x(2+3x)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)e3x(2+3x)
x

dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)e3x(2+3x)

x
dx+ c1

• Solve for y

y =
∫ µ(x)e3x(2+3x)

x
dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
e3x(2+3x)xdx+c1

x2

• Evaluate the integrals on the rhs
y = x2e3x+c1

x2

• Use initial condition y(1) = 1
1 = e3 + c1

• Solve for c1
c1 = 1− e3

• Substitute c1 = 1− e3 into general solution and simplify
y = x2e3x−e3+1

x2

• Solution to the IVP
y = x2e3x−e3+1

x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 19� �
dsolve([x*diff(y(x),x)+2*y(x)=(3*x+2)*exp(3*x),y(1) = 1],y(x), singsol=all)� �

y(x) = x2e3x − e3 + 1
x2

3 Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 22� �
DSolve[{x*y'[x]+2*y[x]==(3*x+2)*Exp[3*x],y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e3

x2 + 1
x2 + e3x
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1.20 problem 2(j)
1.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 216
1.20.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 217
1.20.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 219
1.20.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 224

Internal problem ID [3021]
Internal file name [OUTPUT/2513_Sunday_June_05_2022_03_17_27_AM_79562150/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(j).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2 sin (3x) sin (2y) y′ − 3 cos (3x) cos (2y) = 0

With initial conditions [
y
( π

12

)
= π

8

]
1.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3 cos (3x) cos (2y)
2 sin (3x) sin (2y)

The x domain of f(x, y) when y = π
8 is

{
x <

π_Z155
3 ∨ π_Z155

3 < x

}
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And the point x0 = π
12 is inside this domain. The y domain of f(x, y) when x = π

12 is{
y <

π_Z156
2 ∨ π_Z156

2 < y

}
And the point y0 = π

8 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3 cos (3x) cos (2y)
2 sin (3x) sin (2y)

)
= −3 cos (3x)

sin (3x) − 3 cos (3x) cos (2y)2

sin (3x) sin (2y)2

The x domain of ∂f
∂y

when y = π
8 is

{
x <

π_Z155
3 ∨ π_Z155

3 < x

}

And the point x0 = π
12 is inside this domain. The y domain of ∂f

∂y
when x = π

12 is

{
y <

π_Z156
2 ∨ π_Z156

2 < y

}
And the point y0 = π

8 is inside this domain. Therefore solution exists and is unique.

1.20.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3 cos (3x) cot (2y)
2 sin (3x)

Where f(x) = 3 cos(3x)
2 sin(3x) and g(y) = cot (2y). Integrating both sides gives

1
cot (2y) dy = 3 cos (3x)

2 sin (3x) dx∫ 1
cot (2y) dy =

∫ 3 cos (3x)
2 sin (3x) dx

− ln (cos (2y))
2 = ln (sin (3x))

2 + c1
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Raising both side to exponential gives
1√

cos (2y)
= e

ln(sin(3x))
2 +c1

Which simplifies to
1√

cos (2y)
= c2

√
sin (3x)

Initial conditions are used to solve for c1. Substituting x = π
12 and y = π

8 in the above
solution gives an equation to solve for the constant of integration.

π

8 = π

4 −
arcsin

(√
2 e−2c1
c22

)
2

c1 = −
ln
(

c22
2

)
2

Substituting c1 found above in the general solution gives

y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

Summary
The solution(s) found are the following

(1)y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

Verified OK.

1.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3 cos (3x) cos (2y)
2 sin (3x) sin (2y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 2 sin (3x)
3 cos (3x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

2 sin(3x)
3 cos(3x)

dx

Which results in

S = ln (sin (3x))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3 cos (3x) cos (2y)
2 sin (3x) sin (2y)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 3 cot (3x)
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (2y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (2R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
ln
(
1 + tan (2R)2

)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (sin (3x))
2 =

ln
(
1 + tan (2y)2

)
4 + c1

Which simplifies to

ln (sin (3x))
2 − ln (sec (2y))

2 − c1 = 0

Which gives

y = arcsec (sin (3x) e−2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3 cos(3x) cos(2y)
2 sin(3x) sin(2y)

dS
dR

= tan (2R)

R = y

S = ln (sin (3x))
2
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Initial conditions are used to solve for c1. Substituting x = π
12 and y = π

8 in the above
solution gives an equation to solve for the constant of integration.

π

8 = π

4 −
arcsin

(√
2 e2c1

)
2

c1 = − ln (2)
2

Substituting c1 found above in the general solution gives

y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

Summary
The solution(s) found are the following

(1)y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

4 −
arcsin

(
1

2 sin(3x)

)
2

Verified OK.
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1.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2 sin (2y)
3 cos (2y)

)
dy =

(
cos (3x)
sin (3x)

)
dx(

−cos (3x)
sin (3x)

)
dx+

(
2 sin (2y)
3 cos (2y)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −cos (3x)
sin (3x)

N(x, y) = 2 sin (2y)
3 cos (2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−cos (3x)
sin (3x)

)
= 0

And
∂N

∂x
= ∂

∂x

(
2 sin (2y)
3 cos (2y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−cos (3x)
sin (3x) dx

(3)φ = − ln (sin (3x))
3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 2 sin(2y)
3 cos(2y) . Therefore equation (4) becomes

(5)2 sin (2y)
3 cos (2y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2 sin (2y)
3 cos (2y)

= 2 tan (2y)
3

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (2 tan (2y)
3

)
dy

f(y) =
ln
(
1 + tan (2y)2

)
6 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (3x))
3 +

ln
(
1 + tan (2y)2

)
6 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (3x))
3 +

ln
(
1 + tan (2y)2

)
6

Initial conditions are used to solve for c1. Substituting x = π
12 and y = π

8 in the above
solution gives an equation to solve for the constant of integration.

ln (2)
3 = c1

c1 =
ln (2)
3
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Substituting c1 found above in the general solution gives

− ln (sin (3x))
3 +

ln
(
1 + tan (2y)2

)
6 = ln (2)

3

Solving for y from the above gives

y = arcsec (2 sin (3x))
2

Summary
The solution(s) found are the following

(1)y = arcsec (2 sin (3x))
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = arcsec (2 sin (3x))
2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.359 (sec). Leaf size: 17� �
dsolve([2*sin(3*x)*sin(2*y(x))*diff(y(x),x)-3*cos(3*x)*cos(2*y(x))=0,y(1/12*Pi) = 1/8*Pi],y(x), singsol=all)� �

y(x) = π

4 −
arctan

(
1√

1−2 cos(6x)

)
2

3 Solution by Mathematica
Time used: 6.727 (sec). Leaf size: 18� �
DSolve[{2*Sin[3*x]*Sin[2*y[x]]*y'[x]-3*Cos[3*x]*Cos[2*y[x]]==0,y[Pi/12]==Pi/8},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 arccos

(
1
2 csc(3x)

)
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1.21 problem 2(k)
1.21.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 229
1.21.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 230
1.21.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 232
1.21.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 237
1.21.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 240

Internal problem ID [3022]
Internal file name [OUTPUT/2514_Sunday_June_05_2022_03_17_31_AM_74195310/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(k).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ − (x+ 1) (y + 1) = 0

With initial conditions

[y(1) = 1]

1.21.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= xy + x+ y + 1
xy

The x domain of f(x, y) when y = 1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
xy + x+ y + 1

xy

)
= x+ 1

xy
− xy + x+ y + 1

x y2

The x domain of ∂f
∂y

when y = 1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.21.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1) (y + 1)
xy

Where f(x) = x+1
x

and g(y) = y+1
y
. Integrating both sides gives

1
y+1
y

dy = x+ 1
x

dx

∫ 1
y+1
y

dy =
∫

x+ 1
x

dx

y − ln (y + 1) = x+ ln (x) + c1

Which results in

y = −LambertW
(
−e−1−x−c1

x

)
− 1
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Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. The solution becomes

y = −LambertW
(
−e−x−1

c1x

)
− 1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −LambertW
(
−e−2

c1

)
− 1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = −LambertW
(
−2 e−x−1

x

)
− 1

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

Verified OK.

1.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy + x+ y + 1
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x+1

dx

Which results in

S = x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy + x+ y + 1
xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x+ ln (x) = y − ln (y + 1) + c1

Which simplifies to

x+ ln (x) = y − ln (y + 1) + c1

Which gives

y = −LambertW
(
−e−x−1+c1

x

)
− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy+x+y+1
xy

dS
dR

= R
R+1

R = y

S = x+ ln (x)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −LambertW
(
−e−2+c1

)
− 1
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c1 = ln (2)

Substituting c1 found above in the general solution gives

y = −LambertW
(
−2 e−x−1

x

)
− 1

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

Verified OK.
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1.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

y + 1

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
y

y + 1

)
dy = 0 (2A)

237



Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = y

y + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0

And
∂N

∂x
= ∂

∂x

(
y

y + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

238



But equation (2) says that ∂φ
∂y

= y
y+1 . Therefore equation (4) becomes

(5)y

y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

y + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

y + 1

)
dy

f(y) = y − ln (y + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + y − ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + y − ln (y + 1)

The solution becomes

y = −LambertW
(
−e−1−x−c1

x

)
− 1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −LambertW
(
−e−c1−2)− 1

c1 = − ln (2)
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Substituting c1 found above in the general solution gives

y = −LambertW
(
−2 e−x−1

x

)
− 1

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −LambertW
(
−1,−2 e−x−1

x

)
− 1

Verified OK.

1.21.5 Maple step by step solution

Let’s solve
[xyy′ − (x+ 1) (y + 1) = 0, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′y
y+1 = x+1

x

• Integrate both sides with respect to x∫
y′y
y+1dx =

∫
x+1
x
dx+ c1

• Evaluate integral
y − ln (y + 1) = x+ ln (x) + c1

• Solve for y

y = −LambertW
(
− e−1−x−c1

x

)
− 1

• Use initial condition y(1) = 1
1 = −LambertW (−e−c1−2)− 1

• Solve for c1
c1 = − ln (2)

• Substitute c1 = − ln (2) into general solution and simplify

y = −LambertW
(
−2 e−x−1

x

)
− 1

• Solution to the IVP

y = −LambertW
(
−2 e−x−1

x

)
− 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 21� �
dsolve([x*y(x)*diff(y(x),x)=(x+1)*(y(x)+1),y(1) = 1],y(x), singsol=all)� �

y(x) = −LambertW
(
−1,−2 e−x−1

x

)
− 1

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{x*y[x]*y'[x]==(x+1)*(y[x]+1),y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �
{}
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1.22 problem 2(L)
1.22.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 243
1.22.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 244
1.22.3 Solving as first order ode lie symmetry calculated ode . . . . . . 245

Internal problem ID [3023]
Internal file name [OUTPUT/2515_Sunday_June_05_2022_03_17_33_AM_12604559/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(L).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2x− y

y + 2x = 0

With initial conditions

[y(2) = 2]

1.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −−2x+ y

2x+ y

The x domain of f(x, y) when y = 2 is

{x < −1∨−1 < x}
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And the point x0 = 2 is inside this domain. The y domain of f(x, y) when x = 2 is

{y < −4∨−4 < y}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y

(
−−2x+ y

2x+ y

)
= − 1

2x+ y
+ −2x+ y

(2x+ y)2

The x domain of ∂f
∂y

when y = 2 is

{x < −1∨−1 < x}

And the point x0 = 2 is inside this domain. The y domain of ∂f
∂y

when x = 2 is

{y < −4∨−4 < y}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

1.22.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2x− u(x)x
u (x)x+ 2x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 3u− 2
x (u+ 2)

Where f(x) = − 1
x
and g(u) = u2+3u−2

u+2 . Integrating both sides gives

1
u2+3u−2

u+2
du = −1

x
dx

∫ 1
u2+3u−2

u+2
du =

∫
−1
x
dx

ln (u2 + 3u− 2)
2 −

√
17 arctanh

(
(2u+3)

√
17

17

)
17 = − ln (x) + c2
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The solution is

ln
(
u(x)2 + 3u(x)− 2

)
2 −

√
17 arctanh

(
(2u(x)+3)

√
17

17

)
17 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 3y
x
− 2
)

2 −

√
17 arctanh

((
2y
x
+3

)√
17

17

)
17 + ln (x)− c2 = 0

ln
(

y2

x2 + 3y
x
− 2
)

2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17 + ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = 3 ln(2)
2 −

√
17 arctanh

(
5
√
17

17

)
17 .

Hence the solution becomes

Summary
The solution(s) found are the following

(1)

ln
(

y2

x2 + 3y
x
− 2
)

2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

+ ln (x)− 3 ln (2)
2 +

√
17 arctanh

(
5
√
17

17

)
17 = 0

Verification of solutions

ln
(

y2

x2 + 3y
x
− 2
)

2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

+ ln (x)− 3 ln (2)
2 +

√
17 arctanh

(
5
√
17

17

)
17 = 0

Verified OK.

1.22.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2x+ y

2x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2x+ y) (b3 − a2)

2x+ y
− (−2x+ y)2 a3

(2x+ y)2

−
(

2
2x+ y

+ −4x+ 2y
(2x+ y)2

)
(xa2 + ya3 + a1)

−
(
− 1
2x+ y

+ −2x+ y

(2x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x2a2 + 4x2a3 − 8x2b2 − 4x2b3 + 4xya2 − 4xya3 − 4xyb2 − 4xyb3 − y2a2 + 5y2a3 − y2b2 + y2b3 − 4xb1 + 4ya1
(2x+ y)2

= 0

Setting the numerator to zero gives

(6E)−4x2a2 − 4x2a3 + 8x2b2 + 4x2b3 − 4xya2 + 4xya3 + 4xyb2
+ 4xyb3 + y2a2 − 5y2a3 + y2b2 − y2b3 + 4xb1 − 4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−4a2v21 − 4a2v1v2 + a2v
2
2 − 4a3v21 + 4a3v1v2 − 5a3v22 + 8b2v21

+ 4b2v1v2 + b2v
2
2 + 4b3v21 + 4b3v1v2 − b3v

2
2 − 4a1v2 + 4b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a2 − 4a3 + 8b2 + 4b3) v21 + (−4a2 + 4a3 + 4b2 + 4b3) v1v2
+ 4b1v1 + (a2 − 5a3 + b2 − b3) v22 − 4a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4b1 = 0

−4a2 − 4a3 + 8b2 + 4b3 = 0
−4a2 + 4a3 + 4b2 + 4b3 = 0

a2 − 5a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 3a3 + b3

a3 = a3

b1 = 0
b2 = 2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−2x+ y

2x+ y

)
(x)

= −2x2 + 3xy + y2

2x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2+3xy+y2

2x+y

dy

Which results in

S = ln (−2x2 + 3xy + y2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x+ y

2x+ y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x− y

2x2 − 3xy − y2

Sy =
−2x− y

2x2 − 3xy − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 3yx− 2x2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17 = c1

Which simplifies to

ln (y2 + 3yx− 2x2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x+y
2x+y

dS
dR

= 0

R = x

S = ln (−2x2 + 3xy + y2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

Initial conditions are used to solve for c1. Substituting x = 2 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

3 ln (2)
2 −

√
17 arccoth

(
5
√
17

17

)
17 + i

√
17 π
34 = c1

c1 =
3 ln (2)

2 −

√
17 arccoth

(
5
√
17

17

)
17 + i

√
17π
34

Substituting c1 found above in the general solution gives

ln (−2x2 + 3xy + y2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17 = 3 ln (2)

2 −

√
17 arccoth

(
5
√
17

17

)
17 + i

√
17 π
34

Summary
The solution(s) found are the following

(1)
ln (y2 + 3yx− 2x2)

2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

= 3 ln (2)
2 −

√
17 arccoth

(
5
√
17

17

)
17 + i

√
17π
34
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Verification of solutions

ln (y2 + 3yx− 2x2)
2 −

√
17 arctanh

(
(3x+2y)

√
17

17x

)
17

= 3 ln (2)
2 −

√
17 arccoth

(
5
√
17

17

)
17 + i

√
17π
34

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 2.297 (sec). Leaf size: 66� �
dsolve([diff(y(x),x)=(2*x-y(x))/(2*x+y(x)),y(2) = 2],y(x), singsol=all)� �

y(x) = RootOf
(
−2

√
17 arctanh

(
5
√
17

17

)
+ 2

√
17 arctanh

(
(3x+ 2_Z)

√
17

17x

)

+ 51 ln (2)− 34 ln (x)− 17 ln
(
_Z2 + 3x_Z− 2x2

x2

))
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3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 137� �
DSolve[{y'[x]==(2*x-y[x])/(2*x+y[x]),y[2]==2},y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
34

((
17 +

√
17
)
log
(
−2y(x)

x
+
√
17− 3

)
−
(√

17− 17
)
log
(
2y(x)
x

+
√
17 + 3

))
= − log(x)

+ 1
34i
(
17 +

√
17
)
π + 1

34

(
34 log(2) + 17 log

(
5−

√
17
)

+
√
17 log

(
5−

√
17
)
+ 17 log

(
5 +

√
17
)
−

√
17 log

(
5 +

√
17
))

, y(x)
]
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1.23 problem 2(m)
1.23.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 253
1.23.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 254
1.23.3 Solving as first order ode lie symmetry calculated ode . . . . . . 257

Internal problem ID [3024]
Internal file name [OUTPUT/2516_Sunday_June_05_2022_03_17_42_AM_65814307/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(m).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 3x− y + 1
3y − x+ 5 = 0

With initial conditions

[y(0) = 0]

1.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −−3x+ y − 1
3y − x+ 5

The x domain of f(x, y) when y = 0 is

{x < 5∨ 5 < x}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{
y < −5

3 ∨−5
3 < y

}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−−3x+ y − 1

3y − x+ 5

)
= − 1

3y − x+ 5 + −9x+ 3y − 3
(3y − x+ 5)2

The x domain of ∂f
∂y

when y = 0 is

{x < 5∨ 5 < x}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{
y < −5

3 ∨−5
3 < y

}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.23.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−3X − 3x0 + Y (X) + y0 − 1

3Y (X) + 3y0 −X − x0 + 5

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = −2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−3X + Y (X)

3Y (X)−X

254



In canonical form, the ODE is

Y ′ = F (X,Y )

= −−3X + Y

3Y −X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −3X + Y and N = −3Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u+ 3

3u− 1
du
dX =

−u(X)+3
3u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)+3
3u(X)−1 − u(X)

X
= 0

Or
3
(

d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + 3u(X)2 − 3 = 0

Or
−3 +X(3u(X)− 1)

(
d

dX
u(X)

)
+ 3u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 3(u2 − 1)
X (3u− 1)
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Where f(X) = − 3
X

and g(u) = u2−1
3u−1 . Integrating both sides gives

1
u2−1
3u−1

du = − 3
X

dX

∫ 1
u2−1
3u−1

du =
∫

− 3
X

dX

ln (u− 1) + 2 ln (u+ 1) = −3 ln (X) + c2

Raising both side to exponential gives

eln(u−1)+2 ln(u+1) = e−3 ln(X)+c2

Which simplifies to

(u− 1) (u+ 1)2 = c3
X3

The solution is
(u(X)− 1) (u(X) + 1)2 = c3

X3

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 1
)(

Y (X)
X

+ 1
)2

= c3
X3

Which simplifies to

−(−Y (X) +X) (Y (X) +X)2 = c3

Using the solution for Y (X)

−(−Y (X) +X) (Y (X) +X)2 = c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 2
X = x− 1
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Then the solution in y becomes

−(−y − 1 + x) (y + 3 + x)2 = c3

Initial conditions are used to solve for c3. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

9 = c3

c3 = 9

Substituting c3 found above in the general solution gives

−(x− 1− y) (x+ 3 + y)2 = 9

Summary
The solution(s) found are the following

(1)−(−y − 1 + x) (y + 3 + x)2 = 9
Verification of solutions

−(−y − 1 + x) (y + 3 + x)2 = 9

Verified OK.

1.23.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−3x+ y − 1
3y − x+ 5

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−3x+ y − 1) (b3 − a2)

3y − x+ 5 − (−3x+ y − 1)2 a3
(3y − x+ 5)2

−
(

3
3y − x+ 5 − −3x+ y − 1

(3y − x+ 5)2
)
(xa2 + ya3 + a1)

−
(
− 1
3y − x+ 5 + −9x+ 3y − 3

(3y − x+ 5)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − 9x2a3 + 9x2b2 − 3x2b3 − 18xya2 + 6xya3 − 6xyb2 + 18xyb3 + 3y2a2 − 9y2a3 + 9y2b2 − 3y2b3 − 30xa2 − 6xa3 + 8xb1 − 2xb2 + 14xb3 − 8ya1 + 2ya2 − 14ya3 + 30yb2 + 6yb3 − 16a1 − 5a2 − a3 + 8b1 + 25b2 + 5b3
(−3y + x− 5)2

= 0

Setting the numerator to zero gives

(6E)3x2a2 − 9x2a3 + 9x2b2 − 3x2b3 − 18xya2 + 6xya3 − 6xyb2 + 18xyb3 + 3y2a2
− 9y2a3 + 9y2b2 − 3y2b3 − 30xa2 − 6xa3 + 8xb1 − 2xb2 + 14xb3 − 8ya1
+ 2ya2 − 14ya3 + 30yb2 + 6yb3 − 16a1 − 5a2 − a3 + 8b1 + 25b2 + 5b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21−18a2v1v2+3a2v22−9a3v21+6a3v1v2−9a3v22+9b2v21−6b2v1v2+9b2v22
−3b3v21+18b3v1v2−3b3v22−8a1v2−30a2v1+2a2v2−6a3v1−14a3v2+8b1v1
− 2b2v1 + 30b2v2 + 14b3v1 + 6b3v2 − 16a1 − 5a2 − a3 + 8b1 + 25b2 + 5b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2 − 9a3 + 9b2 − 3b3) v21 + (−18a2 + 6a3 − 6b2 + 18b3) v1v2
+ (−30a2 − 6a3 + 8b1 − 2b2 + 14b3) v1 + (3a2 − 9a3 + 9b2 − 3b3) v22
+(−8a1+2a2−14a3+30b2+6b3) v2−16a1−5a2−a3+8b1+25b2+5b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a2 + 6a3 − 6b2 + 18b3 = 0
3a2 − 9a3 + 9b2 − 3b3 = 0

−8a1 + 2a2 − 14a3 + 30b2 + 6b3 = 0
−30a2 − 6a3 + 8b1 − 2b2 + 14b3 = 0

−16a1 − 5a2 − a3 + 8b1 + 25b2 + 5b3 = 0

Solving the above equations for the unknowns gives

a1 = 2b2 + b3

a2 = b3

a3 = b2

b1 = b2 + 2b3
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 1
η = y + 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 2−
(
−−3x+ y − 1

3y − x+ 5

)
(x+ 1)

= 3x2 − 3y2 + 6x− 12y − 9
−3y + x− 5

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2−3y2+6x−12y−9
−3y+x−5

dy

Which results in

S = ln (y + 1− x)
3 + 2 ln (x+ 3 + y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−3x+ y − 1
3y − x+ 5

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−3 + 3x− 3y + 2

3x+ 9 + 3y

Sy =
−3y + x− 5

3 (x+ 3 + y) (x− 1− y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + 1− x)
3 + 2 ln (y + 3 + x)

3 = c1

Which simplifies to
ln (y + 1− x)

3 + 2 ln (y + 3 + x)
3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−3x+y−1
3y−x+5

dS
dR

= 0

R = x

S = ln (y + 1− x)
3 + 2 ln (x+ 3 + y)

3
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

2 ln (3)
3 = c1

c1 =
2 ln (3)

3

Substituting c1 found above in the general solution gives

ln (y + 1− x)
3 + 2 ln (x+ 3 + y)

3 = 2 ln (3)
3

Summary
The solution(s) found are the following

(1)ln (y + 1− x)
3 + 2 ln (y + 3 + x)

3 = 2 ln (3)
3

Verification of solutions

ln (y + 1− x)
3 + 2 ln (y + 3 + x)

3 = 2 ln (3)
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 2.937 (sec). Leaf size: 84� �
dsolve([diff(y(x),x)=(3*x-y(x)+1)/(3*y(x)-x+5),y(0) = 0],y(x), singsol=all)� �
y(x)

=
(
−324 + 12

√
96x3 + 288x2 + 288x+ 825

) 4
3 − 12

(
−324 + 12

√
96x3 + 288x2 + 288x+ 825

) 2
3 x− 84

(
−324 + 12

√
96x3 + 288x2 + 288x+ 825

) 2
3 + 576x2 + 1152x+ 576

36
(
−324 + 12

√
96x3 + 288x2 + 288x+ 825

) 2
3

3 Solution by Mathematica
Time used: 60.775 (sec). Leaf size: 341� �
DSolve[{y'[x]==(3*x-y[x]+1)/(3*y[x]-x+5),y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
xRoot

[
#16(1024x6 + 6144x5 + 15360x4 + 20480x3 + 15360x2 + 6144x− 58025) + #14(−384x4 − 1536x3 − 2304x2 − 1536x− 384) + #13(64x3 + 192x2 + 192x+ 64) + #12(36x2 + 72x+ 36) + #1(−12x− 12) + 1&, 1

]
− 5Root

[
#16(1024x6 + 6144x5 + 15360x4 + 20480x3 + 15360x2 + 6144x− 58025) + #14(−384x4 − 1536x3 − 2304x2 − 1536x− 384) + #13(64x3 + 192x2 + 192x+ 64) + #12(36x2 + 72x+ 36) + #1(−12x− 12) + 1&, 1

]
− 1

3Root
[
#16 (1024x6 + 6144x5 + 15360x4 + 20480x3 + 15360x2 + 6144x− 58025) + #14 (−384x4 − 1536x3 − 2304x2 − 1536x− 384) + #13 (64x3 + 192x2 + 192x+ 64) + #12 (36x2 + 72x+ 36) + #1(−12x− 12) + 1&, 1

]
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1.24 problem 2(n)
1.24.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 264
1.24.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 265
1.24.3 Solving as first order ode lie symmetry calculated ode . . . . . . 268

Internal problem ID [3025]
Internal file name [OUTPUT/2517_Sunday_June_05_2022_03_17_49_AM_46988216/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(n).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3y + (7y − 3x+ 3) y′ = 7x− 7

With initial conditions

[y(0) = 0]

1.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −3y − 7x+ 7
7y − 3x+ 3

The x domain of f(x, y) when y = 0 is

{x < 1∨ 1 < x}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{
y < −3

7 ∨−3
7 < y

}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−3y − 7x+ 7
7y − 3x+ 3

)
= − 3

7y − 3x+ 3 + 21y − 49x+ 49
(7y − 3x+ 3)2

The x domain of ∂f
∂y

when y = 0 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{
y < −3

7 ∨−3
7 < y

}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.24.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 3Y (X) + 3y0 − 7X − 7x0 + 7

7Y (X) + 7y0 − 3X − 3x0 + 3

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 3Y (X)− 7X

7Y (X)− 3X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −3Y − 7X
7Y − 3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3Y − 7X and N = −7Y + 3X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u+ 7

7u− 3
du
dX =

−3u(X)+7
7u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−3u(X)+7
7u(X)−3 − u(X)

X
= 0

Or
7
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 7u(X)2 − 7 = 0

Or
−7 +X(7u(X)− 3)

(
d

dX
u(X)

)
+ 7u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 7(u2 − 1)
X (7u− 3)
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Where f(X) = − 7
X

and g(u) = u2−1
7u−3 . Integrating both sides gives

1
u2−1
7u−3

du = − 7
X

dX

∫ 1
u2−1
7u−3

du =
∫

− 7
X

dX

2 ln (u− 1) + 5 ln (u+ 1) = −7 ln (X) + c2

Raising both side to exponential gives

e2 ln(u−1)+5 ln(u+1) = e−7 ln(X)+c2

Which simplifies to

(u− 1)2 (u+ 1)5 = c3
X7

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
Using the solution for Y (X)

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4 +

(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2 +

(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 − c3 + 7x− 1

)
Unable to solve for constant of integration due to RootOf in solution.
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Summary
The solution(s) found are the following

(1)

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+1

)
_Z5 +

(
−5x3 +15x2 − 15x+5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

Verification of solutions

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

Verified OK.

1.24.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3y − 7x+ 7
7y − 3x+ 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3y − 7x+ 7) (b3 − a2)

7y − 3x+ 3 − (3y − 7x+ 7)2 a3
(7y − 3x+ 3)2

−
(

7
7y − 3x+ 3 − 3(3y − 7x+ 7)

(7y − 3x+ 3)2
)
(xa2 + ya3 + a1)

−
(
− 3
7y − 3x+ 3 + 21y − 49x+ 49

(7y − 3x+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3 + 21y2a2 − 49y2a3 + 49y2b2 − 21y2b3 − 42xa2 + 98xa3 + 40xb1 − 58xb2 + 42xb3 − 40ya1 + 58ya2 − 42ya3 + 42yb2 − 98yb3 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3
(−7y + 3x− 3)2

= 0

Setting the numerator to zero gives

(6E)21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3
+21y2a2−49y2a3+49y2b2−21y2b3−42xa2+98xa3+40xb1−58xb2+42xb3
−40ya1+58ya2−42ya3+42yb2−98yb3+21a2−49a3−40b1+9b2−21b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
21a2v21 − 98a2v1v2 + 21a2v22 − 49a3v21 + 42a3v1v2 − 49a3v22 + 49b2v21
− 42b2v1v2 + 49b2v22 − 21b3v21 + 98b3v1v2 − 21b3v22 − 40a1v2
− 42a2v1 + 58a2v2 + 98a3v1 − 42a3v2 + 40b1v1 − 58b2v1 + 42b2v2
+ 42b3v1 − 98b3v2 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(21a2 − 49a3 + 49b2 − 21b3) v21 + (−98a2 + 42a3 − 42b2 + 98b3) v1v2
+ (−42a2 + 98a3 + 40b1 − 58b2 + 42b3) v1 + (21a2 − 49a3 + 49b2 − 21b3) v22
+(−40a1+58a2−42a3+42b2−98b3) v2+21a2−49a3−40b1+9b2−21b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−98a2 + 42a3 − 42b2 + 98b3 = 0
21a2 − 49a3 + 49b2 − 21b3 = 0

−40a1 + 58a2 − 42a3 + 42b2 − 98b3 = 0
−42a2 + 98a3 + 40b1 − 58b2 + 42b3 = 0

21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = b2

b1 = −b2

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = x− 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x− 1−
(
−3y − 7x+ 7
7y − 3x+ 3

)
(y)

= 3x2 − 3y2 − 6x+ 3
−7y + 3x− 3

ξ = 0

270



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2−3y2−6x+3
−7y+3x−3

dy

Which results in

S = 5 ln (x− 1 + y)
3 + 2 ln (y + 1− x)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y − 7x+ 7
7y − 3x+ 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5
3x− 3 + 3y + 2

−3 + 3x− 3y

Sy =
5

3x− 3 + 3y − 2
−3 + 3x− 3y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

5 ln (y + x− 1)
3 + 2 ln (y + 1− x)

3 = c1

Which simplifies to
5 ln (y + x− 1)

3 + 2 ln (y + 1− x)
3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y−7x+7
7y−3x+3

dS
dR

= 0

R = x

S = 5 ln (x− 1 + y)
3 + 2 ln (y + 1− x)

3
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

5iπ
3 = c1

c1 =
5iπ
3

Substituting c1 found above in the general solution gives

5 ln (x− 1 + y)
3 + 2 ln (y + 1− x)

3 = 5iπ
3

Summary
The solution(s) found are the following

(1)5 ln (y + x− 1)
3 + 2 ln (y + 1− x)

3 = 5iπ
3

Verification of solutions

5 ln (y + x− 1)
3 + 2 ln (y + 1− x)

3 = 5iπ
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.843 (sec). Leaf size: 5735� �
dsolve([(3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 88.015 (sec). Leaf size: 1602� �
DSolve[{(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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1.25 problem 2(o)
1.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 275
1.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 276

Internal problem ID [3026]
Internal file name [OUTPUT/2518_Sunday_June_05_2022_03_17_55_AM_70956231/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(o).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(2− x+ 2y) y′ − xy(y′ − 1) = −x

1.25.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x

x− 2 dx

= x+ 2 ln (x− 2) + c1

Summary
The solution(s) found are the following

(1)y = x+ 2 ln (x− 2) + c1
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Figure 58: Slope field plot

Verification of solutions

y = x+ 2 ln (x− 2) + c1

Verified OK.

1.25.2 Maple step by step solution

Let’s solve
(2− x+ 2y) y′ − xy(y′ − 1) = −x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = x

x−2

• Integrate both sides with respect to x∫
y′dx =

∫
x

x−2dx+ c1

• Evaluate integral
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y = x+ 2 ln (x− 2) + c1

• Solve for y
y = x+ 2 ln (x− 2) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(x+(2-x+2*y(x))*diff(y(x),x)=x*y(x)*(diff(y(x),x)-1),y(x), singsol=all)� �

y(x) = −1
y(x) = x+ 2 ln (−2 + x) + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20� �
DSolve[x+(2-x+2*y[x])*y'[x]==x*y[x]*(y'[x]-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
y(x) → x+ 2 log(x− 2) + c1
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1.26 problem 2(p)
1.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 278
1.26.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 279
1.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 281
1.26.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 285
1.26.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 289

Internal problem ID [3027]
Internal file name [OUTPUT/2519_Sunday_June_05_2022_03_17_56_AM_91197894/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(p).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ cos (x) + y sin (x) = 1

With initial conditions

[y(0) = 0]

1.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = sec (x)
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Hence the ode is

y′ + y tan (x) = sec (x)

The domain of p(x) = tan (x) is

{
x <

1
2π + π_Z142∨ 1

2π + π_Z142 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = sec (x) is

{
x <

1
2π + π_Z142∨ 1

2π + π_Z142 < x

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.26.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)

Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (sec (x))

d
dx(sec (x) y) = (sec (x)) (sec (x))

d(sec (x) y) = sec (x)2 dx

Integrating gives

sec (x) y =
∫

sec (x)2 dx

sec (x) y = tan (x) + c1
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Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x) tan (x) + c1 cos (x)

which simplifies to

y = c1 cos (x) + sin (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

y = sin (x)

Summary
The solution(s) found are the following

(1)y = sin (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (x)

Verified OK.
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1.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−1 + sin (x) y
cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 + sin (x) y
cos (x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = tan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = tan (x) + c1

Which simplifies to

y sec (x) = tan (x) + c1

Which gives

y = tan (x) + c1
sec (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−1+sin(x)y
cos(x)

dS
dR

= sec (R)2

R = x

S = sec (x) y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

y = sin (x)

Summary
The solution(s) found are the following

(1)y = sin (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (x)

Verified OK.

1.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(cos (x)) dy = (− sin (x) y + 1) dx
(−1 + sin (x) y) dx+(cos (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1 + sin (x) y
N(x, y) = cos (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−1 + sin (x) y)

= sin (x)

And
∂N

∂x
= ∂

∂x
(cos (x))

= − sin (x)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (x) ((sin (x))− (− sin (x)))
= 2 tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 tan(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))

= sec (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x)2 (−1 + sin (x) y)
= (−1 + sin (x) y) sec (x)2

And

N = µN

= sec (x)2 (cos (x))
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−1 + sin (x) y) sec (x)2
)
+ (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−1 + sin (x) y) sec (x)2 dx

(3)φ = sec (x) y − tan (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sec (x) y − tan (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sec (x) y − tan (x)

The solution becomes

y = tan (x) + c1
sec (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

y = sin (x)
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Summary
The solution(s) found are the following

(1)y = sin (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (x)

Verified OK.

1.26.5 Maple step by step solution

Let’s solve
[y′ cos (x) + y sin (x) = 1, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − sin(x)y

cos(x) + 1
cos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + sin(x)y

cos(x) = 1
cos(x)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + sin(x)y

cos(x)

)
= µ(x)

cos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(x)y

cos(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(x)

cos(x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
cos(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
cos(x)dx+ c1

• Solve for y

y =
∫ µ(x)

cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ 1

cos(x)2dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (tan (x) + c1)

• Simplify
y = c1 cos (x) + sin (x)

• Use initial condition y(0) = 0
0 = c1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = sin (x)

• Solution to the IVP
y = sin (x)

290



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 6� �
dsolve([diff(y(x),x)*cos(x)+y(x)*sin(x)=1,y(0) = 0],y(x), singsol=all)� �

y(x) = sin (x)

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 7� �
DSolve[{y'[x]*Cos[x]+y[x]*Sin[x]==1,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)
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1.27 problem 2(q)
1.27.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 292
1.27.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 293
1.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 295

Internal problem ID [3028]
Internal file name [OUTPUT/2520_Sunday_June_05_2022_03_17_59_AM_84763816/index.tex]

Book: Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section: Exercises, page 14
Problem number: 2(q).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational]

(
x+ y2

)
y′ + y = x2

With initial conditions

[y(1) = 1]

1.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −−x2 + y

y2 + x

The x domain of f(x, y) when y = 1 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}
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And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−−x2 + y

y2 + x

)
= − 1

y2 + x
+ 2(−x2 + y) y

(y2 + x)2

The x domain of ∂f
∂y

when y = 1 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.27.2 Solving as differentialType ode

Writing the ode as

y′ = x2 − y

x+ y2
(1)

Which becomes (
y2
)
dy = (−x) dy +

(
x2 − y

)
dx (2)

But the RHS is complete differential because

(−x) dy +
(
x2 − y

)
dx = d

(
1
3x

3 − xy

)
Hence (2) becomes

(
y2
)
dy = d

(
1
3x

3 − xy

)
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Integrating both sides gives gives these solutions

y =

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3

2 − 2x(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3
+ c1

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3

4 + x(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3
+

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+4x3+9c21

) 1
3

2 + 2x(
4x3+12c1+4

√
x6+6c1x3+4x3+9c21

) 1
3


2 + c1

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3

4 + x(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 4x3 + 9c21

) 1
3
−

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+4x3+9c21

) 1
3

2 + 2x(
4x3+12c1+4

√
x6+6c1x3+4x3+9c21

) 1
3


2 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =
−i

√
3
(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 2
3 − 4i

√
3−

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 2
3 + 4c1

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3 + 4

4
(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 1 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =
i
√
3
(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 2
3 + 4i

√
3−

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 2
3 + 4c1

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3 + 4

4
(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 1 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 2
3 + 2c1

(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3 − 4

2
(
4 + 12c1 + 4

√
9c21 + 6c1 + 5

) 1
3

Warning: Unable to solve for constant of integration.

Verification of solutions N/A
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1.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2 + x

)
dy =

(
x2 − y

)
dx(

−x2 + y
)
dx+

(
y2 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + y

N(x, y) = y2 + x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + y

)
= 1

And
∂N

∂x
= ∂

∂x

(
y2 + x

)
= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + y dx

(3)φ = −1
3x

3 + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= y2 + x. Therefore equation (4) becomes

(5)y2 + x = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 + xy + 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + xy + 1
3y

3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

−1
3x

3 + xy + 1
3y

3 = 1

Summary
The solution(s) found are the following

(1)−x3

3 + yx+ y3

3 = 1

Verification of solutions

−x3

3 + yx+ y3

3 = 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 56� �
dsolve([(x+y(x)^2)*diff(y(x),x)+(y(x)-x^2)=0,y(1) = 1],y(x), singsol=all)� �

y(x) =
(
12 + 4x3 + 4

√
x6 + 10x3 + 9

) 2
3 − 4x

2
(
12 + 4x3 + 4

√
x6 + 10x3 + 9

) 1
3

3 Solution by Mathematica
Time used: 3.931 (sec). Leaf size: 66� �
DSolve[{(x+y[x]^2)*y'[x]+(y[x]-x^2)==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

x3 +
√
x6 + 10x3 + 9 + 3

3
√
2

−
3
√
2x

3
√

x3 +
√
x6 + 10x3 + 9 + 3
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